Statistical Papers (2024) 65:5293-5331
https://doi.org/10.1007/s00362-024-01593-7

REGULAR ARTICLE

®

Check for
updates

Reduced bias estimation of the log odds ratio

Asma Saleh’

Received: 21 November 2022 / Revised: 2 July 2024 / Published online: 26 August 2024
© Crown 2024

Abstract

Analysis of binary matched pairs data is problematic due to infinite maximum like-
lihood estimates of the log odds ratio and potentially biased estimates, especially for
small samples. We propose a penalised version of the log-likelihood function based
on adjusted responses which always results in a finite estimator of the log odds ratio.
The probability limit of the adjusted log-likelihood estimator is derived and it is shown
that in certain settings the maximum likelihood, conditional and modified profile log-
likelihood estimators drop out as special cases of the former estimator. We implement
indirect inference to the adjusted log-likelihood estimator. It is shown, through a com-
plete enumeration study, that the indirect inference estimator is competitive in terms
of bias and variance in comparison to the maximum likelihood, conditional, modified
profile log-likelihood and Firth’s penalised log-likelihood estimators.

Keywords Bias reduction - Binary matched pairs - Indirect inference - Maximum
likelihood - Modified profile likelihood - Adjusted responses
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1 Introduction

Consider a series of ¢ independent pairs of independent binomial random variables
(Y1, Yin), with Y;1 ~ Bi(l, ;1) and Y;» ~ Bi(m;, m;p) as in Section 4 of Lunardon
(2018). Let the success probabilities satisfy ;1 = exp(¥ +A;) /{1 +exp(¥ +1;)} and
miz = exp(A;)/{1+exp(x;)}, where ¥ = log{m;1/(1—mi2)} —log{miz/(1 —mi2)}, the
log odds ratio, is the parameter of interest and A; = log{m;2/(1 — m;2)} is the nuisance
parameter, i = 1, ..., q. This is a stratified setting as in Sartori (2003) where the
sample size is n = Z?:l m; and where g is the number of strata and m; is the
ith stratum sample size. We will refer to this exponential family model in canonical
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form as the binomial matched pairs model, and to the model with m; = m = 1
as the binary matched pairs model. This model often arises in case—control studies
in medical contexts, where y;; and y;» may represent for example the numbers of
exposed or experimental persons among one case and m; controls in the ith stratum
and where interest lies in studying the influence of some risk factor or the effect of
some treatment. For example, suppose that we have data from a clinical trial evaluating
the effectivness of a new Covid vaccine in preventing Covid disease. The data was
collected according to a matched case—control design with one case and m; controls
per stratum, where i = 1, ..., 10, is the number of strata and m;, which is the number
of control patients, takes on various values from 3 to 7. On each of 10 days patients
testing negative for Covid at a specified time in a hospital were served as subjects.
On each day one patient chosen at random formed the experimental group and the
remainder were controls. The binary response was whether the patient tested positive
or not at the end of a specified period, where testing negative is taken as a “success"
and the observed numbers y;1 and y;» are therefore the numbers of patients in the two
groups testing negative for Covid. The object of the analysis is to assess the effect of
the drug on the probabilities of success ;1 and ;7 in the case and control groups,
respectively. The parameter of interest ¥ is the difference in the log odds ratio of the
case and control groups (for more examples, see Section 1.2 of Cox and Snell 1989).

Itis well known, since Neyman and Scott (1948), that in stratified modelling settings
the maximum likelihood estimator, derived from the profile log-likelihood, is not in
general, a consistent or unbiased estimator of the parameter of interest as the dimension
of the nuisance parameter increases while the stratum sample size is kept fixed; this
is known as the incidental parameter problem. It is possible to solve this problem,
in some cases when the model has a particular structure, like in exponential families
in canonical form, using conditional or marginal log-likelihoods (see Sections 4.4
and 4.5 of Pace and Salvan 1997). However, these are not always available and so
an alternative is to work with the approximate conditional profile log-likelihood of
Cox and Reid (1987), which requires orthogonality of the parameter of interest and
the nuisance parameter, or the modified profile log-likelihood of Barndorff-Nielson
(1983) whose computation requires a sample space derivative. These are often simple
to compute for exponential and composite group families and only involve the observed
information matrix for the components of the nuisance parameter which is readily
available from direct differentiation (see Section 4.7 of Pace and Salvan 1997) and often
provide accurate approximations to conditional or marginal log-likelihoods when they
exist. It has been shown through many examples that when the profile log-likelihood
performs poorly, approximate conditional and modified profile log-likelihoods can
perform much better (see Section 3.1, Example 1 of McCullagh and Tibshirani 1990).

An alternative family of estimators in regular parametric problems was developed
in Firth (1993) where the first order bias term is removed from the asymptotic bias of
the maximum likelihood estimator by solving a set of adjusted score equations. Firth
(1993) considered the case of exponential families with canonical parametrisation,
amongst others, and showed that for this family of models, his method is equivalent to
maximising a penalised likelihood were the penalty function is the Jeffreys invariant
prior. Lunardon (2018) showed that the bias reduction approach of Firth (1993) pro-
vides an inferential framework which is, from an asymptotic perspective, equivalent to
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that for the approximate conditional and modified profile log-likelihoods when dealing
with nuisance parameters. The advantage of bias reduction of Firth (1993) is that it
can handle the problem of monotone likelihoods for stratified models with categorical
responses. Nevertheless, the approach of Firth (1993) is not in general invariant under
interest-respecting reparameterizations.

Indirect inference is another class of inferential procedures that appeared in the
Econometrics literature in Gourieroux et al. (1993) and has been used for bias reduction
of the maximum likelihood estimator and of other estimators. Its simplest version
proceeds by subtracting from the maximum likelihood estimator its full bias and
evaluating it at the new indirect inference estimator which therefore becomes the
solution of an implicit equation. Kuk (1995) describes a simulation based approach
for indirect inference by implementing an iterative bias correction of any suitably
defined initial estimator, to yield an estimator which is asymptotically unbiased and
consistent.

In this paper, we review in Sect. 2 the profile, conditional, modified profile and Firth
(1993) penalised likelihood estimators of the log odds ratio. Since the maximum like-
lihood, conditional and modified profile likelihood estimators inherit the problem of
infinite estimates of the log odds ratio, we propose in Sect. 3 a penalised log-likelihood
function based on adjusted responses which always yields finite point estimates of the
parameter of interest. The probability limit of the adjusted log-likelihood estimator is
derived and it is shown that in certain settings the maximum likelihood, conditional
and modified profile log-likelihood estimators drop out as special cases of the former
estimator. In Sect. 4 we implement indirect inference to reduce the bias of the adjusted
log-likelihood estimator, by adapting the method of Kuk (1995) to nuisance parameter
settings. The finite-sample properties of all the above estimators are compared through
a complete enumeration study in Sect. 5, as in Lunardon (2018) where no simulation
is required, followed by a discussion. Finally, a real data set is analysed in Sect. 6.

2 Review of point estimation of the log odds ratio
2.1 Maximum likelihood

Several estimators of the common log odds ratio iy have been proposed in the literature.
These include the Mantel and Haenszel, empirical logit and Birch estimators (see
Breslow 1981; Gart 1971, for a review of these estimators and of their properties). In
this section, however, we only consider estimators of the log odds ratio that depend
on the data only through the sufficient statistic.

The log-likelihood function for & = (¥, A1, ..., A,)T for the above binomial
matched pairs model is (Lunardon 2018, Section 4.1)

q q q

10) =) yin+)_ hiGir+yi)— Y _ [log{l+exp(yr+21i)}+m; log{1+exp(i)}].
i=l i=1 i=1

(1
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This is a linear full exponential family in canonical form (Pace and Salvan 1997,
Section 5) with jointly sufficient statistics ¢t = Z,'qzl vi1 and s; = yj1 + yi2 for ¢
and A;, respectively. Throughout this section, we consider for simplicity m; = m with
totals s; = (m + 1)/2 as in (Sartori 2003, Example 3). In this setting, the constrained
maximum likelihood estimator of A; for a fixed value of ¥, denoted by )ti,i/,, will
be identical for alli = 1, ..., g and so we set ii,w = py. Equivalently, denote the
constrained maximum likelihood estimator of i for a fixed value of y by I/A/y . The score
equations for the log-likelihood function with respect to y and i are respectively

m+1  exp(+y) " exp(y) 0 ?)
2 L+exp( +y)  l+exp(y)
exp(Y +y) 3)

T epW +y)

The solution of (3) is 1/}), = log{t/(qg — t)} — y, and on substituting this in (2)
and solving for y we get the maximum likelihood estimator of the nuisance parameter
7 = log [{g(m+1)—2t}/{g(m—1)~+2t}]. Substituting § in ¥/;, we get the maximum
likelihood estimator of the parameter of interest

N t{g(m — 1) + 2t}
=1 . 4
v °g<{q —r}{q<m+1>—2r}) @

Note that when = 0 or 1 = ¢, ¥ is —00 or +00, respectively. This is problematic
because it means in these extreme situations were all cases ‘succeed’ or ‘fail” we
cannot estimate y. Since ¥ is defined as a logarithm of odds ratio, infinite estimates
arise when the argument of the logarithm, i.e. the odds ratio is zero. Therefore, a better
estimator of i that avoids infinity needs to avoid zero as a possibility for the argument
of the log function.

Using the weak law of large numbers, Slutsky’s theorem and the Continuous map-
ping theorem (Florescu 2014, Section 7), we find that v converges in probability to
¥ +log[{(m + 1) exp(y) +m — 1}/{(m — 1) exp(¥) + m + 1}] as ¢ — 00, and so
it is inconsistent. When m is also allowed to increase to oo, 1 will tend to . This
means that 1} will be consistent only when both m and g diverge.

Given that the totals s; are fixed, the maximum likelihood estimator of ¥ depends
on the data only through the sufficient statistic 7 = 2?21 Y;1 and so its bias and
variance can be calculated exactly using

g—1
» _ - pr(T =1t|S; =s;)
Bt = ; VO T =0l s —pr T =qiSi =5’ O
vary (V(T)} = Ey [{¥(T)}*] — [Ey {4 (T)}1*. (©6)
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2.2 Conditional maximum likelihood

The conditional log-likelihood function is based on the distribution of ¥; given S; = s;
in each stratum. Davison (1988) and Gart (1970) noted that the conditional density of
Yi1 given §; is

()G ) exp(yin)
S () () exp ()

pr(Yi1 = yi1lSi = s51) = @)

This is the noncentral hypergeometric distribution which is obtained by rewriting the
left hand side of (7) as Pr(Y;1 = yi1, Si = si)/Pr(S; = s;) = Pr(Y;1 = yi1)Pr(Y; =
s;i —yi1)/Pr(Y;1 +Yi2 = s;), by independence of Y;1 and Y;», and noting that Pr(Y;; +
Yio =5;) = Z;":O Pr(Y;1 = u)Pr(Y;j» = s; — u). Because y;1 can only be O or 1, the
right hand side of (7) can be further simplified to

si exp(y) :|y“|: m; —s; + 1 :|1_y“
mi +1+sifexp(y) — 1} ] [mi + 1+ si{exp(y) — 1} '
(®)
This shows that Y;1|S; has a Bernoulli distribution with success probability the first
term inside the bracket of the right hand side of (8). Taking the logarithm of the product
of (8) gives the conditional log-likelihood function which simplifies to

pr(Yi1 = yi1lSi = s5i) = [

q q
(@) =) wyin =y _log[m; + 1 +sifexp(¥) — 1}]. ©)

i=1 i=1

Lettingm; = m,s; = (m+1)/2 and differentiating (9) gives the conditional maximum
likelihood estimator

Jre = log (#) (10)
g —t

Whent =0ort = g, @c is —oo or +o0, respectively. In the setting of Lunardon
(2018),1.e. whenm; = m and s; = (m+ 1)/2, the success probability of the Bernoulli
random variable Y;1|S; simplifies to 7 = exp(y)/{exp(y) + 1}. The distribution
of the sufficient statistic 7' given S; is therefore Binomial with denominator ¢ and
success probability 7. The conditional distribution of T can also be obtained using
the convolution method following (Butler and Stephens 2017, Section 2). This will be
particularly useful for general m; and s; where the Binomial conditional distribution of
T no longer holds. In fact, the conditional distribution of 7" will be Poisson binomial.

By noting that 7' converges in probability to g by the weak law of large numbers,

we find that log{r /(g — 1)} Z Y by Slutsky’s theorem and the Continuous map-
ping theorem, so V. is consistent. As the conditional maximum likelihood estimator
depends on the data only through the sufficient statistic, its bias and variance can be
calculated using (5) and (6) but replacing &(T) by @c(T).
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2.3 Modified profile maximum likelihood

(Davison 2003, Section 12) showed that for a linear exponential family in canonical
form, the modified profile log-likelihood function of Barndorff-Nielson (1983) reduces
to

A 1 ~
(W) = 10 3p) + 5 Tog {det jua (v, )} (an

where [(y, )AH/,) is the profile log-likelihood obtained from (1) by substituting the
constrained maximum likelihood estimator of A and where jj; (1, A) is the observed
information per observation for the A components and is given by the negative of
the second derivative of the log-likelihood function with respect to A. In the setting
m; = m and s; = (m + 1)/2, ja (¥, A) becomes the g x g matrix with ith diagonal
element

Pl y)  exp(¥ +y) exp(y)
— = +m

, (12)
07 (l+exp@+y)’  (1+exp(y)’

and zero elsewhere, and where we observed in Sect. 2.1 that the solution of (2), ):,/, =
791/, ,1s not available in closed form. This means that there is no closed form expression
for (11) and we calculate the maximum modified profile log-likelihood estimator,
1/A/mp, numerically and evaluate its bias and variance using (5) and (6), respectively, by

replacing I/A/(T) with I//}mp(T).
2.4 Firth penalized likelihood

When 6 = (¢, A1, ..., Aq) is the canonical parameter of an exponential family model
like in the model considered here, Firth (1993) showed that the adjusted score equations
estimator of 6 is equivalent to the maximiser of the penalised log-likelihood function

1,(6) = 1(0) + %log{deti(e)}, (13)

where i (0) = E{j(0)} is the Fisher information matrix. In the setting m; = m and
s;i = (m + 1)/2, the second order partial derivatives of (v, A;) are

1 M) N~ exp( + ) 14)
dy? i (L+exp(y + A[))z
Pl ri)  exp(¥ 4 hi) a15)
, - 2
YA (14 exp(¥ + 1i))
P, hi) exp(y + i) exp(h:)
L s —m . (16)
N (14 exp(y + A7) (1 +exp(ri))
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Since the above derivatives do not depend on the data, the Fisher information matrix
coincides with the observed information and is given by

Z?:l Vil Vll Vql
_ Vi (Vii+Via) -+ 0
iy, 2i) = : : . : , a7
Vg1 0 (Vg1 + Vo)

2
where Vii = (exp(¥ + ))/(1 + exp(¥ + 4))” and Viz = m(exp(r))/(1 +
exp(ki))Z, i =1,...,q. The determinant of i (¥, A;) is obtained using the standard
identity (see, Magnus and Neudecker 2019, Chapter 1, page 28) and simplifies to

deti (¥, 1) = (ﬁ(vn + vm)(i ﬂ) (1)
Pl Vit + Via

i=1

Therefore the penalty function that needs to be added to the log-likelihood function is

1 1< 1 L ViV
— log{deti(yr, Aj)} = = log(Vi1 + Vi2) + = lo — ). 19
3 ostde i) = 3 3 loa(V + Vi + g (). 9

The score equations for the penalised log-likelihood of Firth (1993), 1. (v, A;), with
respect to A; and ¢ involve cumbersome expressions and have no closed form solu-
tion so the penalised log-likelihood of Firth (1993) estimator of i, denoted by 12*
is obtained numerically. This estimator is always finite as shown in Section 2.1 of
Kosmidis and Firth (2021). The bias and variance of 1&* are calculated using (5) and
(6), respectively.

2.5 Binary matched pairs model

The binary matched pairs model is a special case of the binomial matched pairs model
when m = 1. This implies that in the setting of Lunardon (2018),s; = 1, and soa =
d = 0, where a, b, c and d denote the number of pairs of the form (0, 0), (0, 1), (1, 0)
and (1, 1) respectively, with a + b + ¢ +d = ¢g. Note that Z?:l yii = ¢ +d,

7 yvio=b+dand Y} ]_,(yi1 + yi2) = b+c+2d. We call pairs of the form (0, 0)
and (1, 1) concordant, while pairs of the form (0, 1) and (1, 0) are called discordant.
In this case, Py, = —/2 and so the profile log-likelihood for 1 is (see Davison 2003,
Example 12.23)

lp(f) = Yt —2q log{l + exp(y/2)}, (20)

1& = 2log <L)
q—t

which is maximised at
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— 2log (%) 1)

Alterpatively, x@ can be obtained by substituting m = 1 in (4). Davison (2003) showed
that ¥ converges in probability to 2y as ¢ — oo, thus it is inconsistent.
Only discordant pairs enter the conditional log-likelihood and it is given by

le(Y) = c — (b + c)loglexp(¥) + 1}, (22)
which is maximised at
Jo = log (g) (23)

which converges in probability to i as ¢ — o0, as noted by (Davison 2003, Example
12.23), so it is consistent.

Substituting py, = —v¥/2 in (12) gives ju (¥, Ay) = 2(exp(lp/2))/(l +
exp(y¥/ 2))2, and in this case (Davison 2003, Example 12.23) showed that

1
lmp(Y) = Zw(q + 4t) — 3q log{1 + exp(¥//2)}, (24)

which is maximized at

A q + 4t
= 21og ( L1
Ymp 0g<5q—4t>

b+ 5c
=21 , 25
Og(c+5b) (25)

where the latter converges in probability to 2 log [{1 + Sexp(¥)}/{5 + exp(w)}] as
g — 00. Note that whenc =0 or b = 0, I/A/mp is 21log(1/5) or 21log(5), respectively,
i.e. lﬁmp is finite. Although g@mp is inconsistent, Davison (2003) showed that it is less
biased than 1}

3 Adjusted likelihood method
3.1 Penalised likelihood based on adjusted responses

In order to avoid infinite estimates of i, as is the case with 1@, lﬁc and @m p (form # 1),
when all of the y;| observations are zero or one, we propose to adjust the log-likelihood
function by adding a small number § > 0 to each success, y;1 and y;», and to each
failure, 1 — y;1 and m; — y;>. The penalised log-likelihood function based on adjusted
responses for & = (¥, A, ..., Ay)T becomes

q q
1(0) = > Wi +8) + > Ai(vit + yiz +28)

i=1 i=1
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q
— Z [(1+28)log{l + exp(¥ + 1)} + (m; + 28) log{1 + exp(%;)}].
i=1

(26)

When m; = m and s; = (m + 1)/2, the score equations for the above log-likelihood
function with respect to y and ¥ simplify respectively to

m+ 1+ 48 exp(¥ +y) exp(y)
(1428 ——r 7 26) ————— =0, (27
2 4+ )1+exp(1ﬂ+y) (m + )1+exp(y) - @D
f4gb—q(l+28) PPV g (28)

L+exp(y +y)

where we set the constrained penalised maximum likelihood estimator of 1;, based on
adjusted responses, for a fixed value of v, denoted by )A\,-J/,’a, to be Py 4 because it will
be identical for alli =1, ..., g. The simultaneous solution of (27) and (28) give the
penalised maximum likelihood estimators of y and v, based on adjusted responses

s qm+1+28) —2t

Va =log [q(m —1+25) +2t]’ (29)
Iﬁ o t+qd){gm — 1+ 268) + 2t} (30)
T gm + 1+ 28) —20Y{q(L+8) — 1} ]

Note that when 6§ = 0, @a = tﬁ Note also that whent = O or ¢t = ¢, @a is finite,
while when t = ¢/2, ¥, = 0. Whenm = 1,
N t+qéd
=2log| ———|. 31
Ve Og[q<1+8>—r] Gy
Since ¥, depends on the data only through the sufficient statistic ¢, its bias and variance
are computed using (5) and (6), respectively.

3.2 Probability limit of the penalised likelihood estimator based on adjusted
responses

In this section we obtain the probability limit of the penalised log-likelihood estimator
based on adjusted responses and derive the relationship that § should satisfy in order to
make this estimator consistent. We also show how the modified profile log-likelihood
estimator (when m = 1) and the conditional log-likelihood estimator can be recovered
for particular values of §.

Whenm = 1,as g — 00, ¥, converges in probability to

2log (S{GXP(W + 1} + exP(W)>’ (32)

S{exp(y) + 1} + 1

@ Springer
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while for a general m, we find that as ¢ — oo, Va converges in probability to

o ([S{eXP(w) + 1} + exp(W) |[{m — 1 4 28Hexp(¥) + 1} + 2 exp(w)]> (33)
[8{exp(y) + 1} + 1][{m + 1 + 28 Hexp(¥) + 1} — 2exp(¥)] '

Similar to Table 12.3 of Davison (2003), Table 1 compares the limiting values of
1}, 1/}6., I/Afmp and I//}a when m = 1 for a set of values of ¥ ranging from O to 5 and
a set of values of § ranging from 0.05 to 0.50. We note that for any given v, there
exists a value of § for which the limit of @a is closer to the truth than g@mp. In other
words, there is evidence that there exists a § value such that 1/}(1 converges to the truth
faster than I/Afm p- These values of § decrease as the true value of v increase. Observe
also that when 6 = (.25, the limiting value of I/Afa coincides with that of IZr,n p- In fact
substituting § = 0.25 in (32), we find that Va converges in probability to the same
limit of 1/7,,1 p givenin Sect. 2.5. This means that the penalised log-likelihood estimator
based on adjusted responses recovers the modified profile log-likelihood estimator
whenm = 1 and § = 0.25, i.e. 1}0 = @mp.

When m = 1, in order to make &a consistent we need to equate the ratio inside the
logarithm of (32) with ,/exp(¥) which simplifies to the equation

[exp(y) — 1][8*{exp(¥))? + {287 — 1}{exp(¥)} + 8] = 0. (34)

When ¢y = 0, there is no adjustment because there is no bias so we consider the positive
solution of the quadratic equation [82{exp(y)}> + {286 — 1}{exp(y¥)} + 8?] = 0 in
terms of § which simplifies to

Vexp(y) (35)

T T+ep®)

Substituting (35) into (31) and solving for ¥ gives the same estimate as &C. This means
that the value of § that achieves consistency of IZfa is the one that recovers &c. This
is disadvantageous because we inherit exactly the same problems with conditional
log-likelihood (i.e. infinite estimates) if we attempt to tune 6 to make V4 consistent.
The value of & in terms of 7 and ¢ that recovers V. is obtained by equating (31) with

1/A/c and simplifies to
t(3gt — 22 — g2
5= L 2 (36)
q°(2t — q)

Observe that whent =0 ort = ¢, = 0 and so I/Afa = 1/}, while when ¢t = ¢/2, § is
infinite.

For a general m, the relationship that § should satisfy in order to make Vr, consistent
is found by equating the ratio inside the logarithm of (33) with exp(yr) which simplifies
to the equation

s{exp)} {m — 1428} — {exp) {2+ 8(1 — m — 25)}
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Table 1 Probability limits of profile, conditional, modified profile and adjusted log-likelihood based on
adjusted responses estimators of the log odds ratio ¥ in the binary matched pairs model when m = 1. For
each v, the value in bold face corresponds to the limiting value closest to the truth if we ignore V-

v 0 05 1 15 2.0 2.5 3 4 5
Limit of v 0 1 2 3 4 5 6 8 10
Limit of v 0 05 1 1.5 2 25 3 4 5
Limit of tm,) 0 066 127 181 224 256 279 305 3.16
Limit of ¥/ § 005 0 091 179 263 341 409 466 544 583
010 0 083 162 236 300 352 393 443 465
015 0 076 149 214 269 312 344 382 397
020 0 071 137 196 244 281 308 338 351
025 0 066 127 181 224 256 279 305 3.16
030 0 062 1.19 168 207 236 256 279 2.88
035 0 058 112 157 193 219 237 257 265
040 0 055 105 147 181 205 221 239 246
045 0 052 099 139 170 192 207 224 230
050 0 049 094 132 160 181 195 210 216

+Hexp) 2+ 81 —m —28)} —8(m — 14+ 28) =0,
(37)

with no closed form solution. The value of § in terms of ¢, ¢ and m that recovers 1}6
satisfies the equation

2¢*6%(q — 2t) + q¢*8{q(m — 1) + 2t(1 —m)} — 2¢(¢* — 3tq +2t*) = 0. (38)

Fig. 1 shows a plot of §, the root of (37), against ¢ form = 1, m = 3, m = 11
and m = 39. This plot shows that there is a scaled logistic relationship between §
and ¥ and that the best choice of § lies in the range 0 < 6 < 0.5. Given the true
value of ¥, as m increases, the value of § that makes @a consistent decreases to zero.
This is expected because we know from standard asymptotic theory that the maximum
likelihood estimator is asymptotically consistent.

4 Indirect inference estimation of the log odds ratio
Suppose that Y is some initial estimator of v/, not necessarily the maximum likelihood

estimator, then the simplest method of bias reduction of g@ via indirect inference relies
on solving the equation (see, Kuk 1995)

V=9 —B;¥, ), (39)
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Fig.1 Plot of the value of §, that makes the penalised log-likelihood based on adjusted responses estimator,
Ya, consistent, against ¢ form = 1,m =3, m = 11 and m = 39

with respect to ¥ where B 0 (W, 2) = E&’ N (1/}) — 1 is the bias function of 1@ evaluated at

1]/‘ and A = Aq,..., Ay Wecall 1} the indirect inference estimator of 1. Alternatively,
(39) can be written as

v =E; , ). (40)

Since we want to reduce the bias of lﬁa whenm; = m and s; = (m+1)/2, our indirect
inference estimator 1 is the solution of

Ja =By, (o). (41)

As the expectation of lﬂa can be obtained using complete enumeration, one version of
¥, Yax, which is independent of y, can be defined by using the conditional density
Pr(T = ulS;; ) which is binomial with denominator ¢ and success probability

exp(¥)/{exp(y) + 1},

q
Va(T) =Y Ya@Pr(T = ulS;; Vax). (42)

u=0

No closed form solution exists for /44, so we solve the above equation numerically
and calculate the expectation and variance of Iﬁa* using (5) and (6). For t € {0, ¢},
Vas has no solution. In fact the expectation in the right hand side of (42) is bounded
below by @a (0) and above by g@a (¢)- This means that when the binary observations
are all zero or one the indirect inference estimator is not defined which is unfortunate
because even though we overcome the problem of infinite estimates at t = 0 and
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t = g by introducing a penalised likelihood estimator based on adjusted responses,
when we attempt to reduce the bias of the later the same problem appears again at
those boundary values of 7.

5 Complete enumeration study

We reproduce the complete enumeration study in (Lunardon 2018, Table 1) which
compares the finite sample bias and variance of estimators derived from profile, con-
ditional, modified profile and penalized ( Firth (1993)) likelihoods, denoted by & 1}6,
g@m,, and Vs, respectively. We enrich this study by adding the penalised maximum

likelihood estimator based on adjusted responses, V4, and the indirect inference esti-
mator based on @a using the conditional model, denoted by &a*, for a set of 20 values
of § ranging from 0.05 to 1.00. The comparison in (Lunardon 2018, Table 1) also
assesses the coverage probability and length of 95% confidence intervals for i based
on the chi-squared approximation to the distribution of W, () and to the distribu-
tions of the profile, conditional and modified profile log-likelihood ratios, denoted by
W), We(yr) and Wy, (¥), respectively. We extend this comparison by adding the
coverage probability and length of 95% confidence intervals for v based on the chi-
squared approximation to the distribution of the penalised log-likelihood ratio based
on adjusted responses, denoted by W, (/). The exact bias and variance of estima-
tors and the exact coverage probability and average length of confidence intervals is
obtained through complete enumeration because the estimators and confidence inter-
vals all depend on the sufficient statistic 7 = 2?21 Y;1 and so the distribution of
T given §1 = s1,...,8; = 54 can be computed numerically following Butler and
Stephens (2017). These summaries however, are computed only fort € {1, ..., g — 1}
since when ¢ € {0, ¢}, 1}, 1/Afc and Imep (for m # 1) are infinite.

Tables 5, 6,7, 8,9 and 10 report the bias and variance of estimators, while Tables 11,
12,13, 14, 15 and 16 report the coverage probability and average length of confidence
intervals with nominal level 95% when the true log odds ratio v is unity, with m €
{1,3, 11,39} and g € {30, 100, 1000}.

Overall, for fixed § the numerical value of the bias and variance of the estimator
&a decrease as m increases. In many cases, however this means that the bias becomes
more negative, i.e. the magnitude of the bias increases with m. This suggests that for
any combination of ¢ and m, there exists a particular value of §, above which the bias
of 1/?,1 does not improve. In fact for any combination of m and g, there exists a value
of § such that 1&” has minimum bias which is smaller than the bias of the estimators
1&, &c, @mp and 1/}*; for example, for ¢ = 30, m = 1 this optimal § in terms of bias
is 0.45, for the combinations ¢ = 30, m = 39 and ¢ > 100, m > 11, the optimal
value of § that gives minimum bias becomes smaller than 0.05. For ¢ = 30, at the
optimum § value, the estimator I/Afa has smaller bias and variance than x[A/C. This is also
true for other values of ¢, except that it is not very clear from Tables 5, 6, 7, 8, 9 and
10 because we consider a specific set of values for §; for example, for ¢ = 100 and
m =11, at § = 0.045, &a has bias and variance — 0.03 and 0.47, respectively (both
multiplied by 10), while for ¢ = 1000 and m = 1, at § = 0.444, @a has bias and
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variance 0.00 and 0.04, respectively (both multiplied by 10). This optimal value of §
decrease as m increases, but for a fixed m, as ¢ increase above 30, the optimum § value
remain constant. This is expected because the theoretical derivations in equations (35)
and (37) tell us that the optimum value of § in terms of consistency is independent
of ¢. For example, the optimum value of § when m = 1 and ¢ = 1 is given by (35)
and is equal to § = 0.4434. Similarly, (37) gives the optimum value of § in terms of
consistency for a general value of m and v, for example, when m = 3 and = 1, the
optimum § is 0.1566.

Soin terms of the incidental parameter problem, for a fixed value of m and increasing
q., there is an optimum value of § that makes &a less biased and has smaller variance
than all the other estimators. This behaviour can be seen more clearly from Table 17
where the optimum value of § that minimizes the bias of i, was chosen from a finer
set of § values. For the values of m and g chosen in Table 17, the effect of fixing m and
allowing ¢ to increase is a larger optimal §, while fixing ¢ and increasing m decreases
this optimal § value. However, the pattern in Table 17 suggest that as both ¢ and m are
allowed to diverge, the optimal § value becomes close to zero and this makes intuitive
sense because we know that § = 0 gives rise to the maximum likelihood estimator v
which is asymptotically unbiased when both m and ¢ tend to co.

Nevertheless, the bias results for the estimator 1/}0* show a marked improvement
over 1}, lﬂm p and IZ‘C, for all values of ¢ and m. When l/Nfa* is compared with 1}*, the
former has smaller bias and variance for m = 1 and m = 3 for all values of g. When
compared with Va, the bias of ¥, is reduced for all values of & except the optimal
one. The interesting result to note here is that as § increases, the bias and variance
of ¥+ approach that of 1/}0 for all combinations of ¢ and m considered. To wrap up
this comparison of estimators, if we were to choose a § based on 1/Afa*, then it will be
the one that is close to (but not equal to) zero because it will give the smallest bias
and variance. However, wa* does not perform better than ‘Pa all the time. In fact, if
we were to choose a § based on wa, then it w111 be the optimal § that minimizes the
bias of llfa because the bias and variance of I/Iu at this optimal § is smaller than that of
any other estimator in the table for any combination of ¢ and m. Having said that, in
practice we are only given a data set and we don’t know the particular § for that data
set s0 Y5 will be a good choice because its bias and variance are very competitive
regardless of the value of §.

Concerning the coverage probability and average length of 95% confidence inter-
vals, Lunardon (2018) noted that intervals derived from W,,,(¥) and W, () are
consistent with those from W.(y) for m > 3. The coverage probability and average
length of confidence intervals derived from W, (1) show an improvement over those
derived from W, (y) for particular values of § (shown in bold face in Tables 11, 12,
13, 14, 15, 16). We considered 20 values of § ranging from 0.31 to 0.50 for m = 1,
0.06 to 0.25 for m = 3 and 0.01 to 0.20 for m = 11 and m = 39. For those particular
values of § in bold face, the coverage probability derived from W, (y/) is closer to the
nominal coverage of 95% than that derived from W, (). This agrees with the fact that
Va performs better than Y in terms of bias and variance for some optimal value of
8. As the value of § increase the average length of confidence intervals derived from
W, () decreases which is expected because the variance (and hence standard error)
of 1/Afa becomes smaller as 6 becomes larger.
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In conclusion it has been shown how, in the binomial matched pairs model, finite
estimates of the log odds ratio are produced in cases where the observations are either
all equal to zero or all equal to one by penalising the log-likelihood function through
the additive adjustment of a tuning parameter § > O to each success and failure. This
value § was then used as a parameter that could be tuned to improve the bias and/or
variance of the penalised log-likelihood estimator based on adjusted responses. The
indirect inference method was applied to further reduce the bias of I/Afa. The method
can be applied in principle to any parametric model. We are also free to use estimators
other than 1/Afa as initial estimates. Indeed the setting considered here where m; and s;
are fixed to m and (m + 1)/2, respectively is a special case and perhaps a large scale
simulation study would be useful to account for different stratum sizes and totals.

6 Analysis of crying babies data

In this section we illustrate the methods discussed above in a general setting by pro-
viding a real-data example with different stratum sizes. We re-analyse the crying of
babies data set given in (Cox and Snell 1989, Example 1.2). The data come from an
experiment intended to assess the effectiveness of rocking motion on the crying of
babies and were collected according to a matched case—control design with one case
and m; controls per stratum, where i = 1, ..., 18 and m; takes on various values from
51t0 9. On each of 18 days babies not crying at a specified time in a hospital were
served as subjects. On each day one baby chosen at random formed the experimental
group and the remainder were controls. The binary response was whether the baby was
crying or not at the end of a specified period. In (Cox and Snell 1989, Example 1.2),
not crying is taken as a "success" and the observed numbers y;» and y;; are therefore
the numbers of babies in the two groups not crying. The number of non crying babies
in the experimental group is t = 15.

The estimates of the log odds ratio i and its standard error are reported in Table
2. Davison (1988) obtained the maximum likelihood and conditional maximum like-
lihood estimates while Lunardon (2018) obtained the estimates of ¥ derived from the
modified profile and penalised (Firth) log-likelihoods. We found the penalised based
on adjusted responses log-likelihood and indirect inference estimates for 20 values of
8 ranging from 0.05 to 1.00. As the true log odds ratio v is unknown, it is difficult to
decide which estimator should be preferred however, there is an important observation
to note. As § approaches 1, the indirect inference estimates of i approach the con-
ditional log-likelihood estimates and the standard errors of Vax approach that of Ve.
This observation has been noted before in the complete enumeration study in terms of
bias and variance in the specific setting where the ith stratum sample size was fixed.
Even though this observation has not been proved analytically, the results based on
the crying babies data show that, at least numerically, it may also hold for a general
binary matched pairs with different stratum sizes.

The standard errors of the estimates in Table 2, except for g@c, are obtained
using the Fisher information matrix evaluated at the given estimate of . In par-
ticular, for the maximum likelihood estimator the standard error is obtained using
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\/diag{i—l(lﬁ,i], ...,)An]g)}, where i is the Fisher information matrix. For the
conditional maximum likelihood estimator the standard error is obtained using
V(=321.()/0y2)~ 1, evaluated at .. For the modified profile likelihood esti-

mator, ,,, the standard error is obtained using \/ (0%Lp(Y) /0y 2) 1, evaluated

at 1/Afmp, i.e. using the Hessian. For the penalised (Firth) and penalised based on
adjusted responses likelihood estimators, the standard errors are obtained using

\/diag{ifl(t/}*, Al h1gs)} and \/diag{i*‘ (War Mar - A1g.a)}s Tespectively.
Finally, for the indirect inference estimator the standard error is obtained using
V(=321.()/8y2)~ 1, evaluated at v/,,. However according to Kuk (1995), to obtain
the estimated standard error for the indirect inference estimator we need a further
correction of the Fisher information using sandwich estimators of the variance based
on the Godambe information because the second Bartlett identity no longer holds.
Similarly, a Godambe information matrix would be better to use for the estimated
standard error of the modified profile likelihood estimator. The estimated standard
error reported in Lunardon (2018) for V. is obtained using the Hessian matrix and is
slightly different to our result.

To assess the reliability of the estimators we compute their actual bias and vari-
ance, conditioning on the observed totals as in (Lunardon 2018, Table 2), for a set
of values of ¥ ranging from -3 to 3. The conditional distribution of the sufficient
statistic T = ) ,'lil Yi1, which represents the total number of babies not crying in the
experimental group, is the distribution of the sum of independent Bernoulli random
variables with different probabilities. To calculate this distribution we use the R func-
tion dkbinom which gives the mass function of the sum of k independent Binomial
random variables, with possibly different probabilities. This function implements the
convolution algorithm of k£ binomials described in Butler and Stephens (2017).

The results reported in Table 2 of Lunardon (2018) are incorrect because Lunar-
don (2018) computes the conditional bias and variance of @C, 1&, @m,, and 1%; for
t € {l,..., 17} but without rescaling and normalizing the conditional distribution
of T. The corrected conditional summaries are reported in Table 3 with the addi-
tion of the penalised log-likelihood estimator based on adjusted responses, Y, and
the indirect inference estimator, 1/A/a*, for various values of §. We observe that for
Y e {—2,—1,0, 1, 2} there exists a value of § in the range 0.01 < § < 0.20 such that
g@a is less biased than any of 1&, lﬁc, tﬁmp and g@* In fact the effect of increasing the
absolute value of ¥ is to decrease the optimal § value in terms of the bias of @a. For
Y = 3, the maximum likelihood estimator seems to be the least biased but this is due
to the effect of infinite estimates at t = 0 and ¢+ = 18. In other words, removing these
infinite estimates significantly lowers the average of the estimates for ¢ € {1, ..., 17}.
This is also true for the conditional log-likelihood estimator, lﬁc.

Overall, for ¢ € {—2, —1, 0, 1} the indirect inference estimator is an improvement
over the penalised log-likelihood estimator based on adjusted responses in terms of
bias for all values of § considered. We notice that there exists a § value in the range
0.01 < & < 0.20 such that 1/},1* is less biased than 1/A/a. In fact the indirect inference
estimator for Y € {—2, —1,0, 1} is competitive for all § values considered, which
makes it the best choice amongst estimators. However, for ¥ € {—3, 2, 3} the best
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choice of § is the largest possible, in this case § = 1. It is worth noting that as in the
complete enumeration study in Tables 5, 6, 7, 8, 9 and 10, it is also the case here that
we observe that the bias and variance of the indirect inference estimator approaches
that of the conditional log-likelihood estimator as § increase to 1.

Table 4 reports the unconditional bias and variance of the modified profile, penalised
(Firth) and penalised based on adjusted responses log-likelihood estimators for ¢ €
{0, ..., 18}. Even though lﬁ* has smaller bias and variance than 1/Afmp for all value
of i, we again observe as in Table 3 that there exists a value of § such that g@a
is less biased than x[A/* for all values of 1. We may conclude that 1/?,1 is preferable
over 1/7* as its variance is also decreased at the optimal § value for all values of ¥
considered (except for y = 0). The relationship between the optimal § value and the
true value of i coincides with that in the conditional case (Table 3), i.e. the optimal 4,
in terms of bias, decreases as the absolute value of i increases. Note that the indirect
inference estimator has no solution at t+ = 0 and ¢t = 18, and so it is excluded from
the unconditional summaries in Table 4.

7 Conclusions

For the binomial matched pairs model, we evaluated the performance of a new
penalised log-likelihood estimator of the log odds ratio which is based on an additive
adjustment, § > 0, to the responses so as to avoid infinite estimates which is inherited
by the maximum likelihood and conditional likelihood estimators. We calculated the
probability limit of this estimator and showed that the maximum likelihood, condi-
tional and modified profile log-likelihood estimators, when m = 1 for the latter, can
be retrieved from this new estimator for certain values of §. It was found that indirect
inference estimation based on the new estimator is competitive for a wide range of
values of §.

It is worth investigating numerically whether, for a general value of m, there exists
a § that recovers the modified profile log-likelihood estimator of ¥ from the penalised
log-likelihood estimator based on adjusted responses, because this will imply that @mp
could be retrieved from 1, for any value of m not just in the special case of the binary
matched pairs model where m = 1. One future direction is to investigate the perfor-
mance of the estimators of the log odds ratio outside the setting of Lunardon (2018)
for a general m; and s;. This is possible since in this general setting the distribution of
the sufficient statistic 7 = Z?:l vi1 can be obtained using the convolution method of
Butler and Stephens (2017) and is Poisson binomial. Obtaining the probability limit of
the indirect inference estimator in the setting of Lunardon (2018) is desired. The com-
plete enumeration study in Sect. 5 may be expanded by considering other values of ¥/,
e.g. ¥ € {—3,-2,—1,0, 1,2, 3}. Finally, yet another possible future direction would
be to investigate the performance of an alternative adjustment to the log-likelihood
function where a small number § > 0 is added to each success but subtracted from
each failure.
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Appendix A: Results tables for complete enumeration study

See Tables 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16 and 17.

Table 5 Binomial matched observations with true log odds ratio ¢ = 1. Second to sixth columns show
the bias and variance (in parentheses) of estimators derived from profile, conditional, modified profile,
penalised (Firth) and penalised based on adjusted responses log-likelihoods, with all entries multiplied by
10; seventh column show the bias and variance (in parentheses) of the indirect inference E@a* using the
conditional model, with all entries multiplied by 10

v Ve Vmp U Va Vax

) q=30,m=1

0.05 10.89(7.87) 0.44(1.97) 2.91(2.33) 2.76(2.27) 8.49(5.58) 0.08(1.80)
0.10 6.65(4.25) 0.17(1.85)
0.15 5.16(3.39) 0.22(1.88)
0.20 3.94(2.78) 0.26(1.90)
0.25 2.91(2.33) 0.29(1.91)
0.30 2.03(1.99) 0.31(1.92)
0.35 1.27(1.72) 0.33(1.92)
0.40 0.60(1.50) 0.34(1.93)
0.45 0.01(1.33) 0.35(1.93)
0.50 —0.52(1.18) 0.36(1.94)
0.55 —0.99(1.06) 0.37(1.94)
0.60 —1.42(0.95) 0.38(1.94)
0.65 —1.81(0.87) 0.38(1.95)
0.70 —2.16(0.79) 0.39(1.95)
0.75 —2.49(0.72) 0.39(1.95)
0.80 —2.79(0.66) 0.40(1.95)
0.85 —3.06(0.61) 0.40(1.95)
0.90 —3.32(0.57) 0.40(1.95)
0.95 —3.55(0.53) 0.41(1.95)
1.00 —3.77(0.49) 0.41(1.96)
b q=30,m=3

0.05 3.56(3.06) 0.44(1.97) 0.69(1.82) 0.48(1.72) 2.26(2.30) 0.15(1.82)
0.10 1.24(1.84) 0.22(1.87)
0.15 0.41(1.53) 0.27(1.89)
0.20 —0.29(1.30) 0.30(1.91)
0.25 —0.88(1.13) 0.32(1.92)
0.30 —1.40(0.99) 0.34(1.93)
0.35 —1.85(0.88) 0.35(1.93)
0.40 —2.25(0.79) 0.37(1.94)
0.45 —2.61(0.71) 0.37(1.94)
0.50 —2.94(0.64) 0.38(1.95)
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Table 5 continued

v e Ymp Ve Va Vax
0.55 —3.23(0.59) 0.39(1.95)
0.60 —3.50(0.54) 0.39(1.95)
0.65 —3.74(0.50) 0.40(1.95)
0.70 —3.97(0.46) 0.40(1.95)
0.75 —4.18(0.43) 0.41(1.95)
0.80 —4.37(0.40) 0.41(1.95)
0.85 —4.56(0.37) 0.41(1.96)
0.90 —4.72(0.35) 0.41(1.96)
0.95 —4.88(0.33) 0.42(1.96)
1.00 —5.03(0.31) 0.42(1.96)

Table 6 Binomial matched observations with true log odds ratio ¢ = 1. Second to sixth columns show
the bias and variance (in parentheses) of estimators derived from profile, conditional, modified profile,
penalised (Firth) and penalised based on adjusted responses log-likelihoods, with all entries multiplied by
10; seventh column show the bias and variance (in parentheses) of the indirect inference 1/A/a* using the
conditional model, with all entries multiplied by 10

v Ye l/Afmp Y VYa Vas

b qg=30,m=11

0.05 1.28(2.23) 0.44(1.97) 0.46(1.94) 0.09(1.74) 0.08 (1.62) 0.11(1.81)
0.10 —0.85(1.26) 0.19(1.85)
0.15 —1.60(1.02) 0.24(1.88)
0.20 —2.22(0.85) 0.27(1.90)
0.25 —2.74(0.73) 0.30(1.91)
0.30 —3.19(0.63) 0.32(1.92)
0.35 —3.58(0.55) 0.34(1.93)
0.40 —3.92(0.49) 0.35(1.93)
0.45 —4.22(0.44) 0.36(1.94)
0.50 —4.49(0.40) 0.37(1.94)
0.55 —4.73(0.36) 0.38(1.94)
0.60 —4.95(0.33) 0.39(1.95)
0.65 —5.15(0.30) 0.39(1.95)
0.70 —5.34(0.28) 0.40(1.95)
0.75 —5.50(0.26) 0.40(1.95)
0.80 —5.66(0.24) 0.40(1.95)
0.85 —5.80(0.22) 0.41(1.95)
0.90 —5.94(0.21) 0.41(1.96)
0.95 —6.06(0.20) 0.41(1.96)
1.00 —6.17(0.18) 0.42(1.96)
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Table 6 continued

v e Ymp Ve Va Vax

S q =30,m =39

0.05 0.68(2.04) 0.44(1.97) 0.44(1.96) 0.03(1.74) —0.52(1.46) 0.09(1.80)
0.10 —1.44(1.12) 0.17(1.85)
0.15 —2.18(0.90) 0.23(1.88)
0.20 —2.79(0.74) 0.26(1.90)
0.25 —3.31(0.62) 0.29(1.91)
0.30 —3.75(0.53) 0.31(1.92)
0.35 —4.13(0.46) 0.33(1.93)
0.40 —4.47(0.41) 0.34(1.93)
0.45 —4.77(0.36) 0.36(1.94)
0.50 —5.03(0.32) 0.37(1.94)
0.55 —5.27(0.29) 0.37(1.94)
0.60 —5.48(0.26) 0.38(1.95)
0.65 —5.68(0.24) 0.39(1.95)
0.70 —5.85(0.22) 0.39(1.95)
0.75 —6.02(0.20) 0.40(1.95)
0.80 —6.17(0.19) 0.40(1.95)
0.85 —6.30(0.17) 0.40(1.95)
0.90 —6.43(0.16) 0.41(1.95)
0.95 —6.55(0.15) 0.41(1.96)
1.00 —6.66(0.14) 0.41(1.96)

Table 7 Binomial matched observations with true log odds ratio ¢ = 1. Second to sixth columns show
the bias and variance (in parentheses) of estimators derived from profile, conditional, modified profile,
penalised (Firth) and penalised based on adjusted responses log-likelihoods, with all entries multiplied by
10; seventh column show the bias and variance (in parentheses) of the indirect inference 1,@(1* using the
conditional model, with all entries multiplied by 10

v Ve Ymp Ve Va Vax

) g =100,m =1

0.05 10.24(2.11) 0.12(0.53) 2.79(0.69) 2.74(0.68) 8.08(1.57) 0.02(0.52)
0.10 6.36(1.23) 0.04(0.52)
0.15 4.96(0.99) 0.06(0.52)
0.20 3.78(0.82) 0.07 (0.52)
0.25 2.79(0.69) 0.08(0.52)
0.30 1.93(0.59) 0.08(0.52)
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Table 7 continued

v Ve Ymp Vi Va Vax

0.35 1.19(0.51) 0.09(0.52)
0.40 0.53(0.45) 0.09(0.53)
0.45 —0.05(0.40) 0.09(0.53)
0.50 —0.57(0.35) 0.10(0.53)
0.55 —1.03(0.32) 0.10(0.53)
0.60 —1.46(0.29) 0.10(0.53)
0.65 —1.84(0.26) 0.10(0.53)
0.70 —2.19(0.24) 0.10(0.53)
0.75 —2.51(0.22) 0.11(0.53)
0.80 —2.81(0.20) 0.11(0.53)
0.85 —3.08(0.18) 0.11(0.53)
0.90 —3.33(0.17) 0.11(0.53)
0.95 —3.56(0.16) 0.11(0.53)
1.00 —3.78(0.15) 0.11(0.53)
5 q=100,m =3

0.05 3.23(0.84) 0.12(0.53) 0.48(0.51) 0.42(0.50) 2.05(0.66) 0.04(0.52)
0.10 1.09(0.54) 0.06(0.52)
0.15 0.30(0.45) 0.07(0.52)
0.20 —0.37(0.38) 0.08(0.52)
0.25 —0.95(0.33) 0.09(0.52)
0.30 —1.45(0.29) 0.09(0.53)
0.35 —1.89(0.26) 0.10(0.53)
0.40 —2.29(0.23) 0.10(0.53)
0.45 —2.64(0.21) 0.10(0.53)
0.50 —2.96(0.19) 0.10(0.53)
0.55 —3.25(0.18) 0.10(0.53)
0.60 —3.52(0.16) 0.11(0.53)
0.65 —3.76(0.15) 0.11(0.53)
0.70 —3.99(0.14) 0.11(0.53)
0.75 —4.19(0.13) 0.11(0.53)
0.80 —4.39(0.12) 0.11(0.53)
0.85 —4.57(0.11) 0.11(0.53)
0.90 —4.73(0.10) 0.11(0.53)
0.95 —4.89(0.10) 0.11(0.53)
1.00 —5.04(0.09) 0.11(0.53)
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Table 8 Binomial matched observations with true log odds ratio ¢ = 1. Second to sixth columns show
the bias and variance (in parentheses) of estimators derived from profile, conditional, modified profile,
penalised (Firth) and penalised based on adjusted responses log-likelihoods, with all entries multiplied by
10; seventh column show the bias and variance (in parentheses) of the indirect inference 1/A/a* using the
conditional model, with all entries multiplied by 10

v Ve Vmp Vs Va Vax

S g =100,m =11

0.05 0.96(0.61) 0.12(0.53) 0.15(0.52) 0.05(0.51) —0.13(0.46) 0.03(0.52)
0.10 —0.99(0.36) 0.05(0.52)
0.15 —1.70(0.30) 0.06(0.52)
0.20 —2.30(0.25) 0.07(0.52)
0.25 —2.80(0.21) 0.08(0.52)
0.30 —3.24(0.19) 0.09(0.52)
0.35 —3.62(0.16) 0.09(0.53)
0.40 —3.95(0.15) 0.09(0.53)
0.45 —4.25(0.13) 0.10(0.53)
0.50 —4.51(0.12) 0.10(0.53)
0.55 —4.75(0.11) 0.10(0.53)
0.60 —4.97(0.10) 0.10(0.53)
0.65 —5.17(0.09) 0.11(0.53)
0.70 —5.35(0.08) 0.11(0.53)
0.75 —5.52(0.08) 0.11(0.53)
0.80 —5.67(0.07) 0.11(0.53)
0.85 —5.81(0.07) 0.11(0.53)
0.90 —5.94(0.06) 0.11(0.53)
0.95 —6.07(0.06) 0.11(0.53)
1.00 —6.18(0.06) 0.11(0.53)
b g =100, m =39

0.05 0.36(0.55) 0.12(0.53) 0.12(0.53) 0.01(0.51) —0.72(0.41) 0.03(0.52)
0.10 —1.58(0.32) 0.05(0.52)
0.15 —2.29(0.26) 0.06(0.52)
0.20 —2.87(0.22) 0.07(0.52)
0.25 —3.37(0.18) 0.08(0.52)
0.30 —3.80(0.16) 0.08(0.52)
0.35 —4.17(0.14) 0.09(0.53)
0.40 —4.50(0.12) 0.09(0.53)
0.45 —4.79(0.11) 0.10(0.53)
0.50 —5.05(0.10) 0.10(0.53)
0.55 —5.29(0.09) 0.10(0.53)
0.60 —5.50(0.08) 0.10(0.53)
0.65 —5.69(0.07) 0.10(0.53)
0.70 —5.87(0.07) 0.11(0.53)
0.75 —6.03(0.06) 0.11(0.53)
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Table 8 continued

v Ve Ymp Ve Va Vax
0.80 —6.18(0.06) 0.11(0.53)
0.85 —6.31(0.05) 0.11(0.53)
0.90 —6.44(0.05) 0.11(0.53)
0.95 —6.56(0.05) 0.11(0.53)
1.00 —6.67(0.04) 0.11(0.53)

Table 9 Binomial matched observations with true log odds ratio ¢ = 1. Second to sixth columns show
the bias and variance (in parentheses) of estimators derived from profile, conditional, modified profile,
penalised (Firth) and penalised based on adjusted responses log-likelihoods, with all entries multiplied by
10; seventh column show the bias and variance (in parentheses) of the indirect inference 1&0* using the
conditional model, with all entries multiplied by 10

v e Ymp Ve Va Vax

5 g =1000,m =1

0.05 10.02(0.20) 0.01(0.05) 2.74(0.07) 2.74(0.07) 7.93(0.15) 0.00(0.05)
0.10 6.25(0.12) 0.00(0.05)
0.15 4.88(0.10) 0.01(0.05)
0.20 3.72(0.08) 0.01(0.05)
0.25 2.74(0.07) 0.01(0.05)
0.30 1.90(0.06) 0.01(0.05)
0.35 1.16(0.05) 0.01(0.05)
0.40 0.51(0.04) 0.01(0.05)
0.45 —0.07(0.04) 0.01(0.05)
0.50 —0.59(0.04) 0.01(0.05)
0.55 —1.05(0.03) 0.01(0.05)
0.60 —1.47(0.03) 0.01(0.05)
0.65 —1.85(0.03) 0.01(0.05)
0.70 —2.20(0.02) 0.01(0.05)
0.75 —2.52(0.02) 0.01(0.05)
0.80 —2.81(0.02) 0.01(0.05)
0.85 —3.08(0.02) 0.01(0.05)
0.90 —3.34(0.02) 0.01(0.05)
0.95 —3.57(0.02) 0.01(0.05)
1.00 —3.79(0.01) 0.01(0.05)
S g =1000,m =3

0.05 3.12(0.08) 0.01(0.05) 0.40(0.05) 0.40(0.05) 1.97(0.06) 0.00(0.05)
0.10 1.04(0.05) 0.01(0.05)
0.15 0.26(0.04) 0.01(0.05)
0.20 —0.40(0.04) 0.01(0.05)
0.25 —0.97(0.03) 0.01(0.05)
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Table 9 continued

0 e Vmp Ve Va Var
0.30 —1.47(0.03) 0.01(0.05)
0.35 —1.91(0.03) 0.01(0.05)
0.40 —2.30(0.02) 0.01(0.05)
0.45 —2.65(0.02) 0.01(0.05)
0.50 —2.97(0.02) 0.01(0.05)
0.55 —3.26(0.02) 0.01(0.05)
0.60 —3.53(0.02) 0.01(0.05)
0.65 —3.77(0.01) 0.01(0.05)
0.70 —3.99(0.01) 0.01(0.05)
0.75 —4.20(0.01) 0.01(0.05)
0.80 —4.39(0.01) 0.01(0.05)
0.85 —4.57(0.01) 0.01(0.05)
0.90 —4.74(0.01) 0.01(0.05)
0.95 —4.89(0.01) 0.01(0.05)
1.00 —5.04(0.01) 0.01(0.05)

Table 10 Binomial matched observations with true log odds ratio ¥ = 1. Second to sixth columns show
the bias and variance (in parentheses) of estimators derived from profile, conditional, modified profile,
penalised (Firth) and penalised based on adjusted responses log-likelihoods, with all entries multiplied by
10; seventh column show the bias and variance (in parentheses) of the indirect inference 12'0* using the
conditional model, with all entries multiplied by 10

v Ve Ymp U Va Vax

) g =1000,m =11

0.05 0.85(0.06) 0.01 (0.05) 0.04(0.05) 0.03 (0.05) —0.20(0.04) 0.00(0.05)
0.10 —1.05(0.04) 0.00(0.05)
0.15 —1.74(0.03) 0.01(0.05)
0.20 —2.33(0.02) 0.01(0.05)
0.25 —2.82(0.02) 0.01(0.05)
0.30 —3.26(0.02) 0.01(0.05)
0.35 —3.63(0.02) 0.01(0.05)
0.40 —3.96(0.01) 0.01(0.05)
0.45 —4.26(0.01) 0.01(0.05)
0.50 —4.52(0.01) 0.01(0.05)
0.55 —4.76(0.01) 0.01(0.05)
0.60 —4.98(0.01) 0.01(0.05)
0.65 —5.17(0.01) 0.01(0.05)
0.70 —5.35(0.01) 0.01(0.05)
0.75 —5.52(0.01) 0.01(0.05)
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Table 10 continued

v e Vmp i Va Var

0.80 —5.67(0.01) 0.01(0.05)
0.85 —5.81(0.01) 0.01(0.05)
0.90 —5.95(0.01) 0.01(0.05)
0.95 —6.07(0.01) 0.01(0.05)
1.00 —6.18(0.01) 0.01(0.05)
B g = 1000, m = 39

0.05 0.25(0.05) 0.01(0.05) 0.01(0.05) 0.00(0.05) —0.80(0.04) 0.00(0.05)
0.10 —1.64(0.03) 0.00(0.05)
0.15 —2.33(0.03) 0.01(0.05)
0.20 —2.90(0.02) 0.01(0.05)
0.25 —3.39(0.02) 0.01(0.05)
0.30 —3.82(0.02) 0.01(0.05)
0.35 —4.19(0.01) 0.01(0.05)
0.40 —4.51(0.01) 0.01(0.05)
0.45 —4.80(0.01) 0.01(0.05)
0.50 —5.06(0.01) 0.01(0.05)
0.55 —5.29(0.01) 0.01(0.05)
0.60 —5.50(0.01) 0.01(0.05)
0.65 —5.70(0.01) 0.01(0.05)
0.70 —5.87(0.01) 0.01(0.05)
0.75 —6.03(0.01) 0.01(0.05)
0.80 —6.18(0.01) 0.01(0.05)
0.85 —6.32(0.01) 0.01(0.05)
0.90 —6.44(0.00) 0.01(0.05)
0.95 —6.56(0.00) 0.01(0.05)
1.00 —6.67(0.00) 0.01(0.05)

Table 11 Binomial matched observations with true log odds ratio ¥/ = 1. Second to sixth columns show
the coverage probability and average length (in parentheses) of confidence intervals with nominal level
95% derived from profile, conditional, modified profile, penalized (Firth) and penalised based on adjusted
responses log-likelihood ratios, with all coverage probabilities multiplied by 100

w We Winp Wi Wa

S qg=30,m=1

0.31 57.8(2.4) 96.2(1.7) 85.0(1.8) 93.0(1.7) 92.0(1.7)
0.32 92.0(1.7)
0.33 92.0(1.7)
0.34 92.0(1.6)
0.35 92.0(1.6)
0.36 96.2(1.6)
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Table 11 continued

w We Winp W Wa

0.37 96.2(1.6)
0.38 96.2(1.6)
0.39 96.2(1.6)
0.40 96.2(1.6)
0.41 96.2(1.6)
0.42 96.2(1.6)
0.43 96.2(1.5)
0.44 96.2(1.5)
0.45 96.2(1.5)
0.46 97.8(1.5)
0.47 97.8(1.5)
0.48 97.8(1.5)
0.49 95.6 (1.5)
0.50 95.6 (1.5)
) q=30,m=3

0.06 85.0(1.9) 96.2(1.7) 96.2(1.7) 96.2(1.6) 92.0(1.7)
0.07 92.0(1.7)
0.08 92.0(1.7)
0.09 92.0(1.7)
0.10 92.0(1.7)
0.11 96.2(1.6)
0.12 96.2(1.6)
0.13 96.2(1.6)
0.14 96.2(1.6)
0.15 96.2(1.6)
0.16 96.2(1.6)
0.17 96.2(1.6)
0.18 96.2(1.5)
0.19 97.8(1.5)
0.20 95.6 (1.5)
0.21 95.6 (1.5)
0.22 95.6 (1.5)
0.23 95.6 (1.5)
0.24 95.6 (1.5)
0.25 95.6(1.5)
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Table 12 Binomial matched observations with true log odds ratio ¥ = 1. Second to sixth columns show
the coverage probability and average length (in parentheses) of confidence intervals with nominal level
95% derived from profile, conditional, modified profile, penalized (Firth) and penalised based on adjusted
responses log-likelihood ratios, with all coverage probabilities multiplied by 100

w We Winp W Wa

) q=30,m =11

0.01 92.0(1.8) 96.2(1.7) 96.2(1.7) 93.9(1.7) 96.2(1.7)
0.02 96.2(1.7)
0.03 96.2(1.7)
0.04 96.2(1.6)
0.05 96.2(1.6)
0.06 93.9(1.6)
0.07 93.9(1.6)
0.08 95.6 (1.6)
0.09 95.6 (1.5)
0.10 95.6 (1.5)
0.11 95.6(1.5)
0.12 95.6 (1.5)
0.13 95.6 (1.5)
0.14 96.1(1.5)
0.15 96.1(1.4)
0.16 96.1(1.4)
0.17 96.1(1.4)
0.18 96.1(1.4)
0.19 91.7(1.4)
0.20 91.8(1.4)
b g =30,m =39

0.01 96.2(1.7) 96.2(1.7) 96.2(1.7) 93.9(1.6) 96.2(1.7)
0.02 93.9(1.7)
0.03 93.9(1.6)
0.04 93.9(1.6)
0.05 95.6 (1.6)
0.06 95.6 (1.6)
0.07 95.6 (1.5)
0.08 95.6(1.5)
0.09 95.6 (1.5)
0.10 95.6 (1.5)
0.11 96.1(1.5)
0.12 96.1(1.4)
0.13 96.1(1.4)
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Table 12 continued

w W, Winp Wi Wa
0.14 91.7(1.4)
0.14 91.7(1.4)
0.16 91.8(1.4)
0.17 91.8(1.4)
0.18 91.8(1.4)
0.19 91.8(1.3)
0.20 91.8(1.3)

Table 13 Binomial matched observations with true log odds ratio ¥/ = 1. Second to sixth columns show
the coverage probability and average length (in parentheses) of confidence intervals with nominal level
95% derived from profile, conditional, modified profile, penalized (Firth) and penalised based on adjusted
responses log-likelihood ratios, with all coverage probabilities multiplied by 100

w We Winp Wy Wa

S g =100,m =1

0.31 15.0(1.3) 94.6(0.9) 77.3(1.0) 77.3(1.0) 88.4(0.9)
0.32 88.4(0.9)
0.33 88.4(0.9)
0.34 92.3(0.9)
0.35 92.3(0.9)
0.36 91.8(0.9)
0.37 94.6 (0.9)
0.38 94.6 (0.9)
0.39 94.6 (0.9)
0.40 94.6 (0.9)
0.41 95.7(0.9)
0.42 95.7(0.8)
0.43 95.7(0.8)
0.44 96.9(0.8)
0.45 96.9(0.8)
0.46 95.7(0.8)
0.47 96.4(0.8)
0.48 96.4(0.8)
0.49 96.4(0.8)
0.50 96.4(0.8)
) q=100,m =3

0.06 69.9(1.0) 94.6(0.9) 93.9(0.9) 95.7(0.9) 88.4(0.9)
0.07 88.4(0.9)
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Table 13 continued

w W, Winp Wi Wa

0.08 88.4(0.9)
0.09 91.8(0.9)
0.10 91.8(0.9)
0.11 94.6(0.9)
0.12 94.6(0.9)
0.13 94.6(0.9)
0.14 95.7(0.9)
0.15 95.7(0.9)
0.16 95.7(0.9)
0.17 96.9(0.8)
0.18 95.7(0.8)
0.19 95.7(0.8)
0.20 96.4(0.8)
0.21 96.4(0.8)
0.22 94.7(0.8)
0.23 95.1(0.8)
0.24 95.1(0.8)
0.25 95.1(0.8)

Table 14 Binomial matched observations with true log odds ratio ¥/ = 1. Second to sixth columns show
the coverage probability and average length (in parentheses) of confidence intervals with nominal level
95% derived from profile, conditional, modified profile, penalized (Firth) and penalised based on adjusted
responses log-likelihood ratios, with all coverage probabilities multiplied by 100

w W, Winp Wi Wa
s q=100,m =11

0.01 91.8(0.9) 94.6(0.9) 94.6(0.9) 94.6(0.9) 93.9(0.9)
0.02 93.9(0.9)
0.03 95.7(0.9)
0.04 94.6(0.9)
0.05 95.7(0.9)
0.06 95.7(0.9)
0.07 94.7(0.8)
0.08 94.7(0.8)
0.09 95.1(0.8)
0.10 92.6(0.8)
0.11 92.8(0.8)
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Table 14 continued

w We Winp W Wa

0.12 92.8(0.8)
0.13 92.8(0.8)
0.14 89.5(0.8)
0.15 89.5(0.8)
0.16 89.5(0.8)
0.17 85.0(0.8)
0.18 85.0(0.8)
0.19 85.0(0.7)
0.20 79.4(0.7)
b g =100, m =39

0.01 93.9(0.9) 94.6(0.9) 94.6(0.9) 94.6(0.9) 94.6(0.9)
0.02 95.7(0.9)
0.03 95.7(0.9)
0.04 94.7(0.9)
0.05 94.7(0.8)
0.06 95.1(0.8)
0.07 92.6(0.8)
0.08 92.8(0.8)
0.09 92.8(0.8)
0.10 89.5(0.8)
0.11 89.5(0.8)
0.12 85.0(0.8)
0.13 85.0(0.8)
0.14 85.0(0.8)
0.15 79.4(0.8)
0.16 79.4(0.7)
0.17 79.4(0.7)
0.18 72.5(0.7)
0.19 72.5(0.7)
0.20 64.7(0.7)
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Table 15 Binomial matched observations with true log odds ratio ¥ = 1. Second to sixth columns show
the coverage probability and average length (in parentheses) of confidence intervals with nominal level
95% derived from profile, conditional, modified profile, penalized (Firth) and penalised based on adjusted
responses log-likelihood ratios, with all coverage probabilities multiplied by 100

w We Winp Wi Wa

) g =1000,m =1

0.31 0.0(0.4) 95.0(0.3) 6.3(0.3) 6.3(0.3) 34.4(0.3)
0.32 39.8(0.3)
0.33 48.2(0.3)
0.34 56.7(0.3)
0.35 62.2(0.3)
0.36 70.0(0.3)
0.37 77.0(0.3)
0.38 81.1(0.3)
0.39 86.3(0.3)
0.40 89.1(0.3)
0.41 92.3(0.3)
0.42 94.6(0.3)
0.43 95.5(0.3)
0.44 96.1(0.3)
0.45 96.0(0.3)
0.46 95.7(0.3)
0.47 94.8(0.3)
0.48 92.5(0.3)
0.49 90.5(0.3)
0.50 88.0(0.3)
b g =1000,m =3

0.06 4.1(0.3) 95.0(0.3) 91.2(0.3) 91.2(0.3) 34.4(0.3)
0.07 42.5(0.3)
0.08 53.9(0.3)
0.09 62.2(0.3)
0.10 70.0(0.3)
0.11 77.0(0.3)
0.12 83.0(0.3)
0.13 87.7(0.3)
0.14 91.3(0.3)
0.15 94.5(0.3)
0.16 95.8(0.3)
0.17 96.1(0.3)
0.18 95.5(0.3)
0.19 94.0(0.3)
0.20 92.5(0.3)
0.21 89.3(0.3)
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Table 15 continued

w We Winp Wi Wa
0.22 85.0(0.3)
0.23 81.5(0.3)
0.24 75.3(0.3)
0.25 68.1(0.3)

Table 16 Binomial matched observations with true log odds ratio ¥y = 1. Second to sixth columns show
the coverage probability and average length (in parentheses) of confidence intervals with nominal level
95% derived from profile, conditional, modified profile, penalized (Firth) and penalised based on adjusted
responses log-likelihood ratios, with all coverage probabilities multiplied by 100

w We Winp Wy Wq

) q =1000,m =11

0.01 79.1(0.3) 95.0(0.3) 95.0(0.3) 95.0(0.3) 86.2(0.3)
0.02 91.2(0.3)
0.03 94.1(0.3)
0.04 95.4(0.3)
0.05 94.9(0.3)
0.06 92.4(0.3)
0.07 87.9(0.3)
0.08 81.5(0.3)
0.09 75.3(0.3)
0.10 65.6(0.3)
0.11 54.6(0.3)
0.12 43.3(0.3)
0.13 35.1(0.2)
0.14 25.1(0.2)
0.15 16.9(0.2)
0.16 12.0(0.2)
0.17 7.2(0.2)
0.18 4.0(0.2)
0.19 2.4(0.2)
0.20 1.2(0.2)
) q = 1000, m = 39

0.01 93.6(0.3) 95.0(0.3) 95.0(0.3) 95.0(0.3) 95.0(0.3)
0.02 94.1(0.3)
0.03 91.3(0.3)
0.04 86.5(0.3)

@ Springer



Reduced bias estimation of the log odds ratio 5329

Table 16 continued

w W, Wonp Wi Wa

0.05 79.5(0.3)
0.06 70.6(0.3)
0.07 57.4(0.3)
0.08 46.1(0.3)
0.09 35.1(0.3)
0.10 25.1(0.2)
0.11 16.9(0.2)
0.12 10.6(0.2)
0.13 6.2(0.2)
0.14 2.9(0.2)
0.15 1.4(0.2)
0.16 0.6(0.2)
0.17 0.3(0.2)
0.18 0.1(0.2)
0.19 0.0(0.2)
0.20 0.0(0.2)

Table 17 Binomial matched observations with true log odds ratio ¥ = 1. The values of § that minimize
the bias of the penalised log-likelihood estimator based on adjusted responses for various values of ¢ and
m. § was chosen from a set of 50 values ranging from 0.01 to 0.50

m qg=4 g =28 qg=12 q =16 qg =20 q =24 q =28 q =32

1 0.05 0.37 0.43 0.45 0.45 0.45 0.45 0.45
3 0.01 0.12 0.17 0.18 0.18 0.18 0.18 0.18
5 0.01 0.06 0.10 0.11 0.11 0.11 0.11 0.11
7 0.01 0.04 0.08 0.08 0.08 0.08 0.08 0.08
9 0.01 0.03 0.06 0.07 0.07 0.07 0.06 0.06
11 0.01 0.02 0.05 0.06 0.06 0.06 0.05 0.05
13 0.01 0.02 0.05 0.05 0.05 0.05 0.05 0.05
15 0.01 0.01 0.05 0.05 0.05 0.05 0.04 0.04
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