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Mosaic loss of the X chromosome (mLOX) is the most commonly occurring clonal somatic alteration 44 

detected in the leukocytes of women, yet little is known about its genetic determinants or phenotypic 45 

consequences. To address this, we estimated mLOX in > 880,000 women across eight biobanks, 46 

identifying 12% of women with detectable X loss in approximately 2% of their leukocytes. Out of 47 

1,253 diseases examined, women with mLOX had an elevated risk of myeloid and lymphoid 48 

leukemias and pneumonia. Genetic analyses identified 56 common variants influencing mLOX, 49 

implicating genes with established roles in chromosomal missegregation, cancer predisposition, and 50 

autoimmune diseases. Complementary exome-sequence analyses identified rare missense variants in 51 

FBXO10 which confer a two-fold increased risk of mLOX. A small fraction of these associations 52 

were shared with mosaic Y chromosome loss in men, suggesting different biological processes drive 53 

the formation and clonal expansion of sex chromosome missegregation events. Allelic shift analyses 54 

identified alleles on the X chromosome which are preferentially retained, demonstrating that variation 55 

at many loci across the X chromosome is under cellular selection. A novel polygenic score including 56 

44 independent X chromosome allelic shift loci correctly inferred the retained X chromosomes in 57 

80.7% of mLOX cases in the top decile. Collectively our results support a model where germline 58 

variants predispose women to acquiring mLOX, with the allelic content of the X chromosome 59 

possibly shaping the magnitude of subsequent clonal expansion.  60 

 61 

Introduction 62 

Females carry a maternal and paternal copy of the X chromosome in which one copy is partially 63 

rendered transcriptionally inactive early in development by expression of Xist1 and epigenetic 64 

modifications. The inactivation process is random as to which X chromosome is chosen with the 65 

resulting inactive state being irreversible and clonally transmitted to daughter cells2. X chromosome 66 

inactivation has evolved as a mechanism to compensate for gene dosage imbalances between XX 67 

females and XY males, although some genes are only partially inactivated3, including several tumor 68 

suppressor genes (e.g., ATRX, KDM5C)4. Analytic challenges associated with X inactivation and 69 

haploid male X chromosomes have led to fewer studies of the X chromosome, potentially missing 70 

critical germline and somatic variation relevant to disease risk.  71 

With age, the expected 1:1 ratio of inactivated maternal to paternal X chromosome copies can become 72 

skewed. X chromosome inactivation skewing is observed in various tissues with high frequencies 73 

observed in leukocytes5,6. Detectable skewed X chromosome inactivation in leukocytes is heritable 74 

(h2=0.34)7 and can indicate depletion of haematopoietic stem cells, selection pressures on leukocytes, 75 

or clonal hematopoiesis (CH). Recent investigations of age-related CH have described elevated rates 76 

of mosaic sex chromosome aneuploidies in population-based surveys of apparently healthy adults8-13. 77 

Mosaic loss of the female X chromosome (mLOX) is elevated in frequency compared to the 78 
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autosomes14, preferentially impacts the inactivated X chromosome10 and is associated with elevated 79 

leukemia risk15,16. This contrasts with the male X chromosome which has very low rates of 80 

aneuploidy17. As the X chromosome encompasses approximately 5% of the genome and contains 81 

genes relevant to immunity, cancer susceptibility, and cardiovascular diseases, loss of a homologous 82 

copy and subsequent hemizygous selection could lead to downstream consequences on female health, 83 

as observed in Turner syndrome (45,XO)18; however, no study has systematically examined 84 

longitudinal associations of mLOX with disease risk.  85 

As mLOX is a clonal pro-proliferative genomic alteration, understanding the molecular mechanisms 86 

driving susceptibility to mLOX could provide new insights into the impact of aging on hematopoiesis 87 

as well as hematologic cancer risk. The X chromosome, particularly the inactive X, is more frequently 88 

mutated in cancer genomes19 and is late replicating relative to autosomes, potentially increasing 89 

susceptibility to chromosomal alterations20. While few genome-wide association studies (GWAS) of 90 

mLOX have been reported to date14,21, GWAS of mosaic loss of the Y chromosome (mLOY) in men 91 

has identified hundreds of susceptibility loci11-13,22, many of which highlight genes involved in cell 92 

cycle regulation and cancer susceptibility. Here we describe insights from epidemiologic and genetic 93 

analyses of X chromosome loss from a combined meta-analysis of 883,574 women. We identify 56 94 

independent common susceptibility variants across 42 loci, rare missense variants of FBXO10 95 

associated with mLOX, and 44 X chromosome loci that strongly influence which X chromosome is 96 

retained. The identified signals only partially overlap with known signals for other age-related types 97 

of CH. These data indicate mLOX, along with other age-related types of CH, are important pre-98 

clinical indicators of hematologic cancer risk and identify mitotic missegregation, autoimmunity, 99 

blood cell trait, and cancer predisposition genes as core etiologic components for mLOX 100 

susceptibility and selection. 101 

  102 
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Results 103 

 104 

Figure 1. Theoretical framework of the mLOX study.  105 

Panel (A) depicts the etiologic process leading to detectable mosaic loss of the X chromosome 106 

(mLOX) in females. Detectable age-related mLOX develops only if the mutant haematopoietic stem 107 

cell (HSC) survives loss of the X chromosome and the mutation confers a proliferative advantage over 108 

normal cells. Panel (B) shows the statistical approaches used to discover the genetic determinants of 109 

mLOX. Variants associated with susceptibility to mLOX, acting as either trans or cis factors, are 110 

examined using a genome-wide association study (GWAS), for common variants with minor allele 111 

frequency (MAF) > 0.1%, and a gene-burden test performed for whole-exome sequencing (WES) data 112 

for rare variants with MAF < 0.1%. Among samples with detectable mLOX, allelic shift analysis is 113 

used to detect chromosome X alleles exhibiting cis selection, that is, more likely to be clonally 114 

selected for when detectable mLOX retains these alleles.  115 

 116 
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Mosaic loss of the X chromosome in eight contributed biobanks 117 

We leveraged genetic data in a total of 883,574 women from eight biobanks worldwide, including 118 

European ancestry participants from FinnGen23, Estonian Biobank (EBB)24, UK Biobank (UKBB)25,26, 119 

Breast Cancer Association Consortium (BCAC)27,28, Million Veteran Program (MVP)29,30, Mass 120 

General Brigham Biobank (MGB)31,32, and Prostate, Lung, Colorectal and Ovarian Cancer Screening 121 

Trial (PLCO)33, as well as East Asian ancestry participants from Biobank Japan (BBJ)34 122 

(Supplementary Table S1). The median (SD) age at sample collection for genotyping ranged from 123 

44 (16.3) for EBB to 65 (15.8) for BBJ. We identified mLOX using the Mosaic Chromosomal 124 

Alterations (MoChA) WDL pipeline (https://github.com/freeseek/mochawdl), which uses raw signal 125 

intensities from single-nucleotide polymorphism (SNP) array data. Out of 883,574 women, 105,286 126 

(11.9%) were classified as cases with detectable mLOX (Methods; Table 1). Overall, the cell fraction 127 

of mLOX (i.e., the estimated fraction of peripheral leukocytes with X loss) was low (median=1.5%) 128 

with expanded clones having frequency ≥5% infrequently observed (0.6% of women) 129 

(Supplementary Figure S1). A subset of UKBB participants (243,520 out of 261,145) also had 130 

whole-exome sequencing (WES) data available which allowed us to assess the performance of mLOX 131 

calling from MoChA. Among UKBB mLOX cases classified by MoChA, a high correlation (r=-0.86) 132 

was observed between cell fraction derived from SNP array data (by MoChA) and X dosage derived 133 

from WES data (Supplementary Figure S2). In addition to the MoChA generated dichotomous 134 

measure used by all biobanks, in UKBB we generated a 3-way combined quantitative measure by 135 

integrating independent information from both SNP array and WES data (Methods). As increasing 136 

age is a well-established causal factor for acquiring all types of CH including mLOX, we further 137 

assessed the performance of different mLOX measures in UKBB by their associations with age. We 138 

observed an increase in t-test statistics by 29.2% with the 3-way calls but noted that the SNP array-139 

only calls with MoChA were still a powerful approach for defining mLOX. 140 

 141 

Table 1. Descriptive characteristics of the eight biobanks contributing to the mLOX analysis 142 

Biobank Median age 
(SD) 

mLOX 
Cases 

Controls Effective 
sample size 

Continental ancestry 
groups 

FinnGen 54 (18.2) 27,001 141,837 90,732 European, Finnish 

Breast Cancer Association Consortium 
(BCAC) 

57 (11.9) 21,966 155,356 76,980 European 

Estonian Biobank (EBB) 44 (16.3) 20,232 110,547 68,408 European, Estonians 

UK Biobank (UKBB) 57 (8.0) 16,214 244,931 60,829 European, British 

Biobank Japan (BBJ) 65 (15.8) 13,597 63,720 44,823 East Asian, Japanese 

Million Veteran Program (MVP) 54 (13.9) 1,496 33,192 5,726 European 

Mass General Brigham Biobank (MGB) 54 (17.3) 2,108 11,527 7,128 European 

Prostate, Lung, Colorectal and Ovarian Cancer 
Screening Trial (PLCO) 

64 (5.4) 2,672 17,178 9,249 European 

https://github.com/freeseek/mocha/blob/master/wdl/assoc.wdl
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 143 

Environmental determinants and epidemiological consequences 144 

Like many other types of somatic mutations13,14, the frequency of women with detectable mLOX in 145 

peripheral leukocyte is age-related, with a frequency of 3.0% in women aged <40 and 146 

reaching >35.0% after 80, averaged over all contributing biobanks (Supplementary Table S2). 147 

Across biobanks, differences were seen in the frequency of mLOX, with the highest age-adjusted 148 

frequency presented in EBB and the lowest in MVP (Supplementary Figure S3A). However, such 149 

variation in frequencies was largely reduced when restricted to expanded mLOX with cell 150 

fraction >5% (Supplementary Figure S3B), suggesting that mLOX detection differences were more 151 

prominent for low cell fraction clones. To investigate the effect of lifestyle factors on the risk of 152 

acquiring detectable mLOX, we assessed associations of smoking and body mass index (BMI) with 153 

mLOX in FinnGen and UKBB. Overall, ever-smokers had no increased risk of mLOX (P=0.56 in 154 

FinnGen and P=0.28 in UKBB); however, an increased risk was observed among ever-smokers 155 

having expanded mLOX with cell fraction ≥5% (OR=1.3 [1.2-1.5], P=6.9×10-5 in FinnGen and 156 

OR=1.3 [1.1-1.5], P=4.6×10-4 in UKBB) (Supplementary Table S3 and Figure S4-S5). The 157 

relationship between smoking and skewed X-inactivation has not been established, as smoking was 158 

suggested as a modulator for skewed X inactivation in the whole-blood tissue for women older than 159 

age 557 but not associated in the TwinsUK cohort35. We observed limited evidence for an association 160 

between BMI and mLOX in FinnGen and UKBB (Supplementary Table S4). 161 

To evaluate disease outcomes associated with detectable mLOX, we performed Cox proportional 162 

hazards regression for incident disease cases in FinnGen, UKBB, MVP, and MGB independently 163 

considering genotyping age and ever-smoking status as covariates and meta-analyzed across biobanks 164 

with a fixed-effect model (Methods). Out of the 1,253 diseases we examined, we identified 165 

significant associations (P<4.0×10-5) with leukemia overall (HR=1.7 [1.5-2.1], P=3.5×10-10) and 166 

chronic lymphoid leukemia (CLL) (HR=3.3 [2.4-4.4], P=8.4×10-15) and suggestive evidence for acute 167 

myeloid leukemia (AML) (HR=1.9 [1.3-2.8], P=1.8×10-3) (Supplementary Table S5). Unlike the 168 

germline loss of the X chromosome in women with Turner syndrome (45,XO), which can cause 169 

various medical and developmental problems18, we noted limited clinical consequences for women 170 

with detectable mLOX in blood. 171 

As the median mLOX cell fraction impacted is approximately 2%, we proposed that investigating 172 

expanded clones could result in stronger disease associations. Here, we focused on mLOX with cell 173 

fraction ≥10% as this threshold has been empirically determined to be etiologically relevant for 174 

detecting diseases associated with mCAs15,16. Restricting to expanded mLOX, we observed evidence 175 

for elevated associations with leukemia overall (HR=6.3 [3.9-10.2], P=7.3×10-14), CLL (HR=14.7 176 

[6.5-33.3], P=9.5×10-11), and AML (HR=10.6 [3.1-36.1], P=1.5×10-4) (Supplementary Table S6). 177 
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We also observed suggestive evidence for associations with vitamin B complex deficiency (HR=3.7 178 

[1.8-7.9], P=6.0×10-4) and pneumonia (HR=1.5 [1.2-1.8], P=4.7×10-4), especially pneumonia caused 179 

by bacterial infections (HR=1.8 [1.3-2.3], P=3.9×10-5). Similarly, in UKBB16, an increased risk of 180 

incident pneumonia was observed for both women with expanded mLOX (HR=1.8 [1.0-3.2], 181 

P=0.035) and men with expanded mLOY (HR=1.2 [1.1-1.4], P=1.1×10-4). 182 

To examine the potential impacts of other types of CH on mLOX associations with leukemia, we 183 

performed sensitivity analyses in UKBB where we had available calls on autosomal mosaic 184 

chromosomal alterations (mCAs) as well as CH mutations in driver genes, commonly referred to as 185 

clonal hematopoiesis of indeterminate potential (CHIP)36. We observed attenuations in associations 186 

for expanded mLOX when removing individuals with autosomal mCAs (HR=3.8 [1.6-9.3], 187 

P=2.7×10-3), CHIP (HR=6.2 [3.1-12.4], P=3.1×10-7), and both mCAs and CHIP (HR=4.5 [1.9-10.8], 188 

P=8.6×10-4) (Supplementary Table S7); however, significant associations with expanded mLOX 189 

and overall leukemia risk remained indicating mLOX is independently associated with leukemia risk. 190 

Associations for other lymphoid and myeloid leukemias display similar patterns, albeit losing 191 

statistical significance likely due to reduced sample size. 192 

We further assessed the relationship between mLOX and a broad range of quantitative phenotypes in 193 

UKBB (Methods; Supplementary Table S8) and observed enrichment of associations with blood 194 

count traits, such as higher levels of lymphocyte count (P=9.3×10-126) and monocyte count 195 

(P=4.9×10-4) and lower levels of neutrophil count (P=3.3×10-62) and red blood cell count (P=4.4 ×10-196 
4). As for blood biomarkers or biochemistry, acquiring mLOX was associated with shorter telomere 197 

length (e.g., P=2.8×10-14 for adjusted T/S ratio) and higher levels of total protein (P=1.9 ×10-8), 198 

triglycerides (P=1.1 ×10-5), aspartate aminotransferase (P=1.1×10-7), and gamma-glutamyl 199 

transferase (P=3.0 ×10-4). We noted that, unlike disease associations that usually exerted more 200 

significant effects in expanded mLOX (e.g., various subtypes of leukemia), for quantitative 201 

phenotypes, most of the identified associations did not hold for expanded clones, suggesting that 202 

mLOX of different cell fraction ranges might not reflect the same medical or biological conditions in 203 

women. 204 

 205 

Common and rare variants associated with mLOX susceptibility 206 
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 207 

Figure 2. Common and rare genetic contributors to mLOX susceptibility.  208 

Panel (A) shows genome-wide association study -log10(P) for the association of common variants 209 

(MAF>0.1%) with mLOX. Labels are only assigned for candidate genes of the top 10 lead variants 210 

from meta-analysis or the top 10 candidate genes from gene prioritization and the y-axis is log scale. 211 

Panel (B) presents gene burden test -log10(P) for the rare variants (MAF<0.1%) associations with 212 

mLOX. The dashed lines denote the statistical significance, which is 5.0×10-8 for GWAS (A) and 213 

1.2×10-6 for the gene-burden test (B).  214 

 215 

We performed a genome-wide association study (GWAS) to identify common and low-frequency 216 

germline variants (minor allele frequency (MAF)>0.1%) associated with the risk of developing 217 

detectable mLOX in peripheral leukocytes. We examined the autosomes (chromosomes 1-22) and X 218 

chromosome in each of the eight contributing biobanks independently, for a total of 883,574 women 219 

(Methods). To increase GWAS power, we used enhanced 3-way combined calls for UKBB and meta-220 

analyzed summary statistics across different mLOX measures with a weighted z-score method 221 

(Methods). Of the 33,737,925 variants examined, we identified 56 independent genome-wide 222 

significant variants (P<5.0×10-8) across 42 loci associated with mLOX susceptibility (Methods; 223 

Figure 2A; Supplementary Table S9). Most independent variants were located on chromosomes 6 224 
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(17 variants), 2 (9 variants), X (7 variants), 3 (3 variants), and 17 (3 variants), with chromosomes 6, 2, 225 

and X explaining more heritability than expected by their chromosome length (Supplementary 226 

Figure S6). Despite differences in age-adjusted mLOX frequencies, mLOX variant effects were 227 

consistent across the eight biobanks and across European and East Asian ancestry (P from Cochran’s 228 

Q-test > 0.05/56 = 8.9×10-4) (Supplementary Table S10), with the exception of rs78378222 (TP53, 229 

P from meta-analysis = 7.2×10-12, P from heterogeneity test = 6.7×10-4) and three X chromosome 230 

variants (X:51749114:C:CGT, rs141849992, and rs58638231). For rs78378222, the heterogeneity of 231 

variant effects across biobanks was likely due to differences in mLOX cell fraction by contributing 232 

studies. When stratifying by cell fraction in FinnGen, the OR for the risk allele of rs78378222 was 1.1 233 

[1.0-1.2] (P=0.01) for cell fractions below 5% but reached 1.7 [1.3-2.3] (P=1.4×10-4) for expanded 234 

mLOX with cell fraction above 5% (P for effect size difference from a two-sided t-test = 2.5×10-5) 235 

(Supplementary Table S11 and Figure S7).  236 

We deployed a range of variant to gene mapping approaches to rank genes proximal to each of our 237 

hits by their strength of evidence for causality (Methods), highlighting the highest-scoring gene at 238 

each locus (Supplementary Table S12). The most significantly associated mLOX locus is at 2q37.1, 239 

replicating previous UKBB mLOX GWAS signals at that locus14,21. We mapped the hit to SP140L, a 240 

gene predicted to be involved in regulation of transcription by RNA polymerase II and active in the 241 

nucleus. Nearby genetic variants are associated with lymphocyte percentage37. Several identified 242 

mLOX loci implicated plausible causal genes relevant to cancer predisposition including EOMES 243 

(3p24.1), JARID2 (6p22.3), MYB (6q23.3), MAD1L1 (7p22.3), TNFSF8 (9q32-q33.1), ATM 244 

(11q22.3), HEATR3 (16q12.1), TP53 (17p13.1), PRKAR1A (17q24.2), and KLF8 (Xp11.21), many of 245 

which (e.g., EOMES38,39, JARID240, MYB41, ATM42, TP5343, and PRKAR1A44) are directly relevant to 246 

leukemia predisposition or progression. Additionally, highlighted genes at several mLOX loci are 247 

important for mitotic spindle assembly and kinetochore function including MAD1L1 (7p22.3), 248 

CENPU (4q35.1), CENPQ (6p12.3), and CENPW (6q22.32), all of which are highly relevant to 249 

mitotic missegregation errors leading to loss of an X chromosome at a single cell level. Several 250 

mLOX associated loci also implicate genes related to immunity and autoimmune disorders including 251 

EOMES (3p24.1), LPP-AS1 (3q28), CENPU (4q35.1), ERAP2 (5q15), HLA-A (6p22.1), HSPA1A 252 

(6p21.33), ITPR3 (6p21.31), CENPW (6q22.32), MYB (6q23.3), MSC (8q13.3), TNFSF8 (9q32-253 

q33.1), IL27 (16p12.1-p11.2), and LILRA1 (19q13.42), suggesting a shared etiologic relationship 254 

between mLOX and immune cell function. Similar to these locus-specific results, the genome-wide 255 

pathway-based analysis identified enrichment in pathways related to DNA damage response, cell-256 

cycle regulation, cancer susceptibility, and immunity (Methods; Supplementary Table S13).  257 
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 258 

Figure 3. Shared and distinct genetic contributors to mLOX susceptibility in women and mLOY 259 

susceptibility in men.  260 

Examination of the shared and distinct genetic contributors to mLOX in women and mLOY in men. 261 

Panel (A) is a scatterplot of mLOX susceptibility variants (N=56) and mLOY susceptibility variants13 262 

(N=147) and their effects on mLOX and mLOY. Variants are assigned to mLOX specific, mLOY 263 

specific, and shared by applying a Bayesian model with posterior probability >95%. (B) Fine-264 

mapping of imputed HLA alleles for mLOX and mLOY in FinnGen, for three HLA alleles that are 265 

significantly associated with mLOX from step-wise conditional analyses. Panel (C) and (D) depict 266 

phenotype associations for lead variants of 29 independent mLOX susceptibility loci that were 267 

assigned to either mLOX specific or shared with mLOY. (C) Phenotype associations (GWAS lead 268 

variants (r2>0.6)) from Open Targets genetics. To avoid the impact of pleiotropic effects, we 269 

categorized phenotypes into blood cell measurement, autoimmunity and allergy, neoplasm, and 270 

others. The association with each phenotype category was first examined at a variant level and then 271 

summarized over all variants assigned to the same category in terms of the relationship with mLOY. 272 

To avoid the associations driven by HLA signals, we excluded all identified variants from the 273 
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extended MHC region (GRCh38: chr6:25.7-33.4 Mb). (D) Associations with nine blood cell count 274 

traits48. The absolute Z scores were cropped to the range of [0-20]. 275 

 276 

We next investigated if the identified common variants for mLOX susceptibility in women were 277 

associated with mLOY, the most common leukocyte sex chromosome mosaicism in men 278 

(Supplementary Figure S8) and likewise if mLOY loci were associated with mLOX. We employed a 279 

Bayesian model to assign 56 independent common variants identified from mLOX GWAS and 147 280 

variants (nine variants dropped due to missing in mLOX GWAS) from the published mLOY GWAS13 281 

into three groups: specific to mLOX, specific to mLOY, and shared between mLOX and mLOY 282 

(Methods; Figure 3A). Out of 56 variants identified from the mLOX GWAS, we assigned 34 283 

variants as specific for mLOX and seven as shared with mLOY, with greater than 95% probability 284 

(Supplementary Table S14). Among three centromere protein genes identified for mLOX 285 

susceptibility, CENPQ (for rs9395493, OR=1.04 [1.03-1.05] for mLOX and 0.99 [0.98-1.01] for 286 

mLOY, P for effect size difference=4.1×10-9) and CENPW (for rs9372840, OR=1.04 [1.03-1.06] for 287 

mLOX and 1.02 [1.01-1.04] for mLOY, P for effect size difference=0.01) were specific to mLOX 288 

with posterior probability > 95%, while for CENPU (for 4:184696883:C:CT, OR=0.96 [0.94-0.97] for 289 

mLOX and 0.97 [0.95-0.98] for mLOY, P for effect size difference=0.11) the probability to be mLOX 290 

specific was 83%. When likewise examining the 147 mLOY susceptibility variants, we further 291 

identified eight variants (prioritized genes such as SPDL1, HLA-A, CHEK2, and MAGEH1) to be 292 

shared with mLOX susceptibility, in addition to the six variants that are exactly mLOX GWAS lead 293 

variants (prioritized genes GRPEL1, QKI, TP53, and MAD1L1) or in high LD (r2>0.6) with mLOX 294 

GWAS lead variants (prioritized genes ATM and HEATR3). Notably, for variants that are shared 295 

between mLOX and mLOY, ORs were attenuated for mLOX relative to mLOY, possibly due to lower 296 

cell fractions observed for mLOX as compared to mLOY (Supplementary Figure S1). For example, 297 

for rs78378222 (TP53), the effect size for mLOX (OR=1.17 [1.11-1.22]) was lower than for mLOY 298 

(OR=1.77 [1.65-1.88]) (P for effect size difference=6.0×10-35). Likewise for rs2280548 (MAD1L1), 299 

the effect for mLOX (OR=1.04 [1.03-1.05]) was also lower than for mLOY (OR=1.13 [1.11-1.14]) (P 300 

for effect size difference=1.1×10-25). This smaller effect size together with the lower frequency of 301 

mLOX (e.g., 6.2% for 261,145 women in UKBB aged 40-70 at genotyping) relative to mLOY (e.g., 302 

20.4% for 205,011 men in UKBB aged 40-70 at genotyping13) indicates that a large meta-analysis was 303 

needed to identify susceptibility variants for mLOX. The partially shared genetic architecture from 304 

common variants between mLOX and mLOY was also supported by the moderate genetic correlation 305 

(r=0.30 [0.21-0.39], P=1.7×10-10) (Methods; Supplementary Table S15). We noted that, in addition 306 

to potential differences in biological mechanisms, the differences between mLOX and mLOY could 307 

also be related to differences in cell fractions as calling algorithms can detect lower cell fraction 308 

mLOX events relative to mLOY events (Supplementary Figure S1).  309 
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We then wanted to understand the overlaps of mLOX susceptibility variants with autosomal 310 

mosaicism, a more heterogeneous group composing any types of detectable mosaic events (loss, gain, 311 

and copy-neutral loss of heterozygosity) on chromosomes 1-22, and whether the reported autosomal 312 

mCA trans variants in UKBB (3.6% of autosomal mCA cases among 452,469 participants)45 act in 313 

acquiring of mLOX in women. Of the 55 mLOX variants (one dropped) available in the UKBB 314 

autosomal mCA GWAS, no variant reached genome-wide significance for autosomal mCAs 315 

(Supplementary Table S16). Together with the identified effects on mLOY, we suggested seven of 316 

the mLOX variants as specific for mLOX susceptibility (prioritized genes LOC100506274, SP140L, 317 

HSPA1A, CENPW, SHPRH, TOMM40, and KLF8) and three as shared with both mLOY and 318 

autosomal mCAs (prioritized genes MAD1L1, ATM, and TP53). Additionally, for the three loci 319 

reported as associated with any detectable autosomal mCAs in trans45, only the lead variant 320 

rs62191195 (SP140) exerted shared effects with mLOX (OR=1.05 [1.04-1.06] for mLOX and 1.08 321 

[1.05-1.10] for autosomal mCAs, P for effect size difference=0.08) while the other two variants, 322 

rs12638862 (TERC) and rs7705526 (TERT), presented limited effects on mLOX. 323 

Given the many associations of HLA genes with mLOX, we fine-mapped HLA alleles at a unique 324 

protein sequence level on 10 genes commonly used for HLA marker matching in organ 325 

transplantation for a set of 168,838 Finnish female participants (N of mLOX cases=27,001) and 326 

128,729 Finnish male participants (N of mLOY cases=45,675) (Methods; Supplementary Figure 327 

S8). Out of 156 examined HLA alleles, 16 alleles were associated with the odds of developing 328 

detectable mLOX (P<5.0×10-8), including alleles from both MHC class I (six out of 74 examined 329 

alleles locating on HLA-A, -B, and -C) and class II molecules (10 out of 82 examined alleles locating 330 

on HLA-DR, -DP, and -DQ) (Supplementary Table S17). The most significant HLA allele HLA-331 

B*35:01 increased the risk of mLOX (OR=1.16 [1.12-1.19], P=1.1×10-23), but had no effect on 332 

mLOY (OR=0.97 [0.94-1.00], P for mLOY=0.03, P for effect difference with mLOX = 3.6×10-18) 333 

(Figure 3B). This association with HLA-B*35:01 was independently replicated in BBJ (OR= 1.10 334 

[1.05-1.15], P=1.5×10-5). The HLA-B*35:01 allele is well established as the major driver for the 335 

progression of human immunodeficiency virus (HIV)46 and also associated with several autoimmune 336 

diseases (e.g., subacute thyroiditis (OR=4.36 [3.25-5.85])47). With stepwise conditional analyses in 337 

FinnGen, we identified two independent genome-wide significant HLA associations at HLA-338 

DRB3*01:01 (copy number variation that presents only in a subset of individuals) (OR=0.89 [0.87-339 

0.91], P=2.8×10-19) and HLA-DQB1*04:02 (OR=0.90 [0.87-0.94], P=6.5×10-9). For mLOY in males, 340 

despite a larger effective sample size, no HLA allele reached the genome-wide significant threshold 341 

suggesting that HLA has a larger role in mLOX than mLOY. Likewise, we observed no evidence for 342 

associations of HLA alleles with autosomal mCAs. Additionally, we conducted conditional GWAS 343 

analyses in FinnGen by adjusting for the three lead variants (rs74615740 (HLA-B) (r2=0.45 with 344 

HLA-B*35:01), rs9275511 (HLA-DQA2), rs2734971 (HLA-G)) identified from the Finnish population 345 
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GWAS. The results suggested that the associations with mLOX observed in the extended MHC region 346 

(GRCh38: chr6:25.7-33.4 Mb) were likely due to HLA signals instead of nearby non-HLA variants 347 

(Supplementary Figure S9).  348 

To understand potential mechanisms relevant to mLOX susceptibility revealed by each identified 349 

mLOX variant, we examined associations with additional phenotypes documented in the Open Target 350 

Genetics platform. Out of 56 independent variants, 30 were in LD (r2>0.6) with at least one GWAS 351 

lead variant from Open Target (5.0×10-8) (Supplementary Table S18). Notably, more than half of 352 

the phenotype associations were with variants associated with blood cell trait measurements, 353 

autoimmunity and allergy, and neoplasms (Figure 3C). Several mLOX specific variants are GWAS 354 

lead variants of multiple autoimmune diseases such as type 1 diabetes (rs9372840 (CENPW) and 355 

rs181206 (IL27)), celiac disease (rs13080752 (LPP-AS1)), and rheumatoid arthritis (rs2887944 356 

(EOMES)). Based on Open Target Genetics, none of the mLOX variants shared with mLOY were 357 

reported to be associated with any autoimmune disease. Additionally, the group of variants shared 358 

with mLOY have more associations with neoplasms (e.g., rs751343 (ATM) for breast cancer and 359 

rs2280548 (MAD1L1) for prostate cancer) and blood cell measurements than the group of variants 360 

specific for mLOX. We then examined the associations between each identified mLOX susceptibility 361 

locus and the counts of different types of blood cells48. Of 42 independent mLOX loci (only 362 

considering the lead variant of each locus), 39 were associated with at least one of the nine blood cell 363 

count traits examined (P<0.05), suggesting a shared genetic etiology between hematopoiesis and 364 

development of detectable mLOX (Figure 3D). Again, the mLOX variants shared with mLOY were 365 

among the variants associated with the most number of blood cell traits (5.0 traits average over seven 366 

variants) compared to mLOX specific variants (3.3 traits average over 22 variants). 367 

To identify rare autosomal and X chromosome germline variants (MAF < 0.1%) associated with the 368 

susceptibility of detectable mLOX, we performed gene-burden tests for our newly proposed mLOX 369 

metric which utilized information from both SNP array and WES data (mLOX 3-way combined calls) 370 

in 226,125 UKBB female participants with available WES data (Methods). Three non-synonymous 371 

variant functional categories were used in our analysis: high-confidence protein truncating variants 372 

(HC_PTVs), missense variants with CADD scores ≥ 25 (MISS_CADD25), and damaging variants 373 

(HC_PTV+MISS_CADD25). Only one gene, FBXO10 (F-Box Protein 10), was associated with 374 

mLOX susceptibility (P<1.2×10-6) (Figure 2B), with the strongest association observed in carriers of 375 

missense variants with CADD scores ≥25 (N of carriers=581, beta=0.059, P=1.8×10-7) 376 

(Supplementary Table S19). Logistic regression for the dichotomous mLOX status observed a 377 

consistent effect of FBXO10 missense variants associated with a 2-fold increased risk of acquiring 378 

mLOX (OR=2.1 [1.6-2.7], P=1.4×10-7), and we further confirmed this association using a distinct 379 

analytical pipeline implementing STAAR (variant-set test for association using annotation 380 

information)49 (P=2.5×10-7) and SAIGE-GENE+ (scalable generalized mixed-model region-based 381 
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association test plus)50 (P=9.5×10-8 for the 3-way combined quantitative measure and P=3.0×10-7 for 382 

the dichotomous status). A leave-one-out analysis confirmed this association was not restricted to a 383 

single coding variant (P<3.0×10-7). FBXO10 is the substrate-recognition component of the SCF 384 

(SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. The SCF (FBXO10) complex 385 

mediates ubiquitination and degradation of the anti-apoptotic protein, BCL2 (BCL2 apoptosis 386 

regulator), thereby playing a role in apoptosis by controlling the stability of BCL251.  387 

 388 
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Figure 4. Allelic shift of chromosome X alleles among mLOX cases.  389 

Panel (A) shows -log10(P) of chromosome X variants from allelic shift analysis by meta-analyzing 390 

data of 83,320 mLOX cases from seven biobanks, with lead variants of 44 independent loci 391 

highlighted. The dashed line denotes the statistical significance (5.0×10-8, which is the same as the 392 

GWAS significance level) and the y axis is log scale. Panel (B) depicts associations of 43 allelic shift 393 

analysis lead variants with 19 blood cell phenotypes48. One variant was dropped due to no appropriate 394 

proxy variant available in blood cell phenotype GWAS. The absolute Z scores were cropped to the 395 

range of [0-20]. Panel (C) is a scatterplot of lead variants identified from allelic shift analysis (N=44) 396 

and their effects from allelic shift analysis (x axis) and GWAS (y axis). Variants are categorized based 397 

on P values from GWAS. Panel (D) and (E) show the fraction of mLOX cases with the retained X 398 

chromosome correctly inferred using an X chromosome differential score constructed from allelic 399 

shift analysis signals. To avoid overfitting, the effects of 44 lead variants were estimated from allelic 400 

shift analysis of 56,319 mLOX cases from six biobanks excluding FinnGen while the prediction 401 

performance was tested in 27,001 FinnGen mLOX cases. Panel (D) stratifies prediction performance 402 

by differential decile of each X chromosome prediction score. Panel (E) shows the contribution of 403 

each lead variant to the prediction, starting with the most significant variants.  404 

 405 

Allelic shift analysis for cis clonal selection of chromosome X alleles 406 

As several germline variants reside on the X chromosome, we sought to investigate for a given X 407 

chromosome variant whether mLOX cells with one allele retained in a hemizygous state confers a 408 

propensity to be retained or a selective advantage over mLOX cells with the alternate X allele retained 409 

(Figure 1B). Conditional on mLOX having been detected, for each variant on the X chromosome, we 410 

tested whether there is a higher frequency of a given allele retained in comparison to the alternate 411 

allele being retained14 (Methods). This allelic shift analysis is similar to a transmission disequilibrium 412 

test52 which is robust to the presence of population structure, with only heterozygous genotypes being 413 

informative. Of the 1,645,601 X chromosome variants we examined, 25,370 (1.5%) reached the 414 

significance threshold (P<5.0×10-8). We identified 44 independent chromosome X variants with 415 

shifted allelic fractions on the retained X chromosome (Methods; Supplementary Table S20). The 416 

allelic shift signals spanned the length of the X chromosome (Figure 4A), with the strongest signals 417 

observed near the centromere (lead variant rs6612886; out of 39,246 heterozygous rs6612886 418 

genotypes examined, 25,035 had the alternative C allele lost while 14,211 had the reference T allele 419 

lost, OR=1.76 [1.73-1.80], P=4.0×10-659). To investigate if the observed associations were driven by 420 

variant density, we explored the relationship between the number of markers being statistically 421 

significant and the total number of markers we examined within a window size of 1k bp and found no 422 

relationship between the two measures (Supplementary Figure S10). Finally, signals were consistent 423 
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across seven biobanks further supporting the robustness of the results (Supplementary Figure S11; 424 

Supplementary Table S21).  425 

Similar to GWAS lead variants, 35 out of 43 lead variants (one variant dropped due to no appropriate 426 

proxy variant available in blood cell phenotype GWAS48) identified from allelic shift analyses were 427 

associated with at least one of blood cell phenotypes (prioritized genes P2RY8, WAS, PJA1, PLS3, 428 

ITM2A, TMEM255A, and SOWAHD) (Supplementary Table S22), especially for several variants 429 

near the centromere region (Figure 4B).  430 

Among variants exhibiting significant allelic shifts in mLOX cases, 59 were missense variants 431 

(Supplementary Table S23) including 16 variants from 11 genes (P2RY8, FANCB, UBA1, WAS, 432 

USP27X, VSIG4, PJA1, CITED1, POF1B, SAGE1, and MAP7D3) likely to be lead signals 433 

(Supplementary Figure S12). The genes VSIG4 (rs41307375/rs41306131 and rs17315645, 434 

r2<0.001) and SAGE1 (rs41301507 and rs4829799, r2=0.30) each contained more than one 435 

independent missense variant. Based on the Human Protein Atlas (https://www.proteinatlas.org/), 436 

several genes with identified missense variants were also associated with cancer risk/progression 437 

(P2RY8, UBA1, WAS, and SAGE1), mental disorders (e.g., USP27X for intellectual disability and 438 

PJA1 for schizophrenia53), or had relevance to DNA damage/repair (FANCB) and apoptosis 439 

(CITED1). Additionally, several genes were involved in X-linked recessive disorders (e.g., FANCB 440 

for Fanconi anemia, WAS for Wiskott–Aldrich syndrome, and POF1B for X-linked premature ovarian 441 

failure) or known to escape from X-inactivation (e.g., P2RY8, UBA1, WAS, VSIG4, and POF1B)3.  442 

Most chromosome X variants identified from the allelic shift analysis were not shared with the 443 

variants from the GWAS of mLOX (Figure 4C), except for rs4029980 (X:57044373:T:C, proxy SNP 444 

X:57076270:G:A, r2=0.87) and rs6612886 (X:58090464:T:C, proxy SNP X:58096823:A:C, r2=0.98) 445 

near the centromere and rs12836051 (X:115690491:A:G). Unlike GWAS, which can identify 446 

germline variants related to both chromosome missegregation and subsequent clonal selection, a large 447 

amount of chromosome X signals identified from allelic shift analysis suggests that in many women 448 

mLOX strongly favors one X chromosome over the other based on the differing allelic content of the 449 

two X chromosomes. This preference could arise from the clonal selection on retained alleles or could 450 

be due to allelic influences on X inactivation skewing (Supplementary Figure S13), which later 451 

manifests as an allelic shift if mLOX occurs since mLOX mostly affects the inactive X 452 

chromosome10. 453 

We then investigated how accurately we can predict which X chromosome is likely to be retained 454 

when detectable mLOX occurs. An X chromosome differential score was constructed based on the 44 455 

independent variants identified from allelic shift analysis by generating a chromosome-specific score 456 

for each X chromosome and calculating the difference between scores of two X chromosomes 457 

(Methods). To avoid overfitting, the prediction performance was tested in 27,001 FinnGen mLOX 458 

https://www.proteinatlas.org/
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cases, with effect sizes of lead variants estimated from the allelic shift analysis of 56,319 mLOX cases 459 

from six biobanks excluding FinnGen. The fraction of mLOX cases with the retained X chromosome 460 

correctly inferred was 63.7% across all mLOX cases and up to 80.7% for mLOX cases within the top 461 

10th percentile (Figure 4D). When partitioning the contribution at a variant level, starting from the 462 

most significant variants (Figure 4E), the fraction correctly inferred reached >60% when including 463 

the first four lead variants (rs58090464, rs57044373, rs115690491, rs79395749), while the 464 

improvement of prediction accuracy from adding another 40 lead variants increased performance but 465 

was smaller in comparison (fraction from 60.3% to 63.7%). We also performed simulation analyses to 466 

assess the upper limit of prediction performance that can be reached in FinnGen mLOX cases, given 467 

the distribution of allele frequencies of 44 lead variants (Methods). Overall, the fraction of mLOX 468 

cases correctly inferred from real data analysis (63.7%) approached that obtained from simulation 469 

analysis (65.0%) (Supplementary Figure S14-S15). To further understand whether women carrying 470 

higher X chromosome differential scores would have an elevated lifetime disease risk, we examined 471 

its association with 1,630 disease endpoints in 27,001 FinnGen mLOX cases (Methods) and 472 

identified significant associations with cardiovascular diseases (e.g., for major coronary heart disease 473 

event, HR=1.1 [1.1-1.2] for a one SD change in the score, P=2.1×10-5) and suggestive evidence for 474 

associations with myeloproliferative diseases such as polycythaemia vera (HR=1.7 [1.2-2.4], 475 

P=1.3×10-3) (Supplementary Table S24).  476 

 477 

Discussion 478 

This population-based analysis of approximately 900K European and Asian ancestry women indicates 479 

detectable mLOX can be observed in a substantial fraction of middle-aged and elderly women, but 480 

typically impacts less than 5% of circulating leukocytes. In an analysis of 1,253 diseases extracted 481 

from electronic health records or registry data, we identified prospective associations of mLOX with 482 

leukemia risk, specifically myeloid leukemia, and provided additional evidence for susceptibility to 483 

infectious disease such as pneumonia. Our results indicated that the value of mLOX as a diagnostic 484 

marker could be limited to blood cancers. For non-genetic risk factors, we replicated prior mLOX 485 

associations with age and identified an association with tobacco smoking among high cell fraction 486 

mLOX. Our large sample size coupled with an improved mLOX detection approach enabled the 487 

identification of 56 common independent germline susceptibility signals across 42 loci and rare 488 

coding variations in FBXO10 associated with mLOX. The mLOX germline susceptibility signals 489 

implicate genes involved in kinetochore and spindle function, blood cell measurements, cancer 490 

predisposition, and immunity as etiologically relevant to mLOX susceptibility. Little heterogeneity 491 

was noted in these loci across contributing studies or ancestry. 492 

We identified shared and, more surprisingly, distinct genetic etiologies of mLOX with mLOY, which 493 
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occurs frequently in aging men – albeit at higher cell fractions. The two traits are moderately 494 

correlated genome-wide and seven of the 56 mLOX variants demonstrated evidence for shared effects 495 

for both mLOX and mLOY. Shared mLOX and mLOY variants were enriched for genes important for 496 

cancer susceptibility and blood cell traits; however, effects observed for mLOX were noticeably 497 

attenuated from effects observed for mLOY. This attenuation could be due to differences in our 498 

ability to detect mLOX at lower cell fractions relative to mLOY or could be a biological impact since 499 

mLOX is often present at lower cell fractions relative to mLOY. Variants specific to mLOX 500 

demonstrated unique evidence for associations with immunity, including HLA alleles, which could 501 

play a role in the selection of X-linked cell surface antigens, in addition to genes relevant to mitotic 502 

missegregation (Supplementary Figure S16). The biological implications of shared germline 503 

susceptibility of mLOX and immunological traits could indicate the observed increased risk of 504 

pneumonia among females with mLOX is driven by pleiotropic effects; however, the mLOX-505 

pneumonia association was restricted to a subset of mLOX females with high clonality (>10% cell 506 

fraction), suggesting mLOX could be associated with elevated infectious disease risk among high-cell 507 

fraction mLOX carriers independent of the effects of germline variation in immune-related genes.  508 

In addition to conducting a GWAS, we also performed allelic shift analyses on X chromosome 509 

germline variants to identify signals of cis clonal selection. Allelic shift tests are similar to 510 

transmission disequilibrium tests commonly used in family trios and are robust to population 511 

stratification. These analyses identified strong independent signals of cis selection near the centromere 512 

as well as multiple additional signals spanning across the X chromosome. Interestingly, the majority 513 

of the allelic shift loci were not detected in the GWAS, demonstrating the ability to identify signals of 514 

selection by utilizing this approach. While the allelic shift centromeric signals were strongly 515 

associated with several blood cell phenotypes, their location near the centromere could tag germline 516 

variation with relevance for kinetochore formation and spindle attachment in this region and may 517 

predispose specific X chromosomes to missegregation errors; although, limited is known as to how 518 

germline variation in DNA sequences could impact centrosomal protein binding and spindle 519 

formation54,55. Other loci identified by allelic shift analyses provide support for genes involved in 520 

escaping X inactivation, cancer susceptibility, and blood cell traits as relevant to mLOX. Scores 521 

created that aggregate information across allelic shift loci correctly classified which X chromosome 522 

was more likely retained in a high percentage of mLOX women in which the difference in X 523 

chromosome scores was high. To our knowledge, this is the first demonstration of the utility of a 524 

score consisting of multiple germline variants to predict which chromosome will be impacted if a 525 

somatic event occurs. Our approach for identifying variation important for chromosome X loss may 526 

be extendable to investigating other somatic events with relevance for cancer risk. 527 

In conclusion, we provide evidence for a strong germline component to somatically occurring mLOX 528 

in which genes related to cancer susceptibility, blood cell traits, autoimmunity, and chromosomal 529 
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missegregation events are relevant to mLOX susceptibility. Further, we identify many strong cis 530 

effects for chromosome X loci that impact which X chromosome is retained and promote clonal 531 

expansion. Genetic insights from mLOX could also be relevant to better understanding skewed X 532 

inactivation, another commonly observed X chromosome abnormality in middle-aged and elderly 533 

women. 534 

 535 
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 715 
Online Methods 716 

Definition of mosaic loss of the X chromosome (mLOX) 717 

Detection of mLOX events from SNP array data in eight biobanks 718 

All DNA samples were obtained from peripheral leukocytes and typed with single nucleotide 719 

polymorphism (SNP) arrays. The median (SD) age at sample collection for genotyping ranged from 720 

44 (16.3) for EBB to 65 (15.8) for BBJ. The calling of mosaic loss of the X chromosome (mLOX) 721 

was performed using the Mosaic Chromosomal Alterations (MoChA) pipeline 722 

(https://github.com/freeseek/mochawdl), with GRCh38 assembly as the reference genome build. The 723 

mLOX detection ability is related to chromosome X probe density, missing genotype frequency, 724 

clarity of raw probe intensity signals, and phasing accuracy – all of which can be linked to the 725 

molecular approach and number of chromosome X probes on the genotyping platform used by each 726 

biobank for genotyping. As such, the MoChA pipeline was run separately within each biobank, and 727 

biobank results were then meta-analyzed for all association analyses to avoid potential cohort effects, 728 

except where noted.  729 

The raw genotyping array signal intensities of each variant were first transformed to B allele 730 

frequency (BAF) (relative intensity of the B allele) and Log R Ratio (LRR) (total intensity of both 731 

alleles). Then, haplotype phasing was performed using SHAPEIT456 across all batches of a biobank, 732 

except for BBJ and BCAC for which phasing was done separately within each biobank sub-cohort 733 

(for BBJ, four sub-cohorts, with cohort sizes ranging from 3,888 to 45,877; for BCAC, two sub-734 

cohorts of breast cancer cases and controls by genotyping array platform, with cohort size of 72,145 735 

and 105,177). Utilizing long-range haplotype phasing can improve the sensitivity of detecting large 736 

mosaic events with low cell fractions14, which is characteristic of mLOX. To avoid issues with 737 

phasing and the subsequent mLOX calling, we excluded variants with poor genotyping quality such as 738 

segmental duplications with low divergence (<2%) and single-nucleotide polymorphisms (SNPs) with 739 

high levels of missingness (>3%) or heterozygote excess (P<1.0×10-6). Finally, the calling of mLOX 740 

events was performed within each batch based on the imbalance of phased BAF of heterozygous sites 741 

over the whole X chromosome. To filter out 47,XXY and 47,XXX samples, we restricted to 742 

chromosome X events with estimated ploidy less than 2.5, where the estimated ploidy is estimated by 743 

first computing the median LRR across the assayed chromosome X SNPs and then by computing the 744 

value 21+(LRR/LRR-hap2dip) with LRR-hap2dip (the difference between LRR for haploid and diploid) set at 745 

0.45 by default. We further removed events with length < 100 Mb to exclude partial X chromosome 746 

loss (e.g., 2.0% in FinnGen) as they might be caused by different mechanisms compared to the major 747 

type of full mLOX events. For each mLOX event that passed quality control, the fraction of cells (cf) 748 

https://github.com/freeseek/mochawdl
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with X loss was calculated as 4*bdev/(1+2*bdev), where bdev is the estimated BAF deviation of 749 

heterozygous sites.  750 

The 2022-01-14 version of MoChA was used to detect the dichotomous mLOX status for all 751 

biobanks, except for BBJ (version: 2021-08-17 and 2021-09-07) and BCAC (version: 2022-12-21). 752 

The priors of MoChA have been updated since 2021-05-14 to improve the detection of low cell 753 

fraction mLOX calls, and thus, the biobanks that used the updated MoChA pipeline (all biobanks that 754 

contributed to this study) are expected to yield higher age-adjusted mLOX frequencies than those that 755 

used the previous version. For BCAC, we included both those diagnosed as breast cancer cases 756 

(N=99,043) and cancer-free controls (N=78,279) in the analyses. A brief description of each 757 

contributed biobank (e.g., continental ancestry, sample size, age structures, and SNP array) is 758 

available in Supplementary Table S1. 759 

Estimation of X chromosome dosages from UKBB whole-exome sequence data 760 

For UKBB, the whole-exome sequence (WES) data was released in late 202157, which permitted 761 

identification of X loss from sequencing allelic dosage data in combination with array data. The 762 

relative X chromosome dosage at the individual level was estimated following the steps described 763 

previously58. In brief, we first generated mean coverages from the original WES data for variants on 764 

the autosomes and the X chromosome non-pseudoautosomal regions, separately; then, we obtained 765 

the relative X chromosome dosage by adjusting for the mean coverage of autosomes. Therefore, for 766 

UKBB, three ways were available to define the mLOX phenotype, including the dichotomous mLOX 767 

status derived from the phased BAF method (by MoChA) and two quantitative measures employing 768 

either mLRR from SNP array data or allele dosage from WES data. To assess the performances of the 769 

three mLOX measures in UKBB, we compared either mLRR or X dosage between the case and the 770 

control groups defined by MoChA (Figure S2A-C). As shown in Figure S2B and S2C, the 771 

participants identified as mLOX cases by MoChA exhibited lower mLRR (P from the Analysis of 772 

Variance (ANOVA) test=1.5×10-5) and X dosage value (P<1.0×10-250) than mLOX controls. Then, 773 

for mLOX cases, we examined the relationships between three measures representing the extent of 774 

mosaicism (Figure S2D-F), including cell fraction (from MoChA), mLRR, and X dosage. Overall, 775 

significant correlations were observed across the three measures, with the absolute Pearson correlation 776 

coefficient ranging from 0.42 between mLRR and X dosage to 0.86 between mLOX cell fraction and 777 

X dosage. Again, given that mLRR is a noisier measure than X dosage, for mLOX cell fraction, a 778 

stronger correlation was observed with X dosage (r=-0.86) than with mLRR (-0.48).  779 

Enhanced 3-way combined mLOX calls in UKBB 780 

In addition to the dichotomous mLOX status defined by the phased BAF method, for UKBB, we 781 

proposed a new quantitative measure by combining the three methods of mLOX calling for UKBB, 782 

that is, the mLOX combined call (3-way) = mLOX-status + 2*cf - 2*mLRR - 4*(dosage-2) (cropped 783 
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to the range [0,2]). The intuition behind this newly proposed measure was to emphasize mLOX cases 784 

with larger cell fractions (similar to the strategy used by a recent mosaic loss of the Y chromosome 785 

(mLOY) study59) while obtaining enhanced mLOX calls from integrating independent information of 786 

both SNP array and WES data. As not all participants with SNP array data had WES data available, 787 

we imputed the missing 3-way mLOX combined calls with 2-way combined calls, defined as mLOX-788 

status + 3*cf– 3*mLRR (cropped to the range [0,2] as well). As age is strongly associated with 789 

mLOX, we evaluated the age-mLOX association for MoChA calls versus the enhanced 3-way 790 

combined mLOX calls. Compared to the dichotomous mLOX status derived from MoChA, the t-test 791 

statistic for association with age was increased by 29.2% when using the 3-way combined calls, 792 

suggesting increased power to detect mLOX. As such, enhanced 3-way combined mLOX calls were 793 

used for UKBB in the genome-wide association study (GWAS) meta-analysis and the exome-wide 794 

rare variant gene-burden test. 795 

 796 

Environmental determinants and epidemiological consequences 797 

To investigate the effect of lifestyle factors on the odds of acquiring mLOX, we assessed the 798 

associations between smoking and body mass index (BMI) with mLOX in the FinnGen cohort. In 799 

FinnGen data freeze 9, 50.3% of female participants had smoking status (N=84,926) and 18.4% had 800 

measurements for BMI (N=31,101) recorded at enrollment. We applied a logistic regression model 801 

adjusting for age (at genotyping), age2, and the first 10 PCs as covariates. As sensitivity analyses, we 802 

restricted the analyses to expanded mLOX calls having cf > 5%. Given that we identified a significant 803 

association between ever-smoking and expanded mLOX, we further adjusted for ever-smoking status 804 

when assessing the effect of BMI on mLOX. To examine whether the environmental determinants 805 

were shared or distinct between mLOX in women and mLOY in men, we also extended the 806 

association analyses to mLOY (N=76,808 for smoking, N=33,668 for BMI). To validate our findings 807 

identified from FinnGen, we performed the same analyses for smoking (N=241,761) and BMI 808 

(N=242,024) in UKBB.  809 

To assess the clinical consequences of acquiring mLOX, we performed a Cox proportional hazards 810 

regression for incident cases in FinnGen, UKBB, MVP, and MGB independently, with the time-on 811 

study as the time scale. For covariates, we recommended each biobank adjust for age, age2, smoking, 812 

and the first 10 PCs. Meta-analysis across four biobanks was carried out with a fixed-effect model 813 

applied in the meta package60. For each disease, we applied Cochran’s Q-test to assess heterogeneity 814 

across biobanks with different healthcare systems. In total, we examined 1,253 phecodes covering 13 815 

disease categories. Accordingly, the multiple-testing corrected P value threshold was set to P<4.0×10-816 
5. In the main analysis, we used all detectable mLOX calls without restriction for cell fraction. For a 817 
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sensitivity analysis, we considered mLOX having cf >10% as expanded calls, following the definition 818 

used by Zekavat et al16. 819 

To further understand the phenotypic associations for mLOX, we applied a linear regression model 820 

adjusting for age, age2, smoking, and the first 10 PCs as covariates for a broad range of representative 821 

quantitative traits across anthropometry, reproductive health, lung function, blood cell parameters, 822 

blood biomarkers, urine biomarkers, cognitive function, and telomere length using the data from 823 

UKBB. The same analyses were performed for all detectable mLOX calls without restriction for cf as 824 

well as for expanded calls having cf >10%. 825 

 826 

Common and rare germline variants associated with detectable mLOX susceptibility  827 

GWAS of dichotomous mLOX status in eight contributed biobanks 828 

To identify common germline variants (minor allele frequency (MAF)>0.1%) associated with risk of 829 

detectable mLOX in peripheral leukocytes, we performed a GWAS on chromosomes 1-22 and X in 830 

each of eight contributing biobanks independently, for a total of 883,574 women. For the dichotomous 831 

mLOX status (derived from MoChA), GWAS was conducted for FinnGen and BCAC using the 832 

Scalable and Accurate Implementation of Generalized mixed model (SAIGE)61 and for the other six 833 

biobanks (including UKBB) using regenie62 applied in the assoc.wdl pipeline (part of the MoChA 834 

pipeline; https://github.com/freeseek/mochawdl). Both SAIGE and regenie are feasible to account for 835 

sample relatedness and extreme case-control imbalances of a dichotomous phenotype. For covariates, 836 

each biobank adjusted for age (at genotyping), age2, and the first 20 genetic principal components 837 

(PCs). The effective sample size, presented in Table 1, was calculated as 838 

(4*Ncase*Ncontrol)/(Ncase+Ncontrol).  839 

GWAS of 3-way combined quantitative mLOX measure in UKBB 840 

For UKBB, to improve the power of GWAS, we used the new quantitative measure which combined 841 

the three ways of mLOX calling. For the proposed quantitative mLOX measure, GWAS was 842 

performed with the linear mixed model applied in BOLT-LMM63. 843 

GWAS Meta-analysis 844 

For each contributed biobank, we filtered out variants with MAF < 0.1% or imputation INFO score < 845 

0.6. We also inspected allele frequencies of each biobank versus Genome Aggregation Database 846 

(gnomAD) 3.0 as well as the relationship between standard errors and effective sample sizes across 847 

biobanks, as applied by the covid-19 HGI meta-analysis64. Given that no biobank deviated from the 848 

expected pattern, we conducted meta-analyses across biobanks. In addition to the dichotomous mLOX 849 

measure used by all biobanks, UKBB was able to run GWAS with an additional quantitative measure 850 

that combined information of three ways of mLOX calling and thus was expected to yield increased 851 

https://github.com/freeseek/mocha/blob/master/wdl/assoc.wdl
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power in GWAS. Depending on which mLOX measure was used in the UKBB GWAS, we applied 852 

two fixed-effect meta-analysis models accordingly. When using the dichotomous measure, we applied 853 

the inverse variance weighting (IVW) method which weighted the effect size estimated from an 854 

individual biobank by its inverse variance. When UKBB used the 3-way combined measure as the 855 

GWAS phenotype, we employed the weighted z-score method (weighted by the square root of the 856 

effective sample size) applied in the METAL software65 which can manage the different units of 857 

dichotomous and quantitative measures. As the main analysis, we meta-analyzed summary statistics 858 

across all eight biobanks regardless of ancestry and applied Cochran’s Q-test to assess the 859 

heterogeneity. To further investigate the impact of ancestry, we also conducted a meta-analysis for 7 860 

biobanks containing only participants of European ancestry (without BBJ of East Asian ancestry). 861 

Independent loci identification and gene prioritization 862 

To identify independent signals and prioritize candidate causal genes, we applied the GWAStoGenes 863 

pipeline for variants presented in at least half of the contributed biobanks. In brief, primary 864 

independent signals associated with mLOX susceptibility at a genome-wide significance level 865 

(P<5×10-8) were initially selected in 2Mb windows66 (spanning ± 1Mb region around the most 866 

significant variant). Secondary independent signals were identified by using an approximate 867 

conditional analysis applied in GCTA66, with LD structures constructed from UKBB samples. 868 

Secondary signals were only considered if they were genome-wide significant, in low LD (r2<0.05) 869 

with primary signals, and having association statistics unchanged with the conditional analysis. We 870 

also excluded variants without any nearby genes (within 500 kb) documented in the NCBI RefSeq 871 

dataset67. In total, we identified 56 independent common susceptibility variants across 42 loci. 872 

Candidate genes were prioritized using the following criteria and scored by their strength of evidence 873 

for causality. First, signals were annotated with their physically closest genes. Second, signals and 874 

their closely linked variants (R2 > 0.8) were annotated if they were predicted deleterious coding 875 

variants, or if the paired genes exhibited a gene-level association when collapsing all predicted 876 

deleterious coding variants within a gene using Multi-marker Analysis of GenoMic Annotation 877 

(MAGMA)68. Third, non-coding signals and closely linked variants were then annotated if they could 878 

be mapped to known enhancers using the activity-by-contact (ABC) enhancer maps69, but restricted to 879 

available cells and tissue types where each gene was actively expressed. Fourth, colocalization 880 

between GWAS and expression quantitative trait locus (eQTL) data was performed using the 881 

summary data-based Mendelian randomization (SMR) and heterogeneity in dependent instruments 882 

(HEIDI) test (version 0.68)70 and the Approximate Bayes Factor (ABF) method applied in the “coloc” 883 

package (version 5.1.0)71. These two tools were used in conjunction, as using a combination of 884 

colocalization methods has been shown to outperform single approaches72. To identify tissues 885 

exhibiting a significant genome-wide enrichment, we used LD score regression applied to specifically 886 

expressed gene (LDSC-SEG)73 approach, with eQTL datasets from cross-tissue meta-analyzed GTEx 887 
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eQTL v.774, eQTLGen75, and Brain-eMeta76. The same set of analyses were also applied to a protein 888 

quantitative trait locus (pQTL) dataset77. Finally, by integrating GWAS summary statistics with data 889 

from gene expression, biological pathway, and predicted protein-protein interaction, candidate genes 890 

were identified using the gene-level Polygenic Priority Score (PoPS) method78. 891 

Independent loci in UKBB with different mLOX measures 892 

Among the 56 mLOX susceptibility variants identified from the GWAS meta-analysis, in UKBB, 47 893 

out of 55 (85%, one missing in UKBB) have a lower P value when using the enhanced 3-way 894 

combined mLOX calling method compared to the standard MoChA calling method, suggesting the 895 

enhanced 3-way combined approach is recommended for mLOX detection when WES data is 896 

available. We noted that the meta-analysis signals might favor the 3-way combined measure over the 897 

binary MoChA calls given the 3-way combined calls were used for UKBB in the GWAS meta-898 

analysis. 899 

Gene-burden test for rare variants causing detectable mLOX  900 

To identify rare germline variants (MAF < 0.1%) associated with the risk of detectable mLOX, we 901 

performed gene-burden tests on chromosomes 1-22 and X in 226,125 UKBB female participants with 902 

WES data available. We performed WES data pre-processing and quality control following Gardner et 903 

al.79. We annotated variants using the ENSEMBL Variant Effect Predictor (VEP) v10480 and defined 904 

protein-truncating variants (PTVs) as high-confidence (HC, as defined by LOFTEE) stop gained, 905 

splice donor/acceptor, and frameshift consequences. We then utilized CADDv1.6 to score a variant 906 

based on its predicted deleteriousness81. Only non-synonymous variants with MAF < 0.1% were 907 

included in the analysis. As the main analysis, we used BOLT-LMM61 to perform the gene-burden 908 

test. For each gene, we defined individuals with HC PTVs, missense variants with CADD scores ≥ 25 909 

(MISS_CADD25), and damaging variants (HC_PTV + MISS_CADD25) (DMG) as carriers. Then, 910 

carriers with non-synonymous variants were defined as heterozygous and non-carriers as 911 

homozygous. For covariates, we adjusted for age, age2, batches, sex, and the first 10 PCs. We further 912 

excluded the genes with less than 50 non-synonymous variant carriers for each setting, resulting in 913 

8,702 genes for HC_PTV, 15,144 for MISS_CADD25, and 16,493 for DMG, for a total of 40,339 914 

genes. Accordingly, the Bonferroni corrected exome-wide significant threshold was set to 915 

0.05/40,339=1.24×10-6. To avoid the identified association dominated by a single variant, as 916 

sensitivity analysis, we conducted a leave-one-out analysis using a generalized linear model for each 917 

significant gene. In addition, we reproduced the associations detected by BOLT-LMM63 with STAAR 918 

(variant-set test for association using annotation information)49 and SAIGE_GENE+ (scalable 919 

generalized mixed-model region-based association test plus)50 to address the potential case-control 920 

imbalance issue.  921 

Pathway and gene set analysis 922 
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To identify gene sets enriched in the same biological process, we performed pathway-based analysis 923 

using the summary data-based adaptive rank truncated product (sARTP) method82. We used summary 924 

statistics from meta-analysis of seven biobanks of European ancestry (without BBJ) and LD structures 925 

constructed from European ancestry samples of the 1000 Genomes project83. We considered a total of 926 

6,285 gene sets available in GSEA (https://www.gseamsigdb.org/gsea/msigdb/). Accordingly, the 927 

Bonferroni corrected P value was set to 0.05/6,285=8.0×10-6.  928 

Genetic correlation 929 

To investigate whether there are traits that are genetically correlated with mLOX susceptibility, we 930 

estimated genetic correlations between mLOX and 60 phenotypes (including both major diseases and 931 

blood cell phenotypes) using LD score regression (LDSC)84. For LDSC, we used HapMap385 SNPs 932 

and LD structures constructed from 1000 Genomes project83 samples of European ancestry.  933 

Per-chromosome heritability 934 

To examine whether the observed heritability for each chromosome was proportional to chromosome 935 

length, we estimated per-chromosome heritability for 3-way combined mLOX measure in UKBB 936 

using BOLT-REML86. Given the large associations of HLA genes, we further examined how 937 

heritability explained by chromosome 6 changed after excluding variants from the extended MHC 938 

region (GRCh38: chr6:25.7-33.4 Mb).  939 

 940 

Shared and distinct mechanisms between mLOX in women and mLOY in men 941 

Bayesian models to cluster variants by effects on mLOX and mLOY 942 

We employed a Bayesian line model framework (https://github.com/mjpirinen/linemodels) to assign 943 

each of the 56 independent common variants identified from mLOX GWAS and 147 variants (nine 944 

variants dropped due to missing in mLOX GWAS) from the published mLOY GWAS13 into three 945 

groups: specific to mLOX, specific to mLOY, and shared between mLOX and mLOY. In general, 946 

each variant was fitted into the model separately and assigned to a specific group mainly based on its 947 

estimated effect sizes on mLOX and mLOY (variances of the estimates were considered as well to 948 

capture the uncertainty, but not for directly deciding the group) rather than P values or effective 949 

sample sizes of the GWAS discovery populations. The slopes of the line models were set to 0 for the 950 

group of variants specific for mLOY and infinite for variants specific for mLOX. For variants shared 951 

between mLOX and mLOY, the slope was set to 0.3, based on the effects of four variants 952 

(rs568868093, rs381500, rs2280548, rs78378222) that were genome-wide significant in both mLOX 953 

GWAS and mLOY GWAS. For all three line models, the prior SD determining the magnitude of the 954 

effects was set to 0.15 and the correlation parameter determining the allowed deviations from the lines 955 

to 0.995. The correlation between mLOX and mLOY GWAS statistics was set to 0 given that there 956 

https://www.gseamsigdb.org/gsea/msigdb/
https://github.com/mjpirinen/linemodels
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was no overlap between samples used in the two GWAS. We assumed a uniform prior for the three 957 

models and obtained the posterior probabilities for each data point separately within a Bayesian 958 

framework. Probability assignment threshold was set to 95%.  959 

Fine-mapping of HLA alleles in FinnGen 960 

Given the large associations with mLOX and the high polymorphism of HLA genes, we fine-mapped 961 

HLA alleles at a unique protein sequence level in the FinnGen cohort. In FinnGen data freeze 9, a 962 

total of 172 HLA alleles of 10 transplantation genes were imputed using a Finnish-specific reference 963 

panel, as described in Ritari et al.87. We conducted the association analysis between each imputed 964 

HLA allele and the dichotomous mLOX status in 168,838 Finnish female participants (N of cases = 965 

27,001) using a multivariate logistic regression model, considering age, age2, and the first 10 PCs as 966 

covariates. Only HLA alleles with more than 5 mLOX cases carrying the minor alleles were included 967 

in the analysis. Ultimately, we considered 156 HLA alleles for mLOX, including 18 alleles for HLA-968 

A, 36 for HLA-B, 20 for HLA-C, 29 for HLA-DRB1, 14 for HLA-DQA1, 14 for HLA-DQB1, 18 for 969 

HLA-DPB1, 3 for HLA-DRB3, and 2 each for HLA-DRB4 and DRB5. To identify independent HLA 970 

alleles, a stepwise conditional analysis was performed with each step adding the most significant HLA 971 

allele obtained from the previous step as an additional covariate, until no HLA allele can reach the 972 

significant threshold.  973 

To examine whether the HLA associations are shared with other types of mCAs, we extended the 974 

HLA fine-mapping analyses to mLOY in men (total N = 128,729, N of cases = 45,675) for 157 HLA 975 

alleles (including HLA-A*02:02 compared to the 156 alleles used by mLOX association analyses) 976 

and for autosomal mCAs in both sexes (total N = 297,567, N of cases = 9,302) for 155 HLA alleles 977 

(missing HLA-C*15:05 compared to the 156 alleles used by mLOX association analyses).  978 

 979 

Allelic shift analysis for cis clonal selection of chromosome X alleles 980 

Allelic shift analysis 981 

Conditional on mLOX having been detected, for each variant on the X chromosome we tested 982 

whether there is a propensity for X chromosomes with a given allele to be identified as lost more 983 

often than X chromosomes with the other allele. Similar to a transmission disequilibrium test52, this 984 

test is robust to the presence of population structure. Rather than measuring the over-transmission of 985 

an allele from heterozygous parents to offspring, we measured the propensity of alleles to be on the 986 

retained chromosome X homologue. Therefore, we carried out a binomial test for each variant with a 987 

sample size equal to the number of women with detected mLOX who were heterozygous for that 988 

variant, with no need to correct for covariates or relatedness.  989 

Given the large number of X chromosome signals observed from the allelic shift analysis, we 990 
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inspected whether variant density may have contributed to the signals. We hypothesized that if the 991 

signals were random, then the number of variants being significant would be related to the number of 992 

variants being examined in that region. We therefore checked the number of variants per 1kb region 993 

across the whole X chromosome.  994 

Identification of independent loci  995 

Given the complexity of LD structures for X chromosomes especially for centromere and 996 

pseudoautosomal (PAR) regions, we defined index variants by iteratively spanning the ± 500 kb 997 

region around the most significant variant until no further variants reached a genome-wide significant 998 

level (P<5.0×10-8). Then, we calculated LD between every two index variants and kept the variant 999 

with a lower P value if a pair of index variants with r2<0.1.  1000 

Polygenic score to predict the retained X chromosome 1001 

To assess how well the identified allelic shift signals can predict which X chromosome is retained 1002 

when mLOX occurs, we constructed polygenic scores (PGSs) in FinnGen mLOX cases (N=27,001). 1003 

In brief, we extracted the effect size for 44 independent loci from the allelic shift analysis of six 1004 

biobanks excluding FinnGen. Given that MoChA was able to detect which alleles were lost at 1005 

heterozygous sites, for each mLOX case, we computed the PGS for the retained X chromosome 1006 

(PGSretained) and the lost X chromosome (PGSlost) separately and obtained the difference in PGS 1007 

between the two X chromosomes (PGSdiff=PGSlost-PGSretained). A negative PGSdiff indicates that the 1008 

retained X chromosome of the mLOX case was correctly predicted.  1009 

To assess the upper limit of prediction performance for the proposed PGS, we performed simulation 1010 

analyses in FinnGen mLOX cases. We first simulated genotypes for the 44 loci we identified as 1011 

independently associated using the allele frequency calculated from the biobank meta-analysis 1012 

(weighted by the effective sample size of each contributing biobank) and assuming all genotypes were 1013 

independent (i.e., r2=0). For a given FinnGen female sample and each one of the 44 loci, we defined 1014 

ORi as the odds ratio between the likelihood of losing the paternal X chromosome and the likelihood 1015 

of losing the maternal X chromosome, as inferred by the meta-analysis and with ORi=1 when the ith 1016 

locus is homozygous. We then defined the X chromosome differential score PGSdiff with the equation: 1017 

PGSdiff = Σi log(ORi) = Σi heterozygous log(ORi), by aggregating variant effects at all simulated 1018 

heterozygous genotypes. Assuming that PGSdiff is positive (negative), we estimated the probability P 1019 

of the paternal (maternal) X chromosome being lost using the logistic function for |PGSdiff|, with P = P 1020 

/ (1-P + P) = P/(1-P) / (1 + P/(1-P)) = ∏i ORi / (1 + ∏i ORi) = exp(|PGSdiff|) / (1+exp(|PGSdiff|)). Given 1021 

an estimated |PGSdiff|, we think of P, with 0.5≤P<1, as the probability of inferring which X 1022 

chromosome was lost conditional on one X chromosome being lost, that is, our prediction accuracy. 1023 

As we independently simulated genotypes without modeling linkage disequilibrium and variant 1024 

effects without assuming possible interactions, we expected the simulation to overestimate the 1025 
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prediction accuracy from real data and to effectively estimate a best-case scenario for how predictive 1026 

our proposed PGS could be. 1027 

Lifetime disease risk for women with high X differential score 1028 

We then evaluated whether women carrying higher X differential scores would have an elevated 1029 

lifetime disease risk by examining the association between the score and 1,630 disease endpoints in 1030 

27,001 FinnGen mLOX cases (FinnGen data freeze 9). In FinnGen, disease endpoints were defined by 1031 

a clinical expert group by harmonizing International Classification of Diseases (ICD) codes of version 1032 

8 (1968-1986), 9 (1987-1995), and 10 (1996-) archived in nationwide healthcare registers23. Given 1033 

that the nature of our proposed X differential score is a PGS, it reflects the germline risk an individual 1034 

acquires at birth. Therefore, we performed a Cox Proportional hazards regression model considering 1035 

the chronological age as the time scale, with the follow-up time starting from birth rather than the age 1036 

at genotyping, and censoring at disease onset, death, or the end of follow-up, whichever occurs first. 1037 

For covariates, similar to the epidemiological association analyses we performed for the dichotomous 1038 

mLOX status, we considered genotyping age, age2, smoking, and the top 10 PCs. 1039 
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hg/META_ANALYSIS. The codes used for the Bayesian line model are available at 1052 

https://github.com/dsgelab/Mosaic-loss-of-chromosome-X/tree/main/BayesLineModel. 1053 

 1054 

56. Delaneau, O., Zagury, J.F., Robinson, M.R., Marchini, J.L. and Dermitzakis, E.T., 2019. 1055 

Accurate, scalable and integrative haplotype estimation. Nature communications, 10(1), pp.1-1056 

10. 1057 

57. Backman, J.D., Li, A.H., Marcketta, A., Sun, D., Mbatchou, J., Kessler, M.D., Benner, C., 1058 

https://github.com/freeseek/mochawdl
https://github.com/covid19-hg/META_ANALYSIS
https://github.com/covid19-hg/META_ANALYSIS
https://github.com/dsgelab/Mosaic-loss-of-chromosome-X/tree/main/BayesLineModel


 

34 

Liu, D., Locke, A.E., Balasubramanian, S. and Yadav, A., 2021. Exome sequencing and 1059 

analysis of 454,787 UK Biobank participants. Nature, 599(7886), pp.628-634. 1060 

58. Zhao, Y., Gardner, E.J., Tuke, M.A., Zhang, H., Pietzner, M., Koprulu, M., Jia, R.Y., Ruth, 1061 

K.S., Wood, A.R., Beaumont, R.N. and Tyrrell, J., 2022. Detection and characterization of 1062 

male sex chromosome abnormalities in the UK Biobank study. Genetics in Medicine. 1063 

59. Zhao, Y., Stankovic, S., Koprulu, M., Wheeler, E., Day, F.R., Lango Allen, H., Kerrison, 1064 

N.D., Pietzner, M., Loh, P.R., Wareham, N.J. and Langenberg, C., 2021. GIGYF1 loss of 1065 

function is associated with clonal mosaicism and adverse metabolic health. Nature 1066 

Communications, 12(1), pp.1-6. 1067 

60. Balduzzi, S., Rücker, G. and Schwarzer, G., 2019. How to perform a meta-analysis with R: a 1068 

practical tutorial. Evidence-based mental health, 22(4), pp.153-160. 1069 

61. Zhou, W., Nielsen, J.B., Fritsche, L.G., Dey, R., Gabrielsen, M.E., Wolford, B.N., LeFaive, 1070 

J., VandeHaar, P., Gagliano, S.A., Gifford, A. and Bastarache, L.A., 2018. Efficiently 1071 

controlling for case-control imbalance and sample relatedness in large-scale genetic 1072 

association studies. Nature genetics, 50(9), pp.1335-1341. 1073 

62. Mbatchou, J., Barnard, L., Backman, J., Marcketta, A., Kosmicki, J.A., Ziyatdinov, A., 1074 

Benner, C., O’Dushlaine, C., Barber, M., Boutkov, B. and Habegger, L., 2021. 1075 

Computationally efficient whole-genome regression for quantitative and binary traits. Nature 1076 

genetics, 53(7), pp.1097-1103. 1077 

63. Loh, P.R., Tucker, G., Bulik-Sullivan, B.K., Vilhjalmsson, B.J., Finucane, H.K., Salem, R.M., 1078 

Chasman, D.I., Ridker, P.M., Neale, B.M., Berger, B. and Patterson, N., 2015A. Efficient 1079 

Bayesian mixed-model analysis increases association power in large cohorts. Nature genetics, 1080 

47(3), pp.284-290. 1081 

64. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. 1082 

Nature 600, 472–477 (2021). 1083 

65. Willer, C.J., Li, Y. and Abecasis, G.R., 2010. METAL: fast and efficient meta-analysis of 1084 

genomewide association scans. Bioinformatics, 26(17), pp.2190-2191. 1085 

66. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A., Heath, A.C., Martin, N.G., 1086 

Montgomery, G.W., Weedon, M.N., Loos, R.J. and Frayling, T.M., 2012. Conditional and 1087 

joint multiple-SNP analysis of GWAS summary statistics identifies additional variants 1088 

influencing complex traits. Nature genetics, 44(4), pp.369-375. 1089 

67. O'Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., 1090 

Robbertse, B., Smith-White, B., Ako-Adjei, D. and Astashyn, A., 2016. Reference sequence 1091 

(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. 1092 

Nucleic acids research, 44(D1), pp.D733-D745. 1093 

68. de Leeuw, C.A., Mooij, J.M., Heskes, T. and Posthuma, D., 2015. MAGMA: generalized 1094 

gene-set analysis of GWAS data. PLoS computational biology, 11(4), p.e1004219. 1095 



 

35 

69. Nasser, J., Bergman, D.T., Fulco, C.P., Guckelberger, P., Doughty, B.R., Patwardhan, T.A., 1096 

Jones, T.R., Nguyen, T.H., Ulirsch, J.C., Lekschas, F. and Mualim, K., 2021. Genome-wide 1097 

enhancer maps link risk variants to disease genes. Nature, 593(7858), pp.238-243. 1098 

70. Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., Montgomery, G.W., 1099 

Goddard, M.E., Wray, N.R., Visscher, P.M. and Yang, J., 2016. Integration of summary data 1100 

from GWAS and eQTL studies predicts complex trait gene targets. Nature genetics, 48(5), 1101 

pp.481-487. 1102 

71. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C. and 1103 

Plagnol, V., 2014. Bayesian test for colocalisation between pairs of genetic association 1104 

studies using summary statistics. PLoS genetics, 10(5), p.e1004383. 1105 

72. Barbeira, A.N., Bonazzola, R., Gamazon, E.R., Liang, Y., Park, Y., Kim-Hellmuth, S., Wang, 1106 

G., Jiang, Z., Zhou, D., Hormozdiari, F. and Liu, B., 2021. Exploiting the GTEx resources to 1107 

decipher the mechanisms at GWAS loci. Genome biology, 22, pp.1-24. 1108 

73. Finucane, H.K., Reshef, Y.A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., Gazal, S., 1109 

Loh, P.R., Lareau, C., Shoresh, N. and Genovese, G., 2018. Heritability enrichment of 1110 

specifically expressed genes identifies disease-relevant tissues and cell types. Nature genetics, 1111 

50(4), pp.621-629. 1112 

74. GTEx Consortium, Ardlie, K.G., Deluca, D.S., Segrè, A.V., Sullivan, T.J., Young, T.R., 1113 

Gelfand, E.T., Trowbridge, C.A., Maller, J.B., Tukiainen, T. and Lek, M., 2015. The 1114 

Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. 1115 

Science, 348(6235), pp.648-660. 1116 

75. Võsa, U., Claringbould, A., Westra, H.J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., 1117 

Saha, A., Kreuzhuber, R., Brugge, H. and Oelen, R., 2021. Large-scale cis-and trans-eQTL 1118 

analyses identify thousands of genetic loci and polygenic scores that regulate blood gene 1119 

expression. Nature genetics, 53(9), pp.1300-1310.  1120 

76. Qi, T., Wu, Y., Zeng, J., Zhang, F., Xue, A., Jiang, L., Zhu, Z., Kemper, K., Yengo, L., 1121 

Zheng, Z. and Marioni, R.E., 2018. Identifying gene targets for brain-related traits using 1122 

transcriptomic and methylomic data from blood. Nature communications, 9(1), pp.1-12. 1123 

77. Pietzner, M., Wheeler, E., Carrasco-Zanini, J., Cortes, A., Koprulu, M., Wörheide, M.A., 1124 

Oerton, E., Cook, J., Stewart, I.D., Kerrison, N.D. and Luan, J.A., 2021. Mapping the proteo-1125 

genomic convergence of human diseases. Science, 374(6569), p.eabj1541. 1126 

78. Weeks, E.M., Ulirsch, J.C., Cheng, N.Y., Trippe, B.L., Fine, R.S., Miao, J., Patwardhan, T.A., 1127 

Kanai, M., Nasser, J., Fulco, C.P. and Tashman, K.C., 2020. Leveraging polygenic enrichments 1128 

of gene features to predict genes underlying complex traits and diseases. medRxiv. 1129 

79. Gardner, E.J., Kentistou, K.A., Stankovic, S., Lockhart, S., Wheeler, E., Day, F.R., Kerrison, 1130 

N.D., Wareham, N.J., Langenberg, C., O’Rahilly, S., Ong, K.K. and Perry J.R.B., 2022. 1131 

Damaging missense variants in IGF1R implicate a role for IGF-1 resistance in the aetiology 1132 



 

36 

of type 2 diabetes. Cell Genomics.  1133 

80. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flicek, P. and 1134 

Cunningham, F., 2016. The ensembl variant effect predictor. Genome biology, 17(1), pp.1-14. 1135 

81. Kircher, M., Witten, D.M., Jain, P., O'roak, B.J., Cooper, G.M. and Shendure, J., 2014. A 1136 

general framework for estimating the relative pathogenicity of human genetic variants. Nature 1137 

genetics, 46(3), pp.310-315. 1138 

82. Zhang, H., Wheeler, W., Hyland, P.L., Yang, Y., Shi, J., Chatterjee, N. and Yu, K., 2016. A 1139 

powerful procedure for pathway-based meta-analysis using summary statistics identifies 43 1140 

pathways associated with type II diabetes in European populations. PLoS genetics, 12(6), 1141 

p.e1006122. 1142 

83. 1000 Genomes Project Consortium, 2015. A global reference for human genetic variation. 1143 

Nature, 526(7571), p.68.  1144 

84. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.R., Duncan, L., 1145 

Perry, J.R., Patterson, N., Robinson, E.B. and Daly, M.J., 2015. An atlas of genetic 1146 

correlations across human diseases and traits. Nature genetics, 47(11), pp.1236-1241. 1147 

85. International HapMap 3 Consortium, 2010. Integrating common and rare genetic variation in 1148 

diverse human populations. Nature, 467(7311), p.52. 1149 

86. Loh, P.R., Bhatia, G., Gusev, A., Finucane, H.K., Bulik-Sullivan, B.K., Pollack, S.J., de 1150 

Candia, T.R., Lee, S.H., Wray, N.R., Kendler, K.S. and O'Donovan, M.C., 2015B. 1151 

Contrasting genetic architectures of schizophrenia and other complex diseases using fast 1152 

variance-components analysis. Nature genetics, 47(12), pp.1385-1392. 1153 

87. Ritari, J., Hyvärinen, K., Clancy, J., FinnGen, Partanen, J. and Koskela, S., 2020. Increasing 1154 

accuracy of HLA imputation by a population-specific reference panel in a FinnGen biobank 1155 

cohort. NAR genomics and bioinformatics, 2(2), p.lqaa030. 1156 

 1157 

Acknowledgments We thank Juha Karjalainen (Institute for Molecular Medicine Finland (FIMM), 1158 

Finland) and Mattia Cordioli (FIMM, Finland) for assistance in GWAS meta-analysis, Shea J. 1159 

Andrews (Icahn School of Medicine at Mount Sinai, USA) and Jaakko Leinonen (FIMM, Finland) for 1160 

kindly sharing formatted GWAS summary statistics used in genetic correlation analyses, Sakari 1161 

Jukarainen (FIMM, Finland) and Alessio Gerussi (University of Milano-Bicocca, Italy) for insightful 1162 

discussion on pheWAS analyses from a clinical standpoint, Samuel Jones (FIMM, Finland) and 1163 

Masahiro Kanai (Broad Institute of MIT and Harvard, USA) for valuable feedback on HLA and fine-1164 

mapping, Jukka Koskela (FIMM, Finland) and Mikko Myllymäki (FIMM, Finland) for discussion on 1165 

clonal hematopoiesis, Yu Fu (FIMM, Finland) and Annina Preussner (FIMM, Finland) for discussion 1166 

on genetic analyses of sex chromosomes, and Geert Kops for discussion on mechanism causing 1167 

chromosome missegregation. We thank Ms. Azusa Kouno in RIKEN Center for Integrative Medical 1168 



 

37 

Sciences and the members of the BioBank Japan Project, headquartered in the University of Tokyo 1169 

Institute of Medical Science, for supporting the BBJ analyses. We thank Bill Wheeler for his 1170 

assistance in running the pathway analyses. We want to acknowledge the participants and 1171 

investigators of each contributing biobank. The FinnGen project is funded by two grants from 1172 

Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and the following industry partners: 1173 

AbbVie Inc., AstraZeneca UK Ltd, Biogen MA Inc., Bristol Myers Squibb (and Celgene Corporation 1174 

& Celgene International II Sàrl), Genentech Inc., Merck Sharp & Dohme LCC, Pfizer Inc., 1175 

GlaxoSmithKline Intellectual Property Development Ltd., Sanofi US Services Inc., Maze 1176 

Therapeutics Inc., Janssen Biotech Inc, Novartis AG, and Boehringer Ingelheim International GmbH. 1177 

Following biobanks are acknowledged for delivering biobank samples to FinnGen: Auria Biobank 1178 

(www.auria.fi/biopankki), THL Biobank (www.thl.fi/biobank), Helsinki Biobank 1179 

(www.helsinginbiopankki.fi), Biobank Borealis of Northern Finland (https://www.ppshp.fi/Tutkimus-1180 

ja-opetus/Biopankki/Pages/Biobank-Borealis-briefly-in-English.aspx), Finnish Clinical Biobank 1181 

Tampere (www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere), 1182 

Biobank of Eastern Finland (www.ita-suomenbiopankki.fi/en), Central Finland Biobank 1183 

(www.ksshp.fi/fi-FI/Potilaalle/Biopankki), Finnish Red Cross Blood Service Biobank 1184 

(www.veripalvelu.fi/verenluovutus/biopankkitoiminta), Terveystalo Biobank 1185 

(www.terveystalo.com/fi/Yritystietoa/Terveystalo-Biopankki/Biopankki/) and Arctic Biobank 1186 

(https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-1187 

cohorts-and-arctic-biobank). All Finnish Biobanks are members of BBMRI.fi infrastructure 1188 

(www.bbmri.fi). Finnish Biobank Cooperative -FINBB (https://finbb.fi/) is the coordinator of 1189 

BBMRI-ERIC operations in Finland. The Finnish biobank data can be accessed through the 1190 

Fingenious® services (https://site.fingenious.fi/en/) managed by FINBB. For BCAC and MVP, the 1191 

detailed acknowledgement is available in Supplementary materials. 1192 

 1193 

Author contributions This project is initialized and led by A.L., G.G., P.-R.L, A.G., J.R.B.P., and 1194 

M.M.. A.L. and M.M. wrote the first draft of the manuscript with input from all lead authors. A.L. 1195 

coordinated the analyses of each contributing biobank, conducted across biobank meta-analysis 1196 

(including GWAS, allelic shift analysis, and pheWAS) and FinnGen specific analyses, organized 1197 

post-GWAS analyses, designed and generated all figures and tables (except where noted), and wrote 1198 

Results, Methods, and part of the Introduction and Discussion sections. G.G. developed the MoChA 1199 

pipelines for mLOX calling, GWAS, allelic shift analysis, and X chromosome differential score 1200 

estimation, guided the analyses of each contributing biobank, performed mLOX calling, GWAS, and 1201 

allelic shift analysis for UKBB and MGB, and wrote the manuscript. Y.Z. performed WES analyses 1202 

and 3-way combined call GWAS in UKBB, generated Supplementary Figure S2 and S6, prepared 1203 

Supplementary Table S8 and S19, and drafted the relevant result and method paragraphs. M.P 1204 



 

38 

developed the Bayesian line model to cluster mLOX and mLOY loci and wrote the relevant method 1205 

paragraph. M.M.Z. performed pheWAS for UKBB, MGB, and MVP and GWAS for MGB. K.K. 1206 

performed the GWAS to gene pipeline, prepared Supplementary Table S12, and drafted the relevant 1207 

method paragraphs. Z.Y. estimated heritability and genetic correlations and prepared Supplementary 1208 

Table S15. K.Y. and L.S. performed the pathway analysis and prepared Supplementary Table S13. 1209 

C.V. performed the sensitivity analyses for associations with leukemia in UKBB and prepared 1210 

Supplementary Table S7. X.L. performed mLOX calling, GWAS, allelic shift analysis, and HLA fine-1211 

mapping replication analysis in BBJ. D.W.B. performed GWAS for PLCO and generated inputs for 1212 

blood cell trait heat-map (Figure 3D and 4B). G.H. performed mLOX calling, GWAS, and allelic shift 1213 

analysis for EBB. B.G. and S.P. performed mLOX calling, GWAS, and allelic shift analysis for MVP. 1214 

J.D performed mLOX calling and GWAS for BCAC. W.Z. performed mLOX calling, GWAS, and 1215 

allelic shift analysis for PLCO. Y.M. participated in BBJ analyses. V.T. and F.-D.P participated in 1216 

EBB analyses. M.A., T.P.S, and A.G. participated in FinnGen analyses. W-Y.H. and N.F. participated 1217 

in PLCO analyses. E.J.G. participated in UKBB WES analyses. V.G.S. assisted in interpretating 1218 

findings related to clonal hematopoiesis. A.P. coordinated the FinnGen project. H.M.O advised the 1219 

HLA fine-mapping analysis and assisted in interpretating findings related to HLA. T.T. assisted in 1220 

interpretating findings related to skewed X-chromosome inactivation and escaping from X-1221 

chromosome inactivation. S.J.C. coordinated the PLCO project. R.M. supervised EBB analyses. P.N. 1222 

supervised pheWAS for UKBB, MGB, and MVP. M.J.D. initialized/conceptualized the mosaic 1223 

chromosomal alteration project in FinnGen and assisted in interpretating findings especially those 1224 

related to mLOY in men. A.B. supervised pheWAS in UKBB, MGB, and MVP and the sensitivity 1225 

analyses for associations with leukemia in UKBB. S.A.M. supervised the development of MoChA 1226 

pipelines. C.T. supervised BBJ analyses and advised the HLA fine-mapping analysis. P.-R.L., A.G., 1227 

J.R.B.P, and M.M. co-supervised the project, interpreted the findings, and wrote the manuscript. For 1228 

FinnGen, BCAC, and MVP, detailed author lists are available in supplementary materials. All authors 1229 

reviewed the manuscript. 1230 

 1231 

Funding This work was supported by the Intramural Research Program of the National Cancer 1232 

Institute, National Institutes of Health, and the Medical Research Council (unit programs: 1233 

MC_UU_12015/2, MC_UU_00006/2). G.G. was supported by NIH grants R01 MH104964 and R01 1234 

MH123451. A.G. was supported by the Academy of Finland (grant no. 323116) and by the European 1235 

Research Council under the European Union's Horizon 2020 Research and Innovation Programme 1236 

(grant no. 945733). P.-R.L. was supported by NIH grant DP2 ES030554, a Burroughs Wellcome Fund 1237 

Career Award at the Scientific Interfaces, the Next Generation Fund at the Broad Institute of MIT and 1238 

Harvard, and a Sloan Research Fellowship. C.T. was supported by Japan Agency for Medical 1239 

Research and Development (AMED) grants JP21ek0109555, JP21tm0424220, JP21ck0106642, 1240 



 

39 

JP22wm0425008, JP23ek0410114, and JP23tm0424225, and Japan Society for the Promotion of 1241 

Science (JSPS) KAKENHI grant JP20H00462. 1242 

 1243 

Competing interests G.G., P.-R.L., and S.A.M. declare competing interests: patent application 1244 

PCT/WO2019/079493 has been filed on the mosaic chromosomal alterations detection method used 1245 

in this work. J.R.B.P and E.J.G are employee of and hold shares in Adrestia Therapeutics. A.B. 1246 

reports scientific advisory board membership for TenSixteen Bio. P.N. reports grant support from 1247 

Apple, Amgen, Boston Scientific, AstraZeneca, and Novartis, personal fees from Apple, AstraZeneca, 1248 

Blackstone Life Sciences, Foresite Labs, Genentech/Roche, Allelica, Novartius, scientific advisory 1249 

board membership for geneXwell, Esperion Therapeutics, and TenSixteen Bio, is a scientific co-1250 

founder of TenSixteen Bio, and spousal employment at Vertex, all unrelated to the present study. 1251 

 1252 

Ethics statement Patients and control subjects in FinnGen provided informed consent for biobank 1253 

research, based on the Finnish Biobank Act. Alternatively, separate research cohorts, collected prior 1254 

the Finnish Biobank Act came into effect (in September 2013) and start of FinnGen (August 2017), 1255 

were collected based on study-specific consents and later transferred to the Finnish biobanks after 1256 

approval by Fimea (Finnish Medicines Agency), the National Supervisory Authority for Welfare and 1257 

Health. Recruitment protocols followed the biobank protocols approved by Fimea. The Coordinating 1258 

Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) statement number for the 1259 

FinnGen study is Nr HUS/990/2017. The FinnGen study is approved by Finnish Institute for Health 1260 

and Welfare (permit numbers: THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, 1261 

THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 1262 

and THL/1524/5.05.00/2020), Digital and population data service agency (permit numbers: 1263 

VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance Institution (permit 1264 

numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, KELA 1265 

134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 16/522/2020), Findata permit 1266 

numbers THL/2364/14.02/2020, THL/4055/14.06.00/2020,,THL/3433/14.06.00/2020, 1267 

THL/4432/14.06/2020, THL/5189/14.06/2020, THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, 1268 

THL/209/14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021, 1269 

THL/1965/14.06.00/2021, THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, 1270 

THL/4235/14.06.00/202, Statistics Finland (permit numbers: TK-53-1041-17 and 1271 

TK/143/07.03.00/2020 (earlier TK-53-90-20) TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and 1272 

Finnish Registry for Kidney Diseases permission/extract from the meeting minutes on 4th July 2019. 1273 

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 9 1274 

include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, 1275 



 

40 

BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, Finnish Red Cross Blood Service 1276 

Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, Auria Biobank AB17-5154 1277 

and amendment #1 (August 17 2020), AB20-5926 and amendment #1 (April 23 2020) and it´s 1278 

modification (Sep 22 2021), Biobank Borealis of Northern Finland_2017_1013,  Biobank of Eastern 1279 

Finland 1186/2018 and amendment 22 § /2020, Finnish Clinical Biobank Tampere MH0004 and 1280 

amendments (21.02.2020 & 06.10.2020), Central Finland Biobank 1-2017, and Terveystalo Biobank 1281 

STB 2018001 and amendment 25th Aug 2020. The UKBB analyses were conducted using applications 1282 

7089, 9905, and 21552. 1283 


