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Abstract—Integrated sensing and communication (ISAC) is
seen as a future solution to frequency congestion due to its
excellent ability to simultaneously support target sensing and
information transmission. To guarantee robust data security and
privacy protection, covert communication can be employed in
ISAC systems. In this paper, we propose a covert ISAC scheme
against collusive wardens. In particular, a dual-function base
station transmits the sensing beamforming to continuously sense
an aerial target while communicating with a ground receiver
with a probability of 0.5 via the communication beamforming.
First, we derive a closed-form expression of the detection outage
probability of each warden to obtain the global detection outage
probability. Under the worst case that the wardens can collusively
adjust their detection thresholds to achieve the best detection
performance, we jointly optimize the communication and sens-
ing beamformings to maximize the covert transmission rate.
To tackle this non-convex problem, unitary-iteration and zero-
forcing schemes are proposed to transform it into convex ones
via semidefinite relaxation and successive convex approximation,
respectively. Numerical results demonstrate the validity of the
proposed covert ISAC scheme, which can achieve a better trade-
off among communication, sensing and covertness compared to
benchmarks.

Index Terms—Integrated sensing and communication, covert
communication, collusive wardens, beamforming optimization,
covert transmission rate.

I. INTRODUCTION

With the rapid development of mobile networks, the com-
munication and radar devices are proliferating, putting tremen-
dous pressure on the limited spectrum resource [2]. Integrated
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sensing and communication (ISAC) emerges as a promising
technology to address this issue due to its particular ability to
realize the communication and sensing services on a unified
hardware platform simultaneously, and allow the communica-
tion and radar systems to share the same spectrum resource
[3]–[5]. Compared with traditional communication and radar
systems, ISAC can offer significant benefits of low cost, low
power, and small volume via sharing the hardware circuits [6].
In addition, due to the similar signal processing architecture
for both the communication and sensing, ISAC can design
flexible waveforms to allow the selection of communication-
centric [7], sensing-centric [8], and co-designed [9] ones
according to the multifarious communication and sensing
requirements. Due to its high compatibility, ISAC can be
combined with a variety of advanced techniques to enhance
performance including non-orthogonal multiple access (NO-
MA), intelligent reflecting surface (IRS), unmanned aerial
vehicle (UAV), and so on [10]–[12]. Considering the above
advantages, ISAC has been applied in diverse scenarios, such
as autonomous vehicle networks [13], smart home networks
[14], and Internet of Things (IoT) [15].

Recently, security issues have attracted considerable atten-
tion due to the inherent openness of wireless channels, which
makes them highly susceptible to eavesdropping [16]. To over-
come this challenge, information encryption and physical layer
security have been widely adopted in wireless networks to
protect the transmitted information from being decrypted [17].
However, with the increasing security requirements, the trans-
mission behavior should be hidden in some specific scenarios
[18]. As a result, covert communication emerges to provide
a higher level of security [19]. Bash et al. first investigated
the fundamental performance limit of covert communications.
They proposed the square root law that the transmitter can
only transmit at most O (

√
n) bits of information in n channel

uses over the additive white Gaussian noise channel, and
lim

n→∞
O (

√
n) /n = 0, indicating the zero covert rate [20]. In

addition, the performance of covert communications can be
severely degraded due to the inevitable multi-path fading and
interference [21]. To overcome these limitations, noise and
channel uncertainty are further exploited to create additional
confusion for warden’s detection [22], and various advanced
technologies are used to increase the covert transmission rate,
such as IRS [23] and artificial noise [24].

Specifically, a significant number of papers have devoted
to proposing covert schemes against multiple wardens, which
is much more common in real-world scenarios [25]–[29]. In
[25], Soltani et al. firstly demonstrated that Alice can covertly
transmit O

(
min

{
n,m

γ
2
√
n
})

bits of information to Bob on
n channel uses with m wardens, where γ denotes the path-
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loss. Forouzesh et al. jointly considered covert communication
and secure transmission for an untrusted relaying network
with multiple wardens in [26]. Jiang et al. investigated the
covert communication schemes in D2D underlaying cellular
networks against a single or multiple wardens in [27]. Argha-
vani et al. tackled the problem of finite blocklength covert
communication in the presence of multiple colluding wardens
adopting maximal ratio combining based detection strategy,
and proposed a zero-sum game formulation to model the
interaction among the transmitter, the jammer, and wardens in
[28]. Considering the high mobility of UAV, Mao et al. studied
UAV-aided ground-to-air covert network in [29], and jointly
optimized user association, bandwidth allocation, transmit
power control and UAV 3-D deployment to maximize the
transmission rate with multiple wardens.

While ISAC is inevitably threatened by eavesdropping risks
due to the inherent openness, the higher level security of
covert communication makes its application in ISAC effective
in improving ISAC security [30]. How to design a covert ISAC
has sparked a hot discussion since it is of great significance in
maintaining national security, promoting the development of
healthy IoT, and satisfying users’ privacy requirements [31].
At present, research on covert ISAC is in its infancy, and there
are only a few initial works [31]–[35]. Ma et al. proposed
a basic covert beamforming framework to maximize mutual
information (MI) and covert rate in [31], where MI is used to
measure the sensing performance. In [32], Hu et al. maximized
the covert throughput while ensuring a high probability of
radar sensing, thus achieving the trade-off between radar
sensing and covert transmission. Zhang et al. formulated
an alternative optimization method for the IRS-aided covert
ISAC to maximize the covert rate in [33]. In addition, Chen
et al. proposed an active IRS-assisted covert NOMA-ISAC
scheme and maximized the covert rate by jointly optimizing
the transmission and reflection beamformings [34]. However,
the above works only focus on the case of a single warden,
and the covert ISAC against multiple wardens receives less
attention. Ghosh et al. proposed a covert ISAC scheme with
multiple wardens in [35], but the wardens can not cooperative
with each other.

Motivated by the above, we focus on the covert ISAC
against collusive wardens in this paper. The main contributions
and motivations are summarized as follows.

• To the best of our knowledge, there remains a research
gap in investigating covert ISAC under cooperative detec-
tion scenarios. To address this, we propose a novel covert
ISAC network where the transmitter Alice simultaneously
communicates with the legitimate user Bob and senses
an aerial target while evading collusive wardens, which
is more practical, complex and challenging compared to
the existing work considering a single warden.

• We develop a quantitative model to characterize the
detection performance of collusive wardens. The analysis
demonstrates that while collusive detection can signifi-
cantly improve performance, the sensing signal degrades
performance as interference. Moreover, we derive the
optimal detection threshold for each warden to minimize
GDOP, creating the worst situation for covert ISAC.

Notably, the covert ISAC network designed under the
extreme condition exhibits enhanced robustness.

• We aim to maximize the covert transmission rate via
jointly optimizing the transmission and sensing beam-
formings, where the covertness constraint, sensing con-
straint and transmit power constraint are considered. To
tackle this non-convex problem, the unitary-iteration (UI)
beamforming and zero-forcing (ZF) beamforming are
respectively proposed to transform it into convex ones
by applying the successive convex approximation (SCA)
and semidefinite relaxation.

• Numerical results demonstrate the fundamental trade-off
among communication, sensing and covertness, offering
insights for practical system design. The comparison with
three benchmark schemes confirm the effectiveness of
our proposed ZF and UI schemes in practical covert
ISAC scenarios. Furthermore, the results conclusively
demonstrate that optimized beamforming design com-
bined with power allocation can significantly enhance
covert communication performance.

The rest of this paper is organized as follows. In Section
II, the system model is portrayed. In Section III, the wardens’
detection performance is analyzed, and the optimal detection
threshold of each warden is derived. In Section IV, the opti-
mization problem is formulated and two schemes are proposed
to solve it. Simulation results are illustrated in Section V with
the conclusion in Section VI.

Notation: Scalars and vectors are denoted by italic letters
and bold-face letters, respectively. C is the complex number
set. | · | denotes the absolute value of complex scalar. (·)T
and (·)H represent the transpose and the conjugate transpose
of a matrix, respectively. Π(·) denotes the continuous mul-
tiplication. Pr(A) is the probability of the occurrence of an
event A. E(x), f(x) and F(x) are the expectation, the prob-
ability density function (PDF) and the cumulative distribution
function (CDF) of a random variable x, respectively. ||x||2
represents the Euclidean norm of x. IN represents the N ×N
identity matrix. CN×N is the set of N ×N complex matrices.
x ∼ CN (µ, σ2) denotes the circularly symmetric complex
Gaussian distribution with the mean µ and variance σ2. Tr(S)
and Ra(S) respectively denote the trace and rank of the square
matrix S.

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider a covert ISAC net-
work against randomly distributed Willies. To be specific,
an uniform linear array transmitter Alice with M antennas
along x-axis communicates with a single-antenna receiver Bob
while keeping sensing an aerial target. Considering a practical
internet-of-things scenario, we investigate a clustering-based
detection, where multiple single-antenna Willies collaborate
with each other to monitor the legitimate communication. In
addition, we employ a three-dimensional cylindrical coordi-
nate system, where Alice, Bob and the target are located
at A = (0, 0, 0), B = (rb, φb, 0) and G = (rt, φt,H),
respectively. Assume that the T Willies are independently
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Fig. 1. Covert ISAC against randomly distributed Willies.

and uniformly distributed in a circular area with radius of D
centered at Alice. The location of the t-th Willie is denoted
as Wt(rwt, φwt, 0), t ∈ T , T = {1, 2, . . . , T}, which follows
a binomial point process (BPP), i.e., Wt ∼ Φw. 1

B. Communication Channel Model

The channel from Alice to Bob follows the large-scale path
loss and Rayleigh fading [36], and the complex channel gain
can be given as

gab =

√
ρ0r

−αg
ab hab ∈CM×1, (1)

where hab is modeled as complex Gaussian distributed, i.e.,
hab ∼ CN (0, IM ), ρ0 denotes the power gain at the reference
distance of 1 m, αg is the terrestrial path-loss exponent, and
rab is the distance between Alice and Bob.

Similarly, the channel between Alice and the t-th Willie is
also determined by both the large-scale path loss and small-
scale Rayleigh fading, which can be modeled as

gawt =

√
ρ0r

−αg
awt hawt ∈CM×1, t ∈ T , (2)

where hawt ∼ CN (0, IM ), and rawt denotes the distance
between Alice and the t-th Willie.

To sense the target, Alice consistently generates sensing
signal and receives the echo. Furthermore, to enhance the
covertness of the transmission, the communication signal is
transmitted with a prior transmission probability in each time
slot. To confuse Willies, Alice decides whether to transmit or
not with equal probabilities, i.e., p1 = p0 = 0.5 [19].

Assume that xs[i] is the deterministic sensing signal of the i-
th channel use with E

(
|xs[i]|2

)
= 1, and us ∈CM×1 denotes

the precoding vector for sensing, i∈L,L = {1, 2, . . . , L}, and
L is the number of available channel uses. Thus, when only
the sensing signal is transmitted, the received signal at Bob
can be expressed as

yB[i] = gH
abusxs[i] + nB[i], i ∈ L, (3)

1The model can be well extended to the case of multiple legitimate multi-
antenna users, which will be investigated in our future work.

and the received signal at the t-th Willie can be expressed as

yWt [i] = gH
awtusxs[i] + nWt [i], i ∈ L, (4)

where nB[i] ∼ CN
(
0, σ2

b

)
and nWt [i] ∼ CN

(
0, σ2

wt

)
denote

the additive white Gaussian noise (AWGN) at Bob and the
t-th Willie, respectively.

When the communication and sensing signals are simulta-
neously transmitted, the received signal in the i-th channel use
at Bob can be described as

yB[i] = gH
abusxs[i] + gH

abucxc[i] + nB[i], i ∈ L, (5)

and the corresponding received signal at the t-th Willie can
be represented as

yWt [i] = gH
awtusxs[i] + gH

awtucxc[i] + nWt [i], i ∈ L, (6)

where xc[i] is the transmitted communication signal with
E
(
|xc[i]|2

)
= 1, and Alice precodes the communication signal

with the vector uc ∈CM×1.
Accordingly, the signal-to-interference-plus-noise ratio (S-

INR) at Bob can be expressed as

γb =
|gH

abuc|2

|gH
abus|2 + σ2

b

, (7)

and the transmission rate between Alice and Bob can be
represented as

R = log2 (1 + γb) = log2

(
1 +

|gH
abuc|2

|gH
abus|2 + σ2

b

)
. (8)

Without loss of generality, we consider to adopt the trans-
mission rate in (8) subject to the covertness constraint as a
measure of communication quality, which is also known as
the covert transmission rate (CTR) [37].

C. Sensing Channel Model

Consider that the channel between Alice and aerial target
is line-of-sight. In addition, due to the terrestrial environment,
the echoes reflected from Bob and Willies can be negligible.

Accordingly, the echo signal at Alice with only sensing
performed can be expressed as

yA[i] = µaTa
H
Rusxs[i] + nA[i] = Ξusx[i] + nA[i], (9)

where Ξ = µaTa
H
R , and µ is the complex amplitude related

to the round-trip path-loss and the reflection factor of target.
Moreover, aT and aR respectively denote the transmit steering
vector and receive steering vector, which can be expressed as

aT =aR=
[
1, e

−j2πdψ
λ , . . . , e

−j2πd(M−1)ψ
λ

]T
∈CM×1, (10)

where ψ = sin θ cosφt with θ = arccos H
rt

. Note that d de-
notes the spacing between the adjacent antennas, and λ denotes
the carrier wavelength. In addition, nA[i] ∼ CN (0, σ2

aIM )
denotes the AWGN at Alice.

The echoes can offer additional details of the target and
channel state information (CSI), enabling the transmitter to
gain a more comprehensive understanding and diminish a
priori uncertainty regarding the target. Accordingly, MI can
serve as a measure to assess the quantity of information
acquired by the transmitter from the echoes.
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Given yA[i] in (9), the MI with no communication signal
can be expressed as

I1 =
1

2
log2

(
1 +

uH
s ΞHΞus

σ2
a

)
. (11)

For the other case, the corresponding echo signal at Alice
can be expressed as

yA[i] = Ξusxs[i] + Ξucxc[i] + nA[i], (12)

with its MI given by

I2 =
1

2
log2

(
1+

uH
s ΞHΞus

uH
c ΞHΞuc + σ2

a

)
. (13)

Remark 1: It has been demonstrated that increasing MI
results in greater information acquisition of the transmitter,
consequently enhancing the recognition capability [31]. To
ensure the performance of sensing, we should guarantee that
the MI is above a preset threshold.

III. DETECTION ANALYSIS AND OPTIMIZATION

In this section, we analyze each Willie’s detection outage
probability (DOP), and derive their optimal thresholds to
enhance the collaborative detection performance.

A. Detection Analysis

Assume that Willies possess full knowledge of CSI, as well
as the prior transmission probability and transmission power,
which enables them to design the optimal detectors to achieve
the optimal detection, creating the worst case for Alice [37].

According to [18], Willies can analyze the received power
with a radiometer to determine whether Alice is transmitting.
Therefore, the t-th Willie is required to address a binary
hypothesis testing as

yWt
[i]=

gH
awtusxs[i] + nWt [i], t ∈ T , H0,

gH
awtusxs[i] + gH

awtucxc[i] + nWt [i], H1,
(14)

where H0 is the null hypothesis suggesting that Alice does not
engage in transmitting, while H1 is the alternative hypothesis
proposing that Alice performs transmitting.

Actually, the optimal test for each Willie is proven to be
the threshold test [38]. Based on the average received power,
the decision rule of the t-th Willie can be described as

Pwt

D1

≷
D0

ξt, (15)

where

Pwt =
1

L

L∑
i=1

∣∣yWt[i]

∣∣2 , (16)

and ξt > 0 is the t-th Willie’s detection threshold. Note that
D1 is the binary decision demonstrating that the transmission
occurs with Pwt > ξt. On the contrary, D0 indicates that Alice
keeps silent with Pwt < ξt.

According to [39], the number of the available channel uses
in each time slot is proportional to the bandwidth. Thus, we
can conclude that the available channel uses can be increased

to approach infinity with sufficient communication bandwidth.
Therefore, L → ∞ is considered in each time slot, and the
average received power at the t-th Willie can be approximated
as a stationary statistical random variable expressed as

Pwt = lim
L→∞

Pwt =

 Swtc + Swts + σ2
wt , H1,

Swts + σ2
wt , H0,

(17)

where

Swtc =
ρ0|hH

awtuc|2

r
αg
awt

(18)

and

Swts =
ρ0|hH

awtus|2

r
αg
awt

(19)

are the average statistical powers of the sensing and commu-
nication, respectively.

Due to the uncertainty introduced by random variables,
Willies will inevitably make two kinds of errors during the
detection, including the miss detection (MD) and false alarm
(FA). To be specific, MD happens when Alice actually per-
forms transmitting while the t-th Willie fails to detect, i.e.,

Swtc + Swts + σ2
wt < ξt. (20)

By contrast, FA occurs when the t-th Willie determines that
the transmission exists while Alice remains silent it, i.e.,

Swts + σ2
wt > ξt. (21)

Based on the decision rule in (15), the probability of the
t-th Willie making a wrong detection can be given as

pwt = Pr{H1}Pr{D0|H1}+ Pr{H0}Pr{D1|H0}, (22)

where

Pr{H1} = p1 = 0.5, Pr{H0} = p0 = 0.5. (23)

According to

Pr{D0|H1} = Pr{Swtc + Swts + σ2
wt < ξt} (24)

and
Pr{D1|H0} = Pr{Swts + σ2

wt > ξt}, (25)

pwt can be further formulated as

pwt =

 0, Swts < ξt < Swtc + Swts ,

0.5, otherwise,
(26)

where ξt = ξt − σ2
wt .

Without loss of generality, we define the probability that
each Willie makes the error decision as DOP, and the t-th
Willie’s DOP can be formulated as

pdt=1−Pr{pwt = 0}=1−Pr{Swts<ξt<Swtc+Swts}, (27)

and 0 ≤ pdt ≤ 1. Specifically, pdt = 0 signifies that the t-th
Willie can accurately perform detecting, and pdt = 1 indicates
that he only makes a blind guess. The specific closed-form
expression of pdt is provided in Proposition 1.
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Proposition 1: The closed-form expression of pdt can be
expressed as

Pdt =


1−

ats
(
e−atsξt−e−atcξt

)
atc−ats

, atc ̸=ats,

1− atcξte
−atcξt , atc = ats,

(28)

with

ats =
r
αg
awt

ρ0Pas
, (29)

and

atc =
r
αg
awt

ρ0Pac
, (30)

where Pas , ∥us∥22 and Pac , ∥uc∥22 denote the powers of
sensing and communication, respectively.

Proof: Please refer to Appendix A.

B. Detection Optimization of Willies
Willies collaborate on detecting the legitimate transmission

with the covert transmission outage taking place when at least
one Willie successfully detects it. With this context, the global
DOP (GDOP) is defined to quantify the likelihood of all
Willies failing to detect the transmission as

pe=EΦw

[
Pr

{ ∩
wt∈Φw

pwt ̸= 0

}]
=EΦw

[ ∏
wt∈Φw

pdt

]
. (31)

Based on (28), the closed-form expression of GDOP is pre-
sented in Proposition 2.

Proposition 2: Considering the DOP of each Willie, the
GDOP can be calculated as

pe =

[∫ D

0

pdt
2r

D2
dr

]T
, (32)

where pdt is given in (28) with rawt = r, t ∈ T .
Proof: As mentioned in Section II, Willies are indepen-

dent and identically distributed and follow a BPP distribution
within a circular area. Consequently, the probability density
function (PDF) can be expressed as

fwt(r, θ) =
r

πD2
, (33)

and (31) can be rewritten as

pe=
T∏

t=1

∫ 2π

0

∫ D

0

pdt
r

πD2
drdθ =

T∏
t=1

∫ D

0

pdt
2r

D2
dr, (34)

which can be further derived to be (32).
According to (28), it is evident that the detection threshold

significantly impacts the DOP. Thus, each Willie aims to
identify its own optimal detection threshold to reduce the DOP
and consequently minimize the GDOP. The optimal detection
threshold of each Willie is detailed in Proposition 3.

Proposition 3: The optimal detection threshold of the t-th
Willie is derived as

ξ∗t =


ln ats − ln atc
ats − atc

, atc ̸=ats,

1

atc
, atc = ats.

(35)

Proof: Please refer to Appendix B.
Adopting the optimal detection threshold in (35), the mini-

mum DOP achieved by the t-th Willie p†dt can be calculated.
When atc ̸=ats, p†dt can be expressed as

p†dt = 1− ats
atc − ats

(
e−

ats ln
ats
atc

ats−atc − e−
atc ln

ats
atc

ats−atc

)

= 1− ats
atc−ats

[(
ats
atc

) ats
atc−ats

−
(
ats
atc

) atc
atc−ats

]
r=

ats
atc−ats======== 1− r

[(
ats
atc

)r

−
(
ats
atc

)r+1
]

= 1−r
(
1− ats

atc

)(
ats
atc

)r

=1−
(
atc
ats

) atc
ats−atc

,

(36)

and when atc = ats, p†dt is equal to

p†dt = 1− e−1. (37)

Hence, the minimum DOP of the t-th Willie can be derived
as

p†dt =


1−

(
atc
ats

) atc
ats−atc

, atc ̸=ats,

1− e−1, atc=ats.

(38)

Accordingly, the optimal GDOP can be calculated as

p†e =

T∏
t=1

∫ 2π

0

∫ D

0

p†dt
r

πD2
drdθ =

(
p†dt

)T
, (39)

which can be further elaborated as

p†e =



(
1−

(
Pas

Pac

) Pas
Pac−Pas

)T

, Pac ̸=Pas,

(
1− e−1

)T
, Pac=Pas.

(40)

When p†e exceeds a specified threshold, the collaborative
detection fails. From (40), it can be noted that the optimal
GDOP is not related to M , indicating that increasing or
decreasing the number of antennas have no impact on Willies’
collaborative detection.

Remark 2: Alice’s transmit power is changing all the time.
Thus, it is challenging for Willies to adjust the current thresh-
olds to the optimal ones in time due to the delay. Nevertheless,
we assume that all Willies still perform the detection with the
optimal thresholds as the worst situation for the legitimate
covert transmission.

We analyze the impacts of the number of Willies, and the
sensing and communication powers on the GDOP, which are
presented in Corollary 1 and Corollary 2, respectively.

Corollary 1: With the increasing number of Willies T ,
the optimal GDOP p†e decreases, however, this trend weakens
when T is large enough.

Proof: Based on (40), p†e can be written as

p†e = (1− ϱ)
T
, (41)
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where ϱ =
(

Pas
Pac

) Pas
Pac−Pas or ϱ = e−1. The first-order

derivative of p†e with respect to T can be derived as

p†
′

e (T ) = (1− ϱ)
T
ln (1− ϱ) , (42)

and the second-order derivative of p†e with respect to T can
be expressed as

p†
′′

e (T ) = (1− ϱ)
T
[ln (1− ϱ)]

2
. (43)

Considering 0 < ϱ < 1, we can conclude that p†
′

e (T ) < 0
and p†

′′

e (T ) > 0. p†
′

e (T ) < 0 indicates that p†e monotonically
decreases with T , and the detection performance can be
upgraded by deploying more Willies. p†

′′

e (T ) > 0 implies
that the absolute value of p†

′

e (T ) decreases as T increases,
signifying a decrease in the slope of p†e with respect to T . This
indicates that once a specific threshold is reached, the impact
of increasing T on enhancing the detection performance
becomes trivial.

Consequently, it is crucial to select an appropriate T to
ensure the efficiency of surveillance.

Corollary 2: Increasing the sensing power Pas or decreas-
ing communication power Pac can both increase the optimal
GDOP p†e, provided that the two powers are unequal.

Proof: According to (41), it can be concluded that p†e
monotonically decreases with respect to ϱ. The first-order
derivative of ϱ with respect to Pas can be derived as

ϱ′ (Pas) =

(
Pas
Pac

)Pas/(Pac−Pas)

Hsc

(Pac − Pas)
2 , (44)

and Hsc can be expressed as

Hsc = PacHv, (45)

where Hv = ln v − v + 1 with v = Pas
Pac

. In addition, the
first-order derivative of Hv with respect to v can be derived
as

H ′
v (v) = 1/v − 1, (46)

which shows that H ′
v (v) > 0 when v < 1 and H ′

v (v) <
0 when v > 1, indicating that Hv first increases, and then
decreases with v. Thus, Hv can achieve its maximum value
at v = 1. Due to Hv(1) = 0, Hv ≤ 0 and Hsc ≤ 0 can
be derived. According to (44), it is obvious that the positivity
or negativity of ϱ′ (Pas) depends on Hsc. Thus, ϱ′ (Pas) ≤ 0
can be obtained, which states that ϱ monotonically decreases
with respect to Pas. Furthermore, we can conclude that p†e
monotonically increases with respect to Pas.

Similarly, the first-order derivative of ϱ with respect to Pac

can be derived as

ϱ′ (Pac) =
−
(

Pas
Pac

)Pac/(Pac−Pas)

Hsc

(Pac − Pas)
2 , (47)

and ϱ′ (Pac) ≥ 0 can be accordingly obtained. Subsequently,
we can conclude that p†e monotonically decreases with respect
to Pac. In summary, increasing Pas or decreasing Pac can both
increase p†e, consequently reducing the detection performance.

IV. CTR MAXIMIZATION

In this section, we jointly optimize the sensing vector us and
transmission vector uc to maximize the CTR while ensuring
that MI remains above a preset threshold. Note that the
optimization is achieved with all Willies adopting the optimal
thresholds.

A. Problem Formulation
To maximize the CTR, the joint optimization problem can

be formulated as

P1 : max
us,uc

R (48a)

s.t. I2 ≥ ν, (48b)

p†e ≥ 1− ε, (48c)

||uc||22 ≤ Pcmax, (48d)

||us||22 ≤ Psmax. (48e)

Note that (48b) serves as the MI constraint to guarantee the
sensing performance, and 1 − ε in (48c) is the minimum
required GDOP with ε denoting the covertness level. Psmax

and Pcmax represent the maximum available sensing and
transmission powers, respectively.

Due to the highly coupled vectors, and non-convex objective
function and constraints, it is difficult to solve P1. To address
this challenge, P1 can be converted into a standard semi-
definite programming (SDP).

First, the channels gab and aT can be reformulated as

Gab = gabg
H
ab, (49)

and
GT = aTa

H
T . (50)

Then, the Hermitian matrices of us and uc can be obtained
as

Uc = ucu
H
c (51)

Us = usu
H
s , (52)

which satisfy
Uc ≽ 0,Ra(Uc) = 1, (53)

and
Us ≽ 0,Ra(Us) = 1. (54)

Therefore, Pac and Pas can be expressed as

Pac = Tr(Uc), Pas = Tr(Us). (55)

According to the above transformation, P1 can be recast as

P2 : max
Us,Uc

R (56a)

s.t. (48b) and (48c), (56b)
Tr(Uc) ≤ Pcmax, (56c)
Tr(Us) ≤ Psmax, (56d)
Uc ≽ 0, (56e)
Us ≽ 0, (56f)
Ra(Uc) = Ra(Us) = 1. (56g)

We propose two beamforming strategies to solve P2 in the
following subsections.
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B. Unitary-Iteration Beamforming

In this subsection, we propose an unitary-iteration (UI)
beamforming strategy. To begin with, we tackle the non-
convex objective function along with associated constraints.

Due to the complex expression of CTR, we can rewrite R in
(57) at the top, which is a concave-minus-concave expression.
Thus, a global upper estimator of the concave expression
R̂(Us) can be afforded via the first-order Taylor expansion,
which can be described with a given local point as

R̂(Us) ≤R̂[lp](Us) = R̂
(
U(p)

s

)
+

Tr
(
▽H

U
(p)
s
R̂
(
U(p)

s

)(
Us −U(p)

s

))
,

(58)

where p denotes the iteration index, and U
(p)
s represent the

optimized Us in the p-th iteration. Note that R̂(U(p)
s ) can be

calculated by substituting U
(p)
s into (57) as

R̂
(
U(p)

s

)
= log2

(
Tr
(
GabU

(p)
s

)
+ σ2

b

)
. (59)

In addition, ▽H

U
(p)
s

R̂
(
U

(p)
s

)
can be given by

▽H

U
(p)
s
R̂
(
U(p)

s

)
= − 1

ln 2

Gab

Tr
(
GabU

(p)
s

)
+ σ2

b

. (60)

Thus, (56a) can be transformed into

max
Us,Uc

R̃− R̂[lp](Us). (61)

Moreover, Proposition 4 is proposed to convert (48b) into
a convex constraint.

Proposition 4: (48b) can be converted as

|µ|2Tr (GTUs) ≥

(2ν − 1)

(
|µ|2Tr (GTUc) +

σ2
a

Tr(GT )

)
.

(62)

Proof: According to the channels in (50), (48b) can be
recast as

1

2
log2

(
1 +

µ|2Tr (GTUs)Tr(GT )

|µ|2Tr (GTUc)Tr(GT ) + σ2
a

)
≥ ν. (63)

(63) can be further stated as

µ|2Tr (GTUs)

|µ|2Tr (GTUc) +
σ2
a

Tr(GT )

≥ 22ν − 1, (64)

which is equal to (62).
In addition, because of the complex expression of the

optimal GDOP p†e, it is difficult to judge whether (48c) is
convex. Thus, we rewrite it as(

1−
(
Pas

Pac

) Pas
Pac−Pas

)T

≥ 1− ε. (65)

Note that finding the square root of T of both sides of the
inequality does not change inequality sign. Thus, we have

1−
(
Pas

Pac

) Pas
Pac−Pas

≥ T
√
1− ε, (66)

which can be simplified as(
Pas

Pac

) Pas
Pac−Pas

+ ϑ ≤ 0, (67)

where
ϑ = T

√
1− ε− 1 < 0. (68)

To handle the exponential function, the logarithmic function
is introduced to transform (67) into

Pas

Pas − Pac
ln

(
Pas

Pac

)
+ ln (−ϑ) ≥ 0. (69)

Unfortunately, it is still difficult to determine whether
Pas

Pas−Pac
ln(PasPac

) is a convex or concave function. There-
fore, we will solve the problem in two classifications, i.e.,
Pas − Pac > 0 and Pas − Pac < 0.

1) Pas − Pac > 0:
With Pas − Pac > 0, (69) can be transformed as

Pas ln

(
Pas

Pac

)
+ (Pas − Pac) ln (−ϑ) ≥ 0, (70)

For convenience, we define

f(Pas;Pac) = Pas ln

(
Pas

Pac

)
, (71)

and the Hessian Matrix of f(Pas;Pac) can be calculated as

▽2f(Pas;Pac) =

[
1

Pas
− 1

Pac

− 1
Pac

Pas
P 2
ac

]
≽ 0. (72)

According to (72), we can conclude that ▽2f(Pas;Pac) is
a positive semi-definite matrix, indicating that f(Pas;Pac) is
convex. However, it is obvious that (Pas − Pac) ln (−ϑ) is
linear, and (70) is convex-plus-linear, which is not convex.
Thus, we can similarly approximate f(Pas;Pac) via the first-
order Taylor expansion described as (74) at the top of the next
page. In the same way, p denotes the iteration index, and

P (p)
as = Tr(U(p)

s ), P (p)
ac = Tr(U(p)

c ) (73)

represent the optimized communication and sensing powers in
the p-th iteration.

Based on the above conversion, (70) can eventually be
transformed as

f̂(Tr(Us); Tr(Uc))+(Tr(Us)− Tr(Uc)) ln (−ϑ) ≥ 0. (75)

2) Pas − Pac ≤ 0:
Similarly, with Pas − Pac ≤ 0, (69) can also be converted

as
f(Pas;Pac) + (Pas − Pac) ln (−ϑ) ≤ 0, (76)

which is a convex constraint, and can be re-written as

f(Tr(Us); Tr(Uc))+(Tr(Us)− Tr(Uc)) ln (−ϑ) ≤ 0. (77)

Henceforth, all the constraints are transformed into convex
ones except for the rank-1 constraint, which can be relaxed to
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R = log2

(
1 +

Tr (GabUc)

Tr (GabUs) + σ2
b

)
= log2

(
Tr (Gab (Uc +Us)) + σ2

b

)
− log2

(
Tr (GabUs) + σ2

b

)
, R̃− R̂ (Us) . (57)

f(Pas;Pac) ≥ f(P (p)
as ;P (p)

ac ) +

(
ln
P

(p)
as

P
(p)
ac

+ 1

)
(Pas − P (p)

as )− P
(p)
as

P
(p)
ac

(Pac − P (p)
ac ) , f̂(Pas;Pac). (74)

tackle the non-convex obstacle. Based on the above transfor-
mation, P2 can be transformed into an SDP decomposed as

P3.1 : max
Us≽0,Uc≽0

R̃− R̂[lp](Us) (78a)

s.t. (56c), (56d), (62), (75) (78b)
Tr(Us −Uc) > 0, (78c)

and

P3.2 : max
Us≽0,Uc≽0

R̃− R̂[lp](Us) (79a)

s.t. (56c), (56d), (62), (77) (79b)
Tr(Us −Uc) ≤ 0, (79c)

which are both convex, and can be directly tackled via a
standard convex optimization solver such as CVX.

With the identical channels, solving P3.1 and P3.2 can
yield their own optimal solutions, and we can obtain the final
solution to P2 by comparing the optimal CTR achieved by the
two sets of optimal solutions. The specific steps are detailed
in Algorithm 1, where ς is the convergence estimation sign.

The computational complexity of Algorithm 1 mainly arises
from solving (78) and (79), which both possess M2 + M2

variables. Accordingly, the complexity of Algorithm 1 can be
calculated as

O
(
W1

(
2M2

)3.5
+W2

(
2M2

)3.5)
, (80)

where W1 and W2 refers to the numbers of iterations in
solving P3.1 and P3.2, respectively [40], [41].

Algorithm 1 - UI beamforming for (56)

1: Initialization: Initialize u
(0)
s , u

(0)
c and ς , and set the

iteration index l = 0, a = 0. Calculate R(0) with the
initial settings.

2: repeat
3: Update: l = l + 1.
4: Optimize the beamforming vectors via (78).
5: until R(l) −R(l−1) ≤ ς .
6: repeat
7: Update: a = a+ 1.
8: Optimize the beamforming vectors via (79).
9: until R(a) −R(a−1) ≤ ς .

10: If R(l) > R(a), R∗ = R(l), u∗
s = u

(l)
s and u∗

c = u
(l)
c .

11: If R(l) < R(a), R∗ = R(a), u∗
s = u

(a)
s and u∗

c = u
(a)
c .

12: Output: u∗
s , u∗

c and R∗.

C. Zero-Forcing Beamforming

Zero-forcing beamforming is highly recognized for its low
complexity, ease of implementation and conversion. Therefore,
we also adopt the zero-forcing beamforming, which is widely
adopted in many works.

To eliminate the interferences at Bob and target, we design
the zero-forcing (ZF) beamforming to satisfy

gH
abus = 0, (81)

and
Ξuc = 0, (82)

which can be recast as

Tr (GabUs) = 0, (83)

and
Tr (GTUc) = 0. (84)

Therefore, (48b) can be converted as

|µ|2Tr (GTUs) ≥
(
22ν − 1

) σ2
a

Tr(GT )
. (85)

Accordingly, P2 can be rewritten as

P4 : max
Us,Uc

Tr (GabUc) (86a)

s.t. (48c), (56c), (56d), (56e), (56f), (56g),

(83), (84), (85). (86b)

Similarly, the rank-1 constraint can be relaxed. With (48c), we
can transform P4 into two sub-problems as

P5.1 : max
Us≽0,Uc≽0

Tr (GabUc) (87a)

s.t. (56c), (56d), (75), (78c), (83),

(84), (85), (87b)

and

P5.2 : max
Us≽0,Uc≽0

Tr (GabUc) (88a)

s.t. (56c), (56d), (77), (79c), (83),

(84), (85), (88b)

which can both be directly solved via CVX. The optimal
solution to P4 can be obtained by comparing the optimal
CTR achieved by P5.1 and P5.2. The specific steps of ZF-
beamforming are characterized by Algorithm 2.

As no iteration is required to solve (88), the computational
complexity arises mainly from solving (87), which also has
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Algorithm 2 - ZF beamforming for (86)

1: Initialization: Initialize u
(0)
s , u

(0)
c and ς , and set the

iteration index q = 0. Calculate R(0) with the initial
settings.

2: repeat
3: Update: q = q + 1.
4: Optimize the beamforming vectors via (87).
5: until R(q) −R(q−1) ≤ ς .
6: Optimize the beamforming vectors via (88), and record

the optimization results as R(h), u(h)
s and u

(h)
c .

7: If R(q) > R(h), R∗ = R(q), u∗
s = u

(q)
s and u∗

c = u
(q)
c .

8: If R(q) < R(h), R∗ = R(h), u∗
s = u

(h)
s and u∗

c = u
(h)
c .

9: Output: u∗
s , u∗

c and R∗.

M2 +M2 variables. Therefore, the complexity of Algorithm
2 can be calculated as

O
(
V1

(
2M2

)3.5)
, (89)

where V1 denotes the number of iterations in solving (87).
Remark 3: Due to the relaxation of the rank-1 constraint

(56g), the rank of U∗
c and U∗

s may not be equivalent to 1. If

Ra(U∗
c) = Ra(U∗

s) = 1 (90)

can be satisfied, the optimal vectors u∗
c and u∗

s can be
decomposed via the singular value decomposition. Otherwise,
the Gaussian randomization process can be adopted to attain
the high-quality rank-1 solution.

Remark 4: As P5.2 can be solved without iterations in
the ZF beamforming strategy, we can get a conclusion that
Algorithm 2 has lower complexity and faster rate compared
to Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed covert ISAC scheme through simulation results. Unless
explicitly specified, the relevant parameters are set according
to the following defaults. Alice, Bob and the target are
located at A = (0m, 0, 0m), B = (50m, π4 , 0m) and G =
(60m, 3π4 , 150m), respectively. The radius is set as D = 300
m. The number of antennas equipped at Alice is M = 8, and
the number of Willies is T = 5. Without loss of generality,
the spacing between two adjacent antennas is assumed to be
d = 0.5λ, and the azimuth angle is given as ϕ = π

3 . In
addition, the air-to-ground and terrestrial path-loss exponents
are set as αs = 2 and αg = 2.8, respectively. The path-loss
gain at the reference distance is established as ρ0 = −40 dB.
Moreover, the noise power at Alice, Bob and the t-th Willie
can be assumed as σ2

a = σ2
b = σ2

wt = −110 dB. Finally, the
covertness level is ε = 0.1.

The theoretical and simulated DOP pdt and GDOP pe with
respect to the detection threshold ξt are presented in Fig. 2
with Pas = 30 mW and Pac = 10 mW. In addition, the
optimal GDOP is also displayed in Fig. 2 with Willies’ optimal
detection thresholds. First, we can observe that the theoretical
and simulated values of DOP and GDOP can fit perfectly,
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Fig. 2. Comparison of the DOP and GDOP under different detection
threshold.
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Fig. 3. Comparison of GDOP for different number of antennas M . Pac = 1
mW, Pac = 2 mW and Pac = 3 mW are considered.

proving the derivation in Section III. Moreover, the DOP varies
with ξt, and there exist different optimal detection thresholds
for Willies to minimize the DOP. Furthermore, the GDOP is
smaller than any DOP, indicating that Willies’ cooperation is
effective. We can conclude that the GDOP can be minimized
when all Willies adopt their own optimal detection thresholds,
which is in accordance with Proposition 3.

Fig. 3 illustrates the effects of the number of antennas
M on the GDOP. Obviously, we can find that M cannot
affect the GDOP no matter what value Pac takes, which is
consistent with the analysis in Section III. In other words,
increasing or decreasing M will not impose an effect on
Willies’ detection performance. Thus, we can conclude that
only the communication requirement need to be considered
when designing M . In addition, the simulation results also
show that the GDOP decreases as Pac increases, which will
be specifically discussed in Fig. 4.

Fig. 4 portrays the impacts of sensing and communication
powers on GDOP with different number of Willies T . First,
it can be observed that the GDOP decreases monotonically
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with increasing T , and a larger T leads to a much lower
GDOP, which is consistent with Corollary 1. This observation
also suggests that the choice of T should be based on a
comprehensive consideration of both GDOP and detection
efficiency. Furthermore, we observe that GDOP decreases as
Pac increases, which is due to the fact that higher Pac results
in greater received power at each Willie, thereby improving
the correctness of its binary hypothesis testing. In contrast,
the GDOP increases with Pas, due to the fact that the sensing
signal acts as interference to Willies. Increasing Pas leads to
more uncertainty for Willies, which consequently decreases
detection performance of each Willie and eventually worsens
the collusive detection performance.

We compare the two proposed schemes with three bench-
marks in terms of CTR in Fig. 5 with Pcmax = 5 mW and
Psmax = 20 mW. The “Combined Beamforming” benchmark
represents the scenario where a beamforming is employed to
simultaneously perform transmitting and sensing, i.e., us = uc

[32]. The “MRT Beamforming” benchmark entails optimiz-
ing the communication beamforming uc first via maximum
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Fig. 6. Covert transmission rate achieved by UI and ZF beamformings
versus the number of Willies T . Pcmax = 5 mW and Pcmax = 8 mW are
considered.
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Fig. 7. Covert transmission rate achieved by UI and ZF beamformings versus
different mutual information thresholds. Pcmax = 5 mW, Pcmax = 6 mW
and Pcmax = 7 mW are considered.

ratio transmission (MRT), followed by optimizing the sens-
ing beamforming us based on the optimized communication
beamforming. The “Random Beamforming” benchmark means
that the communication and sensing beamformings are ran-
domly generated with the averaged CTR. From the results, it is
evident that the CTRs achieved by the two proposed schemes
(UI and ZF) are higher than those of benchmarks, demon-
strating that optimizing the beamformings plays a crucial role
in enhancing overall system performance. In addition, the
CTR decreases as T increases. This is because increasing T
contributes to wardens’ detection performance, thereby posing
a greater threat to covert transmission. Consequently, Alice
is forced to reduce the communication power Pac to ensure
covertness, which results in a decrease in CTR, revealing the
tarde-off between covertness and communication efficiency.

We illustrate the CTR achieved by the two proposed
schemes as a function of the number of willies T in Fig.
6 with Pcmax = 5 mW and Pcmax = 8 mW. As expected,
Pcmax = 8 mW achieves a higher CTR. The improvement
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Fig. 8. Covert transmission rate achieved by UI and ZF beamformings versus
the number of antennas. ε = 0.1, ε = 0.2 and ε = 0.3 are considered.

stems from the fact that a higher Pcmax provides a wider and
more flexible range for adjusting Pac , thereby significantly
enhancing the overall transmission efficiency. Furthermore,
the results also demonstrate the superior performance of UI
beamforming over ZF beamforming, which indicates that UI
beamforming performs better in spite of its higher complexity,
challenging the traditional cognition that complexity is directly
proportional to performance.

We further investigate the influence of MI threshold on
CTR in Fig. 7. As can be observed, the MI and CTR are
a pair of metrics that constrain each other, which can not
be both enhanced. The CTR decreases with the increasing
MI threshold for both the two proposed schemes, which
reveals the trade-off between sensing and communication. This
decline can be attributed to that the communication signal is
considered as interference during the sensing. Consequently, as
the threshold becomes more stringent, Alice has to lower Pac

to satisfy the sensing requirement, resulting in a detrimental
effect on the CTR. In addition, as shown in Fig. 7, the CTR
increases with Pcmax, and the UI beamforming can achieve a
higher CTR.

In Fig. 8, we study the impacts of the number of antennas
M and covertness level ε on the CTR with Pcmax = 5 mW
and Psmax = 20 mW. The results show that the covertness and
CTR should be traded off, and the improvement of covertness
can inevitably lead to the decrease of communication perfor-
mance, and vice versa. First, it can be observed that the CTR
increases with M , however, this trend tends to be slow. The
results remind us that although increasing M does not pose an
additional threat to the covert communication while increasing
the transmission rate, it is essential to take into account the
transmission efficiency in practical scenarios. Therefore, M
should not to be too large. In addition, the CTR also increases
with ε, because an increase in ε indicates that the requirement
of covertness is relaxed. Thus, Alice can appropriately increase
Pac to improve the communication performance.

Fig. 9 compares the CTRs with and without collaborative
eavesdropping with Pcmax = 5 mW and Psmax = 20 mW.
We can observe that the CTR with no collaboration is higher,
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Fig. 9. Comparison of the covert transmission rate with and without
cooperative eavesdropping.
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Fig. 10. Covert transmission rate and transmission rate versus number of
Willies T in different benchmarks.

because it is only necessary to ensure that the minimal DOP
among Willies is sufficiently high, i.e. min{Pdt} ≥ 1− ε, t ∈
T . The minimal DOP with no collaboration is higher than
the GDOP with collaboration, Thus, the covertness constraint
with no collaboration is relaxed, which favours the CTR. In
addition, CTR will always decrease with T in both collusive
and non-collusive cases.

Fig. 10 presents the CTRs achieved by the proposed
scheme and benchmark 1, and also shows the transmission
rate achieved by benchmark 2 with Pcmax = 5 mW and
Psmax = 20 mW. There is no sensing constraint (48b) in
benchmark 1, and no covertness constraint (48c) in benchmark
2, respectively. It is evident that the transmission rate in
benchmark 2 surpasses the CTRs, and remains constant with
respect to T . This is attributed to the removal of covertness
constraint, which eliminates the need for trade-off between
communication performance and covertness. Consequently,
Alice can increase power, thereby significantly improving the
transmission rate. In addition, benchmark 1 achieves a higher
CTR compared to the proposed scheme, which stems from
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the fact that Alice can gain more freedom in power allocation
by removing the sensing constraint. The freedom allows for
more flexible adjustment of transmission parameters according
to channel conditions, thus improving the CTR. Moreover,
the CTR achieved by benchmark 1 decreases as T increases,
indicating that the covertness constraint can severely impact
communication performance, particularly as the number of
wardens increases. A comparative analysis of these three
schemes provides deeper insights into the complexities and
trade-off in balancing covertness, sensing, and communication.

VI. CONCLUSION

In this paper, we have investigated the covert ISAC of
a dual-functional transmitter against multiple randomly dis-
tributed wardens. MI and CTR are adopted as the metrics of
detection and covertness, respectively. The detection perfor-
mance of each Willie is analyzed and the optimal detection
thresholds are derived to achieve the minimal GDOP. Under
this worst situation, we jointly optimize the communication
and sensing beamformings to maximize the CTR while ensur-
ing the covertness and effective sensing. Hence, a non-convex
optimization problem is formulated, and UI and ZF beamform-
ings are leveraged to address it, respectively. Simulation results
demonstrate that the theoretical results are perfectly consistent
with the simulated ones, and the UI beamforming outperforms
the ZF beamforming in achieving the optimal trade-off among
the covertness, communication and sensing, despite its higher
complexity.

APPENDIX A
PROOF OF PROPOSITION 1

According to the definition of CDF as

FX(x) = Pr{X ≤ x}, (91)

we can reformulate (27) as

pdt(ξt) = 1−
(
FSwts

(ξt)−FSwts+Swtc
(ξt)
)
. (92)

Due to hamwt ∼ CN (0, 1), we can conclude that |hawtuc|2
and |hawtus|2 both follow an exponential distribution, indi-
cating

Swtc ∼ exp

(
r
αg
awt

ρ0Pac

)
= exp(atc), (93)

and

Swts ∼ exp

(
r
αg
awt

ρ0Pas

)
= exp(ats). (94)

Based on (93), the PDF of Swts can be expressed as

fSwts (x) = atse
−atsx, x > 0, (95)

and accordingly, the CDF of Swts can be calculated as

FSwts
(ξt) = 1− e−atsξt . (96)

Similarly, the PDF of Swtc can be described as

fSwtc (y) = atce
−atcy, y > 0. (97)

According to (95) and (97), the CDF of Swts + Swtc can
be calculated as

FSwts+Swtc
(ξt)=

∫ ξt

0

∫ −x+ξt

0

fSwts (x)fSwtc (y)dydx

=

∫ ξt

0

∫ −x+ξt

0

atse
−atsxatce

−atcydydx

=

∫ ξt

0

atse
−atsx

(
e0 − e−atc(−x+ξt)

)
dx

=

∫ ξt

0

atse
−atsxdx−

∫ ξt

0

atse
−atcξte(atc−ats)xdx.

(98)

When atc = ats, (98) can be formulated as

FSwts+Swtc
(ξt)=

∫ ξt

0

atse
−atsxdx−

∫ ξt

0

atse
−atcξtdx

= (−e−atsx)|ξt0 − ξtatse
−atcξt

= 1− e−atsξt − ξtatse
−atcξt ,

(99)

and with atc ̸= ats, (98) can be re-expressed as

FSwts+Swtc
(ξt)=(−e−atsx)|ξt0

−atse−atcξt
e(atc−ats)x

atc − ats

∣∣∣∣ξt
0

= −e−atsξt + e0 − atse
−atsξt

atc − ats
+
atse

−atcξt

atc − ats

= 1− atse
−atsξt−atse−atcξt+(atc−ats) e−atsξt

atc − ats

= 1− atce
−atsξt − atse

−atcξt

atc − ats
.

(100)

Combining (99) and (100), we can obtain a closed-form
expression for FSwts+Swtc

(ξt) as

FSwts+Swtc
(ξt)=


1− atce

ats − atse
atc

(atc − ats) eξt
, atc ̸=ats,

1− (1 + atcξt)e
−atcξt , atc = ats.

(101)

Finally, the expression in (28) can be derived by substituting
(101) and (96) into (92), and Proposition 1 is proved.

APPENDIX B
PROOF OF PROPOSITION 3

It is difficult to analyze the monotonicity of pe with respect
to ξt through (31), and we need to take additional analysis.
First, we calculate the first-order derivative of pe with respect
to ξt as

p
′

e(ξt) =
Tpe2π

∫D

0
p

′

dt
(ξt)

r
πD2 dr

2π
∫D

0
pdt

r
πD2 dr

, (102)

where

p
′

dt(ξt)=


−ats (atce

atc−atseats)
(atc − ats) eξt

, atc ̸=ats,

− (1− atcξt) atce
−atcξt , atc = ats.

(103)

We can conclude that the negativeness or positiveness of p
′

e(ξt)
depends on p

′

dt
(ξt). Due to its complexity, we delve into (103)

to further analyze the monotonicity of pe with respect to ξt.
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(1) at1 ̸= at0 : The zero point of p
′

dt
(ξt) can be calculated

as

ξt0 =
ln ats − ln atc
ats − atc

. (104)

If atc > ats, we can obtain ats − atc < 0. When ξt > ξt0, we
have

(ats − atc) ξt < ln ats − ln atc, (105)

which leads to

−atcξt + ln atc < −atsξt + ln ats, (106)

and

atce
−atcξt − atse

−atsξt < 0, (107)

indicating p
′

dt
(ξt) > 0.

Similarly, atc < ats can result in ats−atc > 0, and ξt > ξt0
can lead to

(ats − atc) ξt > ln ats − ln atc. (108)

Based on (108), we can derive

atce
−atcξt − atse

−atsξt > 0. (109)

Combining ats − atc > 0, p
′

dt
(ξt) > 0 can be obtained.

To summarize, no matter whether atc > ats or atc < ats,
p

′

dt
(ξt) > 0 can be guaranteed as long as ξt > ξt0. Therefore,

we can present p
′

dt
(ξt) as

p
′

dt(ξt)


< 0, ξt < ξt0,

= 0, ξt = ξt0,

> 0, ξt > ξt0.

(110)

Accordingly, we can conclude that pe first monotonically
decreases when ξt < ξt0, and then monotonically increases
when ξt > ξt0, indicating that ξt = ξt0 can achieve the
minimum DOP with at1 ̸=at0 .

(2) at1 = at0 : Similarly, we obtain the zero point of (103)
in this case as

ξ♭t0 =
1

atc
. (111)

Accordingly, we can calculate p
′

dt
(ξt) as

p
′

dt(ξt)


< 0, ξt < ξ♭t0,

= 0, ξt = ξ♭t0,

> 0, ξt > ξ♭t0.

(112)

Thus, we can find that pe achieves its minimum value
at ξt = ξ♭t0 as it first monotonically decreases and then
monotonically increases with atc = ats. In conclusion, the
optimal detection threshold of the t-th Willie can be presented
as (35), and Proposition 3 is proved.
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