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Abstract: Preinvasive squamous lung lesions are precursors of lung squamous cell carcinoma 
(LUSC). The cellular events underlying lesion formation are unknown. Using a carcinogen-
induced model of LUSC with no added genetic hits or cell type bias, we find that carcinogen 
exposure leads to non-neutral competition among basal cells, aberrant clonal expansions, and 
basal cell mobilization along the airways. Ultimately, preinvasive lesions develop from a few 
highly mutated clones that dominate most of the bronchial tree. Multi-site sequencing in human 
patients confirms the presence of clonally related preinvasive lesions across distinct airway 
regions. Our work identifies a transition in basal cell clonal dynamics, and an associated shift 
in basal cell fate, as drivers of field cancerization in the lung. 
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Main Text 
Lung squamous cell carcinoma (LUSC) evolves from a cancerized field, a population of cells 
that may show no morphological changes, yet presents some of the phenotypic alterations 
involved in tumorigenesis, and carries cancer-associated molecular abnormalities (1). The 
latter are linked to both intrinsic processes, such as ageing, and extrinsic factors, including 
exposure to mutagens in cigarette smoke (2, 3). With continued damage, increasingly 
disordered preinvasive lesions become apparent in the bronchial epithelium, half of which 
ultimately progress to LUSC (4, 5). Elucidating the biological mechanisms underlying the 
transition of the histologically normal airway into preinvasive disease will inform the design 
of early cancer interception strategies. 

The pseudostratified epithelium lining the adult trachea and mainstem bronchi is composed 
of basal cells and various populations of luminal cells. During homeostasis, basal cells divide 
to self-renew and to give rise to luminal cells, either directly or through the generation of 
intermediate progenitor cells (6-9). Secretory and ciliated cells make up most of the luminal 
cell compartment, whereas ionocytes, neuroendocrine and tuft (also known as brush) cells are 
present at low frequencies (6, 7, 10). Secretory cells also have the capacity to self-renew and 
to produce ciliated cells (11). However, their loss rate is higher than their self-renewal rate, and 
thus are continuously replenished by basal cells (8). 

Defining markers of basal cells, including Keratin 5 (KRT5) and the transcription factor 
p63, are also expressed in LUSC. Their expression profile and capacity for long-term self-
renewal have highlighted basal cells as the suspected cell-of-origin of LUSC (12). Indeed, we 
and others have shown that tobacco smoking—the main lung cancer risk factor (13, 14)—
markedly increases both mutational burden and the presence of cancer-driver mutations in 
basal cells from the histologically normal human bronchial epithelium (2, 3). Clonal tracking 
in the normal human airway and during early stepwise carcinogenesis is challenging. Analyses 
require the ability to sample extremely small regions across a spectrum of lesion grades and/or 
longitudinally, both impractical in conventional clinical practice. 

Murine models offer a tractable platform to study cancer initiation and progression. To 
date, investigation of the cellular origin of LUSC has relied mainly on the use of genetically-
engineered mouse models (GEMMs) with cell type-restricted genetic alterations (15, 16). 
While these studies have demonstrated the ability of distinct airway progenitor cells to produce 
tumors when targeted with specific oncogenic hits, it is unclear whether the same cell 
populations would do so in response to environmental mutagens (17). Additionally, when early 
disease stages were examined, only a minority of GEMMs displayed a squamous phenotype 
throughout disease development (12, 18). Chemical carcinogenesis models provide an 
alternative to GEMMs with the advantage of exhibiting a high mutational burden, more closely 
resembling the complexity of human cancers (17). N-nitroso-tris-chloroethylurea (NTCU), a 
DNA alkylating agent, induces the development of both preinvasive squamous lung lesions 
and invasive LUSC in mice, allowing examination of squamous cell lung carcinogenesis from 
its earliest stages (19, 20). 

Here, we used lineage tracing, whole-mount imaging, as well as single-cell RNA and low-
input whole-genome sequencing (scRNA-seq, WGS) to track basal cell trajectories following 
NTCU exposure. Our results demonstrate a lineage relationship between basal cells and 
squamous lung lesions in vivo. Biophysical modeling reveals that carcinogen exposure leads 
to early non-neutral basal cell competition in the tracheobronchial epithelium, which eventually 
drives clone dominance in the peripheral airways. This change in clonal dynamics is associated 
with a basal cell fate shift, also identified in the airway of smokers. In mouse and human, we 
demonstrate evidence of clonal relatedness between preinvasive lesions across distinct 
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anatomical sites, detailing mechanistic insights into aberrant clonal expansions and cell 
migration contributing to field cancerization. 

 
NTCU-induced squamous lung lesions originate from pre-existing basal cells 

Topical administration of NTCU to mice for 12 weeks leads first to the formation of 
preinvasive lung lesions along the bronchial tree, and eventually to the development of invasive 
lung squamous cell carcinoma within the next 12 weeks (Figure 1A-C) (20). The histology and 
progressive nature of this murine model closely mimics human LUSC, making it an ideal 
system to track the cellular origin of the disease. 

To assess the contribution of basal cells to NTCU-induced carcinogenesis in vivo we used 
lineage tracing. Unlike the human respiratory tract, where basal cells are found throughout the 
conducting airways, including the bronchioles, in the mouse they are mainly confined to the 
extrapulmonary airways (9). Tg(KRT5-CreER);R26R-tdTomato mice (hereafter referred to as 
KRT5-CreER;tdTomato) received tamoxifen for five consecutive days to label airway basal 
cells at high density (Figure 1D). We confirmed expression of tdTomato in the great majority 
of KRT5+ tracheal basal cells by whole-mount immunostaining four days after the last 
tamoxifen dose (Figure 1E). Mice were then treated with NTCU for 12 weeks, and the 
tracheobronchial tree examined in tissue whole-mounts 18-24 weeks post-tamoxifen (Figure 
1F-G; Figure S1A). In control mice treated only with tamoxifen, tdTomato+ cells remained 
restricted to the proximal end of the main bronchus throughout the 24-week period, consistent 
with the compartmentalization of the epithelium (Figure 1F). In the NTCU-treated group, 
however, cells co-expressing tdTomato and KRT5 were evident in the main bronchus and 
bronchioles (Figure 1G, Figure S1B,C). Histological analyses of sections across the 
tdTomato+KRT5+ bronchial epithelium confirmed the presence of preinvasive disease, ranging 
from flat atypia to squamous dysplasia (Figure 1H,I). All the lesions identified across 8 
different individuals examined were tdTomato+. These findings demonstrate that NTCU-
induced squamous lung lesions derived from lineage-labeled basal cells. Notably, lineage-
tracing of Scgb1a1-expressing secretory cells revealed no contribution of this population to 
NTCU-induced disease (Figure S2). 
 

NTCU induces non-neutral mutant clone expansions 
To elucidate how carcinogen exposure alters airway basal cell behavior, we used mosaic cell 
labeling. KRT5-CreER;tdTomato mice were given one dose of tamoxifen 4 days before 
undergoing 12-week NTCU treatment (Figure 2A). Control animals received tamoxifen only. 
The dorsal and ventral halves of the trachea were examined as whole-mounts 24 weeks after 
tamoxifen administration (Figure 2B, Figure S3A). In controls, tdTomato-labeled basal cells 
mostly produced discrete clones along the proximo-distal axis of the trachea. Scattered single 
cells were also evident (Figure 2C). In contrast, NTCU treatment led to formation of large 
tdTomato+ patches that merged with each other. In both groups, clone boundaries in the dorsal 
trachea frequently followed the longitudinal smooth muscle bands. Clones over the ventral 
cartilage, however, had more diffuse margins, creating a less fragmented pattern after NTCU 
treatment (Figure S3A). 

We next applied biophysical modeling to investigate basal cell clonal dynamics in both the 
control and NTCU-treated groups, focusing on the tracheal epithelium up to but excluding the 
carina. During homeostasis, basal cells undergo a process of stochastic self-renewal with cell 
duplication perfectly balanced by the differentiation and loss of neighbors from the basal cell 
layer (8). To model this dynamic, we turned to a minimal modeling scheme based on a neutral 
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‘voter’ model type process. In this model, the basal cell layer is represented as a lattice of basal 
cells in which stochastic loss through differentiation is compensated by the duplication of a 
neighboring basal cell (Figure 2D). To mimic the mosaic labeling of the KRT5-
CreER;tdTomato trachea, cells in the lattice model were seeded with spatial distribution 
matching that of the 4-day labeling control (Figure S3B). We then compared stochastic 
simulations of the voter model dynamics with the measured distributions of the unlabeled cell 
clusters, which we refer to as 'voids' (Figure S3C). Focusing on regions larger than one cell, 
quantitative analysis of the cumulative distribution of void sizes in the dorsal and ventral 
trachea of the control group showed evidence of a power law-like dependence with an exponent 
of around -1, as expected for a tissue maintenance process based on neutral competition 
between basal cells (21). This dynamic showed excellent agreement with the experimental 
observations at 24 weeks post-labeling (R2=0.96 for both dorsal and ventral data) (Figure 2F; 
Figure S3C; Supplementary Text). Small deviations from this trend could be explained by the 
inhomogeneous mosaic labeling of the tissue. In contrast, in the NTCU-treated samples there 
was a shift in the observed distribution, which diverged from the characteristic power law 
behavior of the neutral model, with an increased fraction of large voids (Figure 2G). As NTCU 
treatment likely affects the whole basal cell population, neutral competition could in principle 
be maintained if NTCU caused a global shift in cell behavior. However, numerical simulations 
revealed that a global increase in cell proliferation, or changes in the fraction or distribution of 
labeling, were not sufficient to account for the shift in the void size distribution. Indeed, EdU 
incorporation analyses indicated no statistically significant differences in the number of cycling 
cells per unit area between groups (Figure 2C; Figure S3E). 

We hypothesized that NTCU treatment introduced heterogeneity in the system by altering 
the cell fate and impairing differentiation of only a subset of basal cells. To test this, we 
considered a model dynamics in which a small fraction of fitter mutant basal cells is able to 
displace neighboring normal-like mutant cells as they undergo symmetric cell divisions (Figure 
2D, bottom panel; Supplementary Text). This results in non-neutral competition; whereby fitter 
mutant clones colonize tissue at the expense of normal-like cells. In this model, fitter mutant 
clones compete non-neutrally with normal-like clones, yet they compete neutrally with each 
other. Considering a small fraction of fitter mutant clones distributed randomly in the system, 
numerical simulations of the model recapitulated the large patches of labeled and unlabeled 
regions, providing good agreement between the model and the experimental data (R2=0.91 and 
R2=0.90 for dorsal and ventral data, respectively) (Figure 2G; Figure S3D). 

Altogether, these results suggest that carcinogen exposure introduces heterogeneity to the 
basal cell compartment, by shifting the behavior of a fraction of basal cells, leading to their 
colonization of the tracheal epithelium. 

 
Carcinogen exposure leads to a basal cell fate shift in the airway epithelium 

To investigate the consequences of NTCU exposure across the different cell types of the 
pseudostratified airway epithelium and to gain insights into the mechanisms underlying the 
change in basal cell dynamics, we conducted scRNA-seq. Tracheal cells were isolated from 
NTCU-treated mice 3 weeks after treatment completion (15 weeks after treatment 
commencement). Cells from non-treated age-matched mice were used as controls (Figure 3A). 
Across 6 mice, a total of 30,020 cells were retained for analysis following quality control 
(Figure S4A, Data S1). Based on the expression of canonical marker genes, we recapitulated 
the overarching cellular identities of all clusters, dividing them into epithelial cells (Epcam, 
Krt5, Trp63), macrophages (Il1b, Mpeg1, Cd68), and T cells (Itk, Cd3e, Cd3d) (Figure S4A,B). 
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There was no evidence of batch effects, with cells clustering according to cellular identity 
rather than individual (Figure S4A). 

We next sub-clustered the epithelial cell fraction (29,088 cells) independently from the 
immune cell compartment (Figure 3B). Cell type reference signatures were collected from 
mouse airway single-cell studies and used for identification of individual epithelial cell types 
(Figure 3B,C; Figure S4C; Data S2, S3). We confirmed the presence of previously described 
cell types of the upper airways (6, 7, 22), including basal, Krt4/Krt13+, club/secretory, 
deuterosomal, ciliated, neuroendocrine, and tuft cells, as well as ionocytes. In line with the 
previously reported heterogeneity within the murine basal cell compartment (7, 8, 23), we 
identified five basal cell clusters (Figure 3B,C; Data S3). These included a ‘basal proliferative’ 
cell subpopulation (Mki67, Stmn1, Birc5, and Top2a), and a cell fraction characterized by high 
Tgm2, Dcn and Dlk2 expression, labeled ‘basal Tgm2+’. Two subpopulations could be 
distinguished from the remaining basal cells based on their levels of Krt14 expression; a ‘basal’ 
fraction exhibited negligible Krt14 levels, whereas a ‘basal Krt14+’ cluster showed high Krt14 
expression. Lastly, a fifth, smaller basal cell subpopulation displayed high levels of Trp63 and 
Mecom. 

To identify potential NTCU-induced changes in cellular composition within the tracheal 
epithelium, we performed differential abundance analysis using scCODA (24). NTCU 
exposure led to a shift within the basal cell pool, with a significant decrease of basal cells 
lacking expression of Krt14 and a concomitant increase of Krt14+ basal cells (FDR < 0.05) 
(Figure 3D,E, Figure S4D). This change was accompanied by an expansion of the Krt4/Krt13+ 
cell fraction following NTCU treatment (FDR < 0.05). Immunostaining analyses of the tracheal 
epithelium confirmed upregulation of KRT14, accumulation of KRT13+ cells across basal and 
suprabasal locations, and revealed a substantial loss of SCGB1A1+ secretory cells 15 weeks 
after NTCU treatment commencement (Figure S4E,F). 

Krt14 becomes upregulated in the airway epithelium after injury (25), but its persistent 
expression has been associated with dysregulated repair and preinvasive disease (26), including 
NTCU-induced tracheal dysplasia, reported to precede the development of bronchial dysplasia 
in this model  (27). To gain insights into the epithelial cell dynamics leading to the observed 
changes in cell composition, we used Monocle (28) to conduct a trajectory analysis, focusing 
on the basal, Krt4/Krt13+, and secretory cell clusters. This analysis orders cells based on their 
relative gene expression, assuming different cell states along a developmental trajectory. 
Pseudotime analysis unveiled a biologically plausible progression starting from a state 
dominated by proliferative and Krt14+ basal cells (cell state 1), transitioning to either 
Krt4/Krt13+ cells and secretory cells (cell state 2) or to basal cells (cell state 3) (Figure 3F). 
This trajectory is consistent with the known outcomes of basal cell divisions leading to either 
differentiation or self-renewal, and with the notion that Krt4/Krt13+ cells constitute a 
transitional state along one of the possible paths from basal to secretory differentiation (6-8). 
Visualization of cell type distribution and abundance over each branch of the trajectory 
revealed that, when compared to controls, in the NTCU-treated group there was, first, an 
enrichment of Krt14+ basal cells at the onset of the path, and second, an accumulation of 
Krt4/Krt13+ cells along the ‘differentiation’ branch, with fewer secretory cells (Figure 3G; 
Figure S4G). Whole-mount analyses on tissues obtained 6 weeks after NTCU treatment 
completion demonstrated a significant increase of KRT13 expression (p=0.0236) and 
decreased SCGB1A1 immunoreactivity (p=0.0380) in the tracheal epithelium, in comparison 
to age-matched controls (Figure 3H-I). Since SCGB1A1+ secretory cells act as progenitors of 
ciliated cells (8, 11), we assessed changes in this population. Expression of the ciliated cell 
marker FOXJ1 was significantly reduced following NTCU treatment (p=0.0348) (Figure S5). 
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Together, these data indicate that NTCU treatment shifts basal cell fate and negatively 
affects differentiation, providing support to our biophysical model. 

 
Epithelial cell fate shift during early human squamous cell lung carcinogenesis 

We next explored the effects of carcinogen exposure in the histologically normal human airway 
epithelium. Tracheal brushes were obtained from 3 never- and 3 current-smokers (Data S4) 
and profiled using scRNA-seq. This dataset was integrated with publicly available data of 
tracheal biopsies from two additional cohorts, one including 6 never- and 6 current-smokers 
(29), and another comprising 9 healthy non-smokers (10) (Figure S6A). A total of 45,959 
epithelial cells were used for downstream analyses. Cell types were annotated using previously 
described signatures (10, 29-33) (Data S5), leading to identification of basal, suprabasal, 
secretory, serous, deuterosomal, ciliated, and neuroendocrine cells, as well as ionocytes (Figure 
4A,B; Figure S6B,C; Data S6). Varying degrees of heterogeneity were detected within the 
basal and suprabasal cell populations (Figure 4A,B). A KRT4/KRT13+ cell subpopulation was 
also identified (Figure 4A,B). 

For an overall assessment of the effects of cigarette exposure, we conducted a differential 
cell abundance analysis using MiloR (34). This indicated an enrichment of KRT4/KRT13+ cells 
in smokers (Figure 4C,D). To delineate the relationship between the KRT4/KRT13+ cell state 
and basal, suprabasal and secretory populations in the human airway surface epithelium we 
used Slingshot to infer lineage trajectories (35). With the cycling basal cell cluster specified as 
the origin, three different cell lineages were identified (Figure 4E). Lineage 1 corresponded to 
self-renewing basal cells. Both lineage 2 and lineage 3 transitioned through the KRT4/KRT13 
state. However, while lineage 2 followed a path towards secretory cell differentiation, lineage 
3 progressed through different suprabasal cell states (Figure 4E). Pseudotime distribution 
analysis throughout lineages indicated slower progression along lineages 2 and 3 in smokers 
relative to non-smokers, with higher cell densities up to the midpoint of the trajectories and 
fewer cells reaching the end of the paths (Figure 4F). To evaluate cell fate choice differences 
by smoking status, we compared mean lineage weights, which represent the relative 
contribution of each cell to a specific lineage. This revealed a shift from lineage 3 to lineage 2 
in smokers (FDR < 5.4x10-23; Figure 4G), resulting from an increased proportion of 
KRT4/KRT13+ cells and a concomitant reduction of suprabasal cells in the epithelium of 
smokers. Therefore, both in mouse and human, carcinogen exposure leads to differential cell 
fate choice and to accumulation of cells in a transitional KRT4/KRT13+ state in the airway 
epithelium. 

We then derived a KRT4/KRT13 gene expression signature based on the top 50 
differentially expressed genes identified in our scRNA-seq analyses, and evaluated its 
expression in a bulk RNA-seq dataset including 122 human bronchial biopsies from 77 
patients, ranging from histologically normal airway throughout increasing stages of 
preinvasive disease up to LUSC (36). We found a significant enrichment of the KRT4/KRT13 
signature in preinvasive lesions, from metaplasia to carcinoma in situ (CIS), as well as in 
invasive tumors, when compared to normal (metaplasia p=8x10-5; mild dysplasia p=0.0033; 
moderate dysplasia p=1.4x10-5, severe dysplasia p=3.7x10-5, CIS p=9.4x10-6, LUSC p=6x10-

4) (Figure 4H). This supports the relevance of this cell state in preinvasive disease development.  
 

Mutagenic consequences of N-nitroso-tris-chloroethyl urea in the airway epithelium 
NTCU belongs to the class of nitrosourea compounds, DNA alkylating agents which are often 
used in chemotherapy, similar to platinum-based chemotherapeutic drugs like cis- or carbo-
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platin or non-classical alkylating agents such as temozolomide. Alkylating agents have been 
shown to induce cytotoxic and mutagenic adducts onto DNA, leaving mutagen-specific 
signatures of DNA damage (37). We used laser-capture microdissection (LCM) followed by 
low-input whole-genome sequencing (WGS) (38) to profile the genomic consequences of 
NTCU on epithelial cells across the bronchial tree. A total of 142 epithelial microbiopsies along 
the trachea and intrapulmonary airways were obtained from two mice, MD6812 and MD7047, 
23 and 24 weeks after NTCU commencement, respectively. Low-input WGS was performed 
to a median depth of 24x (range of 8x–46x), enabling us to investigate the burden of somatic 
substitutions and small insertions and deletions (indels; Data S7). The median microbiopsy 
volume was slightly higher for the trachea than for the lung epithelium (Figure S7A).  

Initially, we used our WGS data to investigate the burden of single base pair substitutions 
(SBS) as well as indels across both mice using bespoke computational workflows. An 
individual microbiopsy can contain cells from multiple clonal populations, manifesting as 
clusters of mutations found at similar variant allele fractions (VAFs). Given the heterozygosity 
of somatic mutations, a perfectly clonal microbiopsy where all cells derived from a recent 
common ancestor will have a VAF distribution centered around 0.5. Hence, an increase in the 
number of sampled clones will result in a shift of this center towards lower VAFs. To evaluate 
the abundance of clones across microbiopsies, we leveraged a N-dimensional Dirichlet process 
(39). Given the high number of mutations detected and to facilitate comparisons, we separated 
microbiopsies according to their location in the left or right lung. This allowed us to compare 
the burden of SBS and indels per clone across distinct anatomical regions (Figure 5A; Figure 
S7C; Data S8) (40). Since the ability to detect somatic mutations assigned to a clone is highly 
dependent on the sequencing depth of the underlying microbiopsy, we performed a logistic 
regression to adjust the burden per clone according to its predicted sensitivity (Figure S7B). 
Our results demonstrated considerable variability in burden of single nucleotide variants 
(SNVs), with a mean of 6022 and 16345 single-base substitutions for MD6812 and MD7047, 
respectively. In contrast, the average burden of double-base substitutions and indels was on par 
between both mice (mean=17 and 26 DBS; 15 and 12 indels, respectively). 

We used the underlying substitutions assigned to each clone to perform mutational 
signature analysis. Mutational signatures for each clone were extracted through a Bayesian 
hierarchical Dirichlet process, assessing their similarity to the bespoke reference signatures 
from COSMIC (Figure 5A, Figure S7D,E). We found prevalent mutational signatures related 
to clock-like processes accumulating linearly with age, most importantly SBS5 (Figure 5A) 
(41). Well-known chemotherapy signatures including SBS11, SBS32 and SBS36 were also 
common in our dataset. However, the most dominant signature in the dataset was not listed in 
COSMIC (v3.2). This signature is characterized by T>A and T>G substitutions at ATN sites 
(Figure 5B), sharing features with previously described signatures of alkylating agents and 
therefore directly relating to NTCU treatment. We used SigProfiler as an independent approach 
to validate this NTCU signature (Figure S7E) (42). The signature was present in clones in both 
trachea and lung and accounted for a total of 36% of all mutations in the whole-genome data, 
as well as up to 85% of the mutations in individual clones (Figure 5A). Across the dataset in 
general, both the double-base substitution and indel mutation spectrum did not show a higher-
than-expected burden of alterations, with no obvious NTCU-related mutagenic effect (Figure 
S7C).  

Lastly, we inferred phylogenetic relationships between clones in all microbiopsies using 
the pigeonhole principle, resulting in a total of 4 phylogenetic trees, with the tip of each 
representing a clone (Figure 5C, Figure S8A-D). We frequently observed larger clades where 
individual clones descended from a common ancestor (Figure 5C). Due to the small sample 
size, a formal analysis for recurrence of coding mutations revealed no significant hits (Figure 
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S8). However, we did observe likely functional mutations in genes known to be mutated in 
human LUSC among the founder mutations of large clonal expansions. In summary, the 
genomic landscape of the NTCU-treated airways shows an imprint of mutagen exposure, 
highlighted by a distinct mutational signature. The clones in this dataset occasionally show a 
high phylogenetic relationship where a highly mutated common ancestor gives rise to several 
descendants. 

 
Non-neutral basal cell competition drives progressive colonization and clonal expansions 
in the airways 
We next assessed the influence of NTCU mutagenicity on the clonal dynamics across the 
intrapulmonary airways, combining immunofluorescence imaging, biophysical modelling, as 
well as genomic and histological information. In addition to the basal cell pool in the 
pseudostratified epithelium of the murine upper airways (Figure 1E,F) (43), rare small clusters 
of p63+KRT5+ cells that expand following influenza-induced airway damage can be found in 
the distal lung (44-46). To identify the basal cell populations that contribute to the formation 
of early lung cancer lesions, we examined KRT5 expression in lung whole-mounts at different 
time points from the start of NTCU treatment (Figure 6A). We found that following carcinogen 
exposure, KRT5+ cells gradually occupy the intrapulmonary airways in a proximal to distal 
fashion, creating an advancing front. No evident discrete peribronchiolar KRT5+ cell clusters 
were observed. This suggests that squamous lung lesions develop from proximal airway basal 
cells that expand beyond their niche, progressively colonizing the peripheral airways. 

During homeostasis and repair, basal cells have multi-lineage differentiation capacity (6, 
9). We therefore investigated whether KRT5 lineage-labeled cells that colonize the 
intrapulmonary airways produce differentiated progeny. Immunostaining analyses of lung 
sections from KRT5-CreER;tdTomato mice sequentially treated with tamoxifen and NTCU 
revealed areas along the bronchi and bronchioles lined with a seemingly pseudostratified 
tdTomato+ epithelium. These tdTomato+ regions contained basal, secretory, and ciliated cells, 
as assessed by expression of KRT5, SCGB1A1, and acetylated alpha-Tubulin (ACT), 
respectively (Figure S9A-C). This indicates that at least a subset of basal cells that expand 
distally after mutagen treatment remains differentiation-competent, uncovering a mechanism 
through which highly aberrant basal cells may establish a cancerized field containing the 
various cell types of a histologically normal epithelium. Expression of KRT13 was found to be 
enriched at the advancing front of the expanding tdTomato+ domain, as well as in squamous 
lesions (Figure S9D). 

To evaluate clonal dynamics as basal cells expand into the intrapulmonary airways, we 
integrated phylogenetic trees with their anatomical information, mapping clones to the 
epithelial regions where the relevant microbiopsy had been taken (Figure 6B,C; Figure S10,11; 
Data S8-S12). Several observations emerged from these analyses. First, when focusing on 
MD7047, we detected four major lineages distributed over millimeters of pulmonary 
epithelium (Figure 6B,C; Figure S10; Data S9,S10). Second, all clones detected in the lung 
were related to the common ancestors, while the proximal airway appeared to be more 
heterogeneous in clonal composition. Third, the spatial territories occupied by descendants of 
each major lineage were largely exclusive, although they were spatially close to each other. As 
such, in the right lung of MD7047 distinct clones colonized different lobes (Figure 6B; Figure 
S10A). These observations were consistent with the non-neutral theory of clonal expansion 
applied to the airways, which predicted a reduction in clonal heterogeneity as clones colonized 
a single airway (Figure S12A,C,D and Supplementary Text). Importantly, these features of the 
spatial distribution of clones were all replicated in the other lobes of MD7047 as well as in a 
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different individual, MD6812 (Figure 6C; Figure S10B, Figure S11). The dominant lineages 
did not show a particularly higher number of mutations compared to the other clones, although, 
as mentioned before, they sometimes presented driver mutations (Figure 5C, Figure S8). Taken 
together, our data demonstrate that the lungs of NTCU-treated mice are dominated by a small 
number of lineages. The exclusivity of territories occupied by these clones suggests that 
individual lobes are uniquely colonized by populations derived from a common ancestor. While 
we can only occasionally find contributions of these clones in the extrapulmonary bronchi, our 
whole-mount immunofluorescence indicates that the common ancestors of these clones may 
arise in the upper airways, subsequently migrating distally. 
 

Clonal relatedness of human preinvasive lung lesions across distinct anatomical sites 
Work by Franklin and colleagues proposed the presence of clonally related preinvasive lesions 
in widely dispersed sites of the human bronchial epithelium (47), supporting the presence of a 
cancerized field. Subsequent longitudinal analyses by our team suggested that migration of 
lesion precursor cells contributes to formation of the field along the tracheobronchial tree (48). 
Our findings in the NTCU model agree with this notion. To explore this further, we used multi-
site sequencing to investigate clonal relationships between anatomically distinct preinvasive 
lesions in five patients recruited to the University College London Hospital Surveillance Study 
(Data S4). Biopsies with histology ranging from moderate dysplasia to CIS were enriched for 
epithelial tissue using LCM and subjected to whole-exome sequencing (WES) to a median 
depth of 431x. We analyzed 12 regions across these donors and found evidence of clonal 
relatedness between spatially distinct preinvasive airway lesions in 4 out of 5 individuals 
(Figure 7A; Figure S13). In one patient, P152, truncal events spanned lesions in the trachea 
and both the left and right bronchi (Figure 7A), indicating that lesion precursor cells can spread 
bilaterally. 

To elucidate the dynamics of somatic events across different sites, we constructed 
phylogenetic trees for each patient using CONIPHER (49), which integrates Dirichlet 
clustering and copy number error correction of somatic mutations. Within these phylogenetic 
trees, clusters containing all other clusters were classified as truncal mutations, while the 
remaining were categorized as subclonal mutations (Figure 7B,C; Figure S14A,B; Data S13). 
Although analysis of selection of lung cancer gene mutations (Data S5) was underpowered due 
to the patient cohort size, mutations in TP53 were identified as the most significantly selected 
truncal event (q=0.015), present in 100% of clonally related sites (Figure S14C). The 
proportion of clonal truncal mutations ranged from 26.4% to 78.8% in patients with clonally 
related lesions, whereas shared subclonal mutations were observed at frequencies of 6.4% to 
15.4% (Figure 7B,C; Figure S14A,B). The identified clonal diversity between regions indicates 
that cells accumulate additional mutations over time as they migrate between sites. One patient, 
P149, presented two anatomically separate lesions (LUL/LLL and RLL) arising independently, 
each harboring distinct TP53 mutations (Figure S14D). 

Utilizing the mutation clonality information derived from the phylogenetic analysis, we 
investigated the dynamics of clonal and subclonal fractions of the top six SBS signatures 
observed in CIS and LUSC (4, 50), namely SBS1, SBS2, SBS4, SBS5, SBS13, and SBS92 . 
Consistent with previous studies (4), tobacco-associated signatures (SBS4 and SBS92) were 
highly prevalent in preinvasive lesions, contributing between 12% and 45% of all mutations 
(Figure S15A), similar to what has been reported for LUSC (50). On average, SBS4 was more 
enriched in truncal mutations compared to subclonal mutations, suggesting that DNA damage 
caused by cigarette smoke drives early clonal expansion and disease progression (Figure S15A, 
B). In contrast, APOBEC signatures (SBS2 and SBS13) were more enriched in subclonal 
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mutations (Figure S15A, B), indicating that mutations resulting from APOBEC activity are 
likely later events in lung squamous cell carcinogenesis. 

 
Discussion 

We have tracked the development of field cancerization in the airway epithelium and 
demonstrated that preinvasive lung squamous lesions originate from basal cells. Using a 
carcinogen-induced murine model of LUSC, we show that carcinogen exposure shifts epithelial 
cell fate and drives non-neutral competition among basal cells, leading to large clonal 
expansions of mutant cells along the length of the tracheobronchial epithelium. Preinvasive 
lesions eventually emerge from a few dominant mutant clones that escape the confines of the 
tracheal niche and progressively expand to colonize the bronchial tree. 

The mutational landscape of the histologically normal human bronchial epithelium 
suggests that selection of mutant clones starts before the appearance of preinvasive disease (2). 
Given the inherent limitations of human studies, resolving this process in the context of the 
airway architecture is challenging. The murine model of LUSC we have used here allowed us 
to overcome this. The ability to visualize clonal distributions on tissue whole-mounts and to 
perform extensive sampling across the bronchial tree enabled us to delineate how mutagenic 
insults shape clonal dynamics, and to understand their transcriptomic and genomic 
consequences. 

We found that carcinogen exposure shifted basal cell fate in the murine upper airways, 
favoring a Krt14high basal cell state. This change was accompanied by an accumulation of a 
transitional Krt4/Krt13+ cell population (7) in the basal and suprabasal epithelial cell layers, 
and decreased presence of secretory and ciliated cells, suggesting impaired progression towards 
luminal cell fate. We identified increased expression of KRT4/KRT13 in the human airways of 
smokers, as well as in preinvasive squamous cell lesions and LUSC. A subpopulation of Krt13+ 
cells localized to discrete sites of the tracheal epithelium named ‘hillocks’ has been recently 
shown to be a source of vitamin A deficiency-induced murine squamous metaplasia (51). Our 
lineage tracing studies demonstrate that NTCU-driven squamous disease originates from Krt5-
expressing basal cells. While our basal cell labeling strategy would track Krt5/Krt13+ hillock 
basal cells, aberrant basal cell clonal expansions were not restricted to specific tracheal regions, 
but evident throughout the epithelium of the upper airways, making hillock basal cells solely 
responsible for the phenotype unlikely. Our cell trajectory analyses both in mouse and human, 
however, highlight the transition of basal cells into a Krt4/Krt13+ cell state as an early step 
during precancerous squamous disease development, suggesting potential shared properties 
between this cellular population and hillock-derived Krt13+ cells. 

Through multi-site sequencing we demonstrate the presence of clonally related preinvasive 
lesions across distinct anatomical sites of the lung both in the mouse and humans, indicating 
that migration of preinvasive lesion precursor cells across the bronchial tree contributes to field 
cancerization in the airways, as previously postulated (48). In the NTCU model, mutant cells 
progressively mobilize from the major airways into the bronchioles, areas that are normally 
devoid of basal cells. These migratory cells produce both differentiated luminal cells in their 
new environment—resulting in ectopic areas of pseudostratified epithelium—and 
precancerous lesions. In the human airways, it appears precancerous basal cells undergo similar 
migration and expansion, producing distinct but clonally related lesions. Mobilization of 
subpopulations of airway epithelial cells in the intrapulmonary airways has been observed in 
mice following severe injury (52, 53). While some of these cell subpopulations have been 
shown to activate expression of KRT5, they were mostly found to emerge from distal epithelial 
cell populations, and only a minority was reported to derive from pre-existing basal cells (52, 
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54). Further studies are required to delineate the mechanisms underlying the migration of basal 
cell-derived lineages, and to understand the signals that restrict basal cell domains in normal 
homeostatic conditions. 

Taken together, our work identifies the disruption of basal cell homeostasis as a key cellular 
event underlying the initiation of lung squamous carcinogenesis. 
 

Materials and methods summary  
Mouse models 

Work involving the use of animal models was approved by the UCL Animal Welfare Ethical 
Review Body and performed in accordance with the UK Home Office procedural and ethical 
guidelines. FVB/N mice were purchased from Charles River UK. The Tg(KRT5-CreER), 
Scgb1a1-CreERTM, R26R-Confetti and R26R-CAG-LSL-tdTomato lines have been described 
previously (9, 11, 55-57). Transgenic lines were backcrossed to FVB/N for at least 2 
generations before producing experimental cohorts. All mice were maintained in individually 
ventilated cages with access to food and water ad libitum. For experiments involving the use 
of transgenic animals, littermates were randomly distributed between treatment and control 
groups. 
 

NTCU-induced lung carcinogenesis 
N-nitroso-tris-(2-chloroethyl)urea (NTCU, Santa Cruz Biotechnology sc-212265) was 
administered to 6-week-old female mice as previously described (20). Briefly, 75 µL of 13 mM 
NTCU in acetone were applied onto the shaved back of each mouse twice weekly for 12 weeks. 
Treatment was followed by a monitoring time of up to 12 weeks. Where indicated, 5-ethynyl-
2’-deoxyuridine (EdU, ThermoFisher A10044 or Merck 900584) in sterile phosphate buffered 
saline (PBS) was administered intraperitoneally at 50 µg/g of body weight to label dividing 
cells. At the experimental end point, mice were terminally anesthetized and transcardially 
perfused with PBS prior to tissue collection. 
 

Human sample collection for single-cell RNA sequencing 
Ethical approval for patient sample collection was obtained through the UCL/UCLH Local 
Ethics Committee under the study REC reference 18/SC/0514. 

Patients were recruited via screening of ENT operating lists or bronchoscopy lists; those 
aged 50-75 years old without active cancer or infection were included. Three never-smokers 
and three current smokers were identified; all patients provided informed, written consent. 
Tracheal brushings were obtained during routine diagnostic or therapeutic microlaryngoscopy 
under general anesthesia or flexible bronchoscopy under sedation, placed immediately into 
transport media (alpha-MEM containing 1X penicillin-streptomycin (Gibco, 15070), 250 
ng/ml amphotericin B (Thermo Fisher Scientific, 10746254) and 10 ng/mL gentamicin (Gibco, 
15710)) and transported on wet ice directly to the laboratory for processing. The tracheal 
brushes were processed into single cell suspension according to previously published protocol 
by Worlock et al (58). Trypan Blue was used to assess cell count and viability prior to 
resuspending in HBSS/BSA 0.05% at 1000 cells/µL. 10X single-cell gene expression libraries 
were prepared at the CRUK City of London Single Cell Genomics Facility using 5’ reagents 
for 5,000 targeted cell recovery. 
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Human sample collection for whole-exome sequencing 

Patient samples were collected under the study REC reference 01/0148, which was approved 
by the UCL/UCLH Local Ethics Committee.  

Patients were recruited to the University College London Hospitals preinvasive 
surveillance study, where they undergo periodic autofluorescence bronchoscopy (59). At 
bronchoscopy, biopsies of regions identified as abnormal to autofluorescence were taken, 
embedded in OCT and frozen on dry ice. An additional biopsy was taken for histopathological 
assessment, as well as a blood sample, which was used as germline control. Fresh frozen 
biopsies were serially cryosectioned at 7-10 µm thickness and mounted onto MembraneSlide 
1.0 PEN slides. Every 12 sections, a reference section was collected and stained with 
hematoxylin and eosin (H&E) to confirm histology and locate areas of preinvasive disease. 
LCM of the region of interest was performed on the PALM Microbeam system (Carl Zeiss 
MicroImaging, Munich, Germany). DNA from the micro-dissected epithelium and from 1.5 
mL of whole blood was extracted using the QIAGEN QIAmp DNA micro kit (Crawley, UK), 
according to the manufacturer's instructions. DNA yield was increased by using soluble carrier 
RNA in the DNA extraction process and final DNA concentration was calculated using the 
Qubit dsDNA High-Sensitivity assay (Life Technologies, Paisley, UK). Only samples with 
A260/280 absorbance ratio readings of 1.7-1.9 were included. 
 

Computational Methods 
Sub-clustering of mouse tracheal epithelial cells 

Murine epithelial cells were sub-clustered using the Louvain algorithm with a resolution of 0.6 
to resolve finer cellular distinctions. Cell type annotations of these sub-clusters were informed 
by the expression of top cluster-specific markers idented by FindAllMarkers function (Data 
S3) and cross-referenced with consensus genes (Data S2) from the literature. To distinguish 
between different basal cell phenotypes, we assessed their unique transcriptional profiles by 
leveraging top markers identified in our data and previously published studies. Marker gene 
dotplots and UMAP visualizations were generated to provide robust validation of cell type 
assignments and distinguish basal cell subtypes.  

 
Compositional analysis of murine airway with scCODA 

To evaluate whether the abundance of any of the identified epithelial cell types changed by 
NTCU treatment, we used scCODA, a Bayesian model to assess compositional changes in pre-
defined clusters from single-cell data (https://sccoda.readthedocs.io/en/latest/) (24). Using a 
hierarchical Dirichlet-Multinomal model, scCODA accounts for uncertainty in cell-type 
proportions as well as the negative correlative bias across cell-type proportions in relation to a 
reference cell type. Ciliated cells were used as reference for our analysis, however, it should 
be noted that the results did not change substantially when allowing scCODA to automatically 
determine the reference cell type. In addition to the reference cell type, we specified the 
treatment condition and the individual mouse as covariates. The remaining analysis was 
implemented as described in the single-cell best practice vignette (https://www.sc-best-
practices.org/conditions/compositional.html). 
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Pseudotime trajectory analysis for murine samples 
We employed Monocle2 (2.24.0) (28) for pseudotime analysis of basal, Krt4/Krt13+ and 
secretory cells. A single-cell trajectory was constructed using the Discriminative 
Dimensionality Reduction with Trees (DDRTree) algorithm, employing the top 400 
significantly differentially expressed genes among the selected epithelial cell types. Cells were 
ordered along the trajectory with the state containing proliferative basal cells set as time zero, 
and pseudotime was calculated accordingly. To ensure clarity in trajectory dynamics 
visualization, cell numbers in each group were downsampled by 10%. Trajectory plots were 
generated using the plot_cell_trajectory function. The log2 fold change for cell abundance was 
computed for each cell type on each cell state, with sample size adjustments factored in using 
R. 
 

Integration of human single-cell RNA-seq data with publicly available datasets 
Our tracheal scRNA-seq data (n = 6) was integrated with publicly available tracheal datasets 
from current- and/or non-smokers generated by Goldfarbmuren et al., 2020 (29) (GSE134174, 
n = 12), and Deprez et al., 2020 (10) (EGAS00001004082; n = 9). Integration and data 
processing were conducted using Seurat v5.0.1. Expression values for each cell were then 
normalized using the global-scaling normalization method LogNormalize. Principal 
component analysis (PCA) was performed on the top 2000 highly variable genes, excluding 
mitochondrial and ribosomal genes. The optimal number of principal components (PCs) for 
further analysis was selected based on a scree plot. To address batch effects across datasets and 
donors, we applied the Harmony algorithm with theta 1 to compute a batch-corrected UMAP. 
Louvain clustering was then performed using the FindClusters function with a resolution of 
0.6, which was identified as the best resolution for accurately separating refined cell types. 
Differential cell markers within each cluster were identified using the FindAllMarkers 
function, with a threshold of 25% minimum expression percentage, and minimum log fold 
change of 0.25 (Data S6). Top marker genes for each cluster were visualized using heatmaps 
to confirm specificity. 

To annotate clusters, the top identified marker genes for each cluster were cross-referenced 
with consensus marker genes reported across multiple studies (Data S5). UMAP visualizations 
and heatmaps were generated to validate these annotations. The cluster-specific markers and 
their correspondence with published signatures ensured robust identification of cell types 
across datasets. 
 

Differential cell abundance analysis of human epithelial cell types with MiloR 
To investigate differential abundance of tracheal epithelial cell types between non- and current-
smokers we used MiloR v 1.4.0 (34). This approach enabled us to detect changes across a 
dynamic cell population, where cells may be transitioning through cell states, by analyzing 
local neighborhood information. The analysis involved: creating a Milo object from the batch-
corrected graph of the integrated datasets, building the graph with parameters k = 30 and d = 
30, and generating neighborhoods using makeNhoods with prop = 0.1, k = 30, d = 30, and 
refined = TRUE. Cells within neighborhoods were counted using the countCells function at the 
sample level and neighborhood distances calculated using calcNhoodDistance with d = 30. 
Differential abundance was assessed by applying a SpatialFDR threshold of ≤ 0.1 in any single 
neighborhood. 
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Single-base-substitution calling in mouse WGS  

Single nucleotide variants were called using the Cancer Variants through Expectation 
Maximization (CaVEMan) algorithm (60) with copy-number options of major copy number 5, 
minor copy number 2 and normal contamination 0.1. In cases where samples had a CNA, the 
ASCAT results were incorporated in the variant calling. In addition to the default ‘PASS’ filter, 
we removed variants with a median alignment score (ASMD) < 120 and those with a clipping 
index (CLPM) > 0, to remove mapping artefacts. Subsequently, for every mutation identified 
in any sample from each patient, we counted the number of mutant and wild-type reads using 
vafCorrect (https://github.com/cancerit/vafCorrect). Further filters described below were 
applied to identify true somatic mutations and separate them from either germline variants or 
recurrent sequencing errors. 

 
Identification of clones through SNV clusters in mouse WGS 

A nonparametric Bayesian hierarchical Dirichlet process (HDP) was implemented to cluster 
SNVs with similar variant allele frequencies (VAFs) that were called across multiple 
microdissections for each patient biopsy as described previously (39). This N-dimensional 
Dirichlet process (NDP) clustering approach was run with 5,000 burn-in iterations, followed 
by 5,000 posterior Gibbs sampling iterations that were used for clustering. In principle, there 
is no requirement to pre-specify the number of clusters, making this process flexible for all 
datasets. In this way, the number of SNV clusters are permitted to vary throughout the sampling 
chain. Only SNV clusters comprising a minimum of 50 unique mutations were kept for 
downstream analysis. Input to this algorithm included per-patient data tables consisting of the 
coverage and counts of each called variant per microdissection. 

 
Inference of phylogenetic trees 

The statistical pigeonhole principle was applied to infer phylogenetic clonal relationships 
between per-patient SNV clusters identified by the NDP algorithm as highlighted previously 
(39). Thereby, each evaluated cluster is represented as a branch of a phylogenetic tree. A given 
cluster is considered to have strong evidence of being nested within another (that is, sub-clonal 
relationship) if the fraction of cells carrying the cluster of mutations is lower in all member 
microdissections relative to the fraction of cells containing another cluster of mutations within 
the same microdissections, in which the sum of their respective mutant cell fractions (CFs) is 
also >100%. Otherwise, if the sum of the pairwise mutant CFs is ≤ 100%, only weak evidence 
of nesting exists. In cases in which only some microdissections have lower CFs of a given SNV 
cluster relative to another, the clusters are interpreted to be independent and not nested within 
one another. Here, only clusters with a median VAF ≥ 0.1 are analyzed. 
 

Interactive visualizations using MapScape 
To combine genomic and histological information, a custom R script based on the MapScape 
package was developed (https://github.com/shahcompbio/mapscape). A histology image, the 
pixel location of the samples, as well as the information of clonal prevalence generated by the 
NDP were leveraged as input. The phylogenetic tree, represented as a table containing the clone 
structure, the phylo object as well as the mutations assigned to each branch of the tree were 
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provided as inputs as well. The resulting output was saved as html to enable interactive 
exploration of the data. 

 
Somatic SNV calling in human samples 

Lesion reads were compared to the germline DNA (blood) to identify somatic single nucleotide 
variants (SNV) using MuTect2 v4.2.0 (61). MuTect2 calls were filtered for ‘PASS’. Additional 
filtering was performed to minimize false-positive variant calls using FilterMutectCalls (flags: 
--min-median-base-quality 20; --min-median-mapping-quality 30; --max-events-in-region 2; -
-max-alt-allele-count 1). 

VarScan2 somatic (v2.3.9) (62) was also used to call the somatic variants. VarScan2 output 
from SAMtools mpileup (minimum mapping quality = 20) was used to identify somatic 
variants between lesion and matched germline samples. The following filters were applied to 
VarScan2: lesion depth ≥ 30, germline depth ≥30, Variant Allele Fraction (VAF) ≥ 0.03, with 
a somatic p-value ≤ 0.01. A variant allele frequency ≥ 0.05 applied if only called in VarScan2. 
Additionally, a blacklist filter was applied to some genomic location of the variant. Blacklisted 
regions include regions identified as problematic regions of the genome in the Encode project 
(63).  

The somatic callers were annotated against database sources including COSMIC (v.75, 
https://cancer.sanger.ac.uk/cosmic) (64), RefSeq and other in silico prediction tools using 
ANNOVAR v1.0.0 (65). As a preparation step for subclonality and phylogeny analysis and to 
ensure comprehensive detection and consistent monitoring of somatic variants, MuTect2 
v4.2.0 (61) force calling was performed on all somatic variants that passed the quality control 
on multi-region samples. This approach allowed us to accurately track the evolution of 
precancerous cells by ensuring variant calling at these sites across all samples for each patient. 

 
Somatic Copy Number Alteration (CNA) detection in human WES 

Allele-specific copy number analysis was conducted using ASCAT v3.1.2 (66), as per the 
authors’ recommendations for WES data (https://github.com/VanLoo-
lab/ascat/tree/master/ReferenceFiles/WES/). In summary, allele counts were obtained using 
alleleCounter v4.3.0 (https://github.com/cancerit/alleleCount), which quantified the number of 
reads supporting each allele at SNP sites of G1000_loci_hg19. These counts were then 
converted into logR and B-allele frequency (BAF) values using the updated 
ascat.prepareTargetedSeq() function, which employs a probabilistic method to infer genotypes 
based on read counts. The input data for ASCAT was subjected to GC correction, using a wave-
pattern GC correction calculated with the ASCAT-provided scripts. The segmentation output 
was generated using the ascat.runAscat() function with gamma set to 1. For subclonality 
analysis, only copy number segmentations from autosomes and samples with a purity greater 
than 10% were included. 

 
Subclonality and generation of phylogenetic trees 

To infer the clonality and diversity of preinvasive lesions, somatic SNVs with a similar cellular 
prevalence were clustered using CONIPHER v1.0. (49).  Briefly, this process was conducted 
in three steps for each patient: (I) estimation of the proportion of preinvasive cells in which a 
given mutation is present in each sample, using the VAF corrected for local copy number and 
purity; (II) identification of mutation clusters; (III) reconstruction of phylogenetic tree by 
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correcting for complex evolutionary events like mutation losses, and removing biologically 
improbable mutation clusters. The minimum number of mutations per cluster was set to 5. The 
clonality of mutational clusters was inferred based on the cell fraction estimated from the 
phylogeny. Phylogenetic trees were visualized using the R package ggplot2. The subclonal 
structure for each sample was illustrated using cell fractions and nesting structure, determined 
by the phylogenetic tree, with the R cloneMap package (https://github.com/amf71/cloneMap) 
(67). 
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Figure 1. NTCU-induced squamous lung lesions develop from pre-existing basal cells.  
(A) NTCU administration protocol for the induction of murine lung squamous cell carcinoma.  
(B) Immunofluorescence for the basal cell and squamous cell lesion and tumor marker KRT5 
and the proliferation marker Ki67 on murine lung sections 18 weeks after NTCU treatment 
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commencement. Tissue overview shows abnormal KRT5 expression in the bronchial tree. 
Scale bar, 1 mm. (I, II) Low-grade preinvasive lesions are shown. Scale bar, 50 µm. 
(C) Immunostaining for KRT5 and Ki67 on lung sections from NTCU-treated mice 23 weeks 
after treatment commencement. Tissue overview shows regions in the bronchial tree expressing 
KRT5. Scale bar, 1 mm. (III, IV) Invasive tumors filling intraparenchymal spaces are shown. 
Scale bar, 50 µm. 
(D) Strategy to track lineage-labeled airway basal cells during NTCU-induced lung 
carcinogenesis in KRT5-CreER;tdTomato mice.  
(E) 3D projection of dorsal trachea whole-mount showing expression of tdTomato in the great 
majority of KRT5+ basal cells following tamoxifen treatment. Arrow points to non-labeled 
KRT5+ cell. Scale bar, 100 µm.  
(F) Left lung lobe whole-mounts showing lineage-traced tdTomato+ cells in control lungs. 
Scale bar, 2 mm. 
(G) 3D projection of a lung whole-mount from a NTCU-treated mouse. Lineage-labeled 
tdTomato+ cells co-expressing KRT5 are detected throughout the bronchial tree. Scale bars, 2 
mm (overview) and 500 µm (magnified region). 
(H) Immunostaining for tdTomato and KRT5 on bronchial section collected 18 weeks after 
NTCU start. Histology is indicative of squamous dysplasia, with partially disorganized layers 
of epithelial cells. Scale bar, 100 µm. 
(I) Bronchial tissue sections from control and NTCU-treated KRT5-CreER;tdTomato mice 
stained with hematoxylin and eosin (H&E, top), or processed for tdTomato 
immunohistochemistry (bottom). Differentiated luminal cells are seen in the control bronchial 
epithelium, and no lineage-labeled cells are detected. Following NTCU administration, 
tdTomato+ dysplastic lesions and loss of luminal cells are observed. Scale bars, 50 µm. 
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Figure 2. Carcinogen exposure induces non-neutral basal cell clonal expansions.  
(A) Strategy to track basal-cell derived clones during NTCU-induced lung carcinogenesis using 
mosaic cell labeling in KRT5-CreER;tdTomato mice. 
(B) 3D projections of dorsal trachea whole-mounts from control and NTCU-treated mice at 4 
days and 24 weeks post-tamoxifen. The boxed regions highlight the dorsal smooth muscle, 
running longitudinally between the open cartilage rings, whose dorsal ends can be seen at the 
lateral edges of the preparation.  Scale bar, 500 µm.  
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(C) Images of the dorsal tracheal epithelium in the regions indicated in dashed boxes in (B). 
EdU staining was performed on 24-week samples. Scale bar, 200 µm. 
(D) Schematics of the biophysical models describing the dynamic of the basal cell layer in the 
control (top) and NTCU-treated trachea (bottom). 
(E) Cumulative probability of observing voids larger than a given size in the control trachea 4 
days post-tamoxifen. The black reference line corresponds to a power-law decay with exponent 
-1. 
(F) Cumulative probability of observing voids larger than a given size in the control trachea 24 
weeks post-tamoxifen. Data from 4 individuals in shown (black and grey lines). The blue 
‘theory’ line corresponds to the average with shaded standard deviation obtained from 200 
numerical simulations of a neutral competition model. The black reference line corresponds to 
a power-law decay with exponent -1. 
(G) Cumulative probability of observing voids larger than a given size in the trachea of NTCU-
treated mice, 24 weeks post-tamoxifen. Data from 4 NTCU-treated individuals is shown (black 
and grey lines). The blue ‘theory’ line corresponds to the average with shaded standard 
deviation obtained from 200 numerical simulations of non-neutral model (see Supplementary 
Text).  
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Figure 3. Single cell profiling reveals an epithelial cell fate shift following NTCU 
treatment. 
(A) Experimental overview of single-cell RNA (scRNA-seq) profiling of the tracheal 
epithelium of NTCU-treated and age-matched control mice. 
(B) UMAP visualizations colored according to condition (left) and cell type (right) for all mice, 
depicting 29,088 cells.  
(C) Dotplot depicting the expression of selected marker genes for cell types shown in B. 
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(D) Barplot showing changes in relative abundance of tracheal epithelial cell types in the 
NTCU-treated and control groups, 15 weeks after treatment commencement. 
(E) Barplot showing log 2-fold changes (log2FC) in abundance of each cell type between 
NTCU-treated and control mice calculated using scCODA. Statistical significance was 
determined by a false discovery rate (FDR) < 0.05 (Benjamini–Hochberg adjusted). 
(F) Trajectory analysis of basal, Krt4/Krt13+, and secretory cell clusters identified a bifurcated 
structure, with one major branching point and three cell major cell states. Pseudotime 
progression is shown in the center. The origin (cell state 1) is enriched in proliferative and basal 
Krt14+ cells. The two branches diverge into different cell fates: one dominated by Krt4/Krt13+ 
and secretory cells (cell state 2), and the other by basal and basal Tgm2+ cells (cell state 3). 
(G) Tree structure of the trajectory shown in F, visualizing the distribution and relative 
abundance of cell types over each branch of the tree structure in the control and NTCU-treated 
groups. Trajectories were reconstructed in four dimensions but are rendered in two dimensions. 
(H) Immunofluorescence for KRT13 and the secretory cell marker SCGB1A1 on trachea 
whole-mounts from control and NTCU-treated mice, 18 weeks after NTCU treatment 
commencement. A single longitudinal cut was done along the ventral tracheal wall to expose 
the entire epithelial surface. Scale bar, 500 µm. 
(I) Quantitative assessment of the tracheal epithelial surface expressing KRT13 (top) and the 
secretory marker SCGB1A1 (bottom) in control and NTCU-treated mice, 18 weeks after 
NTCU treatment commencement. Bars depict mean ± standard error of the mean (SEM). Each 
dot represents a different individual; p values are indicated (unpaired two-tailed t-tests with 
Welch’s correction). 
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Figure 4. Epithelial cell shift during early human lung squamous cell carcinogenesis. 
(A) UMAP visualization of epithelial cells in the human trachea. Clusters are colored according 
to cell type. 
(B) Dotplot displaying expression of selected markers for identified human tracheal epithelial 
cell populations. SMG, submucosal gland. 
(C) Neighborhood graph displaying outcome of differential cell abundance test with MiloR. 
Neighborhoods (nodes) are colored according to log fold changes between smoking status. 
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(D) Beeswarm plot showing differences in tracheal epithelial cell abundance in log fold change 
between non- and current-smokers. Neighborhoods with differential cell abundance at FDR < 
0.1 are colored in blue or red, if enriched in non-smokers or current-smokers, respectively. 
(E) Cell lineage inference for basal, suprabasal, and secretory cell populations from the surface 
airway epithelium using Slingshot. Principal curves are depicted on the UMAP to the left. The 
tree on right shows the cell populations in each lineage. Note that KRT4/KRT13+ cells are 
identified as a transitional cell state. 
(F) Pseudotime distribution of the three cell lineages identified in the surface airway 
epithelium, displaying differences between non- and current-smokers. 
(G) Plot depicting mean lineage weights. Weights assignments denote the probability of each 
cell belonging to a particular lineage. Cell fate choice between lineage 2 and 3 varies between 
non- and current-smokers. 
(H) KRT4/KRT13 signature score in normal airway epithelium, increasing grades of lung 
preinvasive squamous cell lesions and LUSC. Median, upper, and lower quartiles are shown. 
Individual samples are represented as dots; p values are displayed (Wilcoxon test). 
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Figure 5. Mutagenic effect of NTCU on basal cells in the airway. 
(A) Burden of single nucleotide variants (SNVs) and single base substitutions (SBSs) 
signatures, across clones detected in both NTCU-treated mice. Stacked bar plots showing the 
proportional contribution of each mutational signature to the SNVs, with purple highlighting 
the NTCU signature. The grey line highlights the average mutation burden across clones.  
(B) Trinucleotide context spectrum of the NTCU signature.  
(C) Phylogenetic tree for samples and clones located on the left lung of mouse MD7047. 
Clones are highlighted with individual numbers, and mutations colored according to the 
respective mutational signature contributing to each branch. The boxed numbers represent 
progenitors of the clones branching of the respective box. Where boxes overlap, the clone 
number is displayed above the box. Selected mutations in driver genes are annotated on some 
branches including the amino acid change.  
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Figure 6. NTCU-driven clonal expansions in the lung. 
(A) 3D projections of whole-mount lungs collected at different time points from NTCU 
treatment commencement. KRT5 immunostaining was used to visualize basal cells and 
preinvasive lesions. Scale bar, 2 mm. 
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(B) Integrative visualization of the location of a selected clone and respective microbiopsies in 
the trachea and lung of mouse MD7047. All microbiopsies from the trachea and the right lung 
containing the magenta clone (lineage) are shown as grey circles within the histological images. 
The trachea is seen in the tissue section on the left side of the image; the bronchial tree is 
displayed in the section to the right. The phylogenetic tree depicted on the right-hand side is 
scaled according to the number of mutations per clone. The magenta ancestor and all subclones 
related to this clade are highlighted. The small tree schematic surrounding the histological 
image is equivalent in structure, but not scaled to the mutation burden of each clone. Each dot 
on the small tree represents a clone and branching point within the phylogeny. 
(C) Equivalent to (B) but for all samples from the trachea and left lung of mouse MD7047. All 
samples containing the green clone (lineage) are depicted. A complete interactive visualization 
can be found in the supplementary data (Data S9-S10). 
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Figure 7. Clonal relatedness between anatomically distinct human preinvasive lung 
lesions. 
(A) Summary of preinvasive samples and patient characteristics used for assessment of 
clonality. Schematic shows the anatomical location of biopsy sites. MoD, moderate dysplasia; 
CIS, carcinoma in situ; RUL, right upper lobe; RMB, right main bronchus; RIB, right 
intermediate bronchus; RLL, right lower lobe; LUL, left upper lobe; LMB, left main bronchus; 
LLL, left lower lobe. 
(B) Phylogenetic tree based on somatic mutations illustrating the clonal relationships and 
evolutionary history of two indolent lesions present in an ex-smoker patient. 
(C) Phylogenetic tree depicting clonal relationships between indolent (R1 & R3) and 
progressive (R2) lesions in a current smoker. In B-C shared clusters across two or more 
anatomical sites are colored in blue, while unique and site-specific clusters are colored in 
purple, orange, or green. Clonal relationships between regions and seeding clones are shown. 
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Materials and Methods 
Tamoxifen administration for lineage-tracing studies 

A 20 mg/mL tamoxifen (Sigma T5648) stock solution was prepared in 10% ethanol/corn oil, 
and administered via oral gavage at 200 µg/g of body weight. Administration regimes used for 
individual experiments are indicated in the main text and/or figure legends. 
 

Histology and immunostaining 
Lungs were insufflated with 4% paraformaldehyde (PFA)/PBS before collection. For whole-
mount staining of samples expressing fluorescent reporters, tissues were fixed in ice-cold PFA 
for 2h, rinsed in PBS and transferred to PBS containing 0.05% ProClin 300 (Sigma 48912-U). 
All other samples were fixed overnight at 4°C before further processing. 

Paraffin-embedded tissues were sectioned at 4 µm and dewaxed on an autostainer (Tissue-
Tek DRS, Sakura). Heat-mediated antigen retrieval was performed in a microwave oven. 
Sections were blocked in 5% normal donkey serum/3% bovine serum albumin (BSA)/0.1% 
Triton X-100/0.05% ProClin 300/PBS for 1-2h at room temperature. When using primary 
antibodies raised in mouse on mouse tissue, sections were incubated with mouse on mouse 
blocking reagent (Vector Laboratories MKB-2213-1) 1h at room temperature or overnight at 
4°C to block endogenous immunoglobulins. Primary antibodies (Table S1) were applied in 
blocking solution overnight at 4°C. Sections were washed thrice with 0.1% Triton X-100/PBS 
(PBST) and incubated with Alexa Fluor- or DyLight-conjugated secondary antibodies 
(ThermoFisher or Jackson ImmunoResearch) overnight at 4°C. Following three washes with 
PBST, nuclei were counterstained with 4', 6-diamidino-2-phenylindole (DAPI). Sections were 
washed twice in PBS before mounting with Fluoromount G (SouthernBiotech 0100-01). 

For immunohistochemistry (IHC) staining, sections were incubated with 3% H2O2 
(ThermoFisher 426001000) for 20 minutes at room temperature after antigen-retrieval, then 
washed thrice with PBS and blocked with 2.5% normal horse serum (Vector Laboratories MP-
7401) for 3h at room temperature. Following primary antibody incubation overnight at 4°C and 
three washes with PBST, sections were incubated in ImmPRESS polymer reagent (Vector 
Laboratories MP-7401) for 1h at room temperature and then detected with NovaRed substrate 
kit (Vector Laboratories SK-4805). IHC and H&E (Tissue-Tek DRS, Sakura) stained sections 
were imaged using a S360 Nanozoomer (Hamamatsu).  
 

Whole-mount immunofluorescence 
The trachea and mainstem bronchi were separated from the lungs and extra-tracheal tissues 
removed under a dissection microscope (Leica Stereozoom Si9). For lung whole-mounts, the 
left lobe was microdissected to expose the bronchial tree. Tissues were blocked in 5% normal 
donkey serum/2.5% BSA/0.5% Triton X-100/4% dimethyl sulfoxide (DMSO)/0.05% ProClin 
300/PBS. Samples were incubated with primary antibodies diluted in blocking solution for 48-
72h at 4°C with gentle rocking. After 3 washes in PBST at room temperature, Alexa Fluor-
conjugated secondary antibodies (ThermoFisher or Jackson ImmunoResearch) were applied in 
blocking solution for 24-48h at 4°C with gentle rocking. Tissues were washed in PBST and, 
where indicated, nuclei counterstained with DAPI. Following further washes in PBST and PBS, 
samples were mounted in RapiClear 1.52 (SUNJin lab RC152001). Prior to mounting, trachea 
samples were cut either along the flanks to obtain a ventral and a dorsal half, or longitudinally 
through the ventral midline to expose all the epithelial surface. 
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EdU staining was performed after primary antibody washes, using a Click-iT Plus EdU 
Alexa Fluor 488 Imaging Kit (ThermoFisher C10637) and following the manufacturer's 
recommendations. Confocal images were acquired on a Zeiss LSM 880. Images were 
processed and analyzed using Fiji. 

 
Mosaic analysis  

As labeling in the trachea was not clonal, evidenced by the merger of large labeled regions, we 
focused our attention in the organization of the clusters of unlabeled cells or voids. For this, 
we first applied a Gaussian filter (radius 5 pixels) in order to smoothen inhomogeneities and 
applied an intensity threshold to identify labeled and unlabeled regions. Using the DAPI 
channel as a mask, we identified connected voids and recorded their area in pixels. We then 
normalized the areas by the average area of a cell, of about 388± 84(SD) pixels (equating to a 
radius of 8.0 ± 3.8(SD) µm) for the control and 370+-65 (SD) pixels (equating to a radius of 
7.8 ± 3.3(SD) µm) for the NTCU-treated samples. In the analysis, we focused on the 
proliferative population, considering holes with size of three cells or more. With this 
information we could plot the cumulative distribution of void sizes, which provided insight 
into the dynamics of the tissue.  
 

Preparation of murine cells for single-cell RNA sequencing 
Terminally anesthetized mice were transcardially perfused with sterile ice-cold PBS prior to 
tissue collection. Tissues were placed in ice-cold PBS, the trachea and mainstem bronchi were 
separated from the intrapulmonary airways at the lung junction and extra-tracheal tissues 
removed under a dissection microscope. The trachea and mainstem bronchi were transferred to 
Dispase (Corning 354235) and incubated at 37°C for 40 min. The epithelium was flushed out 
with ice-cold PBS using a syringe attached to a 25G needle, and collected by centrifugation at 
300 x g for 5 min at 4°C. Cell pellets were resuspended in 0.05% Trypsin-EDTA (Gibco 
25300104) and incubated at 37°C for 10 min. Trypsin was inactivated by adding 10% fetal 
bovine serum (FBS) (Gibco 10270-106) in PBS, and a single-cell suspension obtained by 
resuspending with a wide-bore pipette tip. The cell suspension was filtered through a 40 µm 
strainer and centrifuged 5 min at 300 x g. Cells were frozen in Recovery Cell Culture Freezing 
Medium (ThermoFisher 12648010) and stored at -150°C. 

For library preparation, cells were thawed in warm 10% FBS in RPMI (Gibco 21875-034), 
collected by centrifugation at 300 x g, and depleted from dead cells using magnetic-activated 
cell sorting (MACS; Miltenyi 130-090-101) according to 10X recommendations. Live cells 
were resuspended in 0.04% BSA (ThermoFisher AM2616) in PBS at 1000 cells/µL. 10X 
single-cell gene expression libraries were prepared at the CRUK City of London Single Cell 
Genomics Facility using 5’ reagents. 
 

Laser capture microdissection and low-input whole-genome sequencing of murine samples 
Following transcardial perfusion with ice-cold PBS, lungs were insufflated with PAXgene 
tissue FIX (Qiagen 765312) from the proximal end of the trachea, isolated and fixed in 15 mL 
of PAXgene for 24h at room temperature. Samples were placed in PAXgene tissue stabilizer 
solution (Qiagen 765512) at -80°C for at least 24h. Tissues were cryoprotected in 30% 
sucrose/PBS for 24h at 4°C, followed by 1:1 optimal cutting temperature (OCT) compound 
and 30% sucrose/PBS for further 24h, prior to OCT embedding. 15 µm sections were collected 
onto polyethylene naphthalate (PEN)-membrane slides (Leica 11505158) and used for laser-



 

38 
 

capture microdissection (LCM). Microbiopsies were cut, digested with proteinase K and used 
as input for low-input whole-genome sequencing (WGS) as previously described (38). 150-
base-pair paired-end sequencing clusters were generated on the Illumina HiSeqX or Novaseq 
platform according to Illumina no-PCR library protocols. 

 
Library preparation for human whole-exome sequencing 

Library preparation was performed on 30 ng of extracted DNA by Oxford Genomics Centre 
(University of Oxford). Fragments of interest were captured using the Human Core Exome 
panel (Twist Bioscience, San Francisco, USA), extended by an additional spike-in panel to 
include intronic regions linked to fusion events in NSCLC. This design was based on the exome 
panel used by TRACERx (69). Samples were 150 bp paired-end multiplex sequenced on the 
Novaseq 6000. Whole exome sequencing (WES) data was aligned to the reference human 
genome (hg19) achieving a median sequencing depth of 431 for the abnormal regions and 415 
for the matched germline. Lesions were classified as indolent or progressive, depending on 
whether they remained unchanged or progressed to LUSC during the time of the study, 
respectively. 

 
Computational Methods 

Quality Control and scRNA-seq data pre-processing for murine samples 
The raw base call files from the 10X Chromium sequencer were processed using the Cell 
Ranger Single-Cell Software Suite (release v7.0, https://support.10xgenomics.com/single-cell-
gene-expression) according to the manufacturer’s instructions, including the commands 
“cellranger mkfastq”, “cellranger count” and “cellranger multi” for paired gene expression and 
vdj data. The reads from single-cell RNA-sequencing were aligned to the latest mm10 
reference genome implementing a pre-built annotation package downloaded from the 10X 
Genomics website (refdata-gex-mm10-2020-A and refdata-cellranger-vdj-GRCm38-alts-
ensembl-7.0.0 for GEX and VDJ respectively). Several output files including a barcoded binary 
alignment map (bam) file and a summary csv file are generated. For gene expression data, a 
filtered feature-barcode matrix folder, containing a valid barcode file for all QC-passing cells, 
a feature file with ensembl gene ids and a matrix in the genes x cellsformat are generated. The 
filtered genes x cells matrix was further used as input for the data processing workflow. 
 

Murine single-cell transcriptome data processing 
The output from the Cell Ranger analysis framework was used as input to a custom analysis 
workflow, structured around the scanpy software toolkit in python (70) 
(https://scanpy.readthedocs.io/en/stable/). First, genes that were expressed (>=1 count) in <=3 
cells across the whole dataset were removed (sc.pp.filter_genes with min_cells=3). Next, we 
filtered single-cells for i) counts (500 < total_counts < 35,000), ii) genes (1000 < n_genes < 
6000) and iii) mitochondrial genes (pct_counts_mt < 10%). In addition, we used scrublet to 
remove potential doublets in our dataset (Data S1). To account for variable sequencing depth 
across cells, we normalized unique molecular identifier (UMI) counts by the total number of 
counts per cell, scaled to counts per 10,000 (CP10K; sc.pp.normalise_per_cell), and log-
transformed the CP10K expression matrix (ln[CP10K+1]; sc.pp.log1p). Next and to generate 
cell type clusters, we selected the 2,000 most variable genes across samples by (1) calculating 
the most variable genes per sample and (2) selecting the 2,000 genes that occurred most often 
across samples (sc.pp.highly_variable_genes). After mean centering and scaling the 

https://support.10xgenomics.com/single-cell-gene-expression
https://support.10xgenomics.com/single-cell-gene-expression
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ln[CP10K+1] expression matrix to unit variance, principal component analysis (PCA; sc.tl.pca) 
was performed using the 2,000 most variable genes. To select the number of PCs for subsequent 
analyses, we used a scree plot and estimated the “knee/elbow” derived from the variance 
explained by each PC. Manual inspection of the UMAP embedding indicated sufficient 
intermixing of cell types across mice, highlighting no necessity for batch correction. 
  

Differential gene expression analysis and cell cluster annotation for mouse tracheal samples 
To determine the cellular identity of distinct clusters, we performed annotation based on the 
expression of known cell marker genes curated from the literature. Initial clustering was 
conducted using the Louvain algorithm with a resolution of 0.6 in the FindClusters function of 
the Seurat package (version 5.0.1). Differential gene expression for each cluster was assessed 
using FindAllMarkers function with the Wilcoxon rank-sum test and minimum log fold change 
of 0.25, comparing cells within each cluster against all other cells. These markers, alongside 
consensus marker genes reported across multiple publications, informed cell type annotation. 
Consensus marker genes included Epcam, Krt5, Bcam, Wnt4, Trp63, Krt15, Epas1 (epithelial 
cells), Itk, Skap1, Lck, Cd3e, Cd3d, Cxcr6, Cd3g, Cd3e, Icos, Il2ra (T cells) and Il1b, Alox5ap, 
Ctss, Mpeg1, Tyrobp, Mpeg1, Cd68, Cd74, Mef2c, H2-Aa (macrophages). Marker gene 
expression was visualized using scanpy’s “DotPlot” function. The high-level cell types 
assignments were further used for sub-clustering analysis. 
 

Signature overlap of mouse epithelial cells 
To assess the concordance between gene expression signatures from our mouse study (Data 
S3) and those reported in previous publications (Data S2) (6, 7), we conducted an 
overrepresentation analysis. This analysis was performed using a one-sided Fisher’s exact test 
(fisher.test, alternative = “greater”). For each comparison, the top 50 genes from each reference 
dataset were used. If a dataset contained fewer than 50 genes, all available genes were included 
in the analysis. P-values from the Fisher’s exact tests were adjusted for multiple comparisons 
using the Benjamini-Hochberg method (p.adjust). Unless otherwise specified, all functions 
were executed with default settings. This analysis provided a statistical basis to evaluate the 
overlap of gene sets, ensuring robust comparisons across studies. 

 
Compositional analysis of murine airway with scCODA 

To evaluate whether the abundance of any of the identified epithelial cell types changed by 
NTCU treatment, we used scCODA, a Bayesian model to assess compositional changes in pre-
defined clusters from single-cell data (https://sccoda.readthedocs.io/en/latest/) (24). Using a 
hierarchical Dirichlet-Multinomal model, scCODA accounts for uncertainty in cell-type 
proportions as well as the negative correlative bias across cell-type proportions in relation to a 
reference cell type. Ciliated cells were used as reference for our analysis, however, it should 
be noted that the results did not change substantially when allowing scCODA to automatically 
determine the reference cell type. In addition to the reference cell type, we specified the 
treatment condition and the individual mouse as covariates. The remaining analysis was 
implemented as described in the single-cell best practice vignette (https://www.sc-best-
practices.org/conditions/compositional.html). 
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Pseudotime trajectory analysis for murine samples 
We employed Monocle2 (2.24.0) (28) for pseudotime analysis of basal, Krt4/Krt13+ and 
secretory cells. A single-cell trajectory was constructed using the Discriminative 
Dimensionality Reduction with Trees (DDRTree) algorithm, employing the top 400 
significantly differentially expressed genes among the selected epithelial cell types. Cells were 
ordered along the trajectory with the state containing proliferative basal cells set as time zero, 
and pseudotime was calculated accordingly. To ensure clarity in trajectory dynamics 
visualization, cell numbers in each group were downsampled by 10%. Trajectory plots were 
generated using the plot_cell_trajectory function. The log2 fold change for cell abundance was 
computed for each cell type on each cell state, with sample size adjustments factored in using 
R. 
 

Human trachea single-cell RNA-seq data pre-processing 
10x raw data were processed with Cellranger v7.1.0 and aligned to the human genome 
reference GRCh38-2020-A. Expression matrices of each sample were cleaned from ambient 
RNA contamination using SoupX v.1.6.2 (71). During quality control, cells with fewer than 
300 expressed genes were removed, as were those with log-transformed UMI counts per cell > 
0.80. Cells expressing more than 10% mitochondrial genes and genes expressed in fewer than 
0.1% of cells were also excluded. Doublets were identified and removed using DoubletFinder 
v2.0.4 (72). Additionally, immune cells were excluded from this study’s analysis. 

 
Signature overlap of human epithelial cell types 

To evaluate the concordance between gene expression signatures from our human study and 
those reported in four previously published datasets, we performed an overrepresentation 
analysis. Specifically, we included proximal epithelial cell type-specific differentially 
expressed markers from Travaglini et al., 2020 (33), Goldfarbmuren et al., 2020 (29), and 
Deprez et al., 2020 (10). Additionally, markers enriched in hillock cells relative to basal and 
secretory cells were incorporated from Sikkema et al., 2023 (32) (Data S6). This analysis was 
conducted using a one-sided Fisher’s exact test (fisher.test, alternative = “greater”). For each 
comparison, the top 50 genes from each reference dataset were utilized. If a dataset contained 
fewer than 50 genes, all available genes were included in the analysis. P-values from the 
Fisher’s exact tests were adjusted for multiple comparisons using the Benjamini-Hochberg 
method (p.adjust). This analysis allowed us to quantify the overlap of gene sets, providing a 
robust and statistical framework for comparing gene expression signatures across multiple 
studies. 
 

Human epithelial cell trajectory inference with Slingshot 
We employed Slingshot 2.12.0 (35) to infer lineage trajectories within the basal, suprabasal 
and secretory cell compartments of the human airway surface epithelium. First, the Seurat 
object was converted to SingleCellExperiment format using as.SingleCellExperiment. To infer 
lineage trajectories, we ran Slingshot with start.clus = 'Basal cycling'. To evaluate shifts in cell 
fate and changes in progression speed, we used the progressionTest and fateSelectionTest 
functions from the condiments v1.4.0 package (73). Lineages were visualized on the batch-
corrected UMAP, and differences in mean curve weights were plotted using R’s ggplot2. 
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KRT4/KRT13 signature scoring 
The top 50 differentially expressed genes identified in KRT4/KRT13 cells from our human 
single-cell epithelial data (Data S5) were used to compute signature scores. At the single-cell 
level, signature scores were calculated using the AddModuleScore function from the Seurat 
package (v5.0.1). These scores were visualized on the UMAP embedding using the FeaturePlot 
function from the same package. At the bulk-sample level, the signature score was computed 
using a previously published human dataset including samples normal airway epithelium, 
increasing grades of preinvasive disease and LUSC samples  (36). Scores were derived from 
the average expression of normalized counts for the same top 50 differentially expressed genes. 
Visualization of the bulk-level scores was performed using R' ggplot2. Statistical significance 
of mean comparisons relative to the normal group was assessed using the Wilcoxon test. 
 

Murine DNA sequence alignment 
All DNA sequences were aligned to the GRCm38 reference genome by the Burrows–Wheeler 
algorithm (BWA-MEM) (74). 
 

Removing germline variants (binomial filter) 
To filter out remaining germline variants, we fitted a binomial distribution to the total variant 
counts and total depth at each SNV site across all samples from one patient. Thereby, the total 
depth at the position was used as the number of trials with the total number of variant counts 
as the number of successes. Germline and somatic variants were differentiated based on a one-
sided exact binomial test, with the null hypothesis that the number of reads which support the 
variants across copy number normal samples is drawn from a binomial distribution where p = 
0.5 (p = 0.95 for a copy number equal to one). In contrast, the alternative hypothesis posits that 
the reads are drawn from a distribution with p < 0.5 (or p < 0.95). Resulting p-values were 
corrected for multiple hypothesis testing using the Benjamini–Hochberg method and a cut-off 
was set at q < 10−5 to minimize false positives. Variants for which the null hypothesis could be 
rejected were classified as somatic, while all others were classified as germline. 

 
Removing errors (beta-binomial filter) 

We filtered remaining artefacts by fitting a beta-binomial distribution to the variant counts and 
depths of all SNVs across samples from the same patient. In principle, the beta-binomial was 
used as it captures the difference between artefactual variant sites and true somatic variants. 
Thereby, artefacts often appear to be randomly distributed across samples and can be modelled 
as drawn from a binomial distribution. True somatic variants will be present at a high VAF in 
some samples, but absent in others, and are hence best captured by a highly overdispersed beta-
binomial. For all variants, we quantified the overdispersion parameter (rho), with variants that 
had rho smaller than 0.1 being filtered out as previously described elsewhere (2, 75). 

 
Clonality of samples 

To estimate the clonal structure within a sample, we used a truncated binomial mixture model 
as described previously (75). The truncated distribution is used to reflect the minimum number 
of supporting reads (n = 4) that is required by CaVEMan. In theory, the model will try to 
separate the overall SNVs into the clones that they could have arisen from, each with their own 
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probability (VAF) and proportion (the amount of variants a clone contributes). The proportion 
of cells that inhabit a clone can be approximated by twice the estimated VAF of the clone. 

 
Extraction of single-base pair substitution signatures 

To identify mutational signatures for SNVs, we implemented the hierarchical Dirichlet process 
(https://github.com/nicolaroberts/hdp) on the 96 trinucleotide counts of all microdissected 
samples as well as to mutations assigned to each branch of the phylogenetic tree. The HDP was 
run with individual patients as the hierarchy, in 20 independent chains, for 40,000 iterations 
and with a burn-in of 20,000. The identified components were compared to existing signatures 
and components with ≥ 0.90 cosine similarity were considered identical. The remaining 
signatures were deconvoluted using an expectation-maximization algorithm, generally being 
explained by combinations of known signatures. In total, 9 signatures were evaluated which 
were then fitted back to the original mutation calls leveraging sigfit 
(https://github.com/kgori/sigfit). 

 
Extraction of indel signatures 

Indels detected in each sample were utilized to infer indel signatures using the 
MutationalPatterns package (76) in R. MutationalPatterns relies on non-negative matrix 
factorization to determine abundant signatures. All ID signatures detected previously (ID-1 - 
ID-18) (77), were utilized as input for signature discovery. In total, 15 signatures were 
identified across all samples, although some were only abundant due to low indel burden 
samples. 

 
Analysis of driver variants 

To systematically identify genes under positive selection in our dataset, we utilized dndscv in 
R (78). Initially, we assessed global dN/dS ratios of all genes which were found to be mutated 
in our dataset. Genes with q-value < 0.05 or p-value < 0.001 as well as highly recurrently 
mutated genes (≥ 8 unique mutations) were considered as driver genes. In addition, genes 
previously reported in lung cancer or normal bronchial epithelium were leveraged for 
subsequent analyses (n = 51 genes) (2, 79-81). For the tissue specific analysis, SNVs were split 
according to tissue of origin and leveraged as input for dndscv. Gene-level dN/dS ratios were 
used to assess tissue specific selection, reporting point estimates if the p-value of the mutation 
type of interest was smaller than 0.05.  
 

Human WES alignment 
Raw paired-end reads initial quality control (150 bp) was conducted using FastQC 
(v.0.11.9, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). This was followed by  
fastp (v0.23.2, flags: --qualified_quality_phred 28; --length_required 50 --length_limit 151) 
(82). Passed Raw quality control reads were aligned to the genome build (hg19), using 
Burrows-Wheeler Aligner (BWA-MEM) v0.7.17 (74). Unmapped reads and PCR duplicates 
were identified and marked using Picard tools v2.26.9 (http://broadinstitute.github.io/picard/). 
Aligned reads were Base quality score recalibrated (BQSR) using the GATK algorithm v4.2.0 
(61). SAMtools v1.9 (83) and Maftools sampleSwaps (84, 85) were used to assess sample-
sample correlation based on germline variations and to identify sample swaps and 
contamination events. 

https://github.com/nicolaroberts/hdp
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://manpages.debian.org/testing/fastp/fastp.1.en.html#q


 

43 
 

 
Extraction of mutational signatures in human WES 

To estimate the contribution of various known mutational signatures in relation to clonality for 
each sample, we used the MutationalPatterns R package (76). The original mutation calls for 
each sample were annotated and divided into truncal or subclonal categories based on clonality 
inferred from phylogenetic analysis. We focused on assessing the contribution of the top six 
mutational signatures (SBS1, SBS2, SBS4, SBS5, SBS13, SBS92) identified in the genomic 
data of preinvasive lesions (4) and LUSC (50). For both truncal and subclonal mutations, the 
algorithm was run using a 6 × 96 matrix of these specific mutational signatures, ensuring that 
all mutations were attributed to one of these six signatures. 

 
Lung cancer driver selection estimates in human WES 

To evaluate positive selection for lung driver mutations in truncal and subclonal mutations 
derived from WES data, we employed the targeted dndscv model (78), focusing exclusively on 
genes covered by our WES target regions. We included only missense, nonsense, and splice-
site mutations in our analysis. The assessment of positive selection was based on a curated list 
of potential lung cancer driver genes (n = 106) (Data S7) obtained from the Cancer Gene 
Census and previous publications (4, 67, 80, 86). Gene-level selection estimates, calculated 
using the dN/dS ratio, were used to evaluate selection pressure on truncal and subclonal 
mutations. Point estimates were reported if the global dN/dS > 1 and the global q < 0.1. A 
detailed list of the potential cancer driver mutations, sorted by clonality (truncal or subclonal), 
is provided in Data S9. 
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Supplementary Text 
Here we provide details of the lattice-based models used to analyze the dynamics of basal cells 
in the trachea and airways under normal conditions and following NTCU treatment. 
 

Model for the basal cell compartment 
Clonal dynamics of basal cells in the trachea at homeostasis 

Previous studies have shown that the trachea is maintained by a cellular hierarchy of basal cells 
that self-renew through a stochastic process of cell duplication and loss through differentiation 
(8). In homeostasis, stem cell loss and replacement must be balanced, so that the cell density 
remains approximately constant over time. In the basal layer, this results in a process of neutral 
cell competition, where all basal cells are equally likely to duplicate or become lost through 
differentiation.  

To gain insight into how such neutral competition of basal cells finds a signature in their 
clonal dynamics, we first analyzed the mosaic labeling experiments of the trachea. Due to the 
high fraction of labeled cells (of the order of 50%), in the NTCU-treated trachea 24-weeks after 
tamoxifen administration, we observed the abundant merger of labeled and unlabeled clusters 
of cells. Thus, to quantify the dynamics of labeled cells, we focused on the organization of 
clusters of unlabeled cells or voids. By analyzing the cumulative distribution of sizes of voids 
for the control at 4 days and 24 weeks (168 days) after tamoxifen administration (Figure 2E,F), 
we noticed that at both time-points the cumulative distributions followed a power law-like 
decay with exponents close to -1. For the 4-day control, best fits to a power law dependence 
resulted in exponents of -0.8653 [-0.8647,-0.8658] 95% C.I. for the dorsal and -0.9112 [-
0.9105,-0.9119] 95% C.I. for the ventral region. For the 24-week control, best fits to a power 
law dependence resulted in exponents of -0.7695 [-0.7687,-0.7702] 95% C.I. for the dorsal and 
-0.7966 [-0.7959,-0.7975] 95% C.I. for the ventral region.  

Previous studies of neutral cell competition in the context of “voter” model dynamics have 
shown that the domain size distribution follows a power law decay with an exponent -2 (21), 
which translates to an exponent of -1 for the cumulative size distribution. Importantly, these 
results were obtained for a random and unbiased initial condition, with equal number of labeled 
and unlabeled cells. 

Therefore, to model the clonal dynamics of basal cells in the trachea under normal 
conditions, we considered a process of neutral cell competition, representing the airway 
epithelium as a two-dimensional rectangular lattice of fixed size, reflecting the dorsal or ventral 
sides of the trachea, at homeostasis. Here, each lattice site corresponds to an individual basal 
cell that is either labeled or unlabeled, and that can duplicate stochastically at a given rate. The 
duplication process is coupled to the loss of one of its neighboring cells, thus maintaining a 
constant cell density over time. The cell being replaced is considered to have been lost through 
differentiation, thus exiting the basal cell compartment (see Figure 2D, top panel). Technically, 
this implementation of the model corresponds to a "reverse voter model" (or invasion process), 
and is a paradigmatic model for neutral competition dynamics (87) . 

  
Clonal dynamics of basal cells in the trachea and airways following NTCU treatment 

In NTCU treated samples, the distribution of void sizes was perturbed, the power law decay 
was lost, and the differences between the distribution of voids in the ventral and dorsal sides 
was enhanced compared to the control (Kolmogorov-Smirnov tests between dorsal and ventral 
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regions resulted in: p=0.058 for the 4-day control, p=3.45e-9 of the 24-week control and 
p=1.03e-15 for the 24-week NTCU-treated) (see Figure 2G). In the 24-week NTCU-treated 
samples we observed an increased proportion of large size patches of both labeled and 
unlabeled cells. These patches showed an enhanced cell density, as evidenced by the lack of 
empty spaces between cells (see, for example Fig. 2C) and a slight reduction in cell area (from 
388 ± 83	pixels2 [mean and SD] in the control to 370 ± 64 pixels2 in the NTCU-treated 
samples, p=0.2326 from two-sided t-test, n=50 cells per condition). 

In the context of the neutral model, there is only one dimensionless control parameter for 
the dynamics corresponding to the product of the basal cell division rate, 𝑟!"#"$, and time post-
induction, 𝑡, which provides an estimate for the average number of divisions each cell has gone 
through.  As we consider a homogeneous population of basal cells, a global change in the 
average cell division rate would not lead to a change in the power law-like dependence or 
exponent of the void size distribution, as this would amount to a simple rescaling of time (21). 
As such, the neutral model alone could not provide an explanation to the shift in the void size 
distribution resulting from long-term exposure to NTCU. This suggested that the dynamics in 
the NTCU-treated samples was not driven by a homogeneous population of proliferative cells. 
Based on this, and the observed increase in cell density of the basal layer of the NTCU treated 
samples, we hypothesized that a subpopulation of basal cells loses their ability to differentiate 
and exit the basal compartment, thus overcrowding the basal layer, and outcompeting the 
surrounding normal-like cells. Such differentiation impairment is supported by the measured 
reduction in secretory cell coverage from our SCGB1A1 marker data (see Figure 3H, J). We 
refer to this subpopulation as “fitter mutant” cells.  

As a minimal model for this dynamic, we considered that, among the broad population 
basal cells, a small fraction became fitter after exposure to NTCU. These fitter cells compete 
non-neutrally with their neighboring normal-like basal cells meaning that, whenever fitter 
mutant cells divide, they preferentially replace a neighboring normal-like cell, whereas normal-
like cells are unable to replace fitter mutant ones. Fitter mutant cells, on the other hand, compete 
neutrally with each other. This dynamic implies that fitter mutant clones expand and colonize 
tissue through the loss of neighboring normal-like cells.  

In the following, we describe the numerical implementation of both the neutral and non-
neutral models, and discuss the comparisons of the model with the experimental data. 

 
Numerical implementation 

Neutral competition model 
To simulate the neutral competition model for the dynamics of normal trachea, we considered 
a two-dimensional rectangular lattice of fixed size with 𝑁 = 300 × 100 sites, where each site 
corresponded to a single basal cell (see Figure S3B). As we processed dorsal and ventral 
regions separately, we considered closed boundary conditions in our simulations. Considering 
that all 𝑁 cells in the system duplicate symmetrically with an equal rate 𝑟!"#"$, the stochastic 
loss-replacement dynamic follows a standard Gillespie dynamic (88): 
 

1. A single cell (regardless as to whether it is labeled or unlabeled) is chosen at random. 
2. The chosen cell duplicates, replacing one of its four nearest neighbor cells, also selected 

at random. 

3. The time 𝑡 is updated to 𝑡 + 𝜏, with 𝜏 = − %
&
𝑙𝑜𝑔(𝑞). 
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Here, 𝑞 ∈ (0,1] is a uniformly distributed random number, and 𝜔 = 𝑁𝑟!"#"$ is the propensity 
function. In all simulations, the division rate of cells was fixed to an arbitrary value of 0.1 
[time]-1, such that 10 units of time corresponds to the typical time between two consecutive 
duplication events. Simulations were run until a sufficiently long run time 𝑡 = 𝑇'"( was 
reached.  

Our preliminary numerical studies of the model showed that the initial fraction and spatial 
distribution of labeled cells have an effect on the details of the resulting distribution of void 
sizes. To account for these variations in our simulations, we considered as initial labeling 
conditions the configuration of labeled cells observed in the 4-day labeling control 
experiments. For this, we considered a central region of the dorsal and ventral sides for 2 of 
the control samples that covered approximately 40% of the whole trachea, which amounted to 
a domain of 300 × 100 sites. For constructing the initial conditions, we considered the fully 
resolved images of the dorsal and ventral regions of the trachea, after rescaling by the typical 
cell size and thresholding, we obtained a binarized 300 × 100 pixel image, where each pixel 
(or site) represents an individual basal cell (see Figure S3B), this was validated by visual 
inspection. We ran 200 realizations of the model in total, 50 for each of 2 dorsal and 2 ventral 
initial conditions, which were then averaged to compute the mean and standard deviation 
shown in Figure 2F. We note here that increasing the system size did not significantly change 
the results of the model. 
 

NTCU-treatment model 
As before, to simulate the two-dimensional non-neutral model for NTCU-affected basal cells 
in the trachea, we considered a lattice of fixed size 𝑁 = 300 × 100 sites, where each site 
corresponded to a single basal cell. As before, boundaries were closed and initial conditions 
constructed from the labeling control data (Figure S3B). However, in this case, we considered 
that initially, only a fraction 𝑓) of all the cells were fitter mutants, while the rest of the cells 
where normal-like mutant cells that had no competitive advantage over fitter mutant ones. 
Fitter mutant cells were chosen at random and could be either labeled or unlabeled. As before, 
considering an initial number 𝑁𝑓) of proliferative cells that propagate on a background of non-
dividing cells, the cell dynamic follows from the following set of rules:  

 
1. A fitter mutant cell is chosen at random. 

2. The chosen cell divides symmetrically:  
2.1. If at least one of its 4 nearest neighbors is a normal-like cell, then one of them 

is chosen at random and replaced by the daughter of the fitter mutant cells.  
2.2. If the chosen cell is surrounded by fitter mutant cells, then a neighbor is picked 

at random and replaced. 
2.3. The number of proliferative cells is updated accordingly. 

3. The time is updated as before. 
 

Here, we considered the limiting case in which the expansion of fitter mutant cells is much 
faster than that of normal-like cells, so that there is no need to account for the normal cell 
dynamics. However, the results remain unchanged if normal-like cells are allowed to turnover, 
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as long as they do not compete weakly with fitter mutant cells, in which case they would only 
slow down the invasion process. In the long term, normal-like cells make no difference for the 
distribution of void sizes, as all normal cells are ultimately removed by mutant ones. 
Additionally, we note here that increasing the system size does not change the resulting 
distribution of voids, as long as the fraction of mutant cells 𝑓) is kept constant. Thus, this model 
has two free parameters: the dimensionless parameter  𝑟!"#"$𝑡, and 𝑓). As mutant clones 
proliferate freely until all normal-like cells are expelled, the average clone size when the system 
is fully covered by mutant cells is approximately 1/𝑓), ignoring clone loss due to neutral 
competition between mutant clones. In our mosaic labeling, we do not have access to clonal 
information. However, we considered the average void size in the trachea of 141 ± 54	cells as 
a guide for our estimate of 𝑓).  

When applying the model to the airways, we considered a domain of dimension 𝑁 =
350 × 100 sites, which corresponded to a whole bronchus, as estimated from the typical length 
and diameter of a bronchus and typical size of a basal cell. Here, periodic boundary conditions 
along the short axis were considered to account for the circular shape of the bronchus. In this 
case, the initial conditions were constructed to emulate invading clones from the trachea. For 
this, we seeded clones along the proximal (long axis) of the domain (see Figure S12A, left 
panel), where each clone was assigned a different starting size in order to account for slightly 
different timings of invasion into the airway. 
 

Comparison of the model with experiment 
Control conditions 

Given the measured initiation conditions, the neutral competition model captured accurately 
the void size distribution at 24-weeks labeling controls. We found that there was a range of 
parameters for which the model provided a good fit to the data, e.g., for 𝑟!"#"$𝑡 in the range 
[1, 3.0] the cumulative distributions varied slightly, with R2 varying between [0.92, 0.96] for 
dorsal and remaining around 0.95 for ventral (see Figure 2F and Figure S3C). In Figure 2F the 
curve for 𝑟!"#"$𝑡 = 2.5 is shown (R2=0.96 for both ventral and dorsal). These results indicate 
that an average of one round of symmetric basal cell division is already sufficient to account 
for the shift in the void size distribution from an initial power law-like decay with an exponent 
close to -1 at 4-days post-labeling to values above -0.8 at 24-weeks post-labeling. Note that 
these findings emphasize the importance of choosing appropriate initial labeling conditions, 
with variations in the labeling efficiency altering the evolution of the void distribution. These 
results for the expansion capacity of basal cells are remarkably consistent with the slow 
turnover of basal cells reported in previous work (8). There, the loss/replacement rate was 
reported as once per 26 weeks, with the vast majority of basal cell divisions resulting in 
asymmetric fate outcome, leaving the basal clone size unchanged. Here, for simplicity, we have 
ignored the cellular hierarchy of the differentiating secretory cell types produced by the 
renewing basal cell population.  

 
NTCU treatment 

The non-neutral model was then applied to model the dynamic of mutant basal cells in the 
trachea and airways. First, considering a fraction 𝑓) = 0.01, resulting in around 1/300 initial 
fitter mutant cells in the trachea, the model provided a good fit to the void size distribution of 
the 24-week NTCU-treated samples when considering 𝑟!"#"$𝑡 = 13, both the dorsal (R2 =0.91) 
and ventral (R2 =0.90) regions. This suggests that mutant cells expand in the basal layer 
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approximately 13 times faster than predicted by the loss/replacement rate of normal cells by 
the neutral model. Considering the 24-week time span (or 168 days), this value suggests a 
duplication rate of once every 13 days, which is comparable to the estimated cell division rate 
of basal cells in the normal mouse trachea (8). These results were also consistent with our EdU 
incorporation (see Figure S3E) and SCGB1A1 marker data (see Figure 3H,J), which showed 
no significant change in proliferation compared to control, and a reduction in differentiated 
secretory cells. In addition to the quantitative predictions, the non-neutral dynamics reproduced 
some of the qualitative features of the mosaic labeling, including the existence of large irregular 
voids, which in the model originate from the merger of multiple neighboring clones (see 
Figures S3A and S3D).  

When studying the airways, we lacked quantitative information regarding the void size 
distribution. In the airways, the invading front, i.e. the interface between the expanding mutant 
population that invaded the airways and the normal background, showed a rough boundary, 
characteristic of a stochastic growth process (see Figure S2). Furthermore, clonal labeling of 
cells in the airways showed that submerged mutant clones, defined as clusters of cells labeled 
in the same color surrounded by unlabeled mutant cells, could continue expanding. These 
clones were observed to fragment into multiple clusters of cells (see  Figure S12B). To assess 
whether the non-neutral dynamic could capture some of these morphological traits, we 
simulated the invasion process in a bronchus-shaped domain, allowing fitter mutant to invade 
the airway tissue from the trachea (see Figure S12A). As labeled mutant clones propagated 
through the bronchus, we first noted that the leading edge became progressively rough over 
time, as expected from a stochastic growth process. As clones propagate through the airway, 
the competition between neighboring mutant clones causes the detachment of some clones 
from the leading edge (see Figure S12C), as seen in the confetti labeling experiments (see  
Figure S12B). Moreover, the boundary between mutant clones showed signs of fragmentation, 
with small groups of cells becoming disconnected from their clones (see Figure S12C). This 
shows that the bulk of mutant clones is dynamic and driven by competition between 
neighboring mutant cells. 

Moreover, from the whole-genome sequencing analysis (see discussion related to Figure 
6), we noted that the clonal composition in distal airways tended to have a more homogeneous 
genetic signature than proximal airways, suggesting a loss of clonal diversity as clones move 
from proximal to distal regions of the tissue. To explore the origin of this behavior we analyzed 
the results of our simulations at the time when clones had invaded the whole bronchus (see 
Figure 12A, right panel). Specifically, we measured the number of distinct clones (averaged 
over 32 realizations) as a function of the distance from the proximal boundary (see Figure 
S12D). We observed that, regardless of the initial number of invading clones, the number of 
distinct clones is reduced dramatically, from 16-80 initial clones down to around 10 distinct 
clones as they propagate through the airway. Although the invasion process originates from the 
non-neutral competition between mutant clones and normal-like cells, the reduction in clone 
number occurs due to the neutral competition between neighboring mutant clones. This 
competitive dynamic continues once the airway is fully spanned by mutant clones, so that the 
number of clones can be further reduced over time and along the length of the airways. 

 
Testing the effect of driver mutations 

The reduction in clonality in the airways can be accelerated by considering the presence of 
driver mutations in a fraction of the invading mutant clones, as suggested by our sequencing 
data (see discussion around Figure 5). Here we refer to these clones as driver clones. For 
simplicity, in our model we considered the case in which only one of all mutant clones had an 
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expanding advantage over neighboring mutant clones (see white clone in Figure S12E). 
Consistent with our scRNA-seq analysis (see discussion around Figure 3), this advantage was 
not incorporated as an increase in proliferation of the driver mutant clones, but as an increased 
probability of remaining in the basal layer. This rule allows the driver clone to outcompete 
neighboring mutant cells, until covering the whole airway. We note that in the non-neutral 
model without clonal drivers, the time of consensus, i.e. the time it takes for the airway to 
become covered by a single clone is expected to grow 𝑁𝑙𝑜𝑔(𝑁) (89), with	𝑁	being the system 
size. On the other hand, in the model with driver mutations, the time of consensus grows 
linearly with the system size N and is proportional to the advantage of driver clones over mutant 
clones. Thus, driver mutations could allow a faster convergence towards monoclonality in the 
airways and the trachea. 
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Fig. S1. NTCU-induced preinvasive disease originates from basal cells. 
(A) 3D projections of dorsal trachea whole-mounts from control and NTCU-treated KRT5-
CreER;tdTomato mice 24 weeks after high-density basal cell labeling. The dorsal smooth 
muscle runs longitudinally between the open cartilage rings, whose dorsal ends can be seen at 
the lateral edges of the preparation. Scale bar, 500 µm. 
(B) Hematoxylin and eosin (H&E) staining (left) and immunohistochemistry (IHC) for 
tdTomato and the basal/squamous cell marker KRT5 on sequential lung sections from a KRT5-
CreER;tdTomato mouse treated only with tamoxifen. Cells expressing tdTomato and KRT5 
are restricted to the most proximal part of the bronchial epithelium (top panel). Scale bars, 2.5 
mm (H&E), and 250 µm (IHC). 
(C) H&E staining (left) and IHC for tdTomato and KRT5 on consecutive lung sections from a 
KRT5-CreER;tdTomato mouse sequentially treated with tamoxifen and NTCU. Lineage-
labeled tdTomato+ cells can be observed along the bronchial tree. The expression domain of 
KRT5 matches that of tdTomato. Scale bars, 2.5 mm (H&E), and 250 µm (IHC). 
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Fig. S2. Scgb1a1-expressing secretory cells do not contribute to NTCU-induced 
carcinogenesis. 
(A) Strategy to track SCGB1A1+ secretory cells during NTCU-induced carcinogenesis in 
Scgb1a1-CreERTM;R26R-Confetti mice. Mice received a daily dose of tamoxifen for 4 days to 
label Scgb1a1-expressing cells prior to NTCU treatment. 
(B) 3D projection of lung whole-mount showing that bronchial Confetti+ lineage-labeled cells 
express the secretory cell marker SCGB1A1, 4 days after tamoxifen administration. The 
schematic on the left indicates the anatomical location of the region shown to the right. Scale 
bar, 200 µm. 
(C) 3D projection of lung whole-mount from a Scgb1a1-CreERTM;R26R-Confetti mouse 
sequentially treated with tamoxifen and NTCU, 18 weeks after tamoxifen administration. 
Clones derived from Confetti+ Scgb1a1-lineage-labeled cells do not express the 
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basal/preinvasive squamous cell marker KRT5+ and are enriched in bronchial areas showing 
no signs of NTCU-induced disease. The schematic on the left indicates the anatomical location 
of the region shown to the right. Scale bar, 200 µm.  
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Fig. S3. NTCU treatment induces basal cell clonal expansions. 
(A) 3D projections of ventral trachea whole-mounts from control and NTCU-treated KRT5-
CreER;tdTomato mice at 4 days and 24 weeks post-tamoxifen. Scale bar, 500 µm. 
(B) Representative image of the initial condition used in the numerical simulations of the 
neutral and non-neutral models, obtained from images of the trachea 4 days post-tamoxifen. 
Pink and black regions correspond to labeled and unlabeled cells, respectively. 
(C) Representative image of a simulation of the neutral model in the trachea (system size 300 
× 100 cells) after approximately 1 turnover of the basal cell compartment (see Supplementary 
Text for details). 
(D) Representative image of a simulation of the non-neutral model after approximately 13 
turnovers of the basal cell compartment (see Supplementary text for details). 
(E) Number of EdU+ cells per mm2 of tracheal epithelium in control and NTCU-treated mice, 
following a 24h chase. Analyses were done 24 weeks after NTCU commencement on dorsal 
trachea whole-mounts. Bars depict mean ± SEM. Dots represent values from individual mice. 
Unpaired two-tailed t-test with Welch’s correction indicated no statistically significant 
differences between groups. 
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Fig. S4. Cell type signature scoring and NTCU-induced cell changes. 
(A) UMAP visualizations colored according to mouse id (top), condition (middle) and cell type 
(bottom) for all tracheal cells (30,020) isolated from NTCU-treated and control mice, 15 weeks 
after treatment commencement. 
(B) Dotplot depicting the expression of selected marker genes for cell types shown in A. 
(C) Cell type signature overlap analysis comparing the different murine airway epithelial cell 
types/states identified in the current study with those described in previous scRNA-seq 
analyses (6, 7). 
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(D) Boxplot highlighting the abundance of each epithelial cell type in NTCU-treated (15 
weeks) and age matched controls. Individual donors are represented by black dots. 
(E) Immunofluorescence for the basal markers KRT14 and KRT5 and the secretory cell marker 
SCGB1A1 on trachea sections from control and NTCU-treated mice, 15 weeks after treatment 
commencement. Scale bar, 25 µm. 
(F) Immunofluorescence staining for KRT13 and SCGB1A1 on trachea sections from control 
and NTCU-treated mice, 15 weeks after treatment commencement. Scale bar, 25 µm.  
(G) Heatmap displaying log2 fold changes in the relative abundance of cell types between 
NTCU-treated and control groups across the three cell states identified by the trajectory 
analysis. 
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Fig. S5. Effects of NTCU on tracheal epithelial cells. 
(A) Immunofluorescence staining for the ciliated cell marker FOXJ1 and basal cell marker P63 
on tracheal sections from control and NTCU-exposed mice, 15 weeks after NTCU treatment 
commencement. Arrows point to P63+ nuclei. The dorsal epithelium is shown. Scale bars, 25 
µm. 
(B) Quantitative analyses of FOXJ1 and P63 expression in the dorsal and ventral tracheal 
epithelium, 15 weeks after the start of the experiment. Bars depict mean ± SEM. Values from 
individual mice are shown. Statistically significant differences are indicated by the p values 
(two-way ANOVA). 
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Fig. S6. Single cell profiling of human tracheal epithelium. 
(A) UMAP visualizations showing the three datasets (left) and all trachea samples from a total 
of 18 non-smokers and 9 current-smokers (right) included in the study. 
(B) UMAP visualization depicting cells by donor’s smoking status. 
(C) Cell type signature overlap analysis comparing the different human tracheal airway 
epithelial cell types/states identified in the current study with those described in previous 
scRNA-seq analyses of the human airways (10, 29, 32, 33). 
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Fig. S7. Genomic alterations and signatures in the murine airway epithelium.  
(A) Volume of dissected microbiopsies across both mice, split according to anatomical 
location.  
(B) Dotplot showing the relationship between the detection sensitivity for SNVs (y-axis) as a 
function of the variant allele fraction per clone and coverage of the sequencing per sample (x-
axis). The red line denotes the sensitivity fit for the correction of detected mutations.  
(C) Burden of dinucleotide nucleotide variants (DNVs) and insertion and deletions (indels) 
with the respective fitted mutational processes (DBSs, IDs), across clones detected in both 
NTCU-treated mice. The order is equivalent to Figure 5A. Stacked bar plots showing the 
proportional contribution of each mutational signature to the respective genomic alteration. 
The grey line highlights the average burden across clones per mouse. 
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(D) Extracted components from mutational signature analysis using HDP.  
(E) Extracted components from mutational signature analysis using sigProfiler. 
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Fig. S8. Analysis of murine airway epithelial clones in two NTCU-treated individuals.  
(A) Phylogenetic tree for all samples and clones located on the right lung of mouse MD7047. 
Clones are highlighted with individual numbers, with mutations colored according to the 
mutational signature contributing to each branch. The boxed numbers represent progenitors of 
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the clones branching of the respective box. Where boxes overlap, the clone number is displayed 
above the box. Selected mutations in driver genes are annotated on some branches including 
the amino acid change.  
(B) Phylogenetic tree for all samples and clones located on the left lung of MD7047  
(C) Phylogenetic tree for all samples and clones located on the right lung of MD6812.  
(D) Phylogenetic tree for all samples and clones located on the left lung of MD6812.   
(E) Genome-wide dN/dS ratios for all mutations and divided by the respective impact.  
(F) Top, barplot showing the number of unique mutations for mouse homologs of known 
squamous cell carcinoma driver genes (see Methods). Bottom, barplot depicting selection 
coefficients (dN/dS ratios) for mutation type categories per gene. 
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Fig. S9. Basal cells colonize the intrapulmonary airways following NTCU treatment.  
(A) Strategy to track lineage-labeled airway basal cells in the intrapulmonary airways 
following NTCU treatment of KRT5-CreER;tdTomato mice. 
(B) Immunofluorescence images of lung tissue sections from KRT5-CreER;tdTomato mice 
sequentially treated with tamoxifen and NTCU. Expression of the basal cell marker KRT5 and 
the secretory cell marker SCGB1A1 is seen in subpopulations of tdTomato+ lineage labeled 
cells in the intrapulmonary airways. Scale bars, 50 µm (high magnification images); 500 µm 
(tissue overview). 
(C) Immunofluorescence images of lung tissue sections from KRT5-CreER;tdTomato mice 
sequentially treated with tamoxifen and NTCU. Subpopulations of tdTomato+ lineage-labeled 
cells in the intrapulmonary airway express basal (KRT5) or ciliated (ACT) cell markers. Scale 
bars, 50 µm (high magnification images); 500 µm (tissue overview). 
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(D) Immunostaining for tdTomato and KRT13 on lung sections from KRT5-CreER;tdTomato 
mice sequentially treated with tamoxifen and NTCU. The left panel displays a tissue overview 
indicating the location of the regions presented to the right. Scale bar, 500 µm. The top panel 
shows the advancing front of the tdTomato+ population in the main bronchus. The bottom panel 
displays a squamous lesion in one of the bronchioles. Scale bars, 50 µm (high magnification 
images). 
(E) Antibody staining for the secretory cell marker SCGB1A1 on lung tissue sections from 
control and NTCU-treated mice, 24 weeks after the start of the experiment. Representative 
images of the epithelium lining the intraparenchymal main bronchus and a bronchiole are 
shown. Scale bars, 50 µm. 
(F) Quantification of the proportion of total epithelial cells expressing SCGB1A1 in the first 
half of the intraparenchymal main bronchus (left) and the fourth bronchiole of the left lung 
(right), 24 weeks after the start of NTCU treatment. Bars depict mean ± SEM. Each dot 
represents a different individual. Statistically significant differences are indicated by the p 
value (unpaired two-tailed t-test with Welch’s correction). 
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Fig. S10. NTCU-driven clonal expansions in the lung. 
(A) Equivalent integrative visualization to Figure 6 for alternative examples of lineages located 
in the right lung of mouse MD7047. All microbiopsies from the trachea and the right lung 
containing the yellow clone (lineage) are shown as grey circles within the histological image. 
The phylogenetic tree depicted on the right-hand side is scaled according to the number of 
mutations per clone. The yellow ancestor and all subclones related to this clade are displayed. 
The small tree schematic surrounding the histological image is equivalent in structure, but not 
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scaled to the mutation burden of each clone. Each dot on the small tree represents a clone and 
branching point within the phylogeny. 
(B) Equivalent to (A) but for all samples from the trachea and left lung of mouse MD7047 
containing the black clone (lineage). 
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Fig. S11. NTCU-driven clonal expansions in the lung.  
(A) Equivalent integrative visualization to Figure 6 for alternative examples of lineages located 
in the right lung of mouse MD6812. All microbiopsies from the trachea and the right lung 
containing the green, orange and lavender lineages are shown as grey circles within the 
histological image. The phylogenetic tree depicted on the right-hand side is scaled according 
to the number of mutations per clone. All subclones related to these clades and their ancestors 
are highlighted. The small tree schematic surrounding the histological image is equivalent in 
structure, but not scaled to the mutation burden of each clone. Each dot on the small tree 
represents a clone and branching point within the phylogeny. 
(B) Equivalent to (A) but for all samples from the trachea and left lung of mouse MD6812 
containing the green clone (lineage). 
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Fig. S12. Basal cell colonization of the bronchial tree. 
(A) Representative images of a simulation of the non-neutral model in the bronchus (system 
size 100 × 350 cells) at three different times (increasing from left to right), here 80 individual 
clones were seeded on the proximal (left) side. Shades of gray correspond to distinct clones 
(for details see Supplementary Text). 
(B) Clonal tracking of Krt5-expressing cells during NTCU-induced aberrant basal cell 
expansion in the bronchial tree. Krt5-CreER;R26R-Confetti mice were treated with NTCU for 
12 weeks. Four weeks after NTCU treatment completion, mice received a daily dose of 
tamoxifen for 3 consecutive days to clonally label Krt5-expressing cells. 3D projection of lung 
whole-mount shows Confetti+ clones within the expanding KRT5+ domain (white staining) 
along the main bronchus, 23 weeks after NTCU commencement. Scale bar, 200 µm. 
(C) Closeup of the region highlighted in (A), center panel showing the rough leading edge and 
fragmentation of clones due to competition. 
(D) Decay of the number of distinct clones from proximal to distal regions of the airway 
obtained from numerical simulations of the non-neutral model, considering different numbers 
of seeded clones and measured at the time when clones span the whole airway (see, for example 
(A), right panel).  
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(E) Representative images of a simulation of the non-neutral model with driver mutations in 
the bronchus (system size 100 × 350 cells) at three different times (increasing from left to 
right), here 8 individual clones were seeded on the proximal (left) side, with the white clone 
having an advantage over its neighboring mutant clones. In (A), (C) and (E) the black 
background corresponds to normal cells. 
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Fig. S13. Correlation heatmap of genotypes of human preinvasive lesions. 
Heatmap illustrating sample-sample correlation analysis of sequenced human preinvasive 
lesions. Sample identity verification of WES data was performed by comparing genotypes at 
known SNP loci mapped to the hg19 reference genome. Pearson’s correlation coefficient (R) 
was calculated for these SNPs to quantify genetic relatedness between samples. A threshold of 
R ≥ 0.90 was used to identify samples from the same patient, accounting for the high genomic 
instability characteristic of preinvasive lesions. 
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Fig. S14. Phylogenetic analysis of anatomically separate preinvasive lung lesions. 
(A) Phylogenetic trees based on somatic mutations illustrating clonal relationships and 
evolutionary history between anatomically distinct lesions in a former-smoker with indolent 
lesions (P104).  
(B) Phylogenetic reconstruction illustrating clonal relationships and evolutionary history 
between anatomically distinct lesions in a former-smoker with progressive lesions (P132). In 
(A) and (B) shared clusters across anatomical sites are colored in blue, while unique and site-
specific clusters are colored in purple, orange, or green. 
(C) Gene-level analysis of point mutation selection based on dN/dS ratios, comparing truncal 
and subclonal mutations in all patients with clonally-related lesions. Lung cancer driver genes 
were selected when dN/dS > 1; a dark black border indicates a global q-value < 0.1 
(D) Phylogenetic tree based on somatic mutations present in a patient with progressive (R1) 
and an indolent (R2) lesions with no shared mutations between them. 
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Fig. S15. Mutational signatures in human preinvasive airway lesions. 
(A) Distribution of top six mutational single base substitutions (SBSs) signatures associated 
with lung carcinoma in situ (CIS) and LUSC across 5 patients with multi-site preinvasive high-
grade lesions. 
(B) Comparisons of absolute contribution of selected mutational signatures to truncal and 
subclonal mutations across all patients included in A. 
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Table S1. 
List of antibodies. 

Antibody Source Catalogue number 
Mouse anti-FOXJ1 eBioscience 14-9965-82 
Chicken anti-KRT5 BioLegend 905901 
Rabbit anti-KRT5 BioLegend 905501 
Rabbit anti-KRT13 Abcam ab92551 
Rabbit anti-KRT14 BioLegend 905301 
Rabbit anti-Ki67 Thermo Scientific RM-9106-S0 
Rat anti-p63 (DN) BioLegend 699501 
Goat anti-SCGB1A1 Santa Cruz Biotechnology sc-9772 
Mouse anti-SCGB1A1 Santa Cruz Biotechnology sc-365992 
Rabbit anti-SCGB1A1 Merck Millipore 07-623 
Mouse anti-acetylated-alpha Tubulin Sigma Aldrich T6793 
Rabbit anti-alpha Tubulin (acetyl K40) Abcam ab179484 
Mouse anti-Red Fluorescent Protein Invitrogen MA515257 
Rabbit anti-Red Fluorescent Protein Rockland 600-401-379 
Donkey anti-chicken Alexa Fluor 488 Jackson ImmunoResearch 703-545-155 
Donkey anti-chicken Alexa Fluor 647 Jackson ImmunoResearch 703-605-155 
Donkey anti-goat Alexa Fluor 647 ThermoFisher A21447 
Donkey anti-goat Alexa Fluor Plus 647 ThermoFisher A32849 
Donkey anti-rabbit Alexa Fluor 488 ThermoFisher A21206 
Donkey anti-rabbit Alexa Fluor 555 ThermoFisher A31572 
Donkey anti-rabbit Alexa Fluor Plus 647 ThermoFisher A32795 
Donkey anti-rat DyLight 650 ThermoFisher SA5-10029 
Goat anti-mouse IgG1 Alexa Fluor 488 ThermoFisher A21121 
Goat anti-mouse IgG1 Alexa Fluor 555 ThermoFisher A21127 
Goat anti-mouse IgG2b Alexa Fluor 488 ThermoFisher A21141 
Horse anti-rabbit HRP ImmPRESS Vector Laboratories MP-7401 
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Data S1. 
Murine trachea single-cell RNA sequencing statistics, including the number of cells and 
average number of genes per cell. 
 
Data S2. 
Cell type signatures from single-cell RNA-sequencing studies from the literature used for the 
annotation of murine cells. 
 
Data S3. 
Genes enriched in mouse tracheal epithelial cell clusters identified by scRNA-seq. 
 
Data S4. 
Human sample information. Description of human samples used for single-cell RNA and 
whole-exome sequencing studies. 
 
Data S5. 
Human reference gene lists. Cell type signatures from previous single-cell RNA-sequencing 
studies used for the annotation of human cell clusters. List of potential lung cancer driver genes 
curated from the literature. 
 
Data S6. 
Genes enriched in human tracheal epithelial cell clusters identified by scRNA-seq. 
 
Data S7. 
Summary of WGS data including information on all mouse microbiopsies. 
 
Data S8. 
Summary statistics of inferred clonal populations from NDP across both MD6812 and 
MD7047. 
 
Data S9. 
Interactive visualization of clones identified in MD7047 (A). 
 
Data S10. 
Interactive visualization of clones identified in MD7047 (B). 
 
Data S11. 
Interactive visualization of clones identified in MD6812 (A). 
 
Data S12. 
Interactive visualization of clones identified in MD6812 (B). 
 
Data S13. 
List of somatic mutations identified in human WES studies, with annotated known lung cancer 
driver genes. 
 
 
 


