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Abstract 

Dictyostelium represents a stripped-down model for understanding how cells make decisions 

during development.  The complete life cycle takes around a day and the fully differentiated 

structure is composed of only two major cell types.  With this apparent reduction in 

“complexity”, single cell transcriptomics has proven to be a valuable tool in defining the 

features of developmental transitions and cell fate separation events, even providing causal 

information on how mechanisms of gene expression can feed into cell decision making.  

These scientific outputs have been strongly facilitated by the ease of non-disruptive single 

cell isolation- allowing access to more physiological measures of transcript levels.  In 

addition, the limited number of cell states during development allows the use of more 

straightforward analysis tools for handling the ensuing large datasets, which provides 

enhanced confidence in inferences made from the data.  In this chapter we will outline the 

approaches we have used for handling Dictyostelium single cell transcriptomic data, 

illustrating how these approaches have contributed to our understanding of cell decision 

making during development. 

 



1. INTRODUCTION 

Dictyostelium is an exceptional system for application of single cell transcriptomic analyses 

to developmental biology.  The developmental programme is rapid, with only two major final 

cell fates, allowing high temporal resolution analysis of cell state transitions and the 

emergence of cell type specialisation with relatively low cell numbers.  In addition, the ease 

and speed of extraction of high-quality RNA permits very reproducible data, removing the 

need for complex batch correction procedures and allowing deep insights into how the 

mechanisms of gene regulation govern cell type heterogeneity.  The data from this system are 

a clear benchmark for high quality single cell transcriptome data, used for the development of 

reliable quantitative tools for more complex and intractable systems [1].   

In this chapter, we will outline the essential approaches for analysis of single cell 

transcriptome data in Dictyostelium, with specific technical and biological examples showing 

the methods we arrived at to best exploit the data in addition to the gains in knowledge about 

developmental processes that emerged. 

 

2. MATERIALS 

a) Cell preparation. 

i) Although cells can be cultured on bacteria, HL5 growth media is used for most experiments 

(Formedium HLG0102), with cells grown in adherent culture on 10 cm tissue culture dishes. 

ii) Development buffer.  Any standard lab development buffer could be used, but we use 

KK2: 20mM KPO4, pH6.0-6.2. 

iii) EDTA.  We use a 0.5M stock (pH 8.0) of EDTA, added to the KK2 to a final 

concentration of 10-20 mM.  In practice, we observed little difference in the efficacy of cell 

disaggregation between 10 and 20 mM. 



iv) Syringes, needles.  For disaggregation of cells we pass the sample, in KK2, through a 1ml 

syringe (BD 303172) attached to a 20g needle (BD407). 

v) Development substrate.  We use 1.5- 2% agar (BD214010) dissolved in KK2 for most 

applications.  This agar is cast in 3.5 cm petri dishes.  For more uniform late development, we 

plate cells on Whatman #50 filter paper rings (Whatman 1450-090).  These rings are kept 

humid by layering them on rings of Whatman #3 filters (1003-090) saturated with KK2 in 10 

cm petri dishes. 

 

b) Cell isolation, library preparation and sequencing 

Two standard strategies have been used for cell isolation: either using the 10x Genomics 

Chromium Single Cell Gene Expression platform or Fluidigm (now Standard BioTools Inc.) 

C1 single-cell mRNA sequencing system.  Please refer to company websites for more 

information.  Sequencing has been carried out on a NextSeq500 (Illumina).  A detailed 

description of this standard protocol is beyond the scope of this chapter.  Please visit the 

Illumina website. 

 

c) Data analysis 

i) Checking the quality of the sequenced reads: FASTQC (Babraham Bioinformatics). 

ii) Mapping the reads to reference genome and quantifying reads per gene: we used Tophat2 

and HtSeq for reads retrieved using C1 sequencing system. Cell Ranger (10X Genomics) was 

used for reads retrieved using 10x Chromium. 

iii) Analysis of read count tables (cell transcriptome profiles): MATLAB (MathWorks), 

Mathematica (Wolfram) and R (R Foundation). 

iv) Gene ontology analysis: Panther Classification System (National Science Foundation). 

 



3. METHODS 

3.1. Data generation considerations 

For completeness, we briefly review the approaches that take us from the biological sample 

to the sequencing reads.  For more details, please visit our recent experimental papers [2-5].  

Readers may also wish to consider other studies in which we reused the data based on new 

scientific questions [6, 7] for insight into the general approaches used. 

Single cell isolation in undifferentiated and early developing cells is based on gentle 

pipetting of cells off their substrates using development buffer.  Cells are plated either on 35 

mm dishes containing 2-3 ml of 1.5-2% agar made up in KK2 buffer, or developed on 

Whatman #50 filter paper.  Generally, 5 x106 -107 cells are plated, from a 1 ml cell 

suspension in KK2 buffer.  Cells are allowed to settle for 10-30 minutes, before buffer is 

removed, then the samples are kept in a humidified chamber.  At specific time points after 

this, differentiating cells are removed from the agar surface by gentle pipetting up and down 

with ice cold 1 ml KK2 with a standard micropipette (such as a Gilson P1000).  Later 

developmental stages (after 6 hours, when cells have formed aggregates) where cells are 

more adherent, requires a slightly more aggressive disaggregation, in which cells are repeat 

pipetted (20 times) through a syringe and 20G needle.  For these later stages, the KK2 also 

contains 10-20 mM EDTA to inhibit cell-cell adhesions. This is a standard approach for 

studying more developmentally advanced cells, and the dissociated cells can be used for 

standard physiological assays after this treatment [4, 6]. The resultant cell suspension can be 

directly used for transcript extraction, but in practice is kept on ice during the transit to the 

sequencing facility.  Gentle pipetting (with Gilson or syringe/needle as appropriate) just prior 

to loading the suspension ensures single cells are injected into the cell isolation equipment.  

The absence of a clear stress response in our data, the general concordance of our data with 

standard population transcriptomics datasets [5] and the overall high predictability of the 



gene expression behaviours of specific candidate genes arising from our analysis (eg. [3]), 

suggest this cold disaggregation approach is minimally invasive, at least as far as the 

transcriptome is concerned.   

The commercial pipelines used for going from single cell suspensions to single cell reads are 

the 10x Genomics Chromium Single Cell Gene Expression platform or Fluidigm (now 

Standard BioTools Inc.) C1 single-cell mRNA sequencing system. The C1 platform 

benefitted from high sequencing depth but lower cell counts (around 30-60 cells per run was 

usual although the theoretical maximum was 96).  The 10x platform has been used more 

recently, which has lower read depth, but many more cells (in our experiments, usually up to 

around 5000 per run, however, biological replicates can be loaded at the same time, which 

greatly facilitates quality control).  In addition, the 10x platform can take the cells straight 

from ice cold buffer to the chemistry, whereas the C1 required visual inspection of cell 

counts/well at room temperature, which might permit stress responses to develop- although in 

our experience, these were not pronounced- with obvious exception of pre-existing 

spontaneous stress on cells, such as DNA damage [6].  As the RNA conversion to read counts 

requires amplification steps, final read counts are not linearly related to the initial single cell 

content of each transcript.  However, the option for exact transcript quantification using 

unique short sequences (unique molecular identifiers: UMIs) can be applied to both C1 and 

10x approaches. 

 

3.2. Generating read count tables 

The focus of this section is the analysis of the read count data (number of transcripts 

belonging to each gene in each cell). For this reason, we provide a short overview of what 

precedes generating a read count table after receiving sequencing read files from the 

sequencing facility. 



Raw sequenced reads are, by standard, stored as FASTQ files. The quality of the FASTQ 

files should be checked (with FASTQC tool) and then the reads that pass the quality 

threshold are aligned to the reference genome (in a FASTA file format, together with its 

correct annotation in GFF format). Based on these alignments (SAM or BAM file format), 

each transcript for each cell is counted accordingly. Depending on the sequencing technology 

used, the examples presented in this chapter used data processed in one of the following 

ways: reads retrieved with the 10x system were processed with Cell Ranger analysis 

pipelines, while reads from the C1 system were processed with tuxedo suite protocols 

(previously the Bowtie and Cufflinks packages, now HISAT2 and StringTie tools).  

 

3.3. Data preprocessing  

3.3.1 Basic data formatting 

After reads have been mapped and counted, the data is in the form of a count table usually in 

a format of a genes as rows and cells as columns. Depending on the number of samples and 

the analysis pipeline we used, some basic formatting steps were carried out first, such as 

merging replicates or naming cells in an appropriate way (e.g., “rep2_cell1” for a first cell 

from a second replicate, instead of a barcode “AAACGAACATTGACCA-1”). 

 

3.3.2 Removing outlier samples  

We show a simple example where we excluded samples unlikely to be single, whole, 

properly lysed cells. These were removed to increase the signal to noise ratio in later analysis. 

We excluded these outliers based on the following properties: 

1. Low total number of mapped genes per cell. A low number of mapped genes per cell 

may indicate cell debris or an ineffectively lysed cell. The best way to decide on the low 



threshold value is to visualise the data. The example in Figure 1 is from [5].  We would 

expect the unfragmented, well lysed cells are less different from each other than from 

debris. A trough in the plot showing the occurrence of mapped genes per cell (Figure 

1A), indicates that the first peak (with few mapped genes) most likely comes from poor 

samples.  

2. Low total number of transcripts. Extremely low numbers of transcripts also indicate cell 

debris, an ineffectively lysed cell, or the failure in RNA capture step. Again, the best way 

to decide on the threshold value is to visualise the data (Figure 1B). A lot of these 

outliers will overlap with those detected in the previous step (Figure 1A). 

3. High total number of transcripts. Unexpectedly high numbers of transcripts could mean 

more than one cell was captured. The best way to detect outliers here is, again, to 

visualise the data. If there is no obvious threshold value, a Tukey Fences for outliers 

could be used, where values above the sum of the upper quartile (Q3) and 1.5- or 3-

times the interquartile range (IQR) would be considered as outliers or far outliers, 

respectively.  

An example of the outliers detected by the previously mentioned steps is shown in Figure 1C. 

There are other ways of detecting suspicious samples (e.g., high percentage of mitochondrial 

transcripts, as used in [2]).  These choices will depend on the biology of the sample- for 

example if it is suspected that there may be rare populations of cells of interest, it would be a 

good idea to be less stringent in outlier removal.  

 

3.3.3  Normalisation 

As the sequencing depth always varies between the samples, there is a need for appropriate 

normalisation. Depending on the technology used, there might also be a need to normalise for 



gene length, as in the techniques not using unique barcoding (UMIs) there is a bias towards 

longer genes being assigned more counts. The initial standard methods used for normalisation 

were RPM (reads per million mapped reads), where all the gene counts in the cell are divided 

by the same value (the so called “size factor”) and RPKM (reads per kilobase per million 

mapped reads), where each gene in the cell is divided by a gene specific value. Both these 

techniques are still used today. The drawback of these methods is that total read counts in 

cells are often dominated by a few highly expressed genes (e.g., actin), and this can distort 

the inferred relative level of expression of weakly expressed genes [8]. 

For deep sequenced samples acquired using the C1 approach [2, 3], we found that using the 

size factor from ‘DESeq’ package in R [8] gives a good result. This method normalises single 

cell read counts based on the geometrical mean over all transcripts (in the case of 

Dictyostelium this means a geometrical mean of up to 14000 different transcript counts). For 

the more shallow sequencing sample acquired using the 10x method used in [5], where over 

4000 cells were sequenced, we used size factors calculated with ‘scran’ package in R [9]. 

This method was developed alongside the advancement of single-cell RNA sequencing 

(scRNA-seq), and assumes a large and heterogenous population.  It pre-clusters the cells 

based on their expression profile, calculating each cluster’s size factor value, before 

deconvolving each individual cell’s size factor.  For general reviews on normalisation 

methods, we suggest [10] and [11]. 

At the end of the analysis, one should always check whether the final observations are also 

valid in the unprocessed data and not an artefact introduced by preprocessing (see Figure 8 in 

the Notes section).  

 

3.3.4  Gene expression variability  



A major advantage of the development of scRNA-seq is the ability to study the distribution of 

gene expression in a population of cells and how this leads to the emergence of different cell 

types.  To explore the emergence of cellular heterogeneity during development, we analysed 

individual transcriptomes of 433 cells from three different development timepoints [2].  Cells 

were collected at 0h (undifferentiated cells), 3h (starvation) and 6h (aggregation), with a 

median of 3 million reads and 5600 mapped genes per cell. A typical way of showing gene 

expression variability in a cell population is plotting square coefficient of variation (CV2) for 

each gene against its mean expression level (Figure 2A). The variability in gene expression is 

negatively correlated with its mean expression level. We define a variable gene as a gene 

more variable in its expression than expected for a gene with that level of expression. The 

‘expected’ variance is described with a running median of CV2 values and is depicted with a 

red curve in Figure 2A. In this example, genes previously known to be variably expressed, 

contact site A (csaA) and discoidin I (dscA), and a gene known as homogeneously expressed, 

actin 5 (act5), are plotted on the same figure. We found that overall variability in the cell 

population increases over time (Figure 2B) and that this increase affects genes at all levels of 

expression (Figure 2C). This heterogeneity increased without clear separation of the 

population into different states [2]. 

Since many genes are downregulated during these initial stages of the development [2], we 

decided to examine how downregulation and upregulation of transcript levels affect transcript 

variability. This analysis used the distance from median (DM, [12]) as the measure of 

transcript variability. The first step for calculating DM is defining each transcript’s variance 

as a distance between their CV2 value and the value expected for the gene of such level of 

expression, as visualized by the running median in Figure 2A. If read counts were extracted 

without UMIs, there is need for another step, which also corrects for the effect of gene length 

[12]. As a result, we get a transcript variance measure that is independent of gene’s length or 



its expression level (Figure 3A). The DM method is now also a part of the ‘scran’ package in 

R [9]. 

Comparing the variance between genes being up- and downregulated from undifferentiated 

cells (0h) to the start of aggregation (6h), we found that downregulated transcripts become 

more variable than upregulated transcripts. This effect is consistent across all levels of 

expression (Figure 3A). In addition, the higher the fold-change expression threshold we used, 

the difference became even more apparent (Figure 9 in the Notes section). We then tested 

whether the difference in transcript stability of up- and downregulated genes could be causing 

this effect on variability, by using the RNA turnover kinetic data from [13] and found no 

correlation between RNA turnover and gene expression variability (Figure 3B). We then 

considered how regulation of transcription could influence the variability in transcript 

abundance between cells. We simulated transcription with a simple two-state model, where a 

gene is either in OFF or ON state and switches between these states with the rates of kon and 

koff, respectively (Figure 3C).  This results in bursts of transcription, described by the burst 

size and the frequency of burst occurrence. When in the ON state, the polymerase initiation 

event happens at the rate λ, and the transcripts have a degradation time τ. We ran the 

simulations using physiological parameter estimates [13-16].  This suggested that gene 

expression if regulated primarily by changing the burst frequency, then transcription 

downregulation will result in a more variable distribution of the transcript abundance in the 

cell population (Figure 3D), as observed in the data. This is best visualised in Figure 3E: 

reduction of burst frequency results in a lower mean expression but a higher variance. In the 

opposite direction, increase in frequency increases the expression, but lowers the variance. 

Initially, we looked at the difference of variance at what we considered the end point – 6h of 

differentiation. But from the point of the model, there is no reason why one end of the 

process would be considered the beginning and the other the end. Following that logic, we 



would expect exactly the opposite characteristics of up- and downregulated genes at 0h: 

genes to be developmentally upregulated would be more variable to start with, while the 

genes to be downregulated would be more homogeneous. This is exactly what we observe at 

the onset of aggregation (Figure 3F). The summary of this findings is presented in Figure 3G. 

 

3.3.5 Linear Dimensionality Reduction  

As each Dictyostelium cell is described with around 14000 genes, it is impossible to visualise 

the data in its original form – each cell would be a point in the 14000-dimensional space. In 

order to visualise, investigate and describe the data we need to use techniques of 

dimensionality reduction.  

To be able to directly interpret the data in this reduced space, the first step is usually Principal 

Component Analysis (PCA), a linear dimensionality reduction method. To remove 

experimental noise, we only used the genes with mean expression above the certain 

threshold. The choice of this threshold was based on the convention at the time of the study: 

we used a value where the coefficient of variation stops reaching a maximal value.  For 

example in Figure 2A the mean expression threshold value was 10 read counts. Another 

standard approach (used for example in the Cell Atlas projects [17]) is to use only the most 

variable genes, selecting all the genes more variable than average or only the 10% most 

variable genes (see Figure 10 in Notes).  

A useful example considers the mound phase of development [3]. For this phase, we captured 

116 single cell transcriptomes with around 3 million reads and 5400 mapped genes per cell. 

PCA linearly transforms the data into new components, sorted in the way that the first 

component will capture most of the variance in the set, with each further component 

capturing less and less variance. The top left panel in Figure 4A shows the cells positioned 

based on their transcriptome profiles in principal component 1 (PC1) and PC2 space. To 



interpret this plot, we use loadings analysis. As each component is a linear combination of 

original dimensions (i.e., genes), we can interpret each component based on the contributions 

of genes to its total variance. The higher the loading’s absolute value an individual gene has 

in a principal component, the larger its contribution is.  

We carried out the loadings analysis in the following way. For each component, we sorted the 

genes based on their loadings, and took the top genes whose contribution summed to the 25% 

of the component’s variance. We then used these genes for gene ontology enrichment 

analysis, using the PANTHER Classification System on the Gene Ontology web site [18]. 

The resulting enrichments in biological processes are shown in the tables below the PCA 

panel for the PC1, and right of the panel for the PC2 in Figure 4A. It is apparent from these 

results that PC1 and PC2 capture different aspects of development: PC1 captures translation 

being downregulated and development initiated, while PC2 captures cytokinesis, signalling, 

adhesion, and cAMP chemotaxis. If we overlay the known biological information on this 

plot, such as expression of developmentally upregulated and downregulated genes (Figure 4B 

left and right panel, respectively; [19]) we can see the direction of development going from 

left to right (across PC1), with the tilt towards the positive PC2 value. Looking at the PC3, 

while keeping PC1 as a proxy for development, we can observe the separation of cells in two 

separate clusters at the high values of PC1 (Figure 4C, left panel). Loading analysis of PC3 

gives easy interpretable information for the top cluster (spore wall assembly), but a more 

complex one for the bottom cluster (right panel in Figure 4C). We then used the same set of 

genes to look at their enrichment in prestalk or prespore cells, using the information from 

[20] on the dictyExpress platform [21]. The result of this analysis is shown in Figure 4D. PC3 

captures the cell fate information, and we observe the obvious separation of prespore and 

prestalk cells across PC3. Overlaying the expression of known cell fate markers, pspA for 

spore and ecmA for stalk cells, illustrates this inference (Figure 4E). 



Following the same principle, we identified another cluster of cells along the PC4 axis [3]. 

This population appears as an intermediate between the early and differentiated cells, with a 

slight enrichment in prestalk markers. All identified clusters are shown in Figure 5A. 

 

3.3.6 Hierarchical Clustering  

A simple and useful approach to explore a single cell transcriptomics dataset is two-way 

hierarchical clustering, where cells and genes are simultaneously ordered and clustered in an 

unbiased way based on their similarities (Figure 5B). For this analysis we selected genes 

based on the following conditions: their mean normalised read count was >10 and are 

correlated with at least 10 other genes with Pearson's correlation >0.5. Over 5000 genes 

passed this criterion (almost half of the genome), which is a huge advantage of the C1 deep 

sequencing methods. With the same criteria for data collected using 10x [5] we retrieved 957 

genes.  

The result of the hierarchical clustering is shown in Figure 5B. Expression level of each gene 

is normalised, so each gene will have a mean of zero and a standard deviation of one.  The 

colours in the heatmap represents the z-score for each gene across the cells, which reflect the 

up or down regulation of the specific gene in the specific cell. The coloured boxes next to the 

cells’ hierarchical tree mark cell clusters as in Figure 5A. We observe a sudden shift in the 

transcriptome profiles as cells go through development within the initial multicellular 

structure (mound), with 80% of the genes being downregulated. Two intermediate 

populations are also clearly visible and seem to be captured at the moment of transition, with 

the ‘early’ genes not yet being downregulated and ‘late’ genes already showing activation 

(cell clusters marked with 1 and 2). Within the genes upregulated during this transition, there 

are clear clusters of cell fate specific genes (marked with 3 and 4 for spore and stalk markers, 

respectively). 



Overall, this analysis revealed key features of a developmental transition.  Firstly, cells 

occupy discrete states during developmental progression.  Secondly, these analyses confirm 

the existence of intermediates states that have been previously inferred from single gene 

analysis [22], showing that these states show mixed early and late gene expression, in 

addition to signatures of the ultimate fate.  Thirdly, the major gene expression transition in 

the mound stage is dominated by repression, not activation, which contrasts the standard 

developmental narrative of cell differentiation being determined by what genes are “on” 

(rather than what genes are “off”).   

 

3.3.7 Nonlinear Dimensionality Reduction 

More recently, we used the 10x method to extract individual transcriptomes from 4743 cells 

[5]. The sequencing depth here is much lower, with around 35000 reads and 2300 mapped 

genes per cell. Although shallow sequencing is less useful for extracting detailed mechanistic 

information on gene expression, it enabled us to profile 10 times more cells than in the 

previously mentioned experiments, which has provided very clear data on the transitions 

occurring from the undifferentiated state through to the mound [5]. 

Cells were captured while feeding on bacteria on agar plate, by taking a continuous streak of 

cells from the edge of the multicellular zone and into the layers of bacteria. This way we 

captured the cells in a mimic of their physiological environment, in all moments of 

development up to the tight mound stage, where differentiation of spore and stalk cells begins 

within the multicellular structure. This enabled us to capture a continuous time series of 

development in a very complex signalling environment, rather than the more standard 

timepoint sampled experiments where all cells are synchronously starved in homogeneous 

environment at uniform density. The early developmental process captured is shown in 

Figure 6A. 



4743 cells described with 9698 genes (mean expression > 0.01) are plotted in the space of 

PC1 and 2. Overlaying the biological knowledge we have on the system (expression of genes 

active before the development begins, during the cell aggregation and after the cell 

aggregate), we conclude that again, PC1 represents the axis of developmental time - the 

direction of development captured in this plot is schematically shown with the overlayed 

arrow in the last panel (Figure 6B). Distribution of cell density across these two dimensions is 

shown in Figure 6C. Using the higher order principal components, a sudden change in 

transcriptome profiles becomes apparent which appears to correlate with the start of 

aggregation (Figure 6D). PC5 captures the separation of the population towards two different 

cell fates at the end of development (Figure 6E).  

Although we are dealing with a relatively “simple” model organism, the information we are 

interested in spreads across at least five dimensions. To reduce dimensionality even further, 

we use nonlinear dimensionality reduction techniques. Many of these methods are often used 

in singe cell transcriptomes analysis (e.g., t-SNE, UMAP, diffusion maps etc.). We decided 

on elastic embedding (EE), which seems to preserve both local and global structures of the 

data [23]. For Figure 7, we used EE on the first 11 PCs from the example in Figure 6. Here, 

the visualization reveals more direct information: as cells transition from individual cells to 

streams (from North-West to South-East), there is a sudden substantial shift in the 

transcriptome profiles (the ‘jump’). Secondly, during tight mound formation, cell 

transcriptomes seem to converge to a similar expression profile (the ‘bottleneck’), before 

separating towards two different fates, stalks and spores (Figure 7A,B). The developmental 

context of the jump is validated by overlaying expression of gene sets marking 

undifferentiated cells and streams from a separate study [24] (Figure 7C), which also shows 

the sudden shift. The cell density plot in Figure 7D shows the distribution of cells across 

these two dimensions and shows a considerable heterogeneity just before the jump, with only 



a few cells caught in the moment of transition and an accumulation of cells at the bottleneck, 

before separating in two different cell types. Using again the data from [24], this bottleneck 

corresponds to the loose to tight mound transition (Figure 7E). 

 

3.3.8 Trajectory inference 

There are many trajectory inference methods developed over the last decade, aiming to 

determine the exact/approximate order and direction of differentiation across the 

transcriptome space, and to predict the trajectories by which individual cells might explore 

the possible cell states. We tried several of these, but often found them inadequate for 

tracking Dictyostelium development for different reasons. For instance, using the scRNA-seq 

data from onset of development up to aggregation stage [2] and mound stage data [3] we 

found both Monocle [25] and Wishbone [26] mapped 3h starved cells branching into two 

clusters: aggregating and mound cells. When trying to infer the developmental progression 

trajectory on the continuously sampled development up to the mound stage [5] with 

DensityPath [23] and StemID [27], the heterogeneous region before the ‘jump’ was 

interpreted as containing at least three clusters: two dead ends and only one continuing across 

the jump into the development that skips aggregation phase as another dead-end cluster. 

These observations seem unrealistic based on several decades of literature on Dictyostelium 

development.   

For trajectory analysis, we also used RNA velocity [28], an algorithm which uses the 

information on spliced versus unspliced introns to predict the future state of each cell.  We 

were concerned that Dictyostelium genes have too few introns for the algorithm to work, with 

other considerations that the introns are highly AT rich and therefore unlikely to be mapped 

effectively and also that RNA processing may be too efficient to leave substantial intron 

signatures in the data.  Indeed, our analysis revealed very few introns in our reads, and these 



appeared limited to highly expressed genes with long introns, such as ribosome protein genes.  

However, we nevertheless attempted to apply RNA velocity to our data. Our initial analysis 

suggested cells in the early mound state “circulate” within this state, rather than progress 

forward.  However, our velocity fields were weak and unconvincing.  The initial data may 

warrant further study, perhaps using gene expression imaging [14] or more recent 

transcriptome inference methods [29].  We also suggest [30] for a detailed overview of 

different pseudotime methods. The possibilities for DNA barcode-based lineage tracing [31] 

may be limited for following cell histories during Dictyostelium development.  Cells divide 

no more than once during development [32, 33], so the likelihood of sampling cells from the 

same division (to enable the construction of lineage trees) using the sequencing technologies 

we have used to date is expected to be small. 

 

4. NOTES 

In this section we briefly reflect on some key examples of how our exploratory data analysis 

works.  As mentioned above, it is good practice to always check whether the final 

observations are also valid in the unprocessed data or in the data processed in a slightly 

different manner. For instance, normalisation is used to dampen the noise in a data. Different 

normalisation methods could make a less clear signal but should not give a completely 

different conclusion. 

 

Example 1 – comparing normalisation approaches 

In Figure 8 we show an example from [5]. The top panels show EE plots of cells’ 

transcriptome profiles, while the bottom plots show distribution of cell density. Figure 8A 

shows data normalised by pre-clustering and deconvolution method (‘scran’ package in R, 

[9]. In Figure 8B the data were not normalized, but only variable genes were included to 



reduce the noise. Figure 8C shows data normalised by the geometrical mean size factor from 

(DESeq2 package in R, [8]. The major observations are consistent in all three examples: high 

heterogeneity just before the jump, the jump, the decrease of heterogeneity in the bottleneck, 

and the separation of cell fates immediately after. 

 

Example 2 – binning, threshold, and variance 

In the next example (Figure 9), we will refer to the example from gene expression variability 

study ([2] and Figures 2 and 3 above). As in Figure 3, the DM values for all genes are shown 

in grey. The transcript variability of genes up- and downregulated during development are 

marked in black and purple, respectively. The top left panel shows the variance distribution 

for all genes with at least two-fold change in expression, in any direction (|log2FC| > 1). If we 

increase this threshold to at least 10-fold (right panel), the difference in variance becomes 

even more apparent. In both these analyses we compared the genes of the similar expression 

level by binning so that each bin contains 500 genes. Changing bin size (bottom left panel), 

the overall difference between up and down regulated genes is still clear. Finally, the bottom 

right panel shows that overall conclusion is also retained if we use CV2 values of genes rather 

than DM. 

 

Example 3 – deciding which genes to include in the analysis 

This example is linked with example in Figure 6, with PCA using 9698 genes (criteria being 

the mean expression > 0.01; [5]). We can additionally simplify the data by selecting only 

variable genes, which is actually the most common trend in single cell transcriptomics 

analysis, notably in the studies focused on building cell atlases [17]. 

In Figure 10A genes are plotted based on their variance (CV2) and mean expression. The 

vertical line marks the gene expression threshold (>0.01). The genes marked yellow, black, 



and red are the top 50% variable genes. The top 25% most variable genes are marked black 

and red, while top 10% are marked only in red. Figures 10C-D show the result of PCA on the 

same sample as in Figure 6 but using only 50%, 25% or 10% most variable genes. We can 

see that the sudden transcriptome shift is already visible in PC1/PC2 space, when using only 

variable genes.  In addition, fate specification already appears in PC3, rather than PC5 when 

using only top 10% variable genes. Finally, more variance is explained by single PCs: the 

variance captured by PC1 goes from 8% to 20%, when reducing the set of genes from 9698 

genes with mean expression > 0.01 to the 969 top 10% variable genes. 
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FIGURE LEGENDS 

 

Figure 1. Removing outlier cells. 

A) Distribution of the number of detected genes per cell. The vertical line marks the chosen 

threshold. All samples with total number of genes lower than threshold are removed from 

further analysis. B) Distribution of the total number of UMI counts per cell. The vertical line 

marks the chosen threshold. All samples with total UMI count lower than threshold are 

discarded from further analysis. C) Total UMI count per cell. Purple dots mark cells excluded 

based on their total UMI count (too high or too low). The threshold for high outliers was Q3 

+ 1.5 · IQR. Black dots mark cells excluded based on the low total number of genes detected 

per cell. Horizontal grey line marks the overall sample median.  

 

Figure 2. Dynamics of gene expression heterogeneity during early development. 

A) Transcript variability (expressed as CV2) of each gene with mean expression >10 read 

counts plotted against the mean expression. The red line marks the running median. csaA and 

dscA are shown as examples of known variably expressed genes and act5 as an example of a 

gene with more uniform expression in the population. B) Overall transcript heterogeneity 

within a cell population increases during early development. Distribution of log10(CV2) 

values of genes are shown for populations at 0, 3 and 6h of development. C) The increase in 

variance occurs across all levels of expression. The running medians are plotted for all three 

timepoints. Figure reproduced from [2]. 

 

Figure 3. Origins of gene expression heterogeneity. 

A) Genes downregulated during development become more variable than upregulated genes. 

Transcript variability (expressed as DM) of each gene with mean expression >10 read counts 



in the population of aggregating cells (6h) is plotted against the mean expression. Distribution 

of DM values for each bin is shown in purple and black, for down- and upregulated genes, 

respectively. Each bin contains 500 genes. The threshold for fold change (FC) is 5-fold in 

both directions, i.e., |log2FC| > 2.32. B) DM of each gene plotted against its RNA turnover. 

RNA turnover is measured as a ratio of the expression before and after 1h actinomycin D 

treatment [13]. C) Schematic of a two-state model of transcription. D) Results of a 

transcription simulation presented in the same format as A. E) Schematic of the influence of 

changing burst size and burst frequency on mean expression and variance. F) Genes 

upregulated during development are more variable at the onset of starvation than 

downregulated genes. G) Schematic of the findings. Figure reproduced from [2]. 

 

Figure 4. Extracting biological information from PCA. 

A) Cell positioned in PC1 and PC2 space based on their transcriptional profiles. Lower left 

panel: GO terms (biological processes) enriched in the negative loadings of PC1. Lower right 

panel: GO terms enriched in the positive loadings of PC1. Right panel: GO terms enriched in 

the positive loadings of PC2. B) Same plot as in A, but overlayed with the average expression 

of genes upregulated and downregulated during the mound stage. The arrow on the right 

shows inferred direction of developmental progression. C) Cells positioned in PC1 and PC3 

space based on their transcriptional profiles. PC1 here serves as a proxy for developmental 

time. The orange, red and green ellipses mark early prespore, prespore and prestalk 

populations, respectively, based on observations in C, D and E. Upper right panel: GO terms 

enriched in the positive loadings of PC3. Lower right panel: GO terms enriched in the 

negative loadings of PC3. D and E) PC3 describes the separation of cell population in the 

spore and stalk cells in the later mound stages. D) Volcano plots of positive PC3 loadings 

(left panel) and negative PC3 loadings (right panel) show almost exclusive enrichment of 



spore and stalk markers, respectively. Log2FC is a measure of fold change in prespore cells 

vs. prestalk cells; -log10FDR is a measure of false discovery rate. Plots downloaded from 

dictyExpress platform based on data from [20]. E) The same as plot in C, overlayed with the 

expression of pspA and ecmA as a spore and stalk marker, respectively.  Figure partially 

reproduced from [3]. 

 

Figure 5. Visualising cell states.  

A) Cells from the example in Fig.4, positioned based on their transcriptome profiles in PC1 

and PC2 (left), PC3 (middle) and PC4 (right panel). Colour legend on the right describes all 

inferred cell states. B) Two-way hierarchical clustering of cells and genes from the same 

experiment. Columns are genes and rows are cells. Coloured boxes next to the cells’ 

hierarchical tree represent same subpopulations marked in the PCA plots in A. Boxes marked 

1 and 2 show early prespore and intermediate/early prestalk subpopulation, respectively.  

Boxes marked 3 and 4 show induced spore and stalk markers, respectively. Figure adapted 

from [3]. 

 

Figure 6. Continuous sampling of developmental progression. 

A) Image of cells plated on bacteria, with feeding front on the left and development 

progression to the right. The white box approximates the region sampled. Right panel: 

schematic of the developmental stages sampled. B) Cell positioned in PC1 and PC2 space 

based on their transcriptional profiles. Overlayed is expression of sets of genes expressed 

during early development, aggregation, and aggregate. The arrow in the right panel shows 

approximate direction of development. C) Same as B but overlayed with relative cell density 

values. D) Cells positioned in PC1 and PC3 space (left) and PC1 and PC4 space (right), 

overlayed with expression of aggregation genes. E) Cells positioned in PC1 and PC5 space 



overlayed with expression of pspA and tps3, as spore and stalk markers, respectively.  Figure 

adapted from [5]. 

 

Figure 7. 2D visualisation of cell state transitions during development. 

A) Cells positioned in 2D space, after EE was performed on the first 11 PCs. From left to 

right: overlayed expression of genes expressed during early development, aggregation, and 

mound. Right panel: overlayed expression of tps3 (stalk) and pspA (spore) markers. B) Jump, 

bottleneck, stalk and spore regions marked on the same plot as in A. The arrow shows the 

inferred direction of development.  C) Zoom-in of the lower-right region of the plot in A, 

overlayed with the average expression of genes down and up-regulated during the 

morphological transition from single cells to streams [24] D) 3D cell density plot, with the 

same regions marked as in B E) The same as in A, overlayed with the expression of genes 

down and up-regulated during the morphological transition from loose to tight mounds [24]. 

Figure reproduced from [5]. 

  

Figure 8. Comparing different normalisation approaches. 

A-C) Cell positioned in 2D space, based on their transcriptome profiles. A: The same as in 

Fig.7. B: Same as in A but performed on the raw data (not normalised) and using only 

variable genes (4849, instead of 9698 genes). C: Same as in A but normalised using the size 

factor from DESeq2 package in R. Lower panels show the same data as in upper panels but 

overlayed with relative cell density information. Jump, bottleneck, stalk, and spore regions 

are marked.  Data used are from [5]. 

 

Figure 9. Comparing different thresholds, bin sizes and variance measures. 



Genes downregulated during development become more variable than upregulated genes. 

Transcript variability (expressed as DM) of each gene with mean expression >10 read counts 

in the population of aggregating cells (6h) is plotted against the mean expression. Distribution 

of mean DM for each bin is shown in purple and black, for down and upregulated genes, 

respectively. Each bin contains 500 genes. Same data as in Fig.3, except for gene expression 

fold change threshold is 2-fold in each direction (|log2FC| > 1). Bottom panel: result of 

decreasing the bin size to 100 genes. Right panel: result of increasing the FC threshold to 10-

fold in each direction. Lower right: result of using CV2 as a measure of variance (CV2 does 

not correct for expression level or gene length). Figure reproduced from [2]. 

 

Figure 10. Exploring effects of different numbers of genes on the analysis. 

A) Transcript variability (CV2) of each gene plotted against mean expression. The vertical 

line marks the gene expression threshold. Marked yellow, black, and red are genes more 

variable than average (50%; 4849 genes). Black and red are the top 25% variable genes 

(2424). Red only are the 10% top variable genes (969). B) Same as in Figure 6, but cells are 

described only with variable genes (top 50%). Left panel: cells in PC1 and PC2 space. 

Overlayed is average expression of aggregation genes. Middle: cells in PC1 and PC5 space. 

Overlayed is the expression of pspA (spore marker). Right: same as left panel but overlayed 

with relative cell density values. C) The same as in B, but cells described only with top 25% 

variable genes. Middle panel is PC4 vs. PC1. D) The same as in B, but cells described only 

with top 10% variable genes. Middle panel is PC3 vs. PC1.  Data from [5]. 
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