
Behind the Hot Fix: Demystifying Hot Fixing Industrial Practices
at Zühlke and Beyond

Carol Hanna
1
, David Elliman

2
, Wolfgang Emmerich

1,2
, Federica Sarro

1
, Justyna Petke

1

1
University College London, United Kingdom

2
Zühlke Engineering Ltd, United Kingdom

Abstract
Rushing a hot fix and having it fail can severely damage a soft-

ware company’s reputation, impacting user satisfaction and future

business opportunities. Ensuring best practices for emergency bug

handling is critical, yet the process remains elusive in the industry.

We are the first to conduct a study to gain insights on hot fixing

industrial practices. We surveyed 24 employees of Zühlke, a mid-

sized IT company specializing in providing software engineering

services to clients from different domains. We also surveyed 136

software practitioners from a wide range of companies, roles, and

geographical areas through an online questionnaire, most having

over 10 years of professional experience. Among others, we found

that terminology around hot fixing is inconsistent; 56.7% of ques-

tionnaire participants stated automated tooling exists for hot fix

deployment, but only 25% responded that some tooling is available

for hot fix generation; Zühlke employees reported significantly

faster hot fix resolution times, attributed to their strong emphasis

on agile practices, averaging hours vs. days in other companies.

Based on our study’s results we offer key recommendations for

both software engineering researchers and industry practitioners.

CCS Concepts
• Software and its engineering→Maintaining software.

Keywords
Hot fix, Hot patch

1 Introduction
We have observed the effect that critical software issues can have

globally. Just this year, the world came to a halt when a software

bug in the CrowdStrike security software affected Microsoft sys-

tems [13, 23, 37]. This severe IT outage affected airports, healthcare

services, banks, government services, stock markets, and many

other sectors [26]. Although this incident gained massive media at-

tention [9], it was not an overly surprising occurrence for industry

professionals. As we know, it is common that software bugs end up

in production. There is no way to guarantee that we are shipping

completely bug-free code, since testing is incomplete, deployment

deadlines are tight, and systems are growing larger and larger.

When critical software bugs are discovered in production, gener-

ating a fix for them becomes time-sensitive. These bugs can affect

important stakeholders, a large number of users, system security,

important functionality, etc. The activity of fixing these time-critical

bugs is referred to as hot fixing, although precise definitions in the

literature vary [16]. Here we use the term hot fix to mean “an im-

provement to a specific time-critical issue deployed to a software

system in production”. Hot fixes aim to mitigate the symptoms of

the critical issue at hand as quickly as possible and are not necessar-

ily root-cause fixes. Due to time limitations, these hot fixes might

also not be as comprehensively tested as traditional bug fixes. At

the same time, their validity is equally, if not more, important to

ensure no further reputational damage falls back on the enterprise.

Deploying a hot fix can sometimes backfire, causing more dis-

ruption than the original issue. One notable case where a hot fix de-

ployment went wrong involved the video game “No Man’s Sky” [2].

Shortly after its release, the developers at Hello Games deployed

a hot fix to address several critical bugs and performance issues.

However, the hot fix introduced new problems, including game

crashes and corrupted save files [3]. This led to significant frustra-

tion among players and required additional patches to resolve the

new issues. This incident, among many others, stresses the need

for careful testing and deployment of hot fixes.

In this paper, we aim to make a stride towards understanding

how software professionals handle hot fixing scenarios today. We

investigate the current industry standards around this topic, the

bottlenecks (if any), and what can be done to optimize hot fixing as

a practice in the future. This study is in collaboration with, Zühlke,
a mid-sized IT company (1K- 5K employees) that provides IT solu-

tions to clients from different sectors. The company is engineering-

focused as they specialize in software engineering services to create

products from the initial ideation stage to development to deploy-

ment for their different clients making them an ideal candidate

for investigating industry standards for a software engineering

activity. Furthermore, the products they work on span various

domains given their diverse clientele, thus making our study not

domain-specific and representative of wide views within the soft-

ware industry. In addition, we distributed the same survey online

to gain additional insights from different company profiles. This

resulted in 136 more valid responses from software professionals.

Our results shed light on certain aspects of the hot fixing process

for which we observed near-consensus such as the average time it

takes to hot fix, the number of people involved in hot fixing, and

how the need for a hot fix is most commonly discovered. However,

the survey also unveils different practices on some matters such as

who is responsible for the hot fix, and the description of the hot fix

pipeline. We emphasize these differences and strongly encourage

the academic community to focus research efforts on them. At the

same time, we call on the professional community to collaborate in

making these advancements achievable. We hope that this paper

facilitates a bridge between academic researchers and industry

professionals on the topic to allow for a positive feedback loop and

better emergency handling procedures in the future.

In summary, our paper makes the following contributions:

• It is the first research on the current hot fixing practices

within the software industry;

Hanna et al.

• it provides an investigation into a mid-sized software com-

pany’s current standards on hot fixing;

• it discusses the results of a large-scale questionnaire on hot

fixing answered by 136 participants from varied domains,

roles, and backgrounds;

• it discusses implications for researchers and software practi-

tioners to help bridge the gap between industry and academia.

2 Research Questions
Industrial hot fixing practices remain elusive in the literature [15].

To explore the current industrial practices for hot fixing and di-

rections for improvement, we conducted a survey to answer the

following research questions. These research questions were chosen

to provide a comprehensive understanding of the hot fixing land-

scape with the goal of identifying both challenges and opportunities

for improving hot fixing processes in software engineering.

RQ1 [Terminology]: How consistent is hot fixing termi-
nology among software professionals? Consistent terminology

is essential to develop productive processes. We aim to investigate

how software professionals across different companies, domains,

and backgrounds refer to the activity of hot fixing.

RQ2 [Current practice]: What are the current hot fixing
practices? This includes understanding what the hot fix process
looks like, howmuch it varies depending on the application domain,

how many people are involved and their roles and expertise, and

how much the process varies from the usual bug fixing process.

RQ3 [Tooling & Automation]: What is the current level of
automation and tooling for hot fixing? The hot fixing process
includes many steps such as identifying the need for a hot fix,

generating the hot fix, verifying it, and deploying it. We aim to

understand the current state of automation and existing tooling for

each step in the hot fixing pipeline.

RQ4 [Standardisation]: How standardized are the hot fix-
ing practices across different company and participant pro-
files? It is not yet clear whether the hot fixing process for software
is standardized. We investigate this question from two angles: dif-

ferent company and different participant profiles, to see how they

affect the results of our study.

3 Methodology
We present our methodology for understanding the industrial prac-

tices for hot fixing and answering our RQs. In particular, we dis-

seminated a questionnaire, which can be found in our artefact [1].

3.1 Questionnaire Design
The questionnaire we designed consists of 38 questions. We include

branching such that a participant who is currently working in a

software company would be asked about their current company,

and a participant who was working but is no longer employed

within the software industry would be asked about their most

recent role. Thus, a participant would answer a maximum of 28

questions in total. The questionnaire can be answered in around

10 minutes. It is hosted on Microsoft Forms and is anonymous. We

organised the questionnaire into four sections: profile questions; hot

fix terminology questions; current hot fixing practices questions;

and questions about hot fix automation.

In our questionnaire we included a series of questions desinged

to collect demographic information from respondents, such as work

experience and role within the organization. The inclusion of this

information allows us to perform subgroup analyses, uncovering

potential differences between various demographic groups.

We implemented branching in Microsoft Forms to ensure that

participants who indicated in their first question that they had never

worked in a professional software company would automatically

end the questionnaire at that point, thus preventing them from

accessing and answering the remaining questionnaire questions.

After this first check-point question, we delve into questions

around terminology to answer RQ1. At the end of this section,

we include an ‘attention’ question to ensure that the participant

is reading the questions and answering coherently (refer to Sec-

tion 7). After completing the terminology section, participants are

presented with the definition of hot fix as “an improvement to a

specific time-critical issue deployed to a software system in pro-

duction”. This ensures that all respondents consistently understand

the terminology when answering subsequent questions. To answer

RQ2, the following section focuses on current practices related to

hot fixing, including aspects such as frequency, responsible per-

sonnel, and the general pipeline. The questionnaire concludes with

questions about the tools used in the hot fixing process, specifi-

cally inquiring whether certain steps are automated within their

organization pertaining to RQ3. Finally, given that we collect de-

mographic information, we can perform a meta-analysis to address

RQ4. This comprehensive approach aims to gather insights on both

the procedural and technical dimensions of hot fixing.

Before public distribution, we conducted a testing phase to refine

the questionnaire. Two authors not involved in the initial design

completed it as participants and provided feedback to the original

author for improvement. In a second round, we circulated the ques-

tionnaire within our research group for further input. All responses

from the testing phase were excluded from the study data.

3.2 Questionnaire Dissemination
We distributed the questionnaire to the Zühlke employees via their

internal communication channel. Employeeswere informed that the

questionnaire was part of a research initiative and that participation

was entirely voluntary, with all responses collected anonymously.

To gain broader insight from more varied profiles, we also dis-

tributed the questionnaire publicly. To this end, we used LinkedIn, a

platform designed for professional networking, as well as Facebook,

a platform used both for recreational and professional purposes.

We posted the call for participation on our personal LinkedIn and

Facebook profiles (as our own network includes many individu-

als with substantial industrial experience), as well as on LinkedIn

and Facebook pages and groups dedicated to software engineering

professionals. The posts visibility was set as public so that other

individuals who were interested in the study were able to further

share them, which helped widening our reach. We wrote a brief

article explaining the motivation behind our study, which served

as a call for participation. Including the link to this article in our

posts helped to attract more attention and increase engagement. We

additionally circulated the questionnaire via email to professionals

from the software industry and also asked them to share it within

Behind the Hot Fix: Demystifying Hot Fixing Industrial Practices at Zühlke and Beyond

their own network so to broaden our reach beyond our immediate

networks. Finally, we also promoted our survey in person during

ICSE’24 and FSE’24 (as these two major SE conferences are attended

by academics and professionals from industry), where we talked

about our study to software practitioners attending the event and

also handed out flyers with the link to the questionnaire. By lever-

aging on the above dissemination strategy we aimed to reach out to

as many as possible different individuals with industrial experience

in SE and solicit a large number of responses from participants all

over the world, from different domains, backgrounds, and experi-

ence [12]. The first response was received on 16/02/2024 and the

last response on 26/05/2024.

3.3 Result Analysis
The questionnaire includes two types of questions, namely multiple-

choice and three open-text questions; thus we use a mixed-method

approach where multiple-choice questions are analyzed quanti-

tatively and open-text qualitatively as is common in similar re-

search [5, 11]. Multiple-choice questions were quantitatively an-

alyzed based on the number of responses chosen for each of the

options provided. Some of these questions had an ‘Other’ option

with an open-text box. The answers to those questions were merged

into groups based on themes based on the samemethod we followed

for open-text questions, described next. Open-text questions were

assessed using thematic analysis [10], which involves searching

for themes within a collection of textual data. We first analyzed

the data rigorously and coded the responses to the questions. The

codes are short descriptive tags of the responses that can then be

clustered to form a theme map. An author of this paper conducted

the analysis. The codes and themes were then independently evalu-

ated by a second author, who suggested a more precise naming for

two codes, agreeing with others
1
.

4 Participant Demographic
In this section, we provide an overview of the demographics of the

participants who completed our questionnaire.

4.1 Zühlke Questionnaire
The questionnaire within the Zühlke company was answered by

24 participants with highly skilled profiles. The majority of these

participants (83.3%) have over 10 years of programming and pro-

fessional experience and have worked in more than 3 companies

throughout their career (79.2%). The participants were mainly soft-

ware engineers/developers (62.5%), some were consultants (16.7%),

as well as some participation from individuals with a managerial

role such as CTO, Chief Engineer, etc. Since Zühlke offers software

engineering solutions to various clients from different domains, the

individuals participating in the questionnaire indicated 17 differ-

ent domains when asked for the application domain of their work.

Approximately 71% of the individuals indicated that they work on

open source software projects within Zühlke.

1
Unfortunately, release of raw data with codes is not possible due to ethics (see Acks).

Figure 1: Participant past experience.

Figure 2: Participant roles (merged on role title for different
levels of seniority).

4.2 Public Questionnaire
We initially received 139 responses to our questionnaire. However,

3 responses were excluded from the analysis, as the participants

indicated that they had never worked in a professional software

company. The remaining 136 respondents provided their consent

and correctly answered the attention question.

Figure 1 shows the experience of the participants and their cur-

rent roles. We observe that more than 60% of the participants have

more than 10 years of professional experience in the software in-

dustry and around 70% have more than 10 years of programming

experience. The participation of highly experienced individuals

who have a deep understanding of software engineering practices

based on many years of experience increases our confidence in

gathering high-quality responses to our questionnaire.

The professional roles of the participants are presented in Fig-

ure 2. Note that for the sake of clear presentation, some of the roles

that the participants entered were merged based on category, e.g.,

engineering manager also includes senior engineering manager.

Overall, we can observe that the participants’ experience relates

to a wide variety of roles within the software industry. Most of

the participants are software engineers (42%), project managers

(13%) and engineering managers (8%), while others are in high man-

agerial positions such as directors (7%), VPs (2%) or CEO/CTOs

(2%). This helps ensure that the responses reflect the experience of

professionals from all across the organizational chart.

Figure 3 presents the number of software companies that par-

ticipants have worked for so far in their professional career. We

can see that over 50% of the participants have worked in 3 or more

software companies in their career. Furthermore, more than 80% of

the participants have worked in at least 2 software companies. This

increases our confidence that most of the responses received reflect

the perspectives of individuals who have had varied experience

within the software industry.

Hanna et al.

Figure 3: Number of participants that have been employed by
1, 2, or over 3 software companies throughout their career.

Figure 4: Number of years that the participants have been
employed in their current/most recent company.

Figure 4 presents the number of years that a participant has been

working at their current/most recent software company. More than

40% have been with the same company for over 5 years, indicating

a strong familiarity with its practices.

Next, we investigate the profile of the companies for which

the participants in our survey work for. In Figure 5, we present

the application domain of the software on which our participants

work. We can see that the participants come from a variety of

backgrounds. This allows us to be able to generalize our findings

across the software industry as we have representation from 10s of

companies across a wide range of sectors. The figure also presents

the size of the company the participants work for. We can see that

we have the highest representation from large software companies

with over 10K employees. This will be reflected in responses that

represent well-established processes in line with industry standards

around the hot fixing process. Additionally, we can see that the

second largest company size category is companies with less than

100 employees. These are likely startups with possibly different

hot fixing practices that fall in line with their different business

needs. The bottom right plot in the figure presents the geographical

area in which the participants’ teams are located. We can see that

most of the participants are from the Middle East, Europe, and the

Americas. Finally, we ask the participants whether they work on

open-source software as that could affect the hot fixing process.

Our sample includes a mix of participants working on open-source

as well as closed-source projects with the majority, 71.3%, working

on proprietary, closed-source software.

To sum up, the profiles of the participants involved in this study

are varied. Moreover, the profiles of the companies that they work

at are also varied. This allows us to present results that can hold

across the software industry. Our sample includes a large proportion

of highly experienced individuals as well as individuals who are

employed in well-established companies with over 10K employees.

Thus, we can have high confidence that the responses received

represent the industrial standards around hot fixing activities.

5 Findings
In this section, we present selected findings observed from the anal-

ysis of the responses to our questionnaire. All results are visually

aggregated in the form of graphs, available in our artefact [1].

Figure 5: Profile information on the software companies that
the participants work(ed) at most recently. We present the
application domain of the software developed at the com-
pany (top), company size (bottom left), and geographical area
where the participant’s team is located (bottom right).

5.1 RQ1: Hot Fixing Terminology
We asked the participants about their familiarity with the termi-

nology. First, we present the results from Zühlke. All participants

indicated that they are familiar with the term “hot fix” with 83.3%

saying that they clearly know what the term means. As for “hot

patch”, around 42% of the participants have never heard the term

before and only 25% have a clear idea of what the term means. The

responses pointed out differences in patch size, whether the change

is temporary or permanent, whether it addresses a functional bug

or other features. Regarding the definition of a critical bug, the ma-

jority of responses (54.2%) indicated that a critical bug would have

high priority and high severity. Six participants (25%) explained

that it depends on the context and that both metrics would be good

indicators. When one or the other was chosen, was always given

greater importance than priority when labeling a bug as critical

(reported by 20.8%) with one participant explaining: “Severity is well
defined and understood and is a common base for defining critical
bugs, failures. However, priority is indeterminate here, since it could
be referring to development/mtce team assigned priority, operations
(SLA) priority, or even client priority!”.

Next, we present the results of the public questionnaire (Figure 6).

For “hot fix”, over 70% of the participants had heard of the term

before and thought that they had a clear idea of what it meant. As

for “hot patch” only around 30% of the participants were confident

with the meaning of the term whereas around 45% reported to not

have heard of the term before. With regards to differences between

terms ‘hot patch’ and ‘hot fix’ 5 participants, of 64 who responded,

stated that they were unsure of what the difference was and 5

Behind the Hot Fix: Demystifying Hot Fixing Industrial Practices at Zühlke and Beyond

Figure 6: Have you heard the term before?

Figure 7: Responses to what classifies a bug as “critical" and
thus would need hot fixing.

participants stated that they think there is no difference. As for

the answers of the remaining 54 participants, we found 8 different

themes for how they perceive the difference.

Firstly, 13 participants stated that a hot fix addresses a bug

whereas a hot patchmight also add features such as needed function-

ality that was previously overlooked. Other participants addressed

differences in the size of the patch. However, the differences were

inconsistent with 3 saying that a “hot fix” is larger and 5 saying

the opposite. Another theme that emerged was differentiating be-

tween a code change and other changes. Here a hot fix would refer

to a code or software change while a hot patch would refer to a

data, hardware, usage, documentation change, etc. 8 participants

suggested hot fixing refers to addressing time-critical issues while

hot patching refers to techniques that patch software during run-

time without a system reboot. One participant wrote: “Hot Fix:
A fix required for an issue that needs urgent attention (..) usually
done on a production environment without following the right soft-
ware/agile/scrum release lifecycle, a hot patch is an update that may
not necessarily be linked to a critical issue, and one that does not
require an update of the application or software to implement the
patch.” 6 participants commented on the permanence of the code

change. The next two themes pertain to the users of the software:

whether the change is user-facing and whether the change would

be rolled out to all users or just a subset. Other comments were

that hot fixing does not follow traditional development flow (e.g.

skips testing) whereas a hot patch would and that hot fixes would

be immediate changes and hot patches would be scheduled.

The participants input on the criticality of a bug is presented in

Figure 7. 69% of the participants regard a critical bug as one that

has both high severity and high priority. 21% regard severity as a

better indicator than priority for the criticality of an observed bug.

RQ1: Terminology around hot fixing among professionals re-

mains inconsistent, but clear themes emerge when discussing it.

Both priority and severity are indicators for how critical a bug

is (69% of participants deem both equally important), with more

importance given to its severity (21% of the participants).

5.2 RQ2: Hot Fixing Current Practices
We present results pertaining to the current industrial practices

for hot fixing. First, we delve into the results from Zühlke. Due to

limited space, we present the results of what we deemed to be most

interesting. The full results can be found in our artefact [1].

Generally, it seems that hot fixes at Zühlke are rolled out within

hours on average (answered by 58.3% questionnaire participants) in

contrast to the public questionnaire in which it was most commonly

reported that rollout takes a few days on average (answered by

37.5%). Each hot fix involves a small number of employees usually

involving the team lead and the developer on call/one maintaining

the code. Most commonly, the need for a hot fix is identified through

a report by a customer/client. The team lead is made aware of

the issue and then involves the relevant software developer. The

software developer creates the hot fix in a separate branch, tests it,

and after a peer-review is then deployed. One of the participants

comments: “Communication & collaboration is most important! As is
treating every commit as production-ready, so that if we need to hot
fix, we don’t need to cherry pick from other work”.

It is mentioned that ideally, hot fixing should be no different

than a normal release (such that it follows the eight steps men-

tioned in Section 6.3). One participant clarifies: “Defect raised by
support, or ops/monitoring, or product team. Item is triaged and given
severity and priority and in this situation is also flagged as requiring
a hotfix [rare]. Software Development Manager is informed of need
for a hotfix and takes ownership. Assigns task to a dev+tester. They
work the problem calling in whoever they need, and then go through
an expedited dev and test process with a higher priority than any in
progress work. Status updates are communicated by Dev Manager to
Support/ProdMan as necessary so customers can be informed. Once
rollout has occurred, support/prod man are informed of status so they
can communicate to customers. Root Cause Analysis then begins to
understand why the hotfix was necessary to begin with.”. However,
that is simply the ideal situation. One participant mentions that

“sometimes patch pipeline may skip some environments to avoid con-
tention”. Another mentions the overhead of formal releases which

might result in beta releases for affected customers in the meantime.

When asked about the categories of the critical issues that hot

fixes target we got varied responses. Some mentioned that in a

technical sense, these issues are varied but what makes them similar

is their big business impact. Others mentioned that they are most

commonly a result of gaps in testing which most commonly cause

issues in user journeys and the user interface (caused by software

bugs, data issues, or system issues such as networking and storage).

We now present the results of the public questionnaire. We first

investigate the frequency of hot fixing within software companies.

The results are presented in Figure 8. When looking at estimates

for the average number of hot fixes that professionals observe or

contribute to within their company, we can see that the numbers

are low. Most commonly, they observe or contribute to between 1

to 5 hot fixes each month. This implies that hot fixes are exceptional

cases and much rarer than regular bug fixes.

Hanna et al.

Figure 8: Participant responses for how many hot fixes they
observe or contribute to on average monthly.

Figure 9: Participant responses for who on the team ismainly
responsible for handling the hot fix.

We asked participants who on their team is responsible for han-

dling hot fixes, with results shown in Figure 9. Clear ownership is

crucial, as a lack of it can compromise productivity. We aimed to

see if responses were consistent across participants from different

companies, domains, and roles. The most common answers were:

the owner or maintainer of the affected code (28%), the on-call engi-

neer (23%), the relevant team lead (22%), and the product manager

(18%). A few participants gave alternative responses. For example,

one noted that the on-call engineer typically handles it by rolling

back, rather than applying a hot fix. However, rollbacks are only

effective if the defect was introduced in the latest release. This isn’t

always the case, as issues can stem from changes in the software en-

vironment, such as unexpected workload spikes, hardware failures,

or long-dormant bugs that have only recently surfaced. Another

person mentioned that it would be a hybrid of people: “A hybrid of
the engineer on call and the owner of the affected code. Responsibility
starts from on call and goes down to maintainer (all engineers)”.

Figure 10 illustrates participants’ perspectives on whether hot

fixes typically target specific categories of bugs. Two thirds of the

participants responded that they think this is not the case. The

remaining third that believed categories exist or might exist were

asked to briefly describe these categories using open text. We found

that the participants’ answers could be grouped into two categories:

technical causes and observable outcomes.

The participants touched on the following 10 technical causes of

issues that hot fixes target: requirements, configurations/versioning,

security, performance, data issues, compatibility/integration, GUI

issue/interface, license issue/regulation, code logic/concurrency

issues, and database issues. Answers also included observable out-

comes that warrant the need for hot fixing. These are non-technical

categories of issue types but rather critical situations where a hot

fix would be needed: crashes, customer requests, and business

needs/affects service-level agreement (SLA)/ affects market.

To understand the urgency of issuing a hot fix, we asked par-

ticipants how long it typically takes, on average, from detecting

the need for a hot fix to its deployment. We present the results in

Figure 10: Do hot fixes fall in specific bug categories?

Figure 11: Average time from detecting the need for a hot fix
until the hot fix is deployed.

Figure 12: Number of people usually involved in the hot fix.

Figure 13: Mode of hot fix discovery.

Figure 11. Surprisingly, 37.5% of the participants responded that

this process takes a few days on average. The time is clearly affected

by the type of system (e.g. safety critical), the severity of the issue,

and the management style of the project. The next most common

response, aligning with what we expected, was a few hours.

Figure 12 presents the average number of people involved in

the hot fixing pipeline from start to finish. 49.3% of participants

responded that between 2 and 4 individuals are involved in the

hot fix process and 27.2% participants responded that it is just one

individual that is solely responsible for the hot fix. From here, we

can see that the majority of the responses indicate that a very small

number of people are responsible for the hot fix when it is needed.

We also investigate what the most common way that the need

for a hot fix is discovered. The results are presented in Figure 13.

Around 93% of participants responded that hot fixes target issues

identified through crashes or reports made by the users of the sys-

tem. One participant detailed that specifically, crashes are identified

through systems such as Sentry [28] and reports by users are aggre-

gated through customer success managers. The vast majority of the

responses nearing 57%, claimed that their need is directly reported

by the users. Other participants indicated that identification is done

through system monitoring and health checks or security bulletins.

Behind the Hot Fix: Demystifying Hot Fixing Industrial Practices at Zühlke and Beyond

Finally, we asked the participants to succinctly describe the hot

fixing pipeline in their company. We received informative and

detailed responses from 54.5% of the participants which sheds light

on current industry standards for hot fixing. Three participants

explained that within their company there is no one single process

or pipeline for hot fixing that they know of. They claim that these

situations are handled on a case-by-case basis depending on the

type of issue and its effect. The rest of the responses detail such a

pipeline. The responses received highlighted different parts of the

process which we aggregated to present the full hot fixing pipeline.

The participants detailed 8 different steps: discover, report, triage,

fix, test, deploy, verify, and post-mortem.

First, the critical issue is discovered. It can be discovered in

multiple ways. One option is internally by internal users, testers, or

someone from the development team. Another option is externally

by a stakeholder or customer. In this case, the issue might need to

be validated on the customer side to confirm that it is a real critical

issue. A third option is through metrics, crashes, or automated error

monitoring (e.g., through systems such as Sentry [28]).

Second, the issue is reported. The issue can be raised as a sup-

port ticket on well-known platforms such as Jira [7] (which can be

monitored live), designated Slack [30] channel (can also support

manual or automated tickets), etc. As these issues are time-sensitive,

in some cases, they may be raised directly to the relevant individ-

uals who will foresee the hot fix to save time. If a specific person

who needs to handle the fix is not in working hours, they may be

contacted to help (in this case, most often a rollback would be more

likely than an actual fix).

Third, the alerted relevant individuals can then triage the is-

sue and identify its root cause. This is normally done by the de-

velopment/product team. The decision for how to proceed can

either be done by multiple people (one person mentioned that en-

gineers would huddle to take this decision together) or by the team

lead/product owner/manager. One person mentioned that hot fixes

would have to go through the shiproom [4]. It is also common for

an ETA to be provided for the fix.

Fourth, the individual(s) responsible can begin remediation of

the issue. Current tasks are paused, and the focus is shifted to the

fix. Different workarounds are considered to optimize the limited

time. If multiple individuals are involved, they may split the work

so that one person reproduces the issue by creating tests, another

examines the logs, and so on. The fix is generally done on a separate

branch and a pull request is generated in the end.

Fifth, the issue is tested in preproduction using unit/integration

tests. Regression and unit tests must be added to ensure that the

fix works as expected. The CI/CD pipeline offers a second layer

of verification in the development environments. The pull request

passes a code review process by peers and generally must be signed

off by at least one engineer. In this case, a final approval is usually

required by someone in a managerial position.

Sixth, the issue is deployed. Normally, a short description of the

update is generated to accompany the fix. There are many ways

that deployment seems to be done depending on the scenario. A

manager generally makes the call for the most appropriate course

of action. In some companies, this needs to be coordinated with a

designated deployment team, who sets a deployment procedure and

tests this procedure. In other companies, the process is much more

laid back, and automated pipelines create a build with the fix and

deployment carries out via the CI/CD pipeline. Historically, hot fix-

ing procedures often relied on techniques like bytecode weaving [8]

and monkey patching [18] to implement live patching. However,

due to the inherent risks and potential instability associated with

these live methods, modern enterprises have largely moved away

from them when addressing critical issues.

Depending on the type of fix and its urgency, the hot fix will be

deployed immediately or bundled with the next release. In the latter

case, a unique build containing the hot fix may be sent directly to

the target customer. Field engineers will take action to identify

affected customers and share the new build.

Seventh, the issue needs to be verified on customer environ-

ments. Post-deployment QA processes will take place and the fix is

monitored. When necessary, communication about the situation

will need to be opened with the stakeholders.

Eighth, post-mortem activities can start. This includes various

analyses to review what happened and why it happened. These

reviews normally include what can be done to prevent similar issues

from arising in the future.

The survey’s participants included other interesting comments

in their answers. In certain companies, strict permitting processes

are in place for emergency release into production. This suggests

that the caliber of the criticality of an issue must be high and that

the generated fix would likely need to be heavily tested. Someone

mentioned that once the team of people who will handle the hot

fix is identified, they will remain delegated to the hot fix until it is

remediated, even if this comes at the expense of other delays. This

highlights that hot fixing is the highest priority activity. Another

person mentioned designated firefighters that handle such issues.

RQ2: While the specifics of hot fixing (frequency, responsible

individuals, etc.) differ from one company to another, the gen-

eral pipeline for hot fixing remains similar across the responses

received, encompassing subsets of the following stages: discover-

report-triage-fix-test-deploy-verify-post-mortem.

5.3 RQ3: Hot Fixing Tooling and Automation
We present the participant responses on the state of current tooling

within their current/most recent company in Figure 14.

We begin by presenting the results within Zühlke. The responses

indicate that the latter stages (verification and deployment) utilize

automated tooling whereas the critical bug detection and hot fix

generation is more manual. Interestingly, the responses vary among

the different participants within the same company hinting that not

all employees are aware of the available tooling or that the tooling

is specialized for specific use cases within specific teams.

Next, we analyse the responses to the public questionnaire. Sim-

ilarly to the Zühlke’s results, these responses also point out that

the latter stages in the pipeline are more automated while, tooling

for detecting the need for a hot fix is less common. Only 13.2%

of participants were able to assert with certainty that this type of

automation exists within their company, while 48.5% responded

that this type of tooling likely does not exist within their company.

In terms of automating the creation of the hot fix, this is the stage

of the pipeline with the least advanced tooling. In fact 65% of the

Hanna et al.

Figure 14: Participant responses for existing tooling within
their current/most recent company.

respondents reported that tooling for automatically generating hot

fixes does not exist. As for verification once the hot fix is generated,

the responses indicate that parts of this process are automated. This

is likely because the existing tooling for verifying more general-

purpose bug repair also applies to verifying hot fixes. Finally, the

deployment of the hot fix. This is the step that 33.8% of the par-

ticipants indicated is definitely automated within the pipeline, the

most of any of the other steps. Similarly to the verification step,

this might be because all patches are deployed the same way and

no specialized tooling is required for hot fixing specifically.

RQ3: More automated tooling exists for the latter stages of the hot

fixing pipeline (53.7% of the questionnaire participants indicated

that automated solutions probably or definitely exist to verify

the hot fix and 56.7% indicated such solutions exist to deploy

hot fixes) than for the earlier stages (32.3% participants indicated

such techniques for hot fix detection and 25% for fix generation).

5.4 RQ4: Standardization of Hot Fixing
We assess hot fixing standardization from two angles: company-

level and individual participant profiles. To avoid bias, only re-

sponses from the public questionnaire were used, excluding those

from Zühlke participants.

Company Profile and Hot Fixing Practices: The first measure

we looked at was company size. We compared the two ends of

the range we specified in the questionnaire which are companies

with over 10K employees and those with under 100 employees.

We had 56 responses from participants in companies with over

10K employees and 29 responses from companies with under 100

employees. Regarding the frequency of hot fixing, more hot fixes are

observed in small companies than larger ones. 69.7% of participants

from large companies responded that they observe at least one hot

fix a month whereas in smaller companies 79.3% responded this. We

also find that larger companies have more automated tooling for hot

fixing. We looked at the “probably yes” and “definitely yes” answers

to the question of whether tooling exists for a given hot fixing step.

The percentages were always higher for larger companies with over

10K employees than smaller companies of 100 employees (41.1% vs.

27.6% for detection, 33.9% vs. 13.8% for creation, 67.9% vs. 37.9% for

verification, 58.9% vs. 51.7% for deployment).

Next, we looked into patterns in companies with similar ap-

plication domains. We looked at four different categories: chip

design and its verification, banking/business/fintech, AI, and secu-

rity/defense. When looking at the average time for a hot fix to be

deployed from the time of detection we found differences across the

categories. Hot fixes are developed slowest for hardware-related

projects (semiconductors, electronic design automation, etc.) with

20% of participants responding that the average is a few weeks

and 63.3% responding that it takes a few days. As for banking, it

seems that the industry standard is a few hours (55.2%) or a few

days (41.4%). For AI and security, hot fixes are developed fastest,

most commonly within a few hours. As for the chip design category

20.6% of the participants indicated that between 10-50 hot fixes are

observed monthly. For the other categories, this number was much

less such that for AI and security all participants responded that

the average is only between 1-5, for banking only 3% responded

that more than 5 hot fixes are observed monthly on average.

Finally, we investigated possible differences in the type of soft-

ware being developed: open-source vs. closed-source. We found

that when the software is open source, 80% of the participants an-

swered that a customer reports the need for a hot fix (as opposed

to 56. 7% observed from the total of the participants in Section 6.3).

Participant Profile and Hot Fixing Practices:We investigated

for patterns in the responses given by the participants based on

their professional experience and current role.

First, we grouped the results based on the professional experi-

ence of the participants. We compared two groups of participants:

experienced professionals with over 10 years of experience (84

participants) and less experienced ones with less than 3 years of

experience (26 participants). When looking at their familiarity with

terminology, experience played an important role. For the more

experienced group, 90.1% of them were familiar with the term “hot

fix” and 64.2% with the term “hot patch” in comparison with 88.5%

and 42.3% for the less experienced group.

Next, we grouped participants with managerial roles (such as

team leads, directors, product/software/project managers) and ones

with a non-managerial role (such as data scientists, software devel-

opers, production engineers). From the ones who report observing

hot fixes within their company, we looked at how many partici-

pants contribute to hot fixing within the two groups. In the non-

managerial group, 62.1% of the participants reported contributing

to hot fixing processes within their company, whereas 81.5% of the

ones in the managerial group reported doing so. Thus, a manager

is highly likely to be involved in hot fixing whereas individuals in

non-managerial roles are likely only involved in specific scenarios.

RQ4: Different factors affect the hot fixing practices within

industry, e.g., larger companies have more automated tooling;

hardware-related companies have the slowest hot fix deployment

time, while AI and security have the fastest; managers are more

likely to actively participate in the hot fix pipeline.

Behind the Hot Fix: Demystifying Hot Fixing Industrial Practices at Zühlke and Beyond

6 Discussion
In this section, we discuss key observations and implications of our

study for both researchers and practitioners.

6.1 Key Observations
Terimonology: The terminology for what constitutes a hot fix is

inconsistent in the academic literature [16]. What we have found

is that the case is similar among people in the software industry.

However, the definitions gathered from practitioners fall into dis-

tinct categories and thus are more streamlined. Consistent and

clear terminology is essential. It allows for the body of work to

be more cohesive, for processes to be more productive, and for

better collaboration between the different communities. We find

that individuals with more experience are more familiar with the

terminology. As such, we urge training on this for new hires. We

plan to explore this further through developer interviews to gain a

deeper understanding of why this occurs, its practical implications,

and to develop a standardized framework.

Current practice: We outline the pipeline for hot fixing based

on the questionnaire responses received from the software pro-

fessionals. Collectively, it consists of 8 steps. These steps do not

seem to differ too much from the steps taken for traditional bug

repair (discover-report-triage-fix-test-deploy-verify-post-mortem).

At first glance, this seems to be contrary to our original assump-

tion that hot fixing would require skipping certain steps of the bug

fixing process to improve productivity and meet the time-criticality

requirements. However, this is not necessarily the case. The iden-

tified steps were aggregated based on participant input, with no

single respondent including all eight steps in their answers. Instead,

companies tend to skip different phases to save time. For example,

some companies avoid the reporting step via issue management

platforms and instead contact the relevant individuals to handle

the fix directly, other companies skip extensive testing. As a Zühlke

employee noted, an ideal hot fix would follow all regular bug fixing

steps, but this is often impractical in real-world scenarios.

The deployment process is more intricate in some companies

than in others depending on the management style that they follow.

Companies that follow strict release timelines and traditionally

require intricate deployment planning from a release time have a

harder time with hot fixing. Answers from practitioners who work

in such companies explained that for a hot fix to be released, it needs

to be signed off by specific individuals and a deployment plan needs

to be put in place and tested. Whereas individuals from other com-

panies would directly deploy after quick testing in the development

environment. As such, we can conclude that while similar steps

are followed for hot fixing between different companies (borrowed

from traditional program repair), different companies hot fix differ-

ently and optimize their processes by skipping different steps from

the regular bug repair pipeline. This can be taken a step further in

saying that processes are different not only across companies but

also across different teams within the same company as we did ob-

serve variability in the responses of the Zühlke internal case study.

As it stands, there is no industry standard that can be considered

the state-of-the-art model for hot fixing software.

Automation: Tooling for verification and deployment is further

developed than the creation of the hot fix, for example. We assume

that is because tooling for verification and deployment can be used

as is for the purpose of hot fixing whereas for the creation of the

hot fix traditional program repair is currently too slow and unreli-

able [17] to be productive. More curated tooling can be developed

for this specific purpose taking into account our finding that the

number of involved in a specific hot fix is small (4 or less).

6.2 Implications for Researchers
Use more consistent terminology:We urge researchers to use

consistent terminology when referring to the same software engi-

neering activity or phenomenon. This helps create a community and

unify the shared knowledge and body of work around the topic. We

hope this makes work more discoverable, fostering collaboration

and enabling advancements in hot fix innovation.

Conduct more empirical studies: More empirical research is

needed to identify the tooling practitioners need most. As expected,

software architectures, the choice of languages and technology

stacks, development tooling, and consequently, development pro-

cesses vary significantly across projects and between different com-

panies. This variability means that the specifics of how features are

developed and bugs are fixed differ, and will likely always differ.

These differences are influenced by factors such as the domain,

regulatory requirements, and client preferences and needs. Con-

sequently, the hot-fixing process and its associated tooling will

inherently vary across clients and application domains. More in-

depth analyses are needed to understand the specific needs of the

individuals at the time a hot fix is needed. Our findings show that

typically only a small group of people (only 4% of participants

claimed more than 5) is involved in hot fixing with roles varying

across companies. Therefore, understanding their collaboration

more intricately is key to developing effective, tailored tooling.

Direct research toward generation:Given the results of the ques-
tionnaire, tooling for the step of the hot fix pipeline that involves

the generation of the actual fix is the least developed. Thus, we

urge the community to direct research efforts towards efficient

automated program repair that can be utilized for the purpose of

hot fixing rather than the other steps of the process.

6.3 Implication for Practitioners
Adopt modern software development processes and automa-
tion:Many participants noted the benefits of using verification and

deployment tools for hot fixing in their companies. Practitioners

in organizations without such automation could consider imple-

menting it to enhance their own processes. Participants at Zühlke

reported shorter times to implement a hot fix compared to the

public survey average. This efficiency is attributed to their prac-

tice of automating routine tasks such as builds, regression testing,

and deployment. In some projects, Zühlke teams release daily or

even multiple times per day into production. In these environments,

processes and tooling are designed to handle hot fixes seamlessly,

treating them as a natural part of the workflow. This demonstrates

that organizations can benefit greatly from adopting modern de-

velopment practices that enable frequent, low-cost releases [24].

By doing so, they can manage hot fixes at a lower cost, avoiding

unnecessary stress or disruptions. It is important to note that this

is not always possible and depends on the context and application

Hanna et al.

domain. For example, industries such as banking, healthcare, and

physical systems often prioritize caution in deployments due to

regulatory requirements, critical reliability needs, and risk aversion,

which can limit their ability to fully embrace rapid and iterative

agile processes. Even in urgent cases, deviations from the standard

bug-fixing process can be minimized if organizations maintain a

single, high-quality deployment pipeline that supports various sce-

narios. Rather than creating a separate hot fix pipeline, the same

pipeline can handle all changes, including urgent ones, by incor-

porating configurable gates and approval processes tailored to the

context. This configurable pipeline aligns with our RQ2 findings ,

where participants described a traditional bug fixing process that

omits certain steps depending on the urgency of the issue.

Transparency: We urge software companies to be more trans-

parent about their internal software engineering processes. While

confidentiality can pose limitations, it can accelerate innovation in

this area and allow for improved processes for the industry without

necessarily compromising intellectual property. The responses we

received in this study were very detailed and proved that trans-

parency is indeed possible, it just needs to be prioritized.

Preempt hot fixing whenever possible: We found that most

hot fixes are issues reported by users. We urge companies to put

additional measures in place to avoid and preempt this. This can be

by having systems for metric analysis, specialized defect prediction,

etc. The optimal hot fixing scenario is avoiding the need for a hot

fix. Thus, we think that there is value in understanding the types

of issues that result in hot fixes and dedicate resources to avoiding

their occurrence or discovering them before reaching the end user.

7 Threats to Validity
The design of the study and the selection of questions that were

included in the questionnaire may add bias. We mitigated this

by conducting questionnaire testing before its public dissemina-

tion. The questionnaire was answered by 24+136 individuals which

is considered a fairly large number in comparison with similar

work [11, 14, 32]. However, responses still may not represent the

software industry as a whole. We mitigate this threat by adding

profile questions to survey the expertise and background of these

individuals. As shown, many participants were highly experienced

andwell-positioned to offer deep insights into current industry stan-

dards. Since no incentives were offered, participation was driven

by genuine interest. All participants correctly answered the mid-

questionnaire attention check, reinforcing data validity and indi-

cating strong engagement.To mitigate validity threats from demo-

graphic imbalances, RQ4 only analyzes groups with sufficient data.

8 Related Work
Survey-based research is a method that aims to gather data from

a large population of interest [20, 22, 27]. Using questionnaires to

gather insights directly from relevant stakeholders is an effective

approach to better understand real-world practices [20, 27]. Such

a technique is useful in gaining a better understanding around

software engineering matters and shortening the gap between the

academic and industrial communities [19, 27, 34]. Online ques-

tionnaires have been used to understand a wide range of different

software engineering activities and phenomena within the industry,

covering both technical (e.g. [21, 31, 32, 34, 35]) and socio-technical

aspects (e.g. [6, 11, 14, 25, 29, 33]). Since our work is the first sur-

vey on hot fixing in practice, in this section we focus on existing

survey-based research carried out on automated program repair

and runtime anomalies, which are the closest topics to hot fixing.

Questionnaires have been employed to learn about practitioners’

perspectives on APR [21, 35, 36], on how trust in automated repair

patches can be enhanced [25], and to inform the deployment of

user-centric APR tools [34]. Contrary to this previous work, our

study focuses on hot fixing specifically and follows the full pipeline

of this process instead of just the patch generation step. Steidl et

al. [31] conducted interviews with practitioners to understand how

runtime anomalies are tackled, which is particularly relevant to our

work as these runtime anomalies might need to be hot fixed and

thus would induce similar processes. However, their study predomi-

nantly focuses on anomaly detection, specifically, detection through

runtime monitoring data. Our study is the first to investigate hot

fixing practices specifically.

While the collective knowledge around the software engineer-

ing of hot fixing from an academic perspective has been recently

reviewed [15, 16], our work is the first to investigate industrial

perspectives, offering an in-depth analysis of how hot fixing is

approached in real-world environments.

9 Conclusions and Future Work
We investigated hot fixing practices within the industry by dissem-

inating a dedicated online questionnaire. We collected responses

from 24 Zühlke employees, and further 136 software professionals

from various companies, domains, roles, and regions. The analysis

of the responses unveiled a mixed opinion regarding the definitions

of hot fix and hot patch, thus confirming the inconsistency in ter-

minology used in the academic literature [16]. We found that while

there are general guidelines for industry standards on what a hot

fix pipeline should be (such as involving a small number of people

and delivering the hot fix within a few days or less), there remains

considerable variation and less alignment than expected. This di-

versity presents both challenges and opportunities for refining and

improving hot fix practices. We further found practitioners most

commonly utilize automated verification and deployment for hot

fixes while tools for hot fix generation are less common, highlight-

ing a potential area for growth. We plan to conduct interviews to

gain an even deeper understanding of the emerged themes.

Acknowledgments
We thank all participants for their insights, Zühlke Engineering Ltd

for their collaboration, and Mark Harman for his mentorship. This

studywas approved byUCLCS Ethics Committee (UCL/CSREC/R/43).

References
[1] Github - carolhanna01/hotfixindustrialviews. https://github.com/carolhanna01/

HotFixIndustrialViews. Accessed: 2024-01-14.

[2] No man’s sky. https://www.nomanssky.com/. Accessed: 2024-10-05.

[3] To hotfix or to rollback? that is the question — mike madison.

https://mikemadison.net/blog/2022/01/03/to-hotfix-or-to-rollback-that-

is-the-question. Accessed: 2024-10-05.

[4] Navigating the waters of software releases: The shiproom meeting —

behrouz.nl. https://www.behrouz.nl/article/navigating-software-releases-

shiproom-meeting, 2024.

https://github.com/carolhanna01/HotFixIndustrialViews
https://github.com/carolhanna01/HotFixIndustrialViews
https://www.nomanssky.com/
https://mikemadison.net/blog/2022/01/03/to-hotfix-or-to-rollback-that-is-the-question
https://mikemadison.net/blog/2022/01/03/to-hotfix-or-to-rollback-that-is-the-question
https://www.behrouz.nl/article/navigating-software-releases-shiproom-meeting
https://www.behrouz.nl/article/navigating-software-releases-shiproom-meeting

Behind the Hot Fix: Demystifying Hot Fixing Industrial Practices at Zühlke and Beyond

[5] Al-Subaihin, A. A., Sarro, F., Black, S., Capra, L., and Harman, M. App

store effects on software engineering practices. IEEE Transactions on Software
Engineering 47 (2 2021), 300–319.

[6] Al-Subaihin, A. A., Sarro, F., Black, S., Capra, L., and Harman, M. App

store effects on software engineering practices. IEEE Transactions on Software
Engineering 47, 2 (2021), 300–319.

[7] Atlassian. Jira | issue & project tracking software | atlassian. https://www.

atlassian.com/software/jira, 2024. Accessed: 2024-10-05.

[8] Baker, J., and Hsieh, W. Runtime aspect weaving through metaprogramming.

86–95.

[9] BBC. Chaos persists as it outage could take time to fix, says cybersecurity firm

boss - bbc news. https://www.bbc.co.uk/news/live/cnk4jdwp49et, 2024. Accessed:

2024-10-05.

[10] Braun, V., and Clarke, V. Thematic analysis. APA handbook of research methods
in psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological,
and biological. (3 2012), 57–71.

[11] Davila, N., Wiese, I., Steinmacher, I., Silva, L. L. D., Kawamoto, A., Favaro, G.

J. P., and Nunes, I. An industry case study on adoption of ai-based programming

assistants. ICSE-SEIP ’24: Proceedings of the 46th International Conference on
Software Engineering: Software Engineering in Practice (4 2024), 92–102.

[12] Galster, M., and Tofan, D. Exploring web advertising to attract industry profes-

sionals for software engineering surveys. In Proceedings of the 2nd International
Workshop on Conducting Empirical Studies in Industry (New York, NY, USA, 2014),

CESI 2014, Association for Computing Machinery, p. 5–8.

[13] George, D. A. S. When trust fails: Examining systemic risk in the digital economy

from the 2024 crowdstrike outage. Partners Universal Multidisciplinary Research
Journal 1 (7 2024), 134–152.

[14] Goncalves, P.W., Goncalves, J. S., and Bacchelli, A. Constructive code review:

Managing the impact of interpersonal conflicts in practice. ACM International
Conference Proceeding Series (4 2024), 334–345.

[15] Hanna, C., Clark, D., Sarro, F., and Petke, J. Hot fixing software: A

comprehensive review of terminology, techniques, and applications. https:

//arxiv.org/abs/2401.09275, 2024.

[16] Hanna, C., and Petke, J. Hot patching hot fixes: Reflection and perspectives.

Proceedings - 2023 38th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2023 (2023), 1781–1786.

[17] Harman, M. Scaling genetic improvement and automated program repair. Pro-
ceedings - International Workshop on Automated Program Repair, APR 2022 (2022),
1–7.

[18] Hunt, J. Monkey Patching. Springer International Publishing, Cham, 2023,

pp. 487–490.

[19] Hynninen, T., and Jantunen, S. Questionnaire approach for assessing software

engineering and quality assurance practices. 2022 45th Jubilee International
Convention on Information, Communication and Electronic Technology, MIPRO
2022 - Proceedings (2022), 1301–1306.

[20] Kitchenham, B., and Pfleeger, S. Principles of survey research part 1: turning

lemons into lemonade. ACM SIGSOFT Software Engineering Notes 26, 6 (2001),
16–18.

[21] Meem, F. N., Smith, J., and Johnson, B. Exploring experiences with automated

program repair in practice. Proceedings - International Conference on Software
Engineering (2024), 1047–1057.

[22] Molléri, J. S., Petersen, K., and Mendes, E. An empirically evaluated checklist

for surveys in software engineering. Information and Software Technology 119
(2020), 106240.

[23] Morris, J. C., and Mayer, M. K. Canaries in coal mines and normal accidents:

The crowdstrike outage and its lessons for critical infrastructure. Journal of
Critical Infrastructure Policy (2024).

[24] Nicole Forsgren, PhD, J. H. G. K. Accelerate: The Science of Lean Software
and DevOps: Building and Scaling High Performing Technology Organizations. IT
Revolution, 2018.

[25] Noller, Y., Shariffdeen, R., Gao, X., and Roychoudhury, A. Trust enhance-

ment issues in program repair. Proceedings - International Conference on Software
Engineering 2022-May (2022), 2228–2240.

[26] Ogundipe, O., and Aweto, T. The shaky foundation of global technology: A

case study of the 2024 crowdstrike outage. Article in International Journal of
Multidisciplinary Research and Growth Evaluation (2024).

[27] Punter, T., Ciolkowski, M., Freimut, B., and John, I. Conducting on-line

surveys in software engineering. In 2003 International Symposium on Empirical
Software Engineering, 2003. ISESE 2003. Proceedings. (2003), pp. 80–88.

[28] Sentry. Application performance monitoring & error tracking software | sentry.

https://sentry.io/welcome/, 2024. Accessed: 2024-10-05.

[29] Sesari, E., Sarro, F., and Rastogi, A. It is giving major satisfaction: Why

fairness matters for developers, 2024.

[30] Slack. Ai work management and productivity tools | slack. https://slack.com/

intl/en-gb/, 2024. Accessed: 2024-10-05.

[31] Steidl, M., Dornauer, B., Felderer, M., Ramler, R., Racasan, M.-C., and

Gattringer, M. How industry tackles anomalies during runtime: Approaches

and key monitoring parameters.

[32] Stevenson, J., and Wood, M. Recognising object-oriented software design

quality: a practitioner-based questionnaire survey. Software Quality Journal 26
(6 2018), 321–365.

[33] Storey, M.-A., Zimmermann, T., Bird, C., Czerwonka, J., Murphy, B., and

Kalliamvakou, E. Towards a theory of software developer job satisfaction and

perceived productivity. IEEE Transactions on Software Engineering 47, 10 (2021),
2125–2142.

[34] Williams, D., Callan, J., Kirbas, S., Mechtaev, S., Petke, J., Prideaux-Ghee,

T., and Sarro, F. User-centric deployment of automated program repair at

bloomberg. In Proceedings of the 46th International Conference on Software Engi-
neering: Software Engineering in Practice (New York, NY, USA, 2024), ICSE-SEIP

’24, Association for Computing Machinery, p. 81–91.

[35] Winter, E., Bowes, D., Counsell, S., Hall, T., Haraldsson, S., Nowack, V.,

and Woodward, J. How do developers really feel about bug fixing? directions

for automatic program repair. IEEE Transactions on Software Engineering 49 (4
2023), 1823–1841.

[36] Zhang, Q., Zhao, Y., Sun, W., Fang, C., Wang, Z., and Zhang, L. Program

repair: Automated vs. manual. arXiv.org (2022).

[37] Zoysa, S. D. Microsoft global outages caused by crowdstrike software glitch.

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://www.bbc.co.uk/news/live/cnk4jdwp49et
https://arxiv.org/abs/2401.09275
https://arxiv.org/abs/2401.09275
https://sentry.io/welcome/
https://slack.com/intl/en-gb/
https://slack.com/intl/en-gb/

	Abstract
	1 Introduction
	2 Research Questions
	3 Methodology
	3.1 Questionnaire Design
	3.2 Questionnaire Dissemination
	3.3 Result Analysis

	4 Participant Demographic
	4.1 Zühlke Questionnaire
	4.2 Public Questionnaire

	5 Findings
	5.1 RQ1: Hot Fixing Terminology
	5.2 RQ2: Hot Fixing Current Practices
	5.3 RQ3: Hot Fixing Tooling and Automation
	5.4 RQ4: Standardization of Hot Fixing

	6 Discussion
	6.1 Key Observations
	6.2 Implications for Researchers
	6.3 Implication for Practitioners

	7 Threats to Validity
	8 Related Work
	9 Conclusions and Future Work
	References

