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ABSTRACT: We conduct a comprehensive study into the impact of pixelization on cosmic
shear, uncovering several sources of bias in standard pseudo-Cy estimators based on discrete
catalogues. We derive models that can bring residual biases to the percent level on small scales.
We elucidate the impact of aliasing and the varying shape of HEALPix pixels on power spectra
and show how the HEALPix pixel window function approximation is made in the discrete
spin-2 setting. We propose several improvements to the standard estimator and its modelling,
based on the principle that source positions and weights are to be considered fixed. We show
how empty pixels can be accounted for either by modifying the mixing matrices or applying
correction factors that we derive. We introduce an approximate interlacing scheme for the
HEALPix grid and show that it can mitigate the effects of aliasing. We introduce bespoke
pixel window functions adapted to the survey footprint and show that, for band-limited
spectra, biases from using an isotropic window function can be effectively reduced to zero.
This work partly intends to serve as a useful reference for pixel-related effects in angular power
spectra, which are of relevance for ongoing and forthcoming lensing and clustering surveys.
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1 Introduction

The statistical constraining power of galaxy imaging surveys will soon increase significantly,
with the Euclid survey [1] well underway and the Rubin Observatory Legacy Survey of Space
and Time (LSST; [2]) to begin soon. Amongst the main science drivers of these surveys are
precision tests of the consensus cosmological model ACDM and percent level constraints
on the Dark Energy equation of state.

The headline constraints from these surveys will be made from two-point statistics
measured from catalogues of galaxy shapes and positions. Common estimators used for weak
lensing analyses include the real-space {1 correlation functions [3-9], harmonic space angular
power spectra [10-15], and hybrid estimators such as COSEBIs (Complete Orthogonal Sets
of E-/B-Integrals, [16-18]). Each of these methods has its own advantages and disadvantages,
and it is now common practice for analysis teams to check the consistency of parameter
constraints by repeating their analysis with a different choice of two-point statistic [6, 19].

In this work, we investigate biases inherent to the standard pseudo-Cy estimator. This
statistic is fast to compute [13, 20], allows a fairly clean separation of linear and non-linear
modes, and can return reasonably uncorrelated measurements if mode-mixing due to the
survey mask is properly accounted for [21]. Furthermore, the scale separation allows a
Gaussian likelihood approximation to be used with high accuracy for parameter inference [22].
Although not statistically optimal, information loss is mild, in particular for the E-mode
spectrum on small scales [23]. The estimator proceeds by first constructing a map from the
discrete set of points, taking the angular power spectrum, and then interpreting the result
using mixing matrices constructed from weight maps that trace the survey footprint and
other observational inhomogeneities in the data.

Much of the formalism for the measurement and interpretation of pseudo-Cy has been
derived from its use on Cosmic Microwave Background (CMB) data (see ref. [24] for a recent
review of map making and power spectrum estimation in the CMB context). However, the
application to weak lensing presents several additional challenges [13, 14]. These include the
fact that the input data set is usually in the form of catalogues, i.e. shear measurements
at discrete samples across the survey footprint, rather than pixelized maps or time-ordered
data. Secondly, there is no analogue of the beam in CMB experiments and hence the only
small-scale filtering is due to the discrete sampling of the galaxy position field. Furthermore,
weak lensing and galaxy clustering spectra have significant power on small scales, unlike in
the case of the primordial CMB where diffusion damping suppresses small-scale power. This
means that angular power spectra constructed from shear catalogues are more susceptible
to aliasing and other pixelization effects. This is exacerbated by the fact that most of the
information on cosmological parameters comes from small angular scales which have low
statistical uncertainty, so particular care must be taken to ensure that no biases arise due to
insufficient understanding of the measurement process. Surveys such as Euclid aim to make
precise measurements down to very small scales corresponding to a multipole, £, of roughly
5000 [1]. While pixel-related effects can be mitigated by using maps at higher resolution and
truncating to scales far above the pixel scale, this increases the run-time of the estimator and
can lead to empty pixels that must be accounted for in the interpretation of the power spectra.

In recognition of these challenges, biases due to pixelization-related effects have been
studied in several recent works that push the pseudo-Cy method to small scales in weak



lensing. Ref. [14] identified two limiting regimes depending on whether pixels are densely
populated or sparsely populated. In the former case, the effect of pixelization is close to
that of a convolution of the shear field with the pixel window function, while in the latter
case it is closer to a point sampling. Since small-scale lensing analyses lie between these two
regimes, ref. [25] defined an effective pixel window function based on simulations and found
that although the current generation surveys are not sensitive to these effects, near-future
surveys will have to carefully account for pixel-related effects in order to avoid large biases
in parameters. Ref. [26] presented a method to bypass the map making step altogether by
computing the power spectra via direct summation, and recent advances in developing fast
spherical harmonic transforms over arbitrary pixelizations [27] offer highly promising routes
to avoid many of the pitfalls associated with making shear maps.

This paper has several objectives. Firstly, we bring together many of the discussions and
derivations of pixelization effects in the standard pseudo-Cy method and provide a pedagogical
resource for understanding how effects such as window functions, empty pixels, shot noise,
aliasing, varying and anisotropic pixel shapes, shear weight variations, and survey masks
interact with each other, and how they should be accounted for in a precise analysis. Secondly,
we elucidate the approximations that go into the HEALPix pixel window function when
applied to shear fields, which is a common method for dealing with pixelization smoothing.
Finally, we use analytic modelling and simulations to test a variety of improvements to the
standard pseudo-C; method. Our paper is partly a companion paper to ref. [20], where many
of the ideas presented here are implemented and rigorously tested in the context of Euclid.

This paper is structured as follows. In section 2, we introduce the standard pseudo-CYy
estimator. In section 3, we present models for the impact of pixelization on shear power
spectra and derive the HEALPix pixel window function approximation for spin-2 fields. This
section also presents derivations of power spectrum biases due to finite pixel occupancy and
stochasticity of the underlying source galaxy number counts and their shear weights. In
section 4, we test our expressions against simulated shear catalogues. In section 5, we explore
an alternative to the standard estimator that does not normalize by the total weight in each
pixel, and in section 6 we present an alternative measurement and testing procedure that
considers the source galaxies and weights as fixed in the analysis. In section 7, we present
a new method for estimating power spectra that approximately interlaces HEALPix grids.
In section 8, we present an alternative approach to constructing pixel window functions
that restricts to the survey footprint, and test it against simulations. We present our main
conclusions in section 9. In a series of appendices, we derive a hitherto overlooked bias
due to neglect of a phase factor when constructing shear maps (appendix A), present a
model for the impact of varying pixel shapes that applies on large scales for any pixelization
scheme (appendix B), and present auxiliary results on the conditional statistics of density
fields (appendix C).

2 The standard pseudo-C; estimator

We will start with an introductory discussion of the standard pseudo-Cy approach to measuring
shear power spectra. Fundamentally, this involves taking the harmonic transform of the
observed shear field. To make use of the fast spherical harmonic transforms provided by



the HEALPix library [28], one first pixelizes the catalogue to make a shear map. This may
be done, for example, by taking a weighted average of galaxy ellipticity measurements in
HEALpix pixels [14, 29-31]. This map is given by

A ZiEp Wy P/?Z

Tp = ) 2.1
p Ziep w; ( )

where 7 = 1 + i7 is the complex shear, 4; is the measured galaxy ellipticity (or any proxy
for the local shear), w; are galaxy weights, and the sums run over galaxies within pixel p.
Equation (2.1) neglects a phase factor required to consistently sum the spin-2 ellipticity at
different points on the sphere. This factor is briefly discussed and quantified in ref. [20], where
it is found to be negligible for Euclid. We investigate this term in further detail in appendix A.
Once a shear map has been formed, the next step is to extract its spherical multipole
coefficients. The standard procedure is to form the E and B pseudo-multipoles given by

Npix

Eppn £1Bpm = Q Z Apwp (Y1,p = 12,p) +2Y5m (Rp), (2.2)
p=1

where w,, are pixel weights, A, is the survey mask and (2 is the pixel area (constant for
HEALPix at a given resolution). Npix is the total number of pixels on the sphere, related to
the HEALPix resolution parameter Ngjge by Npix = 12N521de. The pixel weights w, can be
freely chosen to optimise the estimator.! The rule of thumb, as proposed in ref. [21], is to
choose uniform weights in the signal dominated regime and inverse variance weights in the
noise dominated regime.? In this work, we will consider two choices for the weights; uniform
weights with w, = 1, and an approximate inverse variance weighting with w, = 3_;c, wi,
which is equivalent to not dividing by the local pixel weight when forming the shear map.

Finally, spectra are constructed from the pseudo-multipoles by cross-correlating and

averaging over the azimuthal index. For a single map, we have

L
GEP — 2el+1 S EgmBin, (2.3)
m=—/{
with analogous expressions for the BB and EB spectra.

The quadrature scheme in equation (2.2) is known to be inexact for the HEALPix
sampling of the sphere, in the sense that the true pseudo-multipoles are not exactly recovered
(for alternative sampling schemes, see ref. [32]). Nevertheless, for band-limited shear fields
with spectra having no support beyond /ny = 3Ngige — 1, the quadrature scheme can be very
accurate when using the pixel weights provided with HEALPix, or by applying an iterative

'For clarity, we will omit from this discussion the per-pixel HEALPix quadrature weights that should be
included when going from maps to multipoles from our expressions. The weights are very close to unity for
almost all pixels and are included in our numerical results.

2Formally, for Gaussian fields the optimal weighting derives from the Quadratic Maximum Likelihood
(QML) estimator, which effectively interpolates between these two regimes. For Stage-IV weak lensing surveys
like Euclid, it has been shown that the statistical precision of the pseudo-Cy estimator is close to that of the
optimal QML estimator on small scales [23].



scheme. The reverse transform then recovers the (weighted, masked) signal with high precision:

eNy VA

Ap Wp @Lp + Wlp) ~ Z Z (Elm + iBlm) i2Y€m(ﬁp)- (2'4)
=2 m=—¢

In other words, the (spin-weighted) spherical harmonics evaluated at the HEALPix pixel
centres can be considered a complete set of orthogonal (with respect to the quadrature
weights) functions that describe band-limited functions on the sphere. The convergence
of the iterative scheme can however be very slow at £ close to the Nyquist frequency /xy,
so reliable results are most easily obtained for £ < 2Nggqe, as discussed in the HEALPix
anafast documentation. In reality of course the true shear field is not band-limited, and the
pseudo-multipoles extracted with equation (2.2) will suffer from aliasing. As we shall see,
for sufficiently red power spectra a degree of low-pass filtering is naturally imposed by the
averaging of galaxy ellipticities into pixels. This mitigates aliasing due to sub-pixel modes,
but there is still a residual impact on the multipoles.

The standard pseudo-Cy estimator may be refined in several ways. For example, as
introduced in ref. [20], one may average galaxy ellipticities not in HEALPix pixels but in
spherical caps centered on the pixels of a HEALPix map, thus making the shear map a point
sampling of a true convolution. Alternatively, and as also explored in ref. [20], one may
choose not to divide by the sum of weights when forming the shear map in equation (2.1),
instead forward modelling this term, equivalent to the approximate inverse-variance weighting
discussed above. We shall investigate the consequences of this approach in section 3. Finally,
one may try to avoid making shear maps entirely by directly taking the spherical harmonic
transform of the catalogue, as explored in refs. [20, 26, 33].

3 Modelling the bias from pixelization

The shear map produced by the estimator equation (2.1) does not correspond to the true
shear field sampled at pixel centres. The averaging procedure amounts to approximately a
convolution of the shear with the pixel window (referred to as a pseudo-convolution in ref. [20]).
Theory predictions for the expectation value of the pseudo-Cy need to account for this window
function, and often do so by including the square of the HEALPix-provided window function,
Wy, a function of the map resolution Ngq4e, as a multiplicative factor in theory predictions, i.e.

Cyp — WEC,. (3.1)

This simple correction does not account for aliasing due to the presence of shear modes with
frequency higher than the Nyquist frequency of the HEALPix grid, nor does it account for
the fact that the HEALPix pixels vary in shape over the sky. While the discreteness of the
galaxy catalogue imposes a degree of low-pass filtering, this is inexact and dependent on
the particular realisation of the source galaxy distribution.?

3Ref. [33] discusses the distinction between these effects in their appendix B, finding that the HEALPix
pixel window function performs well in the case of band-limited catalogues. In this paper, we are primarily
concerned with the more realistic scenario of catalogues which are not band limited. The resulting maps
display more sensitivity to pixel scales.



The residual biases due to these effects are illustrated in the left panel of figure 1. In this
example, aliasing is by far the main contributor to the bias. We make high-resolution full-sky
spin-0 maps drawn from power spectra having a power law form Cy o £, with n varied
between —3 and 1. Realistic cosmic shear spectra have n between —1.5 and —2 at £ ~ 5000.
We normalize all spectra to have the same variance, and draw Gaussian realizations on an
Ngige = 512 grid. We then average the maps in pixels of an Ngq. = 64 grid, and compute
the power spectrum. Figure 1 shows the ratio of the resulting spectra to the input model,
averaged over 100 maps. The prediction based on the HEALPix pixel window function for
Ngige = 64 is shown as the black curve. All spectra tend to the input at low £, but large
biases are seen at higher £. These biases become more severe the bluer the input spectrum.
For ACDM-like exponents n = —2 and n = —1, the HEALPix pixel window function provides
a reasonably good fit, with residuals of several percent at £ = Ngqe but growing rapidly at
higher ¢ due to aliasing. The blue spectrum n = 1 is extremely biased by aliasing for all
but the lowest £. An important feature to note is that although the white noise spectrum
n = 0 is also very biased, it remains white and therefore easily predictable. This is why
noise terms are understood to be exempt from the pixel window correction, but the figure
demonstrates that the issue is really to do with the power on pixel scales. The right panel of
figure 1 shows the ratio of the recovered power spectrum to the model after the input spectra
have been set to zero above £ = 2Ngq.. These maps are hence band limited, and are immune
from aliasing. In this case, the HEALPix pixel window function provides an excellent fit for
all input spectra, demonstrating that the biases seen in the left panel of figure 1 are due
to aliasing rather than a breakdown of the HEALPix pixel window function approximation.
Later on we will explore situations where aliasing is sub-dominant and corrections to the
pixel window function to account for anisotropic pixels must be made.

A derivation of the HEALPix pixel window function for spin-0 fields can be found in the
HEALPix documentation,* and implementations for spin-0 fields (e.g. CMB temperature)
and spin-2 fields (e.g. CMB polarization) are both available through HEALPix. However, it
is not clear how the approximation is derived for spin-2 fields that are discretely sampled,
which is the situation in cosmic shear. The absence of beam smoothing in this case also
demands that inaccuracies in the pixel window function and sensitivity to aliasing should
be studied carefully. In this section, we provide that study, testing our modelling against
simple simulations, and show how the HEALPix pixel window function approximation is
derived for discrete spin-2 catalogues.

3.1 Exact expressions for pixel window functions

To decouple the effects of cosmic shear fluctuations and source galaxy number density
fluctuations, we will write the shear map (including the correct phase factor, 3,, derived
in appendix A) as

1

91 £ 14 zi/dQﬁW 7) nw(R) (1 £ ivy2) (R) e~ 2Pp () 3.2
(1 £152)p Now®) p(1) Ny () (71 £ i2) (1) (3.2)

“Specifically, https://healpix.jpl.nasa.gov/html/intronodel4.htm.
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Figure 1. Left: ratio of recovered to input power spectra for power law Cy having exponents indicated
by the different coloured lines. Error bars are derived from 100 simulations of Ngg4e = 512 maps
averaged in Ngge = 64 pixels. The black curve is the HEALPix pixel window function. The vertical
dotted line indicates £ = 2Ng4.. Right: same as left panel for spectra having the indicated power-law
slopes but set to zero above 2Ngq4e for Ngge = 64.

where w(1)(p) = >2;¢, wi/Np, for non-empty pixels, is the mean weight in pixel p, N, is the
number of galaxies in pixel p, the pixel window function is defined as

1, nep
Wy(n) = 3.3
»() {0, otherwise, (3:3)
and the weighted source density field is
Neot
nw(ﬁ) = Z w; 5D(ﬁ — TALl) (3.4)
i=1

Importantly, in the case of a pixel having no source galaxies inside it, the shear map is set
to zero in that pixel. Inserting the spin-weighted spherical harmonic expansion of the shear
field gives (41 £ i92)(Ap) = 3 g (Eem £ iBem) 125 where

1 . ~
2], = 7/d2ﬁW ) Ny (R) 0o (71) e 2P0 (R), 3.5
J2 pr(l)(p) p( ) ( ) m( ) ( )

are the pixelized spin-weighted spherical harmonics.

The HEALPix pixel window function approximation is based on the idea that the pixels
are axisymmetric ‘on average’. Axisymmetry of the pixels must be defined in a frame aligned
with the centroid of the pixel. Therefore, consider transforming the integral in equation (3.5)
to a frame having its z-axis aligned with the pixel centre 7,. Let the required rotation
from the original frame to this new frame be defined by the Euler angles {¢,,6,,0}, where
fi, = (Bp, ¢p) in the global (original) coordinate system. Denote this rotation by R. The
image of the x-axis under this rotation, z’, is now parallel to the ey basis vector at 7, so an
arbitrary point 7 has a ¢’ coordinate in the rotated frame of m + B(7,7i,), where the angle
B is defined in figure 14. The new (ey, ey ) basis at 7 is rotated by an angle B(n,7,) in a
left-handed sense about 7 compared to (eg, es). As shown in ref. [34], the tensor spherical



harmonics in the new frame are related to those in the original frame by

Yimab = D Diion (8p, 0p, 0)Yerns ab, (3.6)
ml

where D(R) is the Wigner D-matrix representation of R. Since the spin-weighted spherical
harmonics are 19Yy,,(7) eieiwmﬂb, we can relate the spin-weighted harmonics in the
original frame to those in the new frame by

0¥ () = eFHA) N DI (6, B, 0) 22V (), (3.7)

m/
where the angle A is defined in figure 14. Substituting this into equation (3.5), using standard
relations between the spin-weighted spherical harmonics and the Wigner D-matrix elements,
and noting that W;,(2) = W) (7') and similarly for the weighted number density, we can write

i2T§m: Z m Yom (7p) m/Wg:f:p (3.8)

I |<e

where we have introduced the spin s = £2 — m quantities

oW = ey [ R W) ) g (0) 2 (39)
where |m| < ¢, and the integral is performed in a coordinate system having its z-axis aligned
with the pixel centre. Note that QWZP = ,QWZP.

Equation (3.8) shows that pixelization cannot generally be accounted for with a simple
factor multiplying the harmonics. Instead, the harmonic-space pixel window functions couple
to spherical harmonics of higher spin and depend on the pixel shape. Furthermore, the window
functions depend on the source density realization. However, as we shall see, for azisymmetric
pixels the harmonic-space window functions simplify substantially when averaged over source
positions. The azimuthal integral in equation (3.9) is then trivial and equals 276,;,2. This
highlights the advantage of transforming the convolution integral to the pixel-aligned frame.’

We can now form the correlation functions for a given pair of pixels. Averaged over
realizations of the shear field these are

20+1 *
600 =X N CEL0P) Y W W (). (310)

l m,m/’

5In appendix B we give a perturbative expression for +2T)  averaged over galaxy positions valid on scales
far above the pixel scale. To show that equation (3.8) agrees with this expression, first average equation (3.8)
over source positions. We then have

1 ~ ~ ~ im/ /
(aTh) =5 2 Vo) [ @0 W) a0 0

[m/|<¢t

On scales far above the pixel scale we can Taylor expand the Wigner d-function around 6’ = 0 using the
expressions in ref. [35]. To first order this gives

R 1 . 1 .
<i2T§m> ~ 12 Yem (fp) — §5JF:E2Ylm(nP)<:tld>p - 55ii2Y€m(np)<¥ld>p +...

where 8% =89 and 3~ =9, and 11d are the spin £1 displacements on the global frame, as in appendix B. This
agrees with the leading-order term in equation (B.4). Note that {11d), = 0 since the pixel centres are chosen
to be the geometric centre of the pixel.



Similarly, taking the expression for the pseudo-multipoles equation (2.2), we can write the
angular power pseudo-spectra averaged over shears as

~ ~ 02
CE + CE = in ZZA;D Agwpwq &x(p, q) d%ﬁ(?"pq)- (3.11)
P q

These expressions are analytically intractable, but represent mathematically what pix-
elization actually does to the underlying shear field. The fact that a major simplification of
equation (3.9) is possible if the pixels are axisymmetric and the source number density is
smooth pushes us to consider the effects of pixelization after averaging over the ensemble
of possible source galaxy positions.

3.2 The impact of pixelization after averaging over unclustered sources

The simplest source galaxy distribution we can consider is a Poisson process. First, consider
taking the expectation value of the pixel window functions over unclustered galaxy positions
at fixed pixel occupancy N, > 0. Using the conditional moments of the weighted density
field given in appendix C, we have

1 o A —m)i
(W) = §/d2"Wp(n) dpio(0) €279, (3.12)

and therefore axisymmetric pixels enforce m = +2. Note that on small scales we have
d55(0) =~ d§y(0) =~ Jo(¢8), so the spin-2 window function asymptotes to the spin-0 window
function.

Using equation (C.2), the second moments of the window functions averaged over
unclustered source positions are

‘ Op "
<mWZp m/ Z%p’> [1 N Neff] <mWZp><m’ é%p’>
6 d2 1 ¢ 2F2 ! i
it | g W) i (8) diya(6) P20 m0 (313
p

where we have defined the effective number of galaxies in each pixel as

Neff =N w(Ql)(p)
P P W(2) (p)’

(3.14)

with w9 (p) = Yiep w?/N,, for non-empty pixels.
Using these expressions, we can write down the correlation functions averaged over the
shear field and unclustered source positions at fixed pixel occupancy,

Z (264—7’;1)(05 + CéB) Z <mW2_p> <m' £;T>d£1m/ (Tpp’) (p # p')

y4 m,m/

E+(p, D) 5
1 20+ 1 ,
;fo—i_(l_]\[gff)z( 4;; J(c +C7P) ZI ng (p=1p)

L

(3.15)




and

Z (%4_7‘;1)(05 B Cf) Z <mWZp>< ’Wép >d€ (rpp) (P # D)

¢ m,m’

(1 - Niﬁ) > B F o) W) W) =),
p

J4 m

& (p,p) = (3.16)

where O',ZY is the ellipticity (shear plus intrinsic shape) variance at a point. In the case
that only a single galaxy is present in the survey, &, (p,p’) = 5p7p/a,2y and £_(p,p) = 0,
i.e. pixelization has no effect due to isotropy. For axisymmetric pixels £_(p,p) = 0 for any
N,, as in the unpixelized case.

As well as the pixel smoothing exhibited in the mode sums in equations (3.15) and (3.16),
stochasticity in the source galaxy field adds a shot noise term with amplitude 03 /N;H. The
map variance therefore consists of a genuine shot noise term depending on the variance at a
point, plus the shear correlation function smoothed within a pixel. Which of these is more
important depends on the small-scale behaviour of the shear power spectrum, but it is the
first term which is usually termed ‘shape noise’ in weak lensing analyses.

Using equations (3.15) and (3.16) we can derive the impact of pixelization on the angular
power spectrum, which is the focus of this paper. Substituting these expressions into
equation (3.11) and assuming zero intrinsic B-mode gives

~E/B _ 02 (20 +1) +\ ¢
CF7 = Gy s o T CE W

{< ’Weq>d22(7’pq) {m ’Weq>d2 2(qu)]

0 A (20+1)
+87TZN§H [‘73—2 CeEZ| (mWi)| 1 (3.17)
p l

where we have defined the quantity flp = A,wp, the product of the survey mask and the pixel
weights. In the pure noise case and with non-overlapping pixels we have

N2 \7 B 92 E 14127 2
8 < NgtiE=e

where o2 is the total intrinsic shape variance.

Equation (3.17) looks cumbersome, but its interpretation is clear. The first two lines
express the pseudo-power at a given multipole in terms of the shear power smoothed on the
pixel scale by pixel-dependent window functions, and then coupled with the survey window.
The third line is additional white noise power coming from the mean-square ellipticity variance
within each pixel, which scales inversely with the number of galaxies in each pixel. The shear
variance which contributes effectively uses the complement of the pixel window function(s), i.e.
only sub-pirel modes contribute to this white noise term. Note that there is non-zero B-mode
power generated by pixelization even on the full sky. This comes from both the white noise
term on the last line of equation (3.17), but also from the aliasing and the shape dependence
of the HEALPix pixels in the smoothing terms on the first two lines of equation (3.17).
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3.3 Axisymmetry and the HEALPix window approximation

In section 3.1 we saw that the impact of pixelization could be substantially simplified assuming
axisymmetric pixels and averaging over source positions. In section 3.2 we derived the pixelized
correlation functions and angular power spectra after source averaging. This made it clear
how pixelization impacts shot noise, but we are now in a position to simplify these expressions
further by considering axisymmetric pixels.

First, consider the standard HEALPix window functions. These are built under the
assumption that the pixelized harmonics averaged over source positions can be written as

(+27,) = £2Yem () WY, (3.19)

for some spin-0 window function W}. A sky-averaged window is then built as

1 Q
Wi = N, DW= (W) (3.20)
1X p P

As we have seen, the source-averaged window functions satisfy equation (3.19) only when
we enforce axisymmetry in the pixels. In this case, we have (we will not yet assume that
all the pixels are the same size)

2 [T .
WP = W) =0 /0 d6 sin W, (8) dly(6). (3.21)
The correlation functions in this case become
20+1 p
Z (47T)(C€E + CZB)WZ) ng) dgz(rpp’) (p # p/)
l
g"r (pap ) = 2
Ty < 1 ) (20+1), g B\ 117D\ 2 /
e +(1- e (CE +CE)(W£) (p:p)
prf prf %: 47
and (204 1)
+ /
£ ( ,) T(Cf - CE)W; WZ dg—Q(Tpp’) (p 7519/)
-,p)= 14
0 (p=17p).

Note that the approximation of axisymmetric pixels means _(p,p’) now vanishes for p = p/.
The pseudo-spectra, assuming zero intrinsic B-mode, become

E B _ (20+1
/ {7 ZA Z An )CEWP Wy [d22(7"pq) b (rpq) % db_5(rpq) d%—Q(TPQ)}
[
92 A2 (20+1)
T QZ N;pff o] - ; i Cr(W})? (3.22)
P

Equation (3.22) suggests that it is difficult to control the accuracy of the axisymmetry
approximation, due to the coupling of small-scale modes to the power at a given L due
to both the survey mask and the size variation of the pixels across the survey. Both may
be mitigated by restricting to sufficiently low L; although this does not control the mode

— 11 —



w(p), =128

|

0.616697 0.697495

Figure 2. Square of the spherically averaged per-pixel window function, for £ = 128. The average of
this quantity over the map gives the nominal HEALPix window function for this /.

coupling in the white noise terms in the second line of equation (3.22), these terms can be
estimated from the data directly and subtracted from the power spectrum estimator (note
that in the presence of shape noise, agy should be replaced with 03 + 02).

In the axisymmetric approximation the source-averaged pixel window functions are
azimuthally symmetric, but their size still varies over the sky. The next step in the HEALPix
approximation is to assume that the angular scale of this variation is much smaller than the
modes of interest. Again, this is difficult to control for, particularly for the white noise from
sub-pixel scales. In figure 2 we plot (W} )2 for £ = 128. The large-scale spatial structure
is roughly independent of ¢, and is very similar to the pattern of pixel inertia shown in
figure 17. Variations are rather modest, with a maximal spread of less than 10% of the
median. The equatorial region is particularly stable. The assumption of constant shape
therefore seems reasonably accurate, and can be made by replacing (W} )2 by its average
over all pixels, W;. This gives

~p/B Q2 20+1 .
/" = T BN 0P ™ 2,4, [thalr) dirge) & 5 a(rpe) dfo(rp0)]
4 p,q
A2

Q2 20+1) g2 A

From these expressions we see that the white noise term produced by pixelization remains in
the HEALPix approximation, and depends purely on sub-pixel shear modes. We remind the
reader that in the presence of shape noise, a% should be replaced with 0'3, + o2

Equation (3.23) gives the expectation value of the shear spectra, conditioned on a fixed
set of (weighted) pixel occupancies, in the HEALPix pixel window function approximation.
It has assumed unclustered sources, but is otherwise valid for general survey footprints and
pixel weights, and is valid on the curved sky. The derivation of this expression has shown, to
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our knowledge for the first time, how the HEALPix pixel window function approximation
works for discrete sources and spin-2 fields on the curved sky. The resulting isotropic window
function W, can be applied to the underlying theory model as a simple multiplicative factor.
Equation (3.23) also highlights that mode coupling comes from survey inhomogeneities
(Ap # 1) and aliasing (loss of orthogonality between the Wigner d-functions even for flp =1
when ¢ exceeds the Nyquist frequency). In the next section, we will further average this
expression over pixel occupancy.

As is apparent from equation (3.23), the power spectrum at each L is an average over
many pixels; on scales far above the pixel scale, we can expect the actual pixel window
function to be close to its source ensemble-averaged form. In other words, our analysis of the
power spectrum does not have to explicitly average or marginalize over source positions for
the HEALPix pixel window function approximation to provide an accurate model on large
scales. We will demonstrate this quantitatively in section 6.

We close this subsection by noting that a better approximation for the HEALPix window
function would use an average over the pixels in the observed region. We will explore this
idea further in section 8. The accuracy of the window function approximation can in any case
be easily checked against mock data. A validation can be made, for example, by repeating
the shear analysis with a rotated map.

3.4 Bias due to finite pixel occupancy, occupancy stochasticity, and galaxy
weights

So far, we have assumed two things about the shear weights: that they are uncorrelated with
the shear, and independent of the source density. Both of these are untrue in reality, the
first because the weights depend on the PSF-convolved galaxy ellipticity which is correlated
with the shear, and the second because both the photometry and the shear measurement
quality varies with galaxy position, for example due to the effects of blending in crowded
regions. There are also effects from the correlation of magnification (affecting size and flux)
with the shear that we have neglected. In other words, we are assuming that the weights are
uncorrelated with any mass inhomogeneities along our past light cone.

Within these assumptions, we now wish to average the power spectra and correlation
functions derived in the previous section over the distribution of the shear weights. This is
made complicated by the fact that, for uniform pixel weighting w, = 1, we divide by the sum
of weights in each pixel when forming the shear map, making it impossible to write down
an exact expression for the average of ws)(p) /w%l)(p). We can avoid this by considering
the weights to be fixed and make no attempt to average over them or by not dividing by
the summed weights, equivalent to an approximate inverse-variance pixel weighting. We
will consider this latter approach in section 5 and assume uniform pizel weighting for the
remainder of this section. We note that uniform pixel weighting could avoid incurring biases
due to source-lens clustering and other related effects, as shown in ref. [36].

In the uniform pixel weighting scenario, we need to average over the weight terms in both
the numerator and denominator of the shear map. We will make the approximation that

Zz‘ep wi2 - <Ei€p wf> Np<w2>
< (Z’Ep wi>2> ) <(Ze wi)2> - Np(Np = 1){w)? + Np(w?)” (3.24)
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This approximation has been made assuming N, > 1 but it is technically exact for any N,
when the weight ‘field’ has no variation over the pixel. Note that we continue to assume
that N, > 0. Shear weight terms only appear in the white noise terms in equation (3.17),
and these terms now take the form

1\ 02A2 (w?)
szje(Np)Ag <Npﬁ> R § O(N,) ™~ D)2+ (@) (3.25)

where O(NV) is a step function whose value is unity if N, > 0 and zero otherwise. Note
that step functions imposing N, > 0 appear in all the sums over pixels in our expressions
so far, but have been omitted to ease the notation.

3.4.1 Poisson sources

Consistent with the assumption throughout this section that the sources are unclustered, we
now average over pixel occupancies by Poisson sampling /V,,. This requires evaluating the sum

< O(N,) > _ i )\f)ve_)‘l’ {e)‘z’ [(=2p) (o, =Ap) —a™ 1] a>0 (3.26)

Nyt+a/ = (N+a)N' | e M[Ei(),) —log A, — V] a=0,
where o = Var(w)/(w)? > 0, A, = 7€) is the expected pixel occupancy for a source number
density n, Ei is the exponential integral, vy is the Euler-Mascheroni constant, and v(«, x) is
the lower incomplete Gamma function. Note that (—A,)”*y(c, —Ap) is single valued and
real for all a > 0.

Similarly, we need to average over occupancies in the smoothed-signal terms in the first
lines of equation (3.17), which uses the results

e =3 BT g
e N=1 N - ‘ ,
(O(N))O(N,)) = (1 — e ) (1 — e729) 4 Gpg(1 — e )e e, (3.27)

The HEALPix pixels are of equal area, so we can drop the pixel subscript on A.

The suppression factors in equation (3.26) and (3.27) are effectively corrections to the
sky fraction that account for the fraction of the map with non-zero occupancy in a typical
realization of the source counts. These should be compared with the fq., factors that are
the leading-order effect on the power spectra of the survey mask.

3.4.2 Full sky, unit shear weights

At this point, it simplifies the discussion to consider full sky coverage, since the assumption
of isotropy in the pixels combined with source averaging has removed the coupling between
the survey footprint and the pixel shapes. It is also instructive to consider the case of
constant shear weights, in which case o = 0. We then have A, = 1, and choosing L small
enough such that the effects of aliasing and pixel shapes can be neglected, we have, for
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zero intrinsic shear B-mode,

- (20+1) (20+1)
CE ~ h(NCEW? + 9 f s + )erw? 4 f— 3! + CEEW}]
l y4
=g 9N~ @+1) g SN ] o —(20+1)
CL ~ Qﬁ ; 47‘(‘ CZ Wg + Qﬁ O',Y ; 47‘[‘ Cg Wg (328)
where

F) = AeMEi(A) — log A — ]

g(A) =Ae M1 e

h(\) = (1 —e M2 (3.29)

Note that f and h tend to unity when A > 1, while g tends to zero. In the opposite limit,
A < 1, all three functions go to zero as A2

We can now see that the power spectrum estimators are severely biased when A < 1.
In the limit that A — 0 both estimators are zero, as expected, with the leading order
expression given by

~ 02

Cllyeq = N lcfwg + % (3.30)
~B 20'2

Crlyer = A % (3.31)

Intuitively, this result makes sense. In the limit of zero expected pixel occupancy, the shot
noise is given by the unsmoothed shear variance, since there is negligible averaging of multiple
shears with each pixel. The overall amplitude is strongly suppressed essentially because
fsky < 1 in each realization. In the opposite limit, A > 1, we have the expected results that

~ 1 (20 +1)
CPlysy = CEWE + 5 DY g CEWJ (3.32)
l
- 1 (20 +1)
B 2 E
Cr |)\>>1 - o [‘77 - Z - —C Wz] (3.33)
4

In the left panel of figure 3 we plot the functions f(A) and g(\), the latter of which controls
amplitude of the white noise terms, i.e. the second terms in equation (3.28). Features of note
in f(A) include the quadratic rise from zero, the peak at A ~ 4, and the slow asymptote
to unity at large A. The amplitude of g(\) is generally less significant than that of f(\),
but is comparable at low A and both tend to unity as A approached zero. This behaviour
ensures that only the variance-at-a-point terms contribute in each pixel when the probability
for a pixel to host more than one galaxy is very small.

To get an idea of typical values of A\, we can use typical numbers for a Euclid-like

Titot 10) (4096)2
Ax221 (——2 ) (= : 3.34
(30 arcmin2) (NZ Nsige (3.54)

survey, giving
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Figure 3. Left: the function f(\) defined in equation (3.29), controlling the amplitude of shape noise
in the power spectrum (blue, upper curve), and the function g(\) controlling the shot noise terms in
equation (3.28) (orange, lower curve), assuming constant shear weights. A is the expected occupancy
of pixels in the shear map. Right: the function f.(\) (blue, upper curve) and g.(\) (orange, lower
curve) defined in equation (3.37), controlling the amplitude of shape noise in the power spectrum
after correcting for the primary bias to the signal power spectrum.

where N, is the number of tomographic redshift bins, and 7.t is the survey number density.
At this nominal map resolution, we have f(\) ~ 1 and g(\) ~ 0.2. The pre-factor in
front of the signal term is 0.8, indicating that the power spectra are severely biased at this
low resolution. This can be remedied by simply dividing the estimates by the bias factor,
analogous to deconvolving by the survey mask mixing matrix; in our case, the ‘mask’ is an
average mask induced by empty pixels, and the mixing matrix is a constant multiplicative
factor. In section 6 we will make this correspondence more precise. After division by this
factor, the white noise terms are given by

1 @0+ cpp A o 24D ppe
9e(N\) 5= Zz: 1 CeWit [N o5 - zz: 1w e Wi
1 (20+1) g 9
= g O { £+ W2lg(0) = £} (3.35)
where the corrected functions f. and g. are defined as
~ AeEi(N) —log A — ]
fC(/\) - (1 — €_>‘)2 (336)
e

ge(N) = A= (3.37)

These functions are plotted in the right panel of figure 3. At low expected occupancy,
ge(A) — fe(A) — 0 and f.(\) — 1, leaving us with a pure shot noise term expected from
point-sampling the shear field, given by 0’,2Y /2n. In the limit of high occupancy, g.(\) — 0
and f.(\) — 1, leaving us with a modified shape noise term with J,QY replaced by the shear
variance smoothed within a pixel.
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3.5 Including shape noise

Let us now extend the discussion to include shape noise in the intrinsic source galaxy ellipticity
distribution. In the presence of shape noise, the power spectra gain white noise terms given
by equation (3.18). In the scenario of full sky coverage, unit weights, and averaging over
source realizations, this becomes

(NJIPy = F(n 2 (3.38)

with f()) defined in equation (3.29), which simply modifies equation (3.23) by replacing
(73 — (73 + af.

Rather than include the shape noise term in the model, we can try to remove it from
the data vector by estimating the noise power. There are several estimators we could use

for this, all having the correct mean. Two examples are
E/B,(
Ny =3 Z RAE (3.39)

and
NE/B2) _ 0?2 < Yiep wilFil?
groe _ o Tugy v
p (ZiEp wi)

where we remind the reader that in this section we only consider uniform pixel weighting.

(3.40)

Both these estimators have the correct mean to remove shape noise, but equation (3.39) uses
the variance of the pixelized shears over the map while equation (3.40) uses the average of
the per-galaxy ellipticity variance over the map. The expectation value of equation (3.39)
in the presence of both shape noise and the spatially correlated shear field is

N 02 (20+1)
WP = S B OE S S Wi+ ot

2
- ;irz{%{f;) [+ oy ey >og ]

p l

(20+1),,
+ E(ry? }

;
%f()\)< Z 2“1 cfm) 9(\) Z 2“ Jerw2, (341
V4

2n 76

3

where in the second line we made the approximation of unclustered sources and axisymmetric
pixels, and in the third line we assumed unit shear weights, full sky coverage, and averaged
over the Poisson source pixel occupancy. Note that partial sky coverage would introduce an
overall factor of fyy in front of this expression. Comparison with equation (3.23) demonstrates
that the estimator equation (3.39) is sufficient to remove all of the white noise terms from
power spectra, including those due to the shear variance. By contrast, the expectation
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of equation (3.40) is

8o e N
A
~ fz(ﬁ)(a?y + 02, (3.42)

where in the second line we have made the approximation of unit shear weights, full sky
coverage, and averaged over Poisson sources. Therefore, subtracting equation (3.40) from
the power spectrum estimator removes the shape noise, but leaves behind white noise due to
shear correlations. This may be included in the model by modifying the mixing matrices,
as shown in ref. [20].

3.6 Non-Poissonian sources and stochastic shear weights

Finally, let us briefly discuss how the modelling we have developed in the previous sections is
impacted in the more realistic scenario of clustered sources. In this case, we must modify our
expressions in equation (3.27) for the statistics of ©(Np). In particular, two-point statistics
of the occupancy gain a term proportional to 4, the correlation function of the source
density field. This introduces additional /-dependence in the power spectrum and generates
additional B-mode power, akin to the effects of mode mixing induced by a survey mask. In
section 6 we will make this analogy more concrete.

Modelling the effects of source clustering is difficult due to the complexity of the source
selection and the unknown galaxy bias. In addition, the source density field is correlated
with the lensing of background sources, which brings in additional terms due to source-lens
clustering (SLC; [37-39]). Any discussion of the impact of clustered sources on pixelization
effects should account for the SLC effect, and so we postpone further discussion to a
forthcoming work. Despite this, the fixed-position estimator and tests discussed in section 6
offer a way of accounting naturally for source clustering; effectively the source positions
are deconvolved from the estimator and hence their impact on the signal is suppressed
(although not completely removed).

Deconvolving the source density field also partially accounts for stochasticity of the
shear weights, as discussed in section 6. What still remains is the possible impact of shear-
dependence in the weights. Although one can try to model this in a similar way to SLC
modelling, the impact is best quantified through image simulations with realistic shear and
clustering, not least because it is dependent on the specific shear measurement algorithm
and shear calibration process.

4 Tests of the standard estimator against simulations

Having built theoretical models for the bias due to pixelization, finite pixel occupancy and, in
appendix A, due to neglecting parallel transport of shear, we will now test our models against
simulations. We produce a suite of mock galaxy catalogues, construct shear maps from
them, and produce angular power spectra. The input power spectrum is a fiducial ACDM
weak lensing spectrum with an HMcode-2020 non-linear correction [40], with no intrinsic
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alignments. We assume a single source redshift bin peaked at z =~ 0.8 corresponding to the
fifth bin of a 10-bin Euclid-like survey, following the specifications of ref. [41].

We draw Gaussian realizations of the shear F-mode multipoles from this angular power
spectrum and create a set of high-resolution full-sky shear maps with Ngq. = 4096, which
support modes out to £ =~ 13000. We then sample galaxies in a Poisson process with a uniform
number density across the sky, such that the expected number of galaxies in a pixel on an
Niidge = 512 grid is 32, i.e. a number density of 7 ~ 0.68 arcmin~2. This is more than a factor
4 less dense than the nominal Euclid Wide Survey [42] for such a redshift bin, but keeps the
catalogues to a manageable size. The density of galaxies was chosen such that we can sample
a good range mean pixel occupancies in three grids of lower resolution, while ensuring that
there are always shear modes on scales smaller than a pixel.

Once galaxy positions have been drawn we assign them shears based on the shear of the
parent pixel in the underlying high-resolution Ngg4e = 4096 grid. We generate N¢yx = 1000
realizations, resulting in N, catalogues.

Once the baseline catalogues have been built, we construct shear maps on grids of varying
resolution corresponding to Ngge = 512, Ngige = 1024, and Ngqe = 2048. The expected
number of galaxies in a pixel on these grids is A = 32, 8, and 2 respectively. The finest grid
has an expected occupancy comparable to that expected in the Euclid Wide Survey at the
target map resolution [20]. Our shear maps incorporate the correct phase factors discussed in
appendix A. For each map we compute the pseudo power spectra. This results in a baseline
set of N¢ut spectra sampling galaxy number, galaxy positions, and shears.

Note that our simulations do not include shape noise; we have shown how the noise
bias from this can be removed exactly in section 3.5. Shape noise will add extra variance
to the power spectrum of course, which affects the implications of any pixel-related biases,
as will be discussed below.

4.1 Results: full sky coverage, unit weights, Poisson sources, zero shape noise

In the top-left panel of figure 4 we plot the difference between the mean of the F-mode
spectra and the input theory smoothed with the HEALPix window function and corrected
for finite pixel occupation number, i.e. the first term in equation (3.32), for A\ = 32. The
B-mode spectrum mean is also plotted. Errors on these quantities are estimated from the
empirical scatter across the mocks. The value A = 32 corresponds to a shear map constructed
with a Ngge = 512 grid. The residual amplitudes of £ and B power are comparable, at
around the 107! level, corresponding to a difference of between 0.1% and 1% from the input
theory. Most of the discrepancy is captured by our model for white noise, indicated by the
horizontal dashed line in figure 4, although there are still residual differences at the 10712
level (roughly a 0.1% difference from theory) on large scales and roughly 10~ differences
on smaller scales. These residual differences come mostly from aliasing, in a similar way
to the test results shown in figure 1.

To gain sensitivity to smaller scales in this catalogue we must use a finer grid to produce
the shear map, which entails lower expected pixel occupancy. In the top-right panel of figure 4
we plot mean residuals for a grid with Ngge = 1024, corresponding to an expected occupancy
of A\ = 8. Again we see differences of around 107! in the power compared with the smoothed
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Figure 4. Residuals between measured E (green) and B (blue) power spectra and their input
smoothed by the HEALPix window function and corrected by the pixel occupation factor (first term
of equation (3.28) for F'E, zero for BB), for A = 32 (top left panel), A = 8 (top right panel) and
A = 2 (bottom panel), where A is the mean pixel occupancy. The resolution of the input shear field is
Nsige = 4096 (with no pixel smoothing), while the resolution of the measured shear map is Ngige = 512
(top left panel), Ngqe = 1024 (top right panel), Ngqe = 2048 (bottom panel). No intrinsic shape
noise has been added, and the input power spectrum is a fiducial ACDM spectrum. The thick dashed
horizontal line shows the white noise prediction of equations (3.32) and (3.33), and the vertical dashed
line indicates a multipole of 2N 4 for the resolution of the constructed shear map. Error bars are
show the empirical scatter based on N,y = 1000 simulations. On scales well above the pixel scale,
the residuals are mostly due to white noise and can be correctly captured by our model. Additional
corrections, comparable in size to the white noise bias, appear around the pixel scale due to aliasing.
These effects are detected with high significance in our simulations.

theory, with most of this accounted for by the white noise model. Residual differences are
at the 107!2 level. The large-scale B-mode power is clearly over-predicted, whereas the
large-scale F-mode power is in good agreement, although the errors are large. The mismatch
between E and B power across most scales is suggestive of aliasing and sensitivity to the
variation of pixel shape across the sky, corresponding to the second term in square brackets
on the first line of equation (3.22).

An occupancy of A\ = 8 is still fairly large, such that the correction terms in our white
noise model are in the A > 1 regime. To probe a realistic pixel occupancy we construct a
shear map with a resolution of Ngge = 2048, corresponding to an expected pixel occupancy
of A\ = 2. The residuals are shown in the bottom panel of figure 4. As for the lower resolution
grids, most of the difference from the smoothed signal is captured by our white noise model,
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Figure 5. The average of the E-mode shear power spectrum from the N, = 1000 mock catalogues
(black point with error bars), compared with the raw input theory (blue solid curve) and the model
of equation (3.32) with A\ = 2 (red solid curve), corresponding to the use of shear maps with
Ngige = 2048 resolution.

with residuals of around 10712 across all scales. The residual is roughly the same amplitude as
the difference between E and B power, again suggestive of mode mixing induced by aliasing
and the variation of pixel shapes across the maps. If this could be modelled we could expect
residuals of a few times 107!, corresponding to a fractional difference of at most 1073.

It should be appreciated that with A = 2 all of the terms in the white noise model of
equations (3.32) and (3.33) are significant. To illustrate this, in figure 5 we plot the mean of
the measured power spectra compared to the raw input theory, along with our model. The
naive prediction is severely biased, at the 75% level. Most of the difference is captured by
the (1 — e™)? correction, with residual differences reduced by an order of magnitude by our
white noise model, as shown in the bottom panel of figure 4. A caveat to this is that our
model is strictly only valid when the approximation of equation (3.24) holds. In the more
general case we should avoid dividing the shear map by the weighted occupancy in each pixel
if we wish to average over shear weight realizations, as discussed in section 5.

After making all of the corrections presented in equation (3.32), we find residual differences
shown in figure 6 for each of the three shear map resolutions. Residual biases become visible by
eye above a multipole ¢, ~ Ngqe/2 in all cases. At lower ¢, we constrain residual biases to no
more than a fraction of a percent. At £ ~ Ngqe biases are still sub-percent, but close to 1% for
the high resolution, low expected occupancy case. At higher ¢, biases grow rapidly, reaching
several percent at £ ~ 2Ngqe, as expected from our earlier tests with power laws in figure 1.
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Figure 6. Fractional difference of the measured F-mode power spectrum compared to the model
of equation (3.28), with different resolutions of shear map corresponding to mean pixel occupancies
of A = 32 (blue; Ngge = 512), A = 8 (orange; Ngdge = 1024) and A = 2 (green; Ngjqe = 2048). The
zero line is added for clarity, and the angular scale given by ¢ = 2Ngqe is shown by the vertical line.
The dashed black curve shows forecast 68% Gaussian uncertainties in this quantity for a Euclid-like
survey covering 15,000 square degrees and using a shear map of resolution Ngq. = 4096. Note that the
quantity plotted here is the fractional difference of an estimator containing noise bias and a model that
includes that noise bias, such that the fractional uncertainty is just that coming from mode counting.

Figure 6 also shows the statistical uncertainty in this fractional difference for a Euclid-like
survey covering 35% of the sky and using a shear map of resolution Ngg. = 4096. Note
that because the model that defines the residual bias plotted here includes shape noise, the
statistical uncertainty shrinks as the square-root of the number of independent angular modes.
Given knowledge of the signal and noise power, a Euclid-like survey will therefore allow a
detection of aliasing at this grid resolution with high significance.

More relevant to parameter estimation is the fractional correction to the power spectrum
due to aliasing compared with the signal power. This is plotted in figure 7. The Euclid-like
statistical uncertainty in this quantity, roughly the inverse signal-to-noise per £-mode, now
grows on small scales because shape noise dominates over cosmic variance (sourced by the
signal power itself, modulated by the pixel window function) above ¢ ~ 2000. Aliasing is
roughly 1% of the signal for ¢ 2 Ngge, which is an order of magnitude smaller than the
statistical uncertainty at ¢ ~ 4000. Nevertheless, the effect is coherent over a wide range of
multipoles where there are many hundreds of independent modes, so the effect on parameter
constraints could be significant. This will be mitigated by non-Gaussian contributions to the
covariance matrix, and a proper assessment of the impact of aliasing on parameter constraints
will likely require a Simulation-Based Inference analysis of the pseudo-Cy estimator, such
as that in ref. [43].
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Figure 7. Fractional difference of the measured F-mode power spectrum compared to only the signal
part of equation (3.28). The dashed curve shows forecast 68% Gaussian uncertainties in this quantity
for a Euclid-like survey covering 15,000 square degrees and with 30 galaxies per square arcminute,
assuming Ngiqe = 4096. The colour scheme is the same as in figure 6, except now the quantity plotted
is the fractional difference of an estimator containing noise bias and a model that includes only signal.
In this case, shape noise dominates the variance above £ =~ 2000.

To summarise this section, the models built in section 3 are accurate at the sub-percent
level for ¢ < aNgqe, where a = 1-1.5 depending on the source number density. Residual biases
are mainly due to aliasing, which is unavoidable in the HEALPix map making approach.
Averaging over source number counts effectively introduces a mixing matrix even on the full
sky, and our model for the isotropic part of this matrix (due to shot noise) works with high
accuracy across a wide range of source number densities. In the remaining few sections, we
will investigate refinements to the standard estimator and test scenarios in which the source
counts (and shear weights) are considered fixed.

5 Modifying the standard estimator: unnormalized and globally
normalized shear maps

In the previous sections, we have assumed that one wishes to model the power spectrum
averaged over the true shear, the shear weights, and the source galaxy distribution, and
provided models for the spectra in this scenario that agree reasonably well with simulations.
Let us continue to assume that one wishes to average over the source positions and weights
in this way, and consider how to overcome some of the technical difficulties in accurately
modelling the power spectra.
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We can avoid issues encountered when dividing by the noisy total weight in each pixel
by considering an alternative shear map given by

A =" w4 e B (5.1)
1ED

where the superscript ‘nn’ refers to the fact that this map has not been normalized. The
properties of this estimator, and two-point statistics derived from it, can be found by setting
wp = Npw(1)(p) = > i, wi within summations over pixels. The estimator is equivalent to
using approximate inverse-variance pixel weights. The derivation in section 3.4 now needs
modifying, because we do not have the complications associated with dividing the map by a
stochastic quantity. In fact, averages over weights and pixel occupancies can now be written
down exactly. In the case of full-sky coverage and unit weights, equation (3.28) still holds, but
with the replacements f(\) = g(\) = h(\) = A2, considerably simpler than in the per-pixel
normalized map case. The power spectrum bias is now easily accounted for by normalizing by
the expected pixel occupancy; the corrected noise bias terms are then given by equation (3.35)
with f.(A) = g.(\) = 1. This simplification gives the remarkably simple result

2
~FEnn g
Cp™ N = CEWE + 2
~Ban o O
Co™M /N =L, 5.2
PN =l (5.2)

Thus, choosing not to normalize the shear map by the total weight in each pixel (or equivalently,
applying an inverse variance weight) not only simplifies the statistics of the estimator when
averaging over the source population, but makes the resulting expected power spectrum
simple in the case of unclustered sources. We have verified that the model of equation (5.2)
works well, with residual differences coming from aliasing and the failure of W), to capture
the effects of varying pixel shapes.

We caution that these simplifications have assumed uniform shear weights, so should not
be taken too literally. Moreover, there are potential disadvantages in not normalizing by the
local pixel weight; super-pixel shear modes are no longer faithfully represented when A > 1,
and the sensitivity to source-lens clustering and related biases is potentially greater [36].

Jumping ahead to the situation where the galaxy positions and weights are considered
fixed (see section 6), the estimator equation (5.1) is statistically equivalent to the shear
map normalized by the globally averaged total per-pixel shear weight. This estimator is
used in ref. [20], and is given by

Ew _ 2iep Wi Vi e~ Hhi (5.3)

p ] ?

where the superscript ‘gw’ refers to the fact that the map has been normalized by a ‘global
weight’, and the quantity w is given by

N, gal
47Tf sky

where (w;) is the mean shear weight over the whole catalogue (for the given tomographic bin).

w =

Q(w;) (5.4)

Note that w simply normalizes the map in a way comparable to the original map estimator
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equation (2.1), but replaces the per-pixel weighted number of galaxies with an average over
the survey footprint. In the case of full sky coverage and unit shear weights, we have w ~ A to
a good approximation. This gives an expected power spectrum equivalent to equation (5.2),
with C’f’gw = CEW? + 03/(275) and C‘f’gw = 03/(2@. Thus, normalizing by the quantity
w performs the same task as normalizing by A, with the advantage that it can be used in
the full-complexity situation of arbitrary source positions and weights.

In summary, the statistics of the shear map and the biases that can result from empty
pixels and stochasticity of the galaxy weights can much more easily be dealt with by
normalizing the shear map by a global shear weight rather than the local weight in each pixel.

6 Tests with fixed galaxy positions and weights

In the tests we have run so far, we have varied both the shear field and the galaxy source
positions in each simulation; in the same vein, had we considered realistic shear weights,
we would have varied those too. Consequently, the models we have built are intended
to model the power spectra averaged over all sources of stochasticity. We have seen how
this brings complications when accounting for empty pixels, stochastic shear weights, and
correlations between lensing and shear weights. This suggests an alternative; consider the
source positions and weights as fized and instead try to model the power spectrum statistics
ensemble averaged over realizations of the shear field. This is more aligned with how weak
lensing is done in practice; the radial distribution of galaxies is fixed to a (calibrated)
distribution of those galaxies that are actually in the sample, rather than some fictitious
ensemble-averaged sample.® On large scales, we expect this approach to agree well with
the situation in which source positions are formally averaged over, since many independent
pixels contribute to the estimated power at each L. At sufficiently small pair separations we
will eventually run out of galaxy pairs, unlike the situation in the source-averaged situation.
We therefore expect low-pass filtering to be more effective in the fixed-source case; this
potentially mitigates aliasing.

There are some subtle considerations that arise when analyzing weak lensing data
assuming a fixed source population. Firstly, the source positions are clustered, and so contain
cosmological information. Formally one should therefore compute models for the two-point
statistics of the shear field conditioned on the positions of the sources. This will have most
impact on the cross-correlation of lensing between widely separated redshift bins, effectively
due to source-lens clustering. The conventional way of modelling source-lens clustering is
to ensemble average over the source positions [37, 48], but if these are instead considered
fixed then the calculation changes. This point is partly explored in ref. [49], and will be
explored thoroughly in a forthcoming work.

SInterestingly, this highlights an inconsistency in how shear correlation functions are conventionally modelled;
no dependence on the actual galaxy positions is typically included in the model, and instead the theory
correlation functions are averaged over angular bins assuming all angular separations are represented in the
catalogue (this has been studied in appendix D of ref. [44]). By contrast, the actual observed pair counts are
conventionally included in the shape noise part of analytic covariance matrix models, albeit not elsewhere
in the standard covariance calculation [45, 46]. This has recently been studied in detail in ref. [47], building
upon the formalism of ref. [5].
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Here, we sidestep issues of cosmology dependence in the source population and treat
the sources as effectively imposing a cosmology independent ‘visibility map’ onto the survey.
The resulting shape noise in the angular power spectrum is still given by equation (3.18),
but with the effective pixel occupancy given by the moments of the actual weighted source
counts in each pixel, rather than a somewhat abstract ‘source position averaged’ version of
this quantity. It is not possible however to write down the smoothed-signal terms; we cannot
push our analytic expressions further than equation (3.10). This makes it challenging to
develop the HEALPix window function approximation, as we did in section 3. Qualitatively,
as discussed in refs. [14, 25], for high-resolution maps where pixels typically have low source
galaxy occupancy, the shear map is closer to a point-sampling of the shear field than it
is to a convolution. This means that the effective pixel window function transitions from
something close to the HEALPix pixel window at high expected occupancy (i.e., for low-
resolution grids), and a constant function (with aliasing) at low expected occupancy (i.e.,
for high-resolution grids).

To gain further intuition, suppose our survey footprint covers the full sky, and consider
first the extreme scenario of a low-resolution grid where every pixel is well populated with
source galaxies. The shear map should be well approximated by the HEALPix window
function, with residuals comparable to those seen in section 4, i.e. greatest on angular scales
close to the pixel scale (which is much larger than the mean inter-particle separation by
construction). In the opposite extreme, the shear map is at such high resolution that each
pixel has at most one galaxy in it, and most pixels are empty. In this limit, the shear weights
cancel out of equation (2.1), and we have (with the correct phase factor, see appendix A)

Ap = O(Np) Yip) e 2w, (6.1)

where we remind the reader that ©(NN,) is a binary mask that is zero for empty pixels and
one elsewhere, and i(p) labels the galaxy in pixel p.” Since a given /-mode averages over
many pixels, it should be a reasonable approximation in this limit to model the full-sky
power spectrum with a multiplicative HEALPix window function and convolved with the
mixing matrix implied by the map ©(N,).

Putting these results together, for fixed source positions and weights, the best model we
can recommend for the standard shear map estimator follows from writing, schematically,

Ap = O(Np)Tp + np, (6.2)

where 7, is the shear field convolved with the HEALPix pixel window function and evaluated
at the centre of the pixel p, and n,, is a noise term. If the map is unnormalized as described

in section 5 we can replace ©(N,) with Ny =37, wi, i.e. the shear weight map, or if a

ic

globally normalized map is used as in ref. [20] we canpreplace O(Np) with N /w. The model
for the shear power spectra then follows from multiplying the model power spectrum by the
HEALPix window function, and then applying the mixing matrices that follow from ©(N,)
(or Ny if not normalizing by the pixel weight), as described in refs. [11, 13, 14, 50]. Note that

this is still an approximation; in reality the weighted shear in a pixel cannot be factored as a

"Note that in this limit the shear weights are completely redundant, which would motivate inverse-variance
pixel weighting in this regime as discussed in section 5.
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weight map multiplied by a shear map, but this will at least recover the expected behaviour
in the extreme cases of low occupancy and high occupancy described above.

6.1 Unclustered sources on the full sky

To understand what form the noise term in equation (6.2) should take, consider the situation
of unclustered sources and uniform pixel weighting. Using the statistics of ©(N,) given
in equation (3.27), we can write down the mean value of the angular power spectrum of
©(Np). This is given by

(OF) = G g7 S 3 Vi Vi) + 24, (63

m pq

Note that we have not assumed the continuum limit here. For ¢ < fyy, the spherical harmonics
are orthogonal over the HEALPix grid, and hence the first term in equation (6.3) becomes
simply 4mh(\)dg. For £ > fny we lose this orthogonality and acquire aliased power, although
the symmetries of the HEALPix grid still guarantee that only m = 0 modes contribute to the
summation, which is zero unless £ is even. Nevertheless, it is a reasonable approximation to
replace the first term in equation (6.3) by 47wh(\)dg, since high frequency modes are strongly
suppressed when integrated over the sphere with uniform weight. Note that the second term
in equation (6.3) is exact for all £. We thus have

Qg(A)

<Ct@> ~ 4mh(\)dg + h\

(6.4)

This form was used in appendix D of ref. [43] with the approximation Cl@ S (Cg@ ), but here we
only make use of it to tell us what the variance of the noise term in equation (6.2) should be.

Expressions for the mixing matrices may be found in, for example, ref. [50]. Substituting
in equation (6.4), their expected values are

Qg(A) 20 +1

(M) = h(X)der + o) i (6.5)
(M) ~ QQE/\ 26:17—: 1. (6.6)
The mode-mixed power spectra following from the ansatz equation (6.2) is therefore
(CF) = noWECE + 50 5 PO opw + () (67
py~ I CE D epws 1 ), (6

El

where Ny is the power spectrum of the noise term in equation (6.2), and the angle brackets
refer to the average over Poisson sources on the full sky. Comparison with equation (3.23)
suggests that the residual noise power spectrum should be (including shape noise)

f(A 2004+ 1
T Dh e/ (6.9)
e/
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Recalling the definition of f(\), this suggests that the source realization-specific noise bias
is given by

2 /
New oo o2 =Y G oy | v 9D (6.10)

% 4 - Ngﬁ
In other words, the ansatz equation (6.2) says that the shear map should be modelled as the
true shear field convolved with the HEALPix window function, sampled at the centers of
non-empty pixels, with empty pixels incorporated into the mask, and an effective noise bias
term that includes only sub-pixel variance. Following the lines of discussion in section 3.5,
we can remove shape noise bias by subtracting from the power spectrum estimator terms
like equation (3.39) or equation (3.40). These equations remain valid in the situation where
the source positions are considered fixed.

In the case of the ‘unnormalized’ estimator (or equivalently inverse-variance pixel
weighting) discussed in section 5, the equations above remain valid with the redefinitions
h(A) = g(\) = A2. In this case, the noise bias that replaces equation (6.10) is

w2 20 41
S [ag IS Hcﬁw;] S Ny,
p

8T % 47
m2+2§@m”@W%M2 (6.11)
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where the final sum runs over all galaxies in the catalogue. Appropriate noise bias estimators
to subtract from the power spectra, corresponding to equations (3.39) and equation (3.40),

become
2
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As in section 3.5, these estimators will both remove the contribution to shape noise variance,
but equation (6.12) will also subtract additional white noise coming from shear correlations.
Note that for Poisson distributed sources, the shear correlation contributions cancel out,
cf. equation (5.2), so these two estimators have the same expectation value; consider setting
f(A) = g(A) = A% in equation (3.41). Practically speaking, the shape noise variance dominat(ei,
2

for the ‘global normalization’ estimator equation (5.3), which simply divides equation (6.13)

over the shear variance, so either estimator may be used. Ref. [20] uses the analogue of N )

by w?, where w is given in equation (5.4). The correction due to shear correlations is
then absorbed into a redefinition of the mixing matrix by de-biasing the weight map power
spectrum; we refer to ref. [20] for further details. This approach has been independently
proposed by ref. [33].
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Figure 8. Left panel: difference between measured and modelled FE and BB spectra from simulations
with fixed source positions. The shear map is made on a grid of resolution Ngjqe = 2048. The model uses
a mixing matrix derived from the standard estimator equation (A.3), using the binary footprint map
as the effective survey mask. The predicted residual noise term from sub-pixel shear variance is shown
as the horizontal dashed line, and the vertical line shows the scale at which £ = 2Ngjqe. Right panel:
fractional difference between the measured and modelled EE spectra. In green is shown the fractional
difference from a model that uses a mixing matrix based on the actual observed sources, and in orange
we show a model that uses the ensemble average prediction, equivalent to that used in section 4.

6.2 Tests against simulations

To test the performance of our statistical model for the power spectrum in the fixed-source-
position case, we run simulations of full sky, unit shear weight, Gaussian shear catalogues
using the same specifications as section 4, but keeping the realization of the source position
field fixed.

In the left panel of figure 8 we show residual differences between the mean power spectra
and the model of equation (6.2), along with the noise bias prediction equation (6.10), for a
shear map with on average A = 2 galaxies per pixel. The performance of the estimator is
excellent, with performance very similar to the ensemble-averaged results shown in figure 4.
In the right panel of figure 8 we show the fractional residual bias relative to the signal
for both the realization-dependent model equation (6.2) and the ensemble-averaged model
equation (3.23). The residual bias, mostly due to aliasing, is very similar between these two
methods, with the realization-dependent model performing slightly better, as expected.

In figure 9 we show results for the unnormalized estimator equation (5.1). Encouragingly,
the small residual bias in the BB spectrum has disappeared, with biases in both FE and
BB now at the 2% and 1% level at £ = Ngjgeo for EE and BB respectively. This is likely due
to the suppressed dependency of the noise bias on the pixel window function that occurs for
Poisson sources and the estimator equation (5.1), as shown explicitly in equation (5.2); this
noise bias is the sole source of BB power in our simulations. The bias in FE at £ = 2Ngqe is
however higher than in the uniform pixel weighting case at around 7% compared with 5%.

To summarize the results of this section, we have shown that our models for the expected
shear power spectra for fixed source positions work very well, and correctly capture the
residual white noise power due to shear correlations. Our simulations have been simplistic,
but sufficient to demonstrate the key properties of standard pseudo-Cy algorithms.
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Figure 9. As figure 8 but using a shear map with inverse-variance pixel weighting, i.e. an unnormal-
ized map.

7 Interlacing HEALPix grids to mitigate aliasing

Cosmological fields are not band-limited, and hence angular power spectra estimated via the
creation of maps are vulnerable to biases from aliasing. This is demonstrated explicitly in
figure 1, where the impact of aliasing is shown to be strongest for input spectra that have
significant power on small scales. The biases seen in figure 1 closely resemble the biases seen
in all numerical tests described in the previous sections.

In this section, we explore a method for mitigating aliasing inspired by the ‘interlacing’
technique presented in refs. [51, 52] in the context of estimating the three-dimensional power
spectrum of points using a Cartesian grid. The interlacing method works by constructing the
Fourier modes of the density field as the average of two separate sets of modes built from
Cartesian grids that are translated with respect to each other in every direction by half the
side-length of a grid cell. This results in a significant cancellation of aliased images, and is
now a standard method for estimating spectra from N-body simulation particle data. We
refer to ref. [52] for further details of this technique.

For the HEALPix grid, there is no direct analogue of interlacing because of the non-
regularity of pixel shapes that break translational (or more correctly, rotational) invariance.
However, in the equatorial region, pixels within a HEALPix ring are separated by a fixed
azimuthal angle of 7/2Ngqe. Therefore, in analogy to the Cartesian interlacing method, we
first generate a map from a set of points and then a second map rotated by half this distance,
i.e. a map that has been rotated about the z-axis by an angle A¢ = m/4Ngjge. This scheme
will not be perfect, because in the polar region the pixels occupy a greater range of azimuthal
angles and hence the rotation will have less of an effect on map values, but it is the simplest
application of interlacing to the spherical setting.

In figure 10 we show the recovered power spectra using interlaced maps from an input
power-law spectrum Cy o< £~ 1. In these examples, we draw spin-0 Gaussian realizations of a
high-resolution map having either Ngqe = 256 (top row) or Ngge = 1024 (bottom row). The
resulting map values are assigned to g, points placed uniformly over the sphere, with a
density drawn from a Poisson distribution such that on average 2 (left column) or 1 (right
column) galaxies reside in each high-resolution pixel. This catalogue is then randomly rotated
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Figure 10. Ratio of recovered power spectra from an Ngqe = 64 grid to the input power spectrum
for a power law spectrum having C; o< £=!. Blue curves show recovered spectra using the standard
algorithm based on maps, orange curves show the results of using interlaced maps. The top row shows
results from catalogues with field values assigned from an Ngqe = 256 grid, the bottom row uses
an Ngge = 1024 grid. The left column uses a catalogue density such that there are 2 galaxies per
high-resolution pixel, the right column uses 1 galaxy per high-resolution pixel. Spectra have been
corrected for shot noise, and the black curve is the square of the HEALPix pixel window function.

to erase memory of the grid from which field values were assigned, and then a low-resolution
Ngide = 64 map is formed by simple averaging.

Figure 10 shows the resulting power spectrum with and without the interlacing method
(after shot noise subtraction) alongside the prediction based on the HEALPix window function
(black curves). In these examples, the interlacing method successfully mitigates bias due
to aliasing, and the resulting power spectrum is better described by the input spectrum
smoothed with the HEALPix pixel window function. The performance of the method is
sensitive to the details of our numerical experiment however, and depends on the resolution
of the underlying high-resolution map and the density of the catalogue.

In figure 11 we show results with the same catalogue settings but with an input spectrum
Cy x £72, i.e. a spectrum having less aliased power. The interlacing method is much less
effective here, and exhibits too much smoothing. The default method suffers from relatively
little aliasing for ¢ < 2Ngqe in this example, and the additional smoothing imposed by
interlacing actually biases the power spectrum low. The sensitivity of the method to the
details of the catalogue generation depends on the input spectrum itself; figure 11 shows no
visual differences when we vary the simulation parameters as done across the four panels
in figure 10.

In conclusion, the interlacing method is a promising technique for mitigating aliasing
on the sphere, but its efficacy depends on the precise input spectrum and details of the
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Figure 11. Same as figure 10 but for an input spectrum C; o< £~2. Catalogues were created from
high-resolution maps at resolution Ngq4e. = 256 with on average two galaxies per pixel, and then
low-resolution maps were created at Ngqe. = 64, i.e. settings corresponding to the top-left panel of
figure 10. Alternative setups corresponding to the other panels in figure 10 show no visual difference.

catalogue. A detailed study is beyond the scope of this paper, but we can speculate that
survey footprints that can be mostly captured by equatorial pixels in a HEALPix grid may
benefit from the interlacing method, since the grid structure is close to the Cartesian case
where interlacing has already been shown to be effective.

8 Pixelization on the masked sky

In section 3 we suggested that the HEALPix pixel window function approximation may be
improved by restricting its computation to the observed survey footprint. To see this, recall
the definition of the HEALPix pixel window function:

2 1 pES 2
px p:l

where (W})? is (up to a numerical factor) the angular power spectrum of pixel p. Figure 2
shows a map of this quantity for ¢ = 128 and Ngqe. = 64, demonstrating that the pixel window
function can vary by 10% over the sky, particularly in the polar regions (this was explored
briefly in ref. [53]). This suggests that an improved pixel window function can be constructed
by replacing the average in equation (8.1) with an average over pixels in the observed region.

To test this idea, we take the shear catalogues described in section 4 and, prior to
computing the power spectra, apply a survey footprint on an Ngge = 64 grid to each
map consisting of only equatorial pixels (having |cosf| < 2/3); these have particularly
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Figure 12. Left panel: the average squared pixel window function over the whole sky (orange), along
with the average over only equatorial pixels (blue) and polar pixels (green), for Ngq. = 64, along
with their ratio (lower panel). Right panel: ratio of the measured power spectrum in equatorial pixels
to a model using the global pixel window function (blue) and the equatorial-averaged pixel window
(orange), alongside the ratio of the measured power spectrum in polar pixels to a model using the
global pixel window function (green) and the polar-averaged pixel window (red).

stable pixel shapes and low variation in the pixel power spectra, which suggests that the
HEALPix approximation of a pixel-independent window function should work better. We
also create a second set of power spectra using only the polar pixels, i.e. the complement
of the equatorial footprint.

Figure 12 shows the results of this exercise. In the left panel we show the average
squared pixel window function over the whole sky, along with the average over only equatorial
pixels and polar pixels, for Ngge = 64. Restricting the average to the observed equatorial
region boosts the pixel window by up to 3%, with largest differences on small scales. Larger
differences are seen for polar pixels, with the pixel window function suppressed by up to 5%.
The corresponding impact on the power spectrum is shown in the right panel of figure 12. Here,
the theory power spectrum is multiplied by our bespoke pixel window and then convolved
with the appropriate mixing matrix. In the case of the equatorial mask, use of a bespoke
pixel window function seemingly improves the bias (the orange curve is below the blue curve),
although both are strongly biased by aliasing on small scales. In the case of a polar mask,
a bespoke pixel window function actually increases the bias (red curve lies above the green
curve). This suggests that aliasing is dominating the bias, with deficiencies in the precise
form of the pixel window function subdominant. This is consistent with figure 1, where all
recovered spectra are biased high by aliasing, such that multiplying the theory spectrum by
a smaller pixel window function (as is the case for polar pixels) enhances the bias.

Given that aliasing obscures the efficacy of our bespoke pixel window functions, we
repeat the above experiment with band-limited input spectra having no power above twice
the Ngge of the shear map. For simplicity, in this experiment we simulate high-resolution
Ngide = 1024 spin-0 maps and then degrade them to Ngge = 64, rather than using our
simulated shear catalogues. Figure 13 shows the resulting power spectra compared with
models that use the bespoke pixel window functions constructed from only equatorial or
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Figure 13. Ratio of the measured power spectrum in equatorial pixels to a model using the global
pixel window function (blue) and the equatorial-averaged pixel window (orange), alongside the ratio
of the measured power spectrum in polar pixels to a model using the global pixel window function
(green) and the polar-averaged pixel window (red), for band-limited input spectra.

polar pixels. The performance of the window functions is now much better; use of the
full-sky HEALPix pixel window function induces biases in the spectra at the few percent
level which are brought almost to zero by use of bespoke pixel window functions adapted
to the survey footprint.

Although the results shown in figure 13 are below cosmic variance at these scales, we
would expect this behaviour to be repeated at higher £ if a finer grid were used, because
the pixel window function varies on roughly the same large scales (shown in figure 2) for
all map resolutions.

The results suggest that improving the pixel window function will only be useful if aliasing
can be mitigated. This is challenging for cosmic shear, which inevitably has significant power
on small scales. One interesting direction would be to combine the interlacing method
presented in section 7 with the bespoke pixel window functions presented in this section. We
defer this study to a future work. Direct evaluation of the spherical harmonic transforms,
avoiding maps entirely, would partially avoid aliasing, although the number density of the
source galaxies will always result in a sparse sampling of the underlying shear field and
hence aliasing.
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9 Conclusions

We have conducted a thorough study into a number of biases that show up on small scales
in the standard pseudo-C} estimator applied to cosmic shear catalogues. These effects are
all related to the pixelization of the shear catalogue, a step which usually directly precedes
power spectrum estimation from the resulting shear map. We have built models for these
biases and suggested a number of improvements to the standard estimator in various analysis
regimes, demonstrating good agreement of our models with simulations. These improvements
are motivated by upcoming cosmic shear surveys that will make precise measurements of the
shear power spectra on small scales ({ax =~ 5000). While theoretical modelling uncertainty
on these scales due to non-linear clustering remains a significant challenge, we have made
headway in understanding several outstanding issues on the measurement side. The main
conclusions of this work are as follows:

o We wrote down exact expressions for the action of pixelization on the full-sky shear
two-point functions, and along the way we derived a spin-2 version of the convolution
theorem. We elucidated the approximations that lead to the HEALPix window function
in the spin-2 case, which have been missing from the literature.

¢ We showed how restricting power spectrum estimation to pixels that contain galaxies
leads to multiplicative biases that scale with the expected pixel occupancy. We derived
simple approximations to these biases that are exact in the limit of constant shear
weights and Poisson sources, and found good agreement with mock shear maps. These
biases can be highly significant for typical shear map resolutions and the source number
densities expected from a O(10) redshift bin survey at a nominal Euclid-like depth. The
models we developed account for most of this bias to high precision. Residual biases
exceed 1% above a multipole £, ~ Ngqe, and are mostly due to aliasing (see figure 6).
These biases can always be safely pushed to below the pixel scale by using a sufficiently
high-resolution HEALPix grid; we have shown how to deal with the resultant scenario
of empty pixels.

e We showed that biases from averaging over pixel occupancy are substantially easier to
compute when the shear map is not normalized by the total weight in each pixel, or
equivalently by applying an inverse-variance pixel weighting. In addition, choosing not
to normalize makes the statistics of the weights easier to model. We derived expressions
for the expectation values of these new estimators, including noise bias subtraction.

¢ We showed that further improvements to the estimators can be made when the source
galaxy positions and weights are considered fixed. We wrote down a modified estima-
tor that incorporates source density and weight fluctuations into the mixing matrix,
equation (6.2), and extended this to the case of unnormalized shear maps.

e We have shown (in appendix A) how the standard shear map estimator neglects a phase
factor necessary for consistent averaging of the spin-2 shear field. Neglecting this factor
can lead to order unity multiplicative biases in pixels near the poles, but for typical
pixels the bias is much smaller, with a mean value of less than 10~8. The r.m.s. value
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of the multiplicative bias is around 10~ for a nominal Euclid-like depth and scales as
n~1/2 where 7 is the source number density. Spurious E and B power (i.e. additive
bias) is generated along with multiplicative bias. For map resolutions with Ngge > 128
both these biases are within Stage-IV requirements. We confirmed our predictions for
the size of these biases to within an order of magnitude using mock catalogues.

e Our recommended estimator uses fixed sources and weights, globally normalized shear
maps, and a catalogue-based noise bias subtraction. This estimator is thoroughly tested
in ref. [20] and is implemented in the Euclid analysis pipeline.

e We explored an approximate interlacing technique applied to HEALPix maps as a
method to mitigate aliasing. This technique works reasonably well, but shows sensitivity
to the precise form of the input spectrum and the details of the catalogue construction.
If this technique is to be applied on real data, a careful performance study will be
required to avoid accidentally increasing power spectrum biases.

o We suggested a further modification to the standard pseudo-CYy pipeline by showing how
to construct bespoke pixel window functions based on the observed survey footprint.
For band-limited spectra, this can reduce percent-level biases in the power spectra
to zero. However, the performance of this approach is degraded for non-band-limited
spectra, such as those expected from cosmic shear.

Residual biases at the percent level around the pixel scale remain in the power spectra
due to aliasing and the variation of the HEALPix pixels over the sky. To eliminate these,
there are several directions that one can take. Firstly, one can choose to replace the
model for the power spectra with simulations that have the pixelization effect in them by
construction. This ‘brute force’ approach is guaranteed to be unbiased, at the cost of a
potentially significant computation cost. Alternatively, one can choose to bypass maps
altogether, as in refs. [20, 26, 33|, and directly compute the spherical harmonics at the galaxy
positions. This method is highly promising, although further work is needed to reduce the
run-time to acceptable levels at the required resolution. Finally, a novel idea is presented in
ref. [20]; instead of averaging in HEALPix pixels, one can average in circular disks tied to
the centers of HEALPix pixels. In this setup, pixels necessarily overlap, but the operation is
mathematically a convolution and hence the pixel window function can be exactly accounted
for if the convolution kernel is chosen appropriately. This method has a free parameter (the
kernel width), but should eliminate biases. Further work is required to thoroughly test this
method in the context of upcoming cosmic shear surveys.
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A Bias due to neglecting parallel transport of shear

In this section we discuss in detail the bias in angular power spectra due to neglecting the
phase factor required to correctly form a shear map.
First, let us re-examine the defining equation for the shear map in the standard approach,
’3/ . ZiGp Wy //5/2
P ZiEp wi

There is a problem with equation (A.1). The shear field is the projection of a two-dimensional

(A1)

tensor field P, defined on the sphere, with v, iy = e‘ieg:Pab for helicity basis vectors e4.
We must account for the fact that adding tensors on a curved manifold only makes sense at
the same point in the manifold. Furthermore, the basis vectors defining the shear depend on
position, and this dependence must be accounted for in the averaging procedure.

A.1 Parallel transport of shear

To construct an averaging procedure that makes sense for shear, we must parallel transport the
shear of each galaxy to the centre of its parent pixel. We will first assume that the ‘polarization
tensor’ P, is constant over the pixel area (i.e., has vanishing covariant derivatives), such
that it is sufficient to consider just the action of parallel transport on the local (%X,¥) basis
defining the shear. Consider a galaxy located at coordinates (02, ¢2). We define the shear
with respect to a local x-y basis given by the normalized spherical basis vectors (@, qAb).8
First consider parallel transporting these basis vectors up to the North Pole and then down
the meridian to the pixel centre at (61, ¢1). By considering figure 14, it is clear that the
basis rotates by an angle C' in a left-handed sense about the outward normal fi; relative
to the (é, a)) basis at (01, ¢1). Parallel transporting back to the galaxy’s position along the
geodesic results in a net rotation of A+ B + C — 7, the excess area of the spherical triangle.
This rotation is in a left-handed sense about ny. This implies that the effect of parallel
transporting from (01, ¢1) to (62, ¢2) is to rotate the vectors by A+ B — . Therefore, parallel
transporting in the opposite direction, from (02, ¢2) to (61, ¢1) must result in a rotation of
B8 =m—A— B in a left-handed sense about 1n; relative to the basis there. This rotation
transforms the helicity basis vectors as ex — e*Fe,.
The shear therefore transforms under parallel transport as

(71 £ iy2) (R2) — (71 £ iy2) (Ay) ™7, (A.2)

The physical quantity we wish to average in the pixel is the shear tensor at each galaxy’s
position parallel transported to the pixel centre n,. Evaluating this average on the helicity
basis at f, gives 4,. The helicity basis at fi, can be expressed in terms of the parallel-
transported basis by undoing the rotation by 8. The correct averaging procedure is therefore
given by

~ _9i8.
’3/ o Ziep w; i € Bi
p =
Zz’ep Wy

: (A.3)

8Note that this potentially differs to other conventions, with some authors defining the shear on a left-handed
basis set with the local z-axis parallel to the outward normal to the sphere. In this case the shear is spin —2
and the final rotation we derive here should have an extra minus sign. Our convention matches the HEALPix
and CAMB conventions, but differs from the IAU convention.
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Figure 14. Spherical geometry for parallel transport.

where 4; is measured in the standard helicity basis at n;. Note that this estimator is equivalent
to first expressing the galaxy shear on a basis aligned with the geodesic — this is achieved by
rotating the basis at fi; by A in a left-handed sense about f;. Such a rotation is equivalent
to a rotation of the global (lab frame) coordinate system by an angle ¢; in a right-handed
sense about the global Z axis, followed by a rotation by 6; in a right-handed sense about
the new Y axis. The geodesic is now at constant longitude, such that parallel transport of
the shear to n, gives no additional rotation. Subsequently performing the reverse rotation
of the global axes then amounts to rotating the local basis at fi, by an angle B — 7 in a
left-handed sense about the outward normal there. The new shear at 1, is hence 4; e 2B
and is expressed in the correct global helicity basis.

The angle 5 can be derived using the laws of spherical trigonometry. For example, we have

cos ¢ = cos 1 cos O3 + sin 01 sin O, cos(pa — ¢1) (A.4)

sind = 0 b S%n(@ —91) (A.5)
sin ¢

cos A — cos 01 sin Oy — sin 0.1 cos 03 cos(pa — ¢1) (A.6)

sin ¢

sinB = % 02 S%n(% — ) (A.7)
sin ¢

cos B — cos O9sin 0 — sm:;lccos 01 cos(p2 — ¢1) (A.8)

For small pixels with 65 = 61 + 660 and ¢ = ¢1 + d¢ with §6,0¢ < 1, the angle
has the expansion

ﬁ:5¢<—cos01+;59 sin91+...>. (A.9)

The rotation angle is thus largest near the poles and is at least quadratic around the equator.
Under repeated draws from a uniform galaxy position field the average angle is zero to at
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least quadratic order, since (60sinf) = —(dcosf) = 0. Note that equation (A.9) is also
valid for any d¢ for small pixels around the poles, which is important because those pixels
wrap around and [d¢| < 7/2.

The formula equation (A.9) is consistent with the numerical results of ref. [20]. In
particular, we have 8 = 0 along lines of longitude, consistent with the fact that parallel
transport along a geodesic gives no effect. Similarly, around the equator where 6; = 7/2
and 00 = 0, the effect is also zero.

A.2 Bias in shear maps incurred by ignoring the phase factor

Neglect of the individual phase factors results in a multiplicative bias on each shear in the
pixelized map. Continuing to assume that the polarization tensor is constant over the pixel,
the incorrect expression equation (A.1l) evaluates as

L 2i10;
A ZiEpwle fi

’YP = 'Y’p Z wWs ) (AlO)
1ep

where +, is the shear at the centre of the pixel. For small pixels such that 5 < 1 we can use
equation (A.9) to write 4, ~ v,(1 + my), where the multiplicative bias is

Dicp Wi0Pi D e, WidP; Of; > iep Wid?
my, = —2icos 0, ==L — =P —2cos? 0, =L 0 4 0 (), All
b P Yicp Wi Yiep Wi P D iep Wi ( ) ( )

where we defined 1 = cosf, and € is an order-counting parameter of order §¢. The linear

bias is zero on average since galaxies are equally likely to be on the ‘left’ side of a pixel as
the ‘right’. The bias is greatest near the poles of the map, as expected, and is zero around
the equator. At leading order, we have

(my) = —2cos® 0,(5¢*) + O (63> . (A.12)

We will set (0¢2) = SzQ /12 where S, is a shape factor of order unity that depends on the
shape of the given pixel. For square pixels on the equator we have S, = 1, which is a good
approximation for most of HEALPix pixels which lie in the equatorial region. For circular
pixels on the equator, we have S, = 1/3/7 ~ 1. In the polar regions we expect Sp>1.In
figure 15 we plot S, for a map with resolution Ngqe = 512. The large-scale features of the
HEALPix grid are clearly visible, and although S, ~ 1 for most of the pixels it can be several
orders of magnitude lager than that near the poles. We find (S,) ~ 1.5 and (S7) ~ 8, which
is only weakly dependent on the resolution; for Ngqe = 64 we find <S§) ~ 6, for example. We
find the maximal value of .S}, to be S}I,naLX ~ 1.3 Ngiqe, reflecting the fact that there are always 4
pixels around the poles for all resolutions, meaning (§¢?) is roughly constant for these pixels
and so S, o< 1/ vV ¢ Nyqe for the most polar pixels; these pixels are also where Sp is maximal.

The average bias in a pixel has a maximum value (near the poles) of (m,) ~ —0.3.
Most pixels have (m,,) much less than this however; for Ngqe = 4096 we have |(m,)| < 1078
for example. For the typical grid resolutions used in weak lensing surveys, the average
bias across the map is therefore negligible, except for the most northerly and southerly
pixels. The maximum bias among all realizations of the source position field occurs in the
most polar pixels when every galaxy is at the edge of its parent pixel. This bias is roughly
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Figure 15. Map of the normalized azimuth variance within pixels, S, defined as (§¢?) = S2Q/12, for
a map with resolution Ngq. = 512. Note that there is Monte Carlo noise of around 15% in every pixel.

max |mp| ~ S;**V2Q ~ 1.88, independent of map resolution. These pixels will therefore be
strongly biased unless the rotation factor is accounted for.

If there are N, galaxies in pixel p, the r.m.s. multiplicative bias in that pixel is

1/2
.cos 0, w(g)(p) > ~1/2 -1/2
my™ =i——=2_5 n +0(n Q), A3
P V3 P <w(21)(]9) b ( ? ) ( )

where w(,) = e, wi/Np, and n, = N,/ is the number density of galaxies in the pixel.
For typical values of Ngjqe the second-order term can be safely neglected. Assuming galaxies
are placed into IV, tomographic redshift bins of equal number density, neglecting density
fluctuations across the map, and denoting the total number density across all redshift bins

by 7itot, the r.m.s. bias in a given bin evaluates as

1/2 1/2 - -1/2
rms . : W(2) (p) (Nz) ( Ntot ) —4
my,"™ 2 icos b, Sp <w(21) ) 10 30 aremin=2 x 107°. (A.14)

A typical pixel therefore has a (purely imaginary, at leading order) multiplicative bias of
magnitude ~ 1074, Allowing for variations of the galaxy density across the sky, the r.m.s.
bias can in principle be larger than equation (A.14) in low density regions; for example
if there is only a single galaxy in the pixel then m,, ~ icosf), S,\/Q/3. For Ngge = 8192
we get back the same ~ 107* r.m.s. bias. A significantly larger bias would require large
empty pixels, which is unlikely given the typical map resolutions used in practice. Note
that since S, ~ 1.3Nige in the extremal polar caps the r.m.s. bias is still significant even
at high densities for typical resolutions.
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A.3 Spatial variation of the bias and impact on the power spectra

The multiplicative bias varies across the sky. On angular scales well above the pixel size we can
take the dominant spatial dependence of m,, to come from the cos 6, term in equation (A.9).
This corresponds to a pure £ = 1, m = 0 spherical harmonic, coupling each harmonic coefficient
of the shear to its neighbour in ¢, whilst leaving different m-modes uncoupled.

Although neglecting the phase factor gives map-level biases to the shear map, a more
pressing question is to what extent the pseudo-C, are impacted by this bias. Treating
the source positions as uncorrelated between pixels implies zero correlation between the
bias in different pixels. Keeping terms to leading order in 2 and assuming zero intrinsic
B-mode power, we can show that the biased power spectra are given, on the full sky and

for uniform pixel weighting, by

(CEP) ~ (1 - <SIQ’>Q> CEE 4 (S0 03 <w(2)(p)> (A.15)

9 18 ny, w(?l) (p)
2 2
(€PP) (Sp)Q a5 <w(2)(10)> (A.16)
18 ny, w%l)(p)
(CFP) = (A.17)
where 03 is the total shear variance. If the pixels are small enough that they contain only a

few galaxies, which will be the case for, say, nominal Euclid Wide Survey depth with N, = 10
and Ngge = 4096, then we may take galaxies as shot noise distributed within a pixel. To
get a rough order of magnitude estimate of the bias we will set n, = no /N, and neglect
the variation of S, over the survey, setting S, = 1. For complete sky coverage, this gives
a white noise additive bias in both FE and BB of amplitude

(Sp)a2 [ we(p) %(22“0_19)( oy >2<4096>2 (S2) (N) ( Ptot )1
18 ny, w%l)(p) ’ 0.017 Naide 8 10 30 arcmin—2 '
(A.18)

For nominal Euclid-like survey values and taking 0., = 0.017 (its value for £y, = 13000 and a

fiducial Planck cosmology), this bias is well within the total requirement on a constant additive
power spectrum bias recommended by [55] in order to keep the bias on dark energy parameters
to below 0.10 (see their figure 2). We note that the bias is effectively a small correction
to the shape noise by a factor O(1078) for Ngqe = 4096. Even if additive bias purely from
power spectrum estimation is allocated 10% of the budget identified by [55], requirements
are satisfied as long as Ngge > 16, which is trivially satisfied for a high-resolution shear map.

In the case of Poisson-distributed sources, the bias is of a white noise form, and hence
could be removed exactly if the usual pseudo-Cy noise bias is removed with Monte Carlo
simulations. If instead the noise bias is estimated from the data itself using the methods
of [14] then the additive bias will remain.

The multiplicative bias is negative and given by

5 (5.5 % 10°%) <<5§>> (4096)2_ (A.19)

9 8 Nside
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Figure 16. Top panel: fractional bias to the recovered E-mode power spectrum from neglecting
phase rotation for a shear map with A = 32 expected pixel occupancy and resolution N4, = 512.
Bottom panel: absolute bias to the B-mode power spectrum from neglecting phase rotation. The
vertical dashed line indicates the scale given by ¢ = 2Ngige-

The total requirement on the multiplicative bias for a Euclid-like survey is 4 x 1073 [55]. If
we allocate 5% of this budget to the biases from power spectrum estimation, the requirement
is satisfied for Ngqe = 128. This is slightly stricter than the additive bias requirement, but
still trivially satisfied for a high-resolution map.

In reality galaxies are clustered, and this introduces pixel-to-pixel correlations in the
shear bias. The only relevant modes of the density field in this case are those with wavelengths
below the pixel scale. Consider two galaxies with azimuthal offsets d¢; and d¢; belonging to
pixels p and p’ with p # p’ and inter-pixel separation r,,. One can show that, in the flat-sky
approximation and when 7, > V/Q, the bias covariance is given by

SpSy

. 4
(mpmy,) ~ — g €08 0, cos O & (1) e (A.20)
P

where £(r) is the galaxy angular correlation function and a prime denotes differentiation.
Unless sources are strongly clustered on sub-pixel scales, these spatial correlations are
suppressed by two factors of vQ /Tpp» here assumed to be < 1. There will be larger effects
for pixel separations comparable to the pixel size, e.g. for neighbouring pixels, but these
must be studied numerically. On angular scales well above the pixel scale however, we expect
the non-whiteness of the multiplicative bias to be negligible, such that m, can essentially
be taken as uncorrelated between pixels.

A.4 Tests on simulations

Using the mock catalogues described in section 4, we can test the impact of neglecting the
phase rotation factor on the power spectra. In figure 16 we show the fractional correction to the
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E-mode power spectrum, i.e. the multiplicative bias, and the B-mode power spectrum, which
is a proxy for the additive bias to the E mode power, for a map with A = 32, i.e. Ngqe = 512.

The qualitative picture established in section A.2 that ignoring phase rotation leads to
scale-independent multiplicative and additive biases, the latter sourcing equal amplitudes
of F and B modes, appears to be correct. The amplitude of the multiplicative bias is
around —8 x 1079, while the additive bias is around 5 x 10716, This is to be compared with
equations (A.19) and (A.18), which predict biases of around —4 x 1075 and 6 x 10717, Our
prediction thus underestimates the multiplicative bias by factor 2, and the multiplicative bias
by a factor 10, but in both cases the biases are well within Stage-IV requirements.

For a shear map with resolution Ngqe = 2048 we find a multiplicative bias of order —10~7
and no detection of B mode power (i.e. additive bias), the upper limit being a few x10~'7.
These are consistent with our analytic predictions, and confirm that the bias to power spectra
from neglecting sub-pixel phase rotation is negligible for typical shear map resolutions.

A.5 Recommendations for Stage-IV surveys

Neglecting to parallel transport individual galaxies to the centre of their parent pixel prior to
averaging to form a shear map results in a multiplicative bias to the value of the shear in each
pixel. At leading order this bias is purely imaginary and is negligible across the map except
in the extremal polar regions. The bias varies with an r.m.s. amplitude of roughly 10~
across most of the sky, but can be much larger than this near the poles. This is comparable
to the upper limit of requirements on the shear multiplicative bias uncertainty. However,
it is approximately uncorrelated between pixels, which leads to multiplicative and additive
biases in both F and B that are within Euclid-like requirements as long as the shear map
has Ngige = 128 resolution. Furthermore, the extremal polar regions occupy an increasingly

negligible fraction of the survey area as the map resolution increases.

If one wants to construct low resolution shear maps, the bias is easy to correct simply
by using the correct parallel transport formulae when forming the shear map, given by
equation (A.3). This is already implemented in correlation function codes that use large
effective pixel areas when correlating shears over large scales, and numerical tips on imple-
menting the expressions can be found in the source code of these software packages. For the
typical map resolutions used in practice, it is acceptable to use the series expansion given
in equation (A.9), truncated at leading or next-to-leading order.

Our recommendation is that surveys should apply the correct phases factors computed
here when using low resolution (Ngge < 64) maps, otherwise the pixel rotation may be
neglected or trivially implemented using the first-order expansion.

B Effect of pixelization on super-pixel shear modes
We can get a rough idea of the impact of pixelization by considering scales much larger than

the pixel scale. In this section we borrow heavily from the formalism of [56], generalizing
it to spin-2 fields.
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Let us first consider what effect the action of pixelizing the shear catalogue has on the
underlying spectrum. We can write the shear map as
L 2iep Wi e~ 2B
E D iep Wi
~ 2em(Eom +1Bem) 3 iep wi e 5 Yo (1)
B Ziep Wy

= Z(Eﬁm + lBﬁm)TI[?ma (Bl)

Im

where Y7 is a pixel-dependent filtered harmonic.

If we consider only modes that are far above the pixel scale, we can approximate the
spin-weighted spherical harmonic as only slowly varying over the pixel scale and Taylor
expand it around the pixel centre at 7. To do this, we have to be careful to account for the
rotation of the basis vectors defining the shear. Recall that §; e~2% is the measured shear
of galaxy 7 parallel transported to the pixel centre. In order to Taylor expand around 7,
we need to express this in terms of the shear that would be measured at the pixel centre,

for which 8 = 0 by definition. The shear tensor at 7; parallel transported to f,, Py, is
given in terms of the shear tensor at 7, by [57]

_ 1
Poy(fp) = Pap(fp) + d°V e Pap(fp) + 5d%zdvcvdpab(ﬁp) +..., (B.2)

where V, is a covariant derivative on the sphere, and d* is the vector on the sphere at 7,
that lies tangent to the geodesic starting at 7, and ending at ;. To get the shear at the
pixel center we need to evaluate this on the helicity basis at 72,,. This gives [57]

4, e~ 2B :’Ay—% (1d8+_1d6) »7+% (1d1d85+1d_1d55+_1d1d65+_1d_1d66)fy+...,
(B.3)
where & and 0 are spin raising and lowering operators respectively, +1d are the spin 41
components of the displacement vector (on the same helicity basis as the shear), and all
terms are evaluated at 7,. Substituting this into the expression for the shear map gives

P L= 5, 70 =) arn
A =A(fy) — 5 (1), 8+ (1), B) 4(y)
1/ —— == —_ = — - — R
+ g <<1d 1d>p56 + <1d_1d>p 00+ <_1d 1d>p 00+ <_1d_1d>p 65) ’y(np) +..., (B4)
where Gp denotes the weighted empirical average over the pixel p, an unbiased estimate of
(-)p- This estimate is for a given realization of the galaxy position field.
Averaging equation (B.4) over unclustered galaxy positions within a pixel gives a non-

zero bias to the pixelized shear. Terms linear in the displacement average to zero by
construction.This gives, neglecting correlations between shear and galaxy weights,

(208, = [1= 3B+ 0= 30) + .. ] Yin(iy)

/(€ 4+ 3)(€ = 2)(€ — 3) oLy Vi) | + ..., (B.5)
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Figure 17. Variation of the pixel moment of inertia with respect to its mean value, for Ngq. = 256.
Note that there is percent-level Monte Carlo noise in this map, uncorrelated between pixels.

where o3(p) is the variance of the displacement within pixel p, i.e. the pixel moment of inertia
divided by the pixel area. The mean across all pixels of the term on the first line in square
brackets in equation (B.5) is the low-¢ expansion of the standard HEALPix window function
for polarization. The quantities 421}, are the spin £2 components of the moment of inertia
tensor, given explicitly by 1o, = e%e%I?, with

2 A
1= [ W)~ gt 7y (5.6)
Note that o%(p) = Tr(I?). Note also that 42, = 0 for pixels having four-fold rotational
symmetry. Deviations from this particular symmetry in the pixels couple with the higher
spin derivatives of the shear field.

Equation (B.5) is an ‘average’ convolution kernel that depends on the shape of the given
pixel. Since o%(p) and 421, are both O(Q), the requirement for the mode to be super-pixel is
that subsequent terms in the expansion (denoted by ellipses) are suppressed, i.e., /v/Q < 1.
In figure 17 we show the variation of 03(p) around its mean value (see [58] for a similar plot).
This variation, which is especially prominent outside of the equatorial region defined by
|cos O] < 2/3, is not accounted for in the standard HEALPix pixel window function. Likewise,
the spin-weighted inertias 421, are not accounted for by the HEALPix pixel window.

In figure 18 we show the two components of the pixel anisotropy 21,, analogous to the @
and U Stokes parameters of polarization. Around the equatorial region the U component
is almost zero, with the ) component strongly suppressed, in line with the fact that the
pixels are close to square in this region and so possess the four-fold rotational symmetry
that gives vanishing 421,. In particular, these pixels are oriented approximately North-South
and East-West, implying zero U polarization.

Equation (B.5) implies that pixelization induces a bias in the shear map due to the
suppression of sub-pixel modes. This can be mostly removed by correcting the multipoles with
the HEALPix window function, or by incorporating the window into the model. Residuals
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Figure 18. Real (top) and imaginary (bottom) parts of the spin-2 moment of inertia o1, for
Ngige = 256, in units of the pixel area squared.

then come from the variation shown in figure 17 over the observed area, the spin-weighted
inertia terms, and higher-order terms not accounted for in the perturbative expansion of
equation (B.5).

B.1 Effect of pixelization on super-pixel shear map correlation functions

We can gain further insight into the effects of pixelization by considering the configuration-
space correlation function of points on the HEALPix grid.

The two-point functions of the weighted displacements can be computed if we assume
that the weights are uncorrelated with the displacements (we will return to this point later
on). These read, for fixed pixel occupancy,

(G laadly) = Sy <w§38> 70 ®7)
— 1 w0
<<:|:1d>p<:|:1d> )= Opp' N, < (21)(;0) > +21p, (B.8)
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where d is the displacement vector on a spin basis aligned with the geodesic connecting p
and p/, and, as in appendix A, N, is the pixel occupancy and Wiy (P) = Djepwi'/Np. The
angle brackets around the shear weight terms here denote averages over the distribution of
the shear weights at fixed pixel occupancy. For the purposes of the present discussion we will
neglect the correlation between the galaxy positions in the numerator of equation (B.1) and
those in the normalizing factor, i.e. in the denominator of equation (B.1). This is equivalent
to assuming no correlation between source position and shear weight. In this case the shear
correlation functions on the grid, averaged over the source displacements, are

A~

&+ (ps P/) ~ é—i— (Mps Tipr; W, Wp’)

1 1 w(2)(p) 2 N2, 2k L% 2 o9k ok N2, 24% 2% A vk Ak
+ Zép,p’ﬁp <w(21)(p) [Ud(p)(%i‘? " +090°9") + 21,0904 + _21, 090" } :

(B.9)

Q

L1 1 [eeP) |03(p) (57 9 + 87 89) + 21,0989 + »1,0793], (B.10)
4 p,p Np w(Ql)(p) p p ’

where éi (Mp, s Wy, Wy ) are shear correlation function estimates using shears filtered with
the window functions in equation (B.5), i.e. the zeroth order term plus ‘1-3’ terms. Further

averaging over galaxy ellipticities gives

A o2 p) [ W2 ()
§tr (pap,) ~ §+(7”Lp, N5 Wp» Wp/) + 5p,p’ 2d]£fp) <w§21;(p) R'y (B'll)

E-(p, 1) ~ &= (fip, Tryy; W, Wiy ) (B.12)
where R, is the variance of the shear gradient, given by
20+1

R, = ?(CE+CE)(£2+€—4). (B.13)
0>2

Thus, in the limit of purely super-pixel shear modes and for Poisson-distributed galaxies,
pixelization induces white noise that depends on the gradient power of the shear field. Note
that this does not affect the £_ correlation function, which vanishes at zero lag when only
super-pixel modes are present.

For a single pixel containing only a single galaxy we have &+ (p,p) = &+ (7, p; 1,1),
i.e. all dependence on the pixel shape disappears. This makes sense intuitively, since in this
case the process of pixelization is just to translate this galaxy to the pixel centre. Since the
underlying field is isotropic the variance is translation invariant, so the final variance estimate
is invariant to this translation. When NV, > 1 the variance estimate accumulates shears from
galaxies that are not co-located, which brings in sensitivity to the shear gradient.

We note that, like shape noise, the additional white noise from pixelization vanishes when
cross-correlating shear maps from two different redshift bins. Unlike shape noise however, it
is present when correlating a shear map with a galaxy number counts map constructed from
the same set of galaxies, due to the non-zero correlation of the galaxy overdensity gradient
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with the intrinsic alignment gradient. The white noise also depends on the cosmological
model, unlike shape or shot noise.

The white noise contributed by the shear gradient has a simple interpretation. Any
binning of galaxies in a pixel will result in a shear value that is slightly rotated with respect
to the ‘truth’ due to the finite number of galaxies and the fact the shear varies below the
pixel scale. This noise is like shape noise, and is suppressed when N, > 1.

The gradient power is formally infinite, although in practice the combined effect of
excluding very close galaxies and strongly lensed galaxies will keep it finite. Even so, we
have lost control of our perturbative expansion (¢v/Q < 1). The small random rotation,
uncorrelated between pixels, should manifest as a roughly white noise power contributing to
E and B. In the case that p # p’ we have shown that the effect of pixelization is to smooth
the shear field by the window function in equation (B.5) and sample at pixel centres.

C Conditional Poisson statistics of pixelized density fields

In section 3, we consider the statistics of shear estimators after averaging over unclustered
source positions at fixed pixel occupancy, and then ultimately over the pixel occupancies
themselves. In section 5 we consider an alternative approach where the source galaxy positions
are held fixed and shears averaged over. In this section, we give some useful results for the
statistics of the density field conditioned on a fixed pixel occupancy.

The expectation value of the weighted density, taken over repeated realizations of
unclustered galaxy positions, is

(@) = & 3 wi = L p), (1)

where w(1)(p) = >2;¢, wi/Np for non-empty pixels, N, is the (unweighted) number of galaxies
in the pixel, p refers to the pixel containing position 72, and 2 is the pixel area. The summation
in equation (C.1) is over galaxies in pixel p. Note that the individual galaxy weights are also
held fixed here. This effectively decouples the shear weights from the source galaxy positions,
which is clearly unrealistic, but simplifies the discussion considerably. In reality, the position
of a galaxy in the focal plane impacts the shear measurement quality, and hence the weight,
due to proximity to bright stars, CCD edge effects, chip defects, foreground contamination,
etc. We will assume that all of these effects have been corrected for in the image processing
or shear measurement, and assume that the weights are essentially random numbers drawn
from a position-independent distribution that are assigned to each galaxy. The approach of
section 6 avoid this assumption by fixing both the source positions and their weights.
Similarly, the second moment of n,, is

N, N, N, N,
1 p q 1 P 1 p
(o ()na () = o D wi 3w +07( = )G > wi = dpyz D w]
1EP JE€q 1EP S
N, N, N N,
= 62 Lwey (p)wey(q) + 67 (A — n’)ﬁpw(z) (p) — 6qu—’2’w(2) (r), (C.2)

where p and ¢ denote the pixels containing 72 and 7' respectively, and w)(p) = X;c, w? /N,
for non-empty pixels. The second two terms in equation (C.2) are the covariance of the
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weighted density field. Note that there is an additional term here compared with the usual

situation in galaxy clustering statistics; this arises due to conditioning on the pixel occupancy.

If there is only a single source galaxy in the sample, then for 7 # A’ and p = ¢ we are

averaging over three events: 1) only point 7 is co-located with the source, 2) only point 7/

is co-located with the source, and 3) neither are co-located with the source. Two of these

events cancel out as they average over the density at one point fixing the other point to be

not co-located with a source, leaving an excess residual probability that one of the pair hits a

source and the other does not. In other words, if there is precisely one galaxy in a pixel, the

average density around that galaxy is lower than average (i.e. guaranteed to be empty space).
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