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The origin of pterosaurs, the first vertebrates to achieve powered flight, is
poorly understood, owing to the temporal and morphological gaps that
separate them from their closest non-flying relatives, the lagerpetids.
Althoughboth groups coexisted during the Late Triassic, their limited
sympatry is currently unexplained, indicating that ecological partitioning,
potentially linked to palaeoclimate, influenced their early evolution. Here

we analysed pterosauromorph (pterosaur +lagerpetid) palaeobioge-
ography using phylogeny-based probabilistic methods and integrating fossil
occurrences with palaeoclimate data. Our results reveal distinct climatic
preferences and dispersal histories: lagerpetids tolerated a broader range

of conditions, including arid belts, enabling awidespread distribution from
the Middle to early Late Triassic. Conversely, pterosaurs preferred wetter
environments, resulting in a patchier geographical distribution that expanded
only as humidity increased in the Late Triassic, probably following the Carnian
Pluvial Event. This major environmental disturbance, potentially driven

by changes in CO,-related thermal constraints and/or palaeogeography,
appearsto have had akey role in shaping early pterosauromorph evolution by
promoting spatial segregation and distinct climatic niche occupation.

Pterosaurs were the first vertebrates to evolve powered flight, more
than 60 million years before the earliest birds. However, our under-
standing of early pterosaur evolutionis hindered by the major temporal
and anatomical gaps between these highly modified flying reptiles
and their closest terrestrial relatives'”. The fossil record of pterosaurs
and theirkinis notoriously incomplete® " (Supplementary Fig. 1), and
fundamental aspects of their early evolution, such as thetiming, area,
ecological settings of their initial radiation and palaeobiology (for
example, growth dynamics and climate preferences'>"), are still poorly
understood compared with other contemporaneous archosaur groups
suchas dinosaurs' ™,

Recent phylogenetic studies, descriptions of new taxa and detailed
reevaluations of historically described specimens have renewed interest
inpterosaur origin, ancestry and early evolution. This work overturned

previous hypotheses of pterosaur relationships, demonstrating that
lagerpetids were the closest relatives of pterosaurs, uniting these two
groupsinthe clade Pterosauromorpha®™” %, Allknown lagerpetids are
non-flighted forms, whereas all known pterosaurs are volant. This new
phylogenetic hypothesis substantially reduces temporal and anatomi-
calgaps between Pterosauriaand other avemetatarsalians (pterosaurs,
dinosaurs and their closest relatives)>"'®'°, Consequently, the origin
of Pterosauria is now minimally constrained to an interval of ~10-15
million years between the Ladinian and early Norian intervals of the
Triassic Period*™"'®?°, The past decade of research has also provided a
wider sample of Triassic pterosauromorph specimens from more locali-
tiesacross the globe and a better understanding of their phylogenetic
relationships*'"72° and stratigraphic occurrences. These advances
offer the chance toinvestigate early pterosauromorph macroevolution
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Fig.1|Middle-Late Triassic pterosauromorph occurrences worldwide (left) and close-ups of the southwestern USA (right). An., Anisian; Jr., Jurassic.

quantitatively (for example, ref.11), by uncovering potential abiotic fac-
torsthat might have influenced their diversification, as hinted at by the
stratigraphic occurrence and disjunct palaeogeographical distributions
of lagerpetids and pterosaurs through the Triassic'®.

Sympatric occurrences of lagerpetids and pterosaurs were limited
duringtheir-20-million-year overlap in the Norian and Rhaetian (Fig. 1).
Lagerpetids are found in continental fluviolacustrine deposits on at
least four current continents and maintained awide latitudinal and geo-
graphicspread throughout most of their evolutionary history™71520-3
(late Ladinian to late Rhaetian, 237-201 Ma; Fig. 1 and Supplementary
Fig.1). Conversely, the earliest body fossils of unambiguous pterosaurs

are middle Norian in age and found in a restricted low-latitude belt,
primarily, but not exclusively, in marine formations that were deposited
around the margins of Tethys"'>**, From the late Norian onwards,
pterosaurs spread to higher latitudes and in a much broader array
of habitats"**'****2, This could suggest that lagerpetids and ptero-
saurs occupied fundamentally different ecological, environmental or
climatic niches. Investigating pterosauromorph distribution in time
and space combined with environmental data allows anew opportunity
to answer several long-standing key questions in palaeontology: how
did Triassic climate change affect pterosaur and avemetatarsalian
evolution? What climatic regimes and environments did vertebrate
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flight first evolve in? And why are early pterosaur fossils so rare, and
where might we find more of them?

We investigated these questions using a holistic approach that
integrates novel fossil occurrence data, comprehensively sampled
phylogenies, climatic niche modelling and palaeobiogeography. Our
aimsare (1) to assess and quantify the potential for latitudinal dispersal
of Triassic lagerpetids and pterosaurs and to compare it with that of
other contemporaneous groups; (2) toinvestigate climatic preferences
of pterosauromorphs; and (3) to quantify and map habitat suitability
for pterosaurs and their closest relatives during the Middle to Late
Triassic. Furthermore, our results allow us to estimate the ancestral
area of origin and hypothetical distribution and dispersal of ptero-
sauromorphs across Pangaea during the Middle Triassic to early Late
Triassic—the undersampled time interval in which their origin prob-
ably unfolded—to propose testable hypotheses regarding their early
biogeography and its potential influence on their evolution and to
identify potential target areas for future fieldwork.

Results

Palaeobiogeography

Our palaeobiogeographic analysis suggests that lagerpetids—and
pterosauromorphs as a whole—probably originated in southwest-
ern Pangaea (that is, modern South America), whereas the origin of
pterosaurs was predicted at low latitudesin the Northern Hemisphere
(Extended Data Fig. 1), consistent with previous studies®". Note that
thisand the following results are based on phylogenetic data, which, in
light of the biases and incompleteness of the fossil record may simplify
what are probably more complex scenarios (Supplementary Fig. 1).

Potential of latitudinal dispersion. The pterosauromorph disper-
sal inertia curve maintains a consistently high A-log likelihood (that
is, lower but constant dispersal) across the Ladinian-early Norian
interval (Fig.2a).In other words, the dispersal of lagerpetids (the only
pterosauromorphs present at that time) across climatic barriers was
constant but more constrained than that of dinosaurs (and avem-
etatarsalians as a whole). Dinosaurs experienced relatively stronger
barriers to dispersal in the Ladinian-early Carnian and late Norian-
Rhaetian, interrupted by a ‘release phase’ (that is, increased levels
of dispersal) during the middle-late Carnian'* (Fig. 2a). The middle
Norian-Rhaetian segment of the pterosauromorph curve shows an
increasein A-loglikelihood, potentially indicating areduced crossing
of barriers through this interval (Fig. 2a). This section of the curve is
primarily, if not exclusively, influenced by the addition of pterosaurs
(Methods). The pattern of reduced dispersal is surprising given that
Triassic pterosaurs were volant and many are found in low-latitude
areas (Fig. 1, Extended Data Fig.1and Supplementary Fig.1). A similar
pattern (thatis, increasein speciesrichness and drop indispersal) could
be achieved by few intermittent crossings of the barriers, which are
unlikely to alter the dispersal pattern, followed by cladogenesis within
the same geographical area, which will not affect the dispersal through
barriers. Nevertheless, asemphasized in the Methods, theimportance
of this segment of the curve remains uncertain. As pterosaurs could
fly and were presumably less constrained by physical barriers, their
likelihood for dispersal may have left aless clear phylogenetic signature
compared with their non-flying close relatives.

Accumulated latitudinal dispersion. A complementary way to deci-
pher the latitudinal dispersion of different groups is by quantifying
dispersal events in each clade through time" (Fig. 2b,c). This shows
that lagerpetids dispersed consistently throughout their evolution-
ary history (Anisian-Rhaetian). The lagerpetid curve foraccumulated
latitudinal dispersion is high both in absolute (Fig. 2b) and corrected
values (Fig. 2c). These curves maintain a plateau throughout the Car-
nian and Norian and decrease only in the Rhaetian, when the taxo-
nomic diversity of the group declines. This patternis similar to that of

silesaurids (Discussion), contrary to the results of Miiller et al.", whose

lagerpetid curve peaked after the Carnian and was more similar to that
of dinosaurs. Thisinconsistency is caused by (1) the pruning by Miiller
etal." of key lagerpetids (Kongonaphon kely and PVS) 883) from their
dataset, whichreduced the number of branches and dispersal eventsin
the Anisian-Carnianinterval, thus lowering that part of the curve; and
(2) the different strategy of Miiller et al." of incorporating uncertain
biogeographical values atinternal nodes, whichled themto discard the
dispersal events at these particular nodes. The accumulated latitudinal
dispersal of pterosaurs peaks immediately after their appearance in
the middle Norian and maintains a high profile throughout the Norian
and Rhaetian" (Fig. 2b,c). The abrupt and pronounced Norian peak in
the pterosaur curve may underscore the inherent ease of dispersal for
these flying reptiles compared with their land-bound counterparts.

Palaeoclimate niche occupation

Statistical comparisons reveal that pterosaurs and lagerpetids occupied
different climatic niche spaces during their temporal overlap in the
Late Triassic (Fig. 3 and Extended Data Table 1; pairwise permutation
multivariate analysis of variance (MANOVA), P = 0.0127). During the
Norian and Rhaetian, lagerpetids occupied areas characterized by
warmer temperatures and drier conditions and with less pronounced
seasonal excursionsintemperatures (Fig. 3b-d). Comparatively, ptero-
saursoccurredin areas that were distinctly cooler and seasonally more
variable (Fig. 3b,d and Extended Data Table 1; P< 0.01, P < 0.05). Both
lagerpetids and pterosaurs occupied areas with similar values of mean
annual precipitation (MAP; Fig. 3c and Extended Data Tables 1 and
2; P>0.05), although a majority of lagerpetids occupied drier areas
(Fig.3c).Pterosaurs occurred across awide range of values for annual
precipitation and seasonal variation in precipitation (Fig. 3c,e). The
palaeoclimate niche occupation of lagerpetids was not constant over
time (Fig. 3f). Specifically, Ladinian and Carnian lagerpetids (that
is, Kongonaphon, Ixalerpeton, Lagerpeton and PVSJ 883) are found
in high-latitude areas in southern Gondwana that were on average
colder and withstood higher seasonal fluctuations in temperatures
thantheir Norian and Rhaetian counterparts (Fig. 3 and Extended Data
Table 1; pairwise permutation MANOVA, P = 0.012). This patternis not
entirely surprising considering the palaeogeographical occurrence
of Ladinian and Carnian lagerpetids compared with their younger
counterparts. Most Norian-Rhaetian occurrences are, in fact, found
atlower latitudes that were characterized by higher temperatures and
smaller seasonal fluctuations in temperature (Fig. 3b,d and Extended
Data Table 1; P < 0.001), with the exception of Faxinalipterus and
Dromomeron gigas, which were found in the southern part of Pangaea,
in geographical areas and palaeoclimatic regimes broadly similar to
those of their pre-Norian predecessors (Discussion, Figs.1and 3f and
Supplementary Fig.1). As aresult, lagerpetids as awhole occupied an
overlapping (pairwise permutation MANOVA, P=0.098; Extended
DataFig.2and Extended Data Table 1) but broader palaeoclimate niche
than pterosaurs, probably related to their higher tolerance for warmer,
more seasonal (temperature-wise) and tendentially drier conditions
(Extended Data Fig. 2 and Extended Data Tables 1and 2).

Habitat suitability modelling

Climatic suitability offers aroute tointerpret the palaeobiogeographi-
caldistributions of early pterosauromorphbody fossils and allows us to
identify areas of suitable habitable spacein fossil-depleted intervals. It
providesacoarse, but useful, representation of their hypothetical fun-
damental niches (Fig.3) ingeographic space (Fig. 4 and Extended Data
Fig.3). Thetemporal and spatial biases that control the early pterosaur
fossil record epitomize the challenges faced in obtaining a compre-
hensive understanding of their evolutionary history and geographic
distribution (Supplementary Fig.1). Nevertheless, a probabilistic mac-
roecological approach can provide insights on their climatic prefer-
ences and potential habitable areas, predicting potential geographic
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Fig.2|Palaeobiogeograpic analyses of Middle-Late Triasssic
pterosauromorphs. a, A plot showing the potential of dispersal of
avemetatarsalian groups through the Triassic (based on Griffin et al.**).

b, Absolute accumulated degrees of latitudinal dispersal of avemetatarsalian

Norian Rhaetian

Late Triassi

groups. ¢, Event-corrected accumulated degrees of latitudinal dispersal of
avemetatarsalian groups.).,Jurassic; E. Tr., Early Triassic; I., Induan; Olenek.,
Olenekian.

ranges for pterosaurs and lagerpetids based on climatic suitability. The
distribution of areas of high suitability of pterosaurs and lagerperids
appear broadly complementary. However, pterosaur potential distribu-
tion is patchier overall with lower habitability in continental interior
areas (thatis, arid regions) compared with the more widely distributed
oflagerpetids. Although pre-Norian pterosaur body fossils have yet to
be recovered, ecological niche modelling indicates the presence of
potential suitable habitable space for hypothetical early pterosaurs

that was unevenly spread at low tropical latitudes during the Ladin-
ian (Fig. 4 and Extended Data Fig. 3), compared with the occupation
of higher, more temperate latitudes in the Northern Hemisphere and
broader and more continuous suitable space occupationinthe south-
western tropics, for lagerpetids (Fig. 4). Habitat suitability modelling
alsoindicates amarked extension of habitable pterosaur space towards
the coastlines of Northern Tethysin the Carnian-early Norian (Fig. 4),
alongside areduction of suitable continental zones, emphasizing their
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Fig. 3| Climatic preferences of Middle-Late Triassic pterosauromorph
lineages. a, Principal component analysis (PCA) of variables of climatic
importance showing pterosaurs (n =23), pre-Norian lagerpetids (n =9) and
Norian-Rhaetian lagerpetids (n = 17). b-e, Raincloud plots comparing climatic
variables between pterosaur and lagerpetids: mean annual temperature

(b); mean annual precipitation (c); seasonal variation in temperature (d);

seasonal variation in precipitation (e). f, The time-sliced PCA space occupation
of lagerpetids and pterosaurs through the Triassic. Results of statistical
comparisons are reported in Extended Data Table 1. P, precipitation; T,
temperature. The box plots display the median and interquartile range (IQR),
the upper whiskers extends from the 75th percentile to the largest value and the
lower whiskers extends from the 25th percentile to the lowest value.

climatic preference for the more temperate and wetter environments
(Extended Data Figs. 3 and 4). By contrast, lagerpetids display a dis-
tinct Carnian pattern, maintaining a more homogeneous latitudinal
occupation but with decreasing habitat suitability along the southern
margin of the northern Tethys gulf, while simultaneously exhibiting
anincreasingly higher preference towards the southwestern tropics
and reaching slightly higher latitudes in the Southern Hemisphere
(Fig. 4). During the Norian (our ‘training stage’; Fig. 4 and Extended
DataFig.3), pterosaurs (now represented by body fossils) were widely
distributed in coastal, wet, tropical and low-latitude areas (Figs.1and 4).
This is accompanied by the continuing patterns of reduction in suit-
able continental interior areas, except alongside the palaeoequato-
rial belt (broadly corresponding to the Chinle and Dockum basins)
where favourable conditions for the group are maintained. Overall,
in the Norian and Rhaetian, areas of pterosaur high climatic suitabil-
ity occur at broad latitudes, extending from the northern margin of
the Tethys to northern Australia and central South America (that is,
southernBrazil and northern Argentina). Low suitability is recorded at
high latitudes outside the tropics and in what is now equatorial Africa,
Antarctica, Oceaniaand northeastern Eurasia and continental interiors

(for example, modern Brazil and Canada-USA border). This pattern
is broadly maintained through the late Norian and Rhaetian with an
expansion of high suitable zones along the eastern margin of Pangaea
(Fig. 4 and Extended Data Figs. 3 and 4). By contrast, lagerpetid suitabil-
ity habitats are maintained throughout the Norian-Rhaetian interval
with the addition of the western palaeoequatorial belt (that is, Chinle
and Dockum basins) and northwestern Africa.

Discussion

Palaeobiogeography, palaeoclimate and ecological niches
Triassic pterosauromorph distribution suggests that pterosaurs and
lagerpetids had distinct and divergent early evolutionary histories, with
regard tobiogeography and dispersal. Lagerpetids achieved awide lati-
tudinal distribution soon after their first appearance (predominantly in
southern Pangaea) and maintained a presence at high and low latitudes,
globally, throughout their evolutionary history'®'® (Fig.1and Supple-
mentary Fig.1). The clade’s dispersal across climatic barriers remained
low and constant through time (Fig. 2), with our results suggesting that
lagerpetids had abroad tolerance for arange of different climatic condi-
tions, for example, higher thermal tolerances and/or other behavioural
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strategies to deal with high temperatures. By contrast, the earliest
pterosaurs are found in low-latitude lacustrine and fluvial beds of the
Chinle and Dockum basins during the early and middle Norianand more
predominantly (but not exclusively) in coastal habitats of the northern
Tethyan region® (Fig. 1 and Supplementary Fig. 1). However, withina
few million years, pterosaurs are then found worldwide in remarkable
variety of environments including many beyond low-latitudinal coastal
regions, as shown by Arcticodactylus from fluvial depositsin Greenland
(Fleming Fjord Formation, Norian-Rhaetian)*®, Caelestiventus from the

deserts of southwestern USA (Nugget Sandstone, upper Norian-Het-
tangian)* and Pachagnathus and Yelaphomte from Argentina (Que-
brada del Barro Formation, upper Norian-lower Rhaetian)®. In line
with this clade’s dramatic peak of dispersal in the middle Norian (Fig. 2),
itis possible that these younger pterosaur occurrences are evidence
of the clade’s first dispersals outside of its hypothesized low-latitude
ancestral area. Assuch, these occurrences might represent successive
invasions of diverse habitats following a climatically driven ecological
release (seebelow), rather than evidence of ancestral preference. The
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hypothesis of a rapid global spread® from low latitudes finds support
in (1) the phylogenetic predominance of low-latitude taxa closer to
the root of the clade (2) and the ~6-million-year gap between the ear-
liest identifiable pterosaurs in the fossil record (that is, SMU 69125,
and PEFO 45782 from the early Norian of the southwestern USA) and
the first occurrences of pterosaurs outside the palaeotropics (that s,
Pachagnathus, Yelaphomte and Arcticodactylus from Greenland and
South America).

Thesstratigraphic and biogeographical distribution of lagerpetids
and pterosaurs, and any other group, is the result of prominentinter-
action of biotic and abiotic factors. The palaeoclimatically informed
phylogeographic model and spatially explicit ecological niche mod-
els we generated offer an explanation for the above-mentioned bio-
geographical patterns. First, our climate-based principal component
analysis (PCA) shows that, in the Norian-Rhaetian, lagerpetids and
pterosaurs had statistically distinct climate preferences (Fig. 3a and
Extended Data Table 1). Lagerpetids occupied a broad climatic niche
and are found to inhabit pronoucedly warmer (Fig. 3b and Extended
Data Table 1) and drier (Fig. 3c and Extended Data Table 1) localities
thanthoseyielding Triassic pterosaurs. The occurrence of lagerpetids
under varied climatic conditions suggests a remarkable ecological
versatility, which may have enabled their more continuous distribu-
tion across different latitudes (Fig. 4). By contrast, early pterosaurs
exhibit a patchier distribution, particularly in terms of mean annual
and seasonal temperatures (Fig. 3d,e). Pterosaur distribution may
indicate anarrower, more specialized climatic preference and/or that
these suitable conditions were initially limited to equatorial areas.
Nevertheless, suitable conditions for pterosaurs are found globally,
althoughin discontinuous patches, and less frequently in continental
interiors, inthelate Norian-Rhaetian (Fig. 4b,d), in accordance with the
pattern of quantified latitudinal dispersal and increased geographical
spreadinthefossil record (Fig.1). Another possibility is that, during this
early stage of pterosaur evolutionary history, perhaps owingto initially
constrained flight capabilities and/or partial confinement to arboreal
environments' (for example, to protect from predation and thermal
stress or abundant food supply), their biogeography was constrained
by the distribution of the canopy habitat they inhabited. As more suit-
ableareasbecameavailable by the Norian (Fig. 4), pterosaurs may have
dispersed latitudinally, benefiting from potentially increased suitable
habitats. However, their climatic preferences might have resultedina
sparse and locally restricted distribution, a possibility confirmed by
their modelled, patchily distributed suitable areas. This aspect could
potentially be attributed to their limited capabilities for long-distance
aerial dispersal and/or astage that was still partially confined to arbo-
real environments. This unique ecology could account for the relatively
high dispersalinertia observed in pterosaur lineages (Fig. 2a) and more
pronounced latitudinal dispersion towards the latest Triassic (Fig. 2b,c)
(that is, endemic dispersion within climatic blocks). Our combined
analyses suggest that changes in the distribution and extension of
climatically suitable areas throughout the Triassic are congruent with
latitudinal dispersal patterns, demonstrating limited geographical
overlap between lagerpetids and pterosaurs. This may exemplify the
intricate interplay between climatic conditions and habitat, as well
as the development of diverse pterosauromorph ecological niches,
that probably acted on the spatiotemporal distribution of this clade.
Paradoxically, pterosaurs survived the end-Triassic mass extinction but
lagerpetids did not, despite pterosaurs occupying a patchier, narrower
climatic niche and having a more restricted geographic distribution
than lagerpetids before this event. This suggests that other factors such
astheability to fly might have played important roles in the differential
survivorship of these two clades during this extinction.

On the origin of pterosaurs
Historically, the evolution of powered flight in vertebrates (that s, pter-
osaurs and bats****) has resulted in a geologically instantaneous and

geographically widespread distribution; however, until recently, alack
of early pterosaur fossils prevented any assessment into whether the
evolution of a volant vertebrate leads to a predictable biogeographic
outcome. Now, efforts to understand the timing and place of pterosaur
originhaveincreasedinconcertwithrecentdiscoveries. Aliteral read-
ing of the Triassic pterosaurs record suggests that the group originated
atlowlatitudesinnorthern Pangaea. This hypothesisis supported both
by the early-diverging phylogenetic positions of European taxa® and by
theoldestoccurrence ofindeterminate specimens of thisgroupinthe
early-middle part of the Norianin the southwestern USA. However, it
isworth noting that, while there is probably a genuine biogeographical
signal in these observations, they could also reflect severe sampling
biases*®. We can now explore this issue by combining the results of our
analyses to provide a potential model that incorporates the biogeo-
graphical and climatic circumstances around this event. However, we
must first address the absence of Middle Triassic-early Late Triassic
pterosaurs from the fossil record.

The most recent divergence time estimates based on pterosau-
romorph phylogenetic relationships constrain pterosaur origin to
a10-15-million-year interval that extends across the Ladinian-early
Norian’. However, while an Early Triassic or Middle Triassic origin for
pterosaurs cannot be excluded, no body or trace fossils are known
before the Norian®'>. Most of the earliest pterosaurs have been found
in black shale lithologies in mid-latitudes from the middle Norian
Alpine arch (that is, Italy, Austria and Germany). Similar facies are
foundinthe same geographical area throughout the Anisian-Carnian
interval, but despite the high potential for exceptional preservation
at these localities, pre-Norian pterosaurs have yet to be found (or are
currently unrecognized) fromwell-sampled Middle Triassic and early
Late Triassic Lagerstatten not only in this region (for example, Monte
San Giorgio, late Anisian-late Ladinian, Italy and Switzerland; upper
Buntsandstein, Muschelkalk and lower Keuper, Anisian-Carnian, in
Germany and equivalent beds in central Europe; Lunz, early Carnian,
Austria) but also worldwide (Yangjuan, Anisian, China; Digxiao, Ladin-
ian, China; Xinpu, Carnian, China; Raibl, early Carnian, Italy; Madygan,
Ladinian—Carnian, Kyrgyzstan)®?, even after decades of extensive
sampling. Similarly, the absence of pterosaurs remains unexplained
inthe lower part of the Newark Supergroup in North America (that is,
Lockatong Formationand Cow Branch Formation, lower Norian), which
has yielded the fragile remains of gliding reptiles such as Icarosaurus
and Mecistotrachelos, among others**,

Ecological niche modelling offers a potential explanation for
pterosaur absencesintheselocalities. Our analyses suggest that many
of these areas were climatically unsuitable for pterosaurs before the
Norian (Fig. 4). Forinstance, the northern margin of the Tethys Ocean
was climatically poorly suitable for pterosaurs until the late Carnian
(Fig.4). This could support theideathat pterosaurs originated shortly
beforetheir firstappearancein the fossil record and/or that pterosaurs
originated earlier, and elsewhere, but did not have a global distribution
until later in the Norian'"2. However, while our model does not neces-
sarily support a pre-Norian origin of the group in the Tethyan region,
it provides an additional explanation for their earlier absence from
this area and time interval. Specifically, our results suggest that there
is potential for pre-Norian and early-Norian pterosaurs to be found
elsewhere, in areas identified as habitable in our palaeoclimatically
informed suitability models (Fig. 4 and Extended DataFig. 3). Our niche
models suggest that it might have been possible for pterosaurstooccur
in the late Middle Triassic (Anisian-Ladinian) deposits of the south-
west USA (upper Moenkopi Formation of Arizona and New Mexico),
Morocco (members T3-T4 of the Timezgadiouine Formation, Argana
Basin), India (Yerrapalli Formation), China (Xingyi fauna), Tanzania
(LifuaMember of the Manda Beds), Brazil (lower Santa Maria Superse-
quence) and potentially southern and central Europe (for example,
Dont Formation, Italy; Vellberg Formation, Germany). Suitable areas
during the Carnianinclude the southwestern USA (for example, lower
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Otischalkian beds in the Dockum Group of Texas and New Mexico),
Brazil (middle Santa Maria Formation), Argentina (Chanares Forma-
tion and lower Ischigualasto Formation), India (Tiki Formation and
Maleri Formation), Madagascar (Isalo Il/Makay Formation), continental
Europe (Krasiejow locality, Poland), the lower Norian beds of the south-
western USA (upper Otischalkian and lowermost Adamanian beds of
the Chinle Formation and Dockum Group, Arizona, Texas and New
Mexico) and the basins of the Newark Supergroup, among others. In
additiontothese areas, the South Chinablock shows high climatic suit-
ability throughout the Anisian-early Norian. The upper portion of the
Anisian-Carnian Guanling Formation (Panxian Fauna, Guanling Biota)
also has high climatic suitability to yield pterosaur fossils, although the
fossil record of its marine fauna shows limited terrestrial influence.
These results carry the caveat of known biases in the pterosaur
fossil record**? (Supplementary Information) but provide testable
hypotheses for future targeted fieldwork. While these formations
were deposited in areas of high climatic suitability for pterosaurs, their
geological characteristics might not have beensuitable for preserving
their fossils. As noted previously, many Triassic pterosaurs are prefer-
entially preserved in black shale units'*, although partial skeletons and
individual bones have been more commonly recovered from fluvial,
alluvial and desert depositional environments more recently?’>54.,
Accordingly,among the above-mentioned formations, we particularly
emphasize target lithologies representative of palaeoenvironments
with known high preservation potential, particularly microvertebrate
bonebeds, as these facies have the highest chance to preserve the
small, fragile body fossils of Triassic pterosaurs. Articulated or asso-
ciated skeletons comprise nearly all Triassic pterosaur occurrences,
suggesting that their record in deposits where bones are recovered as
disassociated and isolated elements (for example, microvertebrate
bonebeds) may be underrepresented due to a lack of recognizable
diagnosticfeaturesin collected skeletal elements from these settings.

Conclusions

Our study examines the historical palaeobiogeography of pterosaurs
and their close relatives, lagerpetids, which together comprise ptero-
sauromorphs. We identify climatic limits shaping the distribution
of Triassic pterosauromorphs. Although multiple factors probably
contributed to the distribution of these groups, the broad climatic
adaptability and wide latitudinal spread of lagerpetids suggest eco-
logical versatility, which allowed members of this group to thrive in
localities with considerably warmer conditions than those yielding
Triassic pterosaur remains. By contrast, early pterosaurs had a more
constrained distribution in terms of mean annual and seasonal tem-
peratures, favouring wetter areas that became more common after the
Carnian, enabling their spread during the latest Triassic.

Our study independently aligns with the hypothesis suggest-
ing that pterosaurs became widespread soon after their likely ori-
gin in the Middle Triassic-Late Triassic’. Furthermore, the modelled
Carnian-early Norian pterosaur climatic niche would probably be
foundintemperate and wet conditions typical of tropical, near-coastal
low-to-middle-latitude depositional environments. In emphasizing
the complex interplay between climatic conditions, habitat and the
development of diverse ecological niches, our study contributes valu-
able insights into the evolution and distribution of pterosaurs and
their closerelatives.

Methods

Palaeobiogeography

To explore the phylo-palaeobiogeography of Triassic pterosauro-
morphs, we implemented complementary analyses based on two
recently published studies to (1) assess the degree to which pterosau-
romorphs dispersed across climatic barriers compared with other
avemetatarsalian clades (following ref. 14) and (2) quantify the latitu-
dinal dispersion of lagerpetids and pterosaurs alongside that of other

avemetatarsalians (following ref. 11). To better compare the results of
these analyses, which drew on different datasets, we assembled and
tip-dated an avemetatarsalian supertree (Extended Data Fig. 1). This
grafts the dinosaur tree topology recovered by ref. 14 into arandomly
selected most parsimonious tree of Archosauromorpha from ref. 11.
We then manually incorporated the dinosaurian and silesaurid taxa
presentinthe latter dataset but not the former. This strategy allowed
us to retain the entire pterosauromorph sample included in ref. 11,
whichisthe most comprehensive available for this group. Each taxonin
this newly assembled dataset was then scored for two different sets of
geographical areas (see below). Thiswas deemed necessary because the
two above-mentioned studies were designed using distinct geographi-
calframeworks (see details below). Overall, these operations improved
thesampling of the selected avemetatarsalian groups and allowed more
meaningful comparisons between the two sets of biogeographical
analyses. Our analyses cover the Ladinian-Rhaetian interval, but the
taxonomic sample includes Jurassic species, enabling consideration
of all potential dispersal events nested in the Triassic.

Griffinetal.”* demonstrated the limited impact of changing archo-
saur topology in their results. However, their tree did not include a
broad sample of lagerpetids and pterosaurs, so here we focus on the
impact that different pterosauromorph tree topologies could have on
our results. InPterosauromorpha, the relationships within Pterosauria
are relatively well established, so the topology here adopted corre-
sponds to the strict consensus from ref. 11and derivative analyses. Con-
versely, the relationships within Lagerpetidae are not well resolved, and
itisnot possible to produce afully resolved strict consensus topology.
However, for the purpose of our biogeographical analyses, thisdoes not
matter because the alternance of ‘Laurasian’and ‘Gondwanan’ areas of
originatthetipsisbroadly maintained: aSouth Americantaxon (thatis,
Faxinalipterus) is consistently found at the earliest diverging branch,
followed by Scleromochlus, from Europe. Further up the tree, aminority
of North America taxa (that is, Dromomeron romeri and Dromomeron
gregorii) are found nested within a majority of South American spe-
cies. Our choice of using a randomly selected tree following ref. 14 is
thusjustified because the patterns of geographical areas at the tips of
the tree are broadly stable and the patterns of potential of latitudinal
dispersionand accumulated latitudinal dispersion are not affected by
the taxon order of the tips (Supplementary Information).

Potential of latitudinal dispersion. First, we implemented an
event-based quantitative analysis that aimed to assess the potential for
pterosauromorph latitudinal dispersal during the waxing and waning
of climatic barriers, following the methodology of ref. 14. Griffin et al.*
originally developed this method to test “whether the early phyloge-
netic history of dinosaurs retains a signal for restricted dispersal” (p.
317). Here, we applied the protocol to pterosauromorphs, which were
sparsely representedin thelatter study. Wellimit ourinterpretationof the
pterosauromorph curve to the Ladinian-Carnian portion of the whole
interval, where the signalis driven primarily by lagerpetids, because we
cannot be sure to what extent our model is applicable to volant taxa, as
pterosaurs affect the Carnian-Rhaetian portion of the results.
Weimplemented this analysis following the methodology of Grif-
fin etal.". First, we scored each taxon in the newly assembled dataset
for one of five geographical regions: eastern Laurasia, western Laurasia,
equatorial belt, northern Gondwana or southern Gondwana. These
regions were selected because of the biogeographical importance of
their boundaries throughout the Ladinian-Rhaetian (our interval of
interest), namely, an arid beltin low-latitude southern Pangaea* and,
less relevant to the time interval of our study, the Hispanic Corridor
and Viking Strait***’, Second, we extended the lower boundary of the
analyses to include the Ladinian stage to include the complete strati-
graphicrange of lagerpetids. We thenimplemented a dispersal-extinc-
tion-cladogenesis (DEC) model on the time-calibrated phylogeny
under maximum likelihood. To simulate the waxing and waning of
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arid climatic barriers to dispersal, we adopted distinct rate matrices
of dispersal across selected geographical areas and tested their occur-
rence across the whole interval. The A-likelihood is a measure of how
strongly the dispersal patternis supported atany time:in other words,
amorenegative Aindicates dispersal/waning of climatic barriers. The
A measures how much dispersal is occurring by imposing a penalty
when the climate barrier is crossed. Thus, the A will be more negative
when more organisms (lineages) are dispersing when barriers are
present. Conversely, a A closer to zero indicates strong barriers to
dispersal, or that the crossing of barriers was sporadic and largely
followed by cladogenesis. Overall, this model uses the phylogeny of
different avemetatarsalian groups to test whether, and when, climatic
barriers affected the dispersal of each group, particularly lagerpetids,
during the Ladinian-Rhaetian.

Accumulated latitudinal dispersion. We also quantified the latitudi-
nal dispersal of each avemetatarsalian group, following the method-
ology of Miiller et al.". Differing from that study, we decided against
pruning the lagerpetids Kongonaphon kely and PVS) 883 to enhance
completeness. The stratigraphic and palaeobiogeographical occur-
rences of these taxa are of paramount importance for our analyses,
and we believe that the benefits of their inclusion outweigh the uncer-
tainties in their phylogenetic positions. Specifically, Kongonaphon
kely is not only the stratigraphically oldest lagerpetid but also the
only member of this clade from this region of Gondwana (Madagas-
car, representing the Indian subcontinent + Madagascar continental
area).Similarly, we retained the unnamed taxon PVS) 883, from the late
Carnian of Argentina'®'®, because its occurrence suggests a dispersal
event that would otherwise be ignored.

Toruntheanalyses, we used the same tip-dated supertree of Avem-
etatarsaliaas discussed above. Thistime, each taxon in the dataset was
assigned to one of eight discrete geographic areas (that is, western
North America, eastern North America, Brazil, Argentina, Europe +
Russia, South Africa, and Indian subcontinent + Madagascar) among
the ten determined by Button et al.*°. The quantification of dispersal
eventsrelies onreconstructing ancestral states atinternal nodes. This
was achieved using the R package BioGeoBEARS* v.1.1.2inRv.4.3.1 (ref.
52), using different likelihood-based palaeobiogeographic models:
DEC, dispersal vicariance analysis likelihood (LIKEDIVA) and BAYARE-
ALIKE. Only the simple DEC model was used for subsequent calcula-
tionsto avoid long-distance palaeolatitudinal jumpsin the latitudinal
dispersion calculations™ following Miiller et al.", and for meaningful
comparison with the first analysis that is also based on DEC™ for the
same reason. However, we notice that, in our comparisons of biogeo-
graphical models, ‘+j’ models are better supported (Supplementary
Table 1). This may suggest a more complex biogeographic history in
which (aerial?) dispersal rather than vicariance may have been the
dominating phenomenon (expected in flying animals) in early ptero-
saur macroevolution.

Because the main barriers preventing dispersionin the Middle to
Late Triassic were arid latitudinal belts at mid-to-low latitudes*, we
quantified the accumulated amount of latitudinal dispersal of lager-
petids and pterosaurs separately and compared them with those of
other avemetatarsalian clades (silesaurids and dinosaurs).

First, we counted the number of dispersal events across the tree by
identifying those branches with different geographical values at their
nodes (or tips). The latitudes of well-known avemetatarsalian-bearing
localities were adopted as proxies for the broader geographic area
and used to calculate the latitudinal extent of dispersion events. The
localities we used are the same as those in Miiller et al.": Otis Chalk
Quarries (western North America, palaeolatitude 6.9° N); New Haven
County (eastern North America, 16.2° N); Buriol site (Brazil, palaeo-
latitude 39.7° S); Quebrada del Puma site (Argentina, palaeolatitude
40.6°S); Lombardia (Europe +Russia, palaeolatitude 27.1° N); Free State
(South Africa, 42.8°S); and Manda (Indian subcontinent, palaeolatitude

53.7°S). Unlike ref. 11, we did not discard uncertain nodes but instead
averaged the latitudinal values of different areas when an overwhelm-
ing signal was not computed. Only events that started (but did not
necessarily end) in the Triassic were included in the final analyses.

The totalamount of latitudinal dispersion (measured in degrees)
for each clade was then calculated and plotted across the Anisian-
Rhaetian through 1-million-year-long bins (Fig. 2b) and subsequently
averaged by the number of dispersal events in each interval (Fig. 2c).
These calculations were done using a slight modification of the R codes
provided by Miiller et al."” (see ‘Code availability’ section).

Palaeoclimate niche occupation

To explore the palaeoclimatic niches occupied by pterosauromorph
lineages, we compiled alocality-based dataset of all Triassic lagerpetid
and pterosaur occurrences. This integrated a literature search with
unpublished fieldwork data (20+ years in the southwestern USA in
Arizona, Texas and New Mexico)>!172028-3840.53°7 (see ‘Dataset_ptero-
sauromorphs_R1.xlIs’ in Supplementary Data 1). Unique occurrence
data were recorded for each specimen in our dataset. Unnamed and/
or undescribed specimens were examined in person and included
to increase the data available for our palaeoclimate niche analyses.
This sampling strategy means that the datasets for the palaeobiogeo-
graphic and climate analyses are independent (that is, the first relies
on phylogeny and the second onoccurrence data), but all taxa present
in the former are also included in the latter. This strategy recognizes
the value of including undescribed or indeterminate lagerpetid and
pterosaur specimens, which provide fundamental information onthe
distributions of their respective clades, evenifthey cannotbe included
inphylogenetic analyses. Thelagerpetidsincludedin the palaeoclimate
niche analyses but excluded from the phylogenetic framework (and,
hence, the palaeobiogeographic analyses) are: the indeterminate
lagerpetids (NMMMNH P-80469, PEFO 44476 and PEFO 50545) from,
respectively, NMMNH L-149 in the Los Esteros Member of the Santa
Rosa Formation of New Mexico (Otischalkian holochronozone, lower
Norian)®*, PFV 456 (Thunderstorm Ridge) in the Blue Mesa Member
(Adamanian holochronozone, middle Norian)**and PFV 215 (Zuni Well
Mound) in the Petrified Forest Member (Revueltian holochronozone,
upper Norian)** of the Chinle Formation of Petrified Forest National
Park and multiple representatives of the genus Dromomeron from 13
distinct localities in the southwestern USA*%*#*%-62¢7 (Fig_ 1 and Sup-
plementary Data 1). Similarly, the pterosaurs that are present in the
palaeoclimate analysis but could not be included in the phylogenetic
dataset are Arcticodactylus from Greenland®**°, which is currently
under investigation®®; three unnamed pterosaurs from the southwest-
ern USA, including an undescribed pterosaur (tentatively referred to
as Eudimorphodon sp.) from the ‘Kalgary localities’ (approximately
upper Carnian-lower Norian) of the Tecovas Formation of the Dockum
Group®® and fig. 9.5 in ref. 70, two undescribed pterosaurs from the
Chinle Formation of Petrified Forest National Park, one (PEFO 45782)
from PFV 456 (Thunderstorm Ridge) in the Blue Mesa Member (Ada-
manian holochronozone, middle Norian, ~220 Mya (refs. 73,74)); and
an undescribed pterosaur (PEFO 53384) from the Owl Rock Member
(Apachean holochronozone, late Norian)”. Finally, MCSNB 8950 is an
unnamed taxon from the Argilliti di Riva di Solto Formation of northern
Italy (upper Norian), which was previously referred to Eudimorphodon
ranzi” but is now thought to be an unnamed new genus'.

However, because the resolution of the general circulation (pal-
aeoclimatic) modelsis 1° x 1° (-111 km?) (see below), we consider only
one locality if more than one specimen was found in a radius smaller
than 111 km, unless they yielded different taxa (for example, the ptero-
saur localities in northern Italy). The occurrence of taxa with uncer-
tain stratigraphic ranges covering multiple time bins was considered
present in each of the relevant bins. This resulted in a summarized
dataset of 54 occurrences (24 pterosaur and 30 lagerpetid entries;
Supplementary Datal).
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Palaeoclimate reconstructions. To explore whether palaeoclimatic
conditions influenced the biogeographic distributions of pterosaurs
and lagerpetids, we integrated occurrence data for these groups with
outputs fromageneral circulation (palaeoclimate) model. The values
extracted from these models show a good match with the estimates
from geochemical, sedimentological and biological proxies at the basin
level and broader scales (for example, see refs. 75,76 for a detailed study
ofthe palaeoclimate of the Chanares-Los Rastros-Ischigualasto Trias-
sicsuccession). The accuracy and evaluation of general circulation (pal-
aeoclimate) model outputs are further discussed in the Supplementary
Information. Palaeoclimate model simulations used arecent version of
the coupled Atmosphere-Ocean General Circulation Model and Had-
CM3L” (specifically HadCM3L-M2.1aD), following the nomenclature in
the work of Malanoski et al.”®), including the modifications described by
Juddetal.””. The model has aresolution of 3.75° longitude x 2.5°latitude
inthe atmosphere and ocean, with19 hybrid levels in the atmosphere
and 20 vertical levelsinthe ocean withequations solved on the Arakawa
B-grid. Atmospheric subgrid scale processes such as convection are
parameterized as they cannot be resolved at the resolution of the
model. The ocean model is based on the model of Valdes et al.*° and
is a full primitive equation, three-dimensional model of the ocean. A
second-order numerical schemeis used along with centred advection
to remove nonlinear instabilities. Flux adjustments (such as artificial
heat and salinity adjustmentsin the ocean model to prevent the model
drifting to unrealistic values) are not required in this model®, whichis
crucial for long palaeoclimate simulations. Sea ice is calculated on a
zero-layer model with partial seaice coverage possible, with a consist-
ent salinity assumed for ice. Because geological data recording land
surface vegetation for Triassic stages are uncertain and globally sparse,
we use a version of the model thatincludes the dynamical vegetation
model TRIFFID (Top-Down Representation of Interactive Foliage and
Flora Including Dynamics) and land surface scheme MOSES 2.1a (ref.
82). TRIFFID predicts the distributionand properties of global vegeta-
tion based on plant functional types (PFTs), in the form of fractional
coverage (and, thus, PFT coexistence) withinagrid cell, andis, in turn,
based on competition equations based on the climate tolerance of
five PFTs. The HadCM3L model demonstrates high performance at
reproducing the modern-day climate’ and has been used for anarray
of pre-Quaternary palaeoclimate experiments’***%*, Palaeoclimate
experiments typically require on the order of hundreds of years to
reach a near-surface quasi-equilibrium state (but many thousands
of years for the deep ocean’*°) as well as true climate equilibrium.
Relatively low-resolution global climate models suchas HadCM3L are
relatively computationally expensive, allowing near-fully equilibrated
simulations of climate to be undertaken that would not be possible with
higher-resolution, more complex models®.

Seven model simulations with Ladinian (239.54 Ma), ‘early’ Carnian
(233.6 Ma), ‘late’ Carnian (232 Ma), ‘early’ Norian (227 Ma), ‘middle’
Norian (222.4 Ma), ‘late’ Norian (217.8 Ma) and Rhaetian (204.9 Ma) were
carried out using stage-specific boundary conditions (topography,
bathymetry, solar luminosity, continental ice and partial pressure of
CO, (pCO0,)). Stage-specific realistic carbon dioxide concentrations
were chosen on the basis of proxy-CO, (Ladinian, 1,034 ppm; ‘early’
Carnian, 1,492 ppm; ‘late’ Carnian, 1,614 ppm; ‘early’ Norian, 2,059 ppm;
‘middle’ Norian, 1,810 ppm; ‘late’ Norian, 1,481 ppm; and Rhaetian,
1,503 ppm) reconstructions from ref. 86, and the solar constant was
based onref. 87. The orography and bathymetry were derived from pal-
aeogeographicdigital elevation models, produced by ref. 88 as part of
the PALEOMAP project (see ref. 79 for more details). Each stage-specific
digital elevation model is interpolated from a 1° x 1° grid onto the
model 3.75° x 2.5° grid. Similarly, land ice is also transformed onto the
model grid assuming asimple parabolic shape to estimate theice sheet
height (m). Surface soil conditions were set at a uniform mediumloam
everywhere because stage-specific soil parameters during the Triassic
arenot globally known. All other boundary conditions (such as orbital

parameters, aerosol concentrations and so on) are held constant at
preindustrial values. The simulations were carried out for a total of
over 10,000 years. By the end of the simulations, (1) the globally and
volume-integrated annual mean ocean temperature trend is less than
1°Cper1,000 years; (2) trendsinsurface air temperature are less than
0.3 °C per 1,000 years; and (3) net energy balance at the top of the
atmosphere, averaged over a1l00-year period at the end of the simula-
tion, isless than 0.25 W m™. Climatological means were produced from
thelast 100 years of each simulation. All these simulations areidentical
to the ‘Scotese07’ simulations described in ref. 78 and the ‘model 2’
simulations of ref. 79. The climate predicted by the model is compared
with proxy indicators of climate in the Supplementary Information.
The outputs from the simulations are available at https://www.paleo.
bristol.ac.uk/ummodel/scripts/html_bridge/scotese_07.html.

Palaeoclimatic niche space. To explore the climatic conditions occu-
pied by pterosauromorphs during the Late Triassic, multivariate sta-
tistical tests were used and summary statistic plots were constructed.
Thisapproachis commonly used in modernecology®**and, in the past
decade, hasbecome more common in studies pertaining to the fossil
record of bothinvertebrate’ *° and vertebrate groups™'¢’>'°°, Accord-
ingly, each taxon was assigned climate variables based on the mean
values for their stratigraphic age and geographic locations (namely,
mean annual temperature (MAT), MAP, seasonal variation in tempera-
ture and seasonal variationin precipitation; Fig. 3and Supplementary
Table 2). Taxa spanning two geological stages (n = 8) were assigned the
mean of the variables for both stages and assigned single, averaged,
stratigraphic occurrence. To quantify ‘palaeoclimatic niche space’ for
each taxon, we followed the procedure outlined in ref. 16. Obtaining
information on species’ fundamental niches from the fossil record is
challenging: therefore, the term ‘palaeoclimatic niche’ as used here
refers to an approximation of the realized climatic niche of the fossil
taxa (thatis, the set of climatic conditions occupied by ataxon'®). APCA
was performed using the prcomp() functioninRv.4.4.2 (ref.52), which
included the scaling argumentso that variables were scaled to have unit
variance before the analysis took place. Anon-parametric MANOVA was
performed to statistically compare the distribution of the two groups
using the R package RVAideMemoire®. Raincloud plots displaying both
box plots (depicting the distributions of the palaeoclimate data within
the taxonomic groups) and frequency distributions were constructed
to examine the range of individual palaeoclimatic conditions occupied
by both groups. To statistically compare the distributions between
both groups, pairwise comparisons were performed in R using Wil-
coxonrank-sum (Mann-Whitney) tests. These specific statistical tests
were chosenbecause the palaeoclimate variable data do not conform
to the assumptions of a normal distribution, which was determined
through probability plots (for example, quartile-quartile plots) and
Shapiro-Wilk tests.

Habitat suitability modelling

To assess the climatic suitability of these taxa, we implemented the
DOMAIN algorithm'*° through the R package ‘dismo”®, whichis an eco-
logical niche modelling tool using the Gower distance metric to assess
climatic suitability. The DOMAIN algorithm quantifies the disparity
between the climatic conditions of map pixels and the nearest species
observation within the n-dimensional environmental space, diverging
from geographic proximity. Although this model is generally classified
as a coarse niche modelling technique'®%, it offers the advantage of
straightforward implementation and minimal assumptions, whichare
necessary due to the paucity of the pterosauromorph fossil record.
Giventhe coarse spatial and temporal resolution of our dataset, coupled
with our exclusive focus on producing suitability maps based solely
on climate, and the low number of occurrences in our datasets, we
favoured this simplistic modelling approach over more recently intro-
duced ecological niche and habitat suitability modelling techniques,
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including those previously used by our teamin prior works'” "%, where

the associated limitations and assumptions are also addressed. We fur-
thermore calibrated the model on acompound occurrence dataset that
maximizes the geographicspread for each of the subclades, centring on
thebestsampledinterval (the middle-late Norian, 218 Ma) and includ-
ing palaeobiogeographicoutliers from the Carnian (Lagerpetidae) and
throughout the full duration of the Norian for pterosaurs, projecting
these modelsinto more refined climatic simulations (eight time slices
from the Ladinian to the Rhaetian). MAT (°C) and MAP (mm per year)
are the variables used for the habitat suitability modelling.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets can be found alongside their respective R codes via Fig-
share at https://figshare.com/s/742a30f30deb4aefb60a (ref. 106),
Supplementary Data1; https://figshare.com/s/7ac05f57d35b3810a2c7
(ref. 107), potential for latitudinal dispersion; https://figshare.
com/s/8cabc46601eb64f9b9f0 (ref. 108), accumulated latitudinal
dispersion; https://figshare.com/s/6254a692186e79fa9060 (ref.
109), palaeoclimate niche occupation; and https://figshare.com/
$/6600233d24db8f1d986e (ref. 110), habitat suitability modelling.,
climate modelling data repository (https://www.paleo.bristol.ac.uk/
ummodel/scripts/papers/Foffa_etal_2025.html).Source dataare pro-
vided with this paper.

Code availability

All datasets can be found alongside their respective R codes via
Figshare at https://figshare.com/s/7ac05f57d35b3810a2c7 (ref.
107), potential for latitudinal dispersion; https://figshare.com/
s/8cabc46601eb64f9b9f0 (ref. 108), accumulated latitudinal
dispersion; https://figshare.com/s/6254a692186e79fa9060 (ref.
109), palaeoclimate niche occupation; and https://figshare.com/
$/6600233d24db8f1d986e (ref. 110), habitat suitability modelling.
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Extended Data Table 1| Statistical comparison using one-sided Wilcoxon rank sum (Mann-Whitney) tests of the climate
ranges occupied by: (a) pre-Norian (Ladinian-Carnian; L-C) lagerpetids and lagerpetids from the Norian-Rhaetian (N-R); (b)
lagerpetids and pterosaurs, both during the Norian-Rhaetian (N-R); (c) all lagerpetids and pterosaurs

Variables | Lagerpetidae (L-C) vs | Pterosauria vs Pterosauria vs
Lagerpetidae (N-R) Lagerpetidae (N-R) | Lagerpetidae (all)

Mean Annual W =15, W =312.5, W = 375.5,

Temperature [MAT] | p = 0.0009762*** p=0.001418** p = 0.2499

Mean Annual W =108, W = 146.5, W = 238.5,

Precipitation [MAP] | p =0.0938 p=0.184 p =0.229

Seasonal variation W =141, W =114.5, W =298.5,

in temperature p = 0.0005413*** p =0.02746** p=1

Seasonal variation W = 69, W = 157.5, W =227.5

in precipitation p =0.7051 p =0.3044 p =0.1546

Asterisks indicate significance levels * - 0.05, ** > 0.01, *** > 0.001.
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Extended Data Table 2 | Results for the Kruskal-Wallis and Dunn'’s test of the separation of pterosaurs and all lagerpetids for
each climate variable

Climate variable Group 1 Group 2 n1 | n2 | eff. size stat p value | p adj. p ad;.
signif.

» Mean Annual Lagerpetidae | Pterosauria | 24 | 20 | small -1.20 0.229 0.229 ns

Temperature (°C)

[MAT]

» Seasonal Lagerpetidae | Pterosauria | 24 | 20 | small -0.0236 | 0.981 0.981 ns

difference in

temperature (°C)

» Mean Annual Lagerpetidae | Pterosauria | 24 | 20 | small 1.84 0.657 0.657 ns

Precipitation
(mm/day) [MAP]

» Seasonal Lagerpetidae | Pterosauria | 24 | 20 | moderate | 2.34 0.0195 | 0.0195 | *
difference in
precipitation
(mm/day)

Mean tempearture | Lagerpetidae | Pterosauria | 24 | 20 | small -0.968 | 0.333 0.333 ns
coldest season
(°C)

Mean tempearture | Lagerpetidae | Pterosauria | 24 | 20 | large -3.80 0.0001 | 0.0001 | ***
warmest season 45 45
(°C)

Mean precipitation | Lagerpetidae | Pterosauria | 24 | 20 | moderate | 2.38 0.0171 | 0.0171
wet season
(mm/day)

Mean precipitation | Lagerpetidae | Pterosauria | 24 | 20 | moderate | 2.55 0.0108 | 0.0108 | *
dry season
(mm/day)

Asterisks indicate significance levels * > 0.05, ** > 0.01, *** > 0.001. Abbreviations: eff. size, effect of the difference in sample size; n, number of observations; ns, non-significant results; p.adj,
adjusted p values. The symbol » and bold font indicate the climate variables that were used in the palaeoclimate niche occupation multivariate analysis, while those underlined were used to
produce the habitat suitability analyses.
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