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Abstract 

We present a shared industry-academic perspective on the principles and opportunities for 
Quality by Digital Design (QbDD) as a framework to accelerate medicines development and 
enable regulatory innovation for new medicines approvals. This approach exploits emerging 
capabilities in industrial digital technologies to achieve robust control strategies assuring 
product quality and patient safety whilst reducing development time/costs, improving research 
and development efficiency, embedding sustainability into new products and processes, and 
promoting supply chain resilience. Key QbDD drivers include the opportunity for new scientific 
understanding and advanced simulation and model-driven, automated experimental 
approaches. QbDD accelerates the identification and exploration of more robust design 
spaces. Opportunities to optimise multiple objectives emerge in route selection, 
manufacturability and sustainability whilst assuring product quality. Challenges to QbDD 
adoption include siloed data and information sources across development stages, gaps in 
predictive capabilities, and the current extensive reliance on empirical knowledge and 
judgement. These challenges can be addressed via QbDD workflows; model-driven 
experimental design to collect and structure findable, accessible, interoperable and reusable 
(FAIR) data; and chemistry, manufacturing and control ontologies for shareable and reusable 
knowledge. Additionally, improved product, process, and performance predictive tools must 
be developed and exploited to provide a holistic end-to-end development approach. 

1. Introduction 

1.1 Background

Pharmaceutical development encompasses all the steps required to transform an active 
pharmaceutical ingredient (API) into a safe, effective medicine capable of being manufactured 
robustly and repeatably to the required quality for clinical and commercial scales. With the 
accelerating pace of drug discovery (Conroy, 2023), it is vital that product and process 
development keeps pace if we are to translate the advances in medical sciences to patient 
benefit as quickly, affordably and sustainably as possible. However, medicines manufacturing 
remains a long, complex and resource-intensive process (Schlander et al., 2021). 
Furthermore, approximately 90% of clinical drug development programmes may be 
unsuccessful due to a combination of poor clinical efficacy, issues with toxicity, weak drug-like 
properties, insufficient commercial requirements and/or strategic planning (Dowden and 
Munro, 2019; Harrison, 2016; Sun et al., 2022). As such, there is an urgent need to reduce 
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material wastage, energy, manpower and time during chemistry, manufacturing and control 
(CMC) development. It is necessary to find ways to develop new products more efficiently and 
robustly by exploiting the advances being made in materials, analytical, pharmaceutical and 
process science and engineering. In conjunction with this, it is vital to exploit advances in data 
science and digital technologies. Due to the range of terms presented herein, a glossary of 
terms is provided in Section 4, and the first instance of each term in the glossary is underlined 
in this manuscript. With new innovative digital approaches, it is possible to build on the well-
established principles of Quality by Design (QbD) (Juran, 1992; International Council for 
Harmonisation., 2008). 

1.2 Quality by Design

QbD is a concept introduced by Joseph M. Juran, a pioneer in quality management, who 
asserted that quality should be integrated into the product’s design, as most quality issues 
stem from the initial design phase (Juran, 1992). QbD (International Council for 
Harmonisation., 2008) was originally proposed for use in pharmaceutical manufacturing by 
the U.S. Food and Drug Administration (FDA) in 2002 (Caphart et al., 2006; Department of 
Health and Human Services U.S. Food and Drug Administration, 2007), and was formally 
endorsed in 2009 (International Council for Harmonisation, 2009). QbD principles have been 
increasingly adopted in the pharmaceutical industry to embed quality in drug design with 
rigorous, science-driven approaches, and an understanding of material and processing factors 
and associated risks that may impact on product performance and patient safety (Azad et al., 
2021; Barshikar, 2019; Davis and Schlindwein, 2018; Yu et al., 2014). It is vital to define the 
extent of variability in input materials that can be accommodated without impacting quality. 
Once the critical quality attributes (CQAs), critical material attributes (CMAs) and critical 
process parameters (CPPs) are identified and their interdependencies are characterised 
through targeted investigations, effective control strategies to manage potential risks of 
deviations can be developed. 

QbD has five central components that have been described extensively in the literature and 
regulatory guidance and/or case studies (Yu et al., 2014). These can be summarised as: 

1. A quality target product profile (QTPP) to pinpoint appropriate CQAs
2. Product design and understanding by performing a risk assessment to link CQAs to 

clinical safety and efficacy
3. Process design and understanding by defining CPPs, including a robust knowledge of 

scale-up and the impact of variations in CPPs and CMAs on CQAs
4. Development of a control strategy derived from the product and process understanding 

that ensures safety and efficacy (Lakerveld et al., 2015)
5. Process qualification to demonstrate that the controls are effective and to ensure 

continued improvement over time as new knowledge becomes available (Barshikar, 
2019; Davis and Schlindwein, 2018)

The FDA and the International Council for Harmonisation (ICH) have published detailed 
guidelines on the implementation and regulatory aspects of QbD (Table 1) to help drive 
adoption and promote common practices for regulatory acceptability across the sector (Cook 
et al., 2014). 
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Table 1: Examples of FDA and ICH initiatives to demonstrate QbD and promote adoption and harmonisation.

Source Initiative Purpose Reference(s)

Pharmaceutical 
Current Good 
Manufacturing 
Practices (CGMPs) 
for the 21st Century, 
2002 (final report 
2004)

• First mention of QbD 
• Promotes early adoption of 

technological innovation and 
quality systems approaches 
throughout pharmaceutical 
manufacturing.

• Promotes risk-based approaches

(Department of Health 
and Human Services U.S 
Food and Drug 
Administration, 2004)

Pilot program on QbD 
in relation to CMC, 
2005

Companies invited to demonstrate 
QbD use in the context of CMC with 
a view to establishing a 
comprehensive quality overview of 
drug development and use of ICH 
Q8, Q9 and Q10. 

(Bala et al., 2014; 
Department of Health and 
Human Services U.S. 
Food and Drug 
Administration, 2007)

U.S. Food & 
Drug 
Administration

Pharmaceutical 
Quality for the 21st 
Century A Risk-
Based Approach 
Progress Report

Improvement of the CGMP process 
and quality review and regulation

(Department of Health 
and Human Services 
U.S. Food and Drug 
Administration, 2007)

ICH Q8(R2) Pharmaceutical Development (International Council for 
Harmonisation, 2009)

ICH Q9 (R1) Quality Risk Management (International Council for 
Harmonisation, 2005)

ICH Q10 Pharmaceutical Quality (International Council for 
Harmonisation., 2008)

ICH Q11 Development and Manufacture of 
Drug Substances (Chemical Entities 
and Biotechnological/Biological 
Entities)

(International Council for 
Harmonisation, 2012)

ICH Q12 Technical and Regulatory 
Considerations for Pharmaceutical 
Product Lifecycle Management

(International Council for 
Harmonisation, 2019)

International 
Conference of 
Harmonisation

ICH 2020 Annual 
Report revision of 
M4Q(R1)

The Common Technical Document 
for the Registration of 
Pharmaceuticals for Human Use 

(ICH Secretariat with the 
ICH Management 
Committee and MedDRA 
Management Committee, 
2021; International 
Council for 
Harmonisation, 2020)
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ICH Q13 Continuous Manufacturing of Drug 
Substances and Drug Products

(U.S. Department of 
Health and Human 
Services et al., 2023)

ICH Q14 Analytical Procedure Development (International Council for 
Harmonisation of 
Technical Requirements 
for Pharmaceuticals for 
Human Use, 2023)

1.3 Digital Transformation of Pharmaceutical Development for CMC

With advancing capabilities in industrial digital technologies including Industry 4.0 (Arden et 
al., 2021; Azizi et al., 2023; Popov et al., 2022), Industry 5.0 and the underpinning engineering 
and physical sciences, it is increasingly possible to develop digital design methods that enable 
a systems-level approach to CMC development (European Commission and Directorate-
General for Research and Innovation, 2022). Whilst gaps in current modelling and predictive 
capability remain (Hausberg et al., 2019; Kitsios and Kamariotou, 2021; Litster and Bogle, 
2019), ongoing research and progress in data science and computational capabilities are 
addressing these issues. The potential benefits from the digital transformation of CMC include 
accelerated development for sustainable products and processes, risk reduction via accurate 
predictive computational mapping of design spaces, cost reduction via leveraging predictive 
tools to reduce experimental work, efficient scale-up, digital technology transfer, and cost-
effective operations and patient benefit (Conroy, 2023). 

Digital transformation is vital to realise the ambitions and benefits of Industry 5.0 (Akundi et 
al., 2022; European Commission, 2021a, 2021b, 2020; Ghobakhloo et al., 2023; Jafari et al., 
2022; Maddikunta et al., 2022; Nahavandi, 2019; Rane, 2023; Valette et al., 2023; Xu et al., 
2021). Industry 5.0 aims to exploit the plethora of industrial digital technologies and predictive 
tools such as computational and data infrastructure, digital twins (mechanistic, data driven 
artificial intelligence (AI)/ machine learning (ML), and hybrid models), findable, accessible, 
interoperable and reusable (FAIR) data principles, semantic tools, collaborative robotics, the 
internet of things (IoT), and immersive environments (augmented and virtual realities) (Hole 
et al., 2021). The goal is to ensure manufacturing is sustainable, resilient and human-centric, 
placing people at the heart of manufacturing with technology augmenting human creativity to 
create social benefit (Akundi et al., 2022). Additional drivers for innovation include the need 
for enhanced supply chain discernability for more robust decision making, cost-reduction, and 
improved efficiency via data collection and analysis across the value chain (Bermingham, 
2023). Digital transformation is also being acknowledged and adopted by regulatory bodies 
(see ESI1) and is increasingly accepted as vital for firms to maintain their place within a 
competitive and dynamic global market. Furthermore, industrial digital technologies have 
growing potential to impact the way pharmaceutical companies design, develop and 
manufacture drugs (Destro and Barolo, 2022; Romañach et al., 2023; Urwin et al., 2023). 

To achieve this Industry 5.0 vision, there must be a defined roadmap driven by business value, 
a robust technology literate workforce, and scalable, distributable technologies with secure, 
FAIR data systems (Wilkinson et al., 2016). Through improved exploitation of data to inform 
decisions, there is potential to realise environmental benefits through leveraging existing data 
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and reducing the reliance on resource-intensive experimental efforts (Hughes et al., 2023; 
Wise et al., 2019).To support the rollout and adoption of digital technologies, actions have 
been proposed to assist organisations in their digital transformation (Golub et al., 2023; Hauck, 
2024; Whatfix, 2024): 

1. Standardise and automate data collection, data control, data ownership, access 
management and development priorities using collaborative systems, skills and 
techniques, enabling better error detection and improved processes. 

2. Industrialise application of AI and ML through development and adoption of standards 
to increase reliability of development, rollout and monitoring (Medicines & Healthcare 
products Regulatory Agency, 2024, 2023; Medicines & Healthcare products 
Regulatory Agency and Brunel University, 2022; U.S. Department of Health and 
Human Services et al., 2016; U.S. Food & Drug Administration et al., 2024, 2023, 
2021).

3. Recruit, develop and maintain a ‘tech-savvy’ workforce capable of driving innovation 
through knowledge of digital technologies.

4. Upskill existing employees to the required level of technical expertise and provide 
continued development. Personalise digitalisation to address business and employee 
requirements.

5. Enhance digital technologies based on employee and client feedback.

6. Encourage collaboration across the sector with industry, academia and regulators 
working to develop standards for suitability, interpretability and credibility of AI and 
other digital technologies.

7. Establish a digital lifecycle approach by defining targets, identifying launch strategies 
for the global market and creating robust supply chains (GlaxoSmithKline plc., 2022; 
Golub et al., 2023; Hauck, 2024; Whatfix, 2024).

Digital tools are becoming increasingly sophisticated, user-friendly, and more accessible to 
researchers, manufacturers and decision-makers. This is exemplified by the recent surge in 
the use of generative pre-trained transformer (GPT) large language models, which have been 
transformative in providing non-experts with the benefits of AI tools (Eloundou et al., 2023; 
Mollick, 2022; Open AI, 2023). To navigate data integrity and security challenges presented 
by open access GPTs, pharmaceutical companies have started to implement internal 
solutions to incorporate AI trained on corporate and sector-specific data and improve their 
ways of working (Beckmann, 2023; Candelon et al., 2023). Other examples of digital tool 
implementation include the growing use of automation in synthetic organic chemistry, which 
has rapidly increased the rate of candidate throughput in discovery phases (Wang et al., 
2020). In addition, computer-aided drug discovery has been used for decades to virtually 
screen libraries of known compounds against newly identified biological receptors to identify 
new possible therapeutics (Gasteiger, 2020; Medina-Franco, 2021). The addition of modern 
AI tools recently demonstrated efficient automated recipe planning and experimental 
preparation of 15 drug or drug-like substances (Coley et al., 2019; Liu et al., 2023). From an 
economic perspective, the use of AI tools has an estimated expected value of $15-28 billion 
(USD) per annum in R&D (Candelon et al., 2023). This estimation is due to an expectation 
that the use of AI tools will increase productivity by speeding up the process of NCE target 
identification, accelerating screening, and optimising formulation and product development 
(Adabala Viswa et al., 2024). 
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For CMC, ML tools also have the potential to streamline process and product development 
and increase overall development speed (Conroy, 2023; Nagaprasad et al., 2021). For 
example, to rationalise experimental solvent screening, which is expensive and time-
consuming, it is only necessary to evaluate the handful of promising candidates identified by 
ML (Brown et al., 2018; Urwin et al., 2023). Digital-first approaches can also enable the 
identification of potential risks early in the development process to enable more efficient 
experimentation and reduce experimental load. Several studies have demonstrated the ability 
of digital-first approaches to support decision making, e.g., selection of manufacturing route, 
optimal process conditions and additional experimental conditions (Abasi et al., 2021; Agrawal 
et al., 2023; Bhalode et al., 2022; Boobier et al., 2020; Carou-Senra et al., 2023; Chen, 2024; 
Li et al., 2023; Maclean et al., 2024; Matić et al., 2023; Moreno-Benito et al., 2022; Mswahili 
et al., 2021; Nielsen et al., 2020; Ong et al., 2022; Pereira Diaz et al., 2023; Ravendra Singh, 
2024; Sansare et al., 2021; Szilágyi et al., 2022; Urwin et al., 2023; Zaborenko et al., 2019) 
(Table 2).

Table 2: Examples of digital-first approaches relevant to CMC development processes.

Study Type Technique used Issue Outcome and Benefits Reference

Crystallisation ML Particle size 
quality 
requirement

Effective wet milling process 
development, reducing 
material wastage and 
experimental load, 
demonstrated use by 
Agrawal et al. (Agrawal et 
al., 2023)

(Urwin et 
al., 2023)

Hot melt 
extrusion

QbD and DT Conveying, 
pressure build-
up, and power 
consumption

Improved product quality so 
thus less wastage; highlights 
the need for accurate DTs 
and in silico process 
development 

(Matić et 
al., 2023)

Particle 
processes

Hybrid ML/first 
principles

Particle 
phenomena 
kinetics

Successful prediction and 
hybrid model comparable to 
non-hybrid modelling in 
terms of accuracy, live 
training of the model also 
possible

(Nielsen et 
al., 2020)

Nanomedicine 
solubility

AI/ML Hybrid (Support 
Vector Regression 
(SVR), Multilayer 
Perceptron (MLP), and 
Least Absolute 
Shrinkage and Selection 
Operator (LASSO))

Relationship 
between 
pressure, 
temperature 
and supercritical 
CO2 

MLP successfully predicted 
supercritical CO2 density, 
but SVR was more effective 
in predicting mole fraction

(Chen, 
2024)
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Dissolution 
testing

First principles/empirical 
approaches

Dissolution 
optimisation

First principles effectively 
provide guidance for 
formulation and process 
development, and then, in 
combination with data-
informed empirical models, 
can predict the effect of 
material attributes (MAs) 
and process parameters 
(PPs) on dissolution for 
batch or real-time release

(Zaborenko 
et al., 2019)

Dissolution 
performance of 
direct 
compressed 
tablets

Compartmental 
disintegration and 
dissolution model 
(population balance 
principles)

Dissolution 
optimisation

Successfully predicted the 
effects of manufacturing 
conditions on disintegration. 
Utilised raw material 
properties as MAs and thus 
did not require large 
datasets. Suited to both DP 
development and live testing 
control strategies

(Maclean et 
al., 2024)

Continuous 
direct 
compression

First principles models, 
discrete elemental 
methods, flow sheet 
modelling, DT

Lengthy 
development 
times, material/ 
energy 
wastage, early 
project de-
risking, 
improved quality

Mapping the steady state 
operation in the design 
spaces for feeding, mixing 
and compression. 
Determination of the impact 
of operating conditions, 
material and process 
parameters, and the 
dynamic response to 
disturbances. In turn this 
was used to de-risk and 
optimise drug product and 
process development while 
reducing the number of 
experiments

(Moreno-
Benito et 
al., 2022)

Despite the advantages provided by physics-based mechanistic models, digital twins (DTs), 
statistical modelling, ML, and hybrid mechanistic-data driven approaches, the integration of 
these tools within pharmaceutical manufacturing remains bespoke. Isolated digital tools are 
usually only implemented on a single manufacturing step or a number of steps rather than the 
whole end-to-end (E2E) process from drug substance (DS) manufacturing to drug product 
(DP) manufacturing (Destro et al., 2021; Moreno-Benito et al., 2022; Ottoboni et al., 2022; 
Szilágyi et al., 2022), or for post-development optimisation (Içten et al., 2020; Liu and 
Benyahia, 2021) (Table 2). Developing a cohesive strategy for the digitalisation of 
pharmaceutical control strategies carries potential risks and requires significant investment of 
time and resources and working to improve regulatory certainty in the use of new methods 
(Ahluwalia et al., 2022). Digitalisation challenges also include risks such as cybersecurity and 
software issues, misinterpretation of data, and lack of training for implementation (Alguliyev et 
al., 2018; Axelrod, 2013; Bolbot et al., 2019; Humayed et al., 2017; Tyagi and Sreenath, 2021; 
Yaacoub et al., 2020). 
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1.4 Scope

Here, we propose a Quality by Digital Design (QbDD) framework as a holistic patient-centric 
approach for the integration of digital tools and data across process and product development 
and the manufacturing and packaging of pharmaceuticals. QbDD involves the application of 
extensive modelling, data driven decision support tools and generative AI-powered agents 
(Boiko et al., 2023; Bran et al., 2024; Chen et al., 2023; Dong et al., 2024; Mahjour et al., 2023; 
Ramos et al., 2024; Ruan et al., 2024; Zhou et al., 2024), to quickly, robustly and sustainably 
drive an efficient development procedure. This approach commences with predetermined 
objectives and focuses on process and product understanding and control with a strong basis 
in rigorous science and quality risk management (International Council for Harmonisation, 
2009; Yu et al., 2014). QbDD also enables easy multi-objective optimisation by including 
unconventional product development objectives, for example carbon footprint or 
manufacturing cost reduction. Existing quality management systems in CMC include quality 
by testing (QbT), quality by control (QbC) and QbD. The proposed QbDD principles do not 
replace QbC and QbD but rather build upon their established approaches and technologies to 
deliver a systems-level digital transformation to CMC regulatory processes for medicines 
development (Figure 1). In parallel, the need for physical experimentation will decrease as 
digital transformation progresses towards the integration of cyber-physical systems (CPSs), 
with modelling and experiments (Figure 2). In addition, physical experimentation will be 
directed towards supporting robust outputs of the digital twin modelling. Establishing this 
systems-level, holistic approach will allow more efficient and effective process and product 
design and development to deliver the required product performance whilst also delivering 
improved sustainability and resilience in medicines manufacturing.

This paper is written from the perspective of small molecule, oral solid dosage form CMC 
process development, but the intent, approach and benefits are applicable across the full 
scope of medicines development.

2. Quality by Digital Design Roadmap

2.1 Towards QbDD

QbDD is enabled by the integration of digital technologies (including AI, ML and DTs) to collect 
and curate data, to train and apply predictive models, to enable reverse engineering and to 
use extended ontologies to manage and provide insights from data more effectively. These 
components are unified by a holistic workflow that structures development activities. QbDD 
uses the collated data to inform early qualitative and quantitative decisions on process 
selection, process design, risk assessment and control strategies. By focusing on high quality 
data collection, structure and connectivity as well as model development, training and 
validation, QbDD facilitates the identification and exploration of more robust multi-dimensional 
design spaces by incorporating quality, manufacturability and sustainability criteria in early-
stage decision-making. Patient-centric requirements (i.e., dose, route of administration and 
dosing frequency) dictate the objective criteria, and the design space is minimised early in 
development using predictive models (Figure 2). 

The exploration of a digitally augmented knowledge space in QbDD as opposed to the more 
sparse experimental design space in classical QbD (Figure 2) has inherent advantages in 
terms of efficiency. Limited exploration of the knowledge space in traditional QbD may restrict 
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further development. For example, in product lifecycle management, adding another 
presentation, such as a modified release tablet to complement an immediate release tablet, is 
more challenging with the reduced knowledge space of QbD. By contrast, in QbDD, the 
augmented knowledge space could enable screening for multiple QTPPs (including ones 
classically considered during product life cycle management). For example, it would be 
possible to screen within the same development cycle for a product presentation for acute and 
chronic treatment rather than considering the second treatment later in another development 
cycle. QbDD in general, and the exploration of the augmented knowledge space in particular, 
could also accelerate submission of the regulatory dossier by demonstrating to health 
authorities the full scope design space assessed while digital technologies populate sections 
of the dossier upfront. 

2.2 QbDD Framework: An Integrated Predictive Toolbox

QbDD relies on establishing a holistic, systems-level framework to incorporate requirements 
across DS and DP development in a manner that informs agile, objective and explicit decision-
making (Figure 3). This framework enables systems-level modelling and optimisation to be 
applied across process design, process parameter selection, molecular systems, material 
attributes, bulk material properties, formulated product structure-function-process interactions, 
stability and biopharmaceutical performance in relevant patient sub-populations (Riaz Ahmed 
et al., 2022). For example, predictive models can be used to design a particle formation 
process (i.e., crystallisation, spherical agglomeration or combined crystallisation/milling) to 
deliver the desired particle attributes. This targeted approach may save time and resources 
when compared with the traditional approach of making different samples with a range of 
properties and testing each to see which ones are best. Thus, models could enable efficient 
delivery of the desired material attributes (e.g., flowability) and assign appropriate excipients 
to enable effective continuous direct compression. In this way, the QbDD strategy minimises 
the risks and resource requirements associated with downstream processes enlarging the 
design space (Butters et al., 2006). Thus, the systems-level integration of QbDD allows for 
earlier, whole design-space refinement in place of ‘one process at a time’ development.

While QbDD will rely on the development of new digital tools, it will also utilise and build upon 
existing models and approaches. Examples of existing tools include, the manufacturing 
classification system (MCS) (Leane et al., 2015), the biopharmaceutical classification system 
(BCS), the developability classification system (DCS) (Amidon et al., 1995; Butler and 
Dressman, 2010), and process systems engineering absorption, distribution, metabolism and 
excretion (ADME) and pharmacokinetics/dynamics (PKPD) frameworks, e.g., gPROMS 
FormulatedProducts (Siemens, 2025a, 2025b), GastroPlus® (Parrott and Lavé, 2002) and 
SimcypTM (Certara, 2023; Jamei et al., 2009; SimulationsPlus, 2023). Additional existing 
models include reaction kinetics modelling (Grom et al., 2016; Wang et al., 2020), population 
balance models for crystallisation (Aamir, 2010; Ma and Roberts, 2019), filtration models 
(Ottoboni et al., 2022), wet granulation models (AlAlaween et al., 2016; Bellinghausen, 2020; 
Ismail et al., 2019; Jang et al., 2020) and direct compression modelling (Bekaert et al., 2022; 
Dai et al., 2019; Martin et al., 2021). The use of these predictive models to inform 
experimentation is inherently iterative. Model input and model parameters are refined, and 
physical experimentation feeds back into these digital tools. This partnership between digital 
and physical is an inherent part of the QbDD strategy and will be explored in the following 
sections. 
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Informed by industry and academia, an expanded set of tools is proposed to enable QbDD 
and the digital transformation of CMC with a view to reducing material and energy wastage 
and increasing overall sustainability across process and product development (CMAC, 2021). 
Specifically, three predictive modelling toolboxes are proposed covering all stages of product 
and process development: a biorelevant performance classification system (BPCS), an 
advanced manufacturing classification system (MCS+) that builds advanced simulation 
capability into the existing MCS, and a crystallisation classification system (CCS). 

The BPCS is being developed to build on the existing BCS and DCS by connecting these 
classification systems to physiological- and population-based pharmacokinetics models 
(Amidon et al., 1995; Butler and Dressman, 2010). The BPCS will categorise APIs and 
formulations based on the effective range of API release achievable within a given population 
(Abuhassan et al., 2024, 2022a, 2022b; Prasad et al., 2022; Silva et al., 2023). In the longer 
term, this classification system should also aim to cover the development of dosage forms 
using models that self-learn from clinical outcomes and/or endpoints. 

The MCS categorises drug products based on processing route and is governed by properties 
of the API and the needs of the formulation (Leane et al., 2024, 2018, 2015). The MCS+ is 
being developed to build upon the MCS by using particle and bulk property assessment to first 
predict outcomes for critical DP unit operations (e.g., blending, granulation and compression) 
which in turn enables early decision-making for DS process development (with respect to 
targets such as particle size and morphology) (Azad et al., 2021). Digital tools that are 
applicable to MCS+ relate particle properties to manufacturability targets, such as flowability, 
compressibility or stability, in order to guide decisions in product and process development.  
Predictive tools relating to excipient choice and DS interaction with excipients are also of 
interest for the MCS+, particularly for understanding the edges of the design space when 
defining an operating window that does not compromise dissolution and bioavailability.

The CCS is being developed as a predictive system of models spanning molecular properties, 
crystallisation thermodynamics, solvent interactions and kinetics through to particle version 
and form selection and physical and bulk properties. As these properties impact 
manufacturability and choice of formulation process, being able to predict them 
computationally is particularly advantageous. Thus, the CCS targets prediction of 
manufacturability, stability and performance parameters. Example digital tools include: 
estimating flow function coefficients from predicted particle size distribution (Pereira Diaz et 
al., 2023), optimal solvent selection to achieve desirable particle attributes (Nakapraves et al., 
2022), cocrystal prediction (Devogelaer et al., 2020; Gröls and Castro-Dominguez, 2021; 
Loschen and Klamt, 2015), avoidance of undesirable solvate formation (Bhardwaj et al., 2015) 
and minimising environmental impact from solvent selection (Henderson et al., 2011). These 
and other models in the CCS will benefit from improvements in fundamental mechanistic 
understanding (Warzecha et al., 2020) as well as from access to comprehensive data sets 
collated from data-rich experiments exploring the response of molecules under different 
process conditions. To make the CCS a reality, an improved understanding of the complex 
interaction between solvents and process conditions and the degree to which molecular 
properties can inform predictions is also needed. Indeed, analysis of crystallisation kinetics 
through absolute rate theory signposts how molecular properties of solvents and solutes can 
in the future be integrated into predictive process models (Schroeder, 2024). A fully developed 
CCS will enable in silico process and particle design by guiding solvent selection, estimating 
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kinetics and predicting physical form, particle attributes and impurity rejection as a function of 
molecular properties and process conditions. 

2.3 QbDD Framework: Building a Digital Workflow

The proposed QbDD digital-first approach for a given API (Figure 3) sets the overall product 
development objectives by identifying QTPP requirements such as dosage form, dosage, 
dosing frequency, delivery mechanism and pharmacokinetic parameters that ensure product 
safety and efficacy. Following this, prior knowledge of the API target is collated, and in-silico 
predictions are carried out to produce an initial data package of predicted and measured 
physical properties that may include aqueous solubility, permeability, pKa, chemical stability, 
anticipated impurities and target impurity profiles (Stage 1 in Figure 3). This information is then 
input to the BPCS, MCS+ and CCS to explore likely outcomes from different processing routes 
and conditions and to target subsequent modelling and experimental efforts. 

The BPCS is used to predict the target solid form, dosage, API particle attributes and 
formulation characteristics required to achieve safe and effective release within the target 
population. Coupled with information on particle and bulk properties, BPCS outputs are then 
fed into the MCS+ to inform both the manufacturability requirements of the system and the 
formulation route selection/suitability. The CCS then guides process and particle design via 
process, solvent and process parameter selection. Thus, QbDD essentially enables an in silico 
reverse engineering approach that first identifies targets and then determines suitable 
biorelevant performance, manufacturability and finally API crystallisation objectives. The 
resulting output from the three classification systems will be recommendations for product 
composition and process conditions to achieve the necessary API attributes (CCS output), 
drug product performance and stability (MCS+ output), and performance in the target patient 
population (BPCS output).  Process economics, manufacturability and sustainability targets 
are then determined as well as known constraints (Stage 2 in Figure 3). Process options and 
models relevant to these targets are also identified (Stages 3 and 4). 

Following the first four in silico stages in the workflow, the first experimental call outs occur in 
Step 5 to enable model calibration and refinement. During development, predictive tools may 
require some level of experimental input and can be trained and calibrated with model-driven 
callouts for automated, data-rich, small-scale (<2 g or <10 mL), materials-sparing 
experiments. Model-driven experimental platforms (Christensen et al., 2021; Rogers et al., 
2020), identify operational constraints and allow faster option assessment, process 
verification, process validation and data feedback to inform the overall model. Some 
phenomena are currently not well covered by predictive simulation tools, e.g., fouling, 
nucleation or mechanical properties of bulk materials, and will require further investigation and 
model development. 

After model calibration and refinement, conceptual process and product options are 
investigated via model driven development (Stage 6).  Process model validation in this stage 
may require physical experimentation to assess discrepancies such as those caused by non-
modelled phenomena. Stage 6 determines which process options will be taken forwards, and 
this is followed by an initial quality risk assessment using process models coupled with 
practical constraints (Stage 7). When combined with sensitivity analysis and holistic design 
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space process optimisation against the process objectives whilst ensuring quality, the risk 
assessment allows for the initial definition of a control strategy (Stages 8 and 9). The 
application of stages 1-9 (Figure 3) ensures that the QTPP is met and delivers the required 
product performance in a science-led, digital-tools-enhanced, materials-sparing and efficient 
manner. In Stage 10, the process is operated to produce material. The material and associated 
process analytical technology (PAT) data are analysed, and results used to determine if the 
QTPP is met and the model is credible. Product performance can then be assessed, relevant 
data is used for further model improvement, and the product lifecycle is managed with ongoing 
improvements facilitated by the digitally augmented knowledge space (Stage 11 and 12). 

Subsequent iterations of the MCS+ and CCS and potentially BPCS may occur in both early 
and late-stage process development as further data become available. Examples of this are: 
(a) should API particles not be conducive to direct compression and instead result in poor 
blend dispersion, poor drug loading or lack of tablet uniformity, alternative routes such as roller 
compaction, wet granulation or solid dispersion methods must be considered; (b) should 
issues with end-product properties be identified during product analysis, this information is fed 
back to the classification systems to alter the formulation; (c) should a formulation fail to 
release the API in the expected manner, the excipient choice, formulation process parameters, 
formulation processing route or even the DS particle production route may be reconsidered. 
As new and improved models become available, an increasing reliance and trust in digital 
design methodologies should continually reduce the reliance on experimental data (as 
indicated by the decrease in physical and increase in virtual experiments in Figure 2), and in 
turn reduce any need to revisit the classification systems in subsequent stages of 
development.

Other feedback loops may occur throughout the QbDD workflows. For example, if a suitable 
operating space (i.e., one that assures quality, manufacturability and sustainability objectives 
within the process and operating constraints) cannot be found following model validation, it 
may be necessary to return to Stage 2 to assess if any objectives can be relaxed before 
proceeding with Stage 8. Likewise, if scale up verification and validation experiments do not 
meet predicted outcomes e.g., due to non-modelled phenomena, it may be necessary to revisit 
the models, the model parameters (Stages 4 and 5) or redesign the experimental set up (Step 
6) before proceeding. 

Making decisions on a quantitative basis early in development using this approach can have 
significant benefits for the cost, time and ultimate sustainability of medicines development. To 
truly realise fully predictive capabilities for early decision-making, further development and 
validation of predictive tools and multi-scale, multi-physics model frameworks is required 
(Figure 3) (Liu et al., 2021; Niederer et al., 2021; Onaji et al., 2022). However, ongoing 
development of increasingly capable mechanistic (Chaudhury et al., 2014; Ottoboni et al., 
2022), AI (Chakravarty et al., 2021; Coley et al., 2019; Madarász et al., 2023) and hybrid 
models (Abouzied et al., 2023; Bhalode et al., 2022; Chen, 2024; Gaddem et al., 2024; Nielsen 
et al., 2020; Tsopanoglou and Jiménez del Val, 2021), across different scientific endeavours 
highlights both the accelerating progress and the huge potential achievable.
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2.4 QbDD Elements

2.4.1 Cyber-Physical Systems

QbDD will benefit from the growing capabilities of cyber-physical systems (CPSs) that interlink 
computational technologies with physical processes, as part of cyber-physical research 
infrastructures (CPRIs), to analyse, monitor and control their functionality in a consistent, 
robust, safe, efficient and concurrent manner (Alguliyev et al., 2018; Baheti and Gill, 2011; 
Lee, 2006; Marwedel, 2021; Robotics Growth Partnership, 2022; Sanislav and Miclea, 2012). 
CPSs, as a concept, are now considered vital in terms of innovation across Europe and the 
United States (Alguliyev et al., 2018; Robotics Growth Partnership, 2022), as reflected in the 
drive towards Industry 4.0. With the Industry 5.0 focus on placing humans at the heart of 
manufacturing, to be effective in realising the envisioned transformation, CPSs should function 
as a collaborative synergistic human-machine interface providing well-trained, technology-
savvy workers with ready access to data and models across DS and DP activities (European 
Commission, 2021b, 2021a, 2020; Jafari et al., 2022; Nahavandi, 2019). 

QbDD could also benefit significantly from the accelerating application of self-driving 
laboratories (SDLs) utilising CPSs driven by data, models, optimisation approaches and AI. 
SDLs have demonstrated increased data acquisition (e.g., an increase of sample throughput 
of 50-100 times compared to human testing alone) (Berkeley Lab, 2024; Biron, 2023), novel 
material discovery (Burger et al., 2020; Yang and Tomoshige, 2024), real-time monitoring and 
analysis (Harmon, 2023), and even multicontinental DT and CPS co-ordination (Bai et al., 
2024). Furthermore, multiple SDLs have demonstrated real-time recording, storage and 
interaction with data whilst also using human input and literature data (Acceleration 
Consortium and University of Toronto, 2024; Aspuru-Guzik Group, 2024; Bai et al., 2024; 
Harmon, 2023; Intrepid, 2024). QbDD has not yet been implemented in existing 
pharmaceutical SDLs in a full E2E capacity (Acceleration Consortium and University of 
Toronto, 2024; Berkeley Lab, 2024; Intrepid, 2024). To this end, CMAC is actively developing 
QbDD-enabling SDLs or DataFactoriesTM. These DataFactories include SDLs capable of 
collecting targeted experimental data for APIs, excipients, and products under a wide range 
of conditions. They do so by exploiting automated dosing or sample handling, mobile robotics, 
small-scale experiments with integrated sensing/analytics/imaging for information extraction 
and global optimisation approaches for self-learning experimental planning to meet the 
process objectives. These SDLs focus on model-driven data generation via repeatable 
experimentation with data structured in FAIR formats (discussed further in Section 2.4.3) and 
currently target crystallisation screening and scale-up (Pickles et al., 2024, 2022a, 2022b), 
amorphous materials, direct compression (Abbas et al., 2025), stability and dissolution testing 
(CMAC, 2021). 

2.4.2 Data Systems and Architectures

The data sources and requirements across a QbDD framework are numerous (e.g., Figure 4), 
and an underlying data structure is necessary to facilitate the integration, collation, 
management and application of data between and across these platforms. Data systems and 
architectures provide a standardised structure for data collection, processing, organisation, 
security and storage (University of York, 2024). Several local and enterprise-level data 
frameworks have been developed including highly ordered data warehouses and more 
unstructured data lakes and, more recently, data meshes and data fabrics (IBM, 2024) (please 
see Section 4 for full definitions). Due to issues such as lack of flexibility and lack of quality 
(IBM, 2024), data fabrics and data meshes may be utilised in preference to data warehouses 
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and data lakes (Dibley, 2022; Garani et al., 2019; Garcia et al., 2008; Hlupić et al., 2022; IBM, 
2024; Nambiar & Mundra, 2022; Thantilage et al., 2023). Data fabrics and data meshes enable 
data to be efficiently managed and made accessible to a range of human users, applications 
and other systems further down the supply chain, either in a decentralised (mesh) or 
centralised (fabric) form (Blohm et al., 2024; Hechler et al., 2023). For the implementation of 
QbDD, the centralised management and accessibility of a data fabric makes it the preferred 
data architecture for a holistic, human-centric QbDD framework. Data fabrics enable full 
integration of different data sources and pipelines across different locations, allowing the 
collation and curation of all data and metadata to streamline access and drive modelling 
approaches (IBM, 2024). Important elements for a FAIR QbDD data fabric include; 
attributable, legible, contemporaneous, original accurate, complete, consistent, enduring and 
available (ALCOA+ principles) data; cybersecurity; ontologies; extract-transform-load (ETL) or 
extract-load-transform (ELT) tools to ensure all data can be correctly tagged, aggregated and 
served up to queries or data-driven services including dashboards; and AI/ML (Bartley, 2024; 
Durá et al., 2022; Kavasidis et al., 2023; Samson, 2021; Seenivasan Mphasis and 
Seenivasan, 2023; Sembiring and Novagusda, 2024; Singhal and Aggarwal, 2022). 

Investment in establishing standardised data architectures (Veeva Systems Inc., 2025; 
Walsche, 2021) and systems will be valuable in developing and deploying modelling and data-
driven approaches. Effective mechanistic digital twins and ML-based or hybrid predictive 
models with known uncertainties are facilitated by structured training data in which metadata 
describing those data are adequately captured. For example, a powder flow prediction model 
trained on data collected on one type of instrument with one methodology has a lower 
accuracy when predicting the outcomes for the same physical property measured using 
another instrument that uses a different measurement methodology (Pereira Diaz et al., 2023). 
Capturing the metadata, such as differences in methodology (e.g., equipment scales and 
conditions) (Wang et al., 2021), is therefore essential to improve predictive model performance 
and ensure interoperability and repeatability. As recently demonstrated for high shear wet 
granulation (Wang et al., 2021), material data fusion and multivariate modelling can also speed 
up process development by connecting several different data sets and reducing the volume of 
experimentation required. FAIR data collected from multiple sources, enriched with metadata 
and in machine-ready format is then appropriate for advanced analytics, i.e., ML and AI.

Recently, there have been initiatives to embrace FAIR data principles and replacing traditional 
data tables in databases with detailed knowledge graphs (Strömert et al., 2022; Voigt and 
Kalidindi, 2021; Wulf et al., 2021). A knowledge graph, consisting of an ontology and 
appropriate data, can be used to capture and represent knowledge and relationships between 
data entities in the domain, enabling semantic tool development to improve data access and 
usability. In general, ontologies describe classes of objects, entities or concepts and the 
relationships between them (Lomax, 2022). An ontology forms a machine-readable knowledge 
model that supports FAIR data generation through connecting data and meta data intuitively 
and aids the discovery of deviations, thereby decreasing errors and enabling quantification of 
uncertainty and confidence in data (Francisco and Remolona, 2018; Lomax, 2022; Strömert 
et al., 2022; Venkatasubramanian et al., 2006; Viswanath et al., 2022). Developing a complete 
QbDD ontology for CMC in pharmaceutical manufacturing will require significant time, 
resources and maintenance. To alleviate these challenges, existing ontologies must be 
leveraged, such as those developed for pharmaceutical engineering (covering material 
properties, molecular structure, experiments, reactions, phases and operations (Hailemariam 
and Venkatasubramanian, 2010), secondary process training (Chalortham et al., 2013; 
Oyebola and Opeoluwa, 2015) and the Chemical Entities of Biological Interest’s (ChEBI) 
ontology of molecular entities developed by European Bioinformatics Institute (EBI) (Chemical 
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Entities of Biological Interest (ChEBI), 2024). This endeavour will also benefit from groups and 
organisations working together to form the basis of a standard knowledge model for the 
domain, driving adoption of the resulting ontology and maintaining it to ensure longer-term 
impact.

2.4.3 QbDD Framework: The Underlying Data Fabric

Establishing a CMC data fabric can facilitate the integration and transfer of data between the 
predictive models, digital twins, DataFactories (Pickles et al., 2024) and other targeted 
experimental data sources used to identify material attributes, process parameters and 
associated quality attributes. Critically, an underlying data fabric will also rely on the 
accessibility of data generated by multiple analytical instruments. Instrument compatibility with 
standardised communication protocols, such as Standardisation in Laboratory Automation 
(SiLA) (SiLA, 2018), and Robotic Operating Systems (ROS) (Open Source Robotics 
Foundation, 2024), will be more and more integral to realising this potential. Developing CMC 
ontologies and connected knowledge graphs to enable FAIR data will also address the 
industry-wide challenges of connecting data silos and data interoperability. This connectivity 
will benefit complex data sets spanning all stages of development for whole-process design 
and optimisation, sustainability metrics and intellectual property management. Data in QbDD 
should not be isolated by a geographical research site or operational team; instead, it must be 
transparent to all institution members and, potentially, regulators through federated systems 
(Ahluwalia et al., 2022). 

The data fabric will also connect predictive models with the self-driving DataFactories required 
to generate data to train, calibrate and evaluate model predictions. Model-driven automated 
experimental frameworks investigate gaps in existing knowledge using AI and model-driven 
decision-making (Gregoire et al., 2023) and can develop suites of data that provide value to 
future campaigns and contribute to the development of improved material and process 
understanding (Abouzied et al., 2023; Boobier et al., 2020; Carou-Senra et al., 2023; Chen, 
2024; Mswahili et al., 2021; Nielsen et al., 2020; Ottoboni et al., 2021; Patel and Shah, 2022; 
Pereira Diaz et al., 2023; Vassileiou et al., 2023). The ambition of such digital design efforts 
are that reliable, credible predictive models generated by the data fabric support the 
development of process-mirroring digital twins that can dynamically replicate processes and 
allow for analysis, control and optimisation of critical attributes in real time. 

2.4.4. Interconnectivity of QbDD Elements

Figure 5 demonstrates a potentially fully integrated QbDD platform in which four CPRI 
platforms are brought together by the QbDD data fabric: 

• The Skills platform of CPRI comprises multi-skilled Industry 5.0-ready researchers 
working in a diverse and inclusive interdisciplinary laboratory environment for 
innovation of medicines manufacturing. 

• The Measure platform consists of multiple types of CPSs (A,B, and C in Figure 5). This 
platform is a human-centric integrated CPRI that builds on individual CPS for individual 
unit operations (A in Figure 5) to integrate experiments across multiple process Stages 
(B in Figure 5) and ultimately E2E use (C in Figure 5) with data and metadata feeding 
into the research data fabric (D in Figure 5). 
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• The Model platform of the CPRI is a systems-level manufacturing knowledge model 
for CMC where predictive models of single rate processes (E in Figure 5) and drug 
substance/drug product models (F in Figure 5) can be integrated into an E2E model 
framework (G in Figure 5) as a system-level digital twin and utilised to inform 
knowledge management (H in Figure 5). 

• The CPRI Make platform is an integrated, scaled-down, material-sparing E2E 
customisable manufacturing research test bed to validate the quality, sustainability and 
resilience of adaptive processes and control strategies. In this platform, initial 
processes (I in Figure 5) are developed to create integrated small scale, flexible, 
modular continuous processing platforms (J in Figure 5), which in turn can be 
combined to generate E2E integrated flexible, modular continuous processing 
platforms (K in Figure 5) and multi-route E2E integrated flexible, modular continuous 
processing platforms (L in Figure 5). 

2.5 Digital-First Workflows

The integration of the Measure, Model and Make framework (Figure 5) requires guided 
decision-making and handovers through digital workflows. Workflows provide a structured 
approach to process and product development, and the transparency provided in key decision-
making reduces process risk and uncertainty (Agrawal et al., 2023). Reasoning and support 
for each decision are clear and accessible to different disciplines, geographies and phases of 
the development process, which will only benefit regulatory processes. Benefits have been 
reported in the development and application of workflow methodologies to improve the 
development of different stages of pharmaceutical development (Brown et al., 2018; Hatcher 
et al., 2020; Ottoboni et al., 2021; Pickles et al., 2024; Urwin et al., 2020). Additionally, in other 
groups (Agrawal et al., 2023; Hu et al., 2024; Lorenz et al., 2021; Sperry et al., 2021), with 
typical advantages being reduced development time and resource requirements.

The overarching QbDD workflow (Figure 3) drives the digital-first strategy, with an ultimate 
goal to exploit predictive models to rapidly identify the optimum materials, equipment and 
process conditions under which QTPPs can be achieved. This workflow with associated sub-
workflows connect key decision points for each selected process stage with predictive models 
and data derived from model-driven experimental design to interrogate reaction mechanisms, 
parameterise models, quantify uncertainty and optimise design solutions. The QbDD data 
fabric ensures workflows can callout to required data across development process operations. 
Via DataFactories, workflows can also trigger the generation of targeted, reproducible data to 
drive models applied at key development stages (Pickles et al., 2024, 2022b). Workflows also 
integrate the Skills platform (Figure 5) into the QbDD framework up/reskilling users through 
guided decision-making and accessibility and interpretability of the data and associated 
models. For example, dashboards can summarise experimental progress, data trends, model 
performance and other useful metrics for each QbDD stage. Templates must be also 
integrated to facilitate FAIR data capture for sample data, operation-specific data and 
metadata. 

2.6 Validation and Maturity of Models and Digital Technologies

Many digital platforms may follow the same basic installation, operation and performance 
qualifications (IQ, OQ and PQ) that standard equipment follows. Overall IQ, OQ and PQ can 
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ensure any models or other digital technologies, including automation, robotics and control 
systems, fit the design specifications. Additionally, these models and digital technologies may 
require monitoring and controlling using appropriate calibration and validation to achieve 
reliable and robust system performance (Creaner and Fitzgerald, 2024). Similarly, the 
cyberphysical infrastructure underpinning QbDD may require the use of verification, validation 
and uncertainty quantification (VVUQ) processes vital to the model life cycle. Computer 
Systems Validation (CSV) ensures models function as intended, consistently and accurately 
(The FDA Group, 2023). Model verification establishes if the model fits its mathematical 
description (The American Society of Mechanical Engineers, 2024). Model verification should 
occur throughout the product life cycle as defined by the FDA in their Appendix to Q8, Q9 and 
Q10, ensuring the model fulfils its acceptance criteria (U.S. Department of Health and Human 
Services et al., 2012). Scientific model validation establishes model accuracy relative to 
experimental set up (Ahmed et al., 2012; The American Society of Mechanical Engineers, 
2024), as demonstrated by a number of studies (Barrasso et al., 2015; Chen et al., 2023; 
Kodam et al., 2012; Moreno-Benito et al., 2022; Ranjan Yadav et al., 2022; Sadeghi et al., 
2022; Unnikrishnan et al., 2021). Uncertainty quantification captures the effect of variations in 
modelled and experimental process parameters on the output and key performance indicators 
(The American Society of Mechanical Engineers, 2024). Workflows and data flows can 
similarly be validated by assessing if workflow output matches a defined, measurable objective 
in a transparent, repeatable way. Workflow and data flow validation is ongoing with every 
iteration of the workflow and with ongoing assessment of data provenance and representation, 
for instance. For QbDD methods and approaches, credibility aims can be identified as part of 
the risk assessments. Then, a suitable verification and validation strategy can be designed 
and implemented to establish the overall credibility of the model, and experimental data then 
can be used to inform and alter the model as required (Ahmed et al., 2012; The American 
Society of Mechanical Engineers, 2024).

3. Outlook and Recommendations

3.1 Outlook 

QbDD facilitates the digital transformation of CMC processes for medicines product and 
process design and manufacturing by establishing a holistic cyber-physical framework. This 
framework can be realised using inclusive, digitally-encoded CMC workflows that guide all 
development stages and objectives. The implementation of systematic workflows has been 
shown to improve the overall efficacy of automation and predictive models (Coley et al., 2019; 
Içten et al., 2020; Ottoboni et al., 2022). Furthermore, automated workflows have the potential 
to overcome complexity barriers, and rapidly equip experimentally trained scientists with 
access to digital tools for efficient process development (Golub et al., 2023; Hauck, 2024; U.S. 
Food & Drug Administration, 2021; Whatfix, 2024). Development of these workflows will 
require collaborative efforts between academia, industrial partners and regulatory 
stakeholders to drive standardisation, acceptance and adoption across the range of materials, 
processes and unit operations relevant to all dosage form development.

Further investment in the development of data infrastructure is required to drive the digital 
transformation of CMC. This development will enable the ability to acquire, curate, store and 
analyse data and/or metadata generated on-demand from SDLs, simulations and other 
experimental sources. In turn, this develops process understanding and our ability to train and 
develop models that evaluate design space, manufacturability and sustainability. SDLs and 
DataFactories are already being developed by a range of initiatives for pharma and non-
pharma applications (Acceleration Consortium and University of Toronto, 2024; Berkeley Lab, 
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2024; Biron, 2023; Intrepid, 2024; Pickles et al., 2024, 2022b, 2022a; University of Liverpool, 
2024), demonstrating the ability to enhance efficiency of R&D. A CMC ontology and 
associated knowledge graph can both ensure data collected is FAIR, maximising opportunities 
to extract knowledge and value and will facilitate model development and process scale-up. 
Standardisation of data collection, data structuring and experimentation via SDLs may also 
provide significant benefits through regulatory process innovation, for example simplifying 
assessment and review of data associated with a new product (Berkeley Lab, 2024; Biron, 
2023). 

Although this perspective paper focuses on the potential for QbDD across CMC product and 
process design, the principles can be readily extended to drug discovery, synthesis, scale-up, 
manufacture and life cycle management. Drug discovery and synthesis prediction, AI, digital 
twins, CPSs and ML can inform the CCS, MCS+ and BPCS (An and Cockrell, 2022; Blanco-
González et al., 2023; Bordukova et al., 2024; Coley et al., 2019, 2018; Cumming et al., 2013; 
Dara et al., 2022; David et al., 2020; Elbadawi et al., 2021; Gregoire et al., 2023; Grom et al., 
2016; Jayatunga et al., 2022; Jiménez-Luna et al., 2021; Jing et al., 2018; Lavecchia, 2015; 
Lo et al., 2018; Medina-Franco, 2021; Patel et al., 2020; Patel and Shah, 2022; Subramanian, 
2020; Vamathevan et al., 2019; Wu et al., 2023; Yang et al., 2019; Zhang et al., 2017). For 
example, the resultant isolated compound and its associated impurities can inform 
crystallisation requirements, processability and overall product quality (An and Cockrell, 2022; 
Blanco-González et al., 2023; Bordukova et al., 2024; Coley et al., 2019, 2018; Cumming et 
al., 2013; Dara et al., 2022; David et al., 2020; Elbadawi et al., 2021; Gregoire et al., 2023; 
Grom et al., 2016; Jayatunga et al., 2022; Jiménez-Luna et al., 2021; Jing et al., 2018; 
Lavecchia, 2015; Lo et al., 2018; Medina-Franco, 2021; Patel et al., 2020; Patel and Shah, 
2022; Subramanian, 2020; Vamathevan et al., 2019; Wu et al., 2023; Yang et al., 2019; Zhang 
et al., 2017). Additionally, QbDD has potential in the packaging space. In line with MCS+, CCS 
and BPCS, challenges such as moisture absorption, hydrolysis, material interactions, friability, 
light sensitivity, counterfeit products and poor patient compliance inform packaging selection 
(Allain et al., 2016; Bahaghighat et al., 2019; Chen and Li, 2003; Cramer, 1998; Feenstra et 
al., 2014; Naveršnik and Bohanec, 2008; Remmelgas, 2017; Waterman and MacDonald, 
2010; Zhao et al., 2022). Thus, predictive models (Crews et al., 2018; Feenstra et al., 2012; 
Naveršnik and Bohanec, 2008; Remmelgas, 2017), real-time modelling (Vijayakumar et al., 
2024), digital twins (Schrimpf, 2022), ML (Deshpande, 2023; Jones, 2024), and AI (Brownett-
Gale, 2024; Tubettificio Perfektup, 2023), have been implemented previously. Furthermore, a 
similar digital-first approach has been previously suggested in RNA vaccine research, albeit 
not in an end-to-end capacity, demonstrating QbDD’s applicability to non-solid dosage forms 
(Nair et al., 2024). In the broader supply chain context, digital twin supply chains (DTSCs) are 
also emerging (Srai et al., 2024, 2020, 2019). DTSCs have been explored in relation to 
synchronisation of pharmaceutical production and logistics operations (Guo et al., 2024), 
simulation-based capacity planning (Santos et al., 2020), inventory optimisation (Marmolejo-
Saucedo, 2020), and data standardisation and integration along the value chain (Werner et 
al., 2021). As seen in these extensive examples, QbDD's workflow-guided integration of digital 
tools has potential impact beyond the scope of this publication and with continuing 
improvements in predictive tool availability will gain increasing momentum in the coming years.

QbDD will require ongoing investment of time and resources to develop and integrate the 
advanced manufacturing and digital technologies to establish mature cyber-physical 
infrastructure for modern CMC development. Whilst digital technologies such as AI are having 
impact in drug discovery (Adabala Viswa et al., 2024; Chakravarty et al., 2021), organisations 
also require a clear business case showing the expected return on investment and improved 
outcomes in CMC development and manufacturing processes. By reducing materials, 
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instrument time, staff time and potential exposure to more potent materials, the use of AI, ML-
driven, physical and hybrid predictive models and DTs could improve overall efficiency, safety 
and sustainability of CMC development efforts. There is also a need to build trust and 
confidence in models and digital technologies and ensure data integrity and the cybersecurity 
of data transfer and data systems. QbDD also increases the number of product and process 
prototypes investigated (mostly in the virtual space), which, in turn, increases the likelihood of 
identifying and developing products that maximise patient benefits. International regulators 
including the Medicines & Healthcare Products Regulatory Agency, the European Medicines 
Authority and the U.S. Food and Drug Administration are adopting and encouraging digital 
transformation in pharmaceutical manufacturing (European Medical Agency, 2020; European 
Medicines Agency, 2024, 2017, 2016; European Medicines Agency and Heads of Medicines 
Agencies, 2020; Pauli and Williams, 2018; Riaz Ahmed et al., 2022; U.S. Food & Drug 
Administration, 2021, 2019; Yu et al., 2019) (see ESI 1 for further details). This guidance 
provides increasing momentum behind the adoption of novel, digital technologies, 
infrastructure and innovative ways of deploying them. 

In conclusion, QbDD facilitates the efficient and robust development of processes that deliver 
drug products which meet quality, manufacturability, process sustainability, regulatory and 
business targets with enhanced understanding of these processes. The enabling technologies 
for QbDD are cost-effective, available and proven and combine FAIR data principles, a QbDD 
data fabric, predictive models and material-sparing, highly automated experimentation. 
Through these, QbDD provides the science-driven rationale, data transparency and 
traceability, more robust design space, real-time process improvements and a formalised 
decision process to enable organisations to enhance R&D productivity and provide regulatory 
confidence and assurance. Ultimately, this allows for the realisation of Industry 5.0 principles 
in pharmaceutical process and product development that can help to sustainably translate 
new medical science into new medicines to improve the lives of patients. 
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3.2 Recommendations for Realising QbDD

Table 3: Recommendations for Realising QbDD. The example timeline assumes ongoing application of QbD within an organisation and will differ from one organisation to 
another. 

Example Timeline for Related Activities

Recommendation Near term 

(1-2 years)

Medium term 

(3-5 years)

Long term 

(5+ years)

Associated Benefits

Introduction of 
advanced 
computational 
resources 

• Identify and develop 
relevant ML, 
mechanistic and 
hybrid models 

• Verify and validate 
models

• Assess model 
credibility and 
regulatory readiness 
level (guidelines to be 
determined through 
regulatory 
engagement, see 
near-term goals)

• Continue model 
development and 
validation

• Implementation of 
models according to 
credibility assessment 
and technology 
readiness level 

• Continue model 
development, 
validation and 
assessment

• Continue model 
implementation 
according to credibility 
and lifecycle 
requirements

• Promotes and enables digital first approaches such as 
workflow guided DTs, ML, predictive models and hybrid 
approaches

• Enhances efficiency and sustainability of CMC by early design 
space refinement via virtual assessment delivering approved 
medicines to patients faster

• Reduces risk of unforeseen late-stage design space re-
assessment and expansion

• Reduced material wastage, energy and workforce time
• Mitigates environmental impact (promoting sustainability) and 

reduces risk for researchers with virtual assessment of less-
desirable operating conditions

• Standardised approaches to evaluate model suitability and 
credibility for different contexts of use.

Introduction of new 
data technologies 
including:

• ontologies

• FAIR data 
approaches

• Map data 
interdependencies and 
meta-data

• Identify data 
integration approach 
(internal development 
vs. external software 
solutions)

• Implement and test 
ontology solutions

• Test and measure 
data FAIRness 

• Expand ontology as 
needed

• Continue to 
periodically test data 
FAIRness

• Provides additional transparency, data integrity and 
traceability in process and product development

• Facilitates seamless data connectivity
• Provide standardised framework to assess FAIR data 

approaches and benefits
• Enables regulators to more easily assess the validity of the 

processes and products developed
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Develop and use 
holistic, consistent 
and standardised 
digital workflows to 
guide QbDD 

• Develop sub 
workflows for the high-
level workflow 
presented in this work 
with institution-specific 
pathways 

• Revise workflows to 
integrate new, credible 
digital tools with the 
goal of continued 
reduction of physical 
experimentation

• Continue workflow 
revision to minimise 
physical 
experimentation by 
further incorporation of 
new or better digital 
tools

• Establishes a comprehensive platform for QbDD.
• Combines a patient-focused QTPP with route selection, 

modelled CPPs, minimal small-scale experimentation and 
rapid digitally enabled technology transfer and scale-up.

• Drives and integrates digital and experimental activities.
• Captures all key CMC objectives, constraints, decision points 

and data requirements to drive and coordinate digital and 
experimental activities

• Rapidly equips experimentally trained scientists with digital 
tools for efficient process development

• Accelerates the adoption of QbDD principles across 
pharmaceutical development and manufacturing 
organisations

• Increases the R&D productivity and efficiency in terms of both 
cost and sustainability

• Standardises interfaces between workflows, data, predictive 
data, predictive models and simulations

• Delivers a more robust design space with known 
uncertainties and sensitivities that can be used to evaluate 
risks and define the control strategy

Introduction of new 
technologies such as 
self-driving labs 
(SDLs) or 
DataFactories (DFs) 
and integrate these 
platforms using 
workflows

• Identify areas where 
SDLs and DFs are 
needed (i.e. areas of 
interest for ML or 
hybrid model 
development)

• Identify, procure and 
integrate instruments 
and software for FAIR 
data generation

• Develop plan for data 
integration into wider 
ontology

• Integrate data 
collection with wider 
ontology

• Continue instrument 
integration and 
platform development

• Collect data and 
ensure continued data 
FAIRness

• Assess new available 
technologies for 
incorporation into 
existing DFs/SDLs or 
development of new 
DFs/SNLs

• Assess continued 
viability of existing 
DFs/SNLs - if they 
have they achieved 
their data collection 
goals, can they be 
repurposed or can 
individual components 
be repurposed

• Enables implementation of digital-first approaches
• Standardises approaches to FAIR data generation and 

reporting. 
• Allows for efficient, repeatable, data-rich and model-driven 

experimental data generation
• Allows for targeted generation of data to train, parameterise 

and calibrate models and validate predictions
• Significantly accelerated experimentation rate, lower amounts 

of material and automation reduce exposure risk for staff

Engage regulatory 
stakeholders (e.g. 
the UK-based digital 
CMC Centre of 
Excellence in 

• Develop national and 
international 
guidelines to assess 
model credibility and 

• Establish and agree 
upon international 
guidelines with 
multiple international 
regulatory bodies

• Publish harmonised 
international 
guidelines

• Periodically assess 
guidelines with the 
development of new 

• Encourages adoption across the sector
• Provides a common language and format for regulators, 

industry and academia
• Drives standardisation
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Regulatory Science 
(CERSI))   

regulatory readiness 
level

• Provide regulatory-
relevant training for 
stakeholders in model 
credibility and 
regulatory readiness 
level assessment

• Provide training for 
model developers and 
industry researchers 
on testing, 
implementation and 
integration of digital 
tools in industry 
according to agreed 
guidelines

and existing 
technologies

• Continue to provide 
relevant trainings 

Training and 
upskilling existing 
and future workforce 
(this work lies within 
the remit of current 
Centres for Doctoral 
Training (CDTs) 
amongst other 
training programs)

• Identify, apply for and 
support opportunities 
for multi-disciplinary 
training with QbDD 
focus for current and 
future workforce (e.g. 
CDTs and training 
development 
programs and 
platforms). 

• Develop QbDD-
relevant trainings such 
as: integration and use 
of FAIR data and data 
structures; model and 
SDL development 
and/or implementation; 
model credibility and 
regulatory readiness

• Implement, facilitate, 
and encourage QbDD-
relevant 
trainings/training 
programs for current 
and future workforce

• Develop training for 
new technologies as 
required

• Continue QbDD-
relevant training for 
current and future 
workforce

• Continue to develop 
training for new 
technologies as 
required

• Builds on existing knowledge and enables continued 
improvement of existing processes

• Provides additional tech-savvy workforce

Assure all areas of 
development, from 
digital twins and 
predictive models to 
CPS 

Ensure all models and 
platforms:
• Have associated risk 

assessments with 
verification and 
validation control 
strategies

• Follow IQ, OQ and PQ 
guidelines

• Are verified throughout 
the product life cycle in 

• Continue to assure all 
areas of QbDD 
development with 
actions listed under 
near-term goals

• Continue to assure all 
areas of QbDD 
development with 
actions listed under 
near-term goals

• Fulfils the requirements of VVUQ
• Establishes the overall credibility of the models, CPS and more 

generally of QbDD
• Enhances overall efficiency and effectiveness of medicines 

manufacturing whilst assuring product quality
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accordance with the 
ICH requirements

• Are validated relative 
to the experimental set 
up

• Are monitored for 
variations in modelled 
and experimental 
outcomes

• Are fully integrated 
with processes and 
data capture

Combine a patient-
focussed QTPP, 
route selection, 
modelled CPPs, 
small-scale 
experimentation and 
digitally enabled 
technology transfer

• Collaboratively 
develop BPCS, CCS 
and MCS+ 
classification systems

• Integrate classification 
systems early in 
workflows 

• Use multi-objective 
optimisation for 
sustainability and 
process needs whilst 
assuring quality and 
safety

• Continue and finalise 
development of 
classification systems

• Continue development 
of mechanistic, ML 
and hybrid models to 
inform classification 
systems

• Reduce physical 
experimentation as 
classification system 
maturity improves

• Continue development 
of mechanistic, ML 
and hybrid models to 
inform classification 
systems

• Continue to reduce 
physical 
experimentation as 
models informing 
classification systems 
improve

•Allows delivery of a more robust design space with known 
uncertainties and sensitivities

•Allows effective evaluation of risks and establishes a robust 
control strategy

•Enables more sustainable and cheaper medicines to get to 
the patient faster

Incorporate PAT 
where required to 
assure quality 
requirements and 
inform model 
development

• Prioritise PAT first 
according to quality 
assurance and 
secondly to inform 
model development

• Assess which PAT 
data can be used to 
inform model 
development

• Develop strategy to 
incorporate PAT data 
into QbDD ontology 
and data structures

• Continue to prioritise 
PAT first according to 
quality assurance and 
secondly to inform 
model development

• Incorporate PAT data 
into QbDD ontology 
and data structures

• Continue to prioritise 
PAT first according to 
quality assurance and 
secondly to inform 
model development

•Maintains quality assurance
•Continued supply of data to the QbDD data fabric to inform 
models and improve overall processes in real time
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4. Glossary 

In this section, we provide a list of definitions and abbreviations to remove ambiguity for the 
terms used throughout this paper. 

Active pharmaceutical ingredient (API). Any component that provides pharmacological 
activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of 
disease, or to affect the structure or any function of the body of man or animals.

Artificial intelligence (AI). A system which carries out computer and machine-driven problem 
solving, in a way that mimics human intelligence. The FDA defines AI as a machine-based 
system capable of providing predictions, suggestions or decisions impacting actual or 
simulated environments and uses information from human and machine sources to analyse 
these environments to generate appropriate models to exert an appropriate response (U.S. 
Food & Drugs Administration, 2024). 

Attributable, legible, contemporaneous, original accurate, complete, consistent, 
enduring and available (ALCOA+) data. Defined by the FDA as the guiding principles for 
data integrity as laid out under CGMP, where all data must be traceable, decipherable and 
gathered and recorded within the appropriate time scale (concurrently if possible). 
Additionally, the first version must be kept, and all data must be correct, recorded in its entirety, 
and collected and recorded in the same manner throughout. Data must also be held in a 
manner that is lasting and accessible (Samson, 2021; U.S. Department of Health and Human 
Services et al., 2016). 

Biopharmaceutical classification system (BCS). A system classifying a drug substance 
based on its minimum aqueous solubility in the pH range of 1–7.5, dose, and human fraction 
absorbed or intestinal membrane permeability. This system categorises drugs into four 
classes according to their permeability and solubility (Amidon et al., 1995). It has been 
suggested that the regulatory criterion for a highly soluble drug, whose highest dose 
(approved) strength is soluble in 250 mL aqueous media over the pH range of 1.0–6.8, is 
conservative for BCS Class I drugs and that further biowaivers for acidic drugs, BCS Class 
IIa, should be considered (Amidon et al., 1995).

Biorelevant performance classification system (BPCS). A system developed to (i) identify 
effective range of release achievable in population subsets and (ii) develop new release 
systems using models that self-learn from clinical outcomes and/or endpoints.

Chemistry, manufacture and control (CMC). Crucial activities when developing new 
pharmaceutical products. CMC involves defining manufacturing practices and product 
specifications that must be followed and met to ensure product safety and consistency 
between batches. CMC begins after a lead compound is identified through drug discovery and 
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continues through all remaining stages of the drug development life cycle. In addition to the 
pharmaceutical product, CMC also applies to the facility where manufacturing occurs. 

Critical material attribute a.k.a. critical quality attributes of materials (CMA). A 
measurable material property whose variability has an impact on a critical quality attribute and 
therefore it should be monitored and controlled to ensure desired drug product quality.

Critical process parameter (CPP). A term used in pharmaceutical production for process 
variables which have an impact on a critical quality attribute (CQA) and, therefore, should be 
controlled to ensure the drug product obtains the desired quality (International Council for 
Harmonisation, 2009).

Critical quality attribute (CQA). A measurable physical, chemical, biological, or 
microbiological property or characteristic that should be within an appropriate limit, range, or 
distribution to ensure the desired product quality. It is primarily based upon the severity of 
harm and does not change as a result of risk management (International Council for 
Harmonisation, 2009).

Crystallisation classification system (CCS). A predictive classification system spanning the 
production of primary particles to formulated product and addressing manufacturability, 
stability, and performance parameters, which is being used to develop integrated platforms to 
support efficient and science-driven development from molecule to particle. 

Cyber-physical research infrastructure (CPRI). UK Research and Innovation (UKRI) 
defines this as “the integration of digital and physical systems to create new capabilities and 
opportunities for research and innovation” (Simon Hart, 2023).

Cyber-physical system (CPS). The interlink of computational technologies with physical 
processes to analyse, monitor and/or control their functionality in a consistent, robust, safe, 
efficient and concurrent manner (Alguliyev et al., 2018; Baheti and Gill, 2011; Lee, 2006; 
Marwedel, 2021; Sanislav and Miclea, 2012). 

Data fabric. A management system that enables full integration of a number of different data 
sources, pipelines and storage (IBM, 2024). This allows active metadata to be generated and 
enables collection of FAIR data. Data fabrics enable these data to also be accessible to 
humans, applications and other systems further down the supply chain (Blohm et al., 2024; 
Hechler et al., 2023). 
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Data lakes (DLs). Larger, less organised archives than data warehouses, which do not have 
a fixed structure (Dibley, 2022; Hlupić et al., 2022) and are used for storage and governance 
of a large range of data including structured and unstructured data (Hlupić et al., 2022; 
Nambiar and Mundra, 2022b). DLs are designed for decision-making and analysis, as they 
enable storage and processing in near real-time (Hlupić et al., 2022)

Data mesh (DM). A management system where data is collected by domain owners who 
generate data products. Multiple systems can then be combined and utilised by a range of 
users as required in a "shopping for data" and "self-service" manner, making reusable data 
more accessible (Blohm et al., 2024; Hechler et al., 2023). 

Data warehouse (DW). A highly ordered archive that houses, organises and structures 
historical data. It enables data from a range of sources and geographical locations to be easily 
accessed either on premises or as a Cloud-based platform (Garani et al., 2019; Garcia et al., 
2008; Nambiar and Mundra, 2022; Thantilage et al., 2023). 

DataFactories. An autonomous experimental platform capable of collecting targeted 
experimental data for APIs, excipients, and products under a wide range of conditions 
exploiting automated dosing or sample handling, mobile robotics, small-scale experiments 
with integrated sensing/analytics/imaging for information extraction and global optimisation for 
self-learning experimental planning to meet objectives.

Design space. The combination of materials and process conditions which provide assurance 
of quality for a pharmaceutical product. This can be defined by determining the bounds of the 
critical process parameters and critical material attributes that guarantee the attainment of the 
targeted critical quality attributes (International Council for Harmonisation, 2009).

Developability classification system (DCS). A methodology of categorising a drug 
substance, building on the BCS, to account for the effects of an approximation of human fasted 
state intestinal solubility, a given solubility limited absorbable dose and a given dissolution rate 
in relation to particle size. This allows identification of development risks and enables CQAs 
to be identified for APIs exhibiting dissolution rate limited absorption (Butler and Dressman, 
2010). 

Digital-first. During development, in silico modelling is used to inform and guide process 
design before any experimental work is undertaken. The sole purpose of any initial 
experimental work is to achieve model parameterisation.

Digital twin (DT). Integrated digital framework to collate, analyse, visualise, and apply data, 
models, and knowledge of the rapid design, control, operation, and testing of continuous and 
modular processes for active pharmaceutical ingredient (API) crystallisation and drug product 
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(DP) production. The DT will combine the overarching digital definition of the materials, 
products, equipment, and processes. The FDA defines digital twins as a group of informational 
structures that simulate the configuration, framework and performance of a physical 
instrument or experiment and have a synergistic relationship with the physical twin by utilising 
live data from the physical twin, whilst informing physical next steps (U.S. Food & Drugs 
Administration, 2024).

Digital twin supply chain (DTSC). The above applied to the field of supply chain to allow 
simulation of the broader context of pharmaceutical processing. 

Digitalisation. A process that can include both the increased use of robotics, automated 
solutions, and computerisation, thereby allowing reduced costs, improved efficiency and 
productivity, and increased flexibility.

Drug product (DP). A finished dosage form, e.g., tablet, capsule, or solution, which contains 
a drug substance, generally, but not necessarily, in association with one or more other 
ingredients.

Drug product performance. In vivo may be defined as the release of the drug substance 
from the drug product leading to bioavailability of the drug substance. The assessment of drug 
product performance is important since bioavailability is related both to the pharmacodynamic 
response and to adverse events.

Drug substance (DS). An active ingredient that is intended to furnish pharmacological activity 
or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease or 
to affect the structure or any function of the human body but does not include intermediates 
used in the synthesis of such ingredient.

Efficiency (of API production). Optimal operating parameters to meet sustainability and 
volumetric throughput per unit time targets.

EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and 
Advanced Crystallisation (CMAC). A national centre for medicines manufacturing research, 
skills, technology and translation (CMAC, 2022).

Excipient. A constituent of a medicine other than the active substance, added in the 
formulation for a specific purpose (such as binding, disintegration or lubrication). While most 
excipients are considered inactive, some can have a known action or effect in certain 
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circumstances, which may enhance or control API performance (Kar et al., 2018; The 
International Pharmaceutical Excipients Council (IPEC Federation), 2023).

Extract-transform-load (ETL) or Extract-load-transform (ELT). ETL is the processing of 
data on a distinct server before sending to a data warehouse, whereas ELT involves 
processing of data within the data warehouse and thus raw, unstructured data can be sent 
directly to a data warehouse in this way, removing the need for a step-wise approach (Bartley, 
2024).

Findable, accessible, interoperable, reusable (FAIR). Principles for good data practice, first 
established in 2016 (Wilkinson et al., 2016). 

Generative pre-trained transformer (GPT) model. A large language model trained on 
unlabelled text which generates original human-like responses using an artificial neural 
network (Eloundou et al., 2023). 

Installation qualification (IQ). In the context of QbDD, this can be considered as 
documentation of the model having met the requirements defined by the model designer for 
configuration and initial implementation, possibly defined by an installation checklist, system 
specifications and/or datasheets (Egnyte, 2024; The FDA Group LLC, 2024). This can include 
suitable use, associated software requirements, environmental requirements, and calibration 
and verification requirements (Precision Solutions Inc., 2024). 

Machine learning (ML). Computer-based development of algorithms for problem solving 
where the computer can learn and adapt without human interaction that may be used to train 
AI (U.S. Food & Drugs Administration, 2024). 

Manufacturability (of drug product). The properties of a drug substance to be manufactured 
by an intended route for a desired formulation.

Manufacturing classification system (MCS). A means of categorising drug products based 
on processing route. It summarises conclusions from a dedicated Academy of Pharmaceutical 
Sciences (APS) conference and subsequent discussion within APS focus groups and the MCS 
working party (Leane et al., 2018, 2015). The MCS is intended as a tool for pharmaceutical 
scientists to rank the feasibility of different processing routes for the manufacture of oral solid 
dosage forms, based on selected properties of the API and the needs of the formulation 
(Leane et al., 2024).
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Manufacturing classification system+ (MCS+). A system developed by the International 
Society for Pharmaceutical Engineering (ISPE) (Potter, 2022), that provides a framework for 
classifying manufacturing processes based on their complexity and potential impact on 
product quality. MCS+ builds upon the original Manufacturing Classification System (MCS) 
developed by ISPE, but includes additional factors such as process variability, criticality of 
process steps, and complexity of equipment and automation (Potter, 2022).

Model Validation. In modelling (and more specifically within this publication), this is evaluation 
of the model outputs against an independent data set that has known outputs and has not 
been used in the training of the model.

Objective. A quantitative or qualitative value or goal for which the achievement thereof defines 
the success of an optimisation, be the optimisation machine learning or otherwise. 

Operation qualification (OQ). In the context of QbDD, this consists of establishing and 
assessing the various aspects of the model which may affect the overall quality of the process 
controlled (The FDA Group LLC, 2024). It ensures reproducibility and reliability within 
appropriate operating conditions and that strategies for maintenance, deviation checks, 
performance checks and calibrations are put in place (Powder Systems, 2024; Precision 
Solutions Inc., 2024). 

Performance qualification (PQ). A verification step for equipment or model use in which a 
qualification and verification group monitors, checks and reports if the quality requirements 
are achieved, ensuring reliability over time (Powder Systems, 2024; The FDA Group LLC, 
2024). Methodologies and validations to this end could include the following: data summaries, 
suitable calibrations and validations, variability limits and experimental verification strategies 
(Precision Solutions Inc., 2024).

Process analytical technology (PAT). Mechanism to design, analyse, and control 
pharmaceutical manufacturing processes through measurement of material and quality 
attributes (U.S. Department of Health and Human Services et al., 2004). 

Process Validation. The FDA defines this as “the collection and evaluation of data which 
establishes scientific evidence that a process is capable of consistently delivering quality 
product throughout the product lifecycle” (Bizjak and U.S. Food & Drug Administration, 2020; 
Tartal and U.S. Food & Drug Administration, 2015; U.S. Department of Health and Human 
Services et al., 2011). It generally consist of 3 stages:

1. Initial R&D experimentation and risk assessment to give an indication of the nature of 
the manufacturing process, allowing development of a control strategy.

2. IQ, OQ and PQ to ascertain the suitability of the technology utilised for its proposed 
purpose. Planning and carrying out of experimentation to prove this.
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3. Continued observation of the process and technology utilised to allow optimisation 
based on data collected and human experience (Bizjak and U.S. Food & Drug 
Administration, 2020; U.S. Department of Health and Human Services et al., 2011). 

Process Verification. The FDA defines this as “confirmation by examination and provision of 
objective evidence that specified requirements have been fulfilled” (Tartal and U.S. Food & 
Drug Administration, 2015). This is vital to ensure a controlled state is maintained throughout 
a process (U.S. Department of Health and Human Services et al., 2011). 

Quality. The suitability of either a drug substance or a drug product for its intended use. 
Includes attributes such as identity, strength, and purity.

Quality by control (QbC). Also referred to as quality control (QC). Control strategy where 
active process control ensures product quality. This builds on QbT by implementation of PAT 
and seeks to rectify issues with a lack of integration between unit operations. It can be 
considered as the proposal and implementation of a manufacturing system using an active 
process control system developed in agreement with process automation principles, dictated 
by a strong degree of quantitative and predictive product and process understanding (Su et 
al., 2019). 

Quality by design (QbD). An efficient development procedure that commences with 
predetermined objectives and focuses on product and process understanding and control with 
a strong basis in rigorous science and quality risk management (International Council for 
Harmonisation, 2009; Yu et al., 2014) 

Quality by digital design (QbDD). Application of extensive modelling and data driven 
decision support tools to quickly, robustly and sustainably drive an efficient development 
procedure that commences with predetermined objectives and focuses on product and 
process understanding and control with a strong basis in rigorous science and quality risk 
management (International Council for Harmonisation, 2009; Yu et al., 2014) 

Quality by testing (QbT). Also referred to as quality assurance (QA). A traditional control 
strategy based on batch processing, which assesses the quality of a manufactured medicine 
by testing the final product to determine if targets have been met (Rege et al., 2024; Yu et al., 
2014).

Quality management system. A structured framework that ensures that a medicine 
manufacturer consistently meets patient requirements and regulatory standards. It includes 
policies, procedures, processes and resources that guide quality-related activities.
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Quality target product profile (QTPP). A prospective summary of the quality characteristics 
of a drug product that must be achieved to ensure the desired quality, taking into account 
safety and efficacy of the drug product.

Sensitivity analysis. A technique to establish how a range of values of an independent 
variable influence a dependent variable within a particular hypothesis, or effectively how 
causes of uncertainty within a model impact its overarching uncertainty. 

Supply chain resilience. The ability to anticipate and/or act on disruptions, to achieve a rapid 
and economical recovery, and thus regain the normal running of operations (Tukamuhabwa 
et al., 2015).

Sustainability. Process targets to drive reduction in materials, energy, resources, carbon 
footprint and environmental impact etc. Often set at organisational level.

Uncertainty. In modelling, this is considered a quantity that enables modellers to assess the 
accuracy and reliability of models and to make informed decisions based on the results.

Workflow. Systematic, science-based process design sequence of tasks. Experimental, 
computational, and analytical tasks should be clearly defined.
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Technology Modernisation 
Action Plan

Set out FDA’s plans for future 
technical infrastructure and their 
continuing data management 
procedures, with particular regards 
to collaboration between 
stakeholders

(U.S. Food & 
Drug 
Administration, 
2019)

Data Modernisation Action 
Plan

Identified the need for high-value 
driver projects with robust and 
harmonious data collection and 
management throughout the 
regulatory body, while upskilling 
and developing a talented 
workforce to this end

(U.S. Food & 
Drug 
Administration, 
2021)

Knowledge-aided 
Assessment &

Structured Application 
(KASA)

• Enables collection and 
management of knowledge 
throughout product 
development. 

• Generates rules and algorithms 
for risk assessment, control and 
communication.

• Enables IT assisted analysis of 
applications to assess 
regulatory standards and quality 
risks. 

• Generates a strategic 
assessment

(Yu et al., 2019)

Report on the use of 
modelling and simulation, 
2022

• The use of modelling and 
simulation a vital regulatory 
science resource

• The formation of a Modeling 
and Simulation Working Group

(Riaz Ahmed et 
al., 2022)

Center for Drug Evaluation 
and Research: Artificial 
Intelligence

in Drug Manufacturing

Sets out:

• The use of AI in pharmaceutical 
manufacturing

• Gathering information on public 
opinion on use of AI

(U.S. Food & 
Drug 
Administration, 
2023a)

Using Artificial Intelligence 
& Machine Learning in the 
Development of Drug and 
Biological Products

Sets out:

• Present and possible future 
uses of AI and ML 

• Reflections on AI and ML with 
regards to thoughts on risks and 
concerns about implementation

• Stakeholder engagement

(U.S. Food & 
Drug 
Administration, 
2024a)

U.S. Food & Drug 
Administration 
(FDA)

Digital Health Center of 
Excellence

Centre aiming to:

• Encourage collaboration
• Encourage knowledge 

exchange

(U.S. Food & 
Drug 
Administration, 
2024b)
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• Transform regulatory 
procedures

Emerging Technology 
Program (ETP)

Set out Emerging Technology 
Team (ETT) aims to work with 
industry to help guide partners in 
their new technologically advanced 
regulatory submissions.

(U.S. Food & 
Drug 
Administration, 
2023b)

FDA/PQRI Workshop on 
the Regulatory Framework 
for the Utilization of Artificial 
Intelligence in 
Pharmaceutical 
Manufacturing

Workshop aiming to encourage 
collaboration between AI 
stakeholders on R&D, introduction 
and regulatory submission in 
various areas such as process 
development and control, quality 
management, lifecycle 
management, and GMP.

(U.S. Food & 
Drug 
Administration, 
2023c)

Real-World Evidence Set out the use of live data to 
provide information on lifecycle DP 
safety

(U.S. Food & 
Drug 
Administration, 
2024c)

Digital Health Technologies 
(DHTs) for Drug 
Development

Sets out DHT advantages 
including:

• Real time monitoring and 
identification of deviations

• Collect and analyse 
deviations that would not 
be picked up during 
routine visits

• Promotion of remote data 
collection 

(U.S. Food & 
Drug 
Administration, 
2024d)

Artificial Intelligence and 
Machine Learning (AI/ML) 
for Drug Development

Sets out FDA stance on AI and ML 
use

(U.S. Food & 
Drug 
Administration, 
2024e)

Information Management 
Strategy, 2015

To standardise processes and 
inform regulation in the rest of the 
world

(Pauli and 
Williams, 2018)

European 
Medicines Agency 
(EMA)

EMA Network Strategy to 
2025

• Identification of six core 
sections including data 
analytics, digital tools and digital 
transformation

• Assessment and analysis of 
healthcare and clinical data, 
generating EU network potential 
to analyse large data sets, 
encouraging development of 
novel regulatory practices, 
promoting cyber physical 
technologies and encouraging 

(European 
Medicines 
Agency and 
Heads of 
Medicines 
Agencies, 2020)
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secure data management 
practices

Electronic format for 
product information by 
adoption of the International 
Standardisation 
Organisation Identification 
and Description of 
Medicinal and 
Pharmaceutical Products 
(ISO IDMP) standards

Consistent exchange of medicinal 
product information in a reliable 
and consistent fashion, by 
generating a common product 
’language’ for stakeholders

(European 
Medicines 
Agency, 2016)

Joint Biologics Working 
Party / Quality Working 
Party workshop with 
stakeholders in relation to 
prior knowledge and its use 
in regulatory applications.

The definition of the use of prior 
knowledge within innovative 
methods

(European 
Medicines 
Agency, 2017)

New online platform 
for scientific advice

New regulatory submission portal 
(IRIS Platform) 

(European 
Medical Agency, 
2020)

Insilico UK, 
Medicines & 
Healthcare 
Products 
Regulatory Agency, 
Royal Academy of 
Engineering and 
PHG Foundation

Cross-Regulator

Workshop: Journeys, 
experiences and best 
practices on computer 
modelled and simulated

regulatory evidence— 
Workshop Report.

Establishes potential for modelling 
and simulation in improving patient 
safety and cost-effectiveness within 
the life sciences sector; Discussion 
of issues limiting adoption and, 
need for standardisation and quality 
control

(Redrup Hill et al., 
2023)
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Figure 1: Illustration of QbDD scope adapted from (Su et al., 2019) showing the relationship 
between manufacturing technology development and strategies to define and control quality.

Figure 2: The transition from QbD to QbDD with reference to its effect on the knowledge space 
and the use of an existing data fabric (see Section 2.4.3) to inform experimentation and CPSs 
at each stage of development (as part of self-driving DataFactories (see Sections 2.4.1 and 
2.4.3)) to enable a range of benefits. PP and MA refer to process parameters and material 
attributes, respectively.  

Figure 3: A high level QbDD workflow is shown indicating the key stages where predictive 
tools will be required. For simplicity, this workflow does not show the feedback loops inherent 
in process development, but examples of feedback loops are discussed in this section. 

Figure 4: A high-level diagram of elements interconnected and enabling the QbDD workflow.  

Figure 5: A QbDD data fabric structures data and data handovers between the four CPRI 
platforms in this diagram. Labels Skills, Measure, Model and Make, and letters (A)-(L) are 
described in Section 2.4.4.
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Highlights

- Quality by Digital Design (QbDD) enables a holistic end-to-end approach that ensures 
product quality and improves the sustainability of process and product development.

- QbDD can accelerate medicines development via the digital identification and 
exploration of more robust design spaces exploiting model-driven experimental 
approaches.

- The QbDD strategy uses workflows, ontologies, FAIR (findable, accessible, 
interoperable, and reusable) data and an underlying data fabric to reduce siloed data 
and enable digital predictive tools to span gaps in process and product design

- Collaborative academic and industry development efforts are needed to improve 
product, process, and performance predictive tools to fully exploit the benefits of 
QbDD.


