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Beyond mechanosensing: How cells sense and shape
their physical environment during development
Matyas Bubna-Litic and Roberto Mayor
The role of mechanics as a regulator of cell behaviour and
embryo development has been widely recognised. However,
much of the focus in mechanobiology during embryo devel-
opment has been on how the mechanical properties of a cell
affect its behaviour and fate determination. We discuss the role
of mechanosignalling in development and propose that an
equally important aspect of embryo mechanobiology is un-
derstanding how dynamic changes in tissue mechanics are
regulated. Comparably to how chemical signals influence the
fate of responding tissues during embryonic induction, we
suggest that embryonic cell populations can alter the me-
chanical properties of adjacent tissues in a process we name
‘actuation’. Several examples of embryonic actuation and
mechanical feedback are discussed.
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Information flows in living systems and the
role of mechanochemical feedback
Cells sense chemical and mechanical cues from their

environments, which affects their behaviour and fate
choices. Much less is known about how cells dynamically
modify their physical environment to promote tissue
formation. In this review, we focus on recent examples
of this interaction between tissues that are affected by
their environment but ultimately go on to regulate the
mechanical properties of their surroundings to allow for
the emergence of patterns and complex collective be-
haviours. The relationship between genes and biological
function is not as linear as often conceptualised [1].
Stable biochemical and physical states in cells can be
www.sciencedirect.com
achieved without activation of a genetic response,
instead relying on protein modifications or alterations of
the cell’s physical properties. While biochemical pro-
cesses can regulate emergent mechanical and geomet-
rical changes in cells and tissues, biologically relevant
information arises from dynamical feedback among
chemical, mechanical and geometrical properties [2].
Recently, such mechanical feedback loops have been

demonstrated in chicken gastrulation as contractility
reinforces itself through actomyosin cable alignment [3]
and contributes to a long-range tension gradient [4].
Tissue geometry can also provide boundaries that trigger
patterning event [5,6]. It is clear then that changes to
tissue mechanics should be considered when attempt-
ing to understand the flow of information on both cell
and tissue levels [7,8]. Importantly, embryonic tissues
undergo dynamic changes to their physical properties
across multiple levels of organisation, further compli-
cating models of signalling in development [9e11].

Beyond embryonic development, considering tissue
mechanics is key in clinical studies as, for example,
tumour growth can lead to local tissue stiffening that
promotes cell migration and metastasis [12,13,14]. Here
we present recent work that illustrates the interplay
between signalling and tissue mechanics and discuss the
role of embryonic cell populations in modifying the
mechanical properties of tissues that then feed back
through mechanochemical signalling.

Role of mechanics in signal sensing,
transduction and response
In the past decade, a large body of evidence has emerged
reinforcing the notion that cells integrate and respond to
stimuli from sources beyond classical molecular signal-
ling [7,15]. One example, and the focus of this review, is
the ability of cells and cell collectives to respond to their

physical interactions with other cells or the extracellular
matrix. Detecting (mechanosensing, Figure 1a), relaying
(mechanotransduction, Figure 1b) and responding to
(mechanoresponse, Figure 1c) physical stimuli are now
well described processes with a variety of examples of
cell behaviours during embryonic development.

Mechanical forces resulting in cell deformations lead to
the activation of pathways downstream of cadherins and
integrins, which are both directly linked to the actin
cytoskeleton [16,17]. For example, b-catenin, which
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Figure 1

Mechanics-dependent signal sensing, transduction and response.
(a) Mechanosensing involves the detection of mechanical properties and forces that includes a large variety of mechanisms. Cell-ECM interactions are
largely detected through parts of the integrin– talin–vinculin complex, cell–cell interactions through cadherins and associated a-catenin, b-catenin and
vinculin, mechanosensitive ion channels such as Piezo1 and changes to nuclear shape. (b) Mechanics-dependent signals are then transduced through a
signalling response that typically depends on a network of kinases and transcription factors or direct effects of nuclear deformation such as increased
nuclear pore permeability and chromatin organisation. (c) The resulting mechanoresponse is a complex interaction of many systems including tran-
scriptional regulation and posttranslational modifications that can affect various processes including actin dynamics, fate transitions or regulation of cell
polarity.
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forms a structural part of adherens junctions, has been
reported to directly respond to mechanical stimulation
by acting as a transcription factor [18,19,20] which is a
key feature of mechanics-dependent mesoderm induc-
tion in zebrafish and Drosophila [21]. Other key tran-
scription factors, such as Yes-associated protein (YAP)

[22,23] and Extracellular signal-regulated kinase (ERK)
[24,25] are parts of networks that process downstream
of mechanical stimulation. Additionally, deformation of
the cell membrane is detected by mechanically stimu-
lated ion channels like Piezo1 [26] that release Ca2þ
ions when under tension to trigger intracellular re-
sponses, ranging from migrating cell polarity [27] to
neuron depolarisation [28]. Finally, nuclear shape is also
affected by external forces [29]. Deformation of the
nucleus has been shown to change the permeability of
the nuclear pore complex allowing a different range of
molecules (e.g. YAP) to enter the nucleus [22]. Nuclear

deformation can further lead to chromatin reorganisa-
tion and therefore affect its accessibility [29,30,31].
Interestingly, heterochromatin deformation can feed
back to soften chromatin reducing damage from me-
chanical stress [32].

Inputs from mechanical stimuli feed into decision
making processes that happen at multiple scales, and
the emerging cellular response results from complex
molecular interactions, whether in the nucleus or cyto-
plasm [1,2,33]. The response to mechanical stimuli

(Figure 1c) may involve changes to actin dynamics
[34,35], regulation of cell polarity [36] or cell fate
transitions [21,37]. Recently, a stiffness gradient in the
Current Opinion in Cell Biology 2025, 94:102514
embryonic brain has been described to promote axon
outgrowth towards stiffer regions through activation of
Ephrin signalling [38].
Embryonic cell populations can modify the
mechanical properties of cells and tissues
through ‘actuation’
Embryonic cell populations undergo major transitions in
their physical properties. In terms of deformability, tis-
sues can differ in elastic modulus and transition be-
tween softer and stiffer material properties. Tissues are
active materials and can be classified into separate
phases, where solid-like tissues have few cell rear-
rangements and fluid-like tissues can efficiently adapt
to deformation with high levels of neighbour exchanges

[8,39,40]. On the level of individual cells, properties
such as surface tension [41] or cellecell adhesion [42]
can change significantly and rapidly during develop-
ment. Recently, the idea that tissue mechanical prop-
erties arise from self-organised processes with a limited
ability to assign causality has gained traction
[2,33,43,44]. However, we propose that a specific class
of processes exist that are instructive and share some
features support their explicit description as a unique
developmental process. We suggest the term embryonic
actuation for processes where tissue mechanics are

modified directly by the mechanical or biochemical ac-
tivity of adjacent embryonic cell populations (Figure 2).
Actuation acts in parallel with embryonic induction, in which
a cell population generates a signal that instructs adja-
cent tissues and leads to a transition in cell fate [45].
www.sciencedirect.com
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Figure 2

Modifications of biophysical properties through ‘actuation’ at different scales. Properties of cells and tissues, as well as the extracellular matrix, can
be modified by adjacent cells acting through biochemical or mechanical signalling to actuate a change in the mechanical properties of the responding
tissue. These processes are labelled using red arrows and often require a mechanical force to be generated in the actuating tissue through actomyosin
contractility. On a tissue level, the proliferation, growth, fluidity and stiffness can all directly affect the mechanical properties of adjacent tissues.
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However, actuation specifically refers to changes in
physical properties.

Examples of actuation include processes where a force is
generated to change cell shape or remodel the extra-
cellular matrix [46,47]. A pulling or pushing force may
also be applied through actomyosin contractility or cell
proliferation [48,49], resulting in increased mechanical
stress. An interesting example, where force generation
works in an actuation feedback loop, is the early
migration of prechordal plate (PPL) mesendoderm cells
during zebrafish gastrulation [50]. PPL cells push
interstitial fluid by moving towards the animal pole
causing it to accumulate. This in turn mechanically

opens up the space in front of PPL cells allowing them
to migrate and accumulate more interstitial fluid that
helps form the animal-vegetal embryonic axis. Finally,
tissue fluidity and stiffness can also be externally regu-
lated through signalling [36,51].

Note that actuation is separate to mechanics-mediated
induction of fate. Recently, it has been shown that
mechanical stimulation through tissue compression
activates head organiser genes through b-catenin in
Xenopus gastruloid-like activin-induced explants [52].

In the embryo, the build up of hydrostatic pressure in
the blastocoel limits the window of competence for
neural crest induction [53]. Finally, confinement of
mouse placodes that directly stimulates Sox9 through
www.sciencedirect.com
YAP nuclear exclusion would also not be considered
actuation [54]. Conversely, both embryonic induction
and actuation can be the consequence of biochemical

signals not just mechanical interactions [55]. For
example, morphogen signalling can affect mechanics at
the supracellular scale in the chicken dermis [56] or
fluidise the zebrafish mesendoderm [57]. Epidermal
growth factor (EGF) signalling leading the formation of
an adhesion gradient required for ventral cell flow
during Drosophila gastrulation would both be examples
of biochemically mediated actuation [58]. Note that
actuation and induction do not have to be strictly
orthogonal and can act through the same pathways to
change either mechanical or fate outcomes. We

describe the following recent examples in detail as they
illustrate the instructive role of actuation and me-
chanical feedback, which makes it distinct from self-
organised transitions of mechanical proper-
ties (Figure 3).
Mechanics-mediated feedback emerging
from a changing biophysical state can alter
the dynamics of signalling during
development
Recent work illustrates the important role of mechanical
actuation in embryonic development and its effect on
information flow through feedback (Figure 3a). Actua-
tion, the alteration of physical properties of another
Current Opinion in Cell Biology 2025, 94:102514
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Figure 3

Embryonic tissues capable of altering the mechanical state of adjacent tissues or ECM receive self-generated mechanical cues that reinforce
their development. (a) Actuation (red), the alteration of physical properties of another tissue or ECM, can mechanically feed back (blue) to the cell
population (green) responsible for generating the initial mechanochemical signals. Examples of this process include the following: (b) The cranial neural
crest (NC) in Xenopus laevis migrates in a directional manner that is mediated through Sdf1-dependent chemotaxis. The emergence of a self-generated
stiffness gradient results in durotaxis-dependent mechanical feedback. (c) In skin hair follicle development of the chick embryo, a pattern in the epithelial
layer is generated through spontaneous aggregation of dermal mesenchyme cells that leads to localised compression and ECM alignment. This
alignment mechanically aids the formation of dermal cell aggregates. (d) In mouse incisor development, the enamel knot (EK) is a key organising centre.
A proliferation gradient forms that leads to compression within less mechanically resistant cells in the centre of the proliferating tissue. This in turn leads to
the loss of nuclear YAP signalling that induces Shh expression and the formation of the EK.
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tissue or extracellular matrix (ECM), can feed back to
the cell population responsible for generating the initial
mechanochemical signals and allow for progression of

migration or the establishment of new signal-
ling centres.

During Xenopus laevis development, cranial neural crest
cells (NCCs) migrate dorsolaterally and ventrally in a
directional manner following a gradient of Sdf1 generated
by placodal cells (Figure 3b). NCCs interact with adja-
cent ectodermal cells called placodes through N-
cadherin that is sufficient to disrupt the cortical actin
cytoskeleton and soften the placodes closest to the
NCCs [36]. The emergent stiffness gradient then
Current Opinion in Cell Biology 2025, 94:102514
mechanically feeds back to the NCCs to direct migration
via durotaxis.

Two cases of mechanical actuation have been
described during the development of skin hair follicles
in the chicken embryo (Figure 3c). A periodic pattern
in the superficial epithelial cell layer is generated
through the spontaneous aggregation of dermal
mesenchyme cells [44,59]. The self-organised dermal
cell aggregation actuates nearby epithelial cells
through mechanical compression, which leads to the
activation of b-catenin and a gene expression profile
favouring the formation of hair follicles [59]. More
recently, the ability of dermal cells to aggregate has
www.sciencedirect.com
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been shown ex vivo without the necessity for any
signals controlling this process [44]. In this case,
dermal cells directly actuate the extracellular matrix
in vitro by mechanically aligning collagen through
actomyosin-dependent force generation. The collagen
alignment reinforces the aggregation through me-
chanical feedback acting on the dermal cell population
responsible for actuation.

As a final example, we highlight the enamel knot (EK)
organising centre formation in mouse incisor develop-
ment [49]. Initially, a proliferation gradient forms in the
presumptive incisor tissue composed of both epithelial
and mesenchymal cells. Mechanical stress, which builds
up due to increasing cell density, is resisted by the tissue
surrounding the presumptive EK leading to compressive
actuation of the cells in the central region. This
compression affects Hippo/YAP signalling by shuttling
YAP into the cytoplasm allowing for the induction of Shh
expression and EK formation, which then feeds back
through chemical signalling to pattern the surround-
ing tissues.
Conclusion
In recent years, much attention has been given to
mechanisms where morphogenetic and fate transitions
in development are downstream of mechanical stimuli
and mechanosignalling. Here, we propose that actuation
is a special case of a developmental process,
where changes in the mechanical properties of a tissue
are the result of direct modifications by an adjacent
embryonic cell population. We described some of the
many examples of actuation that have been
recently published.

We believe developing a better understanding of the

role of mechanics in dynamic embryonic processes will
rely on our ability to distinguish between instructed and
self-organised processes. We also currently lack charac-
terisation of how developmental systems change over
time in a way that integrates information about gene
expression and biophysical states [44]. Finally, me-
chanical memory, or the ability of cells to be affected by
mechanical stimuli after the initial source is lost, should
be more broadly considered in our models
of development.
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