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Recent research efforts on adversarial machine learning (ML) have investigated problem-space attacks, focusing
on the generation of real evasive objects in domains where, unlike images, there is no clear inverse mapping
to the feature space (e.g., software). However, the design, comparison, and real-world implications of problem-
space attacks remain underexplored.

This article makes three major contributions. Firstly, we propose a general formalization for adversarial
ML evasion attacks in the problem-space, which includes the definition of a comprehensive set of constraints
on available transformations, preserved semantics, absent artifacts, and plausibility. We shed light on the
relationship between feature space and problem space, and we introduce the concept of side-effect features
as the by-product of the inverse feature-mapping problem. This enables us to define and prove necessary
and sufficient conditions for the existence of problem-space attacks. Secondly, building on our general
formalization, we propose a novel problem-space attack on Android malware that overcomes past limitations
in terms of semantics and artifacts. We have tested our approach on a dataset with 150K Android apps from
2016 and 2018 which show the practical feasibility of evading a state-of-the-art malware classifier along with
its hardened version. Thirdly, we explore the effectiveness of adversarial training as a possible approach
to enforce robustness against adversarial samples, evaluating its effectiveness on the considered machine
learning models under different scenarios.

Our results demonstrate that “adversarial-malware as a service” is a realistic threat, as we automatically
generate thousands of realistic and inconspicuous adversarial applications at scale, where on average it takes
only a few minutes to generate an adversarial instance.
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1 INTRODUCTION
Adversarial machine learning (ML) attacks have been extensively studied across various do-
mains [49], and they present a significant threat to the widespread adoption of machine learning
solutions in security-critical scenarios. This paper focuses on test-time evasion attacks in the so-
called problem space, wherein the challenge lies in modifying real input-space objects to correspond
to an adversarial feature vector.

The main challenge lies in the inverse feature-mapping problem [66, 20, 70, 13, 18, 17], as in many
settings, converting a feature vector into a problem-space object is not feasible due to the non-
invertible and non-differentiable nature of the feature-mapping function. Additionally, the modified
problem-space object must be a valid and inconspicuous member of the considered domain while
remaining robust against non-ML detection attempts, such as program analysis. Prior research has
explored problem-space attacks in diverse areas, including text [47, 65], malicious PDFs [20, 16,
18, 35, 15, 24], Android malware [39, 57, 46], Windows malware [53], source code attribution [70],
malicious Javascript [63], and eyeglass frames [34]. However, while there is a good understanding of
how to perform feature-space attacks [36], the requirements for attacks in the problem space—along
with principled comparisons of existing solutions’ strengths and weaknesses—remain less clear.

We introduce the concept of side-effect features as the by-product of attempting to generate a
problem-space transformation that perturbs the feature space in a specific direction. Defining side-
effect features allows us to gain deeper insights into the relationships between the feature space and
problem space. We establish necessary and sufficient conditions for the existence of problem-space
attacks and identify two main types of search strategies (feature-driven and problem-driven) for
generating adversarial objects in the problem space. Additionally, we analyze how these samples
can enhance the robustness of a target model through adversarial training, considering scenarios
where the attacker and defender capabilities depend on gadget characteristics. We explore how
representing the same code through multiple representations may impact the potential robustness
built during adversarial training. Furthermore, we employ our formalization to describe various
interesting attacks proposed in both problem space and feature space. This analysis reveals that
some promising prior problem-space attacks in the Android malware domain [57, 46, 41] have
limitations, particularly concerning semantics and artifacts. The limitations of the mentioned works
inspire us to propose a novel problem-space attack in the Android malware domain, addressing
these issues and overcoming existing solutions’ shortcomings.

At last, we evaluate adversarial training as a potential defense mechanism against problem space
attacks and consider the impact and the differences on using multiple generative strategies for
hardening. This approach is widely accepted as the most effective method in practice to improve the
adversarial robustness of traditional machine learning and deep learning models. The fundamental
premise of adversarial training, introduced by [25] [23], is to train a model to withstand adversarial
attacks by exposing it to carefully crafted adversarial examples, which are designed to perturb the
model’s predictions. Investigating adversarial training methods is crucial in the current landscape
of AI and machine learning, where models are increasingly deployed in safety-critical applications
such as autonomous driving [76] and medical diagnostics [64]. By understanding and improving
upon adversarial training techniques, researchers can enhance the security and reliability of AI
systems, ultimately contributing to the responsible deployment of artificial intelligence.

In summary, this paper presents three major contributions:

• We propose a novel general formalization of problem-space attacks (§2), which defines
key requirements and commonalities across different domains, establishes necessary and
sufficient conditions for problem-space attacks, and facilitates the comparison of strengths
and weaknesses of prior approaches. Notably, existing strategies for adversarial malware
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generation are found to be among the weakest in terms of attack robustness. We introduce
the concept of side-effect features, revealing connections between feature space and problem
space, enabling principled reasoning about search strategies for problem-space attacks.
• Building on our formalization, we propose a novel problem-space attack in the Android
malware domain, utilizing automated software transplantations [26], which addresses limi-
tations of prior work regarding semantics and artifacts. Through experiments on a dataset
of 150k apps from 2016-2018 (§4), we demonstrate the feasibility of evading a state-of-the-art
malware classifier, DREBIN [21], and its hardened version, Sec-SVM [39]. Compared to the
conference version, we have enhanced the gadgets dataset, being able to extract the whole
set of DREBIN features. The time required to generate an adversarial example is in the order
of minutes, highlighting the realistic threat of the "adversarial-malware as a service" scenario
and the insufficiency of existing defenses.
• We further expand our reasoning from the conference version and propose a comprehensive
study of whether different types of adversarial hardening techniques can serve as a valuable
defense against this type of adversarial attacks. We consider both adversarial retraining [79]
and adversarial training [43].We show that adversarial training can improvemodel robustness
but the impact of it heavily depends on the considered model.

2 PROBLEM-SPACE ADVERSARIAL ML ATTACKS
Our research is centered on evasion attacks [18, 36, 13], where adversaries manipulate objects
during the testing phase to produce specific misclassifications. We draw upon previous literature
to give insights into feature-space attacks (see §2.1), and subsequently present a fresh perspective
on problem-space attacks (§2.2). Subsequently, we shed light on the key aspects of our framework,
illustrating its application to both the well-established feature-space and the newer problem-space
attacks, as informed by related studies across multiple domains (§2.3). Our approach to threat
modeling, rooted in understanding the attacker’s knowledge and abilities, aligns with existing
studies[49, 58, 62]. A comprehensive overview can be found in Appendix B. For reader convenience,
we have cataloged symbols in Appendix A.

2.1 Feature-Space Attacks
It’s worth noting that the various definitions of feature-space attacks (refer to §2.1) have been
previously summarized in existing literature [49, 36, 39, 41, 25, 14, 5, 6]. We present them here for
clarity and to set the stage for examining the connections between feature-space and problem-space
attacks in subsequent sections.
We introduce a problem space Z, also known as the input space, encompassing entities of a

specific domain, such as images [36], sound recordings [50], software [70], or PDF documents [16].
Every entity 𝑧 ∈ Z is paired with a corresponding authentic label 𝑦 ∈ Y, with Y symbolizing
the realm of potential labels. As most machine learning approaches predominantly operate on
vectorized numerical data [7], entities in Z must undergo a transformation to be suitable for
machine learning procedures.

Definition 1 (Feature Mapping). A feature mapping denotes a function 𝜑 : Z −→ X ⊆ R𝑛 that
transforms a problem-space entity 𝑧 ∈ Z into an 𝑛-dimensional feature vector 𝒙 ∈ X, resulting in
𝜑 (𝑧) = 𝒙 . This encapsulates implicit/latent mappings as well, where features are not immediately
discernible upon input but are internally computed by the model, for instance, in deep learning
frameworks [31].

Definition 2 (Discriminant Function). For an𝑚-class machine learning classifier represented
as 𝑔 : X −→ Y, a discriminant function ℎ : X × Y −→ R yields a real value ℎ(𝒙, 𝑖), often expressed
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succinctly as ℎ𝑖 (𝒙). This value characterizes the suitability of object 𝒙 for class 𝑖 ∈ Y. Elevated
returns from the discriminant function ℎ𝑖 indicate a stronger association with class 𝑖 . Specifically, the
anticipated label for an entity 𝒙 is determined as 𝑔(𝒙) = 𝑦 = argmax𝑖∈Y ℎ𝑖 (𝒙).

The goal of a targeted feature-space attack is to alter an entity 𝒙 ∈ X assignedwith the label𝑦 ∈ Y
into another entity 𝒙′ that correlates with a designated class 𝑡 ∈ Y, where 𝑡 ≠ 𝑦 (meaning, to adapt 𝒙
to be wrongly classified under target class 𝑡 ). Attackers can discern a disturbance 𝜹 to tweak 𝒙 such
that 𝑔(𝒙 + 𝜹) = 𝑡 by refining a meticulously designed attack objective function. For a comprehensive
definition of this function, readers are directed to [36] and [49], where high-confidence attacks and
multi-class scenarios are taken into consideration.

Definition 3 (Attack Objective Function). Given an object 𝒙 ∈ X and a target label 𝑡 ∈ Y,
an attack objective function 𝑓 : X ×Y −→ R is defined as follows:

𝑓 (𝒙, 𝑡) = max
𝑖≠𝑡
{ℎ𝑖 (𝒙)} − ℎ𝑡 (𝒙) , (1)

for which we use the shorthand 𝑓𝑡 (𝒙). Generally, 𝒙 is classified as a member of 𝑡 if and only if 𝑓𝑡 (𝒙) < 0.
An adversary can also enforce a desired attack confidence 𝜅 ∈ R such that the attack is considered
successful if and only if 𝑓𝑡 (𝒙) < −𝜅.
The parameter 𝜅 allows to specify the desired confidence of an adversarial attack. If 𝜅 = 0, a

low-confidence attack is performed where the object is merely misclassified; if 𝜅 > 0 then the object
is misclassified with higher confidence. It is worth observing that it is a common misconceptions
of adversarial attacks that the feature-space perturbation must be minimal [49]. This was derived
from the popularity of adversarial attacks in the image domain, in which you want to minimize the
perceptual perturbation. It has been already shown in works [36, 50] that high-confidence attacks
are much more effective in evading a classifier. The intuition is to minimize 𝑓𝑡 by modifying 𝒙 in
directions that follow the negative gradient of 𝑓𝑡 , i.e., to get 𝒙 closer to the target class 𝑡 .

In addition to the attack objective function, a considered problem-space domain may also come
with constraints on the modification of the feature vectors. For example, in the image domain the
value of pixels must be bounded between 0 and 255 [36]; in software, some features in 𝒙 may only
be added but not removed (e.g., API calls [39]).

Definition 4 (Feature-Space Constraints). We define Ω as the set of feature-space constraints,
i.e., a set of constraints on the possible feature-space modifications. The set Ω reflects the requirements
of realistic problem-space objects. Given an object 𝒙 ∈ X, any modification of its feature values can
be represented as a perturbation vector 𝜹 ∈ R𝑛 ; if 𝜹 satisfies Ω, we borrow notation from model
theory [29] and write 𝜹 |= Ω.

These are in part due to domain constraints (e.g., the features are bounded between 0 and 255 in
images, and some features cannot be changed) and in part due to allowed modifications constraints
(e.g., only addition of software permissions may be allowed, or a maximum perturbation 𝛿𝑚𝑎𝑥 ).

As examples of feature-space constraints, in the image domain [e.g., 36, 49] the perturbation 𝜹 is
subject to an upper bound based on 𝑙𝑝 norms (| |𝜹 | |𝑝 ≤ 𝛿𝑚𝑎𝑥 ), to preserve similarity to the original
object; in the software domain [e.g., 39, 41], only some features of 𝒙 may be modified, such that
𝜹𝑙𝑏 ⪯ 𝜹 ⪯ 𝜹𝑢𝑏 (where 𝜹1 ⪯ 𝜹2 implies that each element of 𝜹1 is ≤ the corresponding i-th element
in 𝜹2).

Common instances of Ω in the image domain are obtained by constraining the maximum number
of perturbations with 𝑙𝑝 norms (| |𝜹 | |𝑝 ≤ 𝛿𝑚𝑎𝑥 ); we are more interested in constraints in the
feature space, that determine which amount of perturbations the attacker do on each features
(𝜹𝑙𝑏 ⪯ 𝜹 ⪯ 𝜹𝒖𝒃 , where 𝒗1 ⪯ 𝒗2 implies that each element of 𝒗1 is ≤ of the corresponding i-th
element in 𝒗2).
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We can now formalize the traditional feature-space attack as in related work [36, 18, 39, 49, 33].

Definition 5 (Feature-Space Attack). Given a machine learning classifier 𝑔, an object 𝒙 ∈ X
with label 𝑦 ∈ Y, and a target label 𝑡 ∈ Y, 𝑡 ≠ 𝑦, the adversary aims to identify a perturbation vector
𝜹 ∈ R𝑛 such that 𝑔(𝒙 + 𝜹) = 𝑡 . The desired perturbation can be achieved by solving the following
optimization problem:

𝜹∗ = arg min
𝜹∈R𝑛

𝑓𝑡 (𝒙 + 𝜹) (2)

subject to: 𝜹 |= Ω . (3)

A feature-space attack is successful if 𝑓𝑡 (𝒙 + 𝜹∗) < 0 (or less than −𝜅 , if the attacker enforces a desired
attack confidence).

Without loss of generality, we observe that the feature-space attacks definition can be extended
to ensure that the adversarial example is closer to the training data points (e.g., through the tuning
of a parameter 𝜆 that penalizes adversarial examples generated in low density regions, as in the
mimicry attacks of [18]).

2.2 Problem-Space Attacks
This section presents a novel formalization of problem-space attacks and introduces insights into
the relationship between feature space and problem space.

Inverse Feature-Mapping Problem. The major challenge that complicates (and, in most cases,
prevents) the direct applicability of gradient-driven feature-space attacks to find problem-space
adversarial examples is the so-called inverse feature-mapping problem [66, 20, 70, 13, 18, 17]. As an
extension, [70] discuss the feature-problem space dilemma, which highlights the difficulty of moving
in both directions: from feature space to problem space, and from problem space to feature space. In
most cases, the feature mapping function 𝜑 is not bijective, i.e., not injective and not surjective. This
means that given 𝑧 ∈ Z with features 𝒙 , and a feature-space perturbation 𝜹∗, there is no one-to-one
mapping that allows going from 𝒙 + 𝜹∗ to an adversarial problem-space object 𝑧′. Nevertheless,
there are two additional scenarios. If 𝜑 is not invertible but is differentiable, then it is possible
to backpropagate the gradient of 𝑓𝑡 (𝒙) from X to Z to derive how the input can be changed in
order to follow the negative gradient (e.g., to know which input pixels to perturbate to follow the
gradient in the deep-learning latent feature space). If 𝜑 is not invertible and not differentiable, then
the challenge is to find a way to map the adversarial feature vector 𝒙′ ∈ X to an adversarial object
𝑧′ ∈ Z, by applying a transformation to 𝑧 in order to produce 𝑧′ such that 𝜑 (𝑧′) is “as close as
possible” to 𝒙′; i.e., to follow the gradient towards the transformation that most likely leads to a
successful evasion [53]. In problem-space settings such as software, the function 𝜑 is typically not
invertible and not differentiable, so the search for transforming 𝑧 to perform the attack cannot be
purely gradient-based.

In this section, we consider the general case in which the feature mapping 𝜑 is not differentiable
and not invertible (i.e., the most challenging setting), and we refer to this context to formalize
problem-space evasion attacks.
First, we define a problem-space transformation operator through which we can alter problem-

space objects. Due to their generality, we adapt the code transformation definitions from the
compiler engineering literature [9, 70] to formalize general problem-space transformations.

Definition 6 (Problem-Space Transformation). A problem-space transformation𝑇 : Z −→ Z
takes a problem-space object 𝑧 ∈ Z as input and modifies it to 𝑧′ ∈ Z. We refer to the following
notation: 𝑇 (𝑧) = 𝑧′.
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The possible problem-space transformations are either addition, removal, or modification (i.e.,
combination of addition and removal). In the case of computer programs, obfuscation is a special
case of modification.

Definition 7 (Transformation Seqence). A transformation sequence T = 𝑇𝑛 ◦𝑇𝑛−1 ◦ · · · ◦𝑇1
is the subsequent application of problem-space transformations to an object 𝑧 ∈ Z.

Intuitively, given a problem-space object 𝑧 ∈ Z with label 𝑦 ∈ Y, the purpose of the adversary
is to find a transformation sequence T such that the transformed object T(𝑧) is classified into any
target class 𝑡 chosen by the adversary (𝑡 ∈ Y, 𝑡 ≠ 𝑦). One way to achieve such a transformation is to
first compute a feature-space perturbation 𝜹∗, and then modify the problem-space object 𝑧 so that
features corresponding to 𝜹∗ are carefully altered. However, in the general case where the feature
mapping 𝜑 is neither invertible nor differentiable, the adversary must perform a search in the
problem-space that approximately follows the negative gradient in the feature space. However, this
search is not unconstrained, because the adversarial problem-space object T(𝑧) must be realistic.

Problem-Space Constraints. Given a problem-space object 𝑧 ∈ Z, a transformation sequence
T must lead to an object 𝑧′ = T(𝑧) that is valid and realistic. To express this formally, we identify
four main types of constraints common to any problem-space attack:
(1) Available transformations, which describe which modifications can be performed in the

problem-space by the attacker (e.g., only addition and not removal).
(2) Preserved semantics, the semantics to be preserved while mutating 𝑧 to 𝑧′, with respect to

specific feature abstractions which the attacker aims to be resilient against (e.g., in programs,
the transformed object may need to produce the same dynamic call traces). Semantics may
also be preserved by construction [e.g., 70].

(3) Plausibility (or Inconspicuousness), which describes which (qualitative) properties must be
preserved in mutating 𝑧 to 𝑧′, so that 𝑧 appears realistic upon manual inspection. For example,
often an adversarial image must look like a valid image from the training distribution [36];
a program’s source code must look manually written and not artificially or inconsistently
altered [70]. In the general case, verification of plausibility may be hard to automate and may
require human analysis.

(4) Robustness to preprocessing, which determines which non-ML techniques could disrupt the
attack (e.g., filtering in images, dead code removal in programs).

These constraints have been sparsely mentioned in prior literature [18, 70, 35, 49], but have never
been identified together as a set for problem-space attacks. When designing a novel problem-space
attack, it is fundamental to explicitly define these four types of constraints, to clarify strengths and
weaknesses. While we believe that this framework captures all nuances of the current state-of-
the-art for a thorough evaluation and comparison, we welcome future research that uses this as a
foundation to identify new constraints.
We now introduce formal definitions for the constraints. First, similarly to [39, 49], we define

the space of available transformations.

Definition 8 (Available Transformations). We define T as the space of available transfor-
mations, which determines which types of automated problem-space transformations 𝑇 the attacker
can perform. In general, it determines if and how the attacker can add, remove, or edit parts of the
original object 𝑧 ∈ Z to obtain a new object 𝑧′ ∈ Z. We write T ∈ T if a transformation sequence
consists of available transformations.

For example, the pixels of an image may be modified only if they remain within the range of
integers 0 to 255 [e.g., 36]; in programs, an adversary may only add valid no-op API calls to ensure
that modifications preserve functionality [e.g., 57].
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Moreover, the attacker needs to ensure that some semantics are preserved during the transfor-
mation of 𝑧, according to some feature abstractions. Semantic equivalence is known to be generally
undecidable [26, 70]; hence, as in [26], we formalize semantic equivalence through testing, by
borrowing notation from denotational semantics [4].

Definition 9 (Preserved Semantics). Let us consider two problem-space objects 𝑧 and 𝑧′ = T(𝑧),
and a suite of automated tests Υ to verify preserved semantics. We define 𝑧 and 𝑧′ to be semantically
equivalent with respect to Υ if they satisfy all its tests 𝜏 ∈ Υ, where 𝜏 : Z ×Z −→ B. In particular,
we denote semantics equivalence with respect to a test suite Υ as follows:

⟦𝑧⟧𝜏 = ⟦𝑧′⟧𝜏 , ∀𝜏 ∈ Υ , (4)

where ⟦𝑧⟧𝜏 denotes the semantics of 𝑧 induced during test 𝜏 .

Informally, Υ consists of tests that are aimed at evaluating whether 𝑧 and 𝑧′ (or parts of them)
lead to the same abstract representations in a certain feature space. In other words, the tests in Υ
model preserved semantics. For example, in programs a typical test aims to verify that malicious
functionality is preserved; this is done through tests where, given a certain test input, the program
produces exactly the same output [26]. Additionally, the attacker may want to ensure that an
adversarial program (𝑧′) leads to the same instruction trace as its benign version (𝑧)—so as not to
raise suspicion in feature abstractions derived from dynamic analysis.

Plausibility is more subjective than semantic equivalence, but in many scenarios it is critical that
an adversarial object appear inconspicuous when manually audited by a human. To be plausible,
an analyst must believe the adversarial object is a valid member of the problem-space distribution.

Definition 10 (Plausibility). We define Π as the set of (typically) manual tests to verify plausi-
bility. We say 𝑧 looks like a valid member of the data distribution to a human being if it satisfies all
tests 𝜋 ∈ Π, where 𝜋 : Z −→ B.

Plausibility is often hard to verify automatically; previous work has often relied on user studies
with domain experts to judge the plausibility of the generated objects (e.g., program plausibility
in [70], realistic eyeglass frames in [34]). Plausibility in software-related domains may also be
enforced by construction during the transformation process, e.g., by relying on automated software
transplantation [26, 46].

In addition to semantic equivalence and plausibility, the adversarial problem-space objects need
to ensure they are robust to non-ML automated preprocessing techniques that could alter properties
on which the adversarial attack depends, thus compromising the attack.

Definition 11 (Robustness to Preprocessing). We define Λ as the set of preprocessing operators
an object 𝑧′ = T(𝑧) should be resilient to. We say 𝑧′ is robust to preprocessing if A(T(𝑧)) = T(𝑧) for
all A ∈ Λ, where A : Z −→ Z simulates an expected preprocessing.

Examples of preprocessing operators in Λ include compression to remove pixel artifacts (in
images), filters to remove noise (in audio), and program analysis to remove dead or redundant code
(in programs).

Properties affected by preprocessing are often related to fragile and spurious features learned by
the target classifier. While taking advantage of such features may be necessary to demonstrate the
weaknesses of the target model, an attacker should be aware that these brittle features are usually
the first to change when a model is improved. Given this, a stronger attack is one that does not rely
on them.
As a concrete example, in an attack on authorship attribution, [70] purposefully omit layout

features (such as the use of spaces vs. tabs) which are trivial to change. Additionally, [35] discovered
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the presence of font objects was a critical (but erroneously discriminative) feature following their
problem-space attack on PDF malware. These are features that are cheap for an attacker to abuse
but can be easily removed by the application of some preprocessing. As a defender, investigation of
this constraint will help identify features that are weak to adversarial attacks. Note that knowledge
of preprocessing can also be exploited by the attacker (e.g., in scaling attacks [75]).

We can now define a fundamental set of constraint elements in the problem space based on the
previous definitions.
Definition 12 (Problem-Space Constraints). We define the problem-space constraints Γ =

{T , Υ,Π,Λ} as the set of all constraints satisfying T , Υ,Π,Λ. We write T(𝑧) |= Γ if a transformation
sequence applied to object 𝑧 ∈ Z satisfies all the problem-space constraints, and we refer to this as a
valid transformation sequence. The problem-space constraints Γ determine the feature-space constraints
Ω, and we denote this relationship as Γ ⊢ Ω (i.e., Γ determines Ω); with a slight abuse of notation, we
can also write that Ω ⊆ Γ, because some constraints may be specific to the problem space (e.g., program
size similar to that of benign applications) and may not be possible to enforce in the feature space X.

Side-Effect Features. Satisfying the problem-space constraints Γ further complicates the inverse
feature mapping, as Γ is a superset of Ω. Moreover, enforcing Γ may require substantially altering
an object 𝑧 to ensure satisfaction of all constraints during mutations. Let us focus on an example in
the software domain, so that 𝑧 is a program with features 𝒙 ; if we want to transform 𝑧 to 𝑧′ such that
𝜑 (𝑧′) = 𝒙 + 𝜹 , we may want to add to 𝑧 a program 𝑜 where 𝜑 (𝑜) = 𝜹 . However, the union of 𝑧 and
𝑜 may have features different from 𝒙 + 𝜹 , because other consolidation operations are required (e.g.,
name deduplication, class declarations, resource name normalization)—which cannot be feasibly
computed in advance for each possible object in Z. Hence, after modifying 𝑧 in an attempt to
obtain a problem-space object 𝑧′ with certain features (e.g., close to 𝒙 + 𝜹), the attacker-modified
object may have some additional features that are not related to the intended transformation (e.g.,
adding an API which maps to a feature in 𝜹), but are required to satisfy all the problem-space
constraints in Γ (e.g., inserting valid parameters for the API call, and importing dependencies for
its invocation). We call side-effect features 𝜼 the features that are altered in 𝑧′ = T(𝑧) specifically
for the satisfaction of problem-space constraints. We observe that these features do not follow any
particular direction of the gradient, and hence they could have both a positive or negative impact
on the classification score.

Analogy with Projection. Figure 1 presents an analogy between side-effect features 𝜼 and the
notion of projection in numerical optimization [7], which helps explain the nature and impact of 𝜼
in problem-space attacks. The right half corresponds to higher values of a discriminant function
ℎ(𝒙) and the left half to lower values. The vertical central curve (where the heatmap value is equal
to zero) represents the decision boundary: objects on the left-half are classified as negative (e.g.,
benign), and objects on the right-half as positive (e.g., malicious). The goal of the adversary is to
conduct a maximum confidence attack that has an object misclassified as the negative class. The
thick solid line represents the feasible feature space determined by constraints Ω, and the thin solid
line the feasible problem space determined by Γ (which corresponds to two unconnected areas). We
assume that the initial object 𝒙 ∈ X is always within the feasible problem space. In this example,
the attacker first conducts a gradient-based attack in the feature space on object 𝒙 , which results in
a feature vector 𝒙 + 𝜹∗, which is classified as negative with high-confidence. However, this point is
not in the feasibility space of constraints Γ, which is more restrictive than that of Ω. Hence, the
attacker needs to find a projection that maps 𝒙 + 𝜹∗ back to the feasible problem-space regions,
which leads to the addition of a side-effect feature vector 𝜼.

Definition 13 (Side-Effect Feature Vector). We define 𝜼 as the side-effect feature vector that
results from enforcing Γ while choosing a sequence of transformations T such that T(𝑧) |= Γ. In other
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Fig. 1. Example of projection of the feature-space attack vector 𝒙 + 𝜹∗ in the feasible problem space, resulting
in side-effect features 𝜼. The background displays the value of the discriminant function ℎ(𝒙), where negative
values indicate the target class of the evasion attack. Small arrows represent directions of the negative
gradient. The thick solid line represents the feasible feature space determined by Ω, and the thin solid line
that determined by Γ (which is more restrictive). The dotted arrow represents the gradient-based attack 𝒙 +𝜹∗
derived from 𝒙 , which is then projected into 𝒙 + 𝜹∗ + 𝜼 to fit into the feasible problem space.

words, 𝜼 are the features derived from the projection of a feature-space attack onto a feasibility region
that satisfies problem-space constraints Γ.

We observe that in settings where the feature mapping 𝜑 is neither differentiable nor invertible,
and where the problem-space representation is very different from the feature-space representation
(e.g., unlike in images or audio), it is generally infeasible or impossible to compute the exact
impact of side-effect features on the objective function in advance—because the set of problem-
space constraints Γ cannot be expressed analytically in closed-form. Hence the attacker needs
to find a transformation sequence T such that 𝜑 (T(𝑧)) = 𝜑 (𝑧′) is within the feasibility region of
problem-space constraints Γ.
It is relevant to observe that, in the general case, if an object 𝑧𝑜 is added to (or removed from)

two different objects 𝑧1 and 𝑧2, it is possible that the resulting side-effect feature vectors 𝜼1 and 𝜼2
are different (e.g., in the software domain [70]).

Semantic preservation constraints are essential, as they ensure that any modifications or pertur-
bations maintain its original functionality. In certain situations, it may be necessary to minimize
overall perturbations while adhering to these constraints, and their impact varies depending on the
considered domain. For instance, in domains where the feature mapping function is invertible and
differentiable, and there is no inverse feature mapping issue, such as in computer vision tasks, the
side effect features may also be influenced. Conversely, in areas like source code tasks, the side
effect features might remain unaffected. This highlights that the decision to minimize perturbations
depends on the specific requirements for preserving semantics.

Considerations on Attack Confidence. There are some important characteristics of the impact
of the side-effect features 𝜼 on the attack objective function. If the attacker performs a maximum-
confidence attack in the feature space under constraints Ω, then the confidence of the problem-space
attack will always be lower or equal than the one in the feature-space attack. This is intuitively
represented in Figure 1, where the point is moved to the maximum-confidence attack area within Ω,
and the attack confidence is reduced after projection to the feasibility space of the problem space,
induced by Γ. In general, the confidence of the feature- and problem-space attacks could be equal,
depending on the constraints Ω and Γ, and on the shape of the discriminant function ℎ, which is
also not necessarily convex (e.g., in deep learning [31]). In the case of low-confidence feature-space
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attacks, projecting into the problem-space feasibility constraint may result in a positive or negative
impact (not known a priori) on the value of the discriminant function. This can be seen from
Figure 1, where the object 𝒙 + 𝜹∗ would be found close to the center of the plot, where ℎ(𝒙) = 0.
Problem-Space Attack. We now have all the components that are required to formalize a

problem-space attack.

Definition 14 (Problem-Space Attack). We define a problem-space attack as the problem of
finding the sequence of valid transformations T for which the object 𝑧 ∈ Z with label 𝑦 ∈ Y is
misclassified to a target class 𝑡 ∈ Y as follows:

argminT∈T 𝑓𝑡 (𝜑 (T(𝑧))) = 𝑓𝑡 (𝒙 + 𝜹∗ + 𝜼) (5)
subject to: ⟦𝑧⟧𝜏 = ⟦T(𝑧)⟧𝜏 , ∀𝜏 ∈ Υ (6)

𝜋 (T(𝑧)) = 1, ∀𝜋 ∈ Π (7)
A(T(𝑧)) = T(𝑧), ∀A ∈ Λ (8)

where 𝜼 is a side-effect feature vector that separates the feature vector generated by T(𝑧) from the
theoretical feature-space attack 𝒙+𝜹∗ (under constraints Ω). An equivalent, more compact, formulation
is as follows:

argminT∈T 𝑓𝑡 (𝜑 (T(𝑧))) = 𝑓𝑡 (𝒙 + 𝜹∗ + 𝜼) (9)
subject to: T(𝑧) |= Γ . (10)

Search Strategy. The typical search strategy for adversarial perturbations in feature-space
attacks is based on following the negative gradient of the objective function through some numerical
optimization algorithm, such as stochastic gradient descent [49, 36, 50]. However, it is not possible
to directly apply gradient descent in the general case of problem-space attacks, when the feature
space is not invertible nor differentiable [70, 49]; and it is even more complicated if a transformation
sequence T produces side-effect features 𝜼 ≠ 0. In the problem space, we identify two main types
of search strategy: problem-driven and feature-driven. In the problem-driven approach, the search of
the optimal T proceeds heuristically by beginning with random mutations of the object 𝑧, and then
learning from experience how to appropriately mutate it further in order to misclassify it to the
target class (e.g., using Genetic Programming [35] or variants of Monte Carlo tree search [70]). This
approach iteratively uses local approximations of the negative gradient to mutate the objects. The
feature-driven approach attempts to identify mutations that follow some signal from the feature
space. This can be, for example, a target feature vector (e.g., a mimicry attack [24]) or the negative
gradient by relying on an approximate inverse feature mapping (e.g., in PDF malware [20], in
Android malware [46]). If a search strategy equally makes extensive use of both problem-driven
and feature-driven methods, we call it a hybrid strategy. We note that search strategies may
have different trade-offs in terms of effectiveness and costs, depending on the time and resources
they require. While there are some promising avenues in this challenging but important line of
research [54], it warrants further investigation in future work.

Feature-space attacks can still give us some useful information: before searching for a problem-
space attack, we can verify whether a feature-space attack exists, which is a necessary condition
for realizing the problem-space attack.

Theorem 1 (Necessary Condition for Problem-Space Attacks). Given a problem-space object
𝑧 ∈ Z of class 𝑦 ∈ Y, with features 𝜑 (𝑧) = 𝒙 , and a target class 𝑡 ∈ Y, 𝑡 ≠ 𝑦, there exists a
transformation sequence T that causes T(𝑧) to be misclassified as 𝑡 only if there is a solution for the
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feature-space attack under constraints Ω. More formally, only if:

∃𝜹∗ = arg min
𝜹∈R𝑛 :𝜹 |=Ω

𝑓𝑡 (𝒙 + 𝜹) : 𝑓𝑡 (𝒙 + 𝜹∗) < 0 . (11)

The proof of Theorem 1 is in Appendix C. We observe that Theorem 1 is necessary but not
sufficient because, although it is not required to be invertible or differentiable, some sort of “mapping”
between problem- and feature-space perturbations needs to be known by the attacker. A sufficient
condition for a problem-space attack, reflecting the attacker’s ideal scenario, is knowledge of a set
of problem-space transformations which can alter feature values arbitrarily. This describes the
scenario for some domains, such as images [36, 27], in which the attacker can modify any pixel
value of an image independently.

Theorem 2 (Sufficient Condition for Problem-Space Attacks). Given a problem-space
object 𝑧 ∈ Z of class 𝑦 ∈ Y, with features 𝜑 (𝑧) = 𝒙 , and a target class 𝑡 ∈ Y, 𝑡 ≠ 𝑦, there exists a
transformation sequence T that causes 𝒙 to be misclassified as 𝑡 if Equation 11 and Equation 12 are
satisfied:

∃𝜹∗ = arg min
𝜹∈R𝑛 :𝜹 |=Ω

𝑓𝑡 (𝒙 + 𝜹) : 𝑓𝑡 (𝒙 + 𝜹∗) < 0 (11)

∀𝜹 ∈ R𝑛 : 𝜹 |= Ω, ∃T : T(𝑧) |= Γ, 𝜑 (T(𝑧)) = 𝒙 + 𝜹 (12)
Informally, an attacker is always able to find a problem-space attack if a feature-space attack exists
(necessary condition) and they know problem-space transformations that can modify any feature by
any value (sufficient condition).

The proof of Theorem 2 is in Appendix C. In the general case, while there may exist an optimal
feature-space perturbation 𝜹∗, there may not exist a problem-space transformation sequence T that
alters the feature space of T(𝑧) exactly so that 𝜑 (T(𝑧)) = 𝒙 + 𝜹∗. This is because, in practice, given
a target feature-space perturbation 𝜹∗, a problem-space transformation may generate a vector
𝜑 (T(𝑧)) = 𝒙 + 𝜹∗ + 𝜼∗, where 𝜼∗ ≠ 0 (i.e., where there may exist at least one 𝑖 for which 𝜂𝑖 ≠ 0)
due to the requirement that problem-space constraints Γ must be satisfied. This prevents easily
finding a problem-space transformation that follows the negative gradient. Given this, the attacker
is forced to apply some search strategy based on the available transformations.

Corollary 2.1. If Theorem 2 is satisfied only on a subset of feature dimensions 𝑋𝑖 in X, which
collectively create a subspace X𝑒𝑞 ⊂ X, then the attacker can restrict the search space to X𝑒𝑞 , for which
they know that an equivalent problem/feature-space manipulation exists.

2.3 Describing problem-space attacks in different domains
Table 1 briefly illustrates the main parameters of problem-space attacks by considering a represen-
tative set of adversarial attacks in different domains: Android (our attack proposed in §3 and one
recent proposal from the literature [83]), code attribution [70, 67], Windows [53, 80], text [65, 71],
and PDF [35, 24]. The references contained in the conference version have been omitted from this
document. For a deeper understanding, see also the table in the conference version.
This table shows how our formalization can be used to describe and compare problem-space

attacks by highlighting their key concepts, strengths and weaknesses. For example, although
transformations obviously depend on the domain, we observe a general trend that modifications
adding features are more common than modifications changing or removing features. This can be
attributed to the mere complexity of preserving semantics if content is rewritten, and motivates our
approach in §3 to use automated software transplantationwith opaque predicates. Moreover, various
search strategies are used. The strategy is also often linked with the threat scenario. A feature-driven
or hybrid strategy is rather used with more knowledge while a problem-driven strategy is chosen
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Domain Work Problem-Space Constraints Threat Model &
Available Transformers T Plausibility Π Υ Λ Search Strategy

Android Our
Attack

Code addition through automated software
transplantation

 (i) Code is realistic by construction through use
of exhaustive automated software
transplantation. (ii) Mutated apps install and
start on an emulator.

  PK: Feature-driven

[83] Code addition of targeted Android
components

G# (i) Code is realistic by construction through use
of limited set of perturbations. (ii) Mutated
apps install and start on an emulator. (iii)
Added intents could lead to unintended effects

  ZK: Problem-driven

Code
Attrib.

[70] Rewrite source code with targeted code
transformations (excl. layout on purpose)

 The code does not look suspicious and seems
written by a human (survey with developers)

  ZK: Problem-driven

[67] Rewrite code by exploiting layout,
comments, and control-flow flattening

# Modification visible by e.g. adding comments
from target or using control-flow flattening

 # LK: Feature-driven

Windows [53] Append bytes at the end G# Appended bytes not visible by user, but easily
by security expert

 # PK: Feature-driven

[80] Binary diversification: code is rewritten
either through in-place randomization (IPR)
or code displacement (DISP)

 Executed code is modified which might be
difficult to spot

  PK: Hybrid, ZK:
Problem-driven

Text [65] Apply character-level (e.g., spelling
mistakes) and word-level perturbations (e.g.,
synonyms)

G# Modifications such as typos are visible, but
might be overlooked

 G# PK: Hybrid, ZK:
Problem-driven

[71] Apply word-level perturbations (e.g.,
synonyms)

G# Synonyms should preserve meaning, but no
guarantee possible

  ZK: Problem-driven

PDF [35] Addition/Removal of elements in the PDF
tree structure

G# PDF can be opened, but PDF elements are
modified which might be visible

 G# ZK: Problem-driven

[24] Add content in unused area between
cross-reference table and trailer

G# Modifications not visible by user, but easily by
security expert

 # LK, PK: Feature-driven

Table 1. Problem-space attacks in different domains (withZ ≠ F ), summarized with our formalization.
Recall notation: Υ=preserved semantics; Λ=robustness to preprocessing; ZK=zero knowledge, PK=perfect knowledge, and
LK=limited knowledge

with zero knowledge. Finally, the semantics are usually preserved while plausibility and robustness
to preprocessing are more often neglected. For instance, attacks that add content at the end or in
unused areas of a file [e.g., 53, 24] can be reverted by considering the actual file payload. Likewise,
layout modifications and added comments in source code [e.g., 67] can be easily reverted by using
code formatting tools or even a simple regular expression, respectively.

3 ATTACK ON ANDROID
Our formalization of problem-space attacks reveals weaknesses in prior approaches. Hence, we
propose—through our formalization—a novel problem-space attack in this domain that overcomes
these limitations, especially in terms of preserved semantics and preprocessing robustness (see
§2.3 and §7 for a detailed comparison).

3.1 Threat Model
We assume an attacker with perfect knowledge 𝜃𝑃𝐾 = (D,X, 𝑔,𝒘) (see Appendix B for details
on threat models). This follows Kerckhoffs’ principle [1] and ensures a defense does not rely on
“security by obscurity" by unreasonably assuming some properties of the defense can be kept
secret [62]. Although deep learning has been extensively studied in adversarial attacks, recent
research [e.g., 69] has shown that—if retrained frequently—the DREBIN classifier [21] achieves
state-of-the-art performance for Android malware detection, which makes it a suitable target
classifier for our attack. DREBIN relies on a linear SVM, and embeds apps in a binary feature-space
X which captures the presence/absence of components in Android applications in Z (such as
permissions, URLs, Activities, Services, strings). We assume to know classifier𝑔 and feature-spaceX,
and train the parameters𝒘 with SVM hyperparameter 𝐶 = 1, as in the original DREBIN paper [21].
Using DREBIN also enables us to evaluate the effectiveness of our problem-space attack against
a recently proposed hardened variant, Sec-SVM [39]. Sec-SVM enforces more evenly distributed
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feature weights, which require an attacker to modify more features to evade detection. Although
the authors of [39] evaluated the robustness of Sec-SVM in the feature-space X for increasing 𝑙0
attack norms, in §4 we demonstrate that it is feasible to evade Sec-SVM in the problem-space.
We consider an attacker intending to evade detection based on static analysis, without relying

on code obfuscation as it may increase suspiciousness of the apps [59, 28] (see §6).

3.2 Available Transformations
We use automated software transplantation [26] to extract slices of bytecode (i.e., gadgets) from
benign donor applications and inject them into a malicious host, to mimic the appearance of benign
apps and induce the learning algorithm to misclassify the malicious host as benign.1 An advantage
of this process is that we avoid relying on a hardcoded set of transformations [e.g., 70]; this
ensures adaptability across different application types and time periods. In this work, we consider
only addition of bytecode to the malware—which ensures that we do not hinder the malicious
functionality of the app.
Organ Harvesting. In order to augment a malicious host with a given benign feature 𝑋𝑖 , we

must first extract a bytecode gadget 𝜌 corresponding to 𝑋𝑖 from some donor app. As we intend
to produce realistic examples, we use program slicing [2] to extract a functional set of statements
that includes a reference to 𝑋𝑖 . The final gadget consists of the target reference (entry point 𝐿𝑜 ), a
forward slice (organ 𝑜), and a backward slice (vein 𝑣). We first search for 𝐿𝑜 , corresponding to an
appearance of code corresponding to the desired feature in the donor. Then, to obtain 𝑜 , we perform
a context-insensitive forward traversal over the donor’s System Dependency Graph (SDG), starting
at the entry point, transitively including all of the functions called by any function whose definition
is reached. Finally, we extract 𝑣 , containing all statements needed to construct the parameters
at the entry point. To do this, we compute a backward slice by traversing the SDG in reverse.
Note that while there is only one organ, there are usually multiple veins to choose from, but only
one is necessary for the transplantation. When traversing the SDG, class definitions that will
certainly be already present in the host are excluded (e.g., system packages such as android and
java). For example, for an Activity feature where the variable intent references the target Activity
of interest, we might extract the invocation startActivity(intent) (entry point 𝐿𝑜 ), the class
implementation of the Activity itself along with any referenced classes (organ 𝑜), and all statements
necessary to construct intent with its parameters (vein 𝑣). There is a special case for Activities
that have no corresponding vein in the bytecode (e.g., a MainActivity or an Activity triggered
by an intent filter declared in the Manifest); here, we provide an adapted vein, a minimal Intent
creation and startActivity() call adapted from a previously mined benign app that will trigger
the Activity. Note that organs with original veins are always prioritized above those without.

In this work we have extended the feature extraction capabilities modifying the existing imple-
mentation with the goal to amplify the total amount of available gadgets. Indeed, our framework
currently supports the extraction of all types of features supported by the considered feature
space [21]. Specifically, while in the conference paper we were supporting the extracting of Activity
and URL components, now we also support the extraction of Suspicious calls, API calls, Provider,
Receivers and Permissions. We do not focus on intent-filters due to possible disruptions of the
original semantic §3.3.

With each additional component, we were required to devise a unique strategy for its extraction,
thereby augmenting our existing capabilities. Take, for example, the process of extracting services,

1Our approach is generic and it would be immediate to do the opposite, i.e., transplant malicious code into a benign app.
However, this would require a dataset with annotated lines of malicious code. For this practical reason and for the sake of
clarity of this section, we consider only the scenario of adding benign code parts to a malicious app.
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which necessitated the identification of ’startService’ methods as a starting point, followed by
tracking the subsequent connections from these methods. This technique was equally applied to
other components, including Receivers and Providers. In the case of other categories such as APIs or
permissions, our approach centered on pinpointing the specific functions tied to these elements and
employing program slicing for identify and extract the whole set of dependencies. This systematic
and tailored approach enabled us to effectively dissect and analyze the complexities inherent in
each component and category, enhancing the overall scope and precision of our extraction process.
Please refer to Appendix G for an in depth realistic example.
In order to preserve the final logic behind every type of feature we have personalized the

extraction mechanism. As explained before, we need to extract pieces of code that reference or use
the feature we are interested to extract in order to avoid potential dead code, e.g. for Activity we
focus on extracting also the intent which invokes the target feature. This could be more difficult
for permissions because we need to identify which piece of code may actually use that and it is not
directly referenced. In that specific case, we need indeed a mapping between the actual permission
and the possible system calls which would imply its usage.

Organ Implantation. In order to implant some gadget 𝜌 into a host, it is necessary to identify
an injection point 𝐿𝐻 where 𝑣 should be inserted. Implantation at 𝐿𝐻 should fulfill two criteria:
firstly, it should maintain the syntactic validity of the host; secondly, it should be as unnoticeable
as possible so as not to contribute to any violation of plausibility. To maximize the probability of
fulfilling the first criterion, we restrict 𝐿𝐻 to be between two statements of a class definition in a
non-system package. For the second criterion, we take a heuristic approach by using Cyclomatic
Complexity (CC)—a software metric that quantifies the code complexity of components within the
host—and choosing 𝐿𝐻 such that we maintain existing homogeneity of CC across all components.
Finally, the host entry point 𝐿𝐻 is inserted into a randomly chosen function among those of the
selected class, to avoid creating a pattern that might be identified by an analyst.

3.3 Preserved Semantics
Given an application 𝑧 and its modified (adversarial) version 𝑧′, we aim to ensure that 𝑧 and 𝑧′

lead to the same dynamic execution, i.e., the malicious behavior of the application is preserved.
We enforce this by construction by wrapping the newly injected execution paths in conditional
statements that always return False. This guarantees the newly inserted code is never executed at
runtime—so users will not notice anything odd while using the modified app. In §3.4, we describe
how we generate such conditionals without leaving artifacts.

To further preserve semantics, we also decide to omit intent-filter elements as transplantation
candidates. For example, an intent-filter could declare the app as an eligible option for reading
PDF files; consequently, whenever attempting to open a PDF file, the user would be able to choose
the host app, which (if selected) would trigger an Activity defined in the transplanted benign
bytecode—violating our constraint of preserving dynamic functionality.

3.4 Robustness to Preprocessing
Program analysis techniques that perform redundant code elimination would remove unreachable
code. Our evasion attack relies on features associated with the transplanted code, and to preserve
semantics we need conditional statements that always resolve to False at runtime; so, we must
subvert static analysis techniques that may identify that this code is never executed. We achieve
this by relying on opaque predicates [11], i.e., carefully constructed obfuscated conditions where the
outcome is always known at design time (in our case, False), but the actual truth value is difficult
or impossible to determine during a static analysis. We refer the reader to Appendix D for a detailed
description of how we generate strong opaque predicates and make them look legitimate.
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3.5 Plausibility
In our model, an example is satisfactorily plausible if it resembles a real, functioning Android
application (i.e., is a valid member of the problem-spaceZ). Our methodology aims to maximize the
plausibility of each generated object by injecting full slices of bytecode from real benign applications.
There is only one case in which we inject artificial code: the opaque predicates that guard the entry
point of each gadget (see Appendix D for an example). In general, we can conclude that plausibility
is guaranteed by construction thanks to the use of automated software transplantation [26]. This
contrasts with other approaches that inject standalone API calls and URLs or no-op operations [e.g.,
57] that are completely orphaned and unsupported by the rest of the bytecode (e.g., an API call
result that is never used).
We also practically assess that each mutated app still functions properly after modification by

installing and running it on an Android emulator. Although we are unable to thoroughly explore
every path of the app in this automated manner, it suffices as a smoke test to ensure that we have
not fundamentally damaged the structure of the app.

3.6 Search Strategy
We propose a feature-driven search strategy based on a greedy algorithm, which aims to follow the
gradient direction by transplanting a gadget with benign features into the malicious host. There are
two main phases: Initialization (Ice-Box Creation) and Attack (Adversarial Program Generation).
This section offers an overview of the proposed search strategy, and the detailed steps are reported
in Appendix F.

Initialization Phase (Ice-Box Creation).We first harvest gadgets from potential donors and
collect them in an ice-box 𝐺 , which is used for transplantation at attack time. The main reason for
this, instead of looking for gadgets on-the-fly, is to have an immediate estimate of the side-effect
features when each gadget is considered for transplantation. Looking for gadgets on-the-fly is
possible, but may lead to less optimal solutions and uncertain execution times.
For the initialization we aim to gather gadgets that move the score of an object towards the

benign class (i.e., negative score), hence we consider the classifier’s top 𝑛𝑓 benign features (i.e.,
with negative weight). For each of the top-𝑛𝑓 features, we extract 𝑛𝑑 candidate gadgets, excluding
those that lead to an overall positive (i.e., malicious) score. We recall that this may happen even for
benign features since the context extracted through forward and backward slicing may contain
many other features that are indicative of maliciousness. We empirically verify that with 𝑛𝑓 = 500
and 𝑛𝑑 = 5 we can create a successfully evasive app for all malware samples in our experiments. To
estimate the side-effect feature vectors for the gadgets, we inject each into a minimal app, i.e., an
Android app we developed with minimal functionality (see Appendix F). Notably, the ice-box can
be expanded over time, as long as the target classifier does not change its weights significantly.
Algorithm 1 in Appendix F outlines the steps of the initialization phase.

Attack Phase. We aim to automatically mutate 𝑧 into 𝑧′ so that it is misclassified as goodware,
i.e., ℎ(𝜑 (𝑧′)) < 0, by transplanting harvested gadgets from the ice-box𝐺 . First we search for the list
of ice-box gadgets that should be injected into 𝑧. Each gadget 𝜌 𝑗 in the ice-box𝐺 has feature vector
𝒓 𝑗 which includes the desired feature and side-effect features. We consider the actual feature-space
contribution of gadget 𝑖 to the malicious host 𝑧 with features 𝒙 by performing the set difference
of the two binary vectors, 𝒓 𝑗 ∧ ¬𝒙 . We then sort the gadgets in order of decreasing negative
contribution, which ideally leads to a faster convergence of 𝑧’s score to a benign value. Next we
filter this candidate list to include gadgets only if they satisfy some practical feasibility criteria. We
define a check_feasibility function which implements some heuristics to limit the excessive increase
of certain statistics which would raise suspiciousness of the app. Preliminary experiments revealed
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a tendency to add too many permissions to the Android Manifest, hence, we empirically enforce
that candidate gadgets add no more than 1 new permission to the host app. Moreover, we do not
allow addition of permissions listed as dangerous in the Android documentation [78]. The other
app statistics remain reasonably within the distribution of benign apps (more discussion in §4),
and so we decide not to enforce a limit on them. The remaining candidate gadgets are iterated
over and for each candidate 𝜌 𝑗 , we combine the gadget feature vector 𝒓 𝑗 with the input malware
feature vector 𝒙 , such that 𝒙′ = 𝒙 ∨ 𝒓 𝑗 . We repeat this procedure until the updated 𝒙′ is classified
as goodware (for low-confidence attacks) or until an attacker-defined confidence level is achieved
(for high-confidence attacks). Finally, we inject all the candidate gadgets at once via automated
software transplantation, and verify that problem-space constraints are met and that the app is still
classified as goodware. Algorithm 2 in Appendix F outlines the detailed steps of the attack phase.

4 EXPERIMENTAL EVALUATION
We evaluate the effectiveness of our novel problem-space Android attack, in terms of success rate
and required time—and also when in the presence of feature-space defenses.

4.1 Experimental Settings
Prototype. We create a prototype of our novel problem-space attack (§3) using a combination

of Python for the ML functionality and Java for the program analysis operations; in particular,
to perform transplantations in the problem-space we rely on FlowDroid [22], which is based on
Soot [12]. We release the code of our prototype to other academic researchers (see §8). We ran all
experiments on an Ubuntu VM with 36 vCPUs, 252GB of RAM, and NVIDIA Tesla V100 GPU.

Classifiers. As defined in the threat model (§3.1), we consider the DREBIN classifier [21], based
on a binary feature space and a linear SVM, and its recently proposed hardened variant, Sec-
SVM [39], which requires the attacker to modify more features to perform an evasion. This last
model is implemented in PyTorch. In this work, we apply a feature selection selecting the 10,000
most important features out of the ≈1.5 million features of the original representation, maintaining
the same clean performance. We use hyperparameter C=1 for the linear SVM as in [21] with the
dual problem formulation, and identify the optimal Sec-SVM parameter 𝑘 = 0.25 (i.e., the maximum
feature weight) in our setting by enforcing a maximum performance loss of 2% AUC.
Attack Confidence.We consider two attack settings: low-confidence (L) and high-confidence

(H). The (L) attack merely overcomes the decision boundary (so that ℎ(𝒙) < 0). The (H) attack
maximizes the distance from the hyperplane into the goodware region; while generally this distance
is unconstrained, here we set it to be ≤ the negative scores of 25% of the benign apps (i.e., within
their interquartile range). The percentage interval has been chosen to force the adversarial point
in the distribution of goodware. If we were to enforce the adversarial points to be more negative
than 100% of the goodware, an anomaly detection method would be able to detect our adversarial
points; instead, by enforcing the first quartile we aim to be more inconspicuous. This avoids making
superfluous modifications, which may only increase suspiciousness or the chance of transplantation
errors, while being closer in nature to past mimicry attacks [18].

Dataset. We collect apps from AndroZoo [30], a large-scale dataset with timestamped Android
apps crawled from different stores, and with VirusTotal summary reports. We use the same labeling
criteria as Tesseract [69] (which is derived from [32]): an app is considered goodware if it has 0
VirusTotal detections, as malware if it has 4+ VirusTotal detections, and is discarded as grayware if
it has between 1 and 3 VirusTotal detections. For the dataset composition, we follow the example
of Tesseract and use an average of 10% malware [69]. The final dataset contains ≈150K recent
Android applications, dated between Jan 2016 and Dec 2018, specifically 135,708 goodware and
15,765 malware.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: June 2025.



Intriguing Properties of Adversarial ML Attacks in the Problem Space [Extended Version] 17

0 25 50 75 100
False Positive Rate (%)

0

20

40

60

80

100

T
ru

e
P

os
it

iv
e

R
at

e
(%

)

SVM

Sec-SVM

0 2 4 6 8 10
False Positive Rate (%)

86

88

90

92

94

96

98

100

T
ru

e
P

os
it

iv
e

R
at

e
(%

)

SVM

Sec-SVM

Fig. 2. Performance of SVM and Sec-SVM in absence of adversarial attacks.

Dataset Split. Tesseract [69] demonstrated that, in non-stationary contexts such as Android
malware, if time-aware splits are not considered, then the results may be inflated due to concept
drift (i.e., changes in the data distribution). However, here we aim to specifically evaluate the
effectiveness of an adversarial attack. Although it likely exists, the relationship between adversarial
and concept drift is still unknown and is outside the scope of this work. If we were to perform a
time-aware split, it would be impossible to determine whether the success rate of our ML-driven
adversarial attack was due to an intrinsic weakness of the classifier or due to natural evolution of
malware (i.e., the introduction of new non-ML techniques malware developers rely on to evade
detection). Hence, we perform a random split of the dataset to simulate absence of concept drift [69];
this also represents the most challenging scenario for an attacker, as they aim to mutate a test
object coming from the same distribution as the training dataset (on which the classifier likely has
higher confidence). In particular, we consider a 66% training and 34% testing random split.2

Testing. The test set contains a total of 5,203 malware. The statistics reported in the remainder
of this section refer only to true positive malware (3,897 for SVM and 3,762 for Sec-SVM), i.e., we
create adversarial variants only if the app is detected as malware by the classifier under evaluation.
Intuitively, it is not necessary to make an adversarial example of a malware application that is
already misclassified as goodware; hence, we avoid inflating results by removing false negative
objects from the dataset. For the evaluation we apply a restriction on the harvested gadgets, selecting
the stealthiest ones: we are indeed considering only the gadgets with maximum 20 classes in total
and maximum one permission. During the transplantation phase of our problem-space attack some
errors occur due to bugs and corner-case errors in the FlowDroid framework [22]. Since these
errors are related on implementation limitations of the FlowDroid research prototype, and not
conceptual errors, the success rates in the remainder of this section refer only to applications that
did not throw FlowDroid exceptions during the transplantation phase.

4.2 Evaluation
We analyze the performance of our Android problem-space attack in terms of runtime cost and
successful evasion rate. An attack is successful if an app 𝑧, originally classified as malware, is
mutated into an app 𝑧′ that is classified as goodware and satisfies the problem-space constraints.
Figure 2 reports the AUROC of SVM and Sec-SVM on the DREBIN feature space in absence of

attacks. As expected [39], Sec-SVM sacrifices some detection performance in return for greater
feature-space adversarial robustness.

2We consider only one split due to the overall time required to run the experiments. Including some prototype overhead, it
requires about one month to run all configurations.
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Fig. 3. Statistics of the evasive malware variants, compared with statistics of benign apps. The dark gray back-
ground highlights the area between first and third quartile of benign applications; the light gray background
is based on the 3𝜎 rule and highlights values benign statistics between 0.15% and 99.85% of the distribution
(i.e., spanning 99.7% of the distribution).

Attack Success Rate. We perform our attack using true positive malware from the test set, i.e.,
all malware objects correctly classified as malware. We consider four settings depending on the
considered model and the attack confidence: SVM (L), SVM (H), Sec-SVM (L), and Sec-SVM (H).
In absence of FlowDroid exceptions (see the conference version for more details), we are able to
create an evasive variant for each malware in all four configurations. In other words, we achieve a
misclassification rate of 100.0% on the successfully generated apps, where the problem-space con-
straints are satisfied by construction (as defined in §3). Figure 5 reports the cumulative distribution
of features added when generating evasive apps for the four different configurations. As expected,
Sec-SVM requires the attacker to modify more features, but here we are no longer interested in the
feature-space properties, since we are performing a problem-space attack. This demonstrates that
measuring attacker effort with 𝑙𝑝 perturbations as in the original Sec-SVM evaluation [39] overesti-
mates the robustness of the defense and is better assessed using our framework (§2). Interesting to
note anyway, that compared to our previous version of the attack, the number of needed features
has highly decrease due to the improved extraction capabilities of the new implementation.
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While the plausibility problem-space constraint is satisfied by design by transplanting only
realistic existing code, it is informative to analyze how the statistics of the evasive malware relate to
the corresponding distributions in benign apps. Figure 3 reports the cumulative distribution of app
statistics across the four settings: the 𝑋 -axis reports the statistics values, whereas the 𝑌 -axis reports
the cumulative percentage of evasive malware apps. We also shade two gray areas: a dark gray
area between the first quartile 𝑞1 and third quartile 𝑞3 of the statistics for the benign applications;
the light gray area refers to the 3𝜎 rule and reports the area within the 0.15% and 99.85% of the
benign apps distribution.

Figure 3 shows that while evading Sec-SVM tends to cause a shift towards the higher percentiles
of each statistic, the vast majority of apps falls within the gray regions in all configurations. However,
thanks to the enhanced extraction capabilities of the framework this is less evident compared to
our initial work, making the current attack even more efficient and powerful, especially against
Sec-SVM. We note that this is just a qualitative analysis to verify that the statistics of the evasive
apps roughly align with those of benign apps; it is not sufficient to have an anomaly in one of
these statistics to determine that an app is malicious (otherwise, very trivial rules could be used
for malware detection itself, and this is not the case). We also observe that there is little difference
between the statistics generated by Sec-SVM and by traditional SVM; this means that greater feature-
space perturbations do not necessarily correspond to greater perturbations in the problem-space,
reinforcing the feasibility and practicality of evading Sec-SVM.
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Fig. 4. Violin plots of times per adversarial app.
Runtime Overhead. The time to perform the search strategy occurring in the feature space

is almost negligible; the most demanding operation is in the actual code modification. Figure 4
depicts the distribution of injection times for our test set malware which is the most expensive
operation in our approach while the rest is mostly pipeline overhead. The time spent per app is
low: in most cases, less than 100 seconds, and always less than 2,000 seconds (~33 mins). The low
runtime cost suggests that it is feasible to perform this attack at scale and reinforces the need for
new defenses in this domain.

4.3 Discussion
Through our evaluation we have shown that it is possible to create realistic adversarial samples and
depending on the amount of available gadgets to implant the final outcome and difficulty varies.
Indeed, with the new set of gadgets, which has far more comprehensive, we show that the average
amount of injected features has been significantly reduced.

5 MODEL HARDENING
A further step we have done in this paper is to explore how feasible is adversarial training in order
to harden the target classifiers against problem space generated adversarial samples. Our objective

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: June 2025.



20 Cortellazzi et al.

0 10 20 30 40 50
Number of Added features

0.0

0.5

1.0

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

Fig. 5. Breakdown of average number of features injected for each considered classifier.

is to assess the efficacy of various hardening methods in response to the attack strategy we have
outlined, as referenced in algorithm 2. In this scenario, the attacker faces no restrictions on the
number of gadgets they can employ, with their only limitation being the total quantity of gadgets
available for harvest. We show that different sets of hardening methodologies may lead to different
robustness levels against the attack. We include experiments both focusing on linear SVM and on
Sec-SVM[39]. To have have full control of the training procedure, we approximate also the linear
SVM as a single-layer neural network (NN) using PyTorch [45].This enables us to evaluate the
effectiveness of both hardening strategies (i.e., adversarial training and adversarial retraining) in
this setting.

5.1 Hardening Strategies
As defenders, our goal is to explore and use different approaches in order to harden our considered
classifier. In order to do so, we are considering two different approaches: adversarial training and
adversarial retraining. Adversarial training [25] involves the creation of adversarial examples which
are integrated into the model’s training phase, where they are blended with the standard dataset
throughout the training periods. The most widely accepted technique [43] involves consistently
generating adversarial examples that result in the maximum possible loss. Subsequently, the model’s
adjustable parameters are fine-tuned to reduce the error rate when classifying these challenging
adversarial examples. Then follows the unchanged equation and its explanation:

min
𝜃
E(𝑥,𝑦) ∼ 𝐷 [max𝛿 ∈ 𝑆𝐿(𝜃, 𝑥 + 𝛿,𝑦)] (13)

where (𝑥,𝑦) ∼ 𝐷 represents training data sampled from the distribution 𝐷 , 𝛿 ∈ 𝑆 is the maximum
allowed perturbation, 𝐿 is the model loss and 𝜃 is the model hyperparameters.
On the other hand, adversarial retraining as hardening strategy [79] consists in using attack

A over the training dataset D to produce an adversarial training set 𝐷𝑎 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1. We join
the original and the adversarial training sets and retrain the classifier 𝐻 (𝑥) over this augmented
set 𝐷∗ = 𝐷 ∪ 𝐷𝑎 . It is to be noted that this is different from classical adversarial training where
new adversarial examples are generated and mixed with the original training set continuously. We
have chosen to consider this strategy because it is suited for both traditional machine learning
algorithms and neural networks, so can be equally applied to both our considered models.
We have hypothesised two different types of attacks that defender could use in order to create

adversarial samples for hardening: a feature-space attack, and our proposed problem-space attack in
algorithm 2. The feature space attack is a variant of the latter in which we inject the most important
features of the target classifier without considering 𝜂.
We consider and compare the following aspects:
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• The amount of malware samples used during hardening
• The hardening technique adopted
• The transformation type for creating adversarial samples (PS vs. FS)
• The considered level of confidence both for evasion and for the hardening phase

More details about the considered settings can be found at Appendix E.
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Fig. 6. Percentage of feature space required to evade various configurations of the hardened classifier.

5.2 Evaluation
For this evaluation we assume that the defender is using an increasing percentage of the available
malware in the training set (cf. §5.1), and we focus on the two classification models previously
described, a LinearSVM and SecSVM. As we are focused on exploring scenarios in which attacker
and defender has similar capabilities, we consider the following setting Our goal is to evaluate
the robustness against our proposed white-box problem-space attack through the adversarial
training [43] or adversarial retraining [79], comparing the impact of using realistic problem-space
samples against unrealistic feature-space samples. We consider two different levels of confidence
of the adversarial samples, as explained in §4.1, which can be set as a target both during hardening
and evaluation. For example, a Low-Low configuration means that both during the hardening and
during evaluation the target for the generated adversarial samples is low confidence.
Despite conducting a comprehensive analysis of all potential combinations in Figure 6, in

this section we specifically report scenarios where attackers and defenders possess comparable
capabilities, to investigate if it is feasible to develop hardened models that can effectively withstand
sophisticated attacks from adversaries with the same capabilities as the defenders.
We omit visualizations of adversarial retraining results as our experiments consistently show

this technique fails to enhance model resilience against the studied threat actors. Throughout
our testing, attackers successfully generated high-confidence adversarial samples against models
hardened with this approach, with ASR consistently exceeding 95%. These results conclusively
demonstrate the ineffectiveness of this particular hardening strategy against the sophisticated
adversaries examined in our research.
A notable observation across all our experimental evaluations is the uniformity of outcomes,

regardless of the variations in experimental setups or models tested. This striking consistency
highlights a fundamental limitation of adversarial retraining in the considered context.Indeed,
its current form when does not defend against the generation of both low and high confidence
adversarial samples by the considered threat actors.

On the other hand, hardening through adversarial training methodology has been proven more
effective, especially on LinearSVM. Indeed, Figure 7 and Figure 8 show that adversarial training is
able to significantly reduce the ASR against the generation of high confidence adversarial samples,
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Fig. 7. Evaluating the effectiveness of both the original and the adversarially trained LinearSVM model
against adversarial examples in the problem space, as well as assessing performance on clean data. The charts
illustrate the varied performance outcomes resulting from different hardening approaches. "PS" indicates
that the model underwent hardening through the use of adversarial samples in the Problem Space, whereas
"FS" signifies hardening via adversarial samples in the Feature Space.

while against low confidence adversarial samples we can enforce some level of robustness but
always higher than 20%. We can notice a huge difference between models trained using only feature
space transformations and problem space: models hardened with feature space transformations
even in the High-High scenario cannot reach a reasonable level of robustness while the ones
hardened with problem space transformations can.

All the considered evasions are unbound, meaning that the attacker can use all the gadgets they
were able to harvest, without any need of minimising the perturbation. Specifically for this work,
we have been able to extract around ≈800 suitable gadgets from goodware. Looking at the number
of features used in order to evade Figure 6, we can notice that in the majority of cases the model
hardened using problem space samples significantly raise the bar in the amount of features (and
gadgets) needed for evasion, especially for SVM.

5.3 Discussion
Our investigations underscore that adversarial retraining fails to adequately harden the model
in question within the experimental frameworks we explored. This deficiency in strengthening
is evident through the consistent and successful breaches by adversaries against models purport-
edly made more robust through adversarial retraining. The fundamental principle underlying
this process is that each iteration of adversarial retraining explores a specific vulnerable region.
However, this approach is inherently non-exhaustive, as it concentrates primarily on the considered
decision boundary, which undergoes transformation subsequent to each retraining phase. This
transformation exposes different blind spots within the model’s decision-making process. Given
that the feature space under consideration is characteristically high-dimensional and sparse, there
exists a significant probability that this mechanism will not achieve convergence, or if convergence
is attained, it may necessitate an extensive number of iterations. This is due to the vast and complex
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(c) FS High-High
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Fig. 8. Evaluating the effectiveness of both the original and the adversarially trained Sec-SVM model against
adversarial examples in the problem space, as well as assessing performance on clean data.The charts illustrate
the varied performance outcomes resulting from different hardening approaches. "PS" indicates that the
model underwent hardening through the use of adversarial samples in the Problem Space, whereas "FS"
indicates hardening via adversarial samples in the Feature Space.

nature of the feature space, which allows for numerous potential vulnerabilities to emerge as the
decision boundary evolves. The iterative nature of this process, combined with the dynamic shifts in
the decision boundary, creates a scenario where each reinforcement potentially unveils new areas of
susceptibility. This phenomenon underscores the challenges inherent in achieving comprehensive
robustness in high-dimensional machine learning models through adversarial retraining methods.
On the flip side, our research shows the beneficial impact of adversarial training on enhancing

model robustness. Even if using feature space transformations for hardening brings some minor
level of robustness, we discovered that adversarial samples created through problem-space trans-
formations substantially increase the resilience of the target classifier. These samples prove to be
more effective than feature spaced transformations, offering a comparative advantage for both
classifiers subjected to our tests.

A noteworthy observation from our study is the superior potential for improvement exhibited by
the SVM classifier over the Sec-SVMwhen subjected to adversarial training in though problem-space
hardening. This difference in potential improvement is likely rooted in the inherent differences
between their learning algorithms. The SVM classifier, tends to concentrate on a select set of
essential features [55], while in contrast, the Sec-SVM employs a strategy of weight clamping that
aims to distribute significance more uniformly across a broader spectrum of features by imposing
upper and lower limits on their influence. While intended to foster a more balanced approach to
feature importance, this strategy could inadvertently set a cap on the positive impacts of adversarial
training by too strictly regulating the weights.

A consistent and significant theme emerging from our research is the distinct advantage offered
by adversarial samples that are crafted through realistic transformations in the problem space,
especially in terms of hardening models. This advantage manifests not only in the broadening of the
total amount of budget needed in order to craft successful adversarial samples but also in the notable
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enhancement of model robustness. Practically, we observed improvements in robustness ranging
between 10 to 60% in classifiers that underwent hardening with realistic adversarial samples. This
translates into an increased evasion budget requirement of 3 to 15%, indicating a substantial uplift
in model defense capabilities.

Additionally, our analysis reveals the absence of uniform patterns in the ASRmetrics, as evidenced
in previous plots Figure 8 and Figure 7. This phenomenon may be attributed to the random selection
process employed for each batch, where points for transformation are randomly chosen from a
specified subset at a predetermined rate. This randomness underscores the critical importance of
selecting representative samples for transformation, suggesting that the strategic alteration of the
model’s weights through these samples is more significant than the sheer number of points utilized.
This insight serves to highlight the complex and nuanced nature of adversarial training, shedding
light on the myriad of factors that play a crucial role in determining its effectiveness and success.
The impact of problem-space hardening on feature utilization for evasion is noteworthy, as

illustrated in Figure 6. This technique significantly increases the number of features required for
successful evasion, reaching nearly 20% in the most robust scenarios. Interestingly, the Low-Low
Problem Space hardening consistently demonstrates a higher threshold compared to other scenarios
when testing for Low confidence evasions. This suggests that during the hardening phase, the
process effectively targets the appropriate manifold area due to the perfect symmetry between
attacker and defender strategies. In contrast, the High-Low (HL) scenario exhibits a lower feature
requirement. This can be attributed to the fact that hardening against high confidence adversarial
examples may lead to the exploration of different representation areas, which prove less effective
in defending against attacks specifically targeting the Low confidence evasion domain.

6 DISCUSSION ON ATTACK AND DEFENSE RESULTS
We provide some deeper discussion on the results of our novel problem-space attack and the
investigated hardening methods.

Android Attack Effectiveness. We conclude that it is practically feasible to evade the state-of-
the-art Android malware classifier DREBIN [21] and its hardened variant, Sec-SVM [39], and that
we are able to automatically generate realistic and inconspicuous evasive adversarial applications,
often in less than 2 minutes. This shows for the first time that it is possible to create realistic
adversarial applications at scale.

Obfuscation. It could be argued that traditional obfuscation methods can be used to simply hide
malicious functionality. The novel problem-space attack in this work evaluates the feasibility of
an “adversarial-malware as a service” scenario, where the use of mass obfuscation may raise the
suspicions of the defender; for example, antivirus companies often classify samples as malicious
simply because they utilize obfuscation or packing [59, 28]. Moreover, some other analysis methods
combine static and dynamic analysis to prioritize evaluation of code areas that are likely obfus-
cated [e.g., 42]. On the contrary, our transformations aim to be fully inconspicuous by adding only
legitimate benign code and, to the best of our knowledge, we do not leave any relevant artifact in
the process. While the effect on problem-space constraints may differ depending on the setting,
attack methodologies such as ours and traditional obfuscation techniques naturally complement
each other in aiding evasion and, in the program domain, code transplantation may be seen as a
tool for developing new forms of inconspicuous obfuscation [63].

Other Defense Directions.A promising direction by [51] studies the use ofmonotonic classifiers,
where adding features can only increase the decision score (i.e., an attacker cannot rely on adding
more features to evade detection); however, such classifiers require non-negligible time towards
manual feature selection (i.e., on features that are harder for an attacker to change), and—at least
in the context of Windows malware [51]—they suffer from high false positives and an average
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reduction in detection rate of 13%. Moreover, we remark that we decide to add goodware parts to
malware for practical reasons: the opposite transplantation would be immediate to do if a dataset
with annotated malicious bytecode segments were available. As part of future work we aim to
investigate whether it would still be possible to evade monotonic classifiers by adding only a
minimal number of malicious slices to a benign application.

Defenses Against Problem-Space Attacks. Unlike settings where feature and problem space
are closely related (e.g., images and audio), limitations on feature-space 𝑙𝑝 perturbations are often
insufficient to determine the risk and feasibility of an attack in the real world. Our novel problem-
space formalization (§2) paves the way to the study of practical defenses that can be effective in
settings which lack an inverse feature mapping. Simulating and evaluating attacker capabilities in
the problem space helps define realistic threat models with more constrained modifications in the
feature space—which may lead to more robust classifier design. Our Android evasion attack (§3)
demonstrates for the first time that it is feasible to evade feature-space defenses such as Sec-SVM
in the problem-space—and to do so en masse.

Model hardening through adversarial training.Our experiments demonstrate that depending
on the considered strategies the result may highly vary. Adversarial retraining did not succeed
in fortifying the classifier in any capacity. Conversely, the effect of adversarial training led to a
reduction in the Attack Success Rate (ASR) by up to 80% when facing the creation of low-confidence
adversarial samples, and by 90% for high-confidence ones. In our settings, problem space hardening
revealed to be more effective in all considered scenario if compared to feature-space transformation
adversarial samples, highlighting the exploration of more meaningful areas of the feature space.
The difference between the two considered models’ architectures suggest that the success of
adversarial training is closely tied to the training methodology, the considered feature space and the
classification model used, shown also by the opposite conclusions of [82] and [84]. Future research
could delve into various classifiers and feature spaces to uncover the underlying relationship
between representation and learning logic, aiming to boost the effectiveness of adversarial training.
Another key aspect is related to the points selected during the hardening process: evidence shows
that using all the available points does not always achieve the best robustness.

7 RELATEDWORK
Android Malware Detection Recent research in Android malware detection has explored various
deep learning approaches, each with unique characteristics and contributions to the field.

McLaughlin et al. [44] pioneered the use of convolutional neural networks (CNNs) for Android
malware detection. Their approach operates directly on raw opcode sequences extracted from
disassembled apps, eliminating the need for manual feature engineering. This method allows the
model to automatically learn relevant features from low-level code representations, potentially
capturing subtle patterns that might be overlooked in traditional feature-based approaches.
In contrast, Karbab et al. [52] developed MalDozer, which also uses CNNs but focuses on API

call sequences as input. This higher-level representation captures the behavioral aspects of the
app, as API calls directly reflect the app’s interactions with the Android system. By using API
sequences, MalDozer can potentially detect malware that employs code obfuscation techniques to
evade lower-level analysis.
Xu et al. [60] proposed DeepRefiner, introducing a multi-layer approach that combines both

static and dynamic analysis. Their system uses a shallow neural network for initial efficient
filtering, followed by a deeper Long Short-Term Memory (LSTM) network for precise detection.
This hybrid approach aims to balance computational efficiency with detection accuracy, addressing
the scalability challenges often faced in malware detection systems.
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Addressing this challenge,Wang et al. [74] proposed a hybridmodel combining deep autoencoders
and CNNs. The autoencoder component aims to learn a robust feature representation, potentially
making the model more resilient to minor perturbations that might fool simpler models. This
approach represents a step towards developing adversarially robust malware detection systems.

Oak et al. [68] took a different approach by exploring the use of pre-trained language models like
BERT for malware detection. This method treats code sequences as a form of language, leveraging
the power of large-scale pre-training to capture complex patterns in code. Their work also focused
on addressing the challenge of imbalanced datasets, which is common in real-world malware
detection scenarios where benign apps significantly outnumber malicious ones.
Adversarial Machine Learning. Adversarial ML attacks have been studied for more than a

decade [49]. These attacks aim to modify objects either at training time (poisoning [58]) or at test
time (evasion [18]) to compromise the confidentiality, integrity, or availability of a machine learning
model. Many formalizations have been proposed in the literature to describe feature-space attacks,
either as optimization problems [18, 36] (see also §2.1 for details) or game theoretic frameworks [5].
Recent work propose attacks under black-box assumptions, relying on random sampling with
finite-difference strategies [86] or random search [85]
Problem-Space Attacks. Recently, research on adversarial ML has moved towards domains

in which the feature mapping is not invertible or not differentiable. Here, the adversary needs
to modify the objects in the problem space (i.e., input space) without knowing exactly how this
will affect the feature space. This is known as the inverse feature-mapping problem [13, 18, 70].
Many works on problem-space attacks have been explored on different domains: text [65, 47],
PDFs [20, 16, 15, 38, 35], Windows binaries [53, 56, 57, 72], Android apps [39, 41, 46], NIDS [8,
48, 61, 19], ICS [77], and Javascript source code [70]. Some work have also used reinforcement
learning techniques to perform transformations [81], declaring an action space of problem-space
compliant transformations. However, each of these studies has been conducted empirically and
followed some inferred best practices: while they share many commonalities, it has been unclear
how to compare them and what are the most relevant characteristics that should be taken into
account while designing such attacks. Our formalization (§2) aims to close this gap, and we show
how it can be used to describe representative feature-space and problem-space attacks from the
literature (§2.3).
Adversarial Android Malware. This paper also proposes a novel adversarial problem-space

attack in the Android domain (§3); our attack overcomes limitations of existing proposals, which
are evidenced through our formalization. The most related approaches to our novel attack are on
attribution [70], and on adversarial malware generation [46, 57, 41]. [70] do not consider malware
detection, but design a set of simple mutations to change the programming style of an application
to match the style of a target developer (e.g., replacing for loops with while loops). This strategy is
effective for attribution, but is insufficient for malware detection as altering stylometric properties
alone would not evade a malware classifier which captures program semantics. Moreover, it is not
feasible to define a hardcoded set of transformations for all possible semantics—which may also
leave artifacts in the mutated code. Conversely, our attack uses automated software transplantation
to ensure the plausibility of the generated code and avoid hardcoded mutation artifacts.
Grosse et al. [41] perform minimal modifications that preserve semantics, and only modify

single lines of code in the Manifest; but these may be easily detected and removed due to unused
permissions or undeclared classes. Moreover, they limit their perturbation to 20 features, whereas
our problem-space constraints represent a more realistic threat model.

[46] propose a method for adversarial Android malware generation. Similarly to us, they rely on
automated software transplantation [26] and evaluate their adversarial attack against the DREBIN
classifier [21]. However, they do not formally define which semantics are preserved by their
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transformation, and their approach is extremely unstable, breaking the majority of apps they
mutate (e.g., they report failures after 10+ modifications on average—which means they would
likely not be able to evade Sec-SVM [39] which on average requires modifications of 50+ features).
Moreover, the code is unavailable, and the paper lacks details required for reevaluating the approach,
including any clear descriptions of preprocessing robustness. Conversely, our attack is resilient to
the insertion of a large number of features (§4), preserves dynamic app semantics through opaque
predicates (§3.3), and is resilient against static program analysis (§3.4).

[57] propose a black-box adversarial attack against Windows malware classifiers that rely on API
sequence call analysis—an evasion strategy that is also applicable to similar Android classifiers. In
addition to the limited focus on API-based sequence features, their problem-space transformation
leaves two major artifacts which could be detected through program analysis: the addition of
no-operation instructions (no-ops), and patching of the import address table (IAT). Firstly, the
inserted API calls need to be executed at runtime and so contain individual no-ops hardcoded by
the authors following a practice of “security by obscurity”, which is known to be ineffective [1,
62]; intuitively, they could be detected and removed by identifying the tricks used by attackers to
perform no-op API calls (e.g., reading 0 bytes), or by filtering the “dead” API calls (i.e., which did
not perform any real task) from the dynamic execution sequence before feeding it to the classifier.
Secondly, to avoid requiring access to the source code, the new API calls are inserted and called
using IAT patching. However, all of the new APIs must be included in a separate segment of the
binary and, as IAT patching is a known malicious strategy used by malware authors [40], IAT
calls to non-standard dynamic linkers or multiple jumps from the IAT to an internal segment of
the binary would immediately be identified as suspicious. Conversely, our attack does not require
hardcoding and by design is resilient against traditional non-ML program analysis techniques.
Defenses against adversarial samples A different approach from SecSVM which aims to

create more robust models can be identified by the strategy described in [73], in which authors
leverage on "conserved features" (those that cannot be unilaterally modified without compromising
malicious functionality), in order to alter the used feature space. However the considered domain is
different, they do evaluation on malicious PDF files, which implies that also the considered feature
representation is really different from the one we are considering. While PDF feature space includes
also structural features, Drebin feature space lack of such and so we could think as all features
to be "conserved features". For this reason, such reasoning is hardly applicable to the evaluated
scenario of this paper.
Impact of realistic adversarial samples on adversarial training We are not the first re-

searchers to investigate such research field, e.g. [82] [84]. Both work explore the impact of feature
space generated adversarial samples compared to problem space ones in the malware domain and
end to a different conclusion. Focusing on Adversarial Training, [82] make a wide scope research
evaluating the different impact on adversarial training of realistic and unrealistic adversarial train-
ing samples on random forest classifiers in multiple domains: text classification, malicious traffic
and windows malware domain. They evaluate different attack strategies and make an evaluation
of the hardened model and verify if the adversarial training granted robustness against realistic
attacks. They claim that unrealistic samples do not suffice to harden the classifier in the malware
and text classification domain, while they are enough in the malicious traffic domain. [84] research
the same problem focusing entirely in the windows malware domain training a DNN on raw-binary
feature representation. They consider multiple state-of-the-art problem-space attacks - In-Place
Replacement (IPR), Displacement (Disp) and Kreuk - and they conclude that it is not necessary to
train on the highest-effort attacks to still gain substantial robustness against problem-space attacks,
implying that feature space adversarial samples are enough in order to provide robustness. They
also claim that early adversarial training harmed natural TPR, and training with more batches
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is important to recover accuracy on the original data. This contrasting results can be explained
analysing the differences between the two approaches. Indeed, they consider a different classifier
and a different feature representation, which underlines the importance of the considered model
and the representation used in order to evaluate the impact of adversarial training.

8 AVAILABILITY
We release the code and data of our approach to other researchers by responsibly sharing a private
repository. The project website with instructions to request access is at: https://s2lab.cs.ucl.ac.uk/
projects/intriguing/.

9 CONCLUSIONS
Since the seminal work that evidenced intriguing properties of neural networks [25], the community
has become more widely aware of the brittleness of machine learning in adversarial settings [49].

To better understand real-world implications across different application domains, we propose a
novel formalization of problem-space attacks as we know them today, that enables comparison
between different proposals and lays the foundation for more principled designs in subsequent work.
We uncover new relationships between feature space and problem space, and provide necessary and
sufficient conditions for the existence of problem-space attacks. Our novel problem-space attack
shows that automated generation of adversarial malware at scale is a realistic threat—taking on
average less than 2 minutes to mutate a given malware example into a variant that can evade a
hardened state-of-the-art classifier.

We also try to understand the effectiveness of adversarial learning and the impact of leveraging on
realistic adversarial samples. The gathered evidence underline the benefits of the usage of problem-
space adversarial samples for adversarial training for the considered models, highlighting that the
impact may vary depending on the considered representation, model and adopted methodology.

Future work will explore this reasoning operating in different feature spaces, training different
models and considering different feature space attacks, pursuing the underline relation between
training and the representation taken into account.
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Appendices
A SYMBOL TABLE
Table 2 provides a reference for notation and major symbols used throughout the paper.

B THREAT MODEL
The threat model must be defined in terms of attacker knowledge and capability, as in related
literature [49, 58, 62]. While the attacker knowledge is represented in the same way as in the
traditional feature-space attacks, their capability also includes the problem-space constraints Γ. For
completeness, we report the threat model formalization proposed in Biggio and Roli [49].

Attacker Knowledge.We represent the knowledge as a set 𝜃 ∈ Θwhich may contain (i) training
dataD, (ii) the feature setX, (iii) the learning algorithm𝑔, along with the loss functionL minimized
during training, (iv) the model parameters/hyperparameters𝒘 . A parameter is marked with a hat
symbol if the attacker knowledge of it is limited or only an estimate (i.e., D̂, X̂, 𝑔, 𝒘̂). There are
three major scenarios [49]:

• Perfect Knowledge (PK) white-box attacks, in which the attacker knows all parameters and
𝜃𝑃𝐾 = (D,X, 𝑔,𝒘).
• Limited Knowledge (LK) gray-box attacks, in which the attacker has some knowledge on the
target system. Two common settings are LK with Surrogate Data (LK-SD), where 𝜃𝐿𝐾−𝑆𝐷 =

(D̂,X, 𝑔, 𝒘̂), and LK with Surrogate Learners, where 𝜃𝐿𝐾−𝑆𝐿 = (D̂,X, 𝑔, 𝒘̂). Knowledge of
the feature space and the ability to collect surrogate data, 𝜃 ⊇ (D̂,X), enables the attacker
to perform mimicry attacks in which the attacker manipulates examples to resemble the high
density region of the target class [18, 8].
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Table 2. Table of symbols.

Symbol Description
Z Problem space (i.e., input space).
X Feature space X ⊆ R𝑛 .
Y Label space.
𝜑 Feature mapping function 𝜑 : Z −→ X.
ℎ𝑖 Discriminant function ℎ𝑖 : X −→ R that assigns object

𝒙 ∈ X a score in R (e.g., distance from hyperplane) that
represents fitness to class 𝑖 ∈ Y.

𝑔 Classifier 𝑔 : X −→ Y that assigns object 𝒙 ∈ X to class
𝑦 ∈ Y. Also known as decision function. It is defined based
on the output of the discriminant functions ℎ𝑖 , ∀𝑖 ∈ Y .

L𝑦 Loss function L𝑦 : X × Y −→ R of object 𝒙 ∈ X with
respect to class 𝑦 ∈ Y.

𝑓𝑦,𝜅 Attack objective function 𝑓𝑦,𝜅 : X × Y × R −→ R of
object 𝒙 ∈ X with respect to class 𝑦 ∈ Y with maximum
confidence 𝜅 ∈ R.

𝑓𝑦 Compact notation for 𝑓𝑦,0 .
Ω Feature-space constraints.
𝜹 𝜹 ∈ R𝑛 is a symbol used to denote a feature-space perturba-

tion vector.
𝜼 Side-effect feature vector.
𝑇 Transformation𝑇 : Z −→ Z.
T Transformation sequence T = 𝑇𝑛 ◦𝑇𝑛−1 ◦ · · · ◦𝑇1 .
T Space of available transformations.
Υ Suite of automated tests 𝜏 ∈ Υ to verify preserved semantics.
Π Suite ofmanual tests𝜋 ∈ Π to verify plausibility. In particular,

𝜋 (𝑧 ) = 1 if 𝑧 ∈ Z is plausible, else 𝜋 (𝑧 ) = 0.
Λ Set of preprocessing operators A ∈ Λ for which 𝑧 ∈ Z

should be resistant (i.e., A(T(𝑧 ) ) = T(𝑧 )).
Γ Problem-space constraints Γ, consisting of {Π, Υ, T,Λ}.
D Training dataset.
𝒘 Model hyper-parameters.
Θ Knowledge space.
𝜃 Threat model assumptions 𝜃 ∈ Θ; more specifically, 𝜃 =

(D, X, 𝑔,𝒘 ) . A hat symbol is used if only estimates of pa-
rameters are known. See Appendix B for details.

• Zero Knowledge (ZK) black-box attacks, where the attacker has no information on the target
system, but has some information on which kind of feature extraction is performed (e.g., only
static analysis in programs, or structural features in PDFs). In this case, 𝜃𝐿𝐾 = (D̂, X̂, 𝑔, 𝒘̂).

Note that 𝜃𝑃𝐾 and 𝜃𝐿𝐾 imply knowledge of any defenses used to secure the target system against
adversarial examples, depending on the degree to which each element is known [37].

Attacker Capability. The capability of an attacker is expressed in terms of his ability to modify
feature space and problem space, i.e., the attacker capability is described through feature-space
constraints Ω and problem-space constraints Γ.

We observe that the attacker’s knowledge and capability can also be expressed according to the
FAIL [58] model as follows: knowledge of Features X (F), the learning Algorithm 𝑔 (A), Instances in
training D (I), Leverage on feature space and problem space with Ω and Γ (L).

More details on the threat models can be found in [49, 58].

C THEOREM PROOFS
Proof of Theorem 1. We proceed with a proof by contradiction. Let us consider a problem-
space object 𝑧 ∈ Z with features 𝒙 ∈ X, which we want to misclassify as a target class 𝑡 ∈ Y.
Without loss of generality, we consider a low-confidence attack, with desired attack confidence
𝜅 = 0 (see Equation 3). We assume by contradiction that there is no solution to the feature-space
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attack; more formally, that there is no solution 𝜹∗ = argmin𝜹∈R𝑛 :𝜹 |=Ω 𝑓𝑡 (𝒙 + 𝜹) that satisfies
𝑓𝑡 (𝒙 + 𝜹∗) < 0. We now try to find a transformation sequence T such that 𝑓𝑡 (𝜑 (T(𝑧))) < 0. Let
us assume that T∗ is a transformation sequence that corresponds to a successful problem-space
attack. By definition, T∗ is composed by individual transformations: a first transformation 𝑇1, such
that 𝜑 (𝑇1 (𝑧)) = 𝒙 + 𝜹1; a second transformation 𝑇2 such that 𝜑 (𝑇2 (𝑇1 (𝑧)) = 𝒙 + 𝜹1 + 𝜹2; a 𝑘-th
transformation 𝜑 (𝑇𝑘 (· · ·𝑇2 (𝑇1 (𝑧)))) = 𝒙 +∑𝑘 𝜹𝑘 . We recall that the feature-space constraints are
determined by the problem-space constraints, i.e., Γ ⊢ Ω, and that, with slight abuse of notation,
we can write that Ω ⊆ Γ; this means that the search space allowed by Γ is smaller or equal
than that allowed by Ω. Let us now replace

∑
𝑘 𝜹𝑘 with 𝜹†, which is a feature-space perturbation

corresponding to the problem-space transformation sequence T, such that 𝑓𝑡 (𝒙 + 𝜹†) < 0 (i.e.,
the sample is misclassified). However, since the constraints imposed by Γ are stricter or equal
than those imposed by Ω, this means that 𝜹† must be a solution to argmin𝜹∈Ω 𝑓𝑡 (𝒙 + 𝜹) such that
𝑓𝑡 (𝒙 + 𝜹†) < 0. However, this is impossible, because we hypothesized that there was no solution
for the feature-space attack under the constraints Ω. Hence, having a solution in the feature-space
attack is a necessary condition for finding a solution for the problem-space attack.
Proof of Theorem 2. The existence of a feature-space attack (Equation 11) is the necessary

condition, which has been already proved for Theorem 1. Here, we need to prove that, with
Equation 12, the condition is sufficient for the attacker to find a problem-space transformation that
misclassifies the object. Another way to write Equation 12 is to consider that the attacker knows
transformations that affect individual features only (modifying more than one feature will result as
a composition of such transformations). Formally, for any object 𝑧 ∈ Z with features 𝜑 (𝑧) = 𝒙 ∈ X,
for any feature-space dimension 𝑋𝑖 of X, and for any value 𝑣 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑋𝑖 ), let us assume the
attacker knows a valid problem-space transformation sequence T : T(𝑧) |= Γ, 𝜑 (T(𝑧)) = 𝒙′, such
that:

𝑥 ′𝑖 = 𝑥𝑖 + 𝑣, 𝑥𝑖 ∈ 𝒙, 𝑥 ′𝑖 ∈ 𝒙′ (14)
𝑥 ′𝑗 = 𝑥 𝑗 , ∀𝑗 ≠ 𝑖, 𝑥 𝑗 ∈ 𝒙, 𝑥 ′𝑗 ∈ 𝒙′ (15)

Intuitively, these two equations refer to the existence of a problem-space transformation T that
affects only one feature 𝑋𝑖 in X by any amount 𝑣 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑋𝑖 ). In this way, given any adversarial
feature-space perturbation 𝜹∗, the attacker is sure to find a transformation sequence that modifies
each individual feature step-by-step. In particular, let us consider 𝑖𝑑𝑥0, . . . , 𝑖𝑑𝑥𝑞−1 corresponding to
the 𝑞 > 0 values in 𝜹∗ that are different from 0 (i.e., values corresponding to an actual feature-space
perturbation). Then, a transformation sequence T : T(𝑧) |= Γ,T = T𝑖𝑑𝑥𝑞−1 ◦ T𝑖𝑑𝑥𝑞−2 ◦ · · · ◦ T𝑖𝑑𝑥0
can always be constructed by the attacker to satisfy 𝜑 (T(𝑧)) = 𝒙 + 𝜹∗. We highlight that we do
not consider the existence of a specific transformation inZ that maps to 𝒙 + 𝜹∗ because that may
not be known by the attacker; hence, the attacker may never learn such a specific transformation.
Thus, Equation 12 must be valid for all possible perturbations within the considered feature space.

D OPAQUE PREDICATES GENERATION
We use opaque predicates [10] as inconspicuous conditional statements always resolving to False
to preserve dynamic semantics of the Android applications.
To ensure the intractability of such an analysis, we follow the work of [11] and build opaque

predicates using a formulation of the 3-SAT problem such that resolving the truth value of the
predicate is equivalent to solving the NP-complete 3-SAT problem.
The 𝑘-satisfiability (𝑘-SAT) problem asks whether the variables of a Boolean logic formula can

be consistently replaced with True or False so that the entire formula evaluates to True; if so the
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formula is satisfiable. Such a formula is easily expressed in its conjunctive normal form:

∧𝑚
𝑖=1 (𝑉𝑖1 ∨𝑉𝑖2 ∨ ... ∨𝑉𝑖𝑘 ) ,

where 𝑉𝑖 𝑗 ∈ {𝑣1, 𝑣2, ..., 𝑣𝑛} are Boolean variables and 𝑘 is the number of variables per clause.
To consistently generate NP-Hard k-SAT problems we use Random k-SAT [3] in which there are

3 parameters: the number of variables 𝑛, the number of clauses𝑚, and the number of literals per
clause 𝑘 .

To construct a 3-SAT formula,𝑚 clauses of length 3 are generated by randomly choosing a set of
3 variables from the 𝑛 available, and negating each with probability 50%. An empirical study by
[3] showed that 𝑛 should be at least 40 to ensure the formulas are hard to resolve. Additionally,
they show that formulas with too few clauses are under-constrained while formulas with too many
clauses are over-constrained, both of which reduce the search time. These experiments led to the
following conjecture. For further details please refer to the conference version.

E DEFENDER EVALUATION SETTINGS
In §5.1, we examine different strategies for enhancing classifier robustness, which include varying
approaches to generating adversarial examples, levels of confidence, and hardening methods. We
adjust the proportion of adversarial examples from the training set, in 10% increments from 10 to
100%, to see how it affects robustness. The study also considers other variables such as the model
used, hardening approach, and transformation type.In our experimental framework, we explore
several key dimensions to comprehensively evaluate model hardening effectiveness. Regarding
confidence levels, we employ the two distinct levels defined in Section §4.1, applying them across
both hardening and testing phases. This creates four possible confidence configurations: High-
Low, where models are hardened using high confidence adversarial points but tested against
low confidence evasion attempts; Low-Low, utilizing low confidence adversarial points for both
hardening and testing; High-High, employing high confidence points for both processes; and
Low-High, where hardening occurs with low confidence points while testing uses high confidence
evasion techniques. For our model selection, we conduct parallel analyses on both LinearSVM and
Sec-SVM implementations to compare their respective resilience characteristics. The hardening
methodologies under investigation include both adversarial training and adversarial retraining
approaches, allowing us to contrast their effectiveness under various conditions. Furthermore,
our transformation evaluation framework encompasses both feature space transformations and
problem space transformations during the hardening process, while consistently evaluating against
adversarial points generated through realistic transformations. This comprehensive evaluation
strategy enables us to assess hardening efficacy across multiple dimensions of the adversarial
machine learning landscape.

F ATTACK ALGORITHMS
As previously described in the paper, we adopt a greedy approach in order to create adversarial
samples, both in the feature space and in the problem space. Algorithm 1 and Algorithm 2 describe
in detail the two main phases of our search strategy: organ harvesting and adversarial program
generation. For the sake of simplicity, we describe a low-confidence attack, i.e., the attack is
considered successful as soon as the classification score is below zero. It is immediate to consider
high-confidence variations (as we evaluate in §4).
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Input: Discriminant function ℎ (𝒙 ) = 𝒘𝑇 𝒙 + 𝑏 , which classifies 𝒙 as malware if ℎ (𝒙 ) > 0, otherwise as goodware. Minimal app 𝑧𝑚𝑖𝑛 ∈ Z with
features 𝜑 (𝑧𝑚𝑖𝑛 ) = 𝒙𝑚𝑖𝑛 .

Parameters :Number of features to consider 𝑛𝑓 ; number of donors per-feature 𝑛𝑑 .
Output: Ice-box of harvested organs with feature vectors.
ice-box← {} Empty key-value dictionary.
𝐿 ← List of pairs (𝑤𝑖 , 𝑖), sorted by increasing value of 𝑤𝑖 .
𝐿′ ← First 𝑛𝑓 elements of 𝐿, then remove any entry with 𝑤𝑖 ≥ 0.
for (𝑤𝑖 , 𝑖 ) in 𝐿′ do

ice-box[i]← [] Empty list for gadgets with feature 𝑖 .
while length(ice-box[i])< 𝑛𝑑 do

𝑧 𝑗 ← Randomly sample a benign app with feature 𝑥𝑖 = 1.
Extract gadget 𝜌 𝑗 ∈ Z with feature 𝑥𝑖 = 1 from 𝑧 𝑗 .
𝑠 ← Software stats of 𝜌 𝑗
𝑧′ ← Inject gadget 𝜌 𝑗 in app 𝑧𝑚𝑖𝑛 .
(𝒙𝑚𝑖𝑛 ∨ 𝒆𝑖 ∨ 𝜼 𝑗 ) ← 𝜑 (𝑧′ ) 𝒆𝑖 is a one-hot vector.
𝒓 𝑗 ← (𝒆𝑖 ∨ 𝜼 𝑗 ) ← 𝜑 (𝑧′ ) ∧ ¬𝒙𝑚𝑖𝑛Gadget features obtained through set difference.
if ℎ (𝒓 𝑗 ) > 0 then

Discard the gadget;
else

Append (𝜌 𝑗 , 𝒓 𝑗 , 𝑠 ) to ice-box[i]. Store gadget
return ice-box;

Algorithm 1: Initialization (Ice-Box Creation)
Input: Discriminant function ℎ (𝒙 ) = 𝒘𝑇 𝒙 + 𝑏 , which classifies 𝒙 as malware if ℎ (𝒙 ) > 0, otherwise as goodware. Malware app 𝑧 ∈ Z. Ice-box𝐺 .
Parameters :Problem-space constraints.
Output: Adversarial app 𝑧′ ∈ Z such that ℎ (𝜑 (𝑧′ ) ) < 0.
T ← Transplantation through gadget addition.
Υ← Smoke test through app installation and execution in emulator.
Π ← Plausibility by-design through code consolidation.
Λ← Artifacts from last column of Table 1.
Γ ← {T, Υ,Π,Λ}
𝑠𝑧 ← Software stats of 𝑧
𝒙 ← 𝜑 (𝑧 )
𝐿 ← [] Empty list.
T(𝑧 ) ← Empty sequence of problem-space transformations.
for (𝜌 𝑗 , 𝒓 𝑗 , 𝑠 ) in𝐺 do

𝒅 𝑗 ← 𝒓 𝑗 ∧ ¬𝒙 Feature-space contribution of gadget 𝑗 .
𝑠𝑐𝑜𝑟𝑒 𝑗 ← ℎ (𝒅 𝑗 ) Impact on decision score.
Append the pair (𝑠𝑐𝑜𝑟𝑒 𝑗 , 𝑖, 𝑗 ) to 𝐿 Feature 𝑖 , Gadget 𝑗 .

for (𝑠𝑐𝑜𝑟𝑒 𝑗 , 𝑖, 𝑗 ) in 𝐿′ do
if z has 𝑥𝑖 = 1 then

Do nothing; Feature 𝑖 already present.
else if z has 𝑥𝑖 = 0 then

(𝜌 𝑗 , 𝒓 𝑗 , 𝑠 ) ← element 𝑗 in ice-box𝐺
if check_feasibility(𝑠𝑧 , 𝑠) is True then

𝒙 ← (𝒙 ∨ 𝒆𝑖 ∨ 𝜼 𝑗 ) Update features of 𝑧.
Append transplantation𝑇 ∈ T of gadget 𝜌 𝑗 in T(𝑧 ) .
if ℎ (𝒙 ) < 0 then

Exit from cycle; Attack gadgets found.
𝑧′ ← Apply transformation sequence T(𝑧 ) Inject chosen gadgets.
if ℎ (𝜑 (𝑧′ ) ) < 0 and T(𝑧 ) |= Γ then

return z’; Attack successful.
else

return Failure;
Algorithm 2: Attack (Adv. Program Generation)

G SIDE EFFECT FEATURES EXAMPLE
This section provides a concrete example to illustrate the impact of side-effect features within our
domain of study. Specifically, algorithm 2 identifies the URL http://intradaystatergies.blogspot.com/
2018/07/blog-post.html as the most benign feature in the initial analysis. Further investigation of the
corresponding code slice in the icebox reveals a total of 1098 Jimple classes [12] and eight distinct
side-effect features:

• API call: api_calls::android/content/Context;->startActivity
• API call: api_calls::android/location/LocationManager;->getLastKnownLocation
• Intent: intents::android_intent_action_MAIN
• Intent: intents::android_intent_category_LAUNCHER
• API call: api_calls::java/net/URLConnection;->getInputStream
• API permission: api_permissions::android_permission_ACCESS_FINE_LOCATION
• API permission: api_permissions::android_permission_ACCESS_INTERNET
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Due to space constraints, we are only reporting the code showing the presence of the side-effect
features in the bytecode of one of the extracted classes.

Listing 1. Bytecode extracted from a benign donor app containing a side effect feature. The target feature is
startActivity as highlighted.

public void onStartActivityFromFragment(android.support.v4.app.Fragment , android.content.

Intent , int , android.os.Bundle)

{

android.content.Context $r4;

java.lang.IllegalStateException $r5;

android.os.Bundle $r3;

android.support.v4.app.Fragment $r1;

int $i0;

android.content.Intent $r2;

android.support.v4.app.FragmentHostCallback r0;

r0 := @this: android.support.v4.app.FragmentHostCallback;

$r1 := @parameter0: android.support.v4.app.Fragment;

$r2 := @parameter1: android.content.Intent;

$i0 := @parameter2: int;

$r3 := @parameter3: android.os.Bundle;

if $i0 == -1 goto label1;

...

label1:

$r4 = r0.<android.support.v4.app.FragmentHostCallback: android.content.Context

mContext >;

virtualinvoke $r4.<android.content.Context: void StartActivity(android.content.Intent)>(

$r2);

return;

}

}

The injection process entails integrating the complete collection of Jimple classes along with
their associated features—comprising eight side-effect features and one primary feature—into the
target malware. Our examination of 18,000 extracted gadgets indicates an average of six side-effect
features for each harvested feature. These statistics are derived from the entire set of extracted
gadgets, without accounting for the imposed limitations of injecting 20 classes and one permission.
However, this example clearly illustrates that there is no direct relationship between the number of
injected Jimple classes and the corresponding feature set. In fact, the quantity of Jimple classes is
often significantly greater than the number of features they contain. This discrepancy suggests that,
for a stealthy injection process, certain constraints must be considered to prevent the creation of a
final adversarial sample that could raise suspicions due to the excessive number of injected classes.
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