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 A B S T R A C T

This paper analyzes critically some multifluid turbulent models for liquid–particle mixtures derived from 
Eulerian–Eulerian laminar models. As benchmark, we use the model of Fox (2014), derived by rigorously 
Reynolds-averaging the Eulerian–Eulerian transport equations. The results of this model are compared to those 
of other models commonly used in the literature, where turbulence terms are added to the multifluid transport 
equations without theoretical justification. In spite of this, such models often yield good results. When in these 
models the mean variables are replaced with the Reynolds-averaged variables of the model by Fox (2014), the 
latter is not recovered, because it features various additional terms. Moreover, for some of the undetermined 
terms present in both models, the closures differ. Our simulations for turbulent multifluid flows in agitated 
vessels indicate that closures for the turbulent drift velocity impact the results negligibly, whereas those for 
turbulent interaction terms and drag coefficients do affect the results. With appropriate closures, the simulation 
results produced by the Fox (2014) model align well with experimental data, confirming the applicability of 
the model for the application considered. While some of the additional terms present in the Fox (2014) model 
have minimal impact on the results, the source term for the granular internal energy is appreciable, even if 
it is not sufficiently large to alter the overall simulation accuracy. These findings may explain why the other 
models, which do not account for various terms arising from the rigorous Reynolds-averaging procedure, do 
produce reasonably accurate results.
1. Introduction

Agitated vessels are extensively used to mix liquid–particle sus-
pensions in numerous industrial applications, including crystallization, 
dissolution and catalytic processes. The performance of these applica-
tions depends on how well the particles are suspended and mixed in 
the liquid, and hence is dictated by the fluid dynamics inside the vessel. 
Therefore, it is crucial that this be predicted accurately.

To predict the fluid dynamics of liquid–particle mixtures, compu-
tational fluid dynamics (CFD) methods play a crucial role. Among 
these methods, the Eulerian–Lagrangian (also called direct numerical 
simulation) method is the most detailed and fundamental (Pan et al., 
2002; Sardina et al., 2012; Oke et al., 2015; Feng et al., 2016; Gualtieri 
et al., 2017; Battista et al., 2018). This method computes velocity and 
pressure fields at every point occupied by the fluid by solving the 
usual continuity and Navier–Stokes equations, and tracks the motion 
(translation and rotation) of each particle by solving Newton’s second 
law for rigid bodies. Even if it yields the most fundamental details, such 
as the pressure and velocity gradients over the surfaces of the particles, 
this approach is computationally demanding and unviable for systems 
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with large particle numbers. Moreover, the information generated, such 
as the position and velocity of each particle, must be filtered to get 
information of interest for industrial applications, such as the solid 
volume fraction and mean velocity fields. To reduce the computational 
cost, researchers often use a hybrid modeling approach called discrete 
element (or unresolved Eulerian–Lagrangian) method. Here, the con-
tinuity and Navier–Stokes equations for the fluid are averaged, while 
the motions of the particles are still solved by employing Newton’s 
second law for rigid bodies. Although significantly less demanding than 
the Eulerian–Lagrangian alternative, this method is also unviable for 
systems with large particle numbers and, for the solid phase, does not 
directly yield the desired observables (Lettieri and Mazzei, 2009; Deen 
et al., 2014).

To reduce the computational demand further and directly obtain 
the information of interest, many studies adopt the Eulerian–Eulerian 
method (Drew, 1983; Ahmadi and Ma, 1990; Jackson, 1997; Jamshidi 
et al., 2019, 2021). Here, both phases are regarded as interpenetrating 
continua occupying the entire physical space, their dynamics described 
via averaged equations of change expressed in terms of mean proper-
ties. This averaging process generates many undetermined terms, such 
https://doi.org/10.1016/j.cherd.2025.05.023
Received 15 January 2025; Received in revised form 9 May 2025; Accepted 11 Ma
vailable online 29 May 2025 
263-8762/© 2025 The Authors. Published by Elsevier Ltd on behalf of Institution 
 http://creativecommons.org/licenses/by/4.0/ ). 
y 2025

of Chemical Engineers. This is an open access article under the CC BY license 

https://www.elsevier.com/locate/cherd
https://www.elsevier.com/locate/cherd
https://orcid.org/0009-0000-7719-3785
https://orcid.org/0000-0002-1012-0239
mailto:l.mazzei@ucl.ac.uk
https://doi.org/10.1016/j.cherd.2025.05.023
https://doi.org/10.1016/j.cherd.2025.05.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2025.05.023&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Z. Wang and L. Mazzei Chemical Engineering Research and Design 219 (2025) 52–66 
as the phasic effective stress tensors and the fluid–particle interaction 
force (Jackson, 1997; Mazzei, 2008). To model them, different closures 
have been proposed, and these must be appropriately selected to ensure 
reliable predictions. In systems with nearly neutrally buoyant particles, 
if the Stokes number (the ratio of the particle relaxation time to the 
characteristic time scale of the flow) is much smaller than unity, the 
mean velocity fields of the solid and liquid phases rapidly relax to 
local equilibrium, and their relative velocity approaches zero. In such 
cases, the Eulerian–Eulerian approach can be simplified to the mixture 
approach, where the suspension is treated as one effective fluid. For 
details, see  Jackson (1997, 2000) and Jamshidi et al. (2019).

In applications involving the mixing of liquid–particle suspensions 
in agitated vessels, both the mixture and Eulerian–Eulerian models are 
commonly adopted (Altway et al., 2001; Ljungqvist and Rasmuson, 
2001; Oshinowo and Bakker, 2002; Kasat et al., 2008; Ochieng and 
Onyango, 2008; Shan et al., 2008; Jiang and Zhang, 2012; Wadnerkar 
et al., 2012; Calvo et al., 2013; Liu and Barigou, 2014; Tamburini 
et al., 2014; Wadnerkar et al., 2016; Wang et al., 2017; Delafosse 
et al., 2018; Maluta et al., 2019; Shi and Rzehak, 2020). At large solid 
volume fractions, when particle collisions significantly affect the solid 
effective stress tensor and in turn the fluid dynamics in the vessel, a 
balance equation for the granular internal energy must be included in 
the set of transport equations. In commercial CFD codes, this makes im-
plementing the mixture model complex, so that the Eulerian–Eulerian 
model is usually more convenient. In this work, the system of interest 
makes the mixture model inapplicable (the particles are not nearly 
neutrally buoyant and the Stokes number is not much smaller than 
unity); consequently, we adopt the Eulerian–Eulerian model.

In agitated vessels, the impeller rotation often generates large mean 
velocities in both phases, leading to high Reynolds numbers (based 
on the impeller size as characteristic length). Thus, the average fluid 
dynamic variables are turbulent. In each phase, turbulence is char-
acterized by rapid fluctuations (in time and space) of the mean (or, 
equivalently, Eulerian) variables, such as the volume fractions and 
mean velocities (Dasgupta et al., 1994, 1998; Fox, 2014). These fluc-
tuations can be fully captured by the Eulerian–Eulerian (or, when it 
is applicable, by the mixture) model, provided that the time step is 
small enough and the computational grid is sufficiently fine. However, 
this renders this approach too demanding, making it impractical. To 
reduce the computational cost, one can average the Eulerian–Eulerian 
equations of change (Dasgupta et al., 1994, 1998; Fox, 2014). To do 
so, volume, time and Reynolds (ensemble) averaging schemes can be 
employed. But since the first two are rigorous solely for statistically ho-
mogeneous and stationary flows, respectively (Pope, 2000; Fox, 2003, 
2014), here we opt for the more general Reynolds averaging method. 
The specifics of this method are detailed in Section 2.

In the literature, many studies did not employ turbulent multi-
fluid transport equations rigorously derived by averaging the (laminar) 
Eulerian–Eulerian equations of change. They instead assumed that the 
latter could be directly applied to simulate liquid–particle turbulent 
flows by simply introducing specific terms to account for the effects 
of turbulence. As in these models the Eulerian–Eulerian equations of 
change are not averaged further, we refer to them as one-step averaging 
models. In these models, the kinetic stress tensor of the solid phase, 
related to the particle velocity fluctuations, is often incorrectly related 
to turbulence and interpreted as a kind of Reynolds stress contribu-
tion (see, for instance, Drew, 1983; Ahmadi and Ma, 1990; Enwald 
et al., 1996; Peirano and Leckner, 1998). Consequently, the granular 
temperature and the turbulent kinetic energy of the solid phase, along 
with their sources and sinks, are modeled incorrectly (Fox, 2014). In 
other versions of one-step averaging models, even if this conceptual 
error is absent, the transport equations miss various terms that the 
properly-derived Reynolds-averaged equations feature. Nevertheless, 
these models are widely used for simulating liquid–particle turbulent 
flows in agitated vessels and often do provide satisfactory results (see, 
for instance, Jiang and Zhang, 2012; Wadnerkar et al., 2012, 2016; 
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Delafosse et al., 2018; Maluta et al., 2019). In Section 2.1.3, we discuss 
these models in more detail, and in the rest of the article we investigate 
why, in spite of their shortcomings, they can give good predictions.

To our knowledge, even if the turbulent multifluid model derived 
by Reynolds averaging the equations of the Eulerian–Eulerian model is 
theoretically rigorous, it has been rarely employed to simulate liquid–
particle turbulent flows in agitated vessels. In addition, the distinction 
between this model and the one-step averaging ones remains unex-
plored. The comparison between them might explain why the latter can 
yield good results. This study aims to address this research gap by delv-
ing into the details of these models, contrasting them via simulations 
of a selected experimental study. The article is structured as follows. 
In Section 2, we introduce the transport and closure equations for the 
Eulerian–Eulerian and turbulent multifluid models; in Section 3, we 
detail the conditions of the selected experiments and the computational 
setup; in Section 4, we present a comparative analysis, contrasting the 
simulation results of the models, assessing them against experimental 
data taken from the literature, and evaluating their accuracy.

2. Multifluid models

As discussed, simulating liquid–particle turbulent flows in agitated 
vessels using the Eulerian–Eulerian model with a fine mesh and small 
computational time steps is extremely demanding computationally. To 
overcome this challenge, we resort to turbulent multifluid models, 
which should be derived by Reynolds averaging the Eulerian–Eulerian 
equations of change. In this section, we first briefly present these 
equations of change and then discuss the Reynolds averaging processes; 
additionally, we describe how one-step averaging models are devel-
oped. The section concludes with a discussion of the closures required 
to make the governing equations of these models solvable.

2.1. Governing equations

2.1.1. Eulerian-Eulerian (or multifluid) model
We consider an isothermal liquid–particle suspension composed of 

an incompressible Newtonian liquid and spherical particles of uniform 
size and density. The point (that is, non-averaged) balance equations 
of mass and linear momentum for the liquid read:
𝜕𝒙 ⋅ 𝒖̄𝑒 = 0 (2.1)

𝜌𝑒𝜕𝑡𝒖̄𝑒 = − 𝜌𝑒𝜕𝒙 ⋅ 𝒖̄𝑒𝒖̄𝑒 − 𝜕𝒙 ⋅ 𝝈̄𝑒 + 𝜌𝑒𝒈 (2.2)

where 𝜌𝑒, 𝒖̄𝑒 and 𝝈̄𝑒 are the density, point velocity and point stress 
tensor of the liquid, respectively, and 𝒈 is the gravitational field. To 
derive the Eulerian–Eulerian equations of change, one has to average 
Eqs. (2.1) and (2.2). Various averaging methods can be used, but the 
resulting equations are quite similar and share common features (Jack-
son, 1997, 2000; Zhang and Prosperetti, 1997). Here, we refer to the 
method adopted by Jackson (1997), based on soft volume averages, 
which yields:
𝜕𝑡𝛼𝑒 = − 𝜕𝒙 ⋅ 𝛼𝑒𝒖𝑒 (2.3)

𝜌𝑒𝜕𝑡(𝛼𝑒𝒖𝑒) = − 𝜌𝑒𝜕𝒙 ⋅ 𝛼𝑒𝒖𝑒𝒖𝑒 − 𝜕𝒙 ⋅ 𝑺𝑒 − 𝒇 𝑝 + 𝛼𝑒𝜌𝑒𝒈 (2.4)

where 𝛼𝑒, 𝒖𝑒 and 𝑺𝑒 are the volume fraction, the mean (Eulerian) 
velocity and the effective stress tensor of the liquid phase, respectively, 
and 𝒇 𝑝 is the mean fluid–particle interaction force per suspension unit 
volume. The effective stress tensor is defined as: 
𝑺𝑒 ≡ 𝛼𝑒𝝈𝑒 + 𝑺𝑒,𝑝 + 𝛼𝑒𝜌𝑒⟨𝒖̂𝒖̂⟩𝑒 (2.5)

where 𝝈𝑒 represents the mean value of 𝝈̄𝑒 and ⟨𝒖̂𝒖̂⟩𝑒 the mean value 
of the dyadic product of the fluid point velocity fluctuations, 𝒖̂𝑒 ≡
𝒖̄𝑒 − 𝒖𝑒. The fluid effective stress tensor comprises three contributors. 
The first is related to the point stress tensor of the fluid. The second, 
sometimes referred to as particle-presence stress, arises from the fluid 
dynamic interactions between the fluid and the particles; for details, 
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we refer to Jamshidi et al. (2021). The third, a Reynolds stress type 
of contribution, results from fluid point velocity fluctuations. These 
fluctuations can arise from various factors, not necessarily related to 
turbulence, such as particle wakes and the no-slip boundary conditions 
holding at the particle surfaces.

For the solid phase, the volume-averaged balance equations for mass 
and linear momentum are derived similarly, from equations analogous 
to Eqs. (2.1) and (2.2) (Jamshidi et al., 2021). They read:

𝜕𝑡𝛼𝑠 = − 𝜕𝒙 ⋅ 𝛼𝑠𝒖𝑠 (2.6)

𝜌𝑠𝜕𝑡(𝛼𝑠𝒖𝑠) = − 𝜌𝑠𝜕𝒙 ⋅ 𝛼𝑠𝒖𝑠𝒖𝑠 − 𝜕𝒙 ⋅ 𝑺𝑠 + 𝒇 𝑝 + 𝛼𝑠𝜌𝑠𝒈 (2.7)

where 𝛼𝑠, 𝒖𝑠 and 𝑺𝑠 are the volume fraction, the mean (Eulerian) 
velocity and the effective stress tensor of the solid phase, respectively. 
𝑺𝑠 is defined as: 

𝑺𝑠 ≡ 𝑺𝑠,𝑐 + 𝛼𝑠𝜌𝑠⟨𝒖̂𝒖̂⟩𝑠 (2.8)

where ⟨𝒖̂𝒖̂⟩𝑠 represents the mean value of the dyadic product of the 
particle velocity fluctuations. The solid effective stress tensor comprises 
two contributors. The first, referred to as particle-contact stress, stems 
from instantaneous particle contacts (collisional stress) and enduring 
particle contacts (frictional stress). Of these, the latter are significant 
only when the solid volume fraction is close to the packing limit 
𝛼𝑠,𝑚𝑎𝑥 (often set at 63%). In agitated vessels, this condition is typically 
confined to a small region near the bottom center, so the frictional 
stress is often neglected (Jiang and Zhang, 2012; Maluta et al., 2019; 
Wang et al., 2017). The second contributor to the solid effective stress 
tensor is referred to as kinetic stress, denoted here as 𝑺𝑠,𝑘. This arises 
from particle velocity fluctuations, which may stem from Brownian 
motion, fluctuating fluid–particle forces, average fluid dynamic shear, 
and particle collisions (Buyevich, 1999; Jamshidi et al., 2019). As in 
the kinetic theory of molecular (Chapman and Cowling, 1991) and 
granular (Brilliantov and Pöschel, 2004) gases, 𝑺𝑠,𝑘 is unrelated to 
turbulence and should not be regarded as a Reynolds stress.

The set of balance equations for mass and linear momentum is 
complemented by a balance equation for the granular internal energy, 
(3∕2)𝜃𝑠, where 𝜃𝑠 denotes the granular temperature (Gidaspow, 1994; 
Jackson, 2000). This equation reads: 

𝜌𝑠𝜕𝑡[𝛼𝑠(3∕2)𝜃𝑠] =−𝜌𝑠𝜕𝒙 ⋅𝛼𝑠(3∕2)𝜃𝑠𝒖𝑠−𝜕𝒙 ⋅𝒒𝑠−𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠−𝑆𝑐−𝑆𝑣+𝐺 (2.9)

where 𝒒𝑠 is the granular heat flux, 𝑆𝑐 and 𝑆𝑣 are sink terms of granular 
internal energy generated by inelastic particle collisions and viscous 
resistance to particle motions, respectively, while 𝐺 is a source term 
owing to the generation of particle velocity fluctuations induced by 
fluctuating fluid–particle forces or any other of the source mechanisms 
previously mentioned.

As we see, the equations in the Eulerian–Eulerian model contain sev-
eral undetermined terms. In Section 2.2.1, we discuss how these can be 
closed. With these closures, the Eulerian–Eulerian model can be used to 
simulate liquid–particle fluid dynamics. But when the mean variables, 
e.g., 𝛼𝑒, 𝛼𝑠, 𝒖𝑒 and 𝒖𝑠, are turbulent, capturing their fluctuations is ex-
tremely demanding computationally. To reduce the computational cost, 
one can operate similarly to what is done for single-phase turbulent 
flows, Reynolds averaging the equations that govern the evolution of 
the turbulent variables (here, Eqs. (2.3), (2.4), (2.6), (2.7) and (2.9)).

2.1.2. Reynolds averaging method
With the method outlined by Fox (2014), to which we refer for 

details, the Reynolds-averaged equations of change can be readily de-
rived; here, we just present these transport equations, referring to them 
as Fox model. This model involves Reynolds averages, fluid averages 
and solid averages. For a given Eulerian variable 𝜁 , these three averages 
are respectively denoted as ⟨𝜁⟩, ⟨𝜁⟩𝐸 and ⟨𝜁⟩𝑆 . The corresponding 
fluctuating quantities are denoted by 𝜁 ′, 𝜁 ′′ and 𝜁 ′′′, respectively. The 
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fluid and solid averages are similar to Favre averages and are related 
to the Reynolds averages as follows: 
⟨𝜁⟩𝐸 ≡ ⟨𝛼𝑒𝜁⟩∕⟨𝛼𝑒⟩ ; ⟨𝜁⟩𝑆 ≡ ⟨𝛼𝑠𝜁⟩∕⟨𝛼𝑠⟩ (2.10)

So, in these averages the volume fraction has the same role as the 
fluid density in the Favre averages. For the fluid phase, the Reynolds-
averaged continuity and dynamical equations read:
𝜕𝑡⟨𝛼𝑒⟩ = − 𝜕𝒙 ⋅ ⟨𝛼𝑒⟩⟨𝒖𝑒⟩𝐸 (2.11)
𝜌𝑒𝜕𝑡(⟨𝛼𝑒⟩⟨𝒖𝑒⟩𝐸 ) = − 𝜌𝑒𝜕𝒙 ⋅ ⟨𝛼𝑒⟩⟨𝒖𝑒⟩𝐸⟨𝒖𝑒⟩𝐸 − 𝜕𝒙 ⋅ ⟨𝑺𝑒⟩

− 𝜌𝑒𝜕𝒙 ⋅ ⟨𝛼𝑒⟩⟨𝒖
′′
𝑒 𝒖

′′
𝑒 ⟩𝐸 − ⟨𝒇 𝑝⟩ + ⟨𝛼𝑒⟩𝜌𝑒𝒈 (2.12)

In Eq. (2.12), the term involving ⟨𝒖′′𝑒 𝒖′′𝑒 ⟩𝐸 is caused by the turbulence 
in the Eulerian velocity field of the fluid phase (i.e., it is caused by the 
fluctuations of 𝒖𝑒, and not of the point velocity 𝒖̄𝑒) and represents the 
turbulent stress tensor of the fluid phase, defined by: 
𝑻 𝑒 ≡ ⟨𝛼𝑒⟩𝜌𝑒⟨𝒖

′′
𝑒 𝒖

′′
𝑒 ⟩𝐸 (2.13)

For the solid phase, the Reynolds-averaged continuity and dynamical 
equations – obtained by averaging Eqs. (2.6) and (2.7) – read:
𝜕𝑡⟨𝛼𝑠⟩ = − 𝜕𝒙 ⋅ ⟨𝛼𝑠⟩⟨𝒖𝑠⟩𝑆 (2.14)
𝜌𝑠𝜕𝑡(⟨𝛼𝑠⟩⟨𝒖𝑠⟩𝑆 ) = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩⟨𝒖𝑠⟩𝑆⟨𝒖𝑠⟩𝑆 − 𝜕𝒙 ⋅ ⟨𝑺𝑠⟩

− 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩⟨𝒖
′′′
𝑠 𝒖′′′𝑠 ⟩𝑆 + ⟨𝒇 𝑝⟩ + ⟨𝛼𝑠⟩𝜌𝑠𝒈 (2.15)

In Eq. (2.15), similarly to the fluid phase, the term involving ⟨𝒖′′′𝑠 𝒖′′′𝑠 ⟩𝑆
is caused by turbulence in the Eulerian solid velocity field and gives 
rise to the solid-phase turbulent stress tensor: 
𝑻 𝑠 ≡ ⟨𝛼𝑠⟩𝜌𝑠⟨𝒖

′′′
𝑠 𝒖′′′𝑠 ⟩𝑆 (2.16)

The Reynolds-averaged balance equation for the granular internal en-
ergy of the particulate phase is obtained by averaging Eq. (2.9) and 
takes the form:
𝜌𝑠𝜕𝑡[⟨𝛼𝑠⟩(3∕2)⟨𝜃𝑠⟩𝑆 ] = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩(3∕2)⟨𝜃𝑠⟩𝑆⟨𝒖𝑠⟩𝑆
−𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩(3∕2)⟨𝜃

′′′
𝑠 𝒖′′′𝑠 ⟩𝑆 − 𝜕𝒙 ⋅ ⟨𝒒𝑠⟩ − ⟨𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠⟩ − ⟨𝑆𝑐⟩ − ⟨𝑆𝑣⟩ + ⟨𝐺⟩

(2.17)

where 𝜌𝑠⟨𝛼𝑠⟩(3∕2)⟨𝜃′′′𝑠 𝒖′′′𝑠 ⟩𝑆 , sometimes equivalently written as 𝜌𝑠⟨𝛼𝑠⟩
(3∕2)⟨𝜃𝑠𝒖

′′′
𝑠 ⟩𝑆 , is the turbulent flux of granular internal energy induced 

by fluctuations in 𝜃𝑠 and 𝒖𝑠.
As we see, the averaging process introduces several undetermined 

terms. Details on their closures will be provided in Section 2.2.2.

2.1.3. One-step averaging method
Many turbulent multifluid models reported in the literature have not 

been derived rigorously by averaging the Eulerian–Eulerian equations 
of change. We refer to them as one-step averaging models. In these 
models, the balance equations are formally equal to those in the 
Eulerian–Eulerian models, but the effective stress tensors are inter-
preted, and therefore closed, differently. For the fluid phase, the term 
𝛼𝑒𝜌𝑒⟨𝒖̂𝒖̂⟩𝑒 featuring in Eq. (2.5) is regarded as the turbulent contribution 
to the effective stress tensor of the fluid, while the first two terms on 
the right-hand side of Eq. (2.5) are regarded as the laminar part of 
the effective stress tensor. Therefore, 𝑻 𝑒 is confused with 𝛼𝑒𝜌𝑒⟨𝒖̂𝒖̂⟩𝑒. 
Furthermore, the fluid–particle interaction force ⟨𝒇 𝑝⟩ is confused with 
𝒇 𝑝. This is important, insofar as it might lead to an incorrect closure of 
these terms. Thus, the linear momentum balance equation is expressed 
as follows: 
𝜌𝑒𝜕𝑡(𝛼𝑒𝒖𝑒) = − 𝜌𝑒𝜕𝒙 ⋅ 𝛼𝑒𝒖𝑒𝒖𝑒 − 𝜕𝒙 ⋅ (𝑺𝑒,𝑙 + 𝑺𝑒,𝑡) − 𝒇 𝑝 + 𝛼𝑒𝜌𝑒𝒈 (2.18)

where 𝑺𝑒,𝑙 is the laminar part of the effective stress, related to the fluid 
viscosity, and 𝑺𝑒,𝑡 is the turbulent part of the effective stress, related to 
the ‘‘fluid velocity fluctuations’’.

For the solid phase, the dynamical equation is formulated similarly 
to Eq. (2.18), the solid effective stress tensor also being regarded as 
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the sum of a laminar part 𝑺𝑠,𝑙 and a turbulent part 𝑺𝑠,𝑡. In the works 
by Enwald et al. (1996) and Peirano and Leckner (1998), 𝑺𝑠,𝑙 is closed 
using the kinetic theory of granular flows (KTGF) model, which consid-
ers both kinetic stress and collisional stress. In the turbulent part 𝑺𝑠,𝑡, 
these authors also accounted for contributions from both kinetic and 
collisional stresses, modeling them via turbulent closures. But instead 
of expressing 𝑺𝑠,𝑡 as a function of the solid-phase turbulent properties, 
such as the solid turbulent kinetic energy 𝑘𝑠 and dissipation rate 𝜀𝑠, 
they expressed it in terms of the granular temperature 𝜃𝑠, since they 
regarded 𝑘𝑠 and 𝜃𝑠 as the same quantity. This led them to consider only 
the balance equation for the granular internal energy, without solving 
the transport equations for 𝑘𝑠 and 𝜀𝑠. Nevertheless, 𝜃𝑠 arises from 
particle velocity fluctuations, whereas 𝑘𝑠 arises from fluctuations of the 
solid Eulerian velocity field 𝒖𝑠, making these quantities conceptually 
distinct. Consequently, this approach seems to be inadequate (Fox, 
2014). Moreover, to our knowledge, it has never been used to simulate 
liquid–particle flows in agitated vessels. Therefore, we will not consider 
it further.

In another approach used by Wadnerkar et al. (2012, 2016), and Ma-
luta et al. (2019), 𝑺𝑠,𝑙 again includes a collisional part and a kinetic 
part related to particle velocity fluctuations, both closed via the KTGF 
model, but 𝑺𝑠,𝑡 is expressed in terms of 𝑘𝑠 and 𝜀𝑠. Hence, the balance 
equations for 𝑘𝑠 and 𝜀𝑠 are solved along with that for the granular 
internal energy. Even if here 𝜃𝑠 and 𝑘𝑠 are not confused, this approach 
still contains some conceptual errors. First, the term representing the 
total conversion of kinetic energy into granular internal energy is 
expressed as 𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠, thus featuring the entire solid effective stress 
tensor; this is incorrect, because it should feature only the laminar part 
of 𝑺𝑠 and it does not account for the deformation work done by the 
fluctuating part of 𝑺𝑠,𝑙 on the fluctuating mean velocity field 𝒖′′′𝑠  (this is 
discussed further in Section 2.2.2). Second, some terms in the governing 
equations, including those for the turbulent properties of the fluid 
and solid phases, which emerge from the Reynolds averaging process 
(outlined in Section 2.1.2) are overlooked. Despite this, the results of 
these models, below referred to as OS models, agree reasonably well 
with experimental data of liquid–particle turbulent flows in agitated 
vessels. This motivates us to explore them further, along with the 
constitutive equations that they adopt.

2.2. Closure equations

2.2.1. Closures for the Eulerian-Eulerian model
The Eulerian–Eulerian balance equations (Eqs. (2.3), (2.4), (2.6), 

(2.7) and (2.9)) feature several undetermined terms: the phasic ef-
fective stress tensors, the average fluid–particle interaction force, the 
granular heat flux, and the sink and source terms of granular in-
ternal energy. In the literature, various constitutive equations have 
been proposed for these terms; here we report some commonly-used 
examples.

For the fluid effective stress tensor, the Newtonian closure is often 
adopted (see, for instance, Chen et al., 2009; Gidaspow and Huang, 
2009; Mazzei et al., 2010; Yilmaz et al., 2011; Kaushal et al., 2012; 
Wang et al., 2013; Fox, 2014; Oke et al., 2014), given by: 
𝑺𝑒 = (𝑝𝑒 − 𝜆𝑒𝜕𝒙 ⋅ 𝒖𝑒)𝑰 − 𝜂𝑒[𝜸̇𝑒 − (2∕3)𝜕𝒙 ⋅ 𝒖𝑒𝑰 ] (2.19)

where 𝑝𝑒, 𝜆𝑒 and 𝜂𝑒 are the mean pressure, bulk viscosity and viscosity 
of the fluid, respectively, 𝑰 is the unit tensor, whilst 𝜸̇𝑒 ≡ 𝜕𝒙𝒖𝑒 + (𝜕𝒙𝒖𝑒)

†

is twice the deformation rate tensor associated with the mean velocity 
field of the fluid phase. Then, the problem of closure reduces to finding 
suitable constitutive expressions for the pressure and the viscosities. If 
the compressibility of the fluid is neglected, the pressure does not have 
to be specified constitutively. Furthermore, often it is assumed that 
𝜂𝑒 = 𝛼𝑒𝜇𝑒, where 𝜇𝑒 denotes the molecular viscosity of the interstitial 
fluid, while 𝜆𝑒 is neglected. Owing to their popularity, in this work we 
will adopt these closures; however, other authors, such as Gidaspow 
(1994), assume that 𝜂 = 𝜇 . Fox (2014) employs a similar closure, 
𝑒 𝑒
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with 𝜂𝑒 = 𝜇𝑒 + 𝜇⋆
𝑒 , where 𝜇⋆

𝑒  is a ‘‘pseudo-turbulent’’ viscosity that 
accounts for the stress arising from the point fluid velocity fluctuations 
due, for instance, to particle wakes. All these closures seem to neglect 
the viscosity contribution related to the particle-presence stress (𝑺𝑒,𝑝 in 
Eq. (2.5)); for more details about this aspect, see Jamshidi et al. (2019).

Usually, the solid effective stress tensor is modeled with an equation 
analogous to Eq. (2.19). Constitutive equations for the granular (or 
solid) pressure 𝑝𝑠, bulk viscosity 𝜆𝑠 and viscosity 𝜂𝑠 derived from the 
kinetic theory of granular flows are generally employed, unless the 
suspension is extremely dense (that is, close to the packing limit). In 
simulations of liquid–particle flows in agitated vessels, the closures 
of Syamlal et al. (1993) and Gidaspow (1994) are generally used (Wad-
nerkar et al., 2016; Maluta et al., 2019; Kazemzadeh et al., 2020). 
We should note that, originally, these closures were obtained without 
considering the presence of the interstitial fluid. In this study, we adopt 
the model proposed by Syamlal et al. (1993). In it, the solid pressure, 
bulk viscosity and viscosity are closed as follows:

𝑝𝑠 = 𝛼𝑠𝜌𝑠𝜃𝑠 + 2𝛼2
𝑠𝜌𝑠𝜃𝑠𝑔0(1 + 𝑒) ; 𝜆𝑠 = (4∕3)𝛼2

𝑠𝜌𝑠𝑑𝑝𝑔0(1 + 𝑒)
√

𝜃𝑠∕𝜋

𝜂𝑠 =
𝛼𝑠𝜌𝑠𝑑𝑝

√

𝜃𝑠𝜋

6(3 − 𝑒)

[

1 + 2
5
𝛼𝑠𝑔0(1 + 𝑒)(3𝑒 − 1)

]

+ (3∕5)𝜆𝑠 (2.20)

where 𝑒 is the restitution coefficient (equal to unity if the particle 
collisions are elastic) and 𝑔0 is the radial distribution function, given 
by: 

𝑔0 =
[

1 − (𝛼𝑠∕𝛼𝑠,𝑚𝑎𝑥)
1∕3

]−1
(2.21)

where 𝛼𝑠,𝑚𝑎𝑥 is the maximum value of the solid volume fraction. The 
solid pressure and viscosities depend on the granular temperature, so 
the balance equation for the granular internal energy, Eq. (2.9), must 
be solved. In it, Syamlal et al. (1993) express the granular heat flux as 
follows: 
𝒒𝑠 = − 𝑘𝜃𝜕𝒙𝜃𝑠 (2.22)

with: 

𝑘𝜃 =
15𝛼𝑠𝜌𝑠𝑑𝑝

√

𝜃𝑠𝜋

4(41 − 33𝜁 )

{

1 +
[

12
5
𝜁 2(4𝜁 − 3) + 16

15𝜋
𝜁 (41 − 33𝜁 )

]

𝛼𝑠𝑔0

}

(2.23)

where 𝑘𝜃 is the granular conductivity and 𝜁 ≡ (1 + 𝑒)∕2. Syamlal et al. 
(1993) neglect the source term 𝐺, as it is quite often done. The closures 
for the sink terms related to inelastic collisions and to viscous resistance 
to the particle motions read: 

𝑆𝑐 =
𝛼𝑠𝜌𝑠𝜃𝑠(1 − 𝑒2)

2𝜏𝑐𝑠
; 𝜏𝑐𝑠 ≡

𝑑𝑝
24𝛼𝑠𝑔0

√

𝜋
𝜃𝑠

; 𝑆𝑣 = 3𝛽𝜃𝑠 (2.24)

where 𝜏𝑐𝑠  is the characteristic time scale of particle collisions and 𝛽 is 
the drag coefficient, whose closure is discussed below.

The mean fluid–particle interaction force 𝒇 𝑝 comprises several con-
tributors, the primary ones being the buoyancy force 𝒇 𝑝,𝐵 , the drag 
force 𝒇 𝑝,𝐷, the lift force 𝒇 𝑝,𝐿 and the virtual mass force 𝒇 𝑝,𝑉 . In simula-
tions of liquid–particle flows in agitated vessels, the last two are usually 
negligible (Ljungqvist and Rasmuson, 2001;  Shan et al., 2008; Wad-
nerkar et al., 2012; Tamburini et al., 2014; Wadnerkar et al., 2016). 
Hence, we will not consider them. For the buoyancy force, various 
definitions may be adopted (for details, see Jackson, 2000), the most 
common one regarding the force as proportional to the gradient of the 
mean fluid pressure (Foscolo et al., 1983; Gibb, 1991; Astarita, 1993; 
Di Felice, 1994; Gibilaro, 2001), the proportionality constant being the 
solid volume fraction. The drag force is instead always proportional to 
the slip velocity between the two phases, the proportionality constant 
being the drag coefficient. Therefore, we have: 
𝒇 𝑝,𝐵 ≡ − 𝛼𝑠𝜕𝒙𝑝𝑒 ; 𝒇 𝑝,𝐷 ≡ 𝛽 (𝒖𝑒 − 𝒖𝑠) (2.25)

Several closures are available for the drag coefficient 𝛽. For instance, 
see Jackson (2000), Mazzei and Lettieri (2007) and Marchisio and Fox 
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(2013) for reviews. Here, we consider those of Huilin et al. (2003) 
and Syamlal et al. (1993), which are often employed in the literature. 
We will refer to them as Huilin–Gidaspow (HG) and Syamlal–O’Brien 
(SB) models. The first combines the closures of Wen and Yu (1966) 
and Ergun (1952), with a smooth transition from the former (prevailing 
at low 𝛼𝑠 values) to the latter around a solid volume fraction of 0.2. The 
closure is given by: 
𝛽 = 𝑓 𝛽𝐸 + (1 − 𝑓 )𝛽𝑊 𝑌 (2.26)

where:

𝑓 = 1
2
+

arctan[262.5(𝛼𝑠 − 0.2)]
𝜋

; 𝛽
𝐸
= 150

𝛼2
𝑠𝜇𝑒

𝛼𝑒𝑑2
𝑝
+ 1.75

𝛼𝑠𝜌𝑒
𝑑𝑝

|𝒖𝑒 − 𝒖𝑠|

𝛽
𝑊 𝑌

= 3
4
𝐶

𝐷

𝜌𝑒 |𝒖𝑒 − 𝒖𝑠|𝛼𝑠
𝑑𝑝

𝛼−1.65
𝑒

𝐶
𝐷
=

{

24(1 + 0.15Re0.687)∕Re for Re < 1000

0.44 for Re ≥ 1000
; Re ≡

𝛼𝑒𝜌𝑒|𝒖𝑒 − 𝒖𝑠|𝑑𝑝
𝜇𝑒

(2.27)

The SB model reads: 
𝛽 = 3

4
𝐶𝐷

𝛼𝑠𝛼𝑒𝜌𝑒
𝜉2𝑑𝑝

|𝒖𝑒 − 𝒖𝑠| (2.28)

where:

𝐶
𝐷
=
(

0.63 + 4.8
√

𝛹∕𝜉

)2

; 𝜉 = 1
2

[

𝐴 − 0.06𝛹 +
√

(0.06𝛹 )2 + 0.12(2𝐵 − 𝐴)𝛹 + 𝐴2

]

𝛹 = Re∕𝛼𝑒 ; 𝐴 = 𝛼4.14
𝑒 ; 𝐵 =

{

0.8𝛼1.28
𝑒 for 𝛼𝑒 ≤ 0.85

𝛼2.65
𝑒 for 𝛼𝑒 > 0.85

(2.29)

The expressions reported above are consistent with the buoyancy force 
definition given in Eq. (2.25)A. Other definitions require modified 
expressions (Mazzei, 2019).

2.2.2. Closures for the fox model
In this section, we present the closures for the undetermined terms 

featuring in the Fox model. Most of the expressions given below are 
consistent with those found in Fox (2014), to whom we refer for 
mathematical details; however, the notation and, more importantly, 
some constitutive equations are different. For instance,  Fox assumes 
𝛼𝑠𝜌𝑠∕𝛽 (i.e., the drag time scale) to be a constant, while we do not; in 
addition, as mentioned, the author uses the closure 𝜂𝑒 = 𝜇𝑒 + 𝜇⋆

𝑒 , while 
we adopt the expression 𝜂𝑒 = 𝛼𝑒𝜇𝑒, since this is the closure adopted in 
most versions of the OS model.

Reynolds averaging Eq. (2.19), with 𝜆𝑒 = 0 and 𝜂𝑒 = 𝛼𝑒𝜇𝑒, yields: 

⟨𝑺𝑒⟩ ≈ ⟨𝑝𝑒⟩𝑰 − ⟨𝛼𝑒⟩𝜇𝑒[𝜕𝒙⟨𝒖𝑒⟩𝐸 + (𝜕𝒙⟨𝒖𝑒⟩𝐸 )
† − (2∕3)𝜕𝒙 ⋅ ⟨𝒖𝑒⟩𝐸 𝑰 ] (2.30)

This expression is not rigorous, because it neglects contributions related 
to 𝒖′′𝑒 , that is, to the fluctuations of the fluid Eulerian velocity 𝒖𝑒. For 
details about the validity (and the limitations) of this approximation, 
we refer to Fox (2014). The Reynolds average of 𝑺𝑠 is approximated 
as:

⟨𝑺𝑠⟩ = [⟨𝑝𝑠⟩ − ⟨𝜆𝑠𝜕𝒙 ⋅ 𝒖𝑠⟩]𝑰 − ⟨𝜂𝑠[𝜸̇𝑠 − (2∕3)𝜕𝒙 ⋅ 𝒖𝑠𝑰]⟩

≈ 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 , ⟨𝒖𝑠⟩𝑆 ) = [𝑝𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) − 𝜆𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 )𝜕𝒙 ⋅ ⟨𝒖𝑠⟩𝑆 ]𝑰

− 𝜂𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 )[𝜕𝒙⟨𝒖𝑠⟩𝑆 + (𝜕𝒙⟨𝒖𝑠⟩𝑆 )
† − (2∕3)𝜕𝒙 ⋅ ⟨𝒖𝑠⟩𝑆 𝑰 ] (2.31)

where 𝑝𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ), 𝜆𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) and 𝜂𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) are calculated by 
Eqs. (2.20), but with 𝛼𝑠 and 𝜃𝑠 replaced by ⟨𝛼𝑠⟩ and ⟨𝜃𝑠⟩𝑆 , respectively.

The turbulent stress tensor of the fluid phase 𝑻 𝑒 (Eq. (2.13)) can be 
closed adopting the Boussinesq eddy viscosity hypothesis, given by: 

𝑻 𝑒 = (2∕3)⟨𝛼𝑒⟩𝜌𝑒𝑘𝑒𝑰 − ⟨𝛼𝑒⟩𝜇𝑡,𝑒[𝜕𝒙⟨𝒖𝑒⟩𝐸 + (𝜕𝒙⟨𝒖𝑒⟩𝐸 )
† − (2∕3)𝜕𝒙 ⋅ ⟨𝒖𝑒⟩𝐸 𝑰 ]

(2.32)

where 𝑘𝑒 and 𝜇𝑡,𝑒 are the turbulent kinetic energy and the turbulent 
viscosity of the fluid phase, respectively. The latter is given by: 
𝜇 = 𝐶 𝜌 𝑘2∕𝜀 (2.33)
𝑡,𝑒 𝜇𝑒 𝑒 𝑒 𝑒
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where 𝜀𝑒 is the dissipation rate of the fluid turbulent kinetic energy. 
𝐶𝜇𝑒 is a parameter, usually set equal to 0.09 (Wilcox, 1998; Shan 
et al., 2008; Riella et al., 2018). The solid turbulent stress tensor 𝑻 𝑠
(Eq. (2.16)) is modeled with equations analogous to Eqs.  (2.32) and 
(2.33), with 𝑘𝑠 representing the turbulent kinetic energy of the solid 
phase and 𝜀𝑠 its dissipation rate. Note that: 

𝑘𝑒 ≡
1
2
⟨𝒖′′𝑒 ⋅ 𝒖′′𝑒 ⟩𝐸 ; 𝑘𝑠 ≡

1
2
⟨𝒖′′′𝑠 ⋅ 𝒖′′′𝑠 ⟩𝑆 (2.34)

Therefore, 𝑘𝑒 and 𝑘𝑠 are related to the fluctuations of the Eulerian 
velocities of the fluid and solid phases (𝒖𝑒 and 𝒖𝑠), respectively. This 
clearly reveals that 𝑘𝑠 is distinct from 𝜃𝑠, which is instead related to 
the particle velocity fluctuations, 𝒖̂𝑠 ≡ 𝒖̄𝑠 − 𝒖𝑠.

Then, we focus on the Reynolds average of the mean fluid–particle 
interaction force. As discussed, here we only consider the buoyancy and 
drag forces. Using Eq. (2.25)A, we obtain: 

⟨𝒇 𝑝,𝐵⟩ = − ⟨𝛼𝑠⟩𝜕𝒙⟨𝑝𝑒⟩ − ⟨𝛼′𝑠𝜕𝒙𝑝
′
𝑒⟩ (2.35)

Here, the covariance of the fluctuations of the solid phase volume 
fraction and the gradient of the fluid mean pressure is closed by: 

⟨𝛼′𝑠𝜕𝒙𝑝
′
𝑒⟩ = 𝐶𝑝⟨𝛼𝑒⟩⟨𝛼𝑠⟩(𝜌𝑠 − 𝜌𝑒)𝒈 (2.36)

where 𝐶𝑝 ranges from zero to unity (Fox, 2014). For the drag force, we 
approximate the Reynolds average of Eq. (2.25)B with the following 
expression: 

⟨𝒇 𝑝,𝐷⟩ = 𝛽(⟨𝛼𝑠⟩, ⟨𝒖𝑒⟩𝐸 , ⟨𝒖𝑠⟩𝑆 )
[

(⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) + 𝒖𝑑𝑟

]

(2.37)

with: 

𝒖𝑑𝑟 ≡
⟨𝛼′𝑠𝒖

′′
𝑒 ⟩

⟨𝛼𝑒⟩⟨𝛼𝑠⟩
(2.38)

Here, 𝛽(⟨𝛼𝑠⟩, ⟨𝒖𝑒⟩𝐸 , ⟨𝒖𝑠⟩𝑆 ) is calculated by Eqs. (2.26) and (2.27) or 
Eqs. (2.28) and (2.29) replacing the Eulerian variables with their 
corresponding Reynolds or phase averages. In Eq. (2.37), the part of 
⟨𝒇 𝑝,𝐷⟩ related to 𝒖𝑑𝑟 is referred to as turbulent dispersion force, while 𝒖𝑑𝑟
is referred to as drift velocity. Fox (2014) closes this velocity as follows: 

𝒖𝑑𝑟 = −
𝜇𝑒,𝑡

⟨𝛼𝑒⟩⟨𝛼𝑠⟩𝜌𝑒Sc𝑒𝑠
𝜕𝒙⟨𝛼𝑠⟩ − 𝐶𝑔(⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) ; Sc𝑒𝑠 ≡ (𝑘𝑒∕𝑘𝑠)

1∕2

(2.39)

Here, Sc𝑒𝑠 is a turbulent Schmidt number and 0 ≤ 𝐶𝑔 ≤ 1. Note that 
as indicated by Fox (2014), the second term on the right-hand side 
of Eq. (2.39)A is obtained exclusively for cases where 𝜌𝑒 ⋘ 𝜌𝑠; for 
liquid–particle systems, this term may have to be modeled differently.

Now, we provide the closures for the undetermined terms in the 
Reynolds-averaged balance equation for the granular internal energy 
(Eq. (2.17)). As it is often done, ⟨𝐺⟩ is neglected. The turbulent granular 
internal energy flux ⟨𝜃′′′𝑠 𝒖′′′𝑠 ⟩𝑆 is modeled via the gradient diffusion 
model, writing: 

⟨𝜃′′′𝑠 𝒖′′′𝑠 ⟩𝑆 = −
𝜇𝑡,𝑠

𝜌𝑠Pr𝑒𝑠
𝜕𝒙⟨𝜃𝑠⟩𝑆 (2.40)

Here, Pr𝑒𝑠 is the turbulent Prandtl number, whose value ranges from 
0.5 to 0.9 (Wilcox, 1998); in this study we take it to be 0.85. ⟨𝒒𝑠⟩, ⟨𝑆𝑐⟩

and ⟨𝑆𝑣⟩ are approximated as:

⟨𝒒𝑠⟩ = − ⟨𝑘𝜃𝜕𝒙𝜃𝑠⟩ ≈ − 𝑘𝜃(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 )𝜕𝒙 ⟨𝜃𝑠⟩𝑆
⟨𝑆𝑐⟩ ≈ 𝑆𝑐 (⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ; ⟨𝑆𝑣⟩ = 3⟨𝛽𝜃𝑠⟩ ≈ 3𝛽(⟨𝛼𝑠⟩, ⟨𝒖𝑒⟩𝐸 , ⟨𝒖𝑠⟩𝑆 )⟨𝜃𝑠⟩𝑆

(2.41)

where 𝑘𝜃(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) and 𝑆𝑐 (⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) are calculated by Eqs. (2.23) 
and (2.24), respectively, substituting 𝛼𝑠 and 𝜃𝑠 with their Reynolds and 
solid-phase averages, respectively. The fourth term on the right-hand 
side of Eq. (2.17) can be approximately expressed as follows:
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⟨𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠⟩ = ⟨𝛼𝑠⟩⟨(𝑺𝑠∕𝛼𝑠) ∶ 𝜕𝒙𝒖𝑠⟩𝑆
≈ 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 + ⟨𝛼𝑠⟩⟨(𝑺𝑠∕𝛼𝑠) ∶ 𝜕𝒙𝒖

′′′
𝑠 ⟩𝑆 (2.42)

As seen, the second part accounts for the deformation work done by 
𝑺𝑠∕𝛼𝑠 on the fluctuating mean velocity field 𝒖′′′𝑠 . It quantifies the con-
version of solid turbulent kinetic energy into granular internal energy 
(this term features in the solid turbulent kinetic energy balance equa-
tion with opposite sign). The dominant part of this quantity represents 
the production of granular internal energy due to the (irreversible) dis-
sipation of the solid turbulent kinetic energy and is closed as ⟨𝛼𝑠⟩𝜌𝑠𝜀𝑠. 
Thus, we have: 
⟨𝛼𝑠⟩⟨(𝑺𝑠∕𝛼𝑠) ∶ 𝜕𝒙𝒖

′′′
𝑠 ⟩𝑆 = ⟨𝑝𝑠𝜕𝒙 ⋅ 𝒖′′′𝑠 ⟩ − ⟨𝛼𝑠⟩𝜌𝑠𝜀𝑠 (2.43)

Using Eq. (2.20)A, we can express the first term on the right-hand 
side in terms on granular temperature. This shows that, for non-dense 
suspensions, ⟨𝑝𝑠𝜕𝒙 ⋅ 𝒖′′′𝑠 ⟩ is related to the covariance of the fluctuations 
in granular temperature and dilatation. This term is usually neglected, 
insofar as 𝜃′′′𝑠  is an integral-scale quantity, while 𝜕𝒙 ⋅ 𝒖′′′𝑠  is a small-scale 
quantity, and so they should be uncorrelated (Wilcox, 1998). Even if for 
multiphase systems this argument has not been verified, we accept it 
and neglect this contribution.

The closures reported above require knowledge of the turbulent 
kinetic energy and of its dissipation rate for both phases (e.g., refer 
to Eqs. (2.33), (2.39) and (2.43)). To obtain these fields, we have to 
solve their transport equations. For the fluid turbulent kinetic energy, 
the equation reads:

𝜌𝑒𝜕𝑡(⟨𝛼𝑒⟩𝑘𝑒) = − 𝜌𝑒𝜕𝒙 ⋅ ⟨𝛼𝑒⟩𝑘𝑒⟨𝒖𝑒⟩𝐸 + 𝜕𝒙 ⋅ ⟨𝛼𝑒⟩
(

𝜇𝑒 +
𝜇𝑡,𝑒
𝜎𝑒,𝑘

)

𝜕𝒙𝑘𝑒

− 𝑻 𝑒 ∶ 𝜕𝒙⟨𝒖𝑒⟩𝐸 − ⟨𝛼𝑒⟩𝜌𝑒𝜀𝑒 +𝛱𝑘,𝑒 +𝛱𝑘,𝑒𝑝 +𝛱𝑘,𝑒𝜌 (2.44)

Here, 𝜎𝑒,𝑘 is a constant, assigned to be unity (Wilcox, 1998). 𝛱𝑘,𝑒, 𝛱𝑘,𝑒𝑝
and 𝛱𝑘,𝑒𝜌 are the source terms due to the turbulent interaction between 
the phases, the gradient of the Reynolds-averaged fluid pressure, and 
the covariance of the fluctuations of the Eulerian fluid velocity and fluid 
pressure gradient, respectively. Their closures are given by Fox (2014) 
and read:
𝛱𝑘,𝑒 = 𝛽(⟨𝛼𝑠⟩, ⟨𝒖𝑒⟩𝐸 , ⟨𝒖𝑠⟩𝑆 ){2[𝛹𝑘(𝑘𝑒𝑘𝑠)

1∕2 − 𝑘𝑒] − 𝒖𝑑𝑟 ⋅ (⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 )}

𝛱𝑘,𝑒𝑝 = ⟨𝛼𝑠⟩𝒖𝑑𝑟 ⋅ 𝜕𝒙⟨𝑝𝑒⟩ ; 𝛱𝑘,𝑒𝜌 = 𝐶𝜌⟨𝛼𝑠⟩(𝜌𝑠 − 𝜌𝑒)𝒖𝑑𝑟 ⋅ 𝒈 (2.45)

Here, 𝛹𝑘 and 𝐶𝜌 are constants, taken to be unity (Riella et al., 2018). 
Notice that, following Rumsey (2010), on the right-hand side of Eq. 
(2.44) we have neglected the pressure–dilatation term ⟨𝑝𝑒𝜕𝒙 ⋅ 𝒖′′𝑒 ⟩. The 
transport equations for the fluid turbulent kinetic energy dissipation 
rate reads:
𝜌𝑒𝜕𝑡(⟨𝛼𝑒⟩𝜀𝑒) = −𝜌𝑒𝜕𝒙 ⋅ ⟨𝛼𝑒⟩𝜀𝑒⟨𝒖𝑒⟩𝐸 + 𝜕𝒙 ⋅ ⟨𝛼𝑒⟩

(

𝜇𝑒 +
𝜇𝑡,𝑒

𝜎𝑒,𝜀

)

𝜕𝒙𝜀𝑒

−
𝜀𝑒
𝑘𝑒

(𝐶
1
𝑻 𝑒 ∶ 𝜕𝒙⟨𝒖𝑒⟩𝐸 + 𝐶

2
⟨𝛼𝑒⟩𝜌𝑒𝜀𝑒) +𝛱𝜀,𝑒 +

𝜀𝑠
𝑘𝑠

(𝐶
4
𝛱𝑘,𝑒𝑝 + 𝐶

5
𝛱𝑘,𝑒𝜌)

(2.46)

where: 

𝛱𝜀,𝑒 = 𝛽(⟨𝛼𝑠⟩, ⟨𝒖𝑒⟩𝐸 , ⟨𝒖𝑠⟩𝑆 )
{

2𝐶3[𝛹𝜀(𝜀𝑒𝜀𝑠)
1∕2 − 𝜀𝑒] − 𝐶

4

𝜀𝑠
𝑘𝑠

𝒖𝑑𝑟 ⋅ (⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 )
}

(2.47)

is a source term owing to the turbulent interaction between the phases. 
𝐶1 to 𝐶5, 𝜎𝑒,𝜀 and 𝛹𝜀 are constants. 𝐶1 and 𝐶2 are taken to be 1.44 
and 1.92, respectively, 𝜎𝑒,𝜀 is taken to be 1.3 (Wilcox, 1998), whilst 
the other four constants are taken to be unity (Riella et al., 2018).

The transport equation for the solid turbulent kinetic energy, where, 
consistently with the approximation used for Eq. (2.43), the pressure–
dilatation term ⟨𝑝𝑠𝜕𝒙 ⋅ 𝒖′′′𝑠 ⟩ is neglected, reads:

𝜌𝑠𝜕𝑡(⟨𝛼𝑠⟩𝑘𝑠) = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩𝑘𝑠⟨𝒖𝑠⟩𝑆 + 𝜕𝒙 ⋅

[

𝜂𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) +
⟨𝛼𝑠⟩𝜇𝑡,𝑠

]

𝜕𝒙𝑘𝑠
𝜎𝑠,𝑘
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− 𝑻 𝑠 ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 − ⟨𝛼𝑠⟩𝜌𝑠𝜀𝑠 +𝛱𝑘,𝑠 +𝛱𝑘,𝑠𝜌 (2.48)

Here, 𝜎𝑠,𝑘 is set to unity (Wilcox, 1998). 𝛱𝑘,𝑠 and 𝛱𝑘,𝑠𝜌 are source terms 
owing to the turbulent interaction between the two phases and the 
covariance of the fluctuations of the Eulerian solid velocity and fluid 
pressure gradient, respectively. Their closures are:
𝛱𝑘,𝑠 = 2𝛽(⟨𝛼𝑠⟩, ⟨𝒖𝑒⟩𝐸 , ⟨𝒖𝑠⟩𝑆 )[𝛹𝑘(𝑘𝑒𝑘𝑠)

1∕2 − 𝑘𝑠]

𝛱𝑘,𝑠𝜌 = − 𝐶𝜌𝐶𝑝⟨𝛼𝑒⟩⟨𝛼𝑠⟩(𝜌𝑠 − 𝜌𝑒)(⟨𝒖𝑒⟩𝐸 − ⟨𝒖𝑠⟩𝑆 ) ⋅ 𝒈 −𝛱𝑘,𝑒𝜌 (2.49)

The fourth term on the right-hand side of Eq. (2.48) quantifies the 
dissipation rate of the solid turbulent kinetic energy and appears in 
the Reynolds-averaged granular internal energy balance equation with 
opposite sign. The transport equation for the solid turbulent kinetic 
energy dissipation rate reads:

𝜌𝑠𝜕𝑡(⟨𝛼𝑠⟩𝜀𝑠) = − 𝜌𝑠𝜕𝒙 ⋅ ⟨𝛼𝑠⟩𝜀𝑠⟨𝒖𝑠⟩𝑆 + 𝜕𝒙 ⋅

[

𝜂𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) +
⟨𝛼𝑠⟩𝜇𝑡,𝑠
𝜎𝑠,𝜀

]

𝜕𝒙𝜀𝑠

−
𝜀𝑠
𝑘𝑠

(𝐶1𝑻 𝑠 ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 + 𝐶2⟨𝛼𝑠⟩𝜌𝑠𝜀𝑠) +𝛱𝜀,𝑠 + 𝐶5

𝜀𝑠
𝑘𝑠

𝛱𝑘,𝑠𝜌 (2.50)

The value of the constant 𝜎𝑠,𝜀 is taken to be 1.3 (Wilcox, 1998), and 
𝛱𝜀,𝑠, caused by the turbulent interaction between the phases, is given 
by: 
𝛱𝜀,𝑠 = 2𝐶3𝛽(⟨𝛼𝑠⟩, ⟨𝒖𝑒⟩𝐸 , ⟨𝒖𝑠⟩𝑆 )[𝛹𝜀(𝜀𝑒𝜀𝑠)

1∕2 − 𝜀𝑠] (2.51)

2.2.3. Closures for the OS model
Here, we present the closures for the undetermined terms in the 

OS model. The laminar stress tensors for the fluid and solid phases, 
𝑺𝑒,𝑙 and 𝑺𝑠,𝑙, are closed employing Eq. (2.19), with the solid phase 
properties given by Eqs. (2.20). The turbulent stress tensors for the two 
phases, 𝑺𝑒,𝑡 and 𝑺𝑠,𝑡, are calculated using the Boussinesq eddy viscosity 
hypothesis, given for the fluid by Eqs.  (2.32) and (2.33) (analogous 
equations hold for the solid), with the Reynolds and phase averages 
replaced by the Eulerian variables (e.g., ⟨𝒖𝑒⟩𝐸 is replaced by 𝒖𝑒). For the 
mean fluid–particle interaction force, in addition to the buoyancy force 
and the drag force calculated using Eq. (2.25), a turbulent dispersion 
force is directly introduced, given by: 
𝒇 𝑝,𝑇𝐷 = 𝛽𝒖𝑑𝑟 (2.52)

Alternative closures for the drift velocity distinct from Eq. (2.39) have 
been employed. One model, proposed by Burns et al. (2004), is given 
by: 

𝒖𝑑𝑟 = −
𝜇𝑒,𝑡

𝛼𝑒𝛼𝑠𝜌𝑒Pr𝑒𝑠
𝜕𝒙𝛼𝑠 (2.53)

As we can see, if Sc𝑒𝑠 replaces Pr𝑒𝑠, this model reduces to the first term 
on the right-hand side of Eq. (2.39)A. Another model, by Simonin and 
Viollet (1990), reads: 

𝒖𝑑𝑟 = −
𝐶𝑝,𝑇𝐷

Pr𝑒𝑠

( 𝜂𝑠
𝛼2
𝑠𝜌𝑠

+
𝜂𝑒
𝛼2
𝑒𝜌𝑒

)

𝜕𝒙𝛼𝑠 (2.54)

where 𝐶𝑝,𝑇𝐷 is an adjustable parameter, which should be calibrated but 
that usually, for lack of data, is taken to be equal to unity. In this work, 
we have conformed to this custom.

In the balance equation for the granular internal energy (Eq. (2.9)), 
𝐺 is neglected, while 𝑘𝜃 , 𝑆𝑐 and 𝑆𝑣 are closed by Eq. (2.22) through Eq. 
(2.24). Thus, the term involving the turbulent flux of granular internal 
energy is neglected; furthermore, as said, this approach incorrectly 
models the production of granular internal energy due to the deforma-
tion work (i.e., the third term on the right-hand side of Eq. (2.9)), first 
because it features 𝑺𝑠 instead of 𝑺𝑠,𝑙, and second because it neglects the 
deformation work done by the fluctuating part of 𝑺𝑠,𝑙 on the fluctuating 
mean velocity field 𝒖′′′𝑠 , i.e., the term ⟨𝛼𝑠⟩⟨(𝑺𝑠∕𝛼𝑠) ∶ 𝜕𝒙𝒖

′′′
𝑠 ⟩𝑆 in Eq. 

(2.42).
The turbulent properties, e.g., the turbulent kinetic energy, its dissi-

pation rate, and the turbulent viscosity, are generally calculated using 
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𝑘 − 𝜀 models, including the 𝑘 − 𝜀 per phase model, the 𝑘 − 𝜀 dispersed 
model, and the 𝑘 − 𝜀 mixture model. The 𝑘 − 𝜀 dispersed model holds 
only for dilute suspensions, while the mixture model version is suitable 
for suspensions that can be modeled as an effective fluid, and for which 
the mixture modeling approach holds (Jackson, 2000; Jamshidi et al., 
2019); in this case, the fluid and solid phases share the same turbulent 
properties as the mixture (e.g., 𝑘𝑚 = 𝑘𝑠 = 𝑘𝑒, where 𝑘𝑚 is the turbulent 
kinetic energy of the mixture). Conversely, the 𝑘 − 𝜀 per phase model 
is more broadly applicable, and its transport equations resemble those 
of the Fox model. Thus, here we adopt this model. For the fluid phase, 
the transport equation of the turbulent kinetic energy reads: 

𝜌𝑒𝜕𝑡(𝛼𝑒𝑘𝑒) =−𝜌𝑒𝜕𝒙 ⋅𝛼𝑒𝑘𝑒𝒖𝑒 +𝜕𝒙 ⋅𝛼𝑒

(

𝜇𝑒 +
𝜇𝑡,𝑒

𝜎𝑒,𝑘

)

𝜕𝒙𝑘𝑒 −𝑺𝑒,𝑡 ∶ 𝜕𝒙𝒖𝑒 −𝛼𝑒𝜌𝑒𝜀𝑒 +𝛱𝑘,𝑒

(2.55)

with 𝜇𝑡,𝑒 given by Eq. (2.33). As in Eq. (2.44), 𝛱𝑘,𝑒 accounts for the 
turbulent interaction between the phases; it is generally closed via 
the Simonin et al. (1990) model: 

𝛱𝑘,𝑒 = − 𝛼𝑒𝛽𝒖𝑑𝑟 ⋅ (𝒖𝑒 − 𝒖𝑠) (2.56)

where 𝒖𝑑𝑟 is closed with Eq. (2.53) or (2.54). Note that Eq. (2.55) does 
not account for the terms 𝛱𝑘,𝑒𝑝 and 𝛱𝑘,𝑒𝜌, which feature in Eq. (2.44). 
The transport equation for 𝑘𝑠 is similar and reads: 

𝜌𝑠𝜕𝑡(𝛼𝑠𝑘𝑠) =− 𝜌𝑠𝜕𝒙 ⋅ 𝛼𝑠𝑘𝑠𝒖𝑠 + 𝜕𝒙 ⋅
(

𝜂𝑠 +
𝛼𝑠𝜇𝑡,𝑠

𝜎𝑠,𝑘

)

𝜕𝒙𝑘𝑠 −𝑺𝑠,𝑡 ∶ 𝜕𝒙𝒖𝑠 − 𝛼𝑠𝜌𝑠𝜀𝑠 +𝛱𝑘,𝑠

(2.57)

with: 

𝛱𝑘,𝑠 = − 𝛼𝑠𝛽𝒖𝑑𝑟 ⋅ (𝒖𝑒 − 𝒖𝑠) (2.58)

Finally, the transport equations for 𝜀𝑒 and 𝜀𝑠 read:

𝜌𝑒𝜕𝑡(𝛼𝑒𝜀𝑒) = − 𝜌𝑒𝜕𝒙 ⋅ 𝛼𝑒𝜀𝑒𝒖𝑒 + 𝜕𝒙 ⋅ 𝛼𝑒

(

𝜇𝑒 +
𝜇𝑡,𝑒
𝜎𝑒,𝜀

)

𝜕𝒙𝜀𝑒

−
𝜀𝑒
𝑘𝑒

(𝐶1𝑺𝑒,𝑡 ∶ 𝜕𝒙𝒖𝑒 + 𝐶2𝛼𝑒𝜌𝑒𝜀𝑒) +𝛱𝜀,𝑒 (2.59)

𝜌𝑠𝜕𝑡(𝛼𝑠𝜀𝑠) = − 𝜌𝑠𝜕𝒙 ⋅ 𝛼𝑠𝜀𝑠𝒖𝑠 + 𝜕𝒙 ⋅
(

𝜂𝑠 +
𝛼𝑠𝜇𝑡,𝑠
𝜎𝑠,𝑘

)

𝜕𝒙𝜀𝑠

−
𝜀𝑠
𝑘𝑠

(𝐶1𝑺𝑠,𝑡 ∶ 𝜕𝒙𝒖𝑠 + 𝐶2𝛼𝑠𝜌𝑠𝜀𝑠) +𝛱𝜀,𝑠 (2.60)

with: 

𝛱𝜀,𝑒 = 𝐶3

𝜀𝑒
𝑘𝑒

𝛱𝑘,𝑒 ; 𝛱𝜀,𝑠 = 𝐶3

𝜀𝑠
𝑘𝑠

𝛱𝑘,𝑠 (2.61)

where the closures for these source terms, related to the turbulent 
interaction between the phases, have been also advanced by Simonin 
et al. (1990).

3. Methodology

We have presented the balance equations and the closures for the 
Fox and OS models. The Fox model, based on the Reynolds averaging 
method, is theoretically robust, and so it should yield good results 
for multiphase turbulent flows, and in particular for liquid–particle 
turbulent flows in agitated vessels — provided appropriate closures are 
adopted. In contrast, the OS model is unjustified theoretically, but it is 
widely applied and often gives satisfactory results. This motivates our 
work, which aims to clarify the reason for this by comparing the results 
of the two models, assessing them against experimental data, and by 
evaluating the importance of key terms featuring (or being neglected) 
in their balance equations.
58 
3.1. Analysis of the models

To facilitate the comparison between the two models, in the Sup-
plementary Information we have written the balance equations in 
closed form, directly including the closures presented in Section 2.2. 
In these equations, if in the OS model the Eulerian variables are 
replaced with their corresponding Reynolds and phase averages, the 
resulting equations are similar to those in the Fox model. But the latter 
does feature additional terms. For instance, the Reynolds-averaged 
dynamical equations contain source terms related to the buoyancy force 
and arising from the covariance of the fluctuations of the solid phase 
volume fraction and the gradient of the fluid mean pressure (Eqs. (2.35) 
and (2.36)). Moreover, as discussed, the Reynolds-averaged granular 
internal energy balance equation features a turbulent convective term 
and a source term related to the dissipation of turbulent kinetic energy, 
while the balance equations for the turbulent kinetic energy and its rate 
of dissipation involve (for both phases) various sources terms, such as 
𝛱𝑘,𝑒𝑝, 𝛱𝑘,𝑒𝜌 and 𝛱𝑘,𝑠𝜌, that are missing in the corresponding balance 
equations of the OS model. Furthermore, in the Reynolds-averaged 
granular internal energy balance equation (Eq. (2.17), but see also Eq. 
(2.42)), the OS model expresses 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 in terms of 
the total solid stress tensor – 𝑺𝑠,𝑙 + 𝑺𝑠,𝑡 – instead of the laminar part 
only, which is used in the Fox model. The omission of all the additional 
terms and the use of an incorrect solid stress tensor in Eq. (2.17) may 
impact the simulation results. These issues are explored in the following 
sections.

Another distinction between the Fox and OS models lies in the 
closures adopted for the drift velocity and the turbulent interaction 
terms. For 𝒖𝑑𝑟, the first model employs the closure reported by Fox 
(2014), given by Eq. (2.39), while the OS model generally employs 
those by Burns et al. (2004) and Simonin and Viollet (1990), given 
by Eqs. (2.53) and (2.54), respectively. For the turbulent interaction 
terms, the Fox model uses Eqs. (2.45)A, (2.47), (2.49)A and (2.51), 
whilst the OS model uses those by Simonin and Viollet (1990), given by 
Eqs. (2.56), (2.58) and (2.61). Nevertheless, the choice of any of these 
closures is acceptable, regardless of the adopted model; for instance, 
nothing prevents us from using in the Fox model the drift velocity 
closure from Burns et al. (2004) or the closures for the turbulent 
interaction terms by Simonin and Viollet (1990). The same is true for 
the drag force closures, such as the HG model and SB model: all of 
them are acceptable, thus one should select those that yield the most 
accurate results. In the next sections, we also assess the impact of these 
closures to guide their selection in multiphase flow modeling.

3.2. Experimental system and operating conditions

To validate the results of the models, we use the experimental data 
of Guida et al. (2010), because they cover a broad range of solid 
volume fractions (2.5%–23.6%) and provide reasonably detailed velocity 
and volume fraction spatial profiles. The experiments were conducted 
in a flat-bottom cylindrical vessel with an open top and four baffles. 
The vessel diameter 𝑇  was 288 mm, the width of the baffles 𝑊  was 
0.1𝑇 , and the height of the suspension in the vessel 𝐻 was equal 
to the vessel diameter 𝑇 . The impeller, a 6-blade 45◦ pitched blade 
turbine, operated in a down-pumping mode, its off-bottom clearance 
𝐶, diameter 𝐷 and height 𝐿 being equal to 0.25𝑇 , 0.5𝑇  and 0.1𝑇 , 
respectively. The fluid density and viscosity were 1150 kg∕m3 and 0.001 
Pa ⋅ s; the spherical particles had size between 2.85 to 3.30 mm, with 
a density of 2485 kg∕m3. The experiments were performed at four 
mean solid volume fractions, 𝛼𝑠,0 = 2.5%, 5.2%, 10.4%, 23.6%, with four 
corresponding impeller rotation speeds, 𝑁 = 6.00, 6.75, 8.00, 9.83 rounds 
per second (rps), respectively. We consider only the experiments with 
the smallest and largest solid volume fractions (i.e., 𝛼 = 2.5%, 23.6%).
𝑠,0
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3.3. Computational setup

For flow problems involving agitated vessels, the sliding mesh (SM) 
and the multiple reference frame (MRF) numerical methods are com-
monly used. In baffled vessels, the relative position between the im-
peller and the baffles changes over time, so the flow is always transient. 
The SM method offers accurate solutions for these problems but is 
extremely demanding computationally and so impractical. The MRF 
method is a convenient alternative that yields approximate, but often 
sufficiently good, solutions at a far lower computational cost. In this 
study, we verify the applicability of this method for our problem of 
interest by comparing its results to those of the SM method. The 
simulations are performed in the computational fluid dynamics (CFD) 
software Fluent. Then, for further simulations, we adopt the MRF 
method. The reference moving zone has a radius of 94 mm and its 
lower and upper boundaries are located at 37 mm and 107 mm from 
the bottom of the vessel. Furthermore, we take the particle diameter to 
be 3 mm and the restitution coefficient to be 0.95 (Wadnerkar et al., 
2016). Owing to the presence of baffles, at the top of the vessel the 
gas–liquid interface is almost flat; hence, we take this boundary to be 
flat and therein require the shear stress for both the liquid and solid 
phases to be zero. This allows disregarding the flow in the gas phase, 
simplifying the simulations considerably. The surfaces of the rod and 
impeller are treated as rotating moving walls, while the remaining walls 
are treated as stationary; on all the walls, no-slip boundary conditions 
are applied to both phases. Finally, we assume that initially the solid 
is uniformly distributed in the flow domain.

3.4. Work plan

Initially, adopting the Fox model outlined in Section 2.1.2 with the 
closures presented in Section 2.2.2 (with the drag coefficient calculated 
via the HG model) and the MRF method, we perform a mesh indepen-
dence analysis. Here, the values of the parameters 𝐶𝑔 and 𝐶𝑝 (featuring 
in Eqs. (2.36) and (2.39)) are set to zero. Once the appropriate mesh is 
identified, we employ it for all the other simulations. After, we use the 
SM method to verify the applicability of the MRF method, running all 
the subsequent simulations with the latter. Then, we vary 𝐶𝑔 and 𝐶𝑝
to evaluate their effect and obtain their values. We go on to study the 
impact of the closures discussed in Section 2.2.2 and select those that 
yield the best results, concluding the work by analyzing the differences 
between the Fox and OS models.

4. Results and discussion

4.1. Mesh independence

To ensure computational accuracy, we consider three meshes with 
781,920, 1,154,083 and 1,627,825 cells to simulate the experiment 
of Guida et al. (2010) involving the suspension with a mean solid 
volume fraction of 23.6%. Fig.  1a reports the axial profiles of the 
azimuthally and radially-averaged solid volume fraction (or, equiva-
lently, the solid volume fraction averaged over horizontal planes at 
various heights), normalized by the mean solid volume fraction 𝛼𝑠,0. 
In addition, in the Supplementary Information, we report the radial 
profiles of the normalized azimuthally-averaged solid volume fraction 
at several heights 𝑧 and of the normalized (by the speed at the tip of the 
blade 𝑢𝑡𝑖𝑝) azimuthally-averaged velocity components of both phases at 
the height 𝑧 = 0.2𝐻 (the lower edge of the impeller blade). As we see, 
changing from the mesh with 1,154,083 cells to that with 1,627,825 
cells leads to minimal changes in simulation results. Consequently, for 
all the subsequent simulations, we employ the mesh with 1,154,083 
cells.
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4.2. SM method versus MRF method

The simulation described in Section 4.1 adopted the MRF method; 
we now repeat it using the SM method. It is found that, after sev-
eral impeller rotations, the simulation results (i.e., the profiles of the 
spatially-averaged quantities mentioned before) depend on time very 
mildly. Even so, in Fig.  1b we report the results averaged over three 
consecutive seconds; time-averaged radial profiles of the solid volume 
fraction and of the velocity components are shown in the Supplemen-
tary Information. The results from the SM and MRF methods differ 
negligibly, validating the applicability of the MRF method for future 
simulations.

4.3. Sensitivity analysis

We now conduct a sensitivity analysis to see how 𝐶𝑔 and 𝐶𝑝 affect 
the numerical results and to find suitable values for these parameters. 
First, we set 𝐶𝑝 to zero and change 𝐶𝑔 between 0 and 0.9. As Fig.  1c 
indicates, setting 𝐶𝑔 = 0 produces simulation results that align more 
closely with the experimental axial profile of the solid volume fraction. 
As shown in the Supplementary Information, this is also generally 
true for the radial solid volume fraction profiles at different heights 
along the axis of the vessel. While setting 𝐶𝑔 = 0.9 slightly improves 
the prediction of the radial profiles of the velocity components, this 
improvement is localized at the specific plane 𝑧 = 0.2𝐻 , not being gen-
erally observed. Since the solid volume fraction distribution depends on 
the velocity distribution, the more accurate predictions of the axial and 
radial profiles of the solid volume fraction when 𝐶𝑔 = 0 suggest a more 
accurate velocity prediction throughout the vessel. So, we set 𝐶𝑔 = 0. 
Now, we vary the value of 𝐶𝑝 between zero and unity. As shown in 
Fig.  1c, 𝐶𝑝 = 0 yields better results for the axial solid volume fraction 
profile. As seen in the Supplementary Information, in general this is 
also true for the radial profiles of solid volume fraction and velocity 
components. Thus, we set 𝐶𝑝 = 0.

4.4. Comparison of different closures

As discussed, to effectively compare the Fox and OS models, we 
must employ in both the same closures. In doing this, we should select 
the closures that yield the most accurate predictions. In this section, 
we aim to do this, using the Fox model and investigating how different 
closures for the drift velocity, turbulent interaction terms and drag 
coefficient affect the numerical results. The closures giving the most 
accurate results are then used for subsequent analysis. The simulated 
cases are outlined in Table  1. Case 1, Case 2 and Case 3 differ in the 
closure for the drift velocity, Case 4 and Case 1 in the closure for the 
turbulent interaction terms, while Case 5 and Case 1 in the closure for 
the drag coefficient.

4.4.1. Low mean solid volume fraction
First, we consider the case with 𝛼𝑠,0 = 2.5%. Fig.  2 compares the axial 

profiles of the solid volume fraction, averaged over horizontal planes, 
found numerically with the experimental profile. The corresponding 
radial profiles at various heights are given in the Supplementary In-
formation. The experimental data indicate that in the vertical direction 
the particles are distributed non-uniformly, their volume fraction being 
higher below the impeller and decreasing gradually in the upper vessel 
region. As Fig.  2a indicates, the three drift velocity closures lead to 
identical results, which closely align with the experimental values in 
the upper region of the vessel and overestimate them near the impeller. 
Based on these results, we do not have a specific closure for the drift 
velocity to recommend. As shown in Fig.  2b, the overestimation is more 
pronounced when the turbulent interaction terms are modeled with the 
closure of Simonin et al. (1990), while, as shown in Fig.  2c, using the SB 
model instead of the HG model reduces the overestimation. Moreover, 
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Fig. 1. Comparison of the axial profiles of the normalized azimuthally and radially-averaged solid volume fraction with various (a) computational meshes, (b) computational 
methods and (c) values of the parameters 𝐶𝑔 and 𝐶𝑝 for 𝛼𝑠,0 = 23.6%.
Table 1
Cases for analyzing the effect of closures.
 Drift velocity Turbulent interaction terms Drag coefficient 
 Case 1 Model by Fox (2014) Model by Fox (2014) HG model  
 Case 2 Model by Burns et al. (2004) Model by Fox (2014) HG model  
 Case 3 Model by Simonin and Viollet (1990) Model by Fox (2014) HG model  
 Case 4 Model by Fox (2014) Model by Simonin et al. (1990) HG model  
 Case 5 Model by Fox (2014) Model by Fox (2014) SB model  
* For the drift velocity, the closure by Fox (2014) refers to Eq. (2.39), that by Burns et al. (2004) to Eq. (2.53), while that 
by Simonin and Viollet (1990) to Eq. (2.54). The closure for the turbulence interaction terms by Fox (2014) refers to Eqs. 
(2.45)A, (2.47), (2.49)A and (2.51), while the closure by Simonin et al. (1990) refers to Eqs. (2.56), (2.58) and (2.61). The 
HG and SB models refer to Eqs. (2.26) and (2.28), respectively.
Fig. 2. Comparison between simulation results using different closures and experimental data of the axial profiles of the normalized azimuthally and radially-averaged solid volume 
fractions for 𝛼𝑠,0 = 2.5%.
the SB model slightly improves the numerical results across the whole 
vessel.

Fig.  3 shows the radial profiles of the normalized azimuthally-
averaged velocity components at the height 𝑧 = 0.2𝐻 for both the fluid 
and solid phases, comparing experimental data to simulation results. 
The former indicate that the axial velocity is predominant, surpassing 
the moderate tangential velocity and the minimal radial velocity. This 
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pattern is influenced by the axially-dispersing impeller — a pitched 
blade down-pumping turbine. As the radial coordinate increases in the 
impeller plane, the magnitude of the axial velocity initially increases 
(the flow being directed downwards), for the blade velocity is propor-
tional to the radial coordinate, then reduces (where the impeller ends), 
and finally rises near the tank wall (the flow being directed upwards). 
This flow pattern, correctly captured by the simulations, is attributed 
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Fig. 3. Comparison between simulation results using different closures and experimental data of the radial profiles of the normalized azimuthally-averaged velocity components 
of (a) the liquid phase and (b) the solid phase at the horizontal plane 𝑧 = 0.2𝐻 for 𝛼𝑠,0 = 2.5%.
Fig. 4. Comparison between simulation results using different closures and experimental data of the axial profiles of the normalized azimuthally and radially-averaged solid volume 
fraction for 𝛼𝑠,0 = 23.6%.
to the formation of a flow loop close to the impeller (Guida et al., 
2010). The tangential and radial components of the velocity vector 
mildly increase with the radial coordinate until peaking at the blade 
tip; this is followed by a slight decline due to the absence of momentum 
contributions from the impeller. These velocity profiles are also well 
captured numerically. As Fig.  3 shows, for all the cases considered in 
Table  1, and for both phases, the results are nearly identical. For the 
liquid phase, as seen in Fig.  3a, the predicted axial and radial velocities 
align well with the experimental data, while a mild overestimation 
in the tangential velocity is observed near the blade tip. Similarly, 
as shown in Fig.  3b, for the solid phase only minor differences are 
found between the predictions and the experimental data of the velocity 
components.

4.4.2. High mean solid volume fraction
We now focus on the case with a higher solid volume fraction, 

𝛼𝑠,0 = 23.6%. Fig.  4 reports the solid volume fraction axial profiles, 
comparing numerical results to experimental data. The corresponding 
radial profiles at several heights are presented in the Supplementary 
Information. As observed, the distribution of the solid volume fraction 
is qualitatively similar to that of the lower volume fraction case. As 
seen in Fig.  4a, again the three drift velocity closures lead to almost the 
same predictions. Although there is a slight underestimation of the solid 
volume fraction near the vessel top and just below the impeller, as well 
as a mild overestimation just above the impeller, the overall agreement 
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between the simulation results and the experimental data is quite good. 
As shown in Fig.  4b, also now using the closures by Simonin et al. 
(1990) for the turbulent interaction terms increases the discrepancy 
between the predictions and the experimental data. However, as seen in 
Fig.  4c, at the higher concentration of 𝛼𝑠,0 = 23.6% using the SB closure 
for the drag coefficient does not affect significantly the prediction of 
the solid volume fraction profile.

Fig.  5 reports simulation results and experimental data for the 
velocity component radial profiles for both phases at the horizontal 
plane 𝑧 = 0.2𝐻 . Qualitatively, the experimental data are similar to 
those for the case where 𝛼𝑠,0 = 2.5%. For the liquid phase, the velocity 
profiles generated by the various closures are relatively close to each 
other; compared to the experimental data, the magnitude of the axial 
velocity is underestimated, whilst the magnitudes of the radial and 
tangential velocities are overpredicted for most radial locations. But 
these differences are minor (also considering that for the experimental 
data no error bars are available), so the overall agreement between 
simulation results and experimental data is acceptable. For the solid 
phase, the drift velocity closures lead to almost the same results. 
Furthermore, using different closures for the turbulent interaction terms 
affects the tangential velocity minimally, while minor deviations are 
observed for the radial and axial velocities. Specifically, the closure 
by Simonin et al. (1990) reduces the radial velocity, improving the 
agreement with the experimental data; but this closure is not superior, 
because it results in a solid volume fraction distribution that deviates 
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Fig. 5. Comparison between simulation results using different closures and experimental data of the radial profiles of the normalized azimuthally-averaged velocity components 
of (a) the liquid phase and (b) the solid phase at the horizontal plane 𝑧 = 0.2𝐻 for 𝛼𝑠,0 = 23.6%.
more from the experimental data (see Fig.  4b). Finally, switching from 
the HG model to the SB model has only a marginal effect on the axial 
and tangential velocities, but it reduces the radial velocity, enhancing 
the agreement with the experimental data.

4.4.3. Conclusions of the closure analysis
The closures for the drift velocity yield nearly identical predictions, 

while those for the turbulent interaction terms used in the Fox model 
and the SB model for the drag coefficient tend to generate results that 
align more closely with the experimental data. Accordingly, in what 
follows we employ the closures applied in Case 5. Moreover, the results 
of this analysis suggest that the Fox model can describe liquid–particle 
turbulent flows in agitated vessels with sufficient accuracy.

4.5. Fox model versus OS model — Part 1

In this section, we explore the impact of the differences between 
the Fox model and the OS model, focusing on the additional terms 
generated by the Reynolds averaging process, which the Fox model 
considers and the OS model neglects, and on the stress tensor adopted 
in the term 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 featuring in the Reynolds-averaged 
granular internal energy balance equation (Eq. (2.17), but see also Eq. 
(2.42)). As discussed, the stress tensor that should be used in this term is 
the laminar part of the total solid stress tensor, but various researchers 
have instead used the total solid stress tensor, including the turbulent 
part. To assess the influence of these factors, we consider only one 
term at a time; the cases considered are reported in Table  2. As in 
the Fox model we set 𝐶𝑝 = 0 (see Section 4.3), in this analysis we do 
not consider the terms generated by the Reynolds-averaging process 
that involve this parameter, such as the term ⟨𝛼′𝑠𝜕𝒙𝑝′𝑒⟩ (related to the 
buoyancy force; see Eqs. (2.35) and (2.36)) or the part of 𝛱𝑘,𝑠𝜌 related 
to 𝐶𝑝 (see Eq. (2.49)). Here, all the simulations are performed using the 
Fox model.

4.5.1. Low mean solid volume fraction
First, we analyze the case with 𝛼𝑠,0 = 2.5%. Fig.  6 reports the 

experimental and numerical axial profiles of the normalized solid vol-
ume fraction averaged over horizontal planes. The corresponding radial 
profiles at several heights along the axis of the vessel are shown in 
the Supplementary Information. The radial profiles of the normalized 
velocity components are reported, for both phases, in Fig.  7. Cases 6, 
8 and 9 yield results that are nearly identical to those of Case 5 (the 
reference case); i.e., neglecting the turbulent flux of granular internal 
energy or the terms 𝛱𝑘,𝑒𝑝, 𝛱𝑘,𝑒𝜌 and 𝛱𝑘,𝑠𝜌 does not alter the profiles 
of the solid volume fraction and velocity components. Also Case 10 
gives results that are very close to those of the reference case. But when 
the granular internal energy source is excluded (Case 7), while minor 
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Fig. 6. Effects of (a) the additional terms in the Fox model and (b) the solid stress 
tensor used in the term 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 featuring in the Reynolds-averaged 
granular internal energy balance equation on the simulation results of the axial 
profiles of the normalized azimuthally and radially-averaged solid volume fractions 
for 𝛼𝑠,0 = 2.5%.

changes are observed in the velocity profiles at the plane 𝑧 = 0.2𝐻 , no-
table changes occur in the predicted solid volume fraction distribution; 
in particular, particles accumulate near the bottom of the vessel, whilst 
in the remaining part, especially in the area just above the impeller, 
the solid volume fraction reduces, leading to an underestimation of 
the measured values. However, the deviation between predictions and 
experimental data remains acceptable.

4.5.2. High mean solid volume fraction
In this section, we focus on the case with a higher particle concen-

tration, 𝛼𝑠,0 = 23.6%. Figs.  8 and 9 report the usual experimental and 
numerical profiles for the cases considered in Table  2. Radial profiles 
of the solid volume fraction at several heights along the vessel axis 
are shown in the Supplementary Information. Similar to the case with 
𝛼𝑠,0 = 2.5%, Cases 6, 8, 9 and 10 yield nearly identical results to those of 
the reference case. In contrast, neglecting the source term in Eq. (2.17) 
increases the solid volume fraction near the top and bottom of the 
vessel, reducing it in the middle; while this leads to a better agreement 
with the experimental data away from the bottom, an overestimation 
near the bottom appears. Neglecting the source term alters negligibly 
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Table 2
Cases used in the analysis of the differences between the Fox and OS models.
 Turbulent flux Source 𝛱𝑘,𝑒𝑝 𝛱𝑘,𝑒𝜌 and 𝛱𝑘,𝑠𝜌 Solid stress tensor 
 Case 5 ✓ ✓ ✓ ✓ 𝐿  
 Case 6 × ✓ ✓ ✓ 𝐿  
 Case 7 ✓ × ✓ ✓ 𝐿  
 Case 8 ✓ ✓ × ✓ 𝐿  
 Case 9 ✓ ✓ ✓ × 𝐿  
 Case 10 ✓ ✓ ✓ ✓ 𝐸  
* ‘‘Turbulent flux’’ and ‘‘Source’’ refer to the turbulent flux of granular internal energy (Eq. (2.40)) and to 
the generation of granular internal energy owing to the dissipation of solid turbulent kinetic energy (Eq. 
(2.43)), respectively, in the Reynolds-averaged granular internal energy balance equation (Eq. (2.17)). 𝛱𝑘,𝑒𝑝
is the source term owing to the gradient of the Reynolds-averaged fluid pressure (Eq. (2.45)), while 𝛱𝑘,𝑒𝜌 and 
𝛱𝑘,𝑠𝜌 are the source terms owing to the covariance of the fluctuations of the Eulerian fluid velocity and fluid 
pressure gradient (Eqs. (2.45) and (2.49)). ✓indicates that these terms are included, while ×indicates that 
they are excluded. ‘‘Solid stress tensor’’ refers to the stress tensor used in the term 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆
featuring in the Reynolds-averaged granular internal energy balance equation (see also Eq. (2.42)), where 
𝐸 denotes the use of the entire solid stress tensor, while 𝐿 denotes the use of the laminar part only.
Fig. 7. Effects of the differences between the Fox model and the OS model on the simulation results of the radial profiles of the normalized azimuthally-averaged velocity 
components of (a) the liquid phase and (b) the solid phase at the horizontal plane 𝑧 = 0.2𝐻 for 𝛼𝑠,0 = 2.5%.
Fig. 8. Effects of (a) the additional terms in the Fox model and (b) the solid stress 
tensor used in the term 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ∶ 𝜕𝒙⟨𝒖𝑠⟩𝑆 featuring in the Reynolds-averaged 
granular internal energy balance equation on the simulation results of the axial 
profiles of the normalized azimuthally and radially-averaged solid volume fractions 
for 𝛼𝑠,0 = 23.6%.
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the velocity components of the liquid phase and the axial and tangential 
velocity components of the solid phase, but reduces the solid-phase 
radial velocity component, overestimating less the experimental data.

In light of these results, it is clear that – at least for the cases 
herein examined – only the granular internal energy source term af-
fects the simulation results appreciably. However, this change is not 
significant enough to alter the overall simulation accuracy, and the 
alignment between experimental data and simulation results remains 
generally acceptable. Nevertheless, this source term is quite important 
conceptually, and so it should be accounted for.

4.6. Fox model versus OS model — Part 2

Now, we compare the results of the Fox model with those of the OS 
model. In the Fox model, we employ the closures of Case 5; in the OS 
model, in line with what we discussed in Sections 2 and 3, the turbulent 
flux and source term of granular internal energy, as well as the terms 
𝛱𝑘,𝑒𝑝, 𝛱𝑘,𝑒𝜌 and 𝛱𝑘,𝑠𝜌, are neglected, while the term 𝑺𝑠(⟨𝛼𝑠⟩, ⟨𝜃𝑠⟩𝑆 ) ∶
𝜕𝒙⟨𝒖𝑠⟩𝑆 is replaced with (𝑺𝑒,𝑙 + 𝑺𝑒,𝑡) ∶ 𝜕𝒙𝒖𝑠. According to the analysis 
in Section 4.5, based on the Fox model, only the granular internal 
energy source term impacts the model predictions, so we expect that 
the predictions of the OS model should be close to those of Case 
7, where the granular internal energy source term is omitted in the 
Fox model. As we can see in Figs.  10 through 12, this expectation is 
confirmed: the OS model and the Fox model with the setup of Case 
7 yield nearly identical predictions for the axial profiles of the solid 
volume fraction and the radial profiles of the velocity components. 
This is also true for the solid volume fraction radial profiles reported 
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Fig. 9. Effects of the differences between the Fox model and the OS model on the simulation results of the radial profiles of the normalized azimuthally-averaged velocity 
components of (a) the liquid phase and (b) the solid phase at the horizontal plane 𝑧 = 0.2𝐻 for 𝛼𝑠,0 = 23.6%.
Fig. 10. Comparisons of the numerical axial profiles of the normalized azimuthally 
and radially-averaged solid volume fraction obtained from the Fox and OS models for 
(a) 𝛼𝑠,0 = 2.5% and (b) 𝛼𝑠,0 = 23.6%.

in the Supplementary Information. This implies that the discussion of 
Case 7 in Section 4.5 applies to the OS model as well. We conclude 
that – at least for the cases considered in this work – the difference in 
predictions between the Fox and OS models is solely due to the granular 
internal energy source term featuring in Eq. (2.17). But this deviation 
is not enough to affect the numerical results considerably. However, 
although the OS model can produce desired results, its derivation, as 
discussed in Section 2.1.3, remains theoretically unjustified. Moreover, 
we should keep in mind that our conclusions are valid only for the 
cases herein analyzed; nothing guarantees that for other systems the 
terms neglected or incorrectly expressed in the OS model affect the 
results negligibly. Therefore, in general we do recommend considering 
these terms. Their implementation in a commercial solver is reasonably 
simple, but accounting for them does increase the computational time; 
for instance, the addition of the granular internal energy source term 
alone increases it by over 50%. To optimize the computational re-
sources whilst ensuring accuracy, we suggest assessing the importance 
of each term under the conditions of interest, employing the approach 
demonstrated in this work.
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5. Conclusions

In this work, we critically analyzed turbulent multifluid models de-
rived from the Eulerian–Eulerian equations of change, focusing on their 
application for simulating liquid–particle turbulent flows in agitated 
vessels. In particular, we investigated the Fox and OS models. Obtained 
by Reynolds-averaging the Eulerian–Eulerian equations, the Fox model 
is theoretically robust. In contrast, the OS model lacks theoretical 
justification, as it is not derived rigorously via averaging but features 
terms that are just added to account for the main effects of turbulence. 
Despite this, this model is widely adopted and often produces favorable 
results. Our analysis reveals that, when the Eulerian variables in the 
OS model are replaced with their corresponding Reynolds or phase 
averages, the differences between the two models mainly arise from 
additional terms (generated by the averaging process) specific to the 
Fox model and from the solid stress tensor used to express the source 
term ⟨𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠⟩ in the Reynolds-averaged granular internal energy 
balance equation.

To investigate the effects of these differences and compare the 
predictions of the Fox and OS models, we first adopted the Fox model 
to assess the effect of various closures for the undetermined terms 
featuring in the model. Our findings indicate that the closures that we 
considered for the drift velocity yield nearly identical results for the 
volume fraction and the velocity components profiles. On the other 
hand, the closures for the turbulent interaction terms and the drag 
coefficient influence the results. In particular, the closures proposed 
by Fox (2014) for the turbulent interaction terms and by Syamlal 
et al. (1993) for the drag coefficient yield results that better align with 
experimental data.

Adopting the closures that yield better predictions, we then con-
ducted simulations to evaluate the impact of the differences between 
the Fox model and the OS model. Our analysis showed that some of the 
additional terms present in the Fox model (arising from the Reynolds 
averaging process) and the solid stress tensor used in the source term 
⟨𝑺𝑠 ∶ 𝜕𝒙𝒖𝑠⟩ in the Reynolds-averaged granular internal energy balance 
equation affect the results minimally, while the granular internal en-
ergy source term related to the dissipation of solid turbulent kinetic 
energy impacts the results appreciably. Due to the small influence of the 
other factors, the differences in the predictions between the Fox and OS 
models are attributed to this source term. But these differences are not 
significant enough to reduce the overall accuracy of the simulations. 
This observation might explain why, even if theoretically unjustified, 
the OS model often gives satisfactory results.
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Fig. 11. Comparison of the numerical radial profiles of the normalized azimuthally-averaged velocity components of (a) the liquid phase and (b) the solid phase at the horizontal 
plane 𝑧 = 0.2𝐻 obtained from the Fox and OS models for 𝛼𝑠,0 = 2.5%.
Fig. 12. Comparison of the numerical radial profiles of the normalized azimuthally-averaged velocity components of (a) the liquid phase and (b) the solid phase at the horizontal 
plane 𝑧 = 0.2𝐻 obtained from the Fox and OS models for 𝛼𝑠,0 = 23.6%.
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Appendix A. Supplementary data

In the first section of the supplementary material document, to 
facilitate the comparison between the Fox and OS models, we report 
their balance equations in closed form, directly including the closures 
given in Section 2.2 of the main article. In the second section, we report 
additional simulation results. First, we report those related to the grid 
65 
independence analysis. Then, we compare the predictions of the SM and 
MRF methods in terms of radial profiles of solid volume fraction and 
velocity components. This is followed by a sensitivity analysis on the 
parameters 𝐶𝑔 and 𝐶𝑝 introduced in Section 2.2.2 of the main article. In 
the final part of the document, we present simulation and experimental 
results related to solid volume fraction radial profiles for the cases 
reported in Tables  1 and 2 of the main article.

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.cherd.2025.05.023.
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