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Abstract: Energy poverty continues to be a critical challenge, and this requires efficient and
scalable identification methods to support targeted interventions. The Low Income Low
Energy Efficiency (LILEE) indicator and previously the Low Income High Costs (LIHC)
indicator have been used by the UK government to monitor national energy poverty levels.
Yet due to their reliance on complex, time-intensive data collection processes and estima-
tions, these indicators are not suitable for identifying energy poverty in specific households.
This study investigates an alternative approach to energy poverty identification: using
machine learning models trained on administrative data, data that could reasonably be
available to governments for all or most households. We develop machine learning models
using data from the English Housing Survey that serves as a proxy for administrative data.
This data is selected to closely resemble what might be available in national administrative
databases, incorporating variables such as household socio-demographics and building
physical characteristics. We evaluate multiple classification algorithms, including Random
Forest and XGBoosting, applying resampling and class weighting techniques to address the
inherent class imbalance in energy poverty classification. We compare model performance
with a ‘benchmark’ model developed by the UK government for the same goal. Model per-
formance is assessed using the metrics of accuracy, balanced accuracy, precision, recall, and
F1-score, with SHapley Additive exPlanations (SHAP) values providing the interpretability
of the predictions. The best-performing model (XGBoosting with class weighting) achieves
higher balanced accuracy (0.88), and precision (0.51) compared to the benchmark model
(balanced accuracy: 0.77, precision: 0.24), demonstrating an improved ability to classify
energy-poor households with fewer data constraints. SHAP analysis reveals household
income and dwelling characteristics are key determinants of energy poverty. This research
demonstrates that machine learning, trained on existing administrative datasets, offers a
feasible, scalable, and interpretable alternative for energy poverty identification, enabling
new opportunities for efficient targeted policy interventions. This study also aligns with
recent UK government discussions on the potential for integrating administrative data
sources to enhance policy implementation. Future research could explore the integration of
real-time smart meter data to refine energy poverty assessments further.

Keywords: energy poverty; machine learning; administrative data; SHAP value;
classification algorithms

1. Introduction

Energy poverty is a critical issue that affects households’ ability to afford adequate
energy for heating, cooling, and other essential services [1-3], also called “fuel poverty”.
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Residents that are energy-poor have high risk of health problems such as respiratory
infections and worsened chronic illnesses and mental well-being [4,5]. The identification
of energy-poor households is crucial for mitigating energy poverty, as effective policy
interventions depend on accurately targeting the most vulnerable populations [6]. In this
paper, the terms “energy poverty” and “fuel poverty” are used interchangeably, following
common usage in the UK and EU literature.

1.1. The Scope of Energy Poverty in England

In England, between 13.0% and 36.4% of households faced energy poverty in 2023,
depending on the measurement indicator used [7]. This approximates to 3.17 million to
8.91 million homes struggling to afford their energy bills while maintaining a warm and
healthy living environment, highlighting the severity of energy poverty in the UK [8,9].
The UK government currently relies on the Low Income Low Energy Efficiency (LILEE)
indicator, and previously used the Low Income High Cost (LIHC) methodology, to monitor
national energy poverty levels. The methodologies for identifying these indicators require
extensive household-level data collection and involve complex multi-step calculations [10].
The income calculation methodology includes 18 sequential steps, starting with income
sources (e.g., private income, benefits, tax credits) and leading to the final calculation of
equivalised after-housing-cost (AHC) income. The process requires multiple adjustments,
including tax deductions, the imputation of missing values, income aggregation from
different sources, and the application of equivalisation factors to account for household
composition. The reliance on detailed data sources and complex calculations reduces the
interpretability of the resulting indicator and increases the cost of measuring it, reducing
its utility as a means of identifying specific households in energy poverty for targeted
interventions or programme evaluation.

1.2. The Need for Alternative Approaches

Given these limitations, alternative, data-driven methods are needed to improve the
accuracy and efficiency of energy poverty identification. The UK Committee on Fuel
Poverty has repeatedly emphasised the need for the improved efficiency of energy poverty
identification to ensure aid reaches those in need [11,12]. Machine learning (ML) presents a
promising alternative to identify energy poverty. Unlike traditional rule-based methods
that rely on predefined criteria, ML models can be trained to accurately detect patterns in
data, improving predictive power while reducing reliance on manually intensive calcula-
tions. Recent initiatives such as the SocialWatt [13] and ENPOR [14] projects in the EU have
demonstrated the potential of data-driven approaches in identifying energy-poor house-
holds. These projects highlight the benefits of ML-based predictive modelling for energy
poverty classification, particularly in terms of scalability, automation, and adaptability.

1.3. Machine Learning vs. Traditional Methods

Figure 1 illustrates the key differences between traditional programming and machine
learning in energy poverty identification. Traditional rule-based programming for energy
poverty identification requires manually setting explicit rules and algorithms to process
input data. In contrast, ML models are trained on historical energy poverty outcomes and
input features, allowing them to automatically learn patterns from complex datasets and
make predictions for new households without relying on rigid, predefined rules [15].

More precise targeting through ML could improve the effectiveness of energy poverty
policies by ensuring that support is directed to those in need while minimising both the
cost of identification and the risk of misallocation. The UK Committee on Fuel Poverty has
recognised ML-based methods as a promising area of research, stating the following: “we
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[have] identified that advanced statistics/machine learning [AI] has the potential to help improve the
ability to identify fuel poor households” [12].

Traditional Programming Calculated Energy Poverty results

Input data >
Computer Output results
Generated Program
Machine Learning
(ML Algorithms)
Input data >
Computer »| Prediction model
Output label >

Label: Energy Poverty results (Yes or No) SesicapiEe cotidiion

Figure 1. Key differences between traditional programming and machine learning in the context of
energy poverty identification [15].

1.4. Existing Research on Machine Learning for Energy Poverty

There has been increasing academic interest in using machine learning for energy
poverty prediction. These studies vary widely in terms of their energy poverty indicators,
input features, model selection, and evaluation metrics. Some approaches incorporate
socioeconomic and demographic data, while others integrate remote sensing and geospatial
information. Additionally, different models, including Random Forest (RF), Decision Tree
(DT), Support Vector Machine (SVM), and Artificial Neural Networks (ANNs) have been
applied across different countries. Table 1 provides an overview of recent studies on
ML applications for energy poverty identification, highlighting differences in data scope,
prediction models, input variables, and model performance, and the methods used for
dealing with data imbalance issues.

Table 1.
poverty identification.

An overview of current studies on machine learning applications for energy

Authors and Case and Scope EP Indicator ML Model Input Features Model Imbalance Issue
Year Performance
Income, energy
efficiency, satellite Accuracy, .
AlKezetal, UK’. 12,000 LILEE RF remote sensing data, Precision, Recall, Oversamphpg,
2024 [6] residents . X . Downsampling
eight socioeconomic Fl-score
factors
US, Chicago, PDC indicators,
Ghorbany et al, 227,000 GSV Energy burden CNN, DT, RF, demographic Accuracy (74.2%) No
2024 [16] . SVR L
images characteristics
Accuracy (72%),
Spandagos EU, 500,000 data DT, RE, KNN, Housgh"lﬁ.m“’me' Floscore 1
etal,, 2023 [17] points MEPI XGBoost type, dwelling type, Precision, Recall. No
v social benefits, etc. The AUC value is
0.78.
Mukelabai Global South, Access to clean XGBoost, hf;;g;?gl};e;ergz dliltss;e Accuracy (97%), No
etal., 2023 [18] 11,480 data points cooking CatBoost P ’ F1-score (97%)
female literacy
Willem Van Income, floor area, "
Hoveetal,, Ec%frﬂiielsl LIHC CatBoost household size, True (Ié’(c))f;tg/e)Rate No
2022 [19] dwelling age °
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Table 1. Cont.

Authorsiand Case and Scope EP Indicator ML Model Input Features Model Imbalance Issue
Year Performance
. . Rooms, wealth,
Abbas et al, Asia and Afnca, MEPI MLP education, family size, Accuracy No
2022 [20] 59 countries .
marital status
Francesco Dalla nel\ileg:orirﬁi: fl Income, house value, Accuracy (77%)
Longa et al., & LIHC XGBoosting ownership, population Y o Downsampling
and household . Fl-score (74%)
2021 [21] density
levels
Wane et al Household size, age, Accuracy
& v India, 51 districts MEPI RF rural/urban, education, (78.95%), Recall No
2021 [22] . o
remote sensing data (90.01%)
Hong Z and South Korea, 8814 Income and DT, ANN.’ RE, Income, food expense, Accuracy (95%), .
. . XGBoosting, floor area, household o Oversampling
Park I, 2021 [23] observations expenditure . . Fl-score (98%)
SVM size, education

1.5. Research Gaps in Current Studies

While current studies have demonstrated the potential of machine learning in energy
poverty identification by using demographic, socioeconomic, and housing characteristics,
key challenges remain. As shown in Table 1, most studies primarily rely on accuracy as a
performance metric. However, in classification problems where one class is significantly un-
derrepresented (e.g., energy-poor households vs. non-energy-poor households), accuracy
alone can be misleading because a model can achieve high accuracy simply by predicting
the majority class most of the time [24]. For instance, a model that predicts all households
as non-energy-poor could still achieve high accuracy but fail to detect those truly in need.
Thus, relying only on accuracy overlooks the critical aspects of model reliability, particularly
in identifying vulnerable households. In contrast, more comprehensive evaluation metrics
that have been set, including balanced accuracy, precision, recall, and F1-score, should be
used for a classification model’s performance assessment.

e Balanced Accuracy: Measures both a model’s sensitivity (True Positive Rate) and
specificity (True Negative Rate).

e  Recall (True Positive Rate, Sensitivity): Measures the proportion of actual energy-poor
households correctly identified by the model. This is particularly important when the
goal is to capture as many vulnerable households as possible.

e  Precision: Measures the proportion of households classified as energy-poor that are
actually energy-poor. A high precision ensures that resources are directed to those
truly in need, minimising the misclassification of non-energy-poor households.

e  Fl-score: The harmonic means of precision and recall which provide a balanced metric
when dealing with imbalanced datasets.

Class imbalance is also a significant challenge in binary classification tasks [24,25].
Many studies have not sufficiently addressed the imbalanced nature of energy poverty
datasets, leading to biassed predictions where models disproportionately favour the ma-
jority class (non-energy-poor households). Without dealing with data imbalance issues,
machine learning models can fail to correctly classify energy-poor households. Only a few
studies [6,21,23] have implemented sampling techniques, such as oversampling, which
increases the number of minority class instances by duplicating or synthetically generat-
ing new examples [26], and downsampling, which reduces the number of majority class
instances to create a more balanced dataset [27]. However, these studies often lack compar-
ative evaluations of alternative approaches, such as adjusting class weights within machine
learning models. Furthermore, many do not provide transparent documentation on their
data processing techniques, limiting the reproducibility and applicability of their findings.
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A lack of transparency in model validation is another critical issue. Studies such
as [23] report a very high accuracy (95%) and Fl-score (98%) but do not specify whether
the results apply to training or test data, raising concerns that these are results evaluated
on the training dataset and that the model may be overfitting. Overfitting occurs when a
model memorises training data rather than learning generalisable patterns, resulting in
poor performance when applied to new data. Robust validation methods such as cross-
validation and rigorously maintaining hold-out test data for the final evaluation are crucial
to ensure the reliability of machine learning models for energy poverty identification.
Additionally, some studies [6] report high performance metrics using income and energy
efficiency data but do not clarify the specific definitions or sources of these variables. For
instance, it remains unclear whether the income variable is derived from the equivalised
after-housing-cost (AHC) income or the gross annual income, which has implications for
model reliability.

In summary, while machine learning presents a promising approach to energy poverty
identification, significant research gaps remain. The following are methods to solve these
issues: (1) Employ a comprehensive set of evaluation metrics, including precision, recall,
and F1-score, rather than relying only on accuracy. (2) Ensure robust model validation by
clearly distinguishing between training and testing performance and applying rigorous
cross-validation techniques. (3) Address data imbalance issues, comparing appropriate
techniques such as sampling or class-weighted learning to improve the model’s ability
to detect energy-poor households. (4) Prioritise reducing False Negatives to ensure that
vulnerable households are not overlooked in energy poverty predictions.

1.6. The UK Government’s Machine Learning Pilot Study

The UK government also has previously conducted pilot analyses on energy poverty
identification using machine learning in 2017 [15]. They used a Random Forest (RF) model
to build the machine learning model, using a set of administrative data as input features
and LIHC indicators as outputs. Administrative data refers to information collected and
maintained by governments, public institutions, or organisations as part of their routine
operations and service delivery. This data is not originally gathered for research purposes
but is often used for policy analysis, service improvement, and decision-making [28].

In the government’s pilot model, key input features included annual gas and electricity
consumption, household income, number of adult occupiers, tenure, and building footprint
and type. These data points were sourced from administrative datasets such as the NEED
(National Energy Efficiency Data-Framework) [29], Experian [30], Department for Work
and Pensions [31], and Ordnance Survey [32].

The model achieved an overall accuracy of 67% and a balanced accuracy of 77%, with
a recall of 90%, meaning 90% of the actual energy-poor were identified correctly by the
model, indicating a strong ability to identify energy-poor households. We will refer to this
as the "benchmark” model and we will use this as the key comparator for our developed
models. Therefore, the term “benchmark model” refers to this “government model” which
was developed by the UK government in their pilot study. A notable limitation of the
benchmark model was its relatively low precision (0.24), meaning a significant proportion
of non-energy-poor households were misclassified as fuel-poor (only 24% of the households
predicted to be energy-poor were actually energy-poor). This trade-off resulted in an F1-
score of 0.37 for the energy-poor class, highlighting the challenge of improving precision
while maintaining high recall. These results indicate that while the model is highly sensitive
(high recall) in detecting energy-poor households, it struggles with precision, leading to
potential misclassification and False Positives. This suggests that further refinement is
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needed, such as feature selection, dealing with data imbalance techniques, or alternative
modelling approaches to enhance precision without compromising recall.

1.7. Objectives of This Paper

The primary objective of this study is to explore whether machine learning models
can enhance the identification of energy poverty by improving predictive performance.
The UK government’s 2017 pilot model is used as a benchmark to evaluate the perfor-
mance of machine learning models. By comparing against this benchmark, we assess
how integrating additional administrative data sources and refining feature selection can
lead to better energy poverty identification. Specifically, this study aims to achieve the
following objectives:

(1) Improve model accuracy, precision, and F1-score while maintaining recall at levels
comparable to the UK government’s benchmark pilot model.

(2) Evaluate different administrative datasets and feature combinations to enhance pre-
dictive power, such as census data.

(8) Compare the performance of different resampling techniques to mitigate class imbal-
ance and improve the detection of energy-poor households.

(4) Use SHAP values to enhance model interpretability and assess feature importance.

Census data serves as a valuable resource for energy poverty identification due to its
comprehensive demographic, socioeconomic, and housing characteristics, which provide
crucial insights into household living conditions [33]. Therefore, this study also investigates
the following hypotheses:

e  Census data alone has predictive power for energy poverty classification, even without
direct energy consumption data.

e Adding more socioeconomic and housing-related proxies (e.g., income, floor area,
dwelling type) will improve model accuracy.

Through this methodology, we aim to develop a robust and high-accuracy machine
learning model for energy poverty identification. By addressing research gaps, this study
contributes to enhancing machine learning applications for energy poverty identification,
with implications for policy implementation in the UK.

2. Materials and Methods

Our study follows a structured workflow, as illustrated in Figure 2, to develop and
evaluate machine learning models for energy poverty identification.

elect Input

features

Energy
Poverty label

*LIHC

Data Tidy dataset

Organisation

Data collection [ep

*Different inputs
combinations
design

. Data
ML model selection |« Preprocessin
P g Data splitting
* Compare the accuracy of *Preprocessing pipeline; .-
four models for the imbalance (encode, standardisation)

*Raw data: Many EHS datasets

issue; CV (fixed-folds) ] *Train set/Test set
1
$
Model training, tuning . Model
’ pr— Model evaluation el s
hyperparameters explainability
*Full pipeline (preprocessing + selected *Test set, Set threshold, a set of evaluation *SHAP value
model); Randomised Search CV metrics, compared with benchmark results

Figure 2. Overall workflow of the methodology used in this paper. Note: Asterisks indicate supple-
mentary information or clarifications for specific steps in the workflow.
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The process begins with data collection and organisation, where household-level data
are sourced from the English Housing Survey (EHS). Key variables, including input features
and energy poverty labels (LIHC indicator), are selected and processed to form a tidy
dataset. To assess the impact of different feature selections, we design two combinations of
inputs, each representing a distinct combination of predictors. The dataset is then split into
training and test sets, ensuring that the test set is used only once for final evaluation.

During model development, we first apply a preprocessing pipeline, including encod-
ing categorical variables and standardising numerical features to ensure data consistency.
To address the class imbalance issue, we compare the performance of four machine learning
models using cross-validation (fixed-folds) and select the most suitable model for further
training. Hyperparameter tuning is conducted using Randomised Search CV to optimise
model performance. After training and hyperparameter tuning, we evaluate the final
model on the test set, using a range of performance metrics, including precision and recall.
We then compare the predictive accuracy of the models under different input scenarios
with a benchmark model.

In the end, to enhance model explainability, we apply SHAP values, identifying the
most influential features in energy poverty classification and improving model interpretabil-
ity. The details of each step are presented in the following subsections.

2.1. Data Collection and Organisation
2.1.1. Input Feature Selection

The first principle guiding our feature selection was to align as closely as possible
with the variables used in the benchmark model from UK government. In addition, we
prioritised features that were consistent with UK census criteria and supported by the
UK energy poverty framework and the existing literature on the key factors related to
energy poverty, particularly those related to household income, housing quality, and oc-
cupancy characteristics. Therefore, a key challenge was the lack of exact matching data
from the administrative sources used in the benchmark model, which utilised government
datasets including the official NEED (National Energy Efficiency Data-Framework) [29],
Experian [30], Department for Work and Pensions [31], and Ordnance Survey [32]. These
data were unavailable in the datasets we had access to. This limitation required us to iden-
tify proxy variables from alternative data sources to approximate the missing information.
To address this challenge, we used data from EHS [34] as a substitute for census data and
the datasets used in the benchmark model to approximate the missing information. The
EHS datasets provided rich household-level data, including gross annual income, heating
system type, tenure, and household size. These variables met our selection principles and
were critical inputs for effective energy poverty classification.

The raw data were collected from the UK Data Service [35] and were originally sourced
from the EHS from the following two datasets:

e  English Housing Survey, 2021: Housing Stock Data. UK Data Service. SN: 9229 [36];
e  English Housing Survey, 2021-2022: Household Data. UK Data Service. SN: 9230 [37].

These collected datasets were linked using a unique identifier for each household, a
serial anonymised number. The total datasets included up to 180 variables for 10,527 house-
holds, covering demographic, socioeconomic, and housing characteristics. Among the 180
variables, 20 variables were selected as proxies for census data and the datasets used in the
benchmark model. These proxy variables were carefully selected to ensure that only rele-
vant and meaningful features were included through domain knowledge filtering. Details,
including data mapping methods and variable descriptions, are provided in Appendix A
(see Table A1l). The selected variables were categorised as follows:
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e  Census Data Proxies [38,39]: A total of 17 variables representing household compo-
sition, socioeconomic classification, and living conditions, including household size,
number of dependent children, tenure, long-term illness or disability status, heating
fuel type, and detailed dwelling type (eight categories).

e  Other Input Proxies: Three variables, including household annual income, total floor
area, and dwelling type (two categories: whether household is a house or flat).

These features were used to design different input combinations, each with a distinct
set of predictors.

2.1.2. Input Combinations

To investigate the effectiveness of census-based data in identifying energy poverty
and to evaluate how incorporating additional variables enhances the performance of the
benchmark model, we design two different combinations of predictors with varying levels
of input complexity.

e Combination 1 (census-only): This combination assesses the standalone predictive
capability of census data in identifying energy poverty. This model is named “COM-1"
in the analysis.

e Combination 2 (census + other inputs): Expands Combination 1 by incorporating
additional proxies. Notably, floor area and dwelling type (two categories) can be
obtained from Building 3D Modelling Lab [40], highlighting the potential for using
these accessible data sources as predictive inputs, while (estimated) household income
can be obtained from companies such as Experian. This model is named “COM-2" in
the analysis.

Based on these two input combinations, two models are developed, and their perfor-
mance is evaluated against the benchmark model. By comparing results across different
predictor sets, we assess the trade-offs between model complexity, predictive performance,
and data accessibility for energy poverty identification. Critically, in the benchmark model,
actual annual energy consumption data from the NEED dataset is used as an input. How-
ever, it is important to note that we do not have access to real-time or household-specific gas
and electricity usage data. Consequently, the gas and electricity usage data are not included
here. Instead, we conduct an additional model training where all available variables (census
and other inputs), along with SAP values, are used as model inputs to assess performance.
In the UK, the SAP value reflects the energy efficiency of a dwelling [41]; therefore, it serves
as a proxy for estimating household energy demand. The results from this additional model
are provided in the Appendix (see content related to the keyword “Extended Model”).
This “Extended Model”, which includes additional features, as described in Appendix, is
provided as a supplementary performance analysis alongside the benchmarks and other
models presented in the main text.

2.1.3. Energy Poverty Label

To obtain energy poverty labels, we use the energy poverty dataset 2021 from the EHS:
Department for Business, Energy & Industrial Strategy (2024). English Housing Survey:
Fuel Poverty Dataset, 2021. UK Data Service. SN: 9243 [42].

While this dataset provides the LILEE indicator, our study requires alignment with the
benchmark model, which uses the LIHC indicator, to ensure consistency in energy poverty
definitions. Therefore, we calculate the LIHC label following the official methodology from
the Fuel Poverty Methodology Handbook 2020 [43] and need data that is available in the
energy poverty datasets. The LIHC indicator defines energy-poor households as those
with below-threshold income and energy costs above the national median. In practice,
this requires computing household equivalised income and modelled energy costs, and
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comparing them against national-level thresholds [43]. According to this definition, a
household is classified as fuel-poor under LIHC in the following cases:

e High Cost: The household’s equivalised fuel costs exceed the national median.
e Low Income: The household’s equivalised after-housing-cost (AHC) income falls
below an adjusted threshold.

To compute this, we extract fuel expenditure, equivalisation factors, and AHC income
variables from the dataset and apply the LIHC methodology. As shown by Figure 3,
among the overall 10,527 households, 9140 are not energy-poor, and 1432 (around 14%)
are identified as energy-poor households. We can see that the ratio between non-energy-
poor and energy-poor households is about 6:1, which means this energy poverty dataset
is imbalanced.

Distribution of Energy Poverty Labels

8000

6000

Count

4000 +

2000 +

0 1
Energy Poverty Status (0: Not Energy Poor, 1: Energy Poor)

Figure 3. The distribution of energy poverty labels.

The full calculation process and the implementation code are available (see the “Data
Availability Statement”) to ensure transparency and reproducibility.

2.2. Data Splitting and Preprocessing Pipeline

After obtaining a tidy dataset containing input features and energy poverty labels,
the dataset is split into training (75%) and test (25%) sets. This ensures that the model is
trained on a sufficient amount of data while keeping a separate portion for final model
evaluation. The training set is used exclusively for model development, whereas the test
set is only used in the final model evaluation. Due to the dataset containing both numerical
and categorical variables, a data preprocessing pipeline is implemented to handle data
standardisation [44] and encoding [45]:

e  Numerical variables: We apply data standardisation using StandardScaler [46], which
transforms features to have a mean of zero and a standard deviation of one. Standardi-
sation ensures that numerical variables with different scales do not disproportionately
influence the model.

e  Categorical variables: We use One-Hot Encoding [47], which converts categorical
features into a binary format, allowing machine learning models to process them
effectively. This method prevents the model from misinterpreting categorical values
as ordinal relationships, preserving the integrity of categorical data.
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Using a pipeline-based approach [48] streamlines the preprocessing steps, ensuring
consistency across training and evaluation while preventing data leakage. By integrating
encoding and scaling into a single pipeline, we enhance reproducibility and maintain a
structured workflow.

2.3. Machine Learning Model Selection

The objective of the machine learning model selection is to compare the performance
of the different models, RF and XGBoosting, while applying different techniques to handle
class imbalance, including undersampling and class weighting. The RF and XGBoosting
models are widely used for classification tasks and have been applied in previous studies on
machine-learning-based energy poverty prediction, such as [6,17,18,21-23]. RF is a bagging-
based method that builds multiple Decision Trees and aggregates their outputs to improve
generalisation and reduce overfitting [49]. XGBoosting is a gradient boosting algorithm
that sequentially refines weak learners, optimising performance through gradient-based
updates [49].

When using machine learning to predict energy poverty, class imbalance poses a
critical challenge [50], as models tend to learn from the majority class (not fuel-poor houses),
leading to poor performance in identifying fuel-poor households. Without addressing this
issue, the model may perform well overall but will struggle to correctly classify energy-
poor households, leading to a biassed prediction that underestimates the actual energy
poverty. To address this, we apply the resampling [51] and class weight adjustment [52,53]
techniques for RF and XGBoosting, respectively, resulting in four models. The four models
are evaluated to determine the most suitable one for handling class imbalance before
proceeding to further training and hyperparameter tuning.

e  Resampling techniques: We apply Random Undersampling before training to re-
duce the bias towards the majority class. Undersampling techniques are used for
reducing the imbalance ratio by removing samples from the majority class [54]. This
approach helps balance class representation, ensuring that the model does not dis-
proportionately prioritise the majority class, thereby improving its ability to identify
energy-poor houses.

o Class weight adjustment: Another effective approach is adjusting class weights in
the model’s cost function, assigning higher weights to the minority class to make
misclassification more costly and to improve recall for fuel-poor households [55]. For
RE we set class weight as “balanced”, which automatically assigns weights to be
inversely proportional to class frequencies, reducing bias toward the majority class.
For XGBoost, we adjust the algorithms with the scale pos weight parameter, which is
typically calculated as the ratio of the number of negative samples to the number of
positive samples in the training data. This adjustment ensures that the model gives
sufficient importance to the minority class, enhancing its ability to correctly identify
fuel-poor households.

We use CV (k = 5) and compare both accuracy and balanced accuracy across the
four models. CV is a robust technique for assessing model generalisation by repeatedly
partitioning the training dataset and measuring the average performance across multiple
subsets [56]. The dataset is split into k folds. The model is trained on k-1 folds and validated
on the remaining folds, repeating this process k times. The final performance is averaged
across all folds.

We use both accuracy and balanced accuracy as metrics of performance for handling
imbalance issues. Accuracy measures the proportion of correctly classified instances out
of all instances, but it can be misleading in imbalanced datasets where the majority class
dominates [24]. Balanced accuracy, on the other hand, ensures that performance is fairly
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evaluated across both majority and minority classes [57]. The detailed explanation of
accuracy and balanced accuracy are available in Section 2.5. By comparing accuracy and
balanced accuracy, we select the most appropriate model that effectively handles class
imbalance while maintaining strong overall predictive performance and that could be used
for further training.

2.4. Model Training and Hyperparameter Tuning

After selecting the most appropriate model that could handle the imbalance issue,
we applied hyperparameter tuning to optimise model performance and utilise 5-fold Ran-
domised Search Cross-Validation (RandomizedSearchCV). This method randomly selects
a subset of hyperparameter combinations [58]. These hyperparameters include colsam-
ple_bytree, gamma, learning_rate, max_depth, n_estimators, reg_alpha & reg_lambda, and
subsample. The detailed explanation of these hyperparameters is available in Appendix B.
Each selected combination is evaluated using k-fold CV. The best-performing hyperparam-
eter set was chosen based on the evaluation metric that was the highest balanced accuracy
score obtained during cross-validation. [59]. This training and tuning approach ensured
that the model was well-optimised. The details of hyperparameter tuning, including the
type of hyperparameters tuned and the results, are available in Appendix B (Table A2).

2.5. Model Evaluation and Explainability

We use multiple evaluation metrics to ensure a comprehensive assessment of the
models [60], including the following:

e  Accuracy: Measures the proportion of correctly classified households.

TP+ TN

Aceuracy = 5 TNy FP+ FN

where
TP = True Positive;
TN = True Negative;
FP = False Positive;
FN = False Negative.

e  Precision: Indicates how many of the predicted fuel-poor households are actually
fuel-poor.

TP

Precision = W

(2)

e Recall (Sensitivity, True Positive Rate): Measures the proportion of actual fuel-
poor households correctly identified by the model. A higher recall ensures fewer
False Negatives.

TP

Recall = m

)
e  F1-Score: Represents the harmonic mean of precision and recall, providing a balanced
measure of model performance.

Precision x Recall
Fl=2x Precision + Recall @)

e Balanced Accuracy: Measures both the model’s sensitivity (True Positive Rate) and
specificity (True Negative Rate).
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1 T
Balanced ACCT’MﬂCy = E X (Recall + TI\]—I:'FP) (5)

e ROC and AUC (Area Under Curve): The ROC (Receiver Operating Characteristic)
curve plots the trade-off between a model’s recall (True Positive Rate) and False
Positive Rate (FPR) at different classification thresholds:

~FP
" FP+TN

The AUC represents the area under the curve. It represents the probability that a

FPR (6)

randomly chosen energy-poor household is ranked higher than a randomly chosen non-
energy-poor household. This metric evaluates the overall performance of a binary classifier
across all possible thresholds. A higher AUC value (closer to 1) indicates better performance.
An AUC of 0.5 indicates no better performance than random choice.

These metrics also allow for a detailed comparison between our models and the
benchmark. The confusion matrix is used also used, which is a cross-tabulation that
consists of a combination of metric results [25]. To further enhance the interpretability
of the best-performing model, we calculate SHAP values. SHAP values provide the
following [19,61]:

e  Feature Importance: Identifying which input features contribute the most to predicting
energy poverty.

e  Local Interpretability: Explaining individual household predictions, allowing insights
into why certain households are classified as energy-poor.

e  Fairness Assessment: Ensuring that predictions align with logical socioeconomic and
housing-related indicators rather than arbitrary biases.

By leveraging SHAP value analysis, we ensure that our model is not only accurate but
also transparent and explainable.

3. Results
3.1. Machine Learning Approach Selection

The results of the approach are presented in Table 2, which compares the performance
of different models in handling class imbalances across the two input combinations (COM-1,
COM-2).

Table 2. Model performance for handling class imbalances.

COM-1 COM-2
Machine Learning Models Balanced Balanced
Accuracy Accuracy
Accuracy Accuracy
RF + undersampling 0.78 0.78 0.86 0.87
RF + class weight 0.78 0.78 0.86 0.87
XGBoost + undersampling 0.78 0.78 0.87 0.87
XGBoost + (scale_pos_weight) 0.82 0.78 0.90 0.87

The results from Table 2 show that XGBoost with scale_pos_weight consistently, across
the cross-validation folds, outperforms all other models across all input combinations
(COM-1, COM-2), achieving the highest balanced accuracy and accuracy. This makes
it the best-performing model for addressing class imbalance, demonstrating a superior
capability in identifying energy-poor households while maintaining a strong overall pre-
dictive performance.
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Since these results are obtained through CV, they provide a reliable assessment of
the model’s generalisation ability. Therefore, for further model development, we select
XGBoost with scale_pos_weight adjustment for model training, hyperparameter tuning,
and final evaluation. The final hyperparameter tuning results for all models are presented
in Appendix B.

3.2. Models Performance Metrics

As illustrated in Figure 4, the performance of the machine learning models is assessed
using precision, recall, F1-score, accuracy, and balanced accuracy. The benchmark model,
which serves as a reference, achieves a recall of 0.90, indicating a strong ability to capture
actual energy-poor households. When setting the decision threshold to maintain a similar
recall across models, it is observed that two models (COM-1, COM-2) demonstrate high
recall values (0.90 and 0.91) close to the benchmark model, confirming their capability in
identifying energy-poor households.

Benchmark
1.0 COM-1
COM-2 0.900.90 0-91
0.87 0.88
0.8 0.77 .76
0.67
0.65 0.65
£ 0.6
_
o 0.51
Q
w0
0.41
0.4 0.37
0.27
0.24
0.2
0.0 — : : T T
Precision Recall F1-Score Accuracy Balanced Accuracy

Metrics

Figure 4. Performance metrics for two models (COM-1, COM-2) and benchmark model.

Despite the high recall performance, the two models outperform the benchmark
model in precision, F1-score, accuracy, and balanced accuracy, highlighting their improved
predictive performance. COM-1, which relies only on census-based data, already achieves
comparable performance to the benchmark model, suggesting that census data alone holds
significant predictive power for energy poverty identification. However, the COM-2 model
further enhances model performance.

The results indicate that COM-2, while maintaining a recall similar to the benchmark,
achieves notable improvements in precision and Fl-score. In particular, precision improves
from 0.24 (benchmark and COM-1) to 0.51 (COM-2). This increase suggests that incorpo-
rating additional variables reduces False Positive classifications, making the models more
effective in accurately identifying truly energy-poor households. Similarly, F1-score in-
creases from 0.37 (benchmark) to 0.65 (COM-2), demonstrating that adding more predictors
results in a better balance between precision and recall.

Accuracy and balanced accuracy also exhibit steady improvements across the models.
The benchmark model achieves an accuracy of 0.67 and a balanced accuracy of 0.77, whereas
COM-2, the best-performing model, reaches 0.87 and 0.88 for accuracy and balanced
accuracy, respectively.



Energies 2025, 18, 3054

14 of 26

The confusion matrix results (see Appendix C (Table A3)) for the two proposed models
(COM-1, COM-2) are presented alongside the benchmark model and Extended Model,
summarising their prediction performance for both energy-poor and non-energy-poor
households. Compared to the benchmark model, all proposed models achieve a higher
model performance, suggesting that integrating additional administrative data enhances
predictive performance.

The overall results support our hypotheses that (1) census data alone can be effective
in predicting energy poverty, and (2) incorporating more administrative data could enhance
predictive performance.

3.3. Models’ ROC Curve and AUC Value

Figure 5 presents the ROC curves for the two models, illustrating their ability to
distinguish between fuel-poor and non-fuel-poor households across different classification
thresholds. AUC values further confirm the trend observed in the performance metrics.
COM-1 achieves an AUC of 0.88, while COM-2 demonstrates improved discrimination
abilities with an AUC value of 0.95.

ROC Curve - COM-1 ROC Curve - COM-2
1.01 1.0
o 0.81 Q 0.8
© ©
o -4
2061 £ 069
% 3
£ 0.4 £ 0.4
(] ()
2 2
F 0.2 0.2
0.04 V¥ —— ROC curve (area = 0.88) 0.04 v —— ROC curve (area = 0.95)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate

Figure 5. ROC curves and AUC values for two models (COM-1, COM-2). The red dashed line
represents the performance of a random classifier (AUC = 0.5), serving as a baseline for comparison.

The increase in the AUC from model COM-1 to COM-2 indicates that incorporating
additional predictive variables enhances the model’s ability to differentiate between classes,
reducing both False Positives and False Negatives. The results suggest that while census
data alone can provide a baseline predictive capability, the inclusion of housing characteris-
tics and income predictors significantly refines model performance. The highest-performing
model, COM-2, achieves an AUC of 0.95, reinforcing its superior predictive power. This
highlights the potential for integrating administrative data into future predictive models
for energy poverty identification.

3.4. SHAP Value of the Best Performance Model

The SHAP summary plot (see Figure 6) provides insight into the most influential
factors affecting energy poverty classification in the COM-2 model. The x-axis represents
the SHAP value, which measures how much each feature influences the model’s prediction.
Negative SHAP values (left) mean the feature reduces the likelihood of being classified as
energy-poor. Positive SHAP values (right) mean the feature increases the likelihood of being
classified as energy-poor. The y-axis lists the features ranked by their importance, with the
most influential features at the top. The spread of dots across the x-axis shows variability,
indicating how different households are impacted differently by the same feature.
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Figure 6. SHAP summary plot: Feature impacts on energy poverty classification (COM-2 Model).

The SHAP value result highlights that household income is the most influential factor
in energy poverty identification. Lower income households are significantly more likely to
be classified as energy-poor, aligning with the existing literature on energy vulnerability.
Household size and total floor area also play crucial roles, with larger households facing
increased energy demands. The detailed housing tenure type (eight categories) further
contributes to disparities, as renters experience greater energy vulnerability compared to
homeowners. These methods suggest a machine learning model, enhanced by SHAP, could
provide interpretable results regarding the key drivers of energy poverty.

4. Discussion and Limitations
4.1. Discussion

The findings of this study emphasise the opportunity to integrate machine learning
into energy poverty identification to enhance efficiency, scalability, and policy effective-
ness. The UK government’s methodology for identifying energy poverty, as outlined in
the Fuel Poverty Methodology Handbook [10], relies on extensive data collection. While
theoretically robust for measuring fuel poverty, this approach introduces significant prac-
tical challenges for implementing this indicator for the identification of fuel poverty in
specific households. Many households may not have easily available or up-to-date in-
formation on income from benefits, tax credits, savings, council tax support, fuel prices,
energy consumption, or housing-related expenses. Data collection is complex and time-
consuming, limiting the feasibility of large-scale energy poverty identification and in-time
policy implementation.
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In contrast, the machine learning model developed in this study demonstrates that
energy poverty can be effectively identified using a more limited and accessible dataset,
even outperforming the benchmark model. By incorporating only a few features based
on census data and other factors, including gross annual household income, total floor
area, and dwelling type, the model achieves better-than-benchmark performance. This
suggests that machine learning approaches can provide a viable alternative, offering a
more scalable and efficient method for identifying fuel-poor households without requiring
excessive data collection. Our findings are consistent with previous studies suggesting
that machine learning models and socioeconomic data have the potential to improve
the energy poverty targeting efficiency compared to traditional approaches [6,17,23]. In
particular, our results support the applicability of such methods in the UK context. Unlike
indicator-based methods, our ML framework offers scalable adaptability to changing data
environments and can integrate local administrative datasets with minimal structural
modification. The comparison between the traditional method and the machine learning
approach is presented in the Table 3 below:

Table 3. Comparison between the traditional method and the machine learning approach.

Aspect

Traditional Method

Machine Learning Approach

Data Requirement

Extensive data collection (AHC
income, fuel costs, energy needs,
housing expenses, etc.)

Minimal and accessible (household
income, SAP score, census data, floor
area)

Computational Efficiency

Time-consuming manual collection
and calculations

Automated predictions with efficient
computation

Limited scalability due to complex

Highly scalable due to reduced data

Scalability data requirements dependency
Reliable but constrained by data Comparable or better-than-benchmark
Accuracy 11
availability performance
Fixed rule-based approach, difficult =~ SHAP values show the contribution of
Interpretability to break down individual each feature to an individual

household-level factors

household’s classification

Handling of Non-Linearity

Assumes a fixed income—energy cost
threshold, ignoring non-linear
relationships

Capture complex interactions between
income, housing, and energy efficiency

Household-Level Insights

Provides only a binary classification
(energy-poor or not) based on
predefined thresholds

Analysis at the individual household
level, revealing why specific households
are energy-poor

Policy Implications

Requires detailed household-level
data, limiting rapid assessments

Enables faster, data-driven decisions,
even in data-limited contexts

Future Application

Static methodology with limited
adaptability

Can integrate smart meter data to
measure and identify energy poverty
more dynamically and comprehensively

For the UK government, adopting machine learning for energy poverty identification
can enhance policy efficiency and effectiveness. By leveraging existing administrative data
sources such as census data and the amount of historical energy poverty classifications as
ground truth, the government can train predictive models that provide timely and scalable
assessments of energy poverty risk. This machine learning model could be used to achieve
the following:

e  Enhance rapid assessments of energy poverty using readily available datasets without
the need for direct household surveys or complex financial data collection.
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e  Support local authorities and policymakers in designing targeted interventions by
identifying households most at risk, enabling data-driven decision-making for finan-
cial aid distribution and energy efficiency programmes.

e  Facilitate real-time monitoring of energy vulnerability trends by integrating additional
real-world data sources, such as smart meter consumption, energy tariffs, and weather
data, to track changes in household energy usage patterns over time, allowing the
early detection of households struggling with energy costs or dynamically updating
its predictions to reflect changing economic and environmental conditions.

e By identifying at-risk households before they fall into severe fuel poverty, social
programmes can be more preventative rather than reactive, leading to better long-
term outcomes.

Additionally, integrating smart meter consumption data in the future could further en-
hance the predictive power of machine learning models, allowing for real-time monitoring
of energy vulnerability and enabling more proactive policy interventions. Notably, ongoing
research from the Smart Energy Research Lab (SERL) is already advancing this area [62-64].
The proposed ML framework could be integrated with emerging smart energy systems to
support targeted demand-side interventions. For instance, linking predictive models to
smart grid infrastructure could enable the real-time identification of vulnerable households
for demand response, dynamic pricing protection, or automated energy support services.
Intelligent Energy Management Systems [65] could leverage such predictions to allocate
renewable energy or efficiency upgrades more equitably. The outputs of our model could
also inform microsimulation models or macroeconomic analyses that evaluate the distribu-
tional impact of policy interventions, such as subsidies or energy rebates. By identifying
the households most at risk, economic models can assess whether current support schemes
are cost-effective and equitably targeted, helping to design more efficient policy instru-
ments. All these insights suggest that using existing administrative data and Al-driven
methodologies could significantly improve energy poverty identification, aligning with
national goals.

While the primary focus of this study is on household energy poverty in the UK, we
briefly explore the potential extrapolations of our methodological framework to illustrate
its broader relevance across domains. Beyond energy poverty, our framework, which
is based on linking administrative datasets with machine learning classification models,
can be extended to contexts where identifying spatial or socioeconomic vulnerability
is essential. For instance, in the extractive or mining industries, where socioeconomic
factors are closely linked to regional impacts and compensation schemes [66,67], our
proposed approach and framework could inform the more equitable distribution of royalties
or salaries based on regional deprivation indices, aligning with findings from previous
studies like [68,69]. Similarly, targeted resource allocation policies, such as electricity
pricing strategies or infrastructure investments in underdeveloped areas, may benefit
from data-driven socioeconomic profiling using our methods. However, it is crucial to
acknowledge that the application of such predictive models in sensitive domains raises
ethical concerns, including issues of fairness, transparency, and the risk of reinforcing
existing biases. Appropriate governance frameworks must therefore accompany future
applications to ensure responsible use.

This approach can also be adapted to other countries or regions with similar limita-
tions in direct energy poverty data, provided administrative datasets are available at the
household or regional level. Countries with census, welfare, and housing energy records
can replicate the methodology by adjusting variable mapping and model training to local
contexts. However, such applications must carefully consider context-specific ethical and
governance concerns. Consequently, given the use of sensitive socioeconomic and hous-
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ing data, it is important to consider ethical safeguards in both model development and
deployment. While data is anonymised, privacy risks must be managed through secure
handling and strict access protocols. Additionally, fairness audits are necessary to ensure
that ML predictions do not systematically disadvantage certain groups. We recommend
incorporating bias evaluation metrics and participatory policy design when implementing
ML-based targeting in practice.

4.2. Limitations

While our study demonstrates the potential of machine learning for energy poverty
identification, several limitations must be acknowledged.

(1) Trade-offs between model simplicity and predictive accuracy

The machine learning model relies on a reduced set of input features compared to
traditional identifying methods. Although the model performs comparably or better than
the benchmark, removing certain economic and fuel cost components may introduce
unobserved biases. Further research is needed to assess how feature simplifications impact
predictive reliability across different socioeconomic groups and geographic regions. Future
work could explore hybrid models that balance interpretability with a more comprehensive
feature set.

(2) Limitations of census and administrative data

A major challenge in using census data is its low temporal resolution; it is typically
updated once every ten years. This delayed update cycle may fail to capture short-term
economic shocks, household transitions, or sudden changes in energy affordability, limiting
the model’s ability to reflect real-time energy poverty trends. Similarly, administrative
datasets (e.g., housing tenure records) may lack real-time identification.

(3) Integration of energy consumption and smart meter data

Unlike the benchmark model, this study does not incorporate annual or any real time
energy consumption data, which could significantly enhance model adaptiveness and
responsiveness. To mitigate this, future work could integrate smart meter data (e.g., from
Smart Energy Research Lab (SERL) [70], NEED [29], or other similar resources) where
available, allowing for the dynamic updating of predictions. By incorporating energy tariff
data, seasonal variations, and consumption behaviours, machine learning models could
improve real-time energy vulnerability detection and enable more proactive interventions.

(4) Ethical considerations and model transparency

As with all machine learning models applied to social welfare contexts, ensuring
fairness, transparency, and accountability is crucial. While SHAP values provide insights
into feature importance, further work is needed to assess potential biases in the model,
particularly in low-data households or underrepresented communities. The potential
risks of algorithmic bias and over-reliance on historical administrative records should be
carefully evaluated.

(5) Proxy variables rather than actual administrative datasets

We use proxy variables to approximate key socioeconomic and housing characteristics,
as actual census data is not directly available. While these proxies capture relevant trends,
they may not fully represent the complexity of real census data. Future studies should
explore the use of official census datasets to enhance the accuracy and generalisability
of predictions.
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(6) Algorithmic bias

Algorithmic bias remains a significant concern when applying machine learning to
socioeconomic datasets, as it can raise ethical and fairness issues [71]. For example, if
training data underrepresents certain populations such as low-income or rural households,
the model may misclassify these groups and exacerbate existing inequalities. While our
modelling pipeline includes stratified sampling to reduce such risks, we recommend that
future applications incorporate bias audits, fairness metrics, and stakeholder engagement
to promote equitable outcomes.

5. Conclusions

This study demonstrates the potential of machine learning models to enhance the
efficiency, scalability, and accessibility of energy poverty identification. By using adminis-
trative data, including census-based housing characteristics, and other factors, including
household income, floor area, and dwelling type, the model achieves comparable or supe-
rior performance to the traditional energy poverty identification method and benchmark
machine learning model. These findings highlight the potential of machine learning, en-
abling faster and more cost-effective energy poverty identification. The key insights are
as follows:

(1) Machine learning offers a data-driven approach to the identification of energy poverty
in specific households.

(2) Census data has predictive power for energy poverty identification. Using a set of
administrative features as the input, our best performing machine learning model
can identify 91% of energy-poor households, with 51% of predicted energy-poor
households actually being energy-poor, a superior performance compared to the
benchmark model.

(3) Policymakers can benefit from integrating machine-learning-based models into energy
poverty identification frameworks.

Future research should explore the following: (1) Validating model performance
across diverse household demographics and geographic regions, ensuring robustness
across different socioeconomic conditions. (2) Integrating more input features, such as
real-time energy usage data (e.g., smart meters) or actual annual energy consumption to
enhance predictive accuracy. Furthermore, future research could build upon our findings
by developing targeted intervention strategies based on the specific causes of energy
poverty identified through our models. For example, those facing sudden income shocks
may require direct financial assistance. Additionally, by integrating temporal updates
and tracking household-level dynamics over time, the framework could be extended to
identify households at risk of falling into energy poverty, enabling the design of preventive
measures. Such early-warning systems would be critical in reducing long-term vulnerability
and enhancing the resilience of vulnerable communities.
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Abbreviations

The following abbreviations are used in this manuscript:

EHS English Housing Survey

SHAP SHapley Additive exPlanations

Ccv Cross-Validation

LIHC Low Income High Cost

LILEE Low Income Low Energy Efficiency
MEPI Multidimensional Energy Poverty Index
RFE Random Forest

XGBoosting  Extreme Gradient Boosting

DT Decision Tree

SVM Support Vector Machine

SVR Support Vector Regression

MLP Multilayer Perceptron

ANN Artificial Neural Network

PDC Passive Design Characteristics

Appendix A. Proxy Data Selection

In Appendix A, we provide a mapping between the proxy variables used in our
benchmark LIHC model and the original administrative datasets. For instance, household
income is proxied using household gross annual income (including all adult members) from
the EHS dataset. Employment status, such as the number of full-time workers, is derived
from EHS records based on the UK census criteria. This mapping ensures consistency
with LIHC indicators while effectively leveraging available administrative data. Census
data criteria are selected by relevant to household energy poverty such as socioeconomic
situation, well-being, energy consumption, and also based on criteria through the 2021
Census from the ONS website [72]. These proxies ensure that key socioeconomic and
housing characteristics are relevant to energy poverty. Table Al provides an overview of
the variables used in the model development, including their names, descriptions, and
example value labels.
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Table Al. Variable name and description used in model development.

Proxy Variable Name Description Value Labels Example
hhsizex Number of persons in the household 1,2,3,4
sft Number of full-time workers in household 1,2,3,4
1 “higher managerial and professional
nssech9 NS-SEC Socioeconomic Classification—HRP OCfupathl’lS S .
2 “lower managerial and professional
occupations”.
1 “higher managerial and professional
nssecpd NS-SEC Socioeconomic occupations”.
P Classification—HRP’s partner 2 “lower managerial and professional
occupations”.
1 “couple with no child(ren)”.
hhtypell Household type—AIll 11 categories 2 “couple with dependent child(ren)
only”.
116 to 24”
ager Report age categories 2 “25 to 34”
335 to 44”
1 “male”
sexhrp Sex of household reference person 2 “female”
Household composition, focussing on HRP 1 ”marrled/cohabltmg CO,L,lple
hhcompl (seven categories) 2 “lone parent, male HRP
& 3 “lone parent, female HRP”
Proxy census data based on  ndepchild Number of dependent children in household  1,2,3
criteria through the 2021 B : ; o,
Census from the ONS hhltsick Anypne 1ln household with long-term illness 1 "yes’
website [72]. or disability 2 “no
1 “own outright”
tenure2 Tenure group 2 2 “buying with I.noztgage (including
shared ownership)
3 “local authority tenant”
1 “new household”
prevten Tenure of previous home of HRP 2 “owned outright”
3 “buying with a mortgage”
1 “own with mortgage”
tenex Extended tenure of household 2 “own outright”
3 “privately rent”
1 “owner occupied”
. 2 “private rented”
tenuredx Tenure—Four categories. 3 “local authority”
4 “housing association”
Bedrqx Number of bedrooms 1,2,3
1 “gas fired system”
fuelx Type of fuel used for the main or primary 2 “oil fired system”
space heating system 3 “solid fuel fired system”
4 “electrical system”
1 “small terraced house”
DWtype Dwelling type (eight categories) 2 “medium/large terraced house”
3 “semi-detached house”
h Whether the dwelling is a house or flat 1 “house or bungalow”
ousex . P
(two categories) 2 “flat
Proxy for other inputs HYEARGRx Household gross annual income (inc. 100,000.00: “£100,000 or more”

income from all adult household members)

FloorArea

Total floor area

Numeric
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Appendix B. Hyperparameter Tuning for XGBoosting Model
The best-performing set of hyperparameters identified was as follows:

e  colsample_bytree: Controls the fraction of features (columns) used in each tree, reduc-
ing overfitting while maintaining predictive power.

e gamma: Determines the minimum loss reduction required to split a node, helping
prevent unnecessary splits and improving model regularisation.

e learning_rate: Controls the step size in updating weights, with a lower value improv-
ing model stability but requiring more boosting rounds.

e max_depth: Specifies the maximum depth of each tree, balancing model complexity
and overfitting.

e n_estimators: Sets the number of boosting rounds, with more estimators potentially
improving performance but increasing computational cost.

e reg alpha & reg_lambda: Represent L1 and L2 regularisation terms, which help
prevent overfitting by penalising large coefficients.

e subsample: Defines the fraction of training data used per boosting iteration, reducing
variance and improving generalisation.

The best hyperparameter values are selected based on the highest balanced accuracy
score obtained during cross-validation. The results for models COM-1 and COM-2 and
Extended Model are in Table A2:

Table A2. Hyperparameter results.

Hyperparameter COM-1 COM-2 Extended Model
colsample_bytree 0.70 0.69 0.96
gamma 4.68 4.68 4.04
learning_rate 0.05 0.05 0.2

max_depth 11 11 8

n_estimators 250 250 383
reg_alpha 5.4 8.04 8.04
reg_lambda 6.96 6.96 1.87
subsample 0.61 0.61 0.95

This training and tuning approach ensures that the model is well-optimised, robust,
and generalisable, leading to the improved identification of energy-poor households.

Appendix C. Confusion Matrix Results

Table A3 presents the confusion matrix results for the proposed models (COM-1,
COM-2, Extended Model) alongside the benchmark model, summarising their clas-
sification performance in energy poverty identification. Each confusion matrix in-
cludes the key performance metrics: precision, recall, Fl-score, accuracy, macro av-
erage, weighted average, and balanced accuracy, calculated for both energy-poor and
non-energy-poor households.
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Table A3. The confusion matrix results for all models, respectively.

COM-1
Set Threshold = 0.23
Classification Precision Recall F1-Score Support
Not Energy-Poor 0.98 0.61 0.70 2285
Energy-Poor 0.27 0.90 0.41 358
Accuracy 0.65 2643
Macro Avg 0.62 0.76 0.58 2643
Weighted Avg 0.88 0.65 0.70 2643
balanced accuracy = 0.76, ROC curve (area = 0.88)
COM-2
Set Threshold = 0.45
Classification Precision Recall F1-Score Support
Not Energy-Poor 0.98 0.86 0.92 2285
Energy-Poor 0.51 0.91 0.65 358
Accuracy 0.87 2643
Macro Avg 0.75 0.88 0.79 2643
Weighted Avg 0.92 0.87 0.88 2643

balanced accuracy = 0.88, ROC curve (area = 0.95)
Extended Model (Add SAP Value)

Set Threshold = 0.43

Classification Precision Recall F1-Score Support
Not Energy-Poor 0.98 0.88 0.93 2285
Energy-Poor 0.56 0.90 0.69 358
Accuracy 0.89 2643
Macro Avg 0.77 0.89 0.81 2643
Weighted Avg 0.92 0.89 0.90 2643

balanced accuracy = 0.90, ROC curve (area = 0.96)
Benchmark Model

Classification Precision Recall F1-Score Support
Not Energy-Poor 0.98 0.64 0.77 2396
Energy-Poor 0.24 0.90 0.37 296
Accuracy 0.67 2692
Macro Averaged 0.61 0.77 0.57 2692
Weighted Averaged 0.90 0.67 0.74 2692

balanced accuracy = 0.77, ROC curve (area = 0.89)
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