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A B S T R A C T

The search for improved CO2 capture solvents can be accelerated by deploying computer-aided molecular and
process design (CAMPD) techniques to explore large molecular and process domains systematically. However,
the direct solution of the integrated molecular-process design problem is very challenging as nonlinear
interactions between physical properties and process performance render a large proportion of the search space
infeasible. We develop a methodology that enables the direct and reliable solution of CAMPD for absorption–
desorption processes, using the state-of-the-art SAFT-𝛾 Mie group contribution approach to predict phase and
chemical equilibria. We develop new feasibility tests and show them to be highly efficient at reducing the
search space, integrating them in an outer-approximation algorithm. The framework is applied to design an
aqueous solvent and CO2 chemical absorption–desorption process, with 150 CAMPD instances across three
case studies solved successfully. The optimal solvents are more promising than those obtained with sequential
molecular design approaches.
1. Introduction

Carbon dioxide (CO2) is one of the primary anthropogenic green-
house gases that directly contributes to a negative impact on the
environment and life on our planet. A significant reduction in total CO2
emissions is essential to limit the rise in the global average temperature
to 2 ◦C, as has been highlighted in several Intergovernmental Panel
on Climate Change (IPCC) reports (IPCC, 2021). In December 2015,
the 21st conference of the parties (COP21) agreement set out the
highly ambitious aspiration of limiting the temperature increase to
1.5 ◦C by 2050 (UNFCCC, 2015). In response to this, there have been
growing efforts to develop and adopt low-carbon options to reduce net
CO2 emissions to the atmosphere. Carbon Capture and Storage (CCS)
technologies are widely regarded as playing a vital role in a portfolio of
net-zero emissions, and are expected to contribute approximately 20%
of the reductions in greenhouse gas emissions by 2035 (IEA, 2011).
Among the variety of available CCS technologies, post-combustion
capture based on the chemical absorption of CO2 in an amine solvent
is regarded as one of the most promising technologies in terms of
technological maturity, applicability and capability of handling exhaust
streams from large point industrial sources (Chao et al., 2021). An
amine-based solvent that has been widely used for the process is an
aqueous monoethnaolamine (MEA) solution due to its high reaction
rate with CO2, moderate absorption capacity and low solvent cost.

∗ Corresponding author.
E-mail address: c.adjiman@imperial.ac.uk (C.S. Adjiman).

However, the main disadvantages of using this conventional solvent in-
clude: high energy requirements associated with solvent regeneration,
which takes up to 50% of the total energy use of the process; harmful
environmental and health impacts; and high operational costs resulting
from limited CO2 solubility (Borhani and Wang, 2019; Wang and Song,
2020).

To counter these shortcomings, considerable efforts have been ex-
pended on the search for alternative amine-based solvents that have
better thermal, economic and environmental performance. The iden-
tification, characterization and assessment of candidate solvents are
challenging due to the large number of potential solvent molecules
and the significant influence of the choice of solvent on process per-
formance, meaning that optimal solvents can only be identified by
considering the interactions between the molecular and process-level
decisions simultaneously. Indeed, the importance of considering multi-
ple effects rather than focusing on standard metrics such as equilibrium
absorption capacity has been well recognized (Mota-Martinez et al.,
2017).

In this context, Computer-Aided Molecular and Process Design
(CAMPD) offers a systematic framework to evaluate a very wide range
of molecular structures in terms of system metrics, given a set of desir-
able physicochemical properties and process performance criteria (Ad-
jiman et al., 2014). A variety of solution strategies have been developed
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Nomenclature

Sets

𝐴1 Set of violated constraints
𝐺𝐴, 𝐺CH2

Set of amine functional groups and func-
tional groups that include CH2

𝐺iso Set of function groups that include CH or C
𝐼𝐶 Set of integer cuts
𝑁𝐶 Set of components in the system, i.e., 𝑁𝐶 =

{N2, CO2, H2O, solvent}
𝑁𝐶 ′ Set of components considered in Test 2,

i.e., 𝑁𝐶 ′ = {solvent, H2O}

Superscripts

∗ Optimal solution
𝑘 Iteration numbers
U, L Upper and lower bounds

Symbols

𝛼, 𝛽, 𝛾 Phase fractions of vapor, first liquid, and
second liquid at equilibrium

𝒏𝑺 Vector that represents the number of
occurrences of the SAFT-𝛾 Mie groups

𝒏 Vector of functional groups defining the
molecular structure

𝒚,𝒙𝜷 ,𝒙𝜸 Mole fractions in the vapor, first liquid and
second liquid phases at equilibrium

𝒛 Total composition of the system
𝛥𝑇min Minimum approach temperature in heat

exchangers (K)
𝜇 Viscosity of the mixture of solvent and

water (cP)
𝜃0 Lean loading (mol mol−1)
𝐿𝐶50,mgL Lethal dose concentration of the solvent

(mg L−1)
𝑀𝑊𝑖 Molecular weight of component 𝑖 ∈ 𝑁𝐶 (g

mol−1)
𝑃𝑁𝑎

, 𝑃𝑁𝑑
Operating pressures at the last stage of
absorber and desorber (MPa)

𝑄total Total energy consumption per ton of CO2
captured (GJ ton-CO−1

2 )
𝑄reb, 𝑄cond Energy consumption in the reboiler and

condenser of the desorber (MW)
𝑇0 Lean solvent temperature (K)
𝑇dew Dew point temperature of the mixture of

solvent and water (K)
𝑇AIT Auto-ignition temperature of the solvent

(K)
𝑇bp Normal boiling temperature of the solvent

(K)
𝑇cond Condenser temperature (K)
𝑇fp Flash point temperature of the solvent (K)

for CAMPD problems, focusing on handling the numerical complexity
arising from the inherent non-convexity of structure–property and
process models and the combinatorial nature of the problem arising
from the use of molecular structure as an optimization variable. The
reader is referred to Ng et al. (2015), Austin et al. (2016), Papadopoulos
et al. (2018) and references therein for an in-depth description of a
2

variety of solution strategies and their performance. Unfortunately,
𝑇mp Normal melting temperature of the solvent
(K)

𝑇𝑁𝑎
, 𝑇𝑁𝑑

Operating temperature at the last stage of
absorber and desorber (K)

𝑇op Operating temperature of the chemical
absorption–desorption process (K)

𝑇sh Solvent handling temperature (K)
𝑊solvent Solvent mass fraction of the binary mixture

of the solvent and water (g g−1)
TAC, TCI, OPEX Total annualized cost, total cost of invest-

ment, and total operating cost ($million
year−1)

many algorithms encounter computational difficulties with the large-
scale mixed-integer nonlinear problem (MINLP) formulations that are
typical of CAMPD problems. This is mainly because: (1) the relationship
between process performance and molecular structure exhibits highly
nonlinear behavior making it prohibitively expensive and challeng-
ing to find a solution of the multiscale model; (2) the design space
formed by the integrated solvent-process model is characterized by
the presence of infeasible subregions, so that it is not possible for
standard optimization algorithms to identify a feasible solution for
many solvent structures without a high-quality starting point. To enable
the widespread application of CAMPD to CO2 capture processes, there
is a pressing need to develop robust CAMPD algorithms that allow
one to avoid infeasibilities during the exploration of a large design
space (Adjiman et al., 2021).

One class of methods suited to overcoming the aforementioned
infeasibilities is that of decomposition-based approaches. In these meth-
ods, the process and molecular design are decoupled and treated as a
series of separate subproblems. Each subproblem is often formulated
with a different level of complexity and a reduced size of the design
space in order to make the problem tractable. Note that the term
‘‘decomposition’’ in this context refers to the overall strategy for solving
the CAMPD problem rather than the solution approach for the solution
of the MINLP.

Hostrup et al. (1999) proposed a hybrid method for the integrated
design of solvents and environmentally-benign separation processes.
They first used thermodynamic insights and knowledge of the system
to eliminate less attractive solvents and process flowsheet options. The
remaining candidate solvents and flowsheet structures were then opti-
mized based on a selected objective function. A similar CAMPD solution
approach was adopted by Roughton et al. (2012) for the identification
of new liquid entrainers for extractive distillation processes to improve
energy efficiency. Karunanithi et al. (2006) developed a decomposition-
based CAMPD framework for the design of optimal solvents and solvent
mixtures for the crystallization of ibuprofen, consisting of the solution
of several subproblems: the first subproblem was formulated as a
computer-aided molecular design (CAMD) problem aiming to reduce
the discrete solvent search space by evaluating molecular structural
constraints, pure component properties, and mixture properties and
miscibility. Subsequently, an MINLP CAMPD problem was solved for
the reduced search domain. Papadopoulos and Linke (2006b,a) devel-
oped a CAMPD framework that decouples the original MINLP problem
into two subproblems: a multi-objective optimization (MOO) method
was employed to screen Pareto-optimal solvents with respect to key
molecular properties, and a molecular clustering approach that inte-
grates the process and molecular design was then applied to select
solvents from the set of identified Pareto-optimal solvents. This method
has been extended by Papadopoulos et al. (2010, 2013) for the design
of optimal working fluids and working fluid mixtures for organic
Rankine cycle (ORC) processes and by Kokossis and Yang (2010) for

the synthesis and design of future biorefineries.
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A reverse approach to decomposition was outlined by Eden et al.
(2004) and Eljack et al. (2007). In these studies, molecular properties
were optimized to maximize process performance, such as an economic
value of the process, without considering discrete decisions (i.e., molec-
ular structure). Subsequently, molecular structures that match the iden-
tified property targets as closely as possible were explored by solving
a property-matching CAMD problem (Maranas, 1997). Bommareddy
et al. (2010) incorporated a similar strategy using a group contri-
bution method (Marrero and Gani, 2001) for the representation of
molecular property operators. Within the family of property-targeting
approaches, Bardow et al. (2010) and Oyarzún et al. (2011) pro-
posed a continuous molecular targeting-computer-aided molecular de-
sign (CoMT-CAMD) to integrate molecular design and process de-
sign, using the perturbed-chain statistical associating fluid theory (PC-
SAFT) (Gross and Sadowski, 2001) as the property model. In the first
stage, a model of the process was used to optimize the continuous
parameters characterizing the molecules within the PC-SAFT equa-
tion of state and process variables. The optimal parameters describe
a hypothetical molecule which was then mapped onto an existing
molecule in the second stage. The performance of the proposed method
was demonstrated for the design of solvents for pre-combustion CO2
apture (Stavrou et al., 2014; Lampe et al., 2015), and the design of
rganic Rankine cycle fluids (Lampe et al., 2014, 2015).

While there have been encouraging advances in decomposition-
ased CAMPD techniques that allow for the generation of optimal
olecular candidates, some drawbacks of these methods have also

een discussed by Ng et al. (2015), Gopinath et al. (2016), Austin
t al. (2016), and Schilling et al. (2020). A major disadvantage of
ecomposition-based methods is that they can result in suboptimal
olutions if the heuristic or expert judgment made in the initial step
introduced to reduce the search space) does not capture all process
ptions. Therefore, the quality of the solutions is often highly depen-
ent on the formulation of the subproblems. Unfortunately, it is not
lways straightforward to decompose the original problem into several
ubproblems. To overcome this, direct solution approaches that aim to
olve the full CAMPD problem have been receiving increasing attention.

Burger et al. (2015) proposed a hierarchical approach to address
he numerical difficulties in the solution of direct CAMPD problems.
ood initial guesses for the integrated solvent and process design of
hysical absorption process for CO2 removal from a methane stream

were generated using an MOO technique applied to a simplified CAMPD
problem. The Pareto-optimal solvent candidates obtained were then
used as starting points for the solution of the full CAMPD MINLP, with
the detailed process model. One difficulty in applying this method is
that there is no guarantee that the Pareto-optimal solvents represent
points that are near-optimal or even feasible in the full CAMPD model.
Furthermore, the solution of the simplified design problem may itself be
very challenging due to the presence of highly nonideal phase behavior
and nonlinear structure–property model equations.

An enumeration strategy has been proposed by Scheffczyk et al.
(2018), who introduced the COSMO-CAMPD framework, a generate-
and-test approach in which process performance is evaluated for all
molecular candidates that satisfy certain constraints. Candidates were
generated via a genetic algorithm and their properties evaluated by
COSMO-RS (Klamt et al., 2010). Candidate molecules were screened
using thermodynamic feasibility tests and an assessment via pinch-
based models. Candidates were then re-evaluated with a more detailed
COSMO-RS model and assessed through more rigorous process models.
The framework has since been expanded to embed cradle-to-grave
environmental assessment of solvents within the COSMO-susCAMPD
framework (Fleitmann et al., 2021).

With a view to making the problem more tractable, Pereira et al.
(2011) solved a simplified version of the CAMPD problem for the
design of solvent and process for the physical absorption of CO2 from a
methane stream. The problem was posed as a continuous optimization
3

problem in which solvent mixtures of n-alkanes were represented in
terms of their average chain length making use of the congruence
properties of the n-alkanes. The need for binary variables for the
representation of molecules was avoided by choosing an equation of
state parameter, the chain length, as an optimization variable. This,
however, came at the cost of a restricted solvent design space. Zhou
et al. (2017) adopted a direct solution approach for a CAMPD MINLP
via a hybrid stochastic-deterministic optimization approach. In their
methodology, a genetic algorithm (GA) was applied to generate molec-
ular candidates and a gradient-based nonlinear programming (NLP)
algorithm was used to optimize the process for a given set of molecular
candidates. The effectiveness of the method was tested on the design of
a solvent and process for CO2 physical absorption. Although robustness
of the algorithm was demonstrated, there were several difficulties when
applying it to more complex systems. Firstly, this approach did not
address the issue that, in the optimization of the process model for a
fixed solvent, one needs to make sure that the molecules are feasible
with respect to the specified process configurations. When generating a
new set (population) of molecules with the GA, the selection of feasible
or high-performance molecules becomes very difficult if many of gen-
erated molecules violate the process constraints. Moreover, increases in
the population size greatly increase the computational cost.

Schilling et al. (2017a) introduced a 1-stage CoMT-CAMD approach,
building on their earlier work on two-stage CoMT-CAMD (Bardow
et al., 2010). The MINLP problem was solved using an outer approxima-
tion (OA) algorithm (Duran and Grossmann, 1986) to identify optimal
hypothetical working fluids, with the use of PC-SAFT, and associated
ORC process conditions. The same approach was applied to the design
of working fluid mixtures for the ORC process (Schilling et al., 2020).
While the applicability of the method seems promising, the formu-
lation of the problem was developed based on the reverse approach
which requires the molecular mapping of the hypothetical molecular
structure to a real molecule in a final step. The actual performance
of the molecules found by reverse mapping deviated from that of the
hypothetical working fluids (Schilling et al., 2017b).

An alternative strategy for the simultaneous approach is outlined
by Gopinath et al. (2016). Motivated by the work of Buxton et al.
(1999), the authors developed a set of feasibility tests and incor-
porated them into an OA algorithm. The feasibility tests serve as a
pre-processing step before solution of the primal problem, through
which infeasible molecules and process operating conditions can be
eliminated from the search space without tackling the more challenging
process optimization problem. By automatically detecting infeasibilities
as a function of molecular structure, they found that not only was con-
vergence to an optimal solution achieved regardless of user-provided
initial guesses, but that computational efficiency was also improved
without making significant model simplifications or introducing any
approximations or reductions of the process and molecular design
space. The robustness of the algorithm was validated by application
to the design of solvent and process for the physical absorption of
CO2 from high-pressure natural gas. The concept of physical reduction
of the domain was also implemented in integrated working fluid and
ORC process design (Bowskill et al., 2020), with appropriate feasibility
tests, and resulted in similarly improved robustness and efficiency as
demonstrated by the exploration of a space of 58,000 possible fluids.
Finally, initial work on deploying this approach for the chemisorption
of CO2 was reported by Lee et al. (2021).

In our current paper, we build on the work of Gopinath et al.
(2016), Bowskill et al. (2020) and Lee et al. (2021) and propose a
robust optimization framework for the simultaneous design of optimal
aqueous amine solvent and process combinations for CO2 capture from
flue gas, without limiting the level of detail in the representation of
molecular structures, thermodynamic models, and process models. This
represents a significant challenge as chemisorption via amine solvents
is considerably more complex than physical absorption in terms of the
underpinning physicochemical phenomena and process units, with the

presence of chemical reactions and solvent regeneration taking place
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Fig. 1. Overview of the CO2 absorption–desorption process configuration.
via a desorber rather than a flash unit. We introduce tailored feasibility
tests that are applicable to any chemisorption process and incorporate
them into the OA algorithm (Duran and Grossmann, 1986) for the solu-
tion of CAMPD problems such that large molecular and process design
spaces are explored simultaneously without difficulty. The design of
the feasibility tests is focused on recognizing the feasible domain based
on: (1) the physicochemical properties of the pure candidate solvent
and aqueous solvent mixture; (2) an assessment of the suitability of
a candidate solvent based on an analysis of the phase behavior of
mixtures of the solvent(s); and CO2 (3) an assessment of the suitability
of the solvent mixture to meet the target degree of separation. The
performance of the proposed algorithm is highlighted through several
CAMPD instances focused on the chemical absorption–desorption of
CO2. The CAMPD optimization formulation is developed based on
the process model introduced in Lee (2022), and Lee et al. (2023)
and the SAFT-𝛾 Mie group contribution equation of state (EOS) (Pa-
paioannou et al., 2014; Dufal et al., 2014) is applied to facilitate the
reliable prediction of the physical properties and phase behavior of the
water–solvent–CO2 mixtures, using recently developed models for the
mixtures of interest (Khalit, 2019; Haslam et al., 2020; Perdomo et al.,
2021, 2023). For each case study, an economic criterion is used to
evaluate the performance of the solvent/process combinations and to
identify optimal designs.

2. Problem formulation

2.1. Overall problem statement

For the formulation of the integrated design problem that encom-
passes solvent and chemical absorption process optimization, we make
use of the process and cost models that were developed and validated
in Lee (2022), Lee et al. (2023). Given a solvent design space, CO2
absorption–desorption process specifications, constraints and a suitable
objective function, an MINLP CAMPD optimization problem is formu-
lated to determine an optimal combination of aqueous amine solvent
and process conditions. The generic mathematical formulation of the
MINLP problem is as follows:

min
𝒙,𝒏

𝑓 (𝒙, 𝒏)

s.t. 𝒈(𝒙, 𝒏) ≤ 𝟎
𝒉(𝒙, 𝒏) = 𝟎
𝑪𝒏 ≤ 𝒅

𝑚 𝑞

(1)
4

𝒙 ∈ R , 𝒏 ∈ 𝑵 ⊂ Z
where 𝒙 is an 𝑚-dimensional vector of continuous variables, 𝒏 is a
𝑞-dimensional vector of integer variables that define the molecular
space, 𝒈(𝒙, 𝒏) is a vector of inequality constraints that represent design
constraints and feasibility constraints, 𝒉(𝒙, 𝒏) is a vector of equality
constraints that include structure–property models and process models,
and the set of linear equations 𝑪𝒏 ≤ 𝒅 represents molecular constraints
such as the octet rule (Odele and Macchietto, 1993) and bounds on
vector 𝒏.

2.2. CO2 chemical absorption process model

The process configuration is shown in Fig. 1. A flue gas leaving a
direct contact cooler (not shown in the Figure) is fed into the bottom
of an absorber. The gas stream flows upward through the packed
bed inside the absorber, against a countercurrent stream of aqueous
amine solvent. The gaseous CO2 is chemically absorbed into the amine
solution and the clean gas stream leaving the top of the absorber is
emitted to the atmosphere. The CO2-rich solution leaving the bottom of
the absorber passes thorough a rich-lean heat exchanger (HE) where the
CO2-rich amine solution is heated by the hot CO2-lean amine solution.
It then enters the top of a desorber for solvent regeneration. The CO2-
rich amine solution flows downward against a counter-current flow of
water-rich vapor generated in the reboiler, until CO2 concentration in
the solvent solution is reduced to the target level. Finally, the CO2-
lean amine solution passes through the rich-lean HE and lean cooler
to achieve a pre-defined operating temperature and then returns to the
top of the absorber.

The flue gas is assumed to arise from a 400 MWe combined-cycle
gas-turbine (CCGT) power plant (Bailey and Feron, 2005). The model
inputs and process specification used in the current study are listed in
Table 1.

The equilibrium-stage model proposed in Lee (2022), Lee et al.
(2023) is used to represent the process. For brevity, the model and
modeling assumptions are not reprised here but some salient points
are highlighted. Specifically, the absorber and desorber are modeled
as a series of equilibrium stages via mass, equilibrium, summation and
heat (MESH) equations. The complex phase and chemical equilibria
on each stage are modeled using an implicit approach within the
SAFT-𝛾 Mie framework, wherein the formation of reaction products
such as carbamate and bicarbonate is treated as the association of
the reactant species (amine solvent and CO2). This approach has been
demonstrated to represent the phase and chemical behavior of these
systems well (Mac Dowell et al., 2010) for the molecular SAFT-VR
SW equation of state (Gil-Villegas et al., 1997), which is suitable
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Table 1
Input values and baseline process specifications of a CO2 capture process model for a
00MWe CCGT power plant (Bailey and Feron, 2005). The loading is defined as moles
f CO2 absorbed in 1 mole of amine solvent.
Base line process specification Units Value

Lean solvent flow rate m3 h−1 23
MEA concentration in lean solvent wt % 30.4
Absorber inlet flue gas flow rate Nm3 h−1 1,800,000
Absorber inlet flue gas CO2 molar composition mol% 5
Absorber inlet flue gas H2O molar composition mol% 12
Absorber inlet flue gas N2 molar composition mol% 83
Absorber inlet flue gas temperature K 323.15
Absorber operating pressure MPa 0.101
Temperature approach in heat exchangers K 10
Lean solvent temperature, 𝑇0 K 313.15
Desorber operating pressure, 𝑃𝑁𝑑

MPa 0.181
Lean loading, 𝜃0 mol mol−1 0.25
Condenser temperature, 𝑇cond K 333.15
Degree of CO2 captured % 90

for solvents for which experimental data are available, and to yield
reliable predictions of the mole fractions of ionic species at different
conditions (Rodriguez et al., 2012) and of the process behavior (Alhajaj
et al., 2016). Through extension to group contribution versions of
SAFT (Chremos et al., 2016; Perdomo et al., 2021, 2023), the predictive
capabilities of the approach have been expanded to large classes of
solvents. An advantage of the implicit approach is that only the species
that are fed to the process (nitrogen, water, CO2, amine solvent) need
to be modeled explicitly, thereby reducing the number of material
balances and variables needed. Finally, nearly all thermodynamic prop-
erties, including stream enthalpies and heat of absorption, are modeled
using SAFT-𝛾 Mie, so that a consistent thermodynamic framework is
used and no assumptions of ideality are required. To enable equipment
sizing, the stream viscosity and surface tension are predicted using the
method proposed by Hsu et al. (2002) and Hukkerikar et al. (2012b).

In order to improve the convergence behavior of the process model,
a tailored initialization strategy proposed by Lee (2022), Lee et al.
(2023) and based on the concept of the inside-out algorithm (Boston,
1980; Russell, 1983) introduced in conjunction with the process model.
This approach has been found to lead to reliable convergence for
a range of (feasible) candidate solvents in extensive parametric and
optimization studies. Finally, the model has been extensively validated
against pilot plant data and found to provide good agreement with key
process metrics, including CO2 removal and energy requirements (Lee,
2022; Lee et al., 2023).

As for the process optimization problem, the objective function is
set as the total annualized cost (TAC), which is a metric of overall
economic performance, and three continuous variables are considered
as degrees of freedom: the temperature of the solvent entering the
absorber (𝑇0), the lean-solvent loading (𝜃0) defined as the moles of
CO2 absorbed in one mole of amine solvent in the CO2-lean stream
entering the absorber, and the desorber pressure (𝑃𝑁𝑑

). The set of
design variables also includes the solvent structure as defined by 𝒏.

2.3. Solvent design space

The molecular design space is defined by groups that are present
in typical CO2 capture solvents, and for which group-contribution
interaction parameters are available for the group-contribution meth-
ods used. The following 13 functional groups are included: NH2CH2,
NH2CH, NH2C, NHCH3, NHCH2, NHCH, NCH3, NCH2, CH3, CH2, CH,
C, OH. The methods of Hukkerikar et al. (2012b) are used to predict
the normal melting temperature (𝑇mp), the auto-ignition temperature
(𝑇AIT), the flash point (𝑇fp), and the LC50 toxicity of the solvents
selected (𝐿𝐶50,mgL). The SAFT-𝛾 Mie group contribution EOS (Papaioan-
nou et al., 2014; Dufal et al., 2014) is used to predict the fluid-phase
behavior of water, solvent and CO2 mixtures. Because the group def-
5

initions in SAFT-𝛾 Mie are different from those of the other methods
used, a set of linear equations is formulated to translate the functional
groups defining the molecular structure, described by the vector 𝒏, into
a vector 𝒏𝑆 through which the number of occurrences of the following
SAFT-𝛾 Mie groups is specified: NH2, NH, N, CH3, CH2, CH, C, CH2OH,
NH∗

2, NH∗, N∗, CH2OHShort . The larger group CH2OH is introduced to
rovide improved accuracy relative to adopting smaller groups such as
H2 and OH (Hutacharoen et al., 2017; Chremos et al., 2016; Khalit,
019; Haslam et al., 2020; Perdomo et al., 2021) by accounting for the
olarization of the CH2 when close to a hydroxyl group. The groups
H∗
2, NH∗, N∗, CH2OHShort represent second-order groups, which can

e used more effectively to capture proximity effects and the polarizing
ffect of water. In the context of SAFT-𝛾 Mie, second-order group
ffects for the amine groups and hydroxyl groups are considered to
ccount for the different unlike (or cross) interactions, when one of the
roups exists in a certain molecular environment (Haslam et al., 2020).
onsidering MEA, for example, the molecule is defined as 𝑛NH2CH2

= 1,
CH2

= 1, 𝑛OH = 1. This can be translated into an equivalent solvent
tructure for use in the SAFT-𝛾 Mie EOS, i.e., 𝑛𝑆,NH2

= 1, 𝑛𝑆,CH2
= 1,

𝑆,CH2OHShort
= 1.

The use of the two sets of functional groups, 𝒏 and 𝒏𝑆 , requires
he introduction of additional constraints to ensure the equivalence
f the structures. For example, the choice of SAFT groups means that
H can only appear in the molecule within the CH2OH group (or the
H2OHShort group), as captured by the following additional constraint:

∑

𝑗∈𝐺CH2

𝑛𝑗 ≥ 𝑛OH, (2)

here 𝐺CH2
is the set of functional groups that include CH2 given by

CH2
={NCH2, NHCH2, NH2CH2,CH2}.

Such constraints ensure that the mapping between the two represen-
ations of a given molecule is consistent. The molecular design space is
hus defined as the intersection of the sets of molecules that can be
epresented using vectors 𝒏 and 𝒏𝑺 and the rules and constraints that

define allowable combinations of groups. Because of the differences
in the sizes of the groups in the two representations, the mapping is
not one-to-one. Consider, for example, methyldiethanolamine (MDEA),
which can be defined with two different 𝒏 vectors, 𝒏MDEA,1 = (𝑛NCH3

=
1, 𝑛CH2

= 4, 𝑛OH = 2) and 𝒏MDEA,2 = (𝑛NCH2
= 1, 𝑛CH2

= 3, 𝑛CH3
=

1, 𝑛OH = 2), and a unique 𝐧𝑆 vector in the SAFT-𝛾 Mie environment,
i.e., 𝐧𝑆,MDEA = (𝑛𝑆,N = 1, 𝑛𝑆,CH2

= 3, 𝑛𝑆,CH3
= 1, 𝑛𝑆,CH2OHShort

= 1).
In some group-contribution methods (e.g., Marrero and Gani (2001)),
there are clear rules for choosing amongst duplicates, for instance by
favoring larger groups. In other cases, such as the methods used in
our work, the two representations are valid and will give different
predictions for the properties of interest and hence different overall
performance. If one or both representations are found to yield high per-
formance, then the molecule should be investigated further to resolve
the uncertainty inherent in the group-contribution methods. Further
details of the mapping between two different sets of groups and the
associated constraints can be found in Appendix A.1.

An equality constraint is introduced to ensure molecular feasibility
of the acyclic compounds (Odele and Macchietto, 1993):
𝑁
∑

𝑖=1
(2 − 𝑣𝑖)𝑛𝑖 − 2 = 0, (3)

where 𝑣𝑖 is the valence of group 𝑖.
The total number of functional groups in the molecule is limited by

an upper bound, 𝑛𝑈𝑡 :
𝑁
∑

𝑖=1
𝑛𝑖 − 𝑛𝑈𝑡 ≤ 0. (4)

The total number of groups with amine functionality is constrained by
lower and upper bounds [𝑛𝐿𝐺𝐴

, 𝑛𝑈𝐺𝐴
]:

𝑛𝐿𝐺𝐴
≤

∑

𝑛𝑗 ≤ 𝑛𝑈𝐺𝐴
, (5)
𝑗∈𝐺𝐴
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where 𝐺𝐴 is the set of amine groups given by 𝐺𝐴 ={NH2CH2, NH2CH,
NH2C, NHCH3, NHCH2, NHCH, NCH3, NCH2}. Similarly, the number
of hydroxyl groups is constrained by an upper bound 𝑛𝑈OH:

𝑛OH − 𝑛𝑈OH ≤ 0. (6)

With GC-based approaches, the molecular structure is defined by the
number of groups of each type appearing in the molecule without
taking into account the connectivity, meaning that it is not possible to
distinguish some isomers. As a result, isomers represented by the same
functional groups are predicted to have identical properties. With this
mind, a further constraint that limits the total number of CH and C
groups appearing in a solvent to an upper bound 𝑛𝑈iso is introduced in
order to reduce degeneracy as a consequence of having many isomers:

∑

𝑗∈𝐺iso

𝑛𝑗 − 𝑛𝑈iso ≤ 0, (7)

where 𝐺iso is a set of functional groups that include CH or C given by
𝐺iso ={NHCH, NH2CH, NH2C, CH, C}. Finally, the lower and upper
bound on each groups are

𝑛𝑖 ∈
{

𝑛𝐿𝑖 , 𝑛
𝑈
𝑖
}

, 𝑖 = 1,… , 𝑁. (8)

3. Proposed CAMPD algorithm

The main contribution of our current work is a CAMPD framework
that enables the simultaneous optimization of solvent and chemical
absorption process variables with a detailed equilibrium model and
without introducing any reductions of the process or molecular design
spaces. A key concept used in the proposed CAMPD approach is the
introduction of feasibility tests within an OA framework (Duran and
Grossmann, 1986; Fletcher and Leyffer, 1994). In the original OA
algorithm, the problem is decomposed into a nonlinear programming
(NLP) subproblem, the primal problem, and a mixed-integer linear
programming (MILP) subproblem, the master problem. The algorithmic
procedure begins by solving the first primal problem for the fixed dis-
crete variables. The master problem is then solved for the approximate
design space obtained by linearizing the objective function and active
constraints around a set of points identified so far. The solution of
the master problem is used to generate new binary variables for the
subsequent primal problem. The iterative solution of NLP and MILP
continues until the algorithm converges. While the OA was originally
designed for problems that are convex in the continuous variables and
linear in the binary variables, the introduction of equality relaxation
and augmented penalty (OA/ER/AP) (Kocis and Grossmann, 1989;
Viswanathan and Grossmann, 1990) has made it applicable to problems
that are nonconvex in the continuous variables, albeit without guaran-
teeing their global solution. The global solution of the type of MINLP
considered is in principle possible (e.g., Adjiman et al. (2000)) by
solving convex relaxations of the NLPs, but the degree of nonconvexity
and scale of the CAMPD problems considered is beyond the scope of
current global optimization solvers. Instead, we solve the nonconvex
NLPs with a multi-start approach. The OA was chosen because the
framework is particularly well suited for implementing the feasibility
tests, as the properties of the molecule and the process model are
only ever evaluated/optimized for chemically-meaningful molecules.
If a branch-and-bound framework were to be used, then expensive
computations would have to be carried out for hypothetical molecules
(with non-integer group numbers), reducing the usefulness of the pro-
posed feasibility tests. Instead, the OA framework makes it possible
to eliminate infeasible process conditions and solvent structures from
the search space before solving highly nonlinear (process optimization)
primal problems.

The feasibility tests are derived on the basis of physical properties
and thermodynamic behavior and are used to determine if the process
is feasible for the current solvent/set of discrete variable values without
6

Fig. 2. Schematic illustration of (a) a standard outer-approximation algorithm, and (b)
the proposed framework with feasibility tests. Red boxes represent the steps introduced
in the modified algorithm. This figure is an adaptation of Figure 2 in Bowskill et al.
(2020).

solving the full process optimization problem. If the feasibility tests
indicate the process is infeasible, the primal problem is bypassed by dis-
carding the solvent from consideration in subsequent iterations, and the
master problem is solved to generate a new molecule. If the feasibility
tests are passed, the optimal process performance for the fixed solvent
is evaluated by solving the primal problem. This approach has recently
been shown to be highly effective for the CAMPD of physical absorption
processes (Gopinath et al., 2016) and organic Rankine cycles (Bowskill
et al., 2020). Flowcharts for the standard OA algorithm and the OA
algorithm with the feasibility tests are displayed in Fig. 2. Elements of
the proposed algorithm are discussed in more detail in the remainder
of this section.

3.1. Feasibility tests

In this section, we describe four feasibility tests that can be applied
to the CAMPD of chemical absorption processes. The aims of these tests
are to determine whether a given solvent is infeasible and to eliminate
process conditions that are incompatible with the chemical solvent. In
addition, when a solvent is found to pass all the tests, the results are
used to set reduced bounds on the process variables and to identify a
suitable starting point for the solution of the primal problem.

In order to adapt the feasibility tests proposed by Gopinath et al.
(2016) to the more complex setting of the CO2 chemical absorption–
desorption process, several significant modifications are made, so that
the OA algorithm modified with new feasibility tests can reliably gen-
erate solutions. Key differences are the formulation of an optimization
problem to avoid the formation of two liquid phases in the absorber
(Test 2) and several modifications and extensions of the separation
feasibility tests of Gopinath et al. (2016) (Tests 3 and 4). These include
a reformulation that accounts for the possibility of vapor–liquid–liquid
equilibrium (VLLE) and for the presence of chemical reactions; an
extension to quaternary systems; and the derivation of new constraints
to consider the feasibility of the desorber.
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Table 2
Property prediction methods and bounds on the properties used in Test 1, (𝑇 𝐿

sh =
298.15K, 𝑇 𝑈

sh = 308.15 K, 𝑇 𝑈
op = 413.15 K, 𝜇𝑈 = 0.1 × 103 cP (Gopinath et al., 2016)

and 𝐿𝐶𝑈
50,mgL = 10).

Physical property Bounds Reference

𝑇bp (K) at 1 atm [𝑇 𝑈
sh ,573] Papaioannou et al. (2014)

𝑇dew (K) at 1 atm [𝑇 𝐿
op,573] Papaioannou et al. (2014)

𝑇mp (K) at 1 atm [0, 𝑇 𝐿
sh] Hukkerikar et al. (2012b)

𝐿𝐶50,mgL (mg/L) [0, 𝐿𝐶𝑈
50,mgL] Hukkerikar et al. (2012a)

𝑇AIT (K) [𝑇 𝑈
op, 103] Hukkerikar et al. (2012b)

𝑇fp (K) [𝑇 𝑈
sh , 103] Hukkerikar et al. (2012b)

𝜇 (cP) at 𝑇 𝐿
sh and 1 atm [0, 𝜇𝑈 ] Hsu et al. (2002)

3.1.1. Test 1: Solvent property feasibility
In Test 1, the properties of the pure candidate solvent 𝒏 or

those of the aqueous solution are evaluated to determine whether
they lie within acceptable bounds. In Test 1, seven essential proper-
ties (Schilling et al., 2020; Harper et al., 1999) are considered: five
pure solvent properties, namely the normal boiling temperature (𝑇bp),
the normal melting point (𝑇mp), the toxicity as measured by the lethal
dose concentration (𝐿𝐶50,mgL), the auto-ignition temperature (𝑇AIT) and
the flash point (𝑇fp), and two mixture properties, namely the dew point
temperature (𝑇dew), and the viscosity (𝜇). The thermodynamic property
models used for the prediction of these properties and their sources are
summarized in Table 2.

For solvent handling to be feasible, the normal boiling point 𝑇bp
and the normal melting point 𝑇mp of the solvent are constrained by the
lower and upper bound on the solvent handling temperature, i.e., 𝑇 𝐿

sh
and 𝑇 𝑈

sh , respectively. This is to ensure the solvent is in the liquid
state when it is transported or stored. The safety of the solvent is
evaluated using 𝐿𝐶50,mgL, 𝑇fp and 𝑇AIT and each property is compared
with desired ranges, where 𝑇 𝑈

op is an upper bound on the operating
temperature chosen to avoid solvent degradation. The viscosity of the
aqueous amine solvent is limited by 𝜇𝑈 in order to make sure that the
maximum permissible limit for a centrifugal pump is not exceeded. The
viscosity is calculated at the minimum solvent handling temperature
𝑇 𝐿
sh . Finally, a lower bound on the process operating temperature 𝑇 𝐿

op
is imposed on the dew point temperature 𝑇dew to ensure that the lean
solvent is in the liquid phase at the absorber inlet. Here, we set 𝑇 𝐿

op to
be equal to the cooling medium temperature. The resulting formulation
of Test 1 is as follows:

𝑔1,1 = 𝑇 𝑈
sh − 𝑇bp(𝑃 = 1 atm,𝒏) ≤ 0

𝑔1,2 = 𝑇mp(𝑃 = 1 atm,𝒏) − 𝑇 𝐿
sh ≤ 0

𝑔1,3 = 𝐿𝐶50,mgL(𝒏) − 𝐿𝐶𝑈
50,mgL ≤ 0

𝑔1,4 = 𝜇(𝑇 𝐿
sh , 𝑃 = 1 atm, 𝒛(𝒏)) − 𝜇𝑈 ≤ 0

𝑔1,5 = 𝑇 𝑈
sh − 𝑇fp(𝑃 = 1 atm,𝒏) ≤ 0

𝑔1,6 = 𝑇 𝐿
op − 𝑇dew(𝑃 = 1 atm, 𝒛(𝒏)) ≤ 0

𝑔1,7 = 𝑇 𝑈
op − 𝑇AIT(𝑃 = 1 atm,𝒏) ≤ 0

(9)

where 𝒛(𝒏) is the composition of the aqueous solvent mixture, which
is fixed at 𝑊0,solvent, a specific weight fraction of amine solvent. We
denote the set of inequality constraints in Test 1 by 𝒈𝟏(𝒏) ≤ 0.

It can be seen from the constraints that solvent candidates can
be examined via Test 1 regardless of the process design since the
properties in Test 1 are independent of the optimal process conditions.
The property constraints that are expressed linearly with respect to
𝒏, specifically 𝑔1,2 and 𝑔1,5, are included in the master problem to
increase the likelihood of generating feasible solvent candidates and
thus omitted from Test 1 after the first iteration.

3.1.2. Test 2: Solvent liquid miscibility
While the work of Gopinath et al. (2016) was focused on pure

solvents, the solvents considered here are mixtures that may exhibit un-
desirable phase behavior such as liquid–liquid equilibria (LLE). Test 2
7

Fig. 3. The temperature-mole fraction 𝑇 − 𝑧TEA fluid phase behavior of a binary
mixture of water and TEA at 𝑃 = 0.101 MPa. The liquid–liquid equilibrium region
(L1+L2), vapor–liquid equilibrium regions (V+L1 and V+L2) are delimited by the
phase boundaries (curves) predicted with the SAFT-𝛾 Mie EOS. The black circles (◦)
correspond to experimental data (Stephenson, 1993) for VLE and the blue triangles (▵)
to experimental data for LLE (Stephenson, 1993). The range of absorber temperatures
is indicated by the gray shaded area. This figure is an adaptation of Figure 11(b)
in Perdomo et al. (2021).

is designed to examine whether there exist operating conditions in the
absorber such that the solvent mixture remains in a homogeneous liq-
uid phase. Many amine–water and amine–water–CO2 mixtures exhibit
partial miscibility and this has in fact enabled the consideration of
biphasic solvents (also known as phase-change solvents) as alternatives
to conventional solvents (Zhang et al., 2019). Such solvents undergo
liquid–liquid phase separation upon heating or CO2 absorption, so
that the solvent mixture splits into an amine-rich phase with a high
concentration of CO2 and a water-rich phase with a low concentration
of CO2. Because only the CO2-rich liquid phase is sent to the desorber
for solvent regeneration, this reduces the energy requirements and
equipment costs (Zhang et al., 2019; Papadopoulos et al., 2021). Nev-
ertheless, the aqueous solvent must form a homogeneous liquid phase
at the absorber operating conditions for successful operation. Although
the process flowsheet configuration considered here does not allow
for phase-change solvents, Test 2 can equally be applied to standard
(homogeneous) solvents and to phase-change solvents.

In Test 2, we make use of the fact that the solvent mixtures will
typically contain a higher mole fraction of water, so that when two
liquid phases exist, the properties of the amine-lean liquid phase are of
interest. Test 2 can be understood by considering the case of triethy-
lamine (TEA). The predicted phase diagram of aqueous solutions of TEA
at 0.101 MPa is shown in Fig. 3 together with the available experimen-
tal data (Stephenson, 1993). At typical absorber operating conditions
(313 K–333 K), the system exhibits a large LLE region. For this solvent,
the homogeneous amine-lean liquid phase is characterized by very low
TEA mole fractions, with maximum mole fraction values of TEA of the
order of 10−3. Such a low amine concentration would severely limit the
achievable CO2 loading and renders this solvent unsuitable. In Test 2,
we thus seek to determine whether the solvent mixture exhibits LLE at
the absorber conditions and where the boundary of the LLE region lies
on the amine-lean side. The resulting maximum amine concentration is
tested against a threshold value.

Thus Test 2 consists in determining whether the highest solvent
mass fraction 𝑊 ∗

solvent (𝑇𝑁𝑎
, 𝑃𝑁𝑎

,𝒏) at which only one liquid phase can
form is above a given threshold value for the given absorber pres-
sure, 𝑃𝑁𝑎

, and temperature, 𝑇𝑁𝑎
. For a mixture of amine and water,

𝑊 ∗
solvent (𝑇𝑁𝑎

, 𝑃𝑁𝑎
, 𝒛(𝒏)) can be calculated by maximizing the solvent

mass fraction at which an isobaric–isothermal flash (PT flash) calcula-
tion returns a single liquid phase. The PT flash is carried out at 𝑃𝑁𝑎
and the highest allowable absorber temperature. In formulating the
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Fig. 4. Predicted solubility of CO2, expressed as the partial pressure of CO2 (𝑃CO2
) as a function of the CO2 loading, in aqueous solutions of MEA (blue continuous curve) and

MDEA (red continuous curve) at 30 wt% and 323.15 K. The magenta marker (×) represents the initial guess of the process conditions for the solution of the process optimization
problem, with each subfigure representing a different choice: (a) Initial guess of 𝑇0 = 323.15 K and 𝜃0 = 0.25 mol mol−1, which is above the maximum solubility of CO2 for
MDEA; (b) Initial guess of 𝑇0 = 323.15 K and 𝜃0 = 0.1 mol mol−1, at which both MEA and MDEA can achieve positive cyclic capacity. The black dashed line indicates a CO2
partial pressure of 5000 Pa, which is assumed to be the maximum allowable partial pressure 𝑃CO2

in the flue gas stream. The gray shaded area represents the region of possible
values of 𝑃CO2

and CO2 loading in the absorber given the initial guess (𝜃0). To have a feasible cyclic capacity, the predicted solubility line must intersect the gray rectangular area.
Test 2 optimization problem (as well as subsequent tests), we assume
a general PT flash solver is available.

Test 2 is expressed as the following optimization problem:

𝑊 ∗
solvent (𝑇𝑁𝑎

, 𝑃𝑁𝑎
,𝒏) = max𝒙̂∈𝑋̂ 𝑊solvent

s.t. 𝒇𝒍𝑒𝑥𝑡
(

𝒛, 𝒚,𝒙𝛽 ,𝒙𝛾 , 𝛼, 𝛽, 𝛾, 𝑇𝑁𝑎
, 𝑃𝑁𝑎

,𝒏
)

= 0
𝛼 ≤ 𝜖ph
𝛽 ≥ 𝜖ph
𝛾 ≤ 𝜖ph
𝑊solvent =

𝑧solvent𝑀𝑊solvent

𝑧H2O𝑀𝑊H2O + 𝑧solvent𝑀𝑊solvent
∑𝑁𝐶′

𝑖=1 𝑧𝑖 = 1
0 ≤ 𝑧𝑖 ≤ 1 ∀𝑖 ∈ 𝑁𝐶 ′ =

{

solvent, H2O
}

(10)

where 𝒙̂ is a vector of variables defined as 𝒙̂ = [𝒛, 𝒚, 𝒙𝛽 , 𝒙𝛾 , 𝛼,
𝛽, 𝛾, 𝑊solvent]⊤, 𝒛 is the total composition, 𝒚, 𝒙𝛽 and 𝒙𝛾 are the
mole fractions in the vapor, first liquid and second liquid phases at
equilibrium, respectively, 𝛼, 𝛽 and 𝛾 are the phase fractions of the
vapor, first liquid and second liquid phases at equilibrium, with 𝛽 ≥ 𝛾,
without loss of generality, 𝑁𝐶 ′ is the set of components considered in
Test 2, i.e., 𝑁𝐶 ′ ={solvent, H2O}, and 𝑀𝑊H2O and 𝑀𝑊solvent are the
molecular weights of H2O and solvent, respectively. 𝒇𝒍𝑒𝑥𝑡 is an external
function that computes the PT flash for a given global composition 𝒛,
temperature 𝑇𝑁𝑎

, pressure, 𝑃𝑁𝑎
and molecule 𝒏 and returns values for

𝒚,𝒙𝛽 , 𝒙𝛾 , 𝛼, 𝛽 and 𝛾. 𝜖ph is a small strictly positive scalar value intro-
duced to ensure a homogeneous liquid phase is present. Specifically,
the phase fraction of the first (most plentiful) liquid phase is set to be
greater than 𝜖ph, while the phase fractions of the second liquid phase
and of the vapor phase are set to be so small as to be negligible. A value
of 𝜖ph = 10−3 is typically used.

It is important to note that the starting point for the solution of
Test 2 is at the lowest allowable temperature and nearly pure water,
𝑧solvent = 10−3. This is to start the optimization from a feasible point,
i.e., a homogeneous liquid phase, setting up to the optimizer to remain
in the single-phase region until it reaches the amine-lean boundary of
the phase envelope. This approach is particularly useful when the solver
encounters discontinuities across the transition between the different
regions of the phase diagram.

If the optimal solvent mass fraction obtained is less than the user-
defined upper bound on the solvent concentration, 𝑊 𝑈

solvent, i.e., if

𝑊 ∗ ≤ 𝑊 𝑈 , (11)
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solvent solvent
the molecule is discarded from the search space. The upper bound on
the solvent concentration in weight fraction is chosen in order to avoid
issues with corrosion and foaming tendency.

Remarks on Test 2. We note that the presence of CO2 in the mixture can
induce phase separation so that two liquid phases may form at absorber
conditions even when the binary solvent mixture exhibits a single stable
liquid phase (Zhang et al., 2019). This eventuality is covered by Test 3.

We have also developed and tested an alternative formulation of
Test 2 based on the phase behavior of the ternary mixtures. We have
also investigated two further formulations of Test 2 that are based on
testing for phase stability only, alleviating the need to compute phase
equilibria. We have conducted an extensive investigation of the relative
performance of these formulations in terms of reliability and CPU tests
and have found that the formulation presented here yields the most
effective approach. Further details can be found in Lee (2022).

3.1.3. Test 3: Absorption capacity
Test 3 is introduced to ensure that the required absorption capacity

can be achieved and to eliminate process conditions and/or solvents
that do not meet this criterion. In the design of a solvent for CO2
removal, one of the most important properties is cyclic capacity, de-
fined as the difference between CO2 solubility in the rich solvent and
that in the lean solvent. The cyclic capacity determines the solvent
circulation rate in the process; a high cyclic capacity often leads to a
smaller solvent circulation rate, consequently reducing the equipment
size and heat requirement for regeneration. For a given solvent, the
cyclic capacity is a function of the design variables, i.e., the lean
loading, the temperature of the recycled solvent, and the absorber and
desorber operating conditions. The optimal values of these variables
can be determined by optimizing the entire process. However, the
feasible ranges of these design variables change depending on the
solvent structure, making it difficult to provide a good initial guess and
even causing failure of the solver to converge. For example, MEA may
exhibit higher CO2 solubility than MDEA at given CO2 partial pressure,
solvent concentration and temperature. As can be seen in Fig. 4(a), if
an initial guess of lean loading 𝜃0 = 0.25 mol mol−1 and lean solvent
temperature 𝑇0 = 323.15K which is suitable for MEA is adopted for
MDEA, it may lead to numerical failure during the optimization as this
choice is incompatible with the maximum CO2 solubility in MDEA.
Indeed, the maximum solubility of CO2 for MDEA at 323.15 K is 0.1
mol mol−1 as shown in Fig. 4(b), where the possible range of partial

pressures of CO2 in the absorber at 323.15 K is denoted by a gray box.
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Fig. 5. Schematic of (a) the absorber envelope, (b) the last equilibrium stage of the absorber and (c) a fixed temperature and pressure ternary phase diagram of 𝐶1 (N2), 𝐶2
(CO2), and 𝐶𝑆 (aqueous solvent solution) at 𝑇𝑁𝑎

, 𝑃𝑁𝑎
. The region of acceptable clean gas mole fractions 𝒚𝟏 is denoted by the green shaded triangle EAD and the region of desirable

rich solvent mole fraction vectors 𝒙𝑁𝑎
is denoted by the blue shaded area BEFG. The solid line [𝒚𝑁𝑎+1 ,𝒙0] represents the mixing line of the feed streams on the ternary diagram.

The thick dashed curve represents the vapor–liquid phase boundary. Note that 𝒙𝑵𝒂
represents the mole fraction vector of the single liquid phase that is desired in the absorber.
The desired purity of clean gas is not achievable when 𝜃0 is set above
the maximum solubility of CO2, and this may cause numerical failure
in the absorber. To avoid combinations of the operating conditions that
lead to an unphysically high CO2 loading, Test 3 is used to identify the
upper and lower bounds on the lean-solvent loading (𝜃0) based on the
thermodynamic feasibility of separation on the bottom stages of the
absorber and desorber, respectively. We first describe how to compute
the desired bounds and then show their use within Test 3.

Absorber. The purpose of Test 3 is akin to that suggested by Gopinath
(2017) in the context of physical gas absorption. The formulation
of Gopinath (2017) was developed for ternary mixtures to determine
whether target CO2 removal can be achieved with a given solvent,
by maximizing the absorber pressures with respect to the global com-
position, temperature and pressure on the last stage of the absorber.
Here, it is adapted to take into account quaternary mixtures of N2, CO2,
amine solvent, and water, and their VLLE, by assuming that the ratio
of water to solvent remains unchanged through the absorber, allowing
the aqueous solvent mixture (water+solvent) to be lumped into one
hypothetical component, 𝐶𝑆, so that the mixture considered can be
treated as a pseudo-ternary mixture.

To develop the formulation for Test 3, we consider three feasibility
conditions: the coexistence of two phases (vapor and liquid) at the
bottom stage of the absorber; the thermodynamic feasibility of the
desired purity in the clean gas stream; and the capacity of the solvent to
achieve positive cyclic capacity. We show the mathematical represen-
tation of each constraint before combining them into an optimization
formulation.

The coexistence of a vapor phase and a homogeneous liquid phase
in stage 𝑁𝑎 of the absorber must be ensured to avoid any discontinuities
caused by having only one phase or two liquid phases in this stage dur-
ing process optimization. This condition is expressed by the following
constraints, which are similar to those used in Test 2 for the binary
solvent mixture:

𝒇𝒍𝑒𝑥𝑡
(

𝒛𝑁𝑎
, 𝑇𝑁𝑎

, 𝒚𝑁𝑎
,𝒙𝛽,𝑁𝑎

,𝒙𝛾,𝑁𝑎
, 𝛼, 𝛽, 𝛾, 𝑃𝑁𝑎

,𝒏
)

= 0

𝛼 ≥ 𝜖ph
𝛽 ≥ 𝜖ph
𝛾 ≤ 𝜖ph

(12)

Next, it is necessary to derive a constraint that enforces separation
feasibility. Here, we adapt the formulation in Gopinath (2017) to the
context of a CO2 chemical absorption process. Consider the composi-
tions and flowrates of the streams entering and leaving the absorber
9

envelope as described in Figs. 5(a) and (b). The assumptions used for
the derivation are as follows:

1. The number of moles of solvent lost to the vapor stream over the
length of column is less than the number of moles transferred
from the gas stream to the liquid stream, i.e., 𝐿𝑁𝑎

> 𝐿0.
2. The concentrations of two of the components N2 and CO2 in the

vapor feed stream entering the absorber are greater than the
concentrations of those components in the lean solvent stream
entering the top of the column. That is, 𝑦𝑁𝑎+1,N2

≥ 𝑥0,N2
and

𝑦𝑁𝑎+1,CO2
≥ 𝑥0,CO2

.
3. Since the column operation aims at separating the impurity

(CO2) from the feed stream, the treated clean gas stream leaving
the top of the column must be enriched in N2, i.e., 𝑦1,N2

>
𝑦𝑁𝑎+1,N2

.

The feasible regions for the separation are shown in a ternary
diagram in Fig. 5(c). Region AED represents the target compositions
𝒚1, while region BEFG indicates all possible compositions 𝒙𝑁𝑎

of the
rich solvent. The separation is feasible when the vapor–liquid boundary
(black dashed curve) at 𝑇𝑁𝑎

, 𝑃𝑁𝑎
intersects the region BEFG. Given the

feed mixing line [𝒚𝑁𝑎+1,𝒙0], the line segment [𝒚1,𝒙𝑁𝑎
] (blue dashed

line) must intersect the mixing line to satisfy the overall material
balance.

An analytical equation can be derived to represent this condition
using the equations of the two line segments and their slopes, in
addition to the overall and component material balances. The resulting
constraint is given by:

𝑥𝑁𝑎 ,CO2
− 𝑦𝑁𝑎+1,CO2

−

(

𝑦𝑁𝑎+1,CO2
− 𝑥0,CO2

)

(

𝑦𝑁𝑎+1,N2
− 𝑥0,N2

)

(

𝑥𝑁𝑎 ,N2
− 𝑦𝑁𝑎+1,N2

)

≥ 𝜖sp,

(13)

where 𝑥𝑁𝑎 ,N2
and 𝑥𝑁𝑎 ,CO2

are the liquid mole fractions of components
N2 and CO2 in the stream leaving the last (bottom) stage of the
absorber, 𝑥0,N2

and 𝑥0,CO2
are the equilibrium liquid mole fractions of

components N2 and CO2 of the lean solvent stream entering the top of
the absorber and 𝑦𝑁𝑎+1,N2

and 𝑦𝑁𝑎+1,CO2
are the gas mole fractions of

components N2 and CO2 of the stream entering the bottom of absorber,
i.e, the flue gas. Note that the total composition of flue gas, 𝒚𝑁𝑎+1, is
usually given and the total composition of the liquid stream at the last
stage of absorber, 𝒙𝑁𝑎

, is obtained by calculating the phase equilibrium
for a fixed 𝒛 , 𝑇 and 𝑃 . For a comprehensive description of the
𝑁𝑎 𝑁𝑎 𝑁𝑎
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derivation and assumptions used, the reader is referred to Gopinath
(2017) and section 3.2.3.2 therein.

Finally, a feasible solvent must have a positive cyclic capacity and
this restricts the allowable values of the lean loading 𝜃0. This can be
expressed as:
𝑥𝑁𝑎 ,CO2

𝑥𝑁𝑎 ,solvent
− 𝜃0 ≥ 𝜖cyclic, (14)

where 𝜖cyclic is a strictly positive number. Combining the three condi-
tions (12), (13) and (14), the upper bound on the solvent loading is
given as a result of the following optimization problem:

𝜃𝑈0 (𝒙̃, 𝑃𝑁𝑎
,𝒏) = max

𝒙̃∈𝑋̃
𝜃0

s.t. 𝒇𝒍𝑒𝑥𝑡
(

𝒛𝑁𝑎
, 𝑇𝑁𝑎

, 𝒚𝑁𝑎
,𝒙𝛽,𝑁𝑎

,𝒙𝛾,𝑁𝑎
, 𝛼, 𝛽, 𝛾, 𝑃𝑁𝑎

,𝒏
)

= 0
𝛼 ≥ 𝜖ph
𝛽 ≥ 𝜖ph
𝛾 ≤ 𝜖ph
𝑥𝛽,𝑁𝑎,CO2

𝑥𝛽,𝑁𝑎,solvent
− 𝜃0 ≥ 𝜖cyclic

𝑥𝛽,𝑁𝑎 ,CO2
− 𝑦𝑁𝑎+1,CO2

−
(

𝑦𝑁𝑎+1,CO2
−𝑥0,CO2

)

(

𝑦𝑁𝑎+1,N2
−𝑥0,N2

)

×
(

𝑥𝛽,𝑁𝑎 ,N2
− 𝑦𝑁𝑎+1,N2

)

≥ 𝜖sp
𝑁𝐶
∑

𝑖=1
𝑧𝑁𝑎 ,𝑖 = 1

0 ≤ 𝑧𝑁𝑎 ,𝑖 ≤ 1 ∀𝑖 ∈ 𝑁𝐶
max

(

𝑇mp (𝒏) + 10, 𝑇 𝐿
op

)

≤ 𝑇𝑁𝑎
≤ 𝑇 𝑈

op

(15)

here 𝒙̃ is a vector of variables defined as 𝒙̃ = [𝒛𝑁𝑎
, 𝑇𝑁𝑎

, 𝜃0, 𝒚𝑁𝑎
,𝒙𝛽,𝑁𝑎

,
𝛾,𝑁𝑎

, 𝛼, 𝛽, 𝛾]⊤, 𝑋̃ is a nonempty compact set, and 𝑁𝐶 is the set of
omponents in the system, i.e., 𝑁𝐶 ={N2, CO2, H2O, solvent}.

esorber. A lower bound on the lean loading 𝜃0 can be obtained in a
imilar fashion, by determining the minimum loading achievable at the
ottom stage of the desorber with respect to the global composition
𝑁𝑑

and the temperature 𝑇𝑁𝑑
at the minimum allowable operating

ressure 𝑃𝐿
𝑁𝑑

. Since a lower content of solvent in the system leads to
lower amount of CO2 absorbed, the search for the feasible bound
ay converge to a trivial solution, where the liquid stream from the

ottom of the absorber is almost pure water. To ensure that the solvent
oncentration in the rich solvent liquid stream is greater than the
inimum required solvent concentration, the following constraint is
sed:

𝑥𝑁𝑑 ,solvent

𝑥𝑁𝑑 ,solvent + 𝑥𝑁𝑑 ,H2O
−

𝑥𝑁𝑎 ,solvent

𝑥𝑁𝑎 ,solvent + 𝑥𝑁𝑎 ,H2O
≥ 𝜖sol, (16)

here 𝑥𝑁𝑑 ,solvent, 𝑥𝑁𝑑 ,H2O are the liquid solvent and H2O mole fractions
n the lean solvent stream leaving the desorber, and 𝜖sol is a strictly
ositive number.

The resulting optimization problem for the lower bound of the lean
oading is given as follows:

𝜃𝐿0 (𝒙̄, 𝑃𝑁𝑑
,𝒏) = min

𝒙̄∈𝑋̄
𝜃′0

s.t. 𝒇𝒍𝑒𝑥𝑡
(

𝒛𝑁𝑑
, 𝑇𝑁𝑑

, 𝒚𝑁𝑑
,𝒙𝛽,𝑁𝑑

,𝒙𝛾,𝑁𝑑
, 𝛼, 𝛽, 𝛾, 𝑃𝑁𝑑

,𝒏
)

= 0
𝛼 ≥ 𝜖ph
𝛽 ≥ 𝜖ph
𝛾 ≤ 𝜖ph
𝜃′0 =

𝑥𝛽,𝑁𝑑 ,CO2

𝑥𝛽,𝑁𝑑 ,solvent
𝑥𝛽,𝑁𝑑 ,solvent

𝑥𝛽,𝑁𝑑 ,solvent+𝑥𝛽,𝑁𝑑 ,H2O
−

𝑥𝛽,𝑁𝑎,solvent
𝑥𝛽,𝑁𝑎,solvent+𝑥𝛽,𝑁𝑎,H2O

≥ 𝜖sol

0 ≤ 𝑧𝑁𝑑 ,𝑖 ≤ 1 ∀𝑖 ∈ 𝑁𝐶
𝑁𝐶
∑

𝑖=1
𝑧𝑁𝑑 ,𝑖 = 1

max
(

𝑇mp (𝒏) + 10, 𝑇 𝐿
op

)

≤ 𝑇𝑁𝑑
≤ 𝑇 𝑈

op
10

(17)
here 𝜃′0 is a lean loading calculated from the liquid composition at the
ottom of the desorber, 𝒙̄ is a vector of variables 𝒙̄ = [𝒛𝑁𝑑

, 𝑇𝑁𝑑
, 𝜃′0, 𝒚,

𝛽,𝑁𝑑
,𝒙𝛾,𝑁𝑑

, 𝛼, 𝛽, 𝛾]⊤ and 𝑋̄ is a nonempty compact set.

est 3. If the new lower bound on the lean loading is larger than the
pper bound (i.e., 𝜃𝑈0 < 𝜃𝐿0 ) or if problem (15) or (17) is infeasible
i.e., no feasible upper or lower bound on the lean loading is identified),
t is clear that no process conditions will be feasible for CO2 absorption,
nd the current solvent structure 𝒏 is eliminated from the search space.
therwise, the solution of Test 3 is used to provide a reduced range for

he loading [𝜃𝐿0 , 𝜃
𝑈
0 ], for use in the primal problem. Furthermore, the

nitial guess on 𝜃0 is updated, for example to 𝜃𝐿0 , if the default value is
not within the feasible ranges of [𝜃𝐿0 , 𝜃

𝑈
0 ], in order to prevent numerical

difficulties.

3.1.4. Test 4: desorber operating pressure range
Once an updated lean loading range [𝜃𝐿0 , 𝜃

𝑈
0 ] has been generated

from Test 3, Test 4 is used to tighten the upper bound on the desorber
pressure, 𝑃𝑁𝑑

. The upper bound is given by the highest pressure at
which: 1) vapor–liquid equilibrium occurs on the bottom stage of the
desorber, and 2) there exists a lean solvent composition that falls
within the target lean loading range. An additional constraint on the
solvent weight fraction in the stream leaving the bottom stage of
the absorber (𝑊𝑁𝑑

) is imposed in order to prevent the optimization
algorithm from converging to a trivial solution. Here, we assume that
only trace amounts of N2 can be present so that N2 can be neglected.
The resulting formulation is as follows:

𝑃𝑈
𝑁𝑑

(𝒙̌,𝒏) = max
𝒙̌∈𝑋̌

𝑃𝑁𝑑

s.t. 𝒇𝒍𝑒𝑥𝑡
(

𝒛𝑁𝑑
, 𝑇𝑁𝑑

, 𝑃𝑁𝑑
, 𝒚𝑁𝑑

,𝒙𝛽,𝑁𝑑
,𝒙𝛾,𝑁𝑑

, 𝛼, 𝛽, 𝛾,𝒏
)

= 0
𝛼 ≥ 𝜖ph
𝛽 ≥ 𝜖ph
𝛾 ≤ 𝜖ph

𝑥𝛽,𝑁𝑑 ,solvent
𝑥𝛽,𝑁𝑑 ,solvent+𝑥𝛽,𝑁𝑑 ,H2O

−
𝑥𝑁𝑎,solvent

𝑥𝑁𝑎,solvent+𝑥𝑁𝑎,H2O
≥ 𝜖sol

𝜃′0 =
𝑥𝛽,𝑁𝑑 ,CO2

𝑥𝛽,𝑁𝑑 ,solvent

𝑊𝑁𝑑
≥ 𝑊0,solvent

𝑊𝑁𝑑
=

𝑥𝛽,𝑁𝑑 ,solvent𝑀𝑊solvent

𝑥𝛽,𝑁𝑑H2O𝑀𝑊H2O + 𝑥𝛽,𝑁𝑑 ,solvent𝑀𝑊solvent
0 ≤ 𝑧𝑁𝑑 ,𝑖 ≤ 1 ∀𝑖 ∈ 𝑁𝐶
max

(

𝑇mp (𝒏) + 10, 𝑇 𝐿
𝑁𝑑

)

≤ 𝑇𝑁𝑑
≤ 𝑇 𝑈

op

𝜃𝐿0 ≤ 𝜃′0 ≤ 𝜃𝑈0
𝑁𝐶
∑

𝑖=1
𝑧𝑁𝑑 ,𝑖 = 1

(18)

here 𝒙̌ is a vector of variables defined as 𝒙̌ = [𝒛𝑁𝑑
, 𝑇𝑁𝑑

, 𝜃′0,
𝑁𝑑

,𝒙𝛽,𝑁𝑑
,𝒙𝛽,𝑁𝑑

, 𝛼, 𝛽, 𝛾]⊤, and 𝑋̌ is a nonempty compact set.

. Optimization strategy and implementation

Following the development of feasibility tests for absorption–
esorption processes using binary solvents, these can be integrated
ithin an overall CAMPD framework. The optimization strategy and

mplementation are discussed in this section, before their application
o CO2 capture process design.

.1. Algorithm overview

An overview of the algorithm is provided in Fig. 6. It follows
standard outer approximation framework (Duran and Grossmann,

986; Kocis and Grossmann, 1989; Viswanathan and Grossmann, 1990)
ith the addition of feasibility tests as precursors to the solution of the
rimal problem.
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Fig. 6. An overview of the proposed CAMPD algorithm.
An alternating finite sequence of NLP subproblems and MILP sub-
problems are solved. Given the feasible domain defined with tightened
bounds on the operating conditions from Tests 3 and 4, the primal
problem of the OA algorithm is formulated as a nonlinear process
optimization problem over continuous variables with fixed solvent
structure (see Problem 𝑃 (𝑘) in the Supplementary Information).

The master problem is formulated by deriving a set of linearized
constraints and objective functions (hyperplanes) from the solution of
each primal problem, such that the original problem domain is ap-
proximated via a polyhedral representation. As iterations proceed, the
approximation is improved by accumulating the linearized equations
and tightening the outer bounds on the feasible region of the problem.
The final form of the master problem differs depending on the outcome
of the feasibility tests and of the primal problem, which determines
what linearizations are included in the problem.

In the original OA, if the primal is infeasible at iteration 𝑘 (Duran
and Grossmann, 1986), an alternative ‘‘infeasible’’ primal problem is
solved and added to the master problem. Given that it is difficult to
find a feasible solution to the infeasible primal problem for highly non-
convex MINLPs (Grossmann et al., 2002), the solution of the infeasible
primal is not included in this study. Instead, the integer variables that
lead to an infeasible primal are excluded by adding an integer cut (see
Supplementary Information) to the master problem. It should noted
that no failure in solving the primal problem is encountered in the
11
case studies, thanks to the robustness of the proposed algorithm where
infeasible combinations of molecular structure and process conditions
are discarded by solving the feasibility tests.

4.2. Termination criteria

When using the OA with augmented penalty (AP) framework to
overcome the nonconvexities of the problem, care must be taken in
choosing a termination criterion to prevent the algorithm from con-
verging to a solution prematurely. For a convex MINLP, the master
problem produces a valid lower bound on the objective function of
the primal problem and this lower bound increases monotonically as
iterations proceed, while updates of the upper bound on the problem
are generated through the primal problem. The best NLP solution found
can thus be guaranteed to be the global optimum (assuming there are
no numerical failures of the NLP solver) when the lower bound exceeds
or is close to the upper bound for the convex MINLP. However, using
such a criterion as a stopping rule for nonconvex MINLP problems
may result in premature convergence, particularly when the set of
linear approximations leads to part of the feasible region being cut
off, possibly eliminating a global solution (Floudas, 1995). It therefore
becomes necessary to employ heuristics to improve the quality of the
solutions. Generally good convergence behavior has been observed
using the stopping criteria presented in Bowskill et al. (2020). Hence,
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Table 3
Key input parameters and specifications for the CO2 capture case study and the
application of the feasibility tests.

Parameter Symbol Value

Degree of CO2 captured (%) – 90
Condenser temperature (K) 𝑇 𝐿

𝑁𝑑
333

Absorber temperature in Test 1 (K) 𝑇𝑁𝑎
323

Absorber operating pressure (MPa) 𝑃𝑁𝑎
0.1

Weight fraction of amine solvent (kg kg−1) 𝑊0,solvent 0.304
Min. approach temperature (K) 𝛥𝑇min 10
Initial bounds on desorber pressure (MPa) [𝑃 𝐿

𝑁𝑑
, 𝑃 𝑈

𝑁𝑑
] [0.1, 5]

Initial bounds on handling temperature (K) [𝑇 𝐿
sh , 𝑇

𝑈
sh ] [303, 333]

Initial bounds on lean solvent temperature (K) [𝑇 𝐿
0 , 𝑇 𝑈

0 ] [313, 353]
Initial bounds on lean loading (mol mol−1) [𝜃𝐿0 , 𝜃

𝑈
0 ] [0.02, 2]

Minimum operating temperature (K) 𝑇 𝐿
op 313

Upper bound on the solvent concentration (kg kg−1) 𝑊 𝑈
solvent 0.5

Phase fraction parameter 𝜖ph 1 × 10−3

Separation feasibility parameter 𝜖sp 1 × 10−3

Minimum allowable cyclic capacity 𝜖cyclic 1 × 10−1

Minimum allowable solvent loss 𝜖sol 5 × 10−2

we resort to termination based on the same heuristics by which the
algorithm is stopped when: (1) the number of iterations at which the
augmented penalty term becomes nonzero exceeds a pre-defined limit,
𝑁max,slack, (2) the number of unique molecules that has been evaluated
either in the feasibility tests or the primal problem exceeds a pre-
defined limit 𝑁max,unq, and 3) when the MILP master problem becomes
infeasible.

4.3. Implementation and case study

An automated implementation of the proposed CAMPD algorithm is
developed in C++ in Visual Studio 2019, with an interface to gPROMS
ModelBuilder 7.0.7 (Process Systems Engineering, 1997-2022) using
gO:RUN functionality and an interface to the Gurobi 8.1 MILP (Gurobi
Optimization, LLC, 2022). The feasibility tests are implemented in
FORTRAN and gPROMS ModelBuilder. The results of the tests, such
as the updated bounds and infeasibility of the molecule, are trans-
ferred to the primal problem via the gO:RUN interface. The default
continuous nonlinear optimizer in gPROMS, which makes use of a
sequential quadratic programming (SQP) method, is applied to solve
the primal problems. The gradients of the objective function and active
inequality constraints are calculated using first-order forward finite
differences with respect to integer variables and central differences for
the continuous variables. All computations were run on single Intel(R)
Xeon(R) Gold 5122 CPU @ 3.60 GHz processor with 384 GB of RAM.

CO2 capture from an exhaust gas generated by a 400 MWe CCGT
power plant (Alhajaj et al., 2016), as described in Section 2.2, is
considered as a case study to assess the performance of the proposed
feasibility tests and the proposed CAMPD framework. The key input
parameters and the pre-specified bounds on the design variables that
are used throughout the study are provided in Table 3. The lower
bounds and upper bounds for Test 1 are listed in Table 2. To investigate
the impact of the feasibility tests, the reduced solvent design space is
considered and the results are summarized in Section 5.1, followed
by the results obtained by applying the proposed algorithm to the
full CAMPD problems in Sections 5.2–5.5. For each feasibility test,
the solution of PT flash calculations (𝒇𝒍𝑒𝑥𝑡) is an essential step to
ensure fluid mixtures exhibit the desired fluid phase behavior. From
the analysis of the performance of PT flash approaches in Lee (2022),
it appears that the HELD algorithm proposed by Pereira et al. (2012) is
particularly well suited to the analysis of systems with complex phase
behavior such as the ones considered here. In principle, the use of
the HELD algorithm is advantageous because the PT flash problem is
formulated in the space of temperature, volume and mole numbers,
which are natural variables for the SAFT-𝛾 Mie EOS, thereby avoiding
the use of a pressure solver. This is confirmed in practice, and the
12
algorithm is found to be robust and reliable in the identification of the
types of phase, phase compositions, and phase fractions that correspond
to the best-known or global minimum of the Gibbs free energy within
a practical computational time. Another option is to use the general PT
flash calculation framework embedded in the gPROMS ModelBuilder
7.0.7 software package, which we have found to provide faster compu-
tations, at a cost of a small loss in reliability. In view of this, we use both
approaches in assessing the performance of the feasibility tests in which
the entire set of feasible solvents is enumerated: the HELD algorithm is
introduced for Test 2, which is most challenging, and the gPROMS PT
flash algorithm is utilized in Tests 3 and 4 to manage the computational
costs. We use the HELD algorithm in the solution of all feasibility tests
when solving CAMPD problems as a much smaller number of molecules
is evaluated.

5. Results

5.1. Performance of the feasibility tests: Application to selected solvent
space

An evaluation of the entire space of possible solvents is firstly car-
ried out to assess the performance of the proposed feasibility tests. For
the purpose of analysis, the set of all possible combinations of solvent
candidates is generated in accordance with the molecular feasibility
constraints provided in Eqs. (2)–(8) with the bounds of 𝑛𝑈OH = 2,
𝑛𝐿𝐺𝐴

= 1, 𝑛𝑈𝐺𝐴
= 2 and 𝑛𝑈iso = 5, so that small amines and diamines

functionalized by up to two hydroxyl groups are generated. The number
of each functional groups 𝑖 is limited by the bounds 𝑛𝐿𝑖 = 0, 𝑛𝑈𝑖 = 10, 𝑖 =
,… , 𝑁 . These define a molecular design space of 4179 possible solvent
tructures. The investigation of the effectiveness of the feasibility tests
s carried out by a brute-force search on the entire design space.

The overall results of applying the feasibility tests to the specifica-
ions in Table 3 are summarized in Table 4 and Figs. 7 and 8. Within the
179 candidate molecules, only 1450 solvents pass all feasibility tests.
s can be seen in Table 4, the majority of the alkylamines are found

o be infeasible in Test 1 and Test 2, mainly due to their low water
iscibility as well as their low safety and environmental performance.

or instance, triethylamine (TEA) is eliminated by Test 2 due to its
ow water miscibility, as seen previously in Fig. 3. The maximum mass
raction (𝑊 ∗

𝑇𝑁𝑎 ,𝑃𝑁𝑎 ,solvent) of TEA that can ensure a homogeneous liquid
phase at absorber operating conditions is calculated with SAFT-𝛾 Mie
to be 0.019 in mass fraction (0.0015 in mole fraction). This indicates
that the constraint 𝑊 𝑈

solvent(= 0.5) ≤ 𝑊 ∗
solvent is violated and TEA should

be eliminated from the molecular design space.
The performance of Tests 3 and 4 is examined for those solvents

that pass Tests 1 and 2. Tests 3 and 4 lead to tighter bounds on
the lean loading and desorber pressure, as shown by the percentage
deviation, and the average values of the updated bounds, presented in
the Table 4. As can be seen, there is a significant improvement in the
average value of the updated bounds, suggesting that many infeasible
process conditions can be removed by the feasibility tests. The large
deviations in the maximum lean loading and desorber pressure indicate
that providing a universal initial guess that is feasible for all solvent
molecular structures is very difficult. It is therefore important to pro-
vide a systematic way to recognize the feasible combinations of process
conditions and solvents. Similar trends can be seen in Fig. 7, in which
density plots of the normalized values of the bounds obtained from the
feasibility tests are displayed, together with the minimum, maximum,
median, and interquartile ranges. To produce the plots, each bound has
been normalized using the minimum and maximum values of the ranges
obtained as follows:

𝑝̄𝒏,𝑞 =
𝑝𝒏,𝑞 − min𝒏 𝑝𝒏,𝑞

max𝒏 𝑝𝒏,𝑞 − min𝒏 𝑝𝒏,𝑞
(19)

where 𝑝̄𝑛,𝑞 is a normalized bound value for the molecule 𝒏 and bound
𝑞 where 𝑞 ∈ {𝜃𝐿, 𝜃𝑈 , 𝑃𝑈 } and 𝑝 is an updated bound for 𝒏 and
0 0 𝑁𝑑 𝒏,𝑞
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Table 4
Overall results of feasibility tests over the complete list of 4179 candidate molecules, broken down by molecular class. The initial values of the
bounds are 𝜃𝐿0 = 0.02 mol mol−1, 𝜃𝑈0 = 2 mol mol−1, 𝑃 𝑈

𝑁𝑑
= 5 MPa.

Total Mono Amine Diamine

Alkanol- Alkyl- Alkanol- Alkyl-

Number of molecules tested 4179 765 416 1918 1080
Number of molecules eliminated by Test 1 791 64 292 30 405
Number of molecules eliminated by Test 2 821 292 124 341 64
Number of molecules eliminated by Test 3 1109 124 0 430 555
Number of molecules eliminated by Test 4 8 0 0 6 2
Number of feasible molecules 1450 285 0 1111 54
Percentage deviation of 𝜃𝐿0 1.12 1.17 – 1.08 0.12
Percentage deviation of 𝜃𝑈0 22.52 7.81 – 13.18 3.44
Percentage deviation of 𝑃 𝑈

𝑁𝑑
2.15 3.41 – 1.42 0.95

Average value of updated bound, 𝜃𝐿0 (mol mol−1) 0.0382 0.0330 – 0.0391 0.0484
Average value of updated bound, 𝜃𝑈0 (mol mol−1) 0.7283 0.3480 – 0.8178 0.9612
Average value of updated bound, 𝑃 𝑈

𝑁𝑑
(MPa) 0.3427 0.3601 – 0.3383 0.3424
Table 5
Values of the optimization variables for five starting points, S1–S5, used for the solution
of the primal problem for MEA and AMPD.

Variable S1 S2 S3 S4 S5

Lean loading, 𝜃0 (mol mol−1) 0.10 0.20 0.30 0.40 0.50
Lean solvent temperature, 𝑇0 (K) 313.15 333.15 323.15 323.15 313.15
Desorber pressure, 𝑃𝑁𝑑

(MPa) 0.180 0.250 0.150 0.200 0.180

𝑞 obtained by solving the feasibility tests. From Fig. 7, it is evident
that the distribution of the bounds on each process variable is mul-
timodal. This indicates that the feasible region of process variables
considered (solvent lean loading and desorber pressure) is highly de-
pendent upon solvent structure and highlights why identifying an initial
feasible combination of process conditions is challenging when many
chemically-different solvents are to be evaluated. It emphasizes the
importance of developing a robust algorithm that can determine the
feasible process domain and good initial guesses of the design variables
for each solvent. For the case of MDEA, for example, a more stringent
maximum allowable value of lean-solvent loading, 𝜃𝑈0 = 0.237, is set
as a result of Test 3. This implies that if the initial guess on the lean
loading were set to be greater than 0.237, the initialization of the
process model would lead to numerical failure, making it impossible
to evaluate the performance of this solvent.

Five hundred process simulations for randomly generated com-
binations of the lean loading, desorber pressure, and lean solvent
temperature are performed for 2-(2-aminoethylamino)ethanol (AEEA)
and for MEA to illustrate the reduction of the process ranges obtained
with the feasibility tests and to explore whether this leads to the
exclusion of any feasible points. In Fig. 8, the space of combinations of
the process variables, 𝜃0, 𝑃𝑁𝑑

, and 𝑇0, is represented as a 3-dimensional
spider plot (i.e., triangle), using values normalized with respect to
the lower and upper bounds in Table 3. The normalized bounds all
cover the range [0, 1], as denoted by the black triangles, and the
updated normalized bounds following the feasibility tests are denoted
by the red triangles. Combinations of the process variables that fail
to converge (Fig. 8(a)) or are infeasible as they violate the design
constraints such as the maximum allowable operating temperature, 𝑇 𝑈

op,
(Fig. 8(b)) are found both within and outside the region defined by
the reduced bounds. As can be seen in Fig. 8(c), however, all feasible
operating conditions are within the reduced process operating ranges,
indicating that the feasibility tests can eliminate some of the infeasible
combinations of the process operating conditions systematically with-
out cutting off the potential solutions. For MEA, the feasibility tests
yield a particularly good representation of the feasible region obtained
with 500 simulations, while more overestimation is observed for AEEA.

To exemplify the impact of the feasibility tests and of the updated
bounds on the solution of the primal problem, the specific cases of
MEA and 2-amino-2-methyl-1,3-propanediol (AMPD) are investigated.
13
Fig. 7. Violin plots with kernel-density estimate displaying the maximum, the mini-
mum, the median, the first and third quartile ranges of the normalized value of each
process bounds (𝜃𝑈0 , 𝜃𝐿0 , 𝑃 𝑈

𝑁𝑑
) for the feasible molecules. The width of each curve

corresponds to the approximate frequency of values of the bound in each region.

For each solvent, the primal problem is solved from five starting points
distributed within the initial bounds on the design variables in order
to investigate the impact of the choice of the initial guess and also
to increase the likelihood of identifying a global solution. The five
starting points, S1–S5, are given in Table 5. Two algorithmic options,
with feasibility and without feasibility tests, are considered for each
solvent and the usefulness of the feasibility tests is assessed based on
the ability to converge to a solution from each starting point and on
the average computational time. Where feasibility tests are used, the
values of the starting points are updated automatically if the variable
bounds generated as a result of the feasibility tests indicate that they are
infeasible for the specified solvent. Specifically, the initial lean loading
is set to its new lower bound, 𝜃0 = 𝜃𝐿0 , if the original initial value is
found to be infeasible. In the same manner, the updated upper bound
is assigned to the initial desorber pressure, 𝑃𝑁𝑑

= 𝑃𝑈
𝑁𝑑

.

The results of the optimization runs carried out are summarized in
Table 6. The average computational cost is calculated only over the
CPU times of the successful runs for both algorithmic options, thereby
neglecting the cost of failed runs, which can often be large. It can be
seen that all 10 runs with feasibility tests converge successfully, while
only 5 of the 10 runs converge in the absence of feasibility tests. For
MEA, the average computational cost is slightly higher (by 9%) for the
runs with feasibility tests. The algorithm without feasibility tests fails
to converge for starting points S4 and S5 due to the infeasible value
of the lean-solvent loading at the starting point for these runs. The
algorithm with the feasibility tests converges for all runs by updating
the starting point for the lean-solvent loading after Test 3. The new
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Table 6
Outcome of the tests and of the solutions of the primal problem for MEA and AMPD over five runs. The bounds used for
the solution of the problem are reported, followed by the optimal objective and variable values and statistics on all the runs.
Only the run with the smallest objective function is presented as an optimal solution. The unit of ton-CO2 is defined as the
amount of CO2 captured from the flue gas in the absorber in metric tons.

MEA AMPD

no tests with tests no tests with tests

Lower bound on lean loading 𝜃𝐿0 (mol mol−1) 0.02 0.02 0.02 0.0420
Upper bound on lean loading 𝜃𝑈0 (mol mol−1) 2.0 0.3995 2.0 0.3418
Upper bound on desorber pressure 𝑃 𝑈

Nd
(MPa) 0.80 0.305 0.80 0.340

TAC ($million year−1) 29.808 29.805 25.735 25.735
Total energy consumption (GJ ton-CO−1

2 ) 9.322 9.321 7.921 7.928
Reboiler temperature (K) 397.18 397.15 398.94 398.94
Cyclic capacity (mol mol−1) 0.1597 0.1595 0.2132 0.2134
Rich-amine loading (mol mol−1) 0.4764 0.4764 0.4744 0.4744
Lean-amine loading, 𝜃0 (mol mol−1) 0.3168 0.3169 0.2611 0.2610
Lean-solvent temperature, 𝑇0 (K) 313.16 313.15 335.44 335.43
Desorber pressure, 𝑃𝑁𝑑

(MPa) 0.206 0.206 0.216 0.216
No. of successful runs 3 5 2 5
Avg. CPU time of successful runs (s) 251.76 273.91 328.56 294.31
Fig. 8. Spider plots displaying the normalized values of each process variable (𝜃0, 𝑃𝑁𝑑
, 𝑇0) for AEEA (top) and MEA (bottom). The largest black triangles represent the initial

normalized bounds on 𝜃0, 𝑃𝑁𝑑
, 𝑇0, and solid red triangles represent the tightened bounds obtained by solving the feasibility tests. Process simulations for 500 combinations of the

process variables for each solvent are represented on the spider plots, depending on the simulation outcome: (a) simulations that fail to converge (assumed infeasible, gray), (b)
operating conditions that violate the design constraints (infeasible, green), and (c) operating conditions that result in a converged simulation (feasible, blue).
Table 7
Molecular design space defined for each design case. DS denotes a design case.

Parameter 𝑛𝑈𝑡 𝑛𝐿𝐺𝐴
𝑛𝑈𝐺𝐴

𝑛𝑈OH 𝑛𝑈iso 𝑁max,slack 𝑁max,unq

DS1 12 1 1 3 2 5 50
DS2 12 1 2 3 4 8 100
DS3 12 1 3 3 4 8 100

initial lean-solvent loading is 0.3995 for both S4 and S5. While the
original lean-solvent loading of 0.4 used in run S4 is only slightly
outside the feasible region, the solver fails to find a feasible point
nonetheless. The effectiveness of the feasibility tests is also highlighted
in the case of AMPD. As reported in Table 6, equivalent solutions
are obtained using the algorithm with and without feasibility tests for
AMPD after the 5 runs. We observe that the optimizations without
the tests encounter numerical failures either during the course of the
algorithm (S1) or at the start of the algorithm (S4 and S5). On the
14
Table 8
Computational performance of the algorithm with feasibility tests for three design cases,
averaged over 50 runs for each design case. The calculation of percentage of molecules
failing in each test is based on the total number of molecules explored during the
optimization runs.

DS1 DS2 DS3

Average number of iterations 16.67 20.90 20.10
Average number of molecules failing a test 2.56 1.50 0.30
Percentage of molecules failing in Test 1 (%) 12.63 2.42 0.20
Percentage of molecules failing in Test 2 (%) 9.47 9.68 0.00
Percentage of molecules failing in Test 3 (%) 0.00 0.00 0.00
Percentage of molecules failing in Test 4 (%) 2.11 0.00 0.10
Average CPU time (s) 3186.6 6628.9 5846.3

other hand, successful convergence to a solution of the primal problem
for AMPD is obtained with the introduction of feasibility tests for
all five user-provided starting points. The average computational time
is slightly decreased (by 10%), potentially as a consequence of the
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Table 9
The top five candidate molecular structures for DS1 identified by minimizing the total annualized cost using the proposed CAMPD approach with integer cuts.
The structural features of the candidate solvents are provided in Fig. A.13. The total annualized cost (TAC), total cost of investment (TCI) and operating cost
(OPEX) are in units of US million dollars per year ($million year−1). The total energy consumption of the process (𝑄total) is presented in units of GJ ton-CO−1

2 .
MEA is in the last row as a benchmark solvent.

Rank Solvent name or molecular code (short code) TAC TCI OPEX 𝑄total

1 2-(2-hydroxyethylamino)ethanol (DEA) 17.577 5.818 11.144 4.969
2 2-aminopropane-1,3-diol (2APD) 23.108 7.735 14.758 7.261
3 3-(3-hydroxypropylamino)propan-1-ol (3HPAP) 24.799 9.000 15.183 8.160
4 2-(aminomethyl)propane-1,3-diol (2AMPD) 24.996 8.541 15.840 7.800
5 2-amino-2-methyl-1,3-propanediol (AMPD) 25.735 8.952 16.167 7.926
Ref. 2-aminoethanol (MEA) 29.806 8.047 21.144 9.323
Table 10
Detailed results of the top five solutions of the integrated solvent and chemical absorption process design for DS1. The molecules are presented
in the order of high to low rank with their short name. MEA is in the first column as a benchmark solvent.

DS1

Optimal Value MEA (ref.) DEA 2APD 3HPAP 2AMPD AMPD

TAC ($million year−1) 29.806 17.577 23.108 24.799 24.996 25.735
CAPEX ($million year−1) 8.048 5.818 7.735 9.000 8.541 8.952
OPEX ($million year−1) 21.144 11.144 14.758 15.183 15.840 16.167
𝑄total (GJ ton-CO−1

2 ) 9.323 4.969 7.261 8.160 7.800 7.926
Sol circ. rate (kg h−1) 0.3731 0.2992 0.4308 0.4816 0.4658 0.4637
Reboiler temperature (K) 397.18 386.95 398.94 385.87 398.81 398.98
Cyclic capacity (mol mol−1) 0.160 0.321 0.200 0.254 0.212 0.213
Rich loading (mol mol−1) 0.476 0.341 0.471 0.345 0.475 0.474
Lean loading, 𝜃0 (mol mol−1) 0.317 0.020 0.271 0.090 0.262 0.261
Lean temperature, 𝑇0 (K) 313.15 334.54 335.51 316.86 335.07 335.43
𝑃𝑁𝑑

(MPa) 0.206 0.153 0.213 0.166 0.218 0.216
𝑄reb (MW) 209.33 168.35 217.53 194.08 231.46 234.19
𝑄cond (MW) −99.585 −49.603 −101.001 −52.745 −110.698 −113.509
Solvent loss (kg ton-CO−1

2 ) 3.10 6.92 × 10−2 3.58 × 10−3 2.37 × 10−2 4.00 × 10−3 6.78 × 10−3
reduction in the ranges of the design variables achieved in Tests 3
and 4.

These results demonstrate the importance of identifying feasible
process conditions for a given solvent to avoid algorithmic failure. In
the context of solving MINLP CAMPD problems, one possible approach
to resolve numerical failures that occur during the evaluation of process
performance in the absence of the tests is to add an integer cut to the
master problem in order to eliminate the solvent in question, so that
the algorithm focuses the search on other solvent candidates. However,
this is not only computationally expensive, but it may also lead to the
unnecessary elimination of a promising solvent candidate (note the TAC
for AMPD is lower than that of MEA). Furthermore, the introduction
of an integer cut does not guarantee that a feasible solvent/process
combination can be identified in a subsequent iteration. The robustness
achieved through the introduction of the feasibility tests is likely to be
critically important in molecular and process design problems where
many candidates solvents are infeasible or where the evaluation of the
primal problems is computationally expensive.

5.2. Overall performance: Application to CAMPD problems

The proposed algorithm is applied to three design cases to identify
the best-performing solvents. Each design case (DS) is different in that
the maximum allowed number of amine groups is specified as 𝑛𝑈𝐺𝐴

= 1,
2 or 3 in an attempt to consider different amine functionalities in the
solvent molecule. Information on the molecular design space, process
parameters, bounds on process variables, and algorithmic parameters
are given in Tables 3 and 7.

Given the nonconvex nature of the problem, the CAMPD algorithm
is run from ten starting points for each design case to explore diverse
search directions, thus increasing the likelihood of obtaining globally
optimal solvents for each DS. The starting points are chosen from the
studies of Bernhardsen and Knuutila (2017) and Papadopoulos et al.
15
(2016) which yield chemically feasible molecular structures and are
known to yield feasible process designs for the process configuration
considered, albeit using different process models. The list of starting
points is given in Table A.16 in Appendix A.2. Following the termina-
tion of the algorithm from all starting points, the solvent that presents
the lowest TAC value is reported as an optimal solution. Although
multiple initial guesses are used, this does not guarantee the global
optimality of the solution. Furthermore, the solution generated is spe-
cific to the process specifications and modeling assumptions, and thus
it is desirable to generate a list of candidate solvents from which high-
performing solvents can be selected for further evaluation by means of
other simulation settings (e.g., more detailed models) or experiments.
Once the best-known solvent is obtained by solving the MINLP from
ten starting points, the solvent structure is added to an integer cut in
the master problem and then the algorithm is restarted to generate the
next-best solvent from the multiple starting points.

The computational performance of the proposed algorithm is sum-
marized in Table 8 and the detailed results are reported in Tables 9–14.
Throughout the discussion, performance metrics for each DS are calcu-
lated as an average over 50 simulations corresponding to the generation
of five top-ranked solvents from the ten starting points (molecules). All
150 runs carried out converge successfully to locally optimal solutions
regardless of the starting point used. From Table 8, it can be seen that
different tests are active in each DS. The introduction of feasibility
tests successfully eliminates infeasible molecules and process conditions
from the design space, making it possible to evaluate feasible molecules
in the primal problem without encountering numerical difficulties.
The infeasibilities are more prominent for DS1 and DS2, as some of
molecules such as alkylamines are found to undergo an undesirable
liquid–liquid phase split at the absorber operating conditions. These are
successfully avoided in DS3 as the master problem generates a larger

proportion of feasible candidates.
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Table 11
The top five candidate molecular structures for DS2 identified by minimizing the total annualized cost using the proposed CAMPD approach
with integer cuts. The structural features of the candidate solvents are provided in Fig. A.13. The total annualized cost (TAC), total cost of
investment (TCI) and operating cost (OPEX) are in units of US million dollars per year ($million year−1). The total energy consumption of the
process (𝑄total) is presented in units of GJ ton-CO−1

2 . MEA is in the last row as a benchmark solvent. Solutions 1 and 4 are not given specific
chemical names as several isomers can be formed from the groups selected.

Rank Solvent name or molecular code (short code) TAC TCI OPEX 𝑄total

1 [NH2C=1,NHCH2=1,CH3=2,OH=1] (SOL1) 17.144 5.327 11.202 4.785
2 2-(2-hydroxyethylamino)ethanol (DEA) 17.577 5.818 11.144 4.969
3 2-(2-aminoethylamino)ethanol (AEEA) 17.991 5.544 11.832 5.356
4 [NH2CH2=2,C=1,OH=2] (SOL2) 19.599 6.186 12.799 6.390
5 1,3-diamino-2-propanol (DAP) 19.754 6.091 13.048 6.645
Ref. 2-aminoethanol (MEA) 29.806 8.047 21.144 9.323
Table 12
Detailed results for the top five solutions of the integrated solvent and chemical absorption process design for DS2. The molecules are presented
in the order of high to low rank with their short name. MEA is in the first column as a benchmark solvent.

Optimal value DS2

MEA (ref.) SOL1 DEA AEEA SOL2 DAP

TAC ($million year−1) 29.806 17.144 17.577 17.991 19.599 19.754
CAPEX ($million year−1) 8.048 5.327 5.818 5.544 6.186 6.091
OPEX ($million year−1) 21.144 11.202 11.144 11.832 12.799 13.048
𝑄total (GJ ton-CO−1

2 ) 9.323 4.785 4.969 5.356 6.390 6.645
Sol circ. rate (kg h−1) 0.3731 0.1990 0.2992 0.2272 0.3299 0.3055
Reboiler temperature (K) 397.18 400.99 386.95 402.15 398.69 398.60
Cyclic capacity (mol mol−1) 0.160 0.503 0.321 0.446 0.316 0.294
Rich loading (mol mol−1) 0.476 0.936 0.341 0.979 0.929 0.932
Lean loading, 𝜃0 (mol mol−1) 0.317 0.432 0.020 0.533 0.613 0.638
Lean temperature, 𝑇0 (K) 313.15 333.76 334.54 333.67 335.84 335.33
𝑃𝑁𝑑

(MPa) 0.206 0.246 0.153 0.253 0.211 0.216
𝑄reb (MW) 209.33 163.52 168.35 180.25 191.30 194.42
Qcond (MW) −99.585 −46.344 −49.603 −54.675 −89.000 −97.081
Solvent loss (kg ton-CO−1

2 ) 3.10 3.70 × 10−1 6.92 × 10−2 1.75 × 10−1 7.86 × 106 1.61 × 10−2
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It is clear from Table 8 that the computational cost of solving the
verall CAMPD is high even for the smaller design space (3186 s for
S1, 6628 s for DS2, and 5846 s and for DS3), suggesting that the
omputational cost would be significantly increased if many infeasible
ombinations of molecular structures and process conditions were ex-
lored in the absence of feasibility tests. User-provided initial guesses
re found to be infeasible for some molecular candidates. For example,
he initial value of the lean loading for MDEA is automatically updated
y the algorithm to 0.05 mol mol−1 from 0.15 mol mol−1, allowing the

process performance to be successfully assessed for this solvent though
the solution of the primal problem. Without the feasibility tests, the
initialization of the process model may fail and incorrectly result in
MDEA being considered an infeasible molecule. The overall statistics
indicate that the feasibility tests are particularly important when the
process optimization incurs a high computational cost; they make it
possible to avoid the unnecessary evaluation of infeasible molecules in
the primal problem; the role of the feasibility test in providing a feasible
initial combination of process conditions for those molecules that pass
the tests is critical to the convergence of the problem. The overall
reliability achieved in solving many instances of the entire CAMPD
algorithm while exploring a large space of solvent structures and their
associated process performance highlights the effectiveness of each step
of the algorithm developed in Section 5.1.

5.3. Optimal solvents identified using the proposed approach

5.3.1. Design case 1
In DS1, DEA is identified as the best solvent with a TAC of 17.577

$million year−1, while other top-ranked solvent candidates, with
molecular structures shown in Fig. A.13, exhibit higher TAC values
(31%–46% higher than that of DEA in Table 10 and Fig. 9(a)). The heat
requirement and the total cost of the process with DEA are decreased
by 41% and 47%, respectively, relative to those with MEA. This large
reduction in cost is achieved through higher cyclic capacity and lower
16
reboiler duty in the desorber, leading to a significant decrease in the
total energy requirement of the system. It is noteworthy that a high
cyclic capacity is obtained with DEA in spite of the low solubility of
CO2 in aqueous mixtures of DEA. In Fig. 10, the CO2 partial pressure
predicted by the SAFT-𝛾 Mie approach used in the current work is
shown as a function of CO2 loading at two different temperatures (313
K and 383 K). At a fixed partial pressure of CO2, it can be seen that DEA
exhibits very low CO2 loading at 313 K. However, a high purity of the
regenerated solvent, i.e., a low lean loading, is attainable with a low
reboiler duty, resulting in a high cyclic capacity (0.321 mol mol−1 for

EA and 0.160 mol mol−1 for MEA at the optimal process conditions,
ee Table 10). As a result, the solvent circulation rate, equipment size,
nd total energy consumption are decreased. As reported in Ramachan-
ran et al. (2006), the process with MEA is indeed known to use a large
mount of energy for solvent regeneration due to the formation of a
ighly stable carbamate in the absorber. Interestingly, no tertiary amine
s identified in the list of optimal solvents, although a low regeneration
nergy and a high theoretical absorption capacity are expected for
hese molecules (Chowdhury et al., 2013). This is likely due to the
igher molecular weight associated with the bulky alkyl group, CH3,
ttached to the nitrogen atom resulting in a lower molar concentration
f the tertiary amine in the mixture under the assumptions made in
he problem formulation. The absence of tertiary amines from the list
f top five solvent may also be explained by the fact that the absorption
apacity of these solvents is greatly influenced by the partial pressure
f CO2. For example, the CO2 solubility in aqueous MDEA at low partial
ressures (P ≤ 10 kPa) is similar or significantly less than that in
EA and DEA. It is worth mentioning that the highest achievable CO2

artial pressure in the absorber for the given process specifications is
pproximately 5 kPa, which is estimated by multiplying the absorber
perating pressure and the mole fraction in CO2 of the flue gas stream.
imilar discussions can be found in the study of Bernhardsen and
nuutila (2017) in which absorption capacity, cyclic capacity and
asicity (pKa) of 132 aqueous amine solvents available in the literature
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Fig. 9. Comparison of the overall process performance of the top five solvents identified using the proposed CAMPD approach for (a) DS1, (b) DS2, and (c) DS3. For each solvent,
the bar on the left denotes the TAC, broken down into OPEX (blue), TCI (yellow) and total carbon price (gray), and the bar on the right denotes the total energy requirement
(𝑄total). The cost scale is shown on the left of each plot and the energy scale on the right.
Fig. 10. Partial pressure of CO2 as a function of CO2 loading for a 30 wt% (mass)
aqueous solution of MEA (dark gray), DEA (yellow) and MDEA (green) as calculated
with the SAFT-𝛾 Mie EOS. The solid and dashed curves correspond to temperatures of
313 K and 383 K, respectively.

were compared. The authors reported that the cyclic capacity of the
best primary and secondary amines is higher than that of any tertiary
amine.

5.3.2. Design case 2
In DS2, solvent molecules can contain up to two amine groups,

so that the design space of DS1 is a subset of that for DS2. With
the exception of DEA, all highly-ranked solvents are diamines (see
Table 12, Figs. 9(b) and A.13), which comprise two amino groups that
participate in the CO2 removal reactions and thus enable higher CO2
loadings to be achieved. According to the work of Choi et al. (2014),
where the performance of aqueous blends of MDEA and multiamine
(alkyl-) solvents with primary and secondary amino groups was inves-
tigated, the stability of the carbamate ions decreases in the following
17
order: primary carbamate > primary–primary dicarbamate > primary–
secondary dicarbamate. This implies that the energy required to break
the bonds of a dicarbamate is lower than that required for a carbamate.
This is one possible explanation as to why a lower heat of regeneration
is observed with diamine solvents. The higher cyclic capacity at the
optimal process conditions shown in Table 12 corresponds to a lower
solvent circulation rate, allowing one to reduce the equipment and
operating costs.

The molecular weights of all high-performing solvents are within a
range of 104–118 g mol−1, i.e., the molecular size is kept as small as
possible, while including two amino groups. This trend may be due to
the use of a fixed weight concentration of solvent in the problem formu-
lation and to the large impact of the circulation rate on both the cost
and energy consumption. As a result, the algorithm towards smaller
molecular structures in order to decrease the amount of solvent, while
maximizing the number of amino groups. The use of large molecules
can lead to an increase in the reboiler operating temperature and is
also characterized by a larger solvent viscosity, resulting in relatively
large process units and a greater risk of thermal degradation, although
this latter aspect is not included in the formulation. It is also noticeable
that no alkylamine is included in the list in Table 11. Many of the
alkylamines are found to be immiscible with water at the absorber
operating conditions (see Table 4) and hence they are removed from
consideration in the feasibility tests. Although not shown here, the
feasible dialkylamines that are explored in the course of the algorithm
lead to a slightly higher TAC at the optimal solution of the problem,
whilst their cyclic capacity and energy consumption are similar to or
less than those of some of the highly-ranked solvents. The increase
in TAC with alkylamines is caused by the larger amine losses to the
atmosphere at the top of the absorber and desorber, which increase
the operating costs for amine make-up. For example, the TCI and total
energy consumption for 1,3-propanediamine (CAS registry number:
109-76-2), one of the solvents evaluated during the search, are lower
than those of its hydroxyl-containing analog, 1,3-diamino-2-propanol
(CAS registry number: 616-29-5), by 4.9 and 7.0%, respectively. How-
ever, the cost for amine make-up is greater by 98.7%, which outweighs

the smaller TCI and energy consumption. This is because the addition
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Table 13
The top five candidate molecular structures for DS3 identified by minimizing the total annualized cost using the proposed CAMPD approach
with integer cuts. The structural features of the candidate solvents are provided in Fig. A.13. The total annualized cost (TAC), total cost of
investment (TCI) and operating cost (OPEX) are in units of US million dollars per year ($million year−1). The total energy consumption of the
process (𝑄total) is presented in units of GJ ton-CO−1

2 . MEA is in the last row as a benchmark solvent. Solutions 1, 2 and 5 are not given specific
chemical names as several isomers can be formed from the groups selected.

Rank Solvent name or molecular code (short name) TAC TCI OPEX 𝑄total

1 [NH2CH2=2,NHCH=1,CH=1,OH=2] (SOL3) 14.872 4.509 9.748 4.492
2 [NH2CH2=2,NHCH=1,OH=1] (SOL4) 15.041 4.597 9.829 4.571
3 propane-1,2,3-triamine (PTA) 15.148 4.875 9.658 4.458
4 N’-(aminomethyl)-N’-methylmethanediamine (NAMDA) 15.278 4.859 9.804 4.569
5 [NH2CH2=2,NHCH2=1,C=1,OH=2] (SOL5) 15.288 4.720 9.953 4.577
Ref. 2-aminoethanol (MEA) 29.806 8.047 21.144 9.323
Table 14
Detailed results for the top five solutions of the integrated solvent and chemical absorption process design for DS3. The molecules are presented in the order of
high to low rank with their short name. MEA is in the first column as a benchmark solvent.

Optimal value DS3

MEA (ref.) SOL3 SOL4 PTA NAEMDA SOL5

TAC ($million year−1) 29.806 14.872 15.041 15.148 15.278 15.288
CAPEX ($million year−1) 8.048 4.509 4.597 4.875 4.859 4.720
OPEX ($million year−1) 21.144 9.748 9.829 9.658 9.804 9.953
𝑄total (GJ ton-CO−1

2 ) 9.323 4.492 4.571 4.458 4.569 4.577
Sol circ. rate (kg h−1) 0.3731 0.1902 0.1759 0.1698 0.1547 0.1937
Reboiler temperature (K) 397.18 401.12 401.64 401.81 401.28 401.12
Cyclic capacity (mol mol−1) 0.160 0.692 0.600 0.538 0.571 0.681
Rich loading (mol mol−1) 0.476 1.394 1.410 1.378 1.154 1.402
Lean loading, 𝜃0 (mol mol−1) 0.317 0.702 0.810 0.839 0.583 0.721
Lean temperature, 𝑇0 (K) 313.15 334.98 335.12 338.66 337.95 334.85
𝑃𝑁𝑑

(MPa) 0.206 0.235 0.241 0.221 0.215 0.236
𝑄reb (MW) 209.33 152.38 152.16 145.07 146.62 154.62
𝑄cond (MW) −99.585 −44.668 −48.330 −50.455 −53.808 −46.154
Solvent loss (kg ton-CO−1

2 ) 3.10 2.32 × 10−7 6.31 × 10−4 3.67 × 10−3 2.52 × 10−2 2.74 × 10−7
of hydroxyl groups in the amine facilitates the formation of hydrogen
bonds with water, making the amine more soluble in water and less
volatile. Care must be taken, however, when considering the introduc-
tion of hydroxyl groups in the molecular structure, as the increase in the
number of hydroxyl groups has an adverse effect on the heat duty for
regeneration and CO2 solubility, as demonstrated in the experimental
tudy of Muchan et al. (2017).

.3.3. Design case 3
In DS3, the larger molecular design space of molecules with up to

hree amine groups is explored. As can be seen in Tables 13 and 14, and
n Fig. 9, only triamines that have multiple reaction sites and form
arious species of carbamate or bicarbonate with CO2 appear in the

list of high-performance solvents. Molecules with a higher number of
amine groups lead to a high CO2 loading in the rich solvent and a low
regeneration energy, resulting in lower steam costs for regeneration,
which constitute a major component of the TAC with a share of 40%–
45%. A significant reduction in the TAC of the top-ranked solvents
is achieved due to the increased cyclic capacity. The TAC with SOL3
is decreased by 50.1% compared to MEA, and 13.2% compared to
the top ranked solvent (SOL1) in DS2. The cyclic capacity of SOL3
at the optimal process operating conditions is increased by 333.7%
compared to MEA, and 37.5% compared to SOL1. As discussed for DS2,
the formation of dicarbamates entails a lower heat of reaction than
that of the carbamate formed from MEA. In addition, the combined
effect of the higher prevalence of weak binding between CO2 and
mino groups and the high cyclic capacity results in a relatively low
egeneration energy. It can be observed that the solvent structures
n the list comprise primary and secondary amines, which may be
xplained by the fact that the effect of cyclic capacity on the cost
ominates compared to the low heat of regeneration that can be derived
rom the introduction of a tertiary amine group in the molecule.
18
5.4. Comparison between CAMPD and CAMD formulations

Having developed a robust CAMPD algorithm, we now discuss the
value of evaluating the molecular properties within the process context.
In Fig. 11, we compare the key molecular properties of the top-ranked
optimal solvents identified from each DS, in addition to MEA. The
properties are selected based on the studies of Papadopoulos et al.
(2016) and Lee et al. (2020), where the CAMD problem was formulated
as a multi-objective optimization (MOO) problem to identify the trade-
offs (a set of Pareto-optimal solvents) between the desired properties. It
is generally assumed that better solvents have a lower saturated vapor
pressure (𝑃𝑣𝑎𝑝), a higher liquid density (𝜌), a lower heat capacity (𝐶𝑝),
and a lower relative energy difference (𝑅𝐸𝐷). Here, each property is
normalized based on its minimum and maximum values so that all
values lie in the range 0 to 1. The liquid density is scaled based on −𝜌
so that smaller values of all the scaled properties are indicative of better
performing solvents. Additionally, the heat of absorption (−𝛥𝐻𝑎𝑏𝑠),
which is an indicator of the heat requirement for regeneration, and
the CO2 loading, which is an important parameter associated with
the absorption capacity of the solvents, are presented for the optimal
solvents identified. The heat of absorption is calculated based on the
simulation approach proposed by Graham (2020) who aimed to mimic
the experimental setting of Arcis et al. (2012), rather than applying the
Gibbs–Helmholtz equation. As can be seen in Fig. 11, it is not possible
to correlate the performance of the solvents in terms of property
targets with the overall performance of processes using these solvents.
SOL3, identified as the most cost-effective solvent in the solution of
the CAMPD problem, appears as the best solvent only with respect
to density and CO2 loading. SOL3 is also the third best molecule in
terms of energy efficiency when assessed through the heat of absorption

−1
within the range of 0–1 mol mol of CO2 loading. However, the results
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of the CAMPD formulation uncover that SOL3 leads to the most-energy
efficient process (lowest value of 𝑄total).

Another aspect of interest in the design of the solvent is the vapor
pressure of the solvent, 𝑃𝑣𝑎𝑝, at 323 K which can be used as an indicator
of solvent losses and which should be as low as possible to minimize the
environmental impact. Clearly, SOL1 exhibits the lowest vapor pressure
in Fig. 11(a). However, the solvent losses calculated as the sum of the
amount of the solvent in kg ton-CO−1

2 in the clean gas and in the CO2
gas stream at the optimal process conditions, suggest that SOL3 leads
to the lowest value (3.10 for MEA, 6.92×10−2 for DEA, 3.70×10−1 for
SOL1 and 2.32×10−7 for SOL3 in units of kg ton-CO−1

2 captured). The
discrepancies in the CAMD and CAMPD approaches demonstrate that
the best overall performance of the processing materials can only be
realized when the molecular properties are evaluated within integrated
molecular-process models. As has been shown, the proposed CAMPD
algorithm provides a systematic way of identifying promising solvents
in a process that is economically and environmentally favorable, al-
lowing one to quantify the performance of the solvent in the process
domain and to embed the trade-offs between properties directly in the
decision-making.

5.5. Comparison between direct and decomposition-based solution appro-
aches

An important aspect of the proposed CAMPD algorithm is that it
considers the process and molecular-level decisions simultaneously.
As discussed in the Introduction, alternatives to the direct solution
approach that can avoid the numerical difficulties of solving a large
MINLP process-molecular model include decomposition-based
approaches, also known as two-stage approaches, in which a set of
feasible molecular candidates is generated first and subsequently, the
most promising candidate molecules are further investigated using a
detailed process model. In order to compare the performance of the
two-stage approach and the integrated CAMPD approach, we consider
the list of potential solvents candidates from the study of Lee et al.
(2020) in which 40 Pareto-optimal solvents were generated by solving
the multi-objective CAMD problem using the sandwich algorithm (Ren-
nen et al., 2011). The total CPU time taken to generate the set of 40
optimal amine solvents and the average CPU time taken to generate
one optimal solution were reported as 353 s and 8.38 s, respectively,
in Table 12 of Lee et al. (2020). Among the 40 optimal solvents, the
19 solvents that satisfy the molecular structure constraints for DS3 are
further evaluated in the primal problem, i.e., process optimization. The
set of structurally feasible molecules and the results of the application
of the feasibility tests to these molecules are given in Table A.17 of
Appendix A.2. Among the 19 solvents that are structurally feasible,
many of the solvents are found to be infeasible for the given process
specifications, mainly due to high melting points, high flash points, and
immiscibility with water, leaving only seven solvents feasible in the
tests.

The overall results of evaluating the process performance of the sol-
vents generated using the decomposition method (design molecules by
CAMD, then optimize process performance) and the proposed CAMPD
method (design molecules and process simultaneously) are summarized
in Fig. 12. As can be seen, the optimal CAMPD solvents in DS1, DS2,
and DS3 have better economic performance and energy efficiency on
average, exhibiting lower values in all evaluation metrics. Specifically,
the average values of TAC and 𝑄total are decreased by 39.9% and
28.9%, respectively, when using the CAMPD approach, indicating that
the two-stage approach may result in suboptimal solutions in the
absence of the systematic strategy of coupling the molecular design
and process evaluation. The best solvent among the evaluated solvent
candidates is identified as M26, with a corresponding TAC of 16.0
$million year−1 (See Table 15), i.e., nearly 8% higher than SOL3. In
fact, the optimal TAC value with M26 is higher than that of the top five
19

solvents from DS3 despite the larger molecular design space used in Lee
Fig. 11. A comparison of the molecular properties of DEA (amber), SOL1 (blue) and
SOL3 (red) which are identified as the top solvents in each design case. The properties
of MEA (dark gray) are provided as a reference. In (a), normalized value of properties,
𝑃𝑣𝑎𝑝 , 𝜌, 𝐶𝑝 and 𝑅𝐸𝐷 are shown. (b) the heat of absorption (−𝛥𝐻abs) at 323 K, as a
function of CO2 loading and (c) partial pressure of CO2 (𝑃CO2

) at 313 K, as a function
of CO2 loading predicted using the SAFT-𝛾 Mie EOS for 30 wt% (mass) of amine in
the aqueous mixture.

et al. (2020). This suggests that the use of the decomposition-based
approach can lead to sub-optimal solutions by guiding the exploration
of the design space towards limited or biased molecular domains.
Nevertheless the TAC value for M26 is larger than any of the DS1
and DS2 solutions, indicating that the CAMD methodology identifies
solvents with reasonable performance. Decomposition may also give
rise to a high computational cost, as a large number of molecules needs
to be enumerated to identify optimal or near optimal solutions. The
CPU time taken to evaluate the feasibility tests and primal problem for
the 19 solvents is 3422 s, which is less than that of DS3. However, this
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Fig. 12. A comparison of the overall process performance for the optimal solvents
generated (i) by solving a MOO CAMD problem and then optimizing the process (M→P)
and (ii) by solving the integrated CAMPD problem (M&P). Each box plot is used to
display the maximum and minimum values, the first and third quartile ranges, and the
median values of the process performance indicators. The values for all solvents used
to construct each box plot are shown on the right of the box plot (⋄) with the mean
value indicated by ⋆. The TAC and OPEX values (85.3 and 65.9 $million year−1) for
solvent M32 are omitted from the plot due to their large magnitude.

Table 15
Performance of the CO2 capture process using solvent M26 identified by enumerating
the list of 19 molecules generated by solving a MOO CAMD problem (Lee et al., 2020)
and evaluating the process performance of those that satisfy the molecular feasibility
constraints in problem (1). The molecular code M26 denotes [NHCH=1, NCH3=1,
NCH2=1, CH3=3, OH=1].

Parameters Value

Optimal solvent M26
TAC ($million year−1) 16.007
TCI ($million year−1) 4.851
OPEX ($million year−1) 10.541
𝑄total (GJ ton-CO−1

2 ) 4.676
Solvent circ. rate (kg h−1) 0.166
Cyclic capacity (mol mol−1) 0.806
Lean loading, 𝜃0 (mol mol−1) 0.204
Lean solvent temperature, 𝑇0 (K) 333.59
Desorber pressure, 𝑃𝑁𝑑

(MPa) 0.234
Total CPU time (s) 3422

saving results in part from the presence of infeasible molecules that
fail to pass the feasibility tests in the course of the algorithm. It also
does not account for the cost of generating the set of Pareto-optimal
solvents. In summary, there is clear evidence that the proposed CAMPD
algorithm offers a more reliable way to identify promising solvents with
the desired overall performance.

6. Conclusions

In our current work, a robust CAMPD framework has been proposed
for the simultaneous design of optimal aqueous solvents and CO2 chem-
ical absorption–desorption processes. The focus of the development
has been to overcome the numerical challenges that arise due to the
complex nonlinear interactions between process models and molecular
structure–property models. This is particularly relevant in chemical
absorption as the highly non-ideal behavior of the solvent–water–CO2
mixtures, including chemical reactions and the potential to exhibit
LLE/VLLE, requires the use of advanced predictive thermodynamic
models, such as the SAFT-𝛾 Mie approach used here. New feasibility
tests have been combined with the primal problem of the OA algorithm
to provide a reliable way to assess the best process performance for a
20
given solvent by removing infeasible process conditions and molecular
structures from the search space before attempting to solve the process
optimization problem. Through the application of the feasibility tests
over a set of more than 4000 molecules, the tests have been found to
be robust and to lead to the elimination of infeasible process conditions.
Perhaps more importantly, the tests also generate new (tighter) bounds
on the process variables and starting points. These values are tailored
to each candidate solvent to ensure process feasibility and their use
has been shown to increase the reliability of the process optimizations
significantly, regardless of the user-provided starting point.

The efficiency and robustness of the proposed CAMPD algorithm has
been demonstrated by studying the design of a CO2 chemical absorption
process for a 400 MWe combined CCGT power plant (Bailey and Feron,
2005) where the solvent molecular structure and the process operating
conditions have been simultaneously optimized to maximize the overall
economic performance of the process. A systematic investigation of
the performance of the proposed CAMPD algorithm over 150 runs
has shown that the feasibility tests enhance robustness and increase
the likelihood of identifying high-performance solutions. By identifying
infeasible regions within molecular and process domains, numerical
errors are prevented over the course of the exploration, which leads to a
reduction in the computational cost of solving the full CAMPD MINLP.

Three design spaces were considered in the course of the study,
covering different subsets of the space of amines. For each design
space, the top five candidate solvents were generated and their detailed
performance was discussed in the context of previous studies. The
results have highlighted the importance of a high cyclic capacity, a
quantity which depends both on the nature of the solvent and on
the process operating conditions, reinforcing the importance of the
interactions between the molecular and process scales. Performance
metrics that relate both to economics and environmental impact, such
as energy consumption or solvent losses per ton of CO2 capture, were
found to show favorable behavior for the optimal solvents identified.

Furthermore, we have investigated the value of solving the CAMPD
MINLP as an integrated problem in which optimal decisions are made
simultaneously. While such an approach may appear burdensome due
to the size and nonlinearity of the problem, we have found that key
process performance indicators do not correlate well with those solvent
properties that are often taken as indicators of a high-performance sol-
vent. We have also compared process performance for optimal solvent-
process combinations found via the direct solution of the CAMPD and
those found via a decomposition-based approach in which solvents
are selected on the basis of property targets and the process is then
optimized for these candidates. While good process performance was
achieved using the decomposition approach, the simultaneous consid-
eration of molecular and process-level decisions was found to yield
better solutions. Even when considering a smaller design space in the
simultaneous approach than in the decomposition approach, it was
found that reductions in the total annualized cost of 1.2 million USD
per year (7%) and in the energy consumption of 4% could be achieved
with the integrated approach. It is expected that even greater savings
would be achieved by widening the CAMPD design space.

The availability of a robust approach to the simultaneous solution
of CAMPD problem opens the way to gain a better understanding of
the interactions between molecular and process-level decisions. In par-
ticular, it is now possible to investigate the effect of various choices of
process specifications, such as high or low concentration of CO2 in the
flue gas, and of process configuration on the optimal designs obtained.
Given the predictive capabilities of the SAFT-𝛾 Mie EOS, it would be
useful to extend the molecular search domain to a more diverse set of
functional groups, for example, ionic liquids, which have been found
to offer promise for CO2 capture (Gurkan et al., 2010; Chong et al.,
2017; Silva-Beard et al., 2022), or cyclic amines, which have been
widely used as rate-promoting additives and which can also be used

as phase-change solvents. The latter will require the introduction of
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Fig. A.13. Representation of the molecular structures of the top five solvents for DS1, DS2, and DS3. SOL1-SOL5 can form several isomers from the groups selected but only one
is shown.
new feasibility tests. It is worth mentioning that the lack of a standard
evaluation platform makes the fair comparison of the validity and
applicability of CAMPD algorithms challenging. The development of a
standard benchmark problem library and associated evaluation metrics
would thus be beneficial to gauge the quality of solution approaches
proposed in our work and by others. Finally, it would be useful to
study the effect of adding other key performance criteria as objective
functions in a multi-objective optimization formulation to optimize the
solvent structures and process conditions against conflicting objectives
that take into account environmental and safety performance as well
as economic aspects.
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Appendix A

A.1. A second-order group interaction in SAFT-𝛾-Mie EOS

As noted in the main text of the article, we define a set of equations
to enable the representation of a given a molecule described by a vector
21
𝒏 based on the groups in the design space and a vector 𝒏𝑺 using the
SAFT-𝛾 Mie groups. These equations are listed here for completeness.

The use of second-order groups NH∗
2, NH∗ and N∗ is invoked when

an alkanolamine is present in the aqueous solution. In addition, the
CH2OHShort group is introduced when the alkanolamine includes less
than three carbons along the carbon backbone, to account for the fact
that interactions between the amine and hydroxyl groups, when in close
proximity within the solvent molecule, are affected by the presence of
water.

To ensure that the second-order interactions of the amine groups
and hydroxyl group are accounted for whenever relevant, it is necessary
to define a representation of the molecule that is consistent with
the SAFT-𝛾 Mie definition of groups. It should be noted that when
using second-order groups, the like group interactions parameters are
unchanged (e.g., NH∗

2-NH∗
2 interactions and NH2-NH2 interactions are

identical), and only unlike group interactions parameters are different.
Having introduced the different groups, the translation of amine

groups between the two molecular representations, 𝒏 and 𝒏𝑆 , can
be expressed by introducing a binary variable 𝑧 and imposing the
following constraints:
𝑛OH
𝑛𝑈OH

≤ 𝑧 ≤ 𝑛OH

𝑛𝑆,NH2
= (1 − 𝑧)(𝑛NH2CH2

+ 𝑛NH2CH + 𝑛NH2C)

𝑛𝑆,NH = (1 − 𝑧)(𝑛NHCH3
+ 𝑛NHCH2

+ 𝑛NHCH)

𝑛𝑆,N = (1 − 𝑧)(𝑛NCH3
+ 𝑛NCH2

)

𝑛𝑆,NH∗
2
= 𝑧(𝑛NH2CH2

+ 𝑛NH2CH + 𝑛NH2C)

𝑛𝑆,NH∗ = 𝑧(𝑛NHCH3
+ 𝑛NHCH2

+ 𝑛NHCH)

𝑛𝑆,N∗ = 𝑧(𝑛NCH3
+ 𝑛NCH2

)

(A.1)

For the alkyl functional groups, the occurrence of each functional
group is identical in both representations, except for the CH2 group
which needs to be adjusted to take into account the CH2OH and
CH2OHShort groups. This can be written as:

𝑛𝑆,CH3
= 𝑛NHCH3

+ 𝑛NCH3
+ 𝑛CH3

𝑛𝑆,CH2
= 𝑛NH2CH2

+ 𝑛NHCH2
+ 𝑛NCH2

+ 𝑛CH2
− 𝑛OH

𝑛𝑆,CH = 𝑛NH2CH + 𝑛NHCH + 𝑛CH

𝑛𝑆,C = 𝑛NH2C + 𝑛C

(A.2)

The numbers of CH2OHShort and CH2OH groups are determined by
the length of the carbon backbone, nCarbon, so that when nCarbon ≤ 2, the
CH2OHShort group is used, and the CH2OH group is used otherwise. It
is assumed that the longest possible carbon backbone between amine
groups and hydroxyl groups governs the proximity effect in aqueous
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Table A.16
Molecular starting points given for each case study. The groups are ordered as NH2CH2, NH2CH, NH2C, NHCH3, NHCH2, NHCH, NCH3,
NCH2, CH3, CH2, C, and OH.

ID DS1 DS2 DS3

s1 [1-0-0-0-0-0-0-0-0-1-0-0-1] [1-0-0-0-0-0-0-0-0-1-0-0-1] [1-0-0-0-0-0-0-0-0-1-0-0-1]
s2 [0-0-0-0-1-0-0-0-0-3-0-0-2] [0-0-0-0-1-0-0-0-0-3-0-0-2] [0-0-0-0-1-0-0-0-0-3-0-0-2]
s3 [0-0-0-0-0-0-1-0-0-4-0-0-2] [0-0-0-0-0-0-1-0-0-4-0-0-2] [0-0-0-0-0-0-1-0-0-4-0-0-2]
s4 [0-0-0-0-1-0-0-0-0-5-0-0-2] [0-1-0-0-0-0-0-0-0-2-0-0-2] [1-0-0-0-1-0-0-0-0-2-0-0-1]
s5 [1-0-0-0-0-0-0-0-0-3-0-0-1] [0-0-0-1-0-0-0-0-0-2-0-0-1] [1-0-0-0-1-0-0-0-0-3-0-0-1]
s6 [0-0-0-0-0-0-0-1-3-3-1-0-1] [1-0-0-0-1-0-0-0-0-2-0-0-1] [0-0-1-0-1-0-0-0-2-0-0-0-1]
s7 [0-1-0-0-0-0-0-0-0-2-0-0-2] [1-0-0-0-0-0-0-1-0-5-0-0-2] [2-0-0-0-0-1-0-0-0-0-0-0-1]
s8 [0-1-0-0-0-0-0-0-1-3-0-0-1] [0-0-1-0-1-0-0-0-2-0-0-0-1] [0-0-1-1-1-0-0-0-2-1-0-0-0]
s9 [0-0-0-0-0-0-1-0-1-1-0-0-1] [0-1-0-0-0-0-0-0-1-3-0-0-1] [0-0-1-0-2-0-0-0-3-2-0-0-0]
s10 [0-0-0-1-0-0-0-0-0-2-0-0-1] [0-0-0-0-0-0-1-0-1-1-0-0-1] [0-0-1-0-1-0-1-0-3-1-0-0-0]
A
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Table A.17
Results of the feasibility tests when applied to the 19 molecules from CAMD. The
molecules are presented in the order of high to low rank with their molecular code.
The Test column represents the results of evaluating the molecules in the feasibility
tests. The groups are ordered as in Table A.16.

ID Molecular code Test

M1 [0-0-0-0-0-0-0-2-2-0-0-0-2] Pass
M3 [0-0-0-0-0-1-0-1-4-0-1-0-1] Fail
M7 [0-0-0-0-0-0-0-2-2-2-0-0-2] Pass
M8 [0-0-0-0-0-0-0-1-2-0-0-0-1] Fail
M10 [0-0-0-0-1-0-0-1-2-0-0-0-1] Pass
M11 [0-0-0-0-2-0-0-1-2-0-0-0-1] Fail
M12 [0-0-0-0-0-1-0-1-3-0-0-0-1] Fail
M16 [0-0-0-0-1-0-0-0-2-4-0-0-0] Fail
M17 [0-0-0-0-0-1-0-1-5-1-2-0-1] Fail
M19 [0-0-0-0-0-1-0-1-6-3-3-0-1] Fail
M21 [0-0-0-0-0-0-0-2-2-1-0-0-2] Pass
M22 [0-0-0-0-2-0-0-0-1-0-0-0-1] Pass
M23 [0-0-0-0-2-0-0-0-2-2-0-0-0] Fail
M25 [0-0-0-0-0-1-0-1-5-0-0-1-1] Fail
M26 [0-0-0-0-0-1-1-1-3-0-0-0-1] Pass
M30 [0-0-0-0-0-0-0-1-3-0-1-0-1] Fail
M31 [0-0-0-0-1-1-0-0-2-0-0-0-1] Fail
M32 [0-0-0-0-1-0-0-0-1-0-0-0-1] Pass
M36 [0-0-0-1-0-1-0-1-3-0-0-0-0] Fail

solution. The resulting constraints are expressed as:

𝑛Carbon = 𝑛𝑆,CH2
+ 𝑛𝑆,CH + 𝑛𝑆,C

𝑛OH − 𝑛Carbon + 1 ≥ 𝜖𝑛 −𝑀𝑛(1 − 𝑦1)

𝑛OH − 𝑛Carbon + 1 ≤ 𝑀𝑛𝑦1

𝑆,CH2OH = (1 − 𝑦1)𝑛OH

𝑆,CH2OHShort = 𝑦1𝑛OH

(A.3)

here 𝜖𝑛 is a small positive number, 𝑀𝑛 is a large positive number and
1 is a binary variable.

.2. Application of the proposed CAMPD algorithm to the CO2 chemical
bsorption process

Table A.16 represents the ten molecules used to initialize the al-
orithm. Each of the molecules is represented with a molecular code
here each number is the occurrence of a functional group.

The molecular structures of the optimal solvents obtained using the
roposed CAMPD approach may correspond to several isomers because
hey are defined by the occurrence of the functional groups in the
olecule, without full connectivity information. Therefore, for visual-

zation purposes, some potential molecular structures of the solvents in
S1, DS2, and DS3 are shown in Fig. A.13, without enumerating all
ossible isomers.

The results of feasibility tests evaluated for the 19 solvents that
atisfy the molecular structure constraints of the primal problem for
S3 are summarized in Table A.17. The amine solvents that pass the

ests are further evaluated in the process model to assess their overall
22

erformance in terms of cost and energy efficiency.
ppendix B. Supplementary data

Supplementary material related to this article can be found online
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