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Using an algorithmic approach to shape
human decision-making through attraction
to patterns

Haran Shani-Narkiss 1 , Baruch Eitam 2 & Oren Amsalem 3

Evidence suggests that people are attracted to patterns and regularity. We
hypothesized that decision-makers, intending to maximize profit, may be
lured by the existence of regularity, even when it does not confer any addi-
tional value. An algorithm based on this premise outperformed all other
contenders in an international challenge to bias individuals’ preferences. To
create the bias, the algorithm allocates rewards in an evolving, yet easily
trackable, pattern to one option but not the other. This leads decision-makers
to prefer the regular option over the other 2:1, even though this preference
proves to be relatively disadvantageous. The results support the idea that
humans assign value to regularity and more generally, for the utility of quali-
tative approaches to human decision-making. They also suggest that models
of decision making that are based solely on reward learning may be
incomplete.

Humans display the ability to learn and adapt to the statistical prop-
erties of their environment, whether these are purely perceptual1 or
reward related2, and often without an explicit goal to do so3,4. Such
ubiquitous learning of regularitymay reflect the attraction to structure
or predictability. For example, human attention has been shown to be
pulled towards regularity5–7, and movements with predictable sensory
outcomes are reinforced from infancy8 and throughout life9.

These seemingly reinforcing properties of regularity may also
influence thedevelopment of higher-levelmental representations such
as stereotypes, thereby reinforcing an erroneous interpretation of
social structures. Specifically, people were willing to forego payment
to encounter stereotype-confirming information (compared to
stereotype-violating information), which was shown to activate the
brain’s reward-related areas10.

Evidence thus suggests that humans are geared towards con-
sistently searching for—and holding onto—regularities in an ever-
changing environment, whether knowingly or not. However, direct
evidence that regularity is itself desired or reinforcing, is scarce, not to
mention harnessing regularity to actually affect people’s choice-
behavior or preferences.

Nudging refers to efforts to subtly influence individuals into
making subjectively better or socially more desirable decisions.
The concept has receivedmuch scientific and popular attention11,12.
A well-known example is the large effect of the default option (“opt
out” or “opt in”) on the percentage of people willing to donate
organs; it was shown that a 16% to 57% increase in such willingness
could be achieved simply by using “donate” as the default and “opt
out” as the active decision13. Since empirical support seemed to be
initially strong, as were the apparent cost-benefit ratios, both the
UK and US set up specialized teams14 and government offices to
develop these practices. Although both have since been dis-
continued, other international institutions such as the World
Health Organization (WHO) continue to advocate for the use of
such interventions15.

Unfortunately, recent evidence suggests that the impact of these
interventions has been overestimated16–18, and several influential
results have been reported to be false19–22. A recently published meta-
analysis suggests that when publication bias is accounted for, the
average effect of nudges is negligible (Cohen’s d = 0.04 with a 95%
credible interval of 0.00–0.1417). Understandably, these findings
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prompted a reckoning23, along with doubts as to the soundness of
nudging altogether24.

Nevertheless, a premature shift towards disbelief in the efficacy or
feasibility of nudging could prove even costlier than the blanket
endorsement of such interventions. This is likely to be especially
problematic since the use of nudgesmay also be deleterious (negative
nudges are also referred to as “sludges” or dark patterns)25,26.

Whether one’s ultimate goal is to deploy effective pro-social
interventions, to mitigate the harm done by interventions that effec-
tively undermine social interests, or to test whether and how various
non-tangible reinforcers influence decision making—the impact of
potential interventions might be best measured in well controlled
environments.

We estimated the degree to which humans value regularity in and
of itself within the framework of the Choice Engineering Competition
announced in Nature Communications (CEC27). Briefly, researchers
submitted algorithms for allocating a finite number (50) of constant-
size, monetary (1¢) rewards to two possible choice options. The goal of
the competition was to covertly influence human participants towards
making a particular choice (the bias-towards, or target-side, hereafter
referred to as Bias+) and away from another (the bias-away, or non-
target-side, hereafter referred to as Bias−).

The CEC imposed an important constraint, rewards were to be
evenly divided between the two options. This made it an excellent
testing ground for the influence of potential psychological attractors
on repeated decision making, above and beyond that of objective and
tangible outcomes.

To test the algorithms’ ability to bias participants’ choices, the
competition organizers recruited 3521 humanparticipants via Amazon
Mechanical Turk, eachofwhomwas pairedwith a single algorithm (see
Supplementary Data 1 for the number of participants allocated to each
algorithm, and the numerical description of all results and statistics).
During the CEC, participants were repeatedly presented with two
possible choices, for a total of 100 decisions. All performed the same
task; their goal was to collect as many rewards as possible; after each
choice they were informed whether they had obtained a reward (see
Fig. 1a–c for a depiction of the task). Unbeknownst to them, 25 rewards
were evenly allocated to both the Bias+ and Bias− sides (50 in total).

In any given session, a single designated algorithm determined
the reward schedule; i.e., when and where would rewards appear
throughout the session. This was done in either a deterministic man-
ner, via the competition’s “Static track”, or dynamically in response to
the participant’s ongoing choices, via the “Dynamic track”. In com-
pliancewith theCEC rules, we submitted 2 schedules to the static track
(SS2 and SS4) and two algorithms to the dynamic track (DS1 and DS2).
Note that the term “schedule” is used to describe the algorithms’
output.

The two submissions to the CEC’s dynamic track were slightly
different variations of an algorithm designed to harness people’s
apparent tendency to value regularity for biasing their choices. More
specifically, the algorithms’ design was based on the following pre-
mises: (1) exploring andmaintaining regularity is positively reinforcing
(“rewarding”), (2) the disruption of regularity is punishing, and (3)
because humans tend to test their hypotheses through confirmation28,
the expected feedback serves as an incentive. Thus, we dubbed the
algorithm RaCaS (Regularity as Carrot and Stick, see Fig. 1b for an
illustration of RaCaS’ core ideas and Fig. 1c, d for examples).

RaCaS implemented the above premises in the following manner
(see “Methods” for a more formal description of the algorithm). First,
rewardswere transiently allocated, in a repeating sequence, only to the
Bias+ option.With successive choices of the Bias+ option, rewards were
allocated to that option in predictable and incrementally increasing
intervals (see Fig. 1d; green-shaded trials). This regularity continued to
unfold as long as the participant continued to choose the Bias+ option
(premise 1, above), but if the participant explored the alternative

(Bias−) option, regularity broke down and reappeared only after the
participant re-committed to the Bias+ option (premise 2; see Fig. 1c;
yellow shading). Multiple rewards that were necessarily allocated to
the Bias− option to comply with the CEC rules, were allocated exactly
when persevering with the Bias+ option was assumed to confirm the
participants’ hypotheses about the existence and nature of unfolding
regularity (premise 3). Any residual rewards allocated to the Bias−

option were delayed until the final trials of the experiment (see Fig. 1c;
orange shading). The implementation differed slightly across partici-
pants since it was dictated by the specific history of choices and
rewards, as well as the current trial within a session (for the complete
description of the algorithm, including all edge cases, see the publicly
available online29).

Results
An effective nudge
We submitted two versions of the RaCaS algorithm to the CEC’s
Dynamic track. Bothwere based on the principles discussed above and
were implemented in an almost identical manner (for the designed
difference between them see Supplementary Fig. 5). In fact, the two
versions of RaCaS replicated each other’s results (see Fig. 2a and
Supplementary Fig. 1), including the bias they induced (this and all
following tests are two-tailed; mean Bias+ of 70.4% vs. 69.2%;
t(260) = 0.563, p =0.573, two samples t-test; 95% CI: −3%–5%). To
quantify support for the null hypothesis, we conducted a Bayesian two
samples t-test. This analysis produced a Bayes Factor (BF01) of 6.35
which is conventionally considered as moderate evidence for the lack
of a difference between both versions of RaCaS.

Both versions performed better than all other algorithms sub-
mitted to the CEC, regardless of whether they used participants’ pre-
vious choices to bias behavior or not (i.e., dynamic and static
schedules, “DS” or “SS” respectively, see Fig. 2a. DS01 vs. SS01
t(730) = 4.758, p <0.001, 95% CI: 3%–8%, t-test, and DS02 vs.
SSO1 t(730) = 3.749, p < 0.001, 95% CI: 2%–7%, two samples t-test). We
henceforth refer to the data pooled across the DS1 andDS2 algorithms
as RaCaS.

Averaging 69.8% for the Bias+ option, RaCaS strongly influenced
participants’ choices, making them choose the Bias+ option twice as
frequently as the Bias− option on average, across all participants and
trials (see Fig. 2). These results reflect a large standardized effect size
(Cohen’s d = 1.16).

Uneven gains as a self-reinforcing negative feedback loop
Computational models of decision-making characteristically
estimate the value of an option as a function of its reward history.
To quantify the difference in rewards received in the Bias+ vs. the
Bias− option, we used a normalized-per-participant measure

Δrewardsðnorm:Þ= bias+ rewards �bias�rewards

bias+
rewards + bias�rewards

. By dividing the reward differ-

ence between sides by the sum of rewards on both sides, this
quantity ranges from 1 (all rewards received on the Bias+ side) to −1
(all rewards received on the Bias− side), with 0 for equality. The
measure reflects the relative difference, as experienced by the
participant (using other measures such as the raw deltas yielded
similar results to those reported below, see Supplementary Data 1).

As RaCaS induced a preference for the Bias+ side, finding that the
distribution of the rewards participants uncovered was unbalanced in
favor of that side was trivial, since it follows that more rewards would
be earned in the option that was selected more frequently. We indeed
found that for RaCaS the average Δrewardsðnorm:Þ measure (0.49) was
significantly higher than chance (Fig. 3a, b and Supplementary Data 1,
t(261) = 14.36, p <0.001, 95% CI: 0.022–0.070, one sample t-test) and,
echoing choice-bias, was the highest of all algorithms. This patternwas
also consistent across participants, and stable throughout trials
(Fig. 3c, d).
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Less trivially, the pull of regularity seemed to also instigate a self-
reinforcing negative feedback loop that further diminished the selec-
tion of the Bias− option. The participants’ tendency to progressively
under-sample the Bias− option enabled the algorithm to “hide”manyof
the rewards that were (obligatorily) allocated to the Bias− side (Sup-
plementary Fig. 2) such that even when participants sampled that side,
they often failed to find a reward. This, in turn, further accentuated the
imbalance in rewards earned between the Bias+ and the Bias− options.

Quantitatively, this latter imbalance can be captured by
accounting for the rewards earned when selecting an option divided
by the number of times that option was chosen, or participants’

observed expectancy (#Rewards wonðoptionÞ#choicesðoptionÞ ). From the participants’ per-
spective, the Bias− option (which had an identical objective expectancy
of winning rewards) was empirically “proven” to be less beneficial on
average (see Supplementary Data 1 for the comparison to chance level
and SupplementaryNotes, the principle of “Learnedhelplessness”). On
average, this held throughout the session (Fig. 3e; see also the average
across trials, Supplementary Fig. 3).

Hence, this “vicious circle” promoted a false estimate of reality
established by incomplete evidence, that effectively nullified the equal
conditions between the options. This underestimation of the expected
value of Bias− likely further increased the bias away from that option.
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The cost of sticking to regularity
Unpacking the standardized Δrewardsðnorm:Þ measure we find that the
unbalanced distribution of reward discovery that characterized RaCaS
was caused by both the high discovery rate of rewards on the Bias+

side, and the low rate of rewards discovered on the Bias− side (see
Supplementary Fig. 2). In other words, the decision-makers preference
for regularity led them to stick with the Bias+ option and hence to
discover fewer rewards allocated to the Bias− option.

This raises the question of whether biased participants and spe-
cifically, RaCaS assigned participants, earned fewer rewards in total
(Fig. 4a–c). As a general trend, we find that “open-minded”participants
—those whose choice was the least biased to either side—earned more
on average (see Fig. 4a, left; the red rectangle bounds themiddle band
of participants with a bias of 0.4–0.6 vs. the others). The more biased
they were to either side, the lower the participants’ gains (Fig. 4a, right
and left, Spearman’s r(260) = −0.346, p <0.001).

Notably, although RaCaS outperformed all the other competitors
in terms of the bias it induced it was one of the lower-ranked algo-
rithms in terms of the payoff won by the participants,who averaged no
more than chance level winnings (see Supplementary Data 1 and
Fig. 4a–c, t(261) = 1.689, p =0.09, 95% CI: 24.93–25.82, one-sample t-
test). To quantify support for the null hypothesis, we conducted a
Bayesian one sample t-test. This analysis produced a Bayes factor
(BF01) of 3.55, which is conventionally considered as an anecdotal to
moderate evidence for the lackof a differencebetween earnings under
RaCas and chance level earnings. RaCaS led unsuspecting individuals
to forego payoffs for maintaining a specious regularity as shown in
participants’ consistently low ratio of discovered rewards allocated to
the Bias− side (“Exploitation”, defined as #Rewards wonðoptionÞ

#Rewards allocatedðoptionÞ, Fig. 4d).
Since the rewards allocated to the biased− side were often abun-

dant during the final trials, participants who were not strongly
attached to regularity, and thus more willing to explore at that later
stage, were able to change their policy on these trials and discover
these late rewards (for example, see Fig. 1c, d: note the last batch of
trials of the three participants ranked in decreasing order according to
their bias from top tobottom). This tendency to explore lessdue to the
attraction of regularity was also reflected in the shorter Response
Times (RT) of RaCaS participants when choosing the Bias+ option as
compared towhen choosing theBias−option. This difference in RTwas
correlated with the bias (Supplementary Fig. 4, Spearman’s
r(259) = −0.38, p <0.001. Note that response time was missing for one
participant).

Discussion
The bias generated by RaCaS is evidence that the mere existence of
structure (in this case—structured sequences of rewards in the Bias+

side) attracts decision makers, even as they attempt to maximize
their gains. Nevertheless, the question of what exactly in the

regularity led participants to prefer the Bias+ option needs to be
further explored.

Structure allows for predictability. Thus, the increase in predict-
ability may have led the participants to prefer the structured option.
Predictability figures in multiple psychological and neuroscientific
frameworks, often as an intrinsically desired or reinforcing state. For
example, the motivation for perceiving the world as orderly may drive
the belief that the world is just, thus shaping the blame and praise of
others30; and in the social psychological framework of System Justifi-
cation, the predictability of a social system (e.g., political) is one of the
reasons individuals are most motivated to maintain it31. Moreover,
prediction itself has been put forward as a key driver of neural com-
putation (“predictive coding”32,33).

Other psychological theories have suggested that predictions
may reinforce more locally and may be related to the concept of
“agency”. For example, we (e.g., refs. 34,35) previously demonstrated
that (effective) movement is reinforced when it leads to accurate
sensorimotor predictions (i.e., predictions about the sensations that
will follow fromthe executionof amovement). This case canbe seen as
a refinement of the more general concept of control, where having a
choice and influencing one’s environment are considered desirable36,37

whereas their loss is considered aversive38.
Overall, it is difficult to determinewhether regularity attracted the

participants by increasing their feeling ofpredictability, their control39,
or alternatively, that correct predictions directly reinforced behavior.
Furthermore,multiple other factorshavebeenproposed40 to influence
decisionmaking in similar tasks. A limitation of the current study is the
inability to disambiguate between these different psychological
mechanisms (e.g., predictability, control, direct reinforcement), which
could lead to different theoretical interpretations. For example, risk or
ambiguity aversion were possibly mitigated by the structured envir-
onment associated with the Bias+ option and could also account for
RaCaS’ success.

The current study did not directly manipulate or assess a number
of alternative motivational factors stated above, such as risk aversion
or an experience of agency. The absence of targeted manipulations
means that the influence (if any) of these factors remains speculative,
and future research should design experiments that will systematically
isolate and assess the relative contribution of these different factors.
Additionally, future research where, for example, participants are
explicitly asked about the amount of control they felt during the task,
or their confidence in when rewards will be received, as well as their
ability to explicitly reproduce the observed pattern, while using algo-
rithms that systematically differ in the degree of regularity of the
rewards allocated, could help tease these possibilities apart.

As mentioned above, recent reviews of the efficacy of nudges
suggest that, to date, little is known about how or if people’s choices
can be substantially affected by subtle or concealed interventions.

Fig. 1 | The Choice Engineering Competition. The participant’s screen, the algo-
rithm’s behavior, and three participants’ data. a Participants made 100 choices
between two options (here: the black and white “sides”). Unbeknownst to them, a
single algorithm determined when and on which side rewards would be allocated.
b A schematic of the RaCaS algorithm: choosing Bias+ option leads to a structured
sequence of rewards, with increasing intervals (1≤ interval≤4) between rewards.
Choosing the Bias− option initially led to no reward and also punished the parti-
cipants by suspending the regularity associated with Bias+. Symbols contributors:
hadkhanong (Carrot), Africa Studio (Stick), meen_na (Red button), Francesco
Milanese (Treasure box)—stock.adobe.com. c All choices made by a participant
strongly biased towards the Bias+ option (participant #9; participant number
reflects their ranking as a function of strength of bias). Choice is indicated by the
color of the central strip (black for Bias+ and white for Bias−) and the arrow
pointing up towards Bias+ or down towards Bias−. Rewards allocated by RaCaS are
represented by the gray bar; a colored tilde indicates when the participant

collected the reward (blank when missed). Note the developing regularity in
rewards allocated to Bias+ as long as the participant showed commitment to the
option (i.e., when the middle line is black for multiple consecutive trials). Intervals
between rewards increase every few iterations, further luring participants to
uncover (and thenconfirm) the newpattern. The actual allocation dependedon the
participant’s behavior and the number of remaining trials and rewards. d Choices
by two other participants with medium (participant #104) and weak biases (parti-
cipant #207); the different events generated by the algorithm are highlighted.
Green shading: the initial period, in which (structured) rewards are often allocated
to Bias+, and not at all to the Bias− side, to encourage the participant to further
explore Bias+. Yellow shading: the pattern begins to unfold and exploration of the
Bias− option terminates the pattern. The pattern only begins anew when recom-
mitment is detected. Orange shading: the Bias− rewards are largely hidden, since
they are only allocated when the participant is highly committed to the Bias+ side
until the residual rewards must be allocated throughout the remaining trials.
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Fig. 2 | The bias-generating performance of the RaCaS algorithm. a Boxplots
depicting the performance of all the algorithms submitted to the CEC, ordered by
magnitude of bias they created. RaCaS is depicted in yellow. Dots indicate indi-
vidual participants. DS dynamic schedule, SS static schedule. b Two overlaid
histograms depicting the proportion of participants showing the magnitude of
bias, with 1 denotingmaximal bias. RaCaS’ performance is shown in yellow and all
other competing algorithms appear in gray. The brown dashed line depicts
indifference between options. c A raster plot depicting all the RaCaS participants’
choices across all 100 trials (the full dataset, ordered by the strength of bias such
that the more bias exhibited by a participant, the higher the row depicting their

data). A small black bar depicts a single choice of Bias+ and a small white bar, a
single choice of Bias−. Small yellow triangles point to the rankings of the three
participants depicted in Fig. 1c, d. d The dynamics of the average of Bias+ pro-
duced by RaCaS (solid line) and all other competing algorithms (dashed line)
across all 100 trials. The RaCaS average bias increased throughout most of the
experiment, and always remained well above chance level. The rolling average
was calculated with a temporal window of size 10. Bands indicate SEM. Box
bounds show interquartile range (IQR), line represent the median, and whiskers
extend to points that lie within 1.5 IQRs.
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Nevertheless various actors have much to gain from devising such
interventions26,41, andmay in fact take advantage of the belief that they
are ineffective and hence harmless26. The truth is that we do not know,
yet given the scant data on potentially harmful nudges, malevolent
actors may appear to meet the most stringent of regulations and still
intentionally and adversely influence unsuspecting digital consumers
or seekers of information. At the very least, the current demonstration

should make it clear to regulators that subtle changes in the decision
environment can have a real and negative impact on individual and
societal interests.

By capitalizing on humans’ preference for regularity, RaCaS
biased participants’ choices even as theywere attempting tomaximize
their profit. This is crucial, especially when considered in light of cur-
rent estimates regarding the (in)efficacy of nudging, at least in real
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world contexts. A limitation of the current study is that the controlled
laboratory conditions may not fully reflect the complexity of real-
world decision environments, potentially limiting the generalizability
of the findings. On the other hand, while RaCaS’ efficacy may decrease
when deployed in such contexts, the fact that several of RaCaS’ design
decisionswere admittingly arbitrary, leaves room for optimization and
suggests that the current estimate of the bias created by RaCaS can be
taken as a lower bound of its biasing potential. For example, other
regularities could attract individuals even more, and using a more
efficient reward allocation policy could minimize the number of cases
in which the Bias+ rewards are left to the very last trials, better har-
nessing their potential influence.

Overall, the findings described here are somewhat inconsistent
with the growing consensus in psychology and neuroscience that a
rather limited set of formalized reinforcement learningmodels are key
for predicting and explaining human choice behavior27,42,43. More
specifically, some results presented here, such as the seeming dom-
ination of the existence of structure over expected value, cannot be
currently accommodated by such models (for other results that seem
to be inconsistent with the predictions of RL models see Supplemen-
tary Materials).

The algorithm described above was an intuitive attempt to utilize
a qualitative understanding of a human tendency; i.e., the attraction to
regularity. Since it outperformed all other competing algorithms in the
CEC, RaCaScontributes to illustrating thatqualitative principles canbe
algorithmized to influence behavior. More generally, the current
results are a reminder that despite the power of formal descriptions,
we are still a far cry from a thorough understanding of what pushes,
pulls, or attracts individuals. As such, one should not stop exploring
various psychological influences on decision-making regardless of
their amenability to formalization44 or fit with currently dominant
models45.

From a decision-science perspective, these results are in line with
recent suggestions46 that for the field to advance substantially, more
data are required. These should preferably come from experimental
designs that include interventions harnessing multiple human ten-
dencies in a principled manner while varying their combination27,47,48.
Measuring their relative effectiveness in similar and tightly regulated
environments can serve to empirically determine the impact of such
tendencies on human behavior, as well as their sensitivity to context
and malleability. This in turn could contribute to advances in the
development and testing of increasingly sophisticated and accurate
models of human decision-making and behavior.

In summary, both scientific interests and societal reasons con-
verge to call for exploratory research using highly-controlled envir-
onments such as the well-defined CEC task, with potential adaptations
to real-world scenarios (for example,malevolent or benevolent nudges
designed to influence people’s outcomes or information consump-
tion). This effort will allow for the discovery, characterization, and

quantification of currently unknown or currently unquantified factors
the drive human preference and behavior.

Methods
Data collection
The data for this study were collected by the organizers of the Choice
Engineering Competition (CEC). The methods for collecting the data
are published in three key sources, listed chronologically: the com-
petition announcement27, the competition website49 and a 2023 pre-
print describing the competition’s static track50. Here, we provide a
stand-alone description of the methods that are relevant to the
current study.

Ethical compliance statement
The study was approved by the Hebrew University Committee for the
Use of Human participants in Research, as per the procedures estab-
lished by the CEC organizers. All participants provided informed
consent prior to their involvement in the study. We did not collect any
further data beyond what was specified by the CEC organizers, and
thus did not seek additional ethical approval. The study complied with
all ethical regulations for research involving human participants.

Participant recruitment and compensation
Participants were recruited through the online labor platformAmazon
Mechanical Turk. A total of 3259participants took part in the study. No
demographic information, such as age, sex, or gender, was collected
fromparticipants, and as such, sex andgender considerationswere not
included in the studydesign. Participants received afixedparticipation
fee of $0.40, in addition to a bonus of 1¢ for each reward they obtained
throughout the experiment. Informed consent was obtained from all
participants, ensuring their understanding of the experimental pro-
cedures and compensation. For the purpose of the current research,
the data from all participants that appeared in the original dataset
published by the CEC organizers were analyzed. Exclusion of partici-
pants with extreme response behaviors (i.e., with more than 95% of
choices towards either side) does not significantly affect the primary
outcomes we reported.

Experimental procedure
Following their recruitment on Amazon Mechanical Turk, participants
were randomly assigned to different experimental conditions (i.e.,
reward schedules). Participants then completed a repeated two-
alternative forced-choice task, with the objective of accumulating as
many rewards as possible. Each participant made 100 decisions,
choosing between two available options, and received immediate
feedback regarding whether they had obtained a reward on each trial.
Themethod of Successive Rejects was employed to allocate additional
participants to the better-performing reward schedules, ensuring
sufficient sample sizes for each tested schedule.

Fig. 3 | Reward allocation, its relative discovery, and theparticipants’ empirical
expectation in the context of RaCaS. a Box plots showing the Δrewardsðnorm:Þ
rewardsmeasure. DSdynamic schedule, SS static schedule. A scoreof +1means that
all the rewards discovered were from those allocated to the Bias+ option while a
score of −1 means that all the rewards discovered were from those allocated to the
Bias− option (see main text for full details) of all competing algorithms, ranked by
strength of Bias+ (i.e., bias in choice of option). RaCaS is depicted in yellow and all
other algorithms are depicted in gray. The dashed brown line depicts no bias in
received rewards. b Two overlaid histograms showing the distribution of the
standardized delta rewards measure. The RaCaS results are depicted in yellow and
the average performance of all other competitors is depicted in gray. The dashed
vertical brown line depicts no bias in received rewards. c Raster plot depicting
discovery of the rewards allocated to the Bias+ (red) and bias− option (blue) for all
RaCaS participants, across all 100 trials. Participants are ranked by magnitude of

bias, with the strongest at the top. DS dynamic schedule, SS static schedule. d The
dynamics of the average standardized delta rewards (Δrewardsðnorm:Þ) measure
produced by RaCaS (solid purple) vs. all other competing algorithms (dashed
purple) across all 100 trials. For ease of comparison, the strength the Bias+ gen-
erated by RaCaS and all other algorithms is again depicted. The rolling average was
calculated with a temporal window of size 10. Bands indicate SEM. e The dynamics
of the observed expectancy (#Rewards won#choices ) for option Bias+ (red), Bias− (blue), and
total (purple) under RaCaS (full line) and the average of other algorithms (dashed
line). Evidence accumulates progressively throughout all 100 trials. The dashed
brown line indicates expectancy under random choice. To ease comparison, Bias+
is presented in gray for both RaCaS (full line) and as the average of all other
algorithms (dashed line). Error bands reflect SEM. Box bounds show interquartile
range (IQR), line represent themedian, andwhiskers extend to points that liewithin
1.5 IQRs.
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Choice Engineering Competition setup
The CEC aimed to assess how different reward schedules could influ-
ence participants’ choices in a repeated decision-making task.
Researchers submitted reward allocation algorithms to bias

participants’ preferences towards a designated target option. The
competition included a Static and a Dynamic track: in the Static track,
rewards were allocated based on a predetermined sequence, whereas
in the Dynamic track, reward allocation adjusted in response to
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Fig. 4 | Cost of bias for participants in the context of RaCaS and all other
competing algorithms. DS dynamic schedule, SS static schedule a Left: overlaid
scatter plots depicting total number of obtained rewards (Y-axis) over the strength of
Bias+ (X-axis). Participants under RaCaS are depicted in yellow and those under all
other competing algorithms are depicted in gray. both scatters show that the parti-
cipants that are the least biased towards either option earn more (comparison of the
points within the red rectangle to all other data points (RaCaS; 28 vs. 24.6 rewards,
t(255) =6.74, p<0.001, 95% CI: 2.37–4.331. Others; 30.6 vs. 28.6, t(3257) = 7.99,
p<0.001, 95% CI: 1.48–2.44. one-sample t-tests). Right: the X-axis reflects absolute
(unsigned) bias—the amount of deviation from indifference. The regression line for
RaCaS (r(260) =−0.346, p<0.001, Spearman correlation) is overlaid on the individual
observations; RaCaS participants are depicted in yellow. b Two overlaid histograms
showing the distribution of the sum of rewards obtained by participants allocated to

RaCaS (yellow) and all other algorithms (gray). The dashed vertical brown line depicts
the expected sum of rewards given random choice. c Box plots depicting the sum of
rewards obtained by participants under RaCaS (yellow) and under all other algorithms
(gray). Dots represent individual participants. Algorithms are rankedby themagnitude
of Bias+ they produced. The dashed brown line depicts the expected number of
rewards under purely random choice. d The dynamics of the proportion of rewards
obtained (“exploited”) from those allocated to option Bias+ (red) and Bias− (blue)
under RaCaS (solid line) and the pool of all other algorithms (dashed line), across all
100 trials. To ease comparison, Bias+ is again presented in gray for both RaCaS (solid
line) and as the average of all other algorithms (dashed line). The rolling average was
calculated with a temporal window of size 10. Error bands reflect SEM. Box bounds
show interquartile range (IQR), line represent the median, and whiskers extend to
points that lie within 1.5 IQRs.
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participants’ ongoing decisions. Rewards were equally distributed
between the two options (referred to as Bias+ and Bias−), with 25
rewards assigned to each side. The goal was to covertly influence
participants to prefer the Bias+ side by manipulating the timing and
distribution of rewards.

The RaCaS algorithm
RaCaS (Regularity as Carrot and Stick) was designed to harness parti-
cipants’ preference for predictable and regular sequences to influence
their decision-making. Unlike static schedules, which did not adapt
based on participants’ actions, RaCaS dynamically adjusted the reward
sequence based on participants’ choices, thus maintaining engage-
ment and enhancing its influence on behavior.

RaCaS implemented a phased reward allocation mechanism that
evolved over six distinct stages during the 100 trials. During the initial
phase (Stage 0), rewards were assigned to the Bias+ option in an
alternating OFF-ON pattern contingent on the participant making a
non-rewarded click first, and then being rewarded on the next click.
This pattern aimed to build commitment to the Bias+ side early on by
establishing predictability. In subsequent stages, the number of con-
secutive clicks required to receive a reward increased, thus maintain-
ing a balance between engagement and challenge. The six stages of
RaCaS were defined as follows:

• Stage 0 (Trials 1–11): every second click on Bias+ resulted in a
reward (X = 1).

• Stage 1 (Trials 12–25): every third click on Bias+ was rewar-
ded (X = 2).

• Stage 2 (Trials 26–40): every fourth click on Bias+ was rewar-
ded (X = 3).

• Stage 3 (Trials 41–60): every fifth click on Bias+ was rewar-
ded (X = 4).

• Stage 4 (Trials 61–80): every fourth click on Bias+ was rewarded
again (X = 3).

• Stage 5 (Trials 81–100): every third click on Bias+ was rewar-
ded (X = 2).

If participants veered away from the Bias+ option by choosing
Bias−, the evolving reward sequence for Bias+ would halt, effectively
breaking thepatternand introducinguncertainty. Thismechanismwas
designed to discourage exploration of the Bias− option through
(epistemic) punishment and to emphasize the (epistemic) negative
reinforcement gained through consistent adherence to Bias+. To fur-
ther bolster commitment to Bias+, RaCaS included a reset feature,
whereby ten consecutive non-rewarded clicks led to a simplified ver-
sion of the reward schedule, making rewards easier to obtain and re-
engage participants.

Rewards allocated to the Bias− side followed a strict criterion of
being distributed only after certain conditions were met. For example,
rewards on Bias− would only be granted simultaneously with a Bias+
reward or at the end of the experiment, further reinforcing the per-
ception that the Bias+ side was the more rewarding option.

Data processing and analysis
Data processing for this study was conducted without reliance on
third-party tools. All data preprocessing and analysis were performed
using Python, with a focus on the Pandas51, Matplotlib52, Seaborn53,
library for data handling andmanipulation. Statistical analysis included
calculating metrics of choice bias and reward distribution. The Baye-
sian analyses were performed using JASP.

Statistical analysis
Statistical analyses were conducted to determine whether participants
deviated significantly from the null hypothesis (H0), which posited
that in the absence of an effective algorithm, the proportions of
choices for Bias+ and Bias− should be approximately equal, with each

option chosen about 50% of the time. Similarly, under the null
hypothesis, reward distribution was expected to be balanced, with
each participant receiving a total of 25 rewards across the 100 trials,
distributed equally between the two sides.

To evaluate the biasing effect of RaCaS, metrics such as mean
choice bias towards Bias+ and total rewards received were calculated.
The effectiveness of RaCaS (and all other competing algorithms) was
assessed bymeasuring deviation fromH0, with statistical tests such as
t-tests employed to compare observed outcomes against the expected
balanced outcomes. Effect sizes were calculated to quantify the mag-
nitude of any detected biases, and normalized metrics (e.g.,
Δrewardsðnorm:Þ) were used to compare relative differences in rewards
obtained between the two options (please refer to Supplemen-
tary Data 1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This manuscript is based on data made available by the organizers of
the Choice Engineering Competition. The CEC dataset is publicly
available49.

Code availability
Our Python code is publicly available29 and includes the original code
used for running the RaCaS algorithm.
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