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Abstract

Despite the wide availability of automated testing techniques such as fuzzing, little
attention has been devoted to testing computer architecture simulators. We propose
a fully automated approach for this task. Our approach uses large language models
(LLM) to generate input programs, including information about their parameters
and types, as test cases for the simulators. The LLM’s output becomes the initial
seed for an existing fuzzer, AFL++, which has been enhanced with three mutation
operators, targeting both the input binary program and its parameters. We imple-
ment our approach in a tool called SearchSYS . We use it to test the gem5 sys-
tem simulator. SearchSYS discovered 21 new bugs in gem5 , 14 where gem5 ’s
software prediction differs from the real behaviour on actual hardware, and 7 where
it crashed. New defects were uncovered with each of the 6 LLMs used.

Keywords Fuzzing - Differential back-to-back testing - Systems - ISA x86 -
LLM - Code LLM - Tiny LLM - ANN - SBSE - SBFT - Genetic improvement
of tests - Gem5 - LLM in software engineering - TinyLlama - Phi2 - Llama2 -
Magicoder - CodeBooga - GPT-3.5-turbo

1 Introduction

Testing plays a key role in software’s lifecycle. Today, test generation is often expen-
sive, tedious and labour-intensive. The task becomes even more difficult for emula-
tors, that simulate different hardware. Creating a test suite for system-level simulation
software is challenging. For example, gem5 (Binkert et al. 2011) simulates software
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execution on different architectures, either processor micro-architectures or system-
level. Considering that the set of test inputs for such a simulator is a combination of
both the architecture simulation and the program that runs within that simulation, the
space of possible inputs for testing is exponentially large.

Previously (Dakhama et al. 2023), we proposed a novel way of testing system
simulator software. Our differential testing (McKeeman 1998) approach uses large
language models (LLMs) to first generate a set of initial programs, which are then
compiled and fed through a fuzzer (a modified version of AFL++, see Section 3.2).
This allows us to generate a large set of software that runs on specific hardware, as
well as on a simulator that emulates the same computer architecture. If the outputs
differ, we have potentially found a bug in the given system simulator (see Fig. 2).
Each mismatch is flagged for further investigation.

Here we extend our approach (Dakhama et al. 2023), to make it fully automated
and provide a more diverse set of test inputs, by: (1) generating new inputs directly
via LLMs, including extracting software arguments and their types; (2) using a
new mutator to modify software arguments’ data types (e.g., mutating 0: INT32
to 55: INT64); (3) improving fuzzing throughput; and (4) conducting an empirical
study to evaluate our approach using 6 LLMs, with overall 70 different experimen-
tal combinations: 14 corpora and 5 configurations of SearchSYS. Our extended
approach is presented in Fig. 1.

We implemented our approach in a tool called SearchSYS and used it to test the
gem5 (Binkert et al. 2011) software simulator. Overall, SearchSYS revealed 14
bugs that caused gem5 to produce behaviour different from the one observed when
the binary was run outside of gem5, as well as 7 crashes. Bugs were discovered
by SearchsSYs, regardless of the LLM used. They have all been reported to the
developers.

To summarise, our contributions are:

1. A fully automated novel approach for testing software system simulators by com-
bining large language models with fuzzing.
2. A prototype implementation of our approach, named SearchSYS.
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Fig. 1 High-level description of SearchSYS for automatically testing simulation software
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3. An extensive empirical study using SearchSYS to test the gem5 system simu-
lator. The LLM-generated inputs led to the discovery of 369 issues — this num-
ber increased to 101 442 when the LLM-generated programs’ binaries and their
arguments were seeded to SearchSYS ’s fuzzer. These findings reveal 14 new
separate behaviours that differ from running on native hardware and 7 new inde-
pendent crashes.

4. An investigation into the effect of 6 large language models and 5 SearchSYS
configurations on the effectiveness of SearchSYS.

Section 2 presents the background required to understand our contribution; Section
3 presents our approach for testing computer system simulator software. Section 4
presents the research questions we pose to evaluate our approach. Section 5 pres-
ents our methodology to answer our research questions, while Section 6 presents
our empirical results, and Section 7 discusses them. We present a threats to validity
section addressing potential limitations of our findings in Section 8. Additionally, we
provide related work in Section 9 and overall conclusions in Section 10.

To facilitate the replicability of our study, we make our artifact freely avail-
able (Dakhama et al. 2024).

2 Background

Our approach to testing system simulators combines technologies from two disci-
plines: search-based software testing, in the form of fuzzing, and generative Al in the
form of large language models. In this section, we describe these two technologies
as well as provide background on the application of our approach, i.e., detection of
errors in computer system simulators.

2.1 System simulators and silent errors

Simulators are broadly categorised by the domain or type of systems to be simulated.
Here, we are interested in computer-system architecture simulators, such as gem5
(Binkert et al. 2011). These emulate software execution in specific architectures, e.g.
for testing and verifying software behaviour within these computers or operating
systems even before they physically exist.

Although gem5 is the system-under-test (SUT) in the evaluation, discussed fur-
ther in Section 5, our findings apply to computer-system architecture simulators in
general. For brevity throughout the rest of the paper, we use ‘simulator’ for the com-
puter-system architecture simulator and ‘binary’ for the input software it emulates.

In simulators, bugs manifest in various forms, including system hangs, crashes,
and discrepancies between simulation and native runs. Bugs encompass cases where
the native run terminates correctly, but the simulation crashes, and cases where the
simulator fails to replicate a crash in the native environment. Silent errors, or mis-
simulations, further complicate matters as they occur when a simulation runs without
overt errors but produces incorrect results silently. Silent errors are challenging to
detect because the correct result is commonly unknown, cf. the Oracle Problem (Barr

@ Springer



63 Page 4 of 45 Automated Software Engineering (2025) 32:63

et al. 2015). To address this concern, we employ differential testing, using the native
system as our reference point to detect missimulations (McKeeman 1998; Chen et al.
2020).

2.2 Fuzzers

Fuzzing is a software testing technique that automatically generates test inputs, usu-
ally aiming to reveal crashes and/or increase code coverage of the software-under-
test (SUT).

We use the AFL++ fork (Fioraldi et al. 2020) of the American Fuzzy Lop (AFL)
fuzzer (Michal 2023). AFL++ instruments the SUT by compiling it with additional
instructions for obtaining feedback about code coverage. When fuzzing, AFL++ takes
an initial corpus of tests (known as seeds) and the instrumented SUT. The fuzzer
uses test coverage information in the instrumented version! of the SUT to explore
new inputs by executing the target program with seeds and evaluating the cover-
age achieved. Subsequently, the fuzzer applies diverse mutations to a queue of input
seeds to discover new program execution paths and thereby increase code coverage
in the SUT. Inputs discovering new branch transitions are added to the fuzzer’s queue
until reaching the termination condition, such as achieving the desired coverage or
reaching a time limit. AFL is configurable via its Python and C/C++ APIs.2

Seeds are typically input data for the SUT. However, in the context of this work,
seeds represent a combination of executable binary program files and their argu-
ments, rather than plain input data, and the SUT is a simulator. We discuss in detail
our choice of seed representation for fuzzing simulators in Section 3.

2.3 Code coverage

In testing, code coverage measures are used to approximate the portion of a pro-
gram’s code that is executed with given test inputs, such as line, function, or branch
coverage. In this work, during fuzzing and corpus minimisation, AFL++ and afl-
cmin apply"binned hitcounts", a simplified version to estimate branch (edge) cover-
age. We refer the interested reader to the original work and recent analysis of AFL++
coverage (Michal 2023; Fioraldi et al. 2023). Outside the fuzzing campaign, we use
line coverage, which measures the executed lines of code during SUT execution to
address the code coverage aspects of RQ1 and RQ4. Line coverage is expressed
as ecither an absolute value (e.g. 20 lines executed) or as a percentage relative to a
baseline or previous results (e.g. 5% increase over a baseline of 20 lines). We use the
former option in our evaluation, similar to Even-Mendoza et al. (2023); Xia et al.
(2024).

nstrumented gem5 code is automatically generated during compilation by using the GNU Compiler
Collection (GCC) gecov profiling tool https://gcc.gnu.org/onlinedocs/gec/geov/introduction-to-geov.html.

2 https://aflplus.plus/docs/custom_mutators/, and environment variableshttps:/aflplus.plus/docs/env_vari-
ables/, which allow for customisation and tuning of its behaviour. We leverage these options to build
SearchSYS.
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2.4 Artificial intelligence: Large Language Models (LLMs)

Large language models (LLMs) are increasingly prevalent in artificial intelligence
(AI) research, e.g., to aid text generation, including the generation of source code.
The emergence of GPT models, based on transformers with attention mechanisms,
has been widely accepted, leading to the development of new models aiming to sur-
pass their capabilities. Among the most prominent GPT versions are GPT-3. 5 (Dale
2021), publicly available through OpenAT ’s framework, and GPT-4 (Achiam et al.
2023), accessible via private subscription. Recent large language models compet-
ing with OpenAT ’s offerings at an industrial level include L1ama2 (Touvron et al.
2023), developed by Meta and currently available to the public, and Bard (now
renamed to Gemini) (Aydin 2023), owned by Google and accessible through its
framework. Additionally, various research communities have produced new open-
source text generation models, such as Dolphin and Mistral, which are available
on the HuggingFace platform (Jain 2022).

Several LLMs have been recently published for the specific task of program
source code generation (aka Code LLMs Pahune and Chandrasekharan 2023). These
are based on general-purpose architectures or similar training techniques. We evalu-
ate several different LLMs. In addition to ChatGPT-3. 5, we use Phi?2 (Javaheripi
and Bubeck 2023) (from Microsoft, designed for software generation), CodeL-
lama (Grattafiori et al. 2023) (which is derived from Llama specifically for source
code generation), Magicoder (Wei et al. 2023) (which combines transformers
and auto-encoders for code generation) and CodeBooga. Notably, CodeBooga
(Code Booga n.d.) demonstrates how novel techniques, like BlockMerge Gradient,
can amalgamate knowledge from different LLMs. Specifically, CodeBooga com-
bines Phind-CodeLlama-34B-v2 and WizardCoder-Python-34B-V1.0
(Phind-CodeLlama-34B-v2 outperformed GPT-4 in benchmark evaluations
Gu et al. 2024). They operate within the O11ama framework, which helps to set
them up and ensure they run under standard conditions.

3 SearchsSYS: Testing system simulators
Our approach for testing simulators follows the next steps:

1. Test Input Generation First, we use an LLM to generate a set of programs.
In our previous work, we began by using existing programs. In this paper, we
remove the need for such examples (Section 3.1.2).

2. Coverage-Guided Mutation-Based Fuzz Testing A single test input for the
simulator is composed of an executable program binary file (--binary) and its
arguments (--options). We thus compile the LLM-generated programs and input
them into a fuzzer to generate diverse variants of our test inputs (Section 3.2).

3. Differential Testing Finally, we compare the result obtained from running our
test inputs through a simulator with the outcome of the actual test execution in a
native environment (Fig. 2).
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Fig. 2 Differential testing of system simulators involves the use of a mutated corpus of test programs to
identify discrepancies between the output generated by a software simulator and a reference standard:
direct execution

Cross-check results
Mismatch might indicate a bug in
the under test system simulator

System simulation

Execute test in HW

s
-
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@ee -2,6 +2,7 @@
// Modification timestamp: 2023-08-10 16:18:25
// Original Source: https://github.com/1lvm/11lvm-test-suite/blob/main/MultiSource/Benchmarks/ASC_Sequoia/20000314-3.c

+ #include <stdio.h>
#include <stdlib.h>
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extern void abort(void);

v 12 mm  data/afl/00167.c (D

@ -1,4 +1,3 @@
-c

// Modification timestamp: 2023-08-04 14:29:42
2 // Original Source: https://github.com/c-testsuite/c-testsuite/blob/master/tests/single-exec/00167.c

M @@ -26,4 +25,3 @@ int main(int argc, char *argv(]) {

Fig.3 A sample of the changes using our Bash scripts to fix minor errors of LLM-generated programs
as shown in SearchGEMS5 (Dakhama et al. 2023)’s GitHub

The following subsections detail each of the aforementioned steps of our approach.
3.1 LLM-based test inputs generation

We create a corpus of parameterised test inputs. To execute a single test in the simula-
tor under test, we need: the program binary to simulate; its arguments; and their types
(e.g. 32-bit int). We use LLMs to generate all components necessary for creating a
test input. The process includes the binary creation by compiling the test program
source code obtained from the LLM. Additionally, we prompt the LLM to provide a
file containing the test program source’s arguments and their types.

3.1.1 Generation via test program sources

In our preliminary work (Dakhama et al. 2023) we generated parameterised test
inputs from test suites and tutorial C programs via LLMs.

We used a Bash script to amend minor errors, such as adding missing includes
and removing empty lines or free text at the start or end of C programs. For instance,
in Fig. 3, we automatically fixed two programs; we inserted a missing stdio.h
include to the test input 20000314-3. c, while we removed a free text not in a
comment from the test input 00167 . c.
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We applied a few-shot prompting technique (Brown et al. 2020). We had three
prompts to facilitate the LLM’s comprehension of the task: 1) a simple prompt that
describes the task using a small C code and a free text description; 2) a prompt that
gives an example of a good response; and 3) a prompt that gives an example of a
wrong response with a short explanation of what is not valid.

To enable this prompt to handle many programs simultaneously, we extended it
by appending the prompt with many programs as illustrated in Listing 1. While this
approach helps guide the LLM’s comprehension, it may also limit the diversity of the
responses generated, while also limiting the throughput of the generation due to the
large number of tokens required in the prompt.

"I will give you a set of N programs from source X, can you generate
a pair per program with an input sample and its type information for the

second program? These are the programs: (name: code, name: code,...)".

Listing 1 Prompt used for generating input samples and type information in Dakhama et al. (2023).

The GPT-3.5-turbo returned pairs of programs, consisting of the original C
program and its parameterised counterpart, plus, for each argument, an example of a
valid argument (input value) and its type (e.g. 5 INT32). (The original program is
for sanity checks and types are needed by the tool for input mutation.) The programs
produced by the LLM that have no arguments or fail to compile were deemed invalid.

With this approach, we gained better control over test input generation by con-
straining the LLM to a predefined set of C programs. However, it yielded a low rate
of valid programs for fuzzing with AFL++. In Section 3 of Dakhama et al. (2023)
(our previous work), we observed that GPT-3. 5-turbo heavily relied on external
program sources and required additional adjustments such as our Bash script to pre-
pare the final compiled program.

Zero-Shot Over Few-Shot: The change to zero-shot prompting in Section 3.1.2
improves efficiency, scalability, and diversity of the test input generation by remov-
ing the dependency on predefined examples and Bash script’s fixes and addressing
limitations of a few-shots’ time-consuming, semi-manual, and error-prone process.
This enables fully automated fuzzing, eliminating human involvement in seed gen-
eration and selection, which is crucial for large-scale, continuous testing without
human bottlenecks to achieve high throughput and test input diversity.

3.1.2 Zero-shot prompting test input generation

We apply zero-shot prompting for test input generation instead of a few-shots
approach as in our previous work (Dakhama et al. 2023) to address efficiency and
scalability challenges while enabling broader and more diverse test input generation.

We augment the prompts with four C language-related token categories instead
of relying on test suites and C programs. We use three types of tokens: (1) program
names from tutorials (e.g., “Hello World”), (2) compiler optimisations (e.g., “Dead
Code Elimination”) or components (e.g., “Handles Abstract Syntax Tree (AST)”),
and (3) phrases from the ISO’s C standard (ISO C, Working Group SC22/WG14
2018) (e.g., “asinh function”). Note that we scan the last section of ISO C, Working
Group SC22/WG14 (2018) into our generator to be able to generate these phrases.
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A phrase can be initialised (first word, ISO C, Working Group SC22/WG14
2018, page 490).

SearchSYS starts with a single prompt setting the LLM role, outlining the task’s
context to generate the desired output using a similar prompt as in Section 3.1.1. How-
ever, we set the role once, rather than repeating this process every several prompts.
Additionally, we do not test if the model adheres to a specific input program nor give
examples of good and bad responses. Following this stage, the LLM is presented with
an automatically generated prompt with a subset of three tokens selected randomly.
Table 1 describes the three token types (Type Col.) across four C language-related
token categories (Category Col.) with a few examples (Example Col.).

Subsequently, we create random queries following a straightforward pattern, as
shown in Listing 2.

"Coding task: give me a program in C with all includes. Input is taken via
argv only. Please return a program (C program) and a concrete example of
an input (BASH). The C program will be with code triggering " + <Token—I>
+ "optimisations, covers this part of the compiler " + <Token—2> + ", and
exercises this idea in C: " + <Token—3> + ". To recap the code contains
these:" + <Token—I> + " and " + <Token—2> + " and " + <Token—3>;
Listing 2 A template prompt for generating C test program source using random tokens from Table 1.

"Coding task: give me a program in C with all includes. Input is taken via
argv only. Please return a program (C program) and a concrete example of
an input (BASH). The C program will be with code triggering Vectorization
optimisations, covers this part of the compiler Frontend, and exercises
this idea in C: signed type. To recap the code contains these
Vectorization, Frontend and signed type;"

Listing 3 A concrete prompt for generating C test program source using the tokens "Vectorization," "Fron-
tend," and "signed type".

This process achieves fully automated test input generation. Figure 4 shows a gen-
erated parameterised C program created using CodeBooga which includes Vector-
ization, Frontend and signed type tokens, crafting the concrete prompt in
Listing 3. The test input, as before, includes: parameterised C programs, an example
of a valid argument (input value) and its type for each argument (e.g. 9: INT32). For
full details see our tool artifact.

Table 1 C language-related token categories for filling template gaps in listing 2

ID Type Category #Tokens Examples
1 Token-1 Compiler 26 "Scalar Optimizations","Dead Code
Optimizations Elimination","Constant Folding"
2 Token-2 Compiler Parts 36 "Frontend","Sema","Serialization","Parse","Lex","AST"
3 Token-3 Domain 192 "C Program to Sort an Array using Merge
Problems Sort","Calendar Year in Different Formats","input
includes several arguments"
4 Token-3 Compiler 3480 "AND operators","cimagl function","EOF","locale","po
Standard w","SCNIMAX"
Indices (ISO C,
Working Group
SC22/WG14
2018)
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1 """ ¢
2 #include <stdio.h>
3 #include <stdlib.h>

| #include <immintrin.h> // include header for AVX intrinsics
5 int main(int argc, char *argv([]) {

6 if (argc !'= 2)

7 printf ("Usage: %s <integer>\n", argv[0]);

8 return -1;

9 ¥

10 int input = atoi(argv[1]);
11 // load input into vector register

12 __m256i vinput = _mm256_setl_epi32(input);
13 // square the integer using AVX instruction
14 __m256i vresult = _mm256_mullo_epi32(vinput, input);

15 int result[8];

16 // store vector register to memory

17 _mm256_storeu_si256 ((__m256i*)result, result);

18 printf ("Square of %d is: %d\n", input, result[0]);
19 return O0;

20 }

21 °°°

Fig.4 C code generated by LLM CodeBooga and the concrete prompt in Listing 3. Note: the frontend
program takes inputs from user and send answer back to the user, the use of vector instructions, e.g.
mm256_setl epi32,and signed types, e.g. int input

This streamlined approach generates inputs at a significantly higher rate, com-
pared to previous work, in a way that does not depend on which LLM is used. It also
provides high-level control over test case generation of parameterised test inputs.
In Section 6.1, we evaluate the throughput of different LLMs, including GPT-
3.5-turbo. For brevity, we refer to Section 3.1.1’s approach as the Semi-manual
Approach and Section 3.1.2’s as the Template Prompt Approach throughout the rest
of the paper.

3.2 Fuzzing

AFL++ operates by taking an initial set of files, each serving as an input to the soft-
ware-under-test (SUT) and instrumenting the SUT to measure test coverage. This
section describes our extension of AFL++, SearchSYS, for testing simulators with
complex test inputs, using a coverage-guided mutational approach. We further dis-
cuss applications of SearchSYS to test a specific simulator, gem5, in Section 5.

We have extended AFL++ by writing our mutation operators and part of the muta-
tion strategy, although we still make use of AFL++ ’s coverage selection criteria.
This enables the selection of specific test inputs from the corpus and mutation of
their binary file, arguments, or types, based on the test coverage data collected by
AFL++ for each test input. We do not use AFL++ ’s built-in mutation operations
at all because they are not suitable for fuzzing binary files and types. These opera-
tions often disrupt the necessary structure required to create valid (or semi-valid) test
inputs, resulting in mostly broken and useless test inputs. Instead, we use AFL++ ’s
custom mutators feature to load and apply our own mutators.

In our previous work (Dakhama et al. 2023), we introduced SearchGEMS5, an
automated testing technique that combines LLMs with search-based testing for sys-
tem simulator testing. We used GPT-3. 5-turbo for parameterised C program gen-
eration, and we discussed our extension to any LLM model in Section 3.1. Here, we
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extend the search-based testing aspect of Dakhama et al. (2023), which only included
diversifying the arguments’ values, the generation of new test inputs via direct fuzz-
ing of their executable program binary file, and the selection of test inputs to be
fuzzed based on coverage feedback.

To further enhance our approach, we have made some additional improvements:

e New Mutator Operator. We introduce a new mutator that varies the type of
arguments.

o Independent Mutators. We implement and load to AFL++ each mutator sepa-
rately, allowing coverage feedback to influence the selection of test inputs, while
also allowing the use of different mutator operators from the three available ones,
thereby enhancing the search-based testing capability of SearchsYs.

e Improved Fuzzing Throughput. We improve fuzzing throughput by no longer
relying solely on AFL++ ’s filtering of test inputs. Instead, we save all test inputs
for later inspection, including additional scripts for differential testing, similar to
the approach in Even-Mendoza et al. (2023).

Next, we describe in detail each of these contributions.
3.2.1 Custom AFL++ mutation operators

While bit-flip mutation is a standard feature in AFL++, its application must con-
sider the context. Introducing mutations that result in binaries being unable to load or
execute a single instruction leads to inefficient testing of the SUT, making it unlikely
that developers will be prepared to spend effort on bug identification or bug fixing.

Consequently, we implement a new bit-flip mutation operator that controls the
number of bit-flips and frequency of application while limiting it to a program’s com-
piled binary file. We do not apply bit-flip to arguments or type information to preserve
the structure of the test input. In Section 7.1, we analyse a fuzzed test input where
a bit-flip modifies a pointer value (address) without impacting instruction validity,
an unlikely outcome using the standard AFL++ bit-flip operator. This modification
caused a mismatch between gem5 and the simulated architecture.

We have introduced three mutation operators of a test input for testing system
simulators: 1) bit-flip operator to edit a program’s compiled binary file, 2) a range-
enhanced operator to edit argument values within their specified type range and 3) an
operator to edit the value’s type. Operator (2) uses type information to ensure that
the arguments remain valid. In contrast, operator (3) mutates the type itself, such
as changing from INT32 to LONG, at random, which can potentially expose mem-
ory safety issues in the SUT. We currently support all integer types, floating-point
numbers, doubles, and strings. However, we have not yet implemented support for
pointers. Figures 5 and 6 show examples of arguments’ value (operator (2)) and type
mutations (operator (3)), respectively.

We load all three mutators (1-3) using the AFL++ option, allowing AFL++ ’s
heuristics to select the next mutation operator. However, we intervene by decreasing
the probability of choosing (2), as AFL++ favours this operator due to its low risk of
failing, which is too conservative for a fuzzing approach.
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1 ./mutator_args.so test.o, 1:INT, 2:LONG, "Hello":STRING
2 After Mutation: test.o, 10:INT, 2:LONG, "universe":STRING

Fig. 5 Example of mutation operator (2) changing two argument values: first argument changes from 1
to 10, and third argument from"Hello"to"universe"

1 ./mutator_types.so test.o, 1:INT, 2:LONG, "Hello":STRING
2 After Mutation: test.o, 1:LONG, "2":STRING, "Hello":STRING

Fig. 6 Example of mutation operator (3), which changes the first argument’s type from INT to LONG
and the second argument’s type from LONG to STRING

SearchSYS implements the extension to AFL++. It evaluates new test inputs in
the form of binary name, arguments list, types. SearchSYS then
uses this information to carry out our mutation operators either directly to the com-
piled binaries or to their arguments.

3.2.2 Fuzzing throughput improvements

AFL++ discards test inputs (1) that exhibit no crash or hang and (2) do not contrib-
ute to coverage. However, such inputs can still uncover missimulation in the system
simulator under test, thus removing them from the queue degrades SearchSYS ’s
ability to detect missimulations.

We incorporate the following idea in SearchSYS: fuzzing and differential
testing are carried out separately, similar to the approach by Even-Mendoza et al.
(2023). Consequently, we save these fuzzed test inputs for later examination. After
fuzzing, we employ differential testing, between running directly on x86 hardware
(i.e., native) and being run by the simulator. In Section 6, we analyse the efficiency of
this idea in terms of bug finding and coverage.

Another factor reducing fuzzing throughput is related to how many mutation
operations AFL++ performs in a single fuzzing iteration. AFL++ ’s afl custom
fuzz count parameter controls the number of times a test input should be mutated
and executed against the target. The iteration fails if any attempt to mutate the test
input is unsuccessful, and the resultant fuzzed test input is then discarded. An attempt
using Operator (1) (bit-flip) is more likely to fail than Operator (2) or Operator (3)
because it involves modifying a compiled binary file.

We customise the afl custom fuzz count to control the number of muta-
tion attempts per iteration. A lower - value reduces the likelihood of an iteration fail-
ing. A too-low value leads to inefficient fuzzed input generation due to the overhead
each iteration introduces.

Note that afl custom fuzz count is a hyperparameter of AFL++, not
SearchSYS. In Section 6, we investigate the optimal value of afl custom
fuzz count in the context of system simulator fuzzing, measuring the improve-
ment in throughput, coverage, and bug-finding.
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4 Research questions

Next, we state our research questions, which guide our SearchSYS evaluation.

To assess the reliability of LLMs as a source of test inputs for a system simulator,
when given the prescribed test framework (as outlined in Section 3), our objective is
to evaluate:

RQ1: To what extent can different LLMs effectively generate parameterised C
programs for testing system simulators that adhere to the specified requirements?

During the test generation process, LLMs may generate similar test cases or test
cases that do not increase code coverage. Considering that this negatively impact the
fuzzer’s performance, we minimise the test suite size through a test selection process.
This also allows us to evaluate:

RQ2: What is the level of test case redundancy related to branch coverage in
the test suite generated by the LLMs?

Does fuzzing (concretely with AFL++) enhance the basic test coverage achieved by
LLM-generated test suites in a system simulator, after obtaining a minimised test
suite? Which LLMs perform best in achieving high coverage with AFL++ diversifi-
cation? Considering that the search space of every possible binary program and input
for a system is vast, we adapted AFL++ to construct SearchSYS (Section 3).

SearchSYS has parameters that affect the fuzzing process. These can be encoded
into different configuration files for SearchSYS (Section 6.3). We randomly gener-
ated 30 settings files. Consequently, we ask:

RQ3: What are the most suitable parameters for running SearchSYS?
Are there any customisations which have a particularly positive effect? Since fuzzing
is non-deterministic, how significant is the impact of the parameter configuration,
particularly when combined with our custom mutators, on the use of our approach in
practice? Furthermore, we aim to quantify the impact of our AFL++ ’s customisation,
as outlined in Section 3.2. Beyond the technical aspects of AFL++ ’s ability to instru-
ment and fuzz system simulators, we ask:

RQ4: How significantly does our customisation enhance SearchSYS ’s effi-

cacy in bug finding and coverage improvement?

5 Methodology

Here, we present our methodology to answer our research questions.
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5.1 gemb5 Use case

Our case study, conducted during the evaluation phase of our research, focused on the
instrumentation, testing, and examination of the Instruction Set Architecture (ISA)
x86 part of gem5. gem5 is an open-source simulator widely used in both academia
and industry. To facilitate search-based fuzz testing, we had to instrument gem5 and
address potential performance overheads and scalability issues that arise when simu-
lating large-scale computer systems.

5.1.1 Logic circuit simulator

gemb is a state-of-the-art discrete time simulator for logic circuits. It is commonly
used to test the logic design of new electronic components, such as memory cache
systems, field-programmable gate arrays (FPGAs), and even CPUs. gem5 is a large
open-source project hosted on GitHub, with a primary coding language being C++
and Python. We use the version provided in the 2023 SSBSE Challenge Track. It is
based on gem5 staging branch v23.0, but incorporates the latest gem5 features and
improvements into a stable release. The tool also includes objects, shared libraries
and images, occupying over 28 GB of memory. It consists of ~ 1.34 million lines of
code, with more than a million lines written in C++. gem5 is controlled by a Python
script, specified via its command line, which determines, for example, the size and
type of memory the simulated binary can read and write to.

To facilitate comparison with our previous work (Dakhama et al. 2023), we employ
the same modified version of an example file provided by the SSBSE Challenge
Track 2023 organisers, i.e., hello-custom-binary.py, which we adapted to accommo-
date the specific requirements for SearchSYS ’s test inputs, including file usage and
additional parameters.

5.1.2 Instrumentation and AFL++ setup

During fuzzing with AFL++, to ensure consistent execution of test inputs, a Python
script is used to communicate between AFL++ and gem5. We use SCons version
v4.4.0 and the AFL++ fork (Fioraldi et al. 2020) of the American Fuzzy Lop (AFL)
fuzzer (Michal 2023), version afl-fuzz++4.08c, GitHub commit £596a297.

SearchSYS employed AFL++ as the search engine, using its default parameters,
except for two custom settings: the AFL++ ’s map size was set to 1 200 000,
with a time limit of 99 seconds and memory limit of 50 000 megabytes per test
case execution. We customised the functions afl custom init, afl custom
deinit, afl custom fuzz count and afl custom fuzz to implement the
customisations described in Section 3.2. To further diversify the test inputs, we set
AFL_ SHUFFLE QUEUE to 1. The full AFL++ ’s setup is described in SearchSYS
’s artifact (Dakhama et al. 2024).
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5.2 Selected LLMs

We selected 011 ama models based on their diversity, covering both general-purpose
and code models, as well as a range of sizes determined by the number of Artifi-
cial Neural Networks (ANNs) parameters. The number of ANN parameters typically
indicates the complexity and size of the neural network model. In LLMs, the model’s
size is correlated with the number of parameters, including weights and biases in the
neural network architecture.

We explore how model size impacts fuzzing outputs by examining a new type
of language model called small language models (SLM), also known as Tiny
LLMs (Matricardi 2023). These models are smaller versions of LLMs, typically
with parameter counts significantly smaller than standard LLMs. We employ two
SLMs, TinyLlama-1.1B and Phi2, to assess the influence of model size on our
fuzzing methodology in our evaluation. TinyLlama-1.1B is a general-purpose
1.1 x 10%( 1.1B) parameter language model, pre-trained on approximately 1 trillion
tokens (Zhang et al. 2024). Phi2 is a 2.7 x 10%( 2.7B) parameter language model
designed for question answering, chat, and code generation (Javaheripi and Bubeck
2023).

We employed 6 language models listed in Table 2, along with a version of GPT—
3.5-turbo previously used in our work (Dakhama et al. 2023). To address RQ2,
we applied AFL++ ’s corpus minimisation (afl-cmin), which reduces the number of
test cases it uses based on previously covered transitions. This allowed us to compare
fuzzing performance and behaviour across different LLMs and methods. We gener-
ated a total of 2 x 7 = 14 input corpora, with two variants per LLM: one containing
corpus minimisation (afl-cmin) and the other without. Subsequently, we compared
the reduced and original test suites. To distinguish between these corpora, we have
assigned them different names, for example, Phi2 and Phi2-cmin.

5.3 Configurations

We consider 5 configurations in our evaluation when fuzzing:

Table 2 Language models for LLM-based input generation phase

Model Type Size Version Test Input Generation
Methods

TinyLlama SLM,L 637 MB Git commit 2644915 Zero-shot, Corpus Min.
Phi2 SLM,L 1.6 GB Git commit e2£d632 Zero-shot, Corpus Min.
Llama?2 LG 3.8GB Git commit 78e2641 Zero-shot, Corpus Min.
Magicoder L,C 3.8 GB Git commit 8007de0 Zero-shot, Corpus Min.
CodeBooga L,C 19.0 GB  Git commit 05b83c5 Zero-shot, Corpus Min.
GPT-3.5-turbo LLM,G NA ChatGPT (Feb. 11, 2024) Zero-shot, Corpus Min.
GPT-3.5-turbo LLM,G NA ChatGPT (Aug. 3,2023) Prog. Src., Corpus

(SSBSE 2023)

Min.

Type: C (code model), G (general-purpose model), L (local model), LLM (large language model), SLM
(small language model). Methods applied to create the corpus: Prog. Src. (Input corpus generation
via test program sources, Section 3.1.1), Zero-shot (zero-shot prompting, Section 3.1.2), Corpus Min.
(corpus minimisation with AFL++ -cmin)
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—_—

SearchSYS . As introduced in this paper (with all improvements).

2. Throughput Improvement by Keeping all Fuzzed Inputs. We adapt Search-
SYS to operate solely with the first throughput improvement option, as described
in Section 3.2, namely fuzzing by proxy.

3. Throughput Improvement with Optimising afl custom fuzz count .
We adapt SearchSYS to operate solely with the second throughput improve-
ment option, as described in Section 3.2, namely overriding AFL++ custom func-
tion afl custom fuzz count.

4. No Throughput Improvement. We adapt SearchSYS to operate without any
throughput improvement options.

5. SearchGEM5-SSBSE-2023. SearchGEM5 as in our previous work (Dakhama

et al. 2023).

We use these configurations to assess the impact of each customisation.

Besides comparing with SearchGEMS5 (Configuration 5), we have constructed
weaker versions of SearchSYS. Configurations 2-4 incorporate the type mutator
and enable loading each mutator into AFL++ separately. However, these configura-
tions differ in their throughput improvement options. Configurations 2-3 exclude one
option each: Configuration 2 employs fuzzing by proxy, saving all test inputs for later
review, while Configuration 3 overrides the custom function afl custom fuzz
count. Configuration 4 includes none. In contrast, Configuration 1
includes all three customisations. This allowed us to isolate and evaluate the impact
of each addition in SearchSYS relative to the baseline, SearchGEMS5.

5.4 Experimental procedure

The complete flow of the experimental procedure is illustrated in Fig. 7.

For RQ1, we generated the input corpora running LLM-based input generation for
25 hours. We set the timeout per query (or prompt) to be 100 seconds. This decision
dictated our selection of LLM models for test input generation, as models consis-
tently reaching the timeout limit are unsuitable for the auto-generation task due to
their expected low throughput rate. For RQ2, we applied corpus minimisation using
afl-cmin of AFL++. This part is illustrated as the pre-fuzzing stage in Fig. 1.

For RQ3, we generated 30 sets of numbers, each containing three randomly
selected values between 1 and 100 (i.e. randomly and uniformly over integers
between 1 to 100), representing different parameter options for SearchSYS that
affect the fuzzing process. This triplet format corresponds to the value of afl cus-
tom fuzz count per each of the three mutators in Section 3.2. Each triplet is
stored in a separate settings file, resulting in 30 files being used in our evaluation.
RQ3 aims to select a single settings file for use in Configuration 1 and 3 during fuzz-
ing (RQ4).

Finally, for RQ4, where we generate the final fuzzed corpus, we fuzzed each
combination of input corpus (with and without minimisation) and configuration for
24 hours. This process was repeated 10 times to obtain more accurate results (Klees
et al. 2018). We ran a total of 70 combinations: 14 different input corpora and 5 con-
figurations. Our evaluation presents results at the granularity of each combination,
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- 7 corpora were generated by LLMs

LLM Data Generation - Generation was performed for 25 hours each.
- Total generation time: 175 hours. (7x25 hours)
- Data analysis: all sets.

Coverage and LLM data: RQ1
Throughput Analysis — - Analysed all sets (100% of the data).
- The data required semi-manual bug analysis when
7 corpora simulation output differed from x86 execution.

Analysis of Initial - 7 sets were analysed by AFL-cmin utility
Corpora - Data analysis: all sets.

AFL++’s Parameter
Selection
- 700 sets were generated by fuzzing 14 input corpora (7 initial, 7 minimised).
- Fuzzing was performed for 24 hours each, across 5 configurations.
- Each combination (corpus x configuration) was repeated 10 times.
- Total fuzzing time: 16,800 hours. (14x24x5x10 hours)

- Results were aggregated by input corpus and configuration.
- This produced 70 groups of data.
- Results for each group were calculated as averages of 10 repeats.

Fuzzed data: RQ4,
- Analysed data from a set per each of the 70 groups.
- Selection: set-10 was chosen (100% of set-10 analysed).

- The data required semi-manual bug analysis when

Coverage and simulation output differed from x86 execution.

Throughput Analysis Bug Investigation

RQ4 [OGPu [ CPU (X86 and/or Simulation)

Fig. 7 Overview of the experimental procedure. (Note about RQ4 Bug Investigation - Set 10: day
to_analyse = uniform random Int([1, 10]),yieldedday to analyse = 10.We
used 100% of Day 10 data to construct Tables 7 and 8. The data is archived as set-10.zip in our
Zenodo record)

Table 3 Computer. hardware .and Experiment GPU? Computer Specification

z;’;g:re used during evaluation oA T T Yes Ubuntu Server 20.04.1 LTS, 256
Generation Local GB RAM, NVIDIA A30 Tensor

GPU of 24 GB, 80 logical CPUs

LLM-based Input No Ubuntu 22.04.4 LTS, 32 GB
Generation Remote RAM, i7-1185G7
as Service
Fuzzing & Coverage Yes Red Hat 8.5.0-20, 256 GB RAM,

NVIDIA A30 Tensor GPU of 24
GB, Intel Xeon Silver 4316 CPU
with 80 logical CPUs

averaging the 10 repetitions for each combination. Overall, a total of 700 of 24-hour
runs were performed. This part is illustrated as the fuzzing + genetic algorithm (GA)
engine part in Fig. 1. We note that AFL.++ uses a GA internally.

To explore the bug detection capabilities of the generated test inputs, we applied
differential testing, post-fuzzing. An overview of our post-fuzzing experiment proce-
dure is illustrated in Fig. 2.

5.5 Experimental environment

We used different machines for our evaluation, some equipped with GPUs and others
with only CPUs (x86_64), listed in Table 3.
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LLM-based input generation The GPT-3.5-turbo-based generation used GPUs
on servers running in data centres managed by OpenAI. For the rest of the lan-
guage models, we implemented a small driver written in Java, querying O1lama
models using the 011ama4j infrastructure. We used O11lama version 0.1.22 and
Ollama4j version 1.0.44. The timeout per query was 100 seconds. We ran the
LLM-based input generation method on the machines listed in Table 3, rows 1-2 for
Ollama models and GPT-3.5-turbo, respectively.

Fuzzing and coverage We fuzzed gem5 using Docker with Debian-12 containers
emulated with Podman (v4.6.1), using the machine specification in row 3 of Table
3, including running AFL++ for the corpus minimisation and parameter selection.
To answer our research questions (e.g. RQ4 setting), we ran 70 docker containers
in parallel for the fuzzing campaigns, each of which was a different combination of
configuration and input corpus (5 x14) for 10 days by leveraging the configuration
option AFL. NO_AFFINITY=1 from AFL++ to run the system in multiple cores. It
attached a container per processor, keeping 10 processors for the host’s other tasks.
The experiments did not consume more than 130GB of RAM in total. The SUT was
instrumented and compiled with afl-cc, GCC—11 and the default settings of gem5.
The binary files of test inputs were compiled with GCC—11 and-03. We measured the
coverage of the input and fuzzed corpora with gcov. We built gem5 with g++ 11-
01 and gcov, adding gcov instrumentation overheads. We measured a smaller part
of the gem5 codebase, i.e. that is relevant only to x86. We used the gcov-based tool
gfauto (gfauto n.d.) to generate the coverage results in a human-readable format
for 3370 files in the gem5 codebase (including header and system header files).

6 Results

We evaluated SearchSYS on its test generation capabilities, coverage, bug finding,
and the efforts required to reproduce the results. We provided further details about the
discovered bugs online at Dakhama et al. (2024).

6.1 RQ1:LLM test input generation effectiveness

To evaluate the suitability of LLMs as sources of inputs for fuzzing system simula-
tors, we conducted 25 -hour runs with different LLM models. We assessed the effec-
tiveness of our LLM-based Test Inputs Generation on 6 different language models
(Section 5.2). We examined the test input throughput, coverage, and the capability to
discover new bugs in the system under test (SUT). Data was collected from 6 LLMs,
each generated through 25 hours of test input generation using LLMs. The initial
corpus GPT-3.5-turbo (SSBSE 2023) is taken from Dakhama et al. (2023).

Programs extraction process Large models tend to generate proper code (i.e. com-
plete programs) while smaller models often produce responses that are neither valid
programs nor demonstrate a clear understanding of the question. Consequently, LLM
test program generation does not follow the assumption of “one prompt equals one
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program”. When LLMs generate an output, it can be either proper code or plain
text. If the output contains code, we extract the full program and classify it as a test
program—this contributes to the"Generated Test Inputs"count. If the output contains
no code at all, we discard it and do not count it toward any totals. Hence, for the
reported statistics, we consider an output successful if it contains a program, although
this does not guarantee that the program compiles. The programs that compile are
labelled “Compilation OK” programs. The statistics first indicate the number of pro-
grams generated by the LLMs, followed by the number of those that were compile
successfully. We further discuss it next.

Throughput Figure 8 shows the throughput of our LLM-based test input generation
approaches within 25 hours, grouped by the LLM. The solid black, grey/light-grey
stripes and grey/white stripes, represent the total number of generated test inputs, the
number of test inputs that were compiled, and the number of non-crashing and non-
hanging test inputs, respectively. The bold numbers above each bar represent Y-axis
values stated explicitly for clarity. For example (see right end of Fig. 8), in 25 hours
GPT-3.5-turbo (SSBSE 2023) generated 1869 C parameterised files: 1086 com-
piled with GCC-11-03, out of which 823 led to a non-crashing binary, potentially
suitable for fuzzing with AFL++. These form a valid set of LLM-generated test bina-
ries for AFL++ (grey/white stripes bar).

In Fig. 8, the largest set is the GPT-3.5-turbo, followed by Magicoder.
Llama2 and CodeBooga come next, with relatively similar population sizes (after

20000 7w Generated Test Inputs
#4 Compile OK Test Inputs
NN Non-Crashing Test Inputs

14607

15000

10000

Test Inputs

5000

\

N
2

7

Y 8232
7777
Y 2661

o

Language Model

Fig.8 Number of (unique) gem5 test inputs generated with different language models during 25 hours.
The LLM models are ordered by the number of ANN parameters from tiny to large (by today’s stan-
dards). Note that GPT3 LLM was run on OpenAI ’s cloud servers whilst the other LLMs were run
locally on our A30 Tensor GPU 80-core server
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filtering invalid inputs). This suggests that when model outputs compiled success-
fully, it was often a good indication that these input tests, used as seeds, ran without
crashing or hanging. The SLMs (TinyLlama and Phi?2) generated the smallest
sets. The choice of a specific LLM was usually more crucial than its purpose (code or
general) or size (e.g. CodeBooga vs Magicoder in Fig. 8). However, SLMs had
significantly lower throughput, suggesting that the model’s size affected the genera-
tion rate. This is likely because smaller models tend to generate a higher proportion
of low-quality, non-code answers, reducing the number of responses that qualified as
test inputs; moreover, their generated code was less likely to pass compilation. Nota-
bly, GPT-3.5-turbo (SSBSE 2023) demonstrated poorer throughput than GPT-
3.5-turbo, implying that the zero-shot prompting approach was more efficient in
terms of throughput.

For AFL++ fuzzing, only non-crashing and non-hanging instances can be used as
seeds due to its limitations (its heuristics are likely to classify these as ignored seeds).
However, for testing (RQ1), we used all “Compiled OK Test Inputs” (grey/light-grey
stripes) because crashing inputs can still reveal bugs (e.g. the simulator crashes with
a successful native run).

Next, we discuss the coverage and testing with LLM-generated inputs pre-fuzzing
results, using"Compiled OK Test Inputs".

Coverage We used distinct binaries compiled from the programs of the LLM-gen-
erated test inputs for coverage measurements of this part. The line coverage results
were as follows: TinyLlama: 35964; Phi2: 37124; GPT-3.5-turbo (SSBSE
2023): 40876; Llama2: 41667, CodeBooga: 42563; Magicoder: 44418; and
GPT-3.5-turbo: 44781. We used the raw coverage data of each set presented
above, for further analysis of the initial corpus in Section 6.2.

GPT-3.5-turbo achieved the highest coverage (it also had far higher through-
put than any other O11ama models). It was expected because the model ran on a
much more powerful platform compared to our local GPU machine. The smaller
LLMs, Phi2 and TinyLlama had the lowest coverage, which aligned with expec-
tations given their size and capabilities.

Magicoder, although smaller in size (3.8 GB), surprisingly outperformed
CodeBooga (19 GB). This unexpected result highlights Magicoder ’s efficiency
in generating valid and compilable code. The other models performed as antici-
pated based on their specifications. Yet, notably, all three medium models (Magi -
coder, CodeBooga, L1ama?2) achieved higher coverage than GPT-3.5-turbo
(SSBSE 2023). GPT-3.5-turbo (SSBSE 2023)’s reliance on test program sources
restricted the programs it could have generated and thus the coverage it achieved.

Bugs We tested cases where the simulation and native-run disagreed deterministi-
cally (the same simulation ran twice on the same test input returned the same result,
the C program is UB-free, etc), with a 50-second timeout and up to 10 lines of stan-
dard output in a native run. This strategy identified bugs where the native run crashed
or hung while the simulation ran correctly and vice versa, or mismatches. Cases in
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which both simulation and native run resulted in a crash or a hang were excluded.
Each bug was manually investigated and categorised.

Table 4- bugs classification Table 4 presents the bugs identified in our investigation,
excluding instances where the native run finished within 50 seconds but the simula-
tion did not, or failures only in native. However, we recorded timeouts as follows: 1
test input each for TinyLlama and Phi2, and 3, 16 and 10 test inputs for L1ama2,
CodeBooga, and GPT-3.5-turbo, respectively. Table 4 includes the bug type
(“Bug”), the bug description, and columns A to F, which represent the number of test
inputs per bug found by each model (A: TinyLlama, B: Phi2, C: Llama2, D:
Magicoder, E: CodeBooga, and F: GPT-3.5-turbo). We found no new bugs
with GPT-3.5-turbo (SSBSE-2023) and hence excluded it from the table.

In total, we found 1 segmentation fault, 6 panic errors, and 14 mismatches, some
were related to unimplemented instructions in the simulation, as classified in Table
4. The highest number of bugs were identified by GPT-3.5-turbo (17), followed
by CodeBooga (14) and Magicoder (11). Llama2 (10), Phi2 (6) and TinyL-
lama (4), identified a lower number of bugs, focusing mainly on panic errors. We
reported bugs #7, #16, #17, #18 and #20 in Table 4 to gem5 issues. Bug #7 involved
the incorrect simulation of two numbers’ subtraction, likely related to the long double
type’s implementation in the simulator (see report number #1227). Bugs #16, #17,
#18 and #20 were panic error crashes of gem5 when simulating an invalid binary,
that is, instead of indicating a crash in the simulated binary, the whole system crashed
(see report numbers: #1507, #1483, #1506 and #1508, respectively. In addition, three
bugs were fixed between two versions tested as reported in Table 4 (bugs #13, #14
and #19).

These bugs were reported after several discussions with the developers. They noted
that the panic error is particularly interesting (e.g. gemS5 developers meeting - August
2024). We consider reporting the remaining bugs after clarifying the developers’
requirements, as discussed in Section 7. For example, bug #2 (system (command)
unimplemented) might be a known issue, and it raises the question of whether to
report it as a bug or as an additional test for the gem5 test suite.

Table 5- Analysis of bugs’ classification We marked a test as"possibly exposing a
bug"if the execution of the program on X86 and the simulator gave different results—
for example, if one crashed or froze while the other worked. We applied this strategy
to 100% of the test inputs generated by each of the LLMs. From this auto-analysed
test input step, we got a population of"'possibly exposing a bug"test inputs.

However, not all test inputs that looked like bugs were actual problems — for exam-
ple, small differences when printing the PATH variable or tiny rounding differences
in numbers were fine and not treated as bugs. At this stage, we used a semi-manual
approach: 1) We first removed the acceptable differences by looking at the outputs.
2) Then, we grouped test inputs by behaviour, mismatches in one set and crashes or
panics grouped by their trace (this step was automated). 3) Finally, we looked at each
group and manually analysed one example from each: we examined the program’s
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Table 4 Faults in gem5 found using test inputs generated by different LLM models

# Bug Bug Description ABC D E
1 Mismatch Variable’s value is random in x86 but fixed in simulation. - 1 2 6 9
2 Unimpl. system(command) unsupported. 1 -1 1 -
3 Mismatch wchar inputs are partially supported in simulation, leading to - - 2 9 17
a mismatch with x86.
4 Mismatch Time’s value is fixed in simulation as: - 1 1 1 35
"Sun Sep 9 02:46:40 2001".
5 Mismatch Bug related to complex numbers. - - - 1 -
(Bug fixed between the two tested versions.)
6 Mismatch The simulation does not handle —0.0 correctly. - - - -1
Assign 0.0 instead of —0.0 when obtained via st rtold with
no related warning.
7 Mismatch Numbers subtraction was simulated wrongly - - - -7
due to long double simulated as an 80-bit float.
We reported the bug, GitHub, gemS5, #1227.
8 Unimpl.  Fatal error due to syscall clock nanosleep unimplemented at - 7 2 3 1
src/sim/syscall_emul.cc:67.
9 Unimpl.  Fatal error due to unimplemented syscall dup3 at src/sim/sys- - - - -5
call emul.cc:67.
10 Unimpl.  Simulation warning ’fdivr’ unimplemented. - - - -1
11 Unimpl.  Simulation warning *fcomip’ unimplemented. - - - 3 4
12 Unimpl.  Simulation warning ’fscale’ unimplemented. - -1 1 5
13 Unimpl.  Simulation warning ’fscale’ unimplemented. - - - 11
Related to strtold, led to missimulation.
The bug was fixed in version 23.1.0.0 (May 2024).
14 Unimpl.  Simulation warning *fxam’ unimplemented. - - - -1
Related to atof, led to missimulation.
The bug was fixed in version 23.1.0.0 (May 2024).
15 Panic Tried to execute unmapped address at src/arch/x86/faults. - 1 1 - -
error cc:166.
16 Panic Tried to read unmapped address (same loc.). 4 54 10 12 53
error
We reported the bug, GitHub, gemS5, #1507.
17 Panic Tried to write unmapped address (same loc.). 1 6 - 1 4
error
We reported the bug, GitHub, gemS5, #1483.
18 Panic src/sim/faults.cc:60: panic: panic condition - 302 -7
error
FullSystem occurred: fault (Divide-Error)
We reported the bug, GitHub, gemS5, #1506.
19 Panic src/sim/faults.cc:60: panic: panic condition 3 85 11 14 84
error
!FullSystem occurred: fault (General-Protection).
The bug was fixed in version 24.0.0.1 (Aug 2024).
20 Panic src/arch/x86/faults.cc:131: panic: - 6 1 4 8
error

Unrecognized/invalid instruction executed.
We reported the bug, GitHub, gemS5, #1508.
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Table 4 (continued)

# Bug Bug Description ABC D E F
21 Seg. fault Assertion violation due to UB in C test code - -6 - 1 -
(address and type conversation), at src/sim/fd_array.cc:321.

Columns A to F are the number of instances of each bug found by each model: A: TinyLlama, B:
Phi2, C: Llama2, D: Magicoder, E: CodeBooga, and F: GPT-3.5-turbo. A bug can be (1) a
missimulation (Mismatch), (2) an unimplemented functionality message leading to missimulation or a
crash (Unimpl.), or (3) two types of crashes: panic (Panic error) or segmentation fault (Seg. Fault)

Table 5 Faults in gem5 found using test inputs generated by different LLM models: number of LLM gen-
erated binaries (col 2), number checked by hand (col 4), those exposing bugs (cols 6, 7)

Auto-Analysed Manually Analysed Bugs

LLM Test Inputs Considered ~ Test Inputs (%) Test Inputs Unique
Exposing a Bugs
Bug

TinyLlama 211 100% 23 10.9% 9 4

Phi2 527 100% 23 4.36% 15 6

Llama2 2136 100% 50 2.34% 170 10

Magicoder 8839 100% 18 0.20% 47 11

CodeBooga 2356 100% 66 2.80% 58 14

GPT-3.5-turbo 13601 100% 187 1.37% 237 17

GPT-3.5-turbo 823 100% 2 0.24% 0 0

(SSBSE 2023)

binaries, crash messages (i.e. the crash trace), and the test input behaviour under
small modifications (code or input) or compilation with a different compiler (we used
clang 12.0.0).

An example of a group of test inputs is shown in Listing 4. In this case, we manu-
ally analysed the first test input, reported it as a bug to the developers (#1483), and
waited for their feedback. If the bug turned out to be unique or needed more investi-
gation, we analysed the rest of the inputs; otherwise, we considered the group handled
and did not review the others. Although this group contained 14 test inputs (in Table
4), we only analysed one — it counts as a single instance of manual analysis, not 14.

>> Test /home/ubuntu/experiment—7CodeBooga/input/test_input_665939085707730. txt
src/arch/x86/faults .cc:166: panic: Tried to write unmapped address Ox7fffff7feff8.

>> Test /home/ubuntu/experiment—7/4lama/input/test_input_445878184857718 . txt
src/arch/x86/ faults .cc:166: panic: Tried to write address Oxfffffffffeeeeee.

>> Test /home/ubuntu/experiment—7/Llama/input/test_input_461252773633251 . txt
src/arch/x86/ faults .cc:166: panic: Tried to write unmapped address Ox3ffffffff677a.

>> Test /home/ubuntu/experiment—7/4lama/input/test_input_462721458102543 . txt
src/arch/x86/faults .cc:166: panic: Tried to write unmapped address 0x26000.

>> Test /home/ubuntu/experiment—7/gpt3.5—new/input/test_input_1707660028. txt
src/arch/x86/ faults .cc:166: panic: Tried to write unmapped address 0x10102464c457f.

Listing 4 The test inputs’ grouped by error message "panic: Tried to write unmapped
address".

Table 5 presents statistics for test inputs analysed per LLM model (LLM col.).
Columns 2-3 show the total number of test inputs per model with 100% of them
automatically analysed. Columns 4-5 show how many were manually analysed and
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their percentage out of the total (e.g. for TinyLlama, 23 test inputs is around 10.9%
out of 211 test inputs). Column 6 lists how many tests revealed a bug and column 7
reports the number of unique bugs found per model. In total, we manually examined
23 TinyLlama, 23 Phi2, 50 Llama2, 18 Magicoder, 66 CodeBooga, 187
GPT-3.5-turbo, and 2 GPT-3.5-turbo (SSBSE 2023) generated test inputs
flagged by our strategy (Table 5). An example of a manual inspection process of
bugs is given in Section 7.1. The numbers were lower for models that produced pro-
grams with a higher rate of non-determinism, but the results generally followed the
model’s size. The exceptions were Magicoder, which exhibited a higher rate of
non-determinism in its generated code and GPT-3. 5-turbo (SSBSE 2023), which
depended on test programs as input, limiting its search space as discussed above.

RQ1 Answer. All models found bugs in gem5. We found 21 bugs in gem5,
14 of which were missimulations or unimplemented functionality in the simu-
lator. The effectiveness of LLM test input generation —measured by coverage,
throughput, and bug-finding capability— generally improved as the model size
increased.

Factors such as non-determinism in the generated code or restricting the genera-
tion to test program sources (which limits the search space) negatively impacted the
model’s test input generation capabilities. We expect these two factors to also affect
the efficiency of fuzzing with AFL++ (RQ4).

6.2 RQ2: Fuzzing preparation () - corpus minimisation

Fuzzing outcomes are heavily influenced by seed minimisation and corpus selection,
recommending against input corpora exceeding 100 test inputs (Herrera et al. 2021;
AFL 2022). A compact yet diverse corpus enhances fuzzers’ (like AFL++) ability to
uncover new paths and bugs in the SUT. In contrast, a large corpus extends startup
time, diminishing actual fuzzing time, and exhausts resources quickly.

All our input corpora had over 100 test inputs. We used AFL++ ’s corpus minimi-
sation analysis to remove redundancy from the LLM generation process. (AFL++ ’s
minimisation process employs an approximate edge coverage heuristic, evaluating
original test suites and eliminating redundant test inputs, i.e., if they cover transitions
already addressed by other test inputs.)

While filtering invalid inputs (RQ1, Fig. 8, grey/white stripes bar) provided some
insight into the quality of LLM-based code generation and AFL++ ’s potential seed
selection (preferred vs ignored), it was merely a naive estimation. In RQ2, we inves-
tigate a more comprehensive approach using afl-cmin analysis to enhance AFL++
’s GA performance, aiming to minimise the corpus based on edge coverage heuristics
(ensuring higher diversity) rather than output behaviour.

To generate data to answer RQ2, we used data from RQ1’s 7 sets and processed
with afl-cmin, resulting in 14 corpora (initial and minimised). Table 6 summarises
the statistics on the population size and coverage after corpus minimisation using
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Table 6 Results of applying afl-cmin to the different corpora of test inputs to minimise them
TinyLlama Phi2 Llama2 Magicoder CodeBooga gpt-3.5-turbo gpt-3.5-

turbo

(SSBSE

2023)
Initial Size 211 527 2136 8839 2356 13601 823
Minimised 206 366 613 719 612 703 442
Size
Reduction  2.37% 31.7%  71.3%  91.9% 74.0% 94.8% 46.3%
Coverage 0.0% 0.054% 0.689% 0.165% 0.113% 0.181% 0.0%
Loss

Initial Size (initial corpus size), Minimised Size (size after minimisation), Reduction (percentage
reduction in size of corpus), and Coverage Loss (percentage reduction in test coverage)

Note: the coverage loss computed using and comparing with the raw coverage data in Section 6.1

afl-cmin on valid test inputs population (Fig. 8 striped grey/white bars). We mea-
sured the line coverage of the sets before and after minimisation.

Table 6 shows the original size of each LLM-based input generation corpus
(row 1) and its size after initiation with afl-cmin (row 2). Row 3 presents the per-
centage of the minimisation, and row 4 is the line coverage loss due to minimisation.
For example, consider GPT-3.5-turbo (SSBSE 2023) (last column in Table 6).
We used afl-cmin on 823 of the GPT-3.5-turbo test inputs (row 1), resulting in
an optimised corpus size of 442 test inputs (row 2). That is, shrinking the size of the
original test set by 46.3% (row 3), while losing no coverage (0.0% of the original line
coverage as in Section 6.1; row 4).

After minimisation, all corpora contain fewer than 800 test inputs. Table 6 shows
that .1ama2 and CodeBooga reduced their test sets to about a quarter of their
original corpus size. Phi2 and GPT-3.5-turbo (SSBSE 2023) nearly halved in
size. Magicoder and GPT-3.5-turbo underwent a more than tenfold reduction.
Since the reduction in line coverage was negligible (or nonexistent for TinyLlama
and GPT-3.5-turbo SSBSE 2023), this indicates considerable redundancy in the
original test sets and that afl-cmin heuristics effectively predict coverage while
reducing the input corpus size. We further investigated these observations when fuzz-
ing, comparing the performance of the minimised sets and the fuzzed corpus diver-
sity (RQ4).

One exception to the above is the case of TinyLlama. The reduction was only
by 5 test inputs with no reduction in coverage. This is likely due to its small size.
However, according to afl-cmin analysis, it could also indicate that TinyLlama
produced a non-redundant test corpus. Additionally, we observed an issue where our
coverage script measured +1 line covered with the minimised set despite identical
function coverage. This discrepancy occurred in the memory controller area (line
1179 in src/mem/dram_interface.cc, gem5 version 23.0.0.1-
-SSBSE Challenge Track). To rule out concurrency dependencies or non-
deterministic factors like the rand() or time() functions’ effects in the test inputs,
we repeated the coverage measurement five times with both sets (before and after
minimisation sets). With each repeat, the anomaly persisted.
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RQ2 Answer. The test case redundancy, measured by branch coverage, is
significantly higher for medium- and large-sized models (approx. 70%-90%),
in comparison to small language models. However, regardless of the model
size, the coverage reduction is negligible after minimisation.

6.3 RQ3: Fuzzing preparation (ll) - selecting parameters values for SearchsSys

For fuzzing with our custom mutators, we had to select the parameters beforehand for
afl custom fuzz count customised function. We ran fuzz testing for 1 hour,
repeating the experiment 30 times per test set using the tiniest corpus for performance
(i.e. TinyLlama-cmin, Fig. 8), totalling 900 hours of fuzzing. This process aided
in identifying the optimal set for fuzzing. Data was collected by fuzzing the small-
est corpus with 30 different SearchSYS parameter settings files for 1 hour each,
repeated 30 times, totalling 900 hours of fuzzing. Data was aggregated by setting
(1-30).

Figure 9 illustrates the outcomes of fuzzing with Settings 1 to 30 (numbered 1 to
30 on the x-axis) for 1 hour, averaging all 30 repeats per set. We evaluated four mea-
sures: new test inputs in the fuzzed corpus (top-left), crashes found during fuzzing
(top-right), new edges covered (bottom-left), and search depth (bottom-right). The
edge and depth statistics are part of the edge coverage metrics, which give us (among
other metrics available in AFL++), the number of covered blocks and the path depth
reached during 1 hour of fuzzing. These measures assessed fuzzing effectiveness
in test input generation (top) and depth/coverage (bottom). Setting number 27 per-
formed best in the crashes found and search depth. Setting 3 had the highest new edge
coverage while Setting 30 generated the most test inputs. Consequently, we set afl
custom_fuzz count tobe 17, 84 and 66 for Operator 1, 2 and 3, Section 3.2.1.
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Fig.9 AFL++ corpus and edge coverage metrics after 1 hour of fuzzing across the 30 settings. The four

graphs present statistics on: the number of new tests (top-left) and crashes (top-right) in the corpus with
edges (bottom-left) and the maximal depth (bottom-right) coverage metrics
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RQ3 Answer. A 1-hour experiment produced statistics for 30 Settings files
(generated randomly), showing significant diversity in the four measures: the
number of new test inputs, edges, crashes, and search depth. Given Setting 27
excelled in two measures and performed adequately in others, we employed it
as the values of afl custom fuzz count for SearchSYS.

We consistently applied the same settings file across all experiments in our evalu-
ation for configurations 1 and 3, as the differences between the two configurations
did not affect the analysis of the RQ2 statistics above. Configuration 1 included all
customisations: type mutator, saving test inputs for later review, and overriding afl
custom_fuzz count. In contrast, Configuration 3 only used the type mutator
and overrided afl custom_ fuzz count, without saving test inputs. (See Section
5.3 for the definition of each configuration.) The 30 settings files with the experiment
results are available at Dakhama et al. (2024).

6.4 RQ4: Efficiency of fuzzing

We followed the procedure discussed in Section 5.4 to answer the last research ques-
tion. Specifically, we designed and carried out a set of controlled experiments, fuzz-
ing with each possible combination of input corpus (Section 5.2) and configuration
(Section 5.3), using the specification discussed in Section 5.5.

We started 70 instances of Docker with SearchSYS, each running for 24 hours
with a unique combination of the 14 available input corpora and 5 configurations,
totalling 70 instances. After each 24-hour run, we stopped the fuzzing, collected data
and repeated the fuzzing process with a new set of 70 dockers. This cycle contin-
ued until we completed 10 repeats for each input corpus and configuration combina-
tion. Of these 700 runs, 16 failed the coverage measurement stage. These sets were
of the fuzzed inputs with TinyLlama initial corpus (15) and GPT-3.5-turbo
(SSBSE 2023) initial corpus (1). All experiments with minimised corpora were com-
pleted successfully. Figure 11 gives the averages of the runs which ran to completion.
Inspection of the standard error of the means (shown with error bars) suggested that
any data gathered from the failing run would not have had much impact and was
unlikely to change the conclusions we could draw without it. For example, in Fig.
11 for Phi2 (top right) the blue and grey lines already lie close to each other (cf. the
error bars).

Data was collected from 700 sets generated by fuzzing 14 input corpora (7 initial
and 7 minimised) for 24 hours each with 5 configurations, repeating each combina-
tion 10 times, totalling 16 800 hours of fuzzing. The data was aggregated by input
corpus and configuration into 70 groups, with results presented as averages of the
10 repeats per group. During bug investigations, due to the extensive data requiring
semi-manual inspection, we used a single set (arbitrarily we chose the last set, set 10).
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Throughput Figure 10 shows the number of new test inputs generated during
24 hours of fuzzing per initial and minimised corpora (14 corpora, in total) across
five configurations. The size of the initial corpus is excluded from the total number
(i.e., the bars represent the delta between the sizes of AFL++ ’s queue after 24 hours
and the input corpus). The grey, grey/light-grey stripes, grey/white stripes, light grey,
and blue (dark grey, in greyscale mode) represent the mean values for configurations
1 to 5, respectively. The additional fuzzed test inputs persistently saved when using
configurations 1 and 2 are excluded from Fig. 10 due to the numbers being on a very
different scale. Moreover, as these inputs were not part of the queue and did not affect
the GA component during fuzzing, including them would be misleading.

Yet, saving test inputs to persistent storage (the Throughput Improvement by Keep-
ing all Fuzzed Inputs variant) can theoretically significantly increase the rate of gener-
ated test inputs for the post-fuzzing differential testing stage. However, by comparing
the performance of Configuration 2 and Configuration 3 in Fig. 10, we observed that
the final queue size was mostly smaller when saving these test inputs, indicating a
performance decrease with this throughput improvement. This was expected because
writing to persistent storage introduces overhead from both I/O operations and the
management of a larger set of test files, which probably neutralised potential through-
put gains. Furthermore, many of these additional test inputs were duplicates, as they
did not pass through AFL++ ’s fitness function, contributing little to overall fuzzing
efficiency. This further suggests that the two customisations related to overriding
afl custom fuzz count and independent mutators (to allow better heuristics
for AFL++ ’s GI components) probably yielded a more diversified queue than just
keeping all test inputs.

The best throughput of new fuzzed test inputs (in the queue) is achieved by GPT-
3.5-turbo-cmin (SSBSE 2023) Configuration 3 (1258.6), TinyLlama Con-
figuration 3 (1246.3), GPT-3.5-turbo (SSBSE 2023) Configuration 1 (1233.2)
and TinyLlama-cmin Configuration 1 (1203.4), all with around 1200 new fuzzed
generated test inputs. The lowest rate was achieved mainly by GPT-3.5-turbo,
which seemed to have a low generation rate in general (all experiments ended with
at most 300 new test inputs). More specifically, GPT-3.5-turbo Configuration
5 (15.6), Magicoder Configuration 5 (24.4), GPT-3.5-turbo Configuration 3
(40) and GPT-3.5-turbo Configuration 1 (46.1). Considering that the afl-cmin
and TinyLlama sets commonly had the highest throughput rates, while the larger
sets appeared to have the lowest rates: these results support the general recommenda-
tion to keep the corpus small (Herrera et al. 2021; AFL 2022). Another interesting
result was that the performance of GPT-3.5-turbo (SSBSE 2023) and TinyL-
lama was roughly the same across all sets, regardless of whether using minimised
corpora or not. This indicates that using semi-manually selected high-quality test
inputs with a large language model might achieve similar generation rate during fuzz-
ing to a small LLM, locally managed with a fully automated generation approach,
due to differing objectives — coverage-directed fuzzing aims to increase coverage,
while LLMs prioritise text diversity.

Lastly, Configuration 5 generally showed the lowest performance across all exper-
iments (with the same input corpus), except with GPT-3. 5-turbo-min, where it
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ranked in the middle. This suggests that our additions generally improved throughput.
The largest improvement was observed between Configuration 5 (SearchGEM5 as
is) and Configuration 4 (SearchSYS with no throughput improvement customisa-
tions), indicating that our customisation of the mutators had an important impact.

Coverage Figure 11 shows the average line coverage additions on top of the baseline
coverage in Section 6.1. This was done for both initial and minimised corpora (14
in total) across five configurations, with 10 repetitions of fuzzing per corpus and
configuration. The dashed light-blue line is the line coverage achieved at the end of
fuzzing with the initial corpora, while the solid grey line shows the results with the
minimised corpora. The line coverage of the initial and minimised corpora before
fuzzing (i.e. the baseline Section 6.1) is marked by the dashed black and dotted blue
lines, respectively.

The highest coverage is achieved by each LLM source:

® Magicoder Configuration 3, minimised corpus, 45 134.7 lines

® GPT-3.5-turbo Configuration 2, with no effect regarding initial or minimised
corpus, hinting that SearchSYS could little diversify the test inputs at that
stage, 44 959 lines

e T.lama2 Configuration 3, minimised corpus, 44 020.7 lines

® CodeBooga Configuration 4 with the initial corpus, 43 303.5 lines. Configura-
tion 1 might possibly be better occasionally with the initial corpus but due to
variations in the measurements this cannot be determined

® GPT-3.5-turbo (SSBSE 2023) Configuration 1, initial corpus, 43 187.5 lines

At a much lower scale, we have the small models, below 40 000 lines covered, with
Phi2 (Configuration 1, initial corpus, 39 001.5) and last TinyLlama (Configura-
tion 3, initial corpus, 38 498.2 lines).

From these results, we observed that the baseline coverage achieved by the ini-
tial or the minimised corpus can predict to some extent the coverage after fuzzing
(e.g. Magicoder outperformed GPT-3.5-turbo even though Magicoder ’s
initial and minimised corpora had lower baseline coverage). Commonly, Configu-
ration 3 performed the best, Configuration 5 was outperformed by the others, and
using the minimised corpus led to better performances when the initial corpus was
large. Lastly, GPT-3.5-turbo (SSBSE 2023) with Configurations 1 and 3 diversi-
fied the test inputs during fuzzing similarly to the smaller models, I.1ama?2, Phi2,
and TinyLlama, suggesting that a complex few-shot approach could be replaced
with zero-shot prompting on smaller models in the context of fuzzing. However,
SearchSYS likely diversified test inputs more effectively for Phi2 and TinyL-
lama due to their much lower baseline coverage.

Bugs We manually inspected each fuzzed test input that led to a performance bug or
a mismatch.
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Performance bugs include timeouts and out-of-memory instances. Mismatch bugs
include cases where the simulation ended normally but the native run failed (i.e. bug
masking), the simulation crashed with the native run exiting normally, or both ended
successfully but produced different outputs (e.g. printed different results or had dif-
ferent return code).

During this inspection, we manually classified some bugs as bugs #3, #8, #9, #15

and #16 from Table 4. Additionally, we identified 9 unique potential crashes. Due
to the large number of bug instances found and the absence of source code for most
fuzzed test inputs, requiring time-consuming manual decompilation, we did not fur-
ther classify the remaining bugs. However, we manually inspected a mismatch bug in
Section 7. We decompiled the fuzzed test input binary executable for manual inspec-
tion and tried to reduce the bug.
Table 7 presents the number of fuzzed test input instances exposing bugs in gem5
found during 24-hour fuzzing. The columns “Performance”, “Bug masking”, “Crash”,
and “Diff. output” in the table are the total number of fuzzed inputs that resulted in
performance bugs (timeouts or out-of-memory errors), bug masking, gem5 crashes,
and output mismatches, respectively. These counters are aggregated by configuration
(as described in Section 5.3) using data from all 14 input corpora.

The highest number of 62 148 issues in total was found by Searchsys (Con-
figuration 1), followed by Configuration 2 (34 273), Configuration 3 (2 954) and
Configuration 4 (1 772). SearchGEMS5 (Configuration 5) had the poorest bug ability
discovery, with only 295 instances, in total. Per category of bugs: The highest number
of bug masking and crashes were found by Configuration 1, while performance bugs
and mismatched output triggered the most by Configuration 2. To sum,

e The bug discovery ability improves when fuzzing with our customisation.
o The Throughput Improvement by Keeping All Fuzzed Inputs customisation has a
greater impact than optimising afl custom fuzz count.

This is because Configuration 2, which only keeps all fuzzed inputs to improve
throughput, outperformed the two others (Configuration 3 uses solely the optimising
afl custom fuzz count option, while Configuration 4 includes neither of the
throughput improvement). We shared our analysis as an Excel file, with additional
details on the bugs we classified so far, in Dakhama et al. (2024).

Table 7 Number of fuzzed test inputs exposing bugs in gem5 found during 24-hour fuzzing aggregated
by configuration

Performance Bug masking Crash Diff. output Total
Conf. 1 (Searchsys) 458 54642 2654 4394 62148
Conf. 2 (First Imp.) 908 26360 2261 4744 34273
Conf. 3 (Second Imp.) 106 2531 82 235 2954
Conf. 4 (No Imp.) 40 1574 91 67 1772
Conf. 5 (SearchGEM5) 31 185 21 58 295
Total 1543 85292 5109 9498
Friedman (p-value) v0.0737 AA4.53e—05 A0.0261 _ A0.0186
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Choosing the best configuration: Regarding the different configurations, we
applied the Friedman test and the corresponding post-hoc tests to identify statistically
significant differences across each metric and configuration (with a p-value thresh-
old of 0.05). According to the general test, there is a statistically significant differ-
ence across all configurations for every metric except for performance, which has a
p-value higher than 0.05. Moreover, bug masking shows a strong difference across
the distribution of results for the various configurations.

We employed the Nemenyi-Friedman post-hoc tests to perform pairwise compari-
sons between the configurations. In terms of crashes, we found statistically significant
differences between configuration 5 (SearchGEMS5) and 1 (SearchSYS), configu-
ration 5 and 2 (First Imp.), configuration 3 (Second Imp.) and 1, and configuration
4 (No Imp.) and 1. This indicates that the improvements introduced in SearchSYS
are significantly better for detecting crashes compared to all other configurations,
except for configuration 2 (First Imp.), which shows similar performance.

For differential testing, there is a statistically significant difference between con-
figurations 5 and 1, demonstrating that the new methodology significantly improves
upon our previous approach.

With respect to missimulations or bug masking, we observed statistically signifi-
cant differences between configuration 5 and all others (4, 3, 2, and 1), indicating that
the previous method is significantly worse than any of the improved configurations.

Finally, in terms of performance, there is a statistically significant difference only
between configurations 2 and 5, and 2 and 4, showing that the First Imp. configura-
tion achieves significantly better performance than the old configuration and gener-
ally provides improved results for this metric.

Choosing the best LLMs: With respect to the results of the large language models,
Table 8 extends Table 7 by dividing the results according to each language model.
This highlights which initial test suite yields the most effective results across the dif-
ferent metrics. The performance of the various language models varies significantly

Table 8 Number of fuzzed test inputs exposing bugs in gem5 found during 24-hour fuzzing aggregated by
configuration (Input-corpus ordered alphabetically)

Input-corpus Performance Bug masking Crash Diff. output
CodeBooga-cmin 5.8+4.8 38.6+35.6 26+32 24+2.6
CodeBooga 70.6 +£151.2 35.0+31.8 18.0+22.1 0.0+0.0
Llama-cmin 29.6 +39.1 1030.6 =2070.9 53.6 = 111.0 259.2+546.9
Llama 30.4 +40.1 915.8+1935.5 77.0+133.7 260.8 +335.9
Magicoder-cmin 104.4 £192.0 836.8 + 1800.3 39.8+79.0 268.0 £457.7
Magicoder 74£12.9 109.2 £193.1 19.6 £41.6 29.2+58.8
Phi-cmin 6.6+9.8 1575.2+3371.8 42.4+55.1 128.4 £212.7
Phi 2.0+3.1 398.8 +638.1 32+4.6 3.6+75
TinyLlama-cmin 54+£59 3379.6 + 4240.6 107.6 £ 211.3 259.8 +£440.1
TinyLlama 62+8.6 4062 + 5611 121.8 £169.5 76.0 £ 121.0
gpt3.5-new-cmin 3.6£4.8 59.4+71.0 16.2+18.7 530 + 1148
gpt3.5-new 04+0.9 20+£1.2 115.2+209.1 0.0£0.0
gpt3.5-old-cmin 23.8+36.9 1908.2 £3225.8 150.0 +255.9 32.0+44.0
gpt3.5-old 124+£9.8 2706.8 +4221.0 254.8 +499.7 50.6 £62.5
Friedman (p-value) A0.0042 AA2.84e—06 AA9.33e—06 A0.00135
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and is generally unstable, as indicated by their standard deviations. This instability
suggests that the performance of LLMs is highly variable —either extremely good or
poor— across different executions, with no model showing consistent results.

For the metric of discovering performance bugs, the best test suite is the one
generated by Magicoder-cmin, which discovers an average of 104 bugs. For bug
masking, the most effective model is TinyLlama, exposing 4062 bugs. In terms
of crashes, the best performer is the old version of the test suite generated by GPT-
3.5-turbo (SSBSE 2023), which detects 255 bugs. Finally, for differential testing,
the best result comes from the new version, GPT-3 . 5—turbo-cmin, which discov-
ers 530 bugs. However, it is important to note that none of these results were stable
in terms of standard deviation.

After applying the Friedman test to the different LLMs, the general test indicates a
clear imbalance across the LLMs, as it passes for all metrics and shows strong statistical
significance in bug masking and crashes. However, when applying the Nemenyi-Fried-
man post-hoc tests, we find that in three out of the four metrics — specifically perfor-
mance, crashes, and differential outputs — there is no statistically significant pairwise
difference between the LLMs. This is likely because the test is performed across all
configurations, and LLM performance varies depending on the chosen configuration.

It is important to consider that the Friedman test is a global test and is sensitive
to overall variations, thus detecting general imbalances. In contrast, the Nemenyi-
Friedman test performs pairwise comparisons, is more conservative, and includes
corrections, making it harder to detect significant differences between individual
pairs — especially with small sample sizes.

In conclusion, the Friedman test provides evidence that not all models perform
equally. However, according to the post-hoc test, no single LLM stands out as signifi-
cantly better than the others. Their performance depends on the configurations, with
configuration 1 being the most suitable for the majority of the metrics.

RQ4 Answer. Configuration 1 (SearchSYS) and Configuration 3 (with
"Optimising afl custom fuzz count") commonly achieved the best
code coverage and fuzzing throughput. The best bug-finding capability was
observed with Configuration 1 (SearchSYS) and Configuration 2 (with
"Keeping All Fuzzed Inputs"). Therefore, Configuration 1 is the most effective
overall, as it combines both customisations in addition to the mutator customi-
sation (that all but SearchGEMS5 includes), making all three customisations
essential for enhancing SearchSYS’s bug-finding, throughput and coverage
effectiveness.

S

7 Discussion

In this section, we thoroughly examine two bugs we discovered —a hang and a mis-
simulation— providing a detailed investigation in Section 7.1. Further discussion on
bug classification, including crashes and missimulations, can be found at https://yout
u.be/hEyhXJg-rbU. We then discuss the bug reports and the acknowledgement of the
results in Section 7.2. Lastly, we explore the effectiveness of our two approaches in
GPT-3.5-turbo generation in Section 7.3.
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7.1 Investigation of two gem5 bugs

A performance bug SearchSYS generated several hangs (see Sections 6.1, 6.4 and
Dakhama et al. 2023). We did a short investigation using one of these hangs to better
understand hang bugs’ relevance to the quality of system simulators and to gather
developers’ feedback.

The program contains a loop in function main that calls fnl function from that
loop. We compiled the program binaries using GCC-11 -03 and Clang-16 -03,
allowing us to compare the simulation and native runs with two different binaries of
the same program. The full bug report and the code are available.

The hang occurred exclusively in gem5 simulation with input values extremely
near INT MIN (e.g.—2147483648, —2147483647 and —2147483640). With slightly
bigger values, the gem5 simulation finished within a second (e.g.—214748364).
These inputs did not cause a hang in a native execution using the same binary. The
gem5 developers confirmed the bug but closed this issue, noting that the simula-
tion completes, if allowed to run overnight. This implies that hangs and performance
issues are likely lower prioritised in such systems.

A missimulation bug SearchSYS has the ability to generate binaries that make
gem5 crash. The system, in such a case, provides some details for diagnosis. For
missimulation, we use differential testing, comparing gem5 and native and using the
test program for diagnosis.

Fuzzed corpus test inputs leading to mismatches are more challenging to analyse.
In the case of a mismatch from the fuzzed corpus, we only know that the results
are inconsistent, but without the binary’s source code, debugging becomes difficult.
Investigating the nature of the bug requires a reverse engineering process to under-
stand which parts of the original binary were modified during fuzzing and how they
can affect the system. Apart from this, we need to provide a minimal example that
activates the bug.

Here, we discuss our semi-manual analysis of bug #15 (Dakhama et al. 2023)
and the challenges involved. In this case, the response of gem5 and the system’s
response were different for the same binary program and arguments’ input. The mis-
match detected was as follows; running fuzzed program . fuzzed.o 0 0 0in
native, it printed: b.a = 0, ¢ = 22091, x = 0,whileingem5:b.a = 0,
c =0, x = 0.

Figure 12 shows the code of the fuzzed program. Using radare?2 combined with
Ghidra’s decompiler, we reconstructed the original source code and compared it with
the “seed” program that generated this variant. The mutant code is in the normal font
style while the original is in comments only when there are differences.

In the mutation process, SearchSYS changed multiple types during the variable
definition (lines 3 to 9). This allocated different memory sizes. It also changed the
way the functions were called, instead of using strtol, as in the original program,
it used atoi with a similar purpose of transforming the inputs from strings to num-
bers (lines 14, 19 and 23). It changed multiple elements of pointer arithmetic (lines
13 to 43). Most relevant to the output relates to the changes in lines 37, 40 and 43,
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1 ulong main(int32_t param_1, ulong *param_2) {

2 uint32_t uVari;

3 unit uVar2; //uint32_t uVar2;

4 unit uVar3; //uint32_t uVar3;

5 ulong uVaré;

6 uchar *puVar5; //uint32_t uVar5;

7 uchar *puVar6;

8 uchar *puVar7;

9 uint32_t uVar8; //uchar *puVar8;

10 ulong uStack_20;

11

12 if (param_1 == 4) {

13 uStack_20 = 0x10bb; //uStack_20 = 0x10cO0;

14 uVarl = sym.imp.atoi(param_2[1]); //uVarl = sym.imp.strtol(param_2
[11,0,10);

15 uVar4 = param_2[2];

16 puVar5 = &stackOxffffffffffffffe8; //puVar6 = &stackOxffffffffffffffe8;

17 *(&stackOxffffffffffffffe8 + -8) = 0x10c8;

18 //*(&stackOxffffffffffffffe8 + -8) = 0
x10d43;

19 uVar2 = sym.imp.atoi(uVar4); //uVar2 = sym.imp.strtol(uVar4, 0, 10);

20 uVar4 = param_2[-0xd]; //uVar4d = param_2[3];

21 puVar6 = puVar5; //puVar7 = puVar6;

22 *(puVar5 + -8) = 0x10d6; //*(puVar6 + -8) = 0x10e6;

23 uVar3 sym.imp.atoi(uVar4); //uVar3 = sym.imp.strtol(uVar4, 0, 10);

24 //_obj.c = uVar2;

25 uVar8 = uVarl & Ox1ffffff; // uVar5 = uVarl & Ox1ffffff;

26 _obj.c = uVar2; //

27 *0x4024 = *0x4024 & Ox1fff | uVarl << 0xd;

28 uVar3 = uVar3; //uVarl = uVar2;

29 if (8 < uVar8) { //if (uVars < 9) {

30 uVar3 = uVar2; //uVarl = uVar3;

31 s

32 *0x4028 = *0x4028 & 0xcO | uVar8 >> 0x13 & Ox1fff;

33 //*0x4028 *0x4028 & OxcO | uVarS >> 0
x13 & Ox:

34 _obj.x = uVar3; //_obj.x = uVarl & Oxffffffff;

35 puVar7 = puVar6; //puVar8 = puVar7;

36 *(puVar6 + -8) = 0x113d; //*(puVar7 + -8) = Oxll4da;

37 sym.imp.__printf_chk(1, "b.a = %u\n", uVar8);

38 //sym.imp._printf_chk(1,"b.a = %u\n");

39 *(puVar7 + -8) = 0x1156; //*(puVar8 + -8) = 0x1163;

10 sym.imp.__printf_chk (1, "c = %i\n", *0x400c);

41 //sym.imp._printf_chk(1,"c = %i\n", _obj
.c);

12 *(puVar7 + -8) = 0x116f; //*(puVar8 + -8) = 0x117c;

13 sym.imp.__printf_chk(1, "x = %i\n", _obj.x);

44

45 uVard = 0;

16} else {

17 uVar4 = *param_2;

48 *(*x0x20 + -0x20) = 0x10a6;

49 sym.imp.__printf_chk(q, "Usage: %s <val_1> <val_2> <val_3>\n", uVar4d);

50 uVard = 1;

51}

52 return uVar4d;

53 }

Fig. 12 Decompilation of differential testing bug

where it prints the values. In the original program it printed the structure, while, in
the mutant, it printed a variable and a specific memory address.

Analysing the outcome of the program, we can see that the second print differs.
In gem5 with—--isa X886, it prints 0 while in a x86 Ubuntu host, it prints garbage
(e.g.22 091). In this case, the expected result is garbage. Multiple runs show the same
behaviour. This means that the way systems organise memory is different to gem5.

Figure 13 shows a minimised program that we believe exhibits the same issue.
However, running this program in both gem5 and the host environment results in
the same outcome: a crash. Decompilation is not expected to produce valid code. To
effectively recreate the source for our mutated binaries and minimise them, new meth-
ods are required, such as using LLMs to assist in decompilation and minimisation.
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l #include<stdio.h>
2

3 int main() {
A __printf_chk(1,"c= %i\n", *((int *)0x400c));
5 return O;

6}

Fig. 13 Bug minimization for the gem5 bug in Fig. 12

7.2 Bugs reported and acknowledged

During the development of gem5, we aimed to understand the relevance of the bugs
that we identified. We decided to communicate with different stakeholders involved
with gem5 ’s ecosystem and discuss the importance of the discovered bugs. Even
though our target architecture is x86, we discussed several of the tool features and
discovered bugs with ARM, which was interested in those bugs that were related to
mismatches. During our discussions with gem5 developers, they were mainly inter-
ested in the panic errors, which are the ones where the simulator crashes. They
asked us to report every panic error. These communications have been carried out
by email, although we presented several of the bugs discovered by SearchSYS
during one of the monthly gem5 developers meetings. Following the meeting, we
reported 4 panic errors to the gem5 issue tracker, discovered with LLM-generated
test inputs as bug reports: #1483, #1506#1507 and #1508.

7.3 Comparison of manual vs template prompt GPT-3. 5-turbo approaches

We compared two approaches for generating test cases using GPT-3.5-turbo:
a semi-manual approach originally used on an older version of GPT-3.5-turbo
(August 2023) and the template prompt approach (Section 3.1.2). The original
method involved a more manual process, providing extensive context to GPT-3.5-
turbo for each test generation request as well as a window of previous tests which
served as examples. This method was slower, less efficient, and resulted in fewer test
cases being generated. Additionally, the quality of the generated test cases was lower,
with less code compiling successfully and achieving lower coverage.

In contrast, the newer approach uses template prompt and Table 1’s tokens to
accelerate the process. Instead of providing extensive context, we use specific, zero-
shot instructions to guide GPT-3.5-turbo in generating the desired code. This
resulted in a much higher throughput and quality of code produced, with higher cov-
erage. We found this approach, compared to the original method, resulted in a higher
throughput on the current GPT-3. 5-turbo version (February 2024).

The improvement in the newer method can be attributed to several factors. Firstly,
the template prompt approach provides more specific and direct guidance to GPT-
3.5-turbo, reducing ambiguity and improving the relevance of the generated
code. Secondly, the newer versions of GPT-3.5-turbo used in this approach may
have improved capabilities and performance, contributing to the higher quality of
the output. However, due to the closed nature of the GPT-3.5-turbo model, we
cannot definitively isolate the impact of the model version from the changes in our
methodology. Nonetheless, the overall enhancement in test case generation is evi-
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dent, demonstrating the effectiveness of the template prompt approach in leveraging
GPT-3.5-turbo for software testing.

8 Threats to validity
8.1 Internal validity

Comparing against other approaches To the best of our knowledge, there is no other
fuzzer specifically designed for system simulator fuzzing while capable of perform-
ing differential testing. This lack of comparable alternatives limits our ability to
benchmark against other methods. AFL++ has fuzzing binaries options. We briefly
discuss these, arguing their irrelevance in the context of this paper.

The binary-only fuzzing option is relevant when the source code of the SUT or the
target is unavailable (AFL++ fork of QEMU). This is an orthogonal approach dealing
with the target itself. While this provides flexibility for fuzzing targets without their
source code, it does not focus on fuzzing binary test inputs to the SUT.

AFL++ ’s mutators (e.g. bit-flip) can be applied on binary executable test inputs.
However, randomly flipping bits in binary executables often results in corrupted bina-
ries that fail to execute properly in both native and simulated environments, leading
to many false positives. Moreover, with no access to native x86 oracle during fuzz-
ing, this option can reduce the efficiency of using GI and coverage, as most mutants
result in a crash. Hence, more sophisticated techniques beyond simple bit flips are
necessary when fuzzing system simulators.

LLM models Our study included six different models running locally or remotely.
Initially, we excluded StarCoder (Li et al. 2023) due to its relatively poor perfor-
mance, which was its most recent version when we started our evaluation. However,
the newer version, StarCoder?2 (Lozhkov et al. 2024), appears to be more effective
and may be considered in future work.

Seed selection Our work leverages LLMs to automate the generation of test inputs
and uses afl-cmin for corpus minimisation, addressing the lack of systematic meth-
ods for generating seeds in system simulator testing. Without the LLMs, users are
required to supply an initial corpus. This challenge leads to a dependency on LLM’s
code-generation ability. Establishing such a corpus without LLMs inevitably delves
into the broader and well-studied issue of seed selection in fuzzing (Herrera et al.
2021), which is not the scope of this work. Our LLM-based approach is a first step
toward the generation of benchmarks for simulators’ ISA components, enabling
future baselines.

Instrumentation Our methodology relies heavily on the correct instrumentation of
the simulator’s source code, where AFL++ is used. This may impact the runtime per-
formance of SearchSYS and the reproducibility of detected bugs during fuzzing,
which may no longer triggered using a non-instrumented simulator. This issue is not
unique to SearchSYS and is common when using instrumentation. To address it, we
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automatically tested the test inputs from the fuzzed corpus, using a non-instrumented
build of the simulator and cross-checked it with the results from native execution.
Furthermore, we manually analysed bug reports generated by SearchSYS before
reporting these to the developers.

Fuzzing We used the fuzzing methodology described in Klees et al. (2018), where
each experiment lasted for 24 hours. We repeated each experiment —fuzzing each
combination of test input corpus and configuration— and reported results that are
averages across these repeated experiments. Due to the challenge of maintaining
identical experimental environments for each repetition, we repeat each experiment
10 times, which is fewer than the recommended number of 30 repeats to mitigate
the randomness inherent in fuzzing (Klees et al. 2018). Yet, Fig. 9 shows that the
standard deviation is largely dependent on the LLM used rather than the selected
SearchSYS ’s configuration (e.g. Phi?2 is noisier than TinyLlama). It suggests
that the variability in our results is more influenced by the inherent randomness of
LLMs rather than fuzzing, making the choice of an LLM model significant. Along-
side the results presented here, we also provide the source code used to obtain these
results, enabling the reproduction of our experiments. However, system simulators,
when used in conjunction with fuzzing, are extremely resource-intensive, particularly
in terms of system memory. Therefore, a sufficiently capable machine is necessary to
replicate our findings.

Coverage measurement The resources required for using SearchSYS and gem5
make it hard to measure coverage. During our experimentation, we encountered sev-
eral issues connected with these limitations especially connected with the inputs that
TinyLlama generated. Some of these inputs crashed the whole fuzzing process
affecting AFL++. This was predominant at employing the fuzzed-by-proxy strategy.
As a consequence, the coverage results for TinyLlama contained fewer than 10
repetitions.

8.2 External validity

Hallucinations of LLMs pose a threat by misunderstanding the prompts pro-
vided (Perkovi¢ et al. 2024). This may lead to the generation of invalid programs,
programs with undefined behaviours (ISO C, Working Group SC22/WG14 2018)
(e.g. uninitialised local variables), or programs with no input. During test input
generation, we filtered out invalid programs by compiling them and removing any
sources that failed to compile from the input corpus. Programs with undefined behav-
iours present a genuine risk to valid detection of missimulations. We addressed this
issue by analysing mismatches, once a bug is found, to identify and exclude programs
with undefined behaviours from the reported missimulation bugs (see Section 8.1).

8.3 Transferability and reproducibility

Although this paper uses gem5 as a use case, AFL++ has been widely applied to vari-
ous targets (Groce et al. 2022; AFL compiler fuzzer n.d.; Kersten et al. 2017; Pham
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et al. 2020; Wilk n.d.). Therefore, applying SearchSYS to a different target SUT
should be straightforward. Our custom AFL++ mutator is reusable since it performs
target-independent mutations.

GPT-3.5-turbo has been trained on a wide range of programming languages,
including C, Python and Java. By adjusting the LLM to target the desired program-
ming language and modifying the prompt template tokens in Table 1 accordingly,
our method can be easily adapted to generate test inputs for other programming
languages (Biswas 2023; Destefanis et al. 2023). However, GPT-3.5-turbo is
not open-source with various terms and policies restricting its usage, making our
results potentially non-transferable in some contexts with GPT-3 . 5-turbo model.
Ollama is preferable as it allows us to use the exact model locally, ensuring trans-
parency, transferability and reproducibility with full control over the model, its ver-
sion, and its seed. Similarly, with the same seed, AFL++ and our post-processing
steps are fully reproducible and deterministic. Furthermore, fuzzed binaries are not
platform-independent — they can only be used on similar operating systems and envi-
ronments, such as those with the same architecture (e.g. x86) and compatible GLib
versions. This requires repeating the fuzzing phase per target architecture.

To effectively use SearchSYS in real-world scenarios, we recommend leverag-
ing local LLMs via platforms like O11lama to mitigate GPT-3.5-turbo’s draw-
backs discussed above. Our evaluation found Magicoder and Llama2 to offer
a strong balance between seed quality (for pre-fuzzing testing) and fuzzing perfor-
mance. Nonetheless, as LLMs evolve rapidly, we advise re-evaluating the latest ver-
sions before launching a long fuzzing campaign. To simplify this process, we provide
Docker images and full instructions (Dakhama et al. 2024). Specifically, we suggest:
selecting recent LLM versions, generating and minimising initial corpora, tuning
SearchSYS parameters (as in RQ3), conducting 24-hour fuzzing runs per corpus,
and performing differential testing on initial and fuzzed corpora.

9 Related work

With the emergence of Large Language Models (LLMs) since the Fall of 2022, sev-
eral researchers have used them to automate software engineering tasks. There are
several surveys available that were posted on https://www.arxiv.org in the second
half of 2023 (Zhang et al. 2023; Wang et al. 2023; Fan et al. 2023). Of these, Zhang
et al. (2023) provide a good summary of recent work that uses LLMs for fuzz testing
(see Section 4.3.7 Zhang et al. 2023). Most of the work was proposed in 2023 and
uses GPT-based LLMs and user interfaces, particularly ChatGPT.

Among the work closest to SearchSYS, is CHATFUZZ, a tool introduced by
Hu et al. (2023) to improve grey-box fuzzing. It automatically prompts ChatGPT to
generate seeds for fuzz testing which are similar to existing seeds but that fit better to
a given format. Xia et al. proposed Fuzz4All (Xia et al. 2024) which first generates
prompts which produce example code snippets for fuzz tester input. These samples
are then evaluated and those prompts that generate the largest number of valid inputs
are taken to generate more inputs for a given fuzzer. Additionally, Ackerman and
Cybenko (2023) use LLMs to generate inputs from natural language specifications,
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then use LLM to further mutate those, and then, in turn, input these as seeds to a
fuzzer.

In the context of mutation testing (DeMillo et al. 1978; Dakhel et al. 2023) ask an
LLM to generate initial unit tests, run mutation testing to evaluate them, then enhance
the LLM prompt with information about surviving mutants to produce further test
inputs. On the other hand, Lemieux et al. (2023) introduce CodaMosa, a search-based
software testing tool that prompts an LLM for new inputs during the search process,
in cases where the search gets stuck trying to cover a particular callable instruction.

There’s little work on fuzz testing hardware simulation software, most are con-
cerned with traditional software or embedded systems (Eisele et al. 2022). Neverthe-
less, Martignoni et al. (2013) propose a prototype fuzzing tool for CPU emulators,
called EmuFuzzer. They used it to test five emulators (QEMU, Valgrind, Pin, BOCHS,
and JPC) finding bugs in each of them. Jiang et al. (2022) test three CPU simulators
(QEMU, Unicorn, and Angr) for ARM devices. They generate valid inputs which are
then automatically mutated using rules that result in syntactically-valid ARM instruc-
tions. To generate more tests, they extract constraints which influence the execution
path and use a symbolic execution engine. Yu et al. (2016) propose an automated
framework, called VDTest, to test virtual devices within full system emulators. They
extract test templates using static analysis and subsequently employ combinatorial
testing (Petke 2015) to generate new test inputs. They tested eleven virtual devices,
including one from gem5, revealing 64 faults. Similarly to our approach, they use
differential testing between real devices and emulators to discover inconsistencies.

Our approach uses the AFL++ fuzzer in an unconventional way, replacing test
input fuzzing with a more sophisticated input format as discussed in Section 3, an
idea that was adopted by various domains such as compiler testing (Groce et al. 2022;
Aschermann et al. 2019) or network protocol analysis to manipulate network proto-
cols for fuzzing (Pham et al. 2020).

In terms of testing gem5, while there are efforts in verifying its architectural com-
pliance (Bruns et al. 2021) and the integrity of its code, gem5 testing or verifica-
tion approaches (Bossuet et al. 2023) that can go deeper into its internals, such as
SearchSYS, are essential to validate its many possible options.

Serebryany et al. (2021) present a hardware fault diagnosis tool in use in Google
data centres whose tests cases were derived with help from software fuzzing of CPU
simulators similar to gem5, but they only mention gem5 as a possible future tool
they would like to use. Rajeev and Song (2023) use gem5 to test their fuzz inputs
rather than fuzzing gem5 itself.

Thus far only our previous work (Dakhama et al. 2023) used fuzzing to test gem5.
In this preliminary version of our work, we integrated LLMs and SBSE for the pur-
pose of testing system simulators, and developed a prototype of SearchSYS. Here
we extend our previous approach (Dakhama et al. 2023) to fully automate the process
and extend the tool with new mutation operators. In particular, we extend previous
work by asking an LLM to generate an example program, rather than providing our
own, providing automated feedback to AFL++ for mutation-selection by construct-
ing independent mutators, improving argument mutator to produce valid values, and
introducing a type mutator. Furthermore, we test our approach with five additional
local LLMs.
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10 Conclusions

Finding bugs in complex simulation systems with millions of lines of code like gem5
(Binkert et al. 2011) requires new combinations of search-based strategies (such as
fuzzing) and LLMs (e.g. ChatGPT) to provide extensive test cases by re-purposing
and improving existing benchmarks of test programs. Although the initial complex-
ity of preparing the simulation system for feedback-based fuzzing tools (e.g. AFL++
Michal 2023) can be discouraging, SearchSYS allows software engineers to auto-
matically discover new errors. SearchSYS can do better than conventional fuzz
testing, as the bugs it finds need not be catastrophic faults, such as segmentation
errors (which fuzzers typically require), but can be a simple but automatically recog-
nised difference in output, which is easily detected by an internal oracle (see Section
6) Langdon et al. 2017. In tandem with differential testing, we showed that it allows
the discovery of masked errors.

We have proposed an improved automated approach for testing system simulators
and implemented it in our prototype tool, SearchSYS. At a high level, our approach
first generates programs using LLMs, which are then input to a fuzzer with our cus-
tom mutators. The architectural changes proposed in this paper are essential for
achieving full automation in SearchSYS and addressing key limitations in fuzzing,
as the saturation problem. The template prompt approach facilitates the automated
generation of semantically rich test inputs, which are difficult to create manually. In
contrast, semi-manual methods like GPT-3.5-turbo (SSBSE 2023) (Dakhama
et al. 2023) require constant effort to produce diverse inputs, lack full automation,
and risk saturation as the SUT adapts to previously used test inputs.

We used SearchSYS to test the gem5 simulator. We conducted 70 experiments,
each repeated 10 times, using 6 LLMs, 5 software configurations, and 2 corpora
variants. LLMs and fuzzing generated 101 442 issues leading to 21 new bugs in
gem5, including 14 missimulations (which typically could not be detected by vanilla
AFL++, which mainly targets catastrophic faults rather than missimulations). Fur-
thermore, the gem5 developers requested access to the new test suite and intend
fixing several of the bugs we have already reported to them, which provides practical
validation of SearchSYS ’s effectiveness.

Supplementary Information The online version contains supplementary material available at https:/doi.
org/10.1007/310515-025-00531-7.

Acknowledgements Authors are listed in alphabetical order. This work was supported by the UKRI TAS
Hub grants no. EP/V00784X/1 and EP/V026801/2 and the Alan Turing grant G2027 - MuSE.

Author Contributions All authors contributed equally to this work. Details: All authors wrote the main
manuscript text. K.E. and H.M. prepared the figures and tables. All authors reviewed the manuscript.
Experimental data was collected by H.M., K.E. and A.D. and the Zenodo record was prepared using this
data by K.E..

Data Availability Code and Data Availability: Our tool SearchSYS, the LLMs prompts, the experimental
infrastructure, data, and results are freely available via: - SearchSY'S https://github.com/karineek/SearchG
EMS5/(2024) - Aidan, D., Even Mendoza, K., Langdon, W. B., Hector, M., & Justyna, P. (2024). Artifact of
Enhancing Search-Based Testing with LLMs for Finding Bugs in System Simulators (ASE-Journal-V2).
Zenodo. https://doi.org/10.5281/zenodo.13450472.

@ Springer


https://doi.org/10.1007/s10515-025-00531-7
https://doi.org/10.1007/s10515-025-00531-7
https://github.com/karineek/SearchGEM5/
https://github.com/karineek/SearchGEM5/
https://doi.org/10.5281/zenodo.13450472

63 Page 42 of 45 Automated Software Engineering (2025) 32:63

Declarations
Competing Interests Conflicts of Interest: Prof. Petke is Deputy Editor-in-Chief for the ASE journal.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman, F.L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., et al.: GPT-4 technical report. arXiv:2303.08774 (2023)

Ackerman, J., Cybenko, G.: Large language models for fuzzing parsers (registered report). In: Proceedings
of the 2nd International Fuzzing Workshop, FUZZING 2023, pp. 31-38. ACM, Seattle, WA, USA
(2023). https://doi.org/10.1145/3605157.3605173

AFL compiler fuzzer. (n.d.). https://github.com/agroce/afl-compiler-fuzzer

AFL Internals - Stats, Counters and the UL (Fri, May 27, 2022). https://www.core.gen.tr/posts/007-afl-st
ats-counters-and-ui/

Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.-R., Teuchert, D.: NAUTILUS: Fishing
for deep bugs with grammars. In: Network and Distributed Systems Security (NDSS) Symposium,
San Diego, CA, USA (2019). https://doi.org/10.14722/ndss.2019.23412

Aydin, O.: Google Bard generated literature review: Metaverse. J. Al 7(1), 1-14 (2023)

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software testing: A
survey. IEEE Trans. Softw. Eng. 41(5), 507-525 (2015). https://doi.org/10.1109/TSE.2014.2372785

Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower, D.R.,
Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.: The
gem5 simulator. SIGARCH Comput. Archit. News. 39(2), 1-7 (2011). https://doi.org/10.1145/2024
716.2024718

Biswas, S.: Role of ChatGPT in computer programming. Mesopotamian J. Comput. Sci. 2023, 9-16
(2023). https://doi.org/10.58496/MJCSC/2023/002

Bossuet, L., Grosso, V., Lara-Nino, C.A.: Emulating side channel attacks on gem5: Lessons learned. In:
2023 IEEE European Symposium on Security and Privacy Workshops (EuroS &PW), Delft, Nether-
lands, pp. 287-295 (2023). https://doi.org/10.1109/EuroSPW59978.2023.00036

Brown, T.B., et al.: Language models are few-shot learners. (2020). https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Bruns, N., Herdt, V., GroB3e, D., Drechsler, R.: Toward RISC-V CSR compliance testing. IEEE Embed.
Syst. Lett. 13(4), 202—205 (2021). https://doi.org/10.1109/LES.2021.3077368

Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., Zhang, L.: A survey of compiler testing.
ACM Comput. Surv. 53(1) (2020). https://doi.org/10.1145/3363562

Code Booga 34B. (n.d.). https://huggingface.co/oobabooga/CodeBooga-34B-v0.1

Dakhama, A., Even-Mendoza, K., Langdon, W.B., Menéndez, H.D., Petke, J.: Artifact of enhancing
search-based testing with LLM for finding bugs in system simulators. Zenodo, Switzerland (2024).
https://doi.org/10.5281/zenodo. 13450472

Dakhama, A., Even-Mendoza, K., Langdon, W.B., Menéndez, H.D., Petke, J.: Searchgem5: Towards reli-
able gemS5 with search based software testing and large language models. In: SSBSE 2023, Proceed-
ings. LNCS, vol. 14415, pp. 160-166. Springer, San Francisco, CA, USA (2023). https://doi.org/10.
1007/978-3-031-48796-5 14 . Best challenge track paper

Dakhel, A.M., Nikanjam, A., Majdinasab, V., Khombh, F., Desmarais, M.C.: Effective test generation using
pre-trained large language models and mutation testing. arXiv:2308.16557 (2023)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3605157.3605173
https://github.com/agroce/afl-compiler-fuzzer
https://www.core.gen.tr/posts/007-afl-stats-counters-and-ui/
https://www.core.gen.tr/posts/007-afl-stats-counters-and-ui/
https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.58496/MJCSC/2023/002
https://doi.org/10.1109/EuroSPW59978.2023.00036
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/LES.2021.3077368
https://doi.org/10.1145/3363562
https://huggingface.co/oobabooga/CodeBooga-34B-v0.1
https://doi.org/10.5281/zenodo.13450472
https://doi.org/10.1007/978-3-031-48796-5_14
https://doi.org/10.1007/978-3-031-48796-5_14
http://arxiv.org/abs/2308.16557

Automated Software Engineering (2025) 32:63 Page 43 of 45 63

Dale, R.: GPT-3: What’s it good for? Nat. Lang. Eng. 27(1), 113—118 (2021). https://doi.org/10.1017/S1
351324920000601

DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for the practical program-
mer. [EEE Comput. 11, 3141 (1978). https://doi.org/10.1109/C-M.1978.218136

Destefanis, G., Bartolucci, S., Ortu, M.: A preliminary analysis on the code generation capabilities of GPT-
3.5 and Bard Al models for java functions. arXiv:2305.09402 (2023)

Eisele, M., Maugeri, M., Shriwas, R., Huth, C., Bella, G.: Embedded fuzzing: A review of challenges,
tools, and solutions. Cybersecurity 5(1), 18 (2022). https://doi.org/10.1186/s42400-022-00123-y

Even-Mendoza, K., Sharma, A., Donaldson, A.F., Cadar, C.: GrayC: Greybox fuzzing of compilers and
analysers for C. In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2023, pp. 1219-1231. ACM, Seattle, WA, USA (2023). https://doi.org
/10.1145/3597926.3598130

Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., Zhang, J.M.: Large language
models for software engineering: Survey and open problems. arXiv:2310.03533 (2023)

Fioraldi, A., Maier, D., Ei3feldt, H., Heuse, M.: AFL++: Combining incremental steps of fuzzing research.
In: USENIX Workshop at WOOT 20, p. 12. USENIX Association, online (2020). https://www.useni
x.org/conference/woot20/presentation/fioraldi

Fioraldi, A., Mantovani, A., Maier, D., Balzarotti, D.: Dissecting american fuzzy lop: A fuzzbench evalua-
tion. ACM Trans. Softw. Eng. Methodol. 32(2) (2023). https://doi.org/10.1145/3580596

gfauto. (n.d.). https://github.com/google/graphicsfuzz.git

Grattafiori, W.X., Défossez, A., Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier, N., Scialom, T., Syn-
naeve, G.: Code Llama: Open foundation models for code. arXiv:2308.12950 (2023)

Groce, A., Tonder, R., Kalburgi, G.T., Le Goues, C.: Making no-fuss compiler fuzzing effective. In: CC
’22: 31st ACM SIGPLAN International Conference on Compiler Construction, pp. 194-204. ACM,
Seoul, South Korea (2022). https://doi.org/10.1145/3497776.3517765

Gu, A., Rozi¢re, B., Leather, H., Solar-Lezama, A., Synnaeve, G., Wang, S.I.: CRUXEval: A benchmark
for code reasoning, understanding and execution. arXiv:2401.03065 (2024)

Herrera, A., Gunadi, H., Magrath, S., Norrish, M., Payer, M., Hosking, A.L.: Seed selection for successful
fuzzing. In: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA 2021, pp. 230-243. ACM, Virtual, Denmark (2021). https://doi.org/10.1145/3
460319.3464795

Hu, J., Zhang, Q., Yin, H.: Augmenting greybox fuzzing with generative Al. arXiv:2306.06782 (2023)

ISO C, Working Group SC22/WG14: The C17 standard for the C programming language (draft ISO/
1EC9899:2017 of ISO/IEC 9899:2018). Index Section, pp. 476-515 (2018). https://www.iso.org/sta
ndard/74528.html

Jain, S.M.: Hugging face. In: Introduction to Transformers for NLP: With the Hugging Face Library and
Models to Solve Problems, pp. 51-67. Apress, Berkeley, CA, USA (2022). https://doi.org/10.1007/
978-1-4842-8844-3 4

Javaheripi, M., Bubeck, S.: Phi-2: The surprising power of small language models. Microsoft Research
Blog. (2023). https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-1
anguage-models/

Jiang, M., Xu, T., Zhou, Y., Hu, Y., Zhong, M., Wu, L., Luo, X., Ren, K.: EXAMINER: Automatically
locating inconsistent instructions between real devices and CPU emulators for ARM. In: ASPLOS
2022: 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, pp. 846—858 (2022). https://doi.org/10.1145/3503
222.3507736

Kersten, R., Luckow, K., Pasareanu, C.S.: poster: AFL-based fuzzing for java with Kelinci. In: SIGSAC.
CCS’17,pp.2511-2513. ACM, Dallas, Texas, USA (2017). https://doi.org/10.1145/3133956.3138820

Klees, G.T.,Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) Proceedings of the ACM Conference on Computer and Communications Security
(CCS), pp. 2123-2138. ACM, Toronto, Canada (2018). https://doi.org/10.1145/3243734.3243804.
Winner of the 7th NSA Best Scientific Cybersecurity Paper competition

Langdon, W.B., Yoo, S., Harman, M.: Inferring automatic test oracles. In: IEEE/ACM 10th International
Workshop on Search-Based Software Testing (SBST), Buenos Aires, Argentina, pp. 5-6 (2017).
https://doi.org/10.1109/SBST.2017.1

@ Springer


https://doi.org/10.1017/S1351324920000601
https://doi.org/10.1017/S1351324920000601
https://doi.org/10.1109/C-M.1978.218136
http://arxiv.org/abs/2305.09402
https://doi.org/10.1186/s42400-022-00123-y
https://doi.org/10.1145/3597926.3598130
https://doi.org/10.1145/3597926.3598130
http://arxiv.org/abs/2310.03533
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1145/3580596
https://github.com/google/graphicsfuzz.git
http://arxiv.org/abs/2308.12950
https://doi.org/10.1145/3497776.3517765
http://arxiv.org/abs/2401.03065
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3460319.3464795
http://arxiv.org/abs/2306.06782
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html
https://doi.org/10.1007/978-1-4842-8844-3_4
https://doi.org/10.1007/978-1-4842-8844-3_4
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://doi.org/10.1145/3503222.3507736
https://doi.org/10.1145/3503222.3507736
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SBST.2017.1

63 Page 44 of 45 Automated Software Engineering (2025) 32:63

Lemieux, C., Inala, J.P., Lahiri, S.K., Sen, S.: Codamosa: Escaping coverage plateaus in test generation
with pre-trained large language models. In: 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Victoria, Australia, pp. 919-931 (2023). https://doi.org/10.110
9/ICSE48619.2023.00085

Li, R., Allal, L.B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J.,
et al.: StarCoder: May the source be with you! arXiv:2305.06161 (2023)

Lozhkov, A., Li, R., Allal, L.B., Cassano, F., Lamy-Poirier, J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei,
Y., et al.: StarCoder 2 and The Stack v2: The Next Generation. arXiv:2402.19173 (2024)

Martignoni, L., Paleari, R., Reina, A., Roglia, G.F., Bruschi, D.: A methodology for testing CPU emulators.
ACM Trans. Softw. Eng. Methodol.22(4),29-12926 (2013). https://doi.org/10.1145/2522920.2522922

Matricardi, F.: Powerhouse in your pocket: How tiny LLMs are redefining the Al landscape. Medium.
(2023). https://medium.com/@fabio.matricardi/powerhouse-in-your-pocket-how-tiny-llms-are-redef
ining-the-ai-landscape-fdf17718bc79

McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10(1), 100-107 (1998)

Michal, Z.: Technical “whitepaper” for afl-fuzz. http:/Icamtuf.coredump.cx/afl/technical details.txt
(Retrieved April 21, 2023)

Pahune, S., Chandrasekharan, M.: Several categories of large language models (LLMs): A short survey. Int.
J. Res. Appl. Sci. Eng. Technol. 11(7), 615-633 (2023). https://doi.org/10.22214/ijraset.2023.54677.
arXiv:2307.10188

Perkovié, G., Drobnjak, A., Boti¢ki, I.: Hallucinations in LLMs: Understanding and addressing challenges.
In: 2024 47th MIPRO ICT and Electronics Convention (MIPRO), pp. 2084-2088 (2024). https://doi
.org/10.1109/MIPR0O60963.2024.10569238

Petke, J.: Constraints: The future of combinatorial interaction testing. In: 8th IEEE/ACM International
Workshop on Search-Based Software Testing, SBST 2015, Florence, Italy, pp. 17-18 (2015). https:/
/doi.org/10.1109/SBST.2015.11

Pham, V.-T., Bohme, M., Roychoudhury, A.: AFLNET: A greybox fuzzer for network protocols. In: 2020
IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), Porto,
Portugal, pp. 460465 (2020). https://doi.org/10.1109/ICST46399.2020.00062

Rajeev, R., Song, X.: An empirical study of fuzz stimuli generation for asynchronous fifo and memory
coherency verification. J. Electr. Electron. Eng. 2(3), 302-306 (2023). https://doi.org/10.33140/JE
EE.02.03.13

Serebryany, K., Lifantsev, M., Shtoyk, K., Kwan, D., Hochschild, P.: SiliFuzz: Fuzzing CPUs by proxy.
arXiv:2110.11519 (2021)

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhar-
gava, P., Bhosale, S., et al.: Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288
(2023)

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., Wang, Q.: Software testing with large language model:
Survey, landscape, and vision. arXiv:2307.07221 (2023)

Wei, Y., Wang, Z., Liu, J., Ding, Y., Zhang, L.: Magicoder: Source code is all youneed. v1 arXiv:2312.02120
(2023)

Wilk, J.: AFL’s fork for fuzzing Python. (n.d.). https://github.com/jwilk/python-afl

Xia, C.S., Paltenghi, M., Le Tian, J., Pradel, M., Zhang, L.: Fuzz4All: Universal fuzzing with large lan-
guage models. In: Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering. ICSE ’24, Lisbon (2024). https://doi.org/10.1145/3597503.3639121

Yu, T., Qu, X., Cohen, M.B.: VDTest: An automated framework to support testing for virtual devices. In:
Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, pp. 583-594.
ACM, Austin, TX, USA (2016). https://doi.org/10.1145/2884781.2884866

Zhang, Q., Fang, C., Xie, Y., Zhang, Y., Yang, Y., Sun, W., Yu, S., Chen, Z.: A survey on large language
models for software engineering. arXiv:2312.15223 (2023)

Zhang, P., Zeng, G., Wang, T., Lu, W.: TinyLlama: An open-source small language model. arXiv:2401.02385
(2024)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2402.19173
https://doi.org/10.1145/2522920.2522922
https://medium.com/%40fabio.matricardi/powerhouse-in-your-pocket-how-tiny-llms-are-redefining-the-ai-landscape-fdf17718bc79
https://medium.com/%40fabio.matricardi/powerhouse-in-your-pocket-how-tiny-llms-are-redefining-the-ai-landscape-fdf17718bc79
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.22214/ijraset.2023.54677
http://arxiv.org/abs/2307.10188
https://doi.org/10.1109/MIPRO60963.2024.10569238
https://doi.org/10.1109/MIPRO60963.2024.10569238
https://doi.org/10.1109/SBST.2015.11
https://doi.org/10.1109/SBST.2015.11
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.33140/JEEE.02.03.13
https://doi.org/10.33140/JEEE.02.03.13
http://arxiv.org/abs/2110.11519
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.07221
http://arxiv.org/abs/2312.02120
https://github.com/jwilk/python-afl
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/2884781.2884866
http://arxiv.org/abs/2312.15223
http://arxiv.org/abs/2401.02385

Automated Software Engineering (2025) 32:63 Page 45 of 45 63

Authors and Affiliations

Aidan Dakhama’ - Karine Even-Mendoza' - W. B Langdon? - Héctor
D. Menéndez' - Justyna Petke?

< Karine Even-Mendoza
karine.even_mendoza@kcl.ac.uk

Aidan Dakhama
aidan.dakhama@kcl.ac.uk

W. B Langdon
w.langdon@ucl.ac.uk

Héctor D. Menéndez
hector.menendez@kcl.ac.uk

Justyna Petke
j-petke@ucl.ac.uk

' King’s College London, London, England, UK
University College London, London, England, UK

@ Springer



	﻿Enhancing search-based testing with LLMs for finding bugs in system simulators
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Background
	﻿2.1﻿ ﻿System simulators and silent errors
	﻿2.2﻿ ﻿Fuzzers
	﻿2.3﻿ ﻿Code coverage
	﻿2.4﻿ ﻿Artificial intelligence: Large Language Models (LLMs)

	﻿﻿3﻿ ﻿﻿SearchSYS﻿: Testing system simulators
	﻿﻿3.1﻿ ﻿LLM-based test inputs generation
	﻿﻿3.1.1﻿ ﻿Generation via test program sources
	﻿﻿3.1.2﻿ ﻿Zero-shot prompting test input generation


	﻿﻿3.2﻿ ﻿Fuzzing
	﻿﻿3.2.1﻿ ﻿Custom ﻿AFL++﻿ mutation operators
	﻿3.2.2﻿ ﻿Fuzzing throughput improvements

	﻿﻿4﻿ ﻿Research questions
	﻿﻿5﻿ ﻿Methodology
	﻿5.1﻿ ﻿﻿gem5﻿ Use case
	﻿5.1.1﻿ ﻿Logic circuit simulator
	﻿5.1.2﻿ ﻿Instrumentation and ﻿AFL++﻿ setup


	﻿﻿5.2﻿ ﻿Selected LLMs
	﻿﻿5.3﻿ ﻿Configurations
	﻿﻿5.4﻿ ﻿Experimental procedure
	﻿﻿5.5﻿ ﻿Experimental environment
	﻿﻿6﻿ ﻿Results
	﻿﻿6.1﻿ ﻿RQ1: LLM test input generation effectiveness
	﻿﻿6.2﻿ ﻿RQ2: Fuzzing preparation (I) - corpus minimisation
	﻿﻿6.3﻿ ﻿RQ3: Fuzzing preparation (II) - selecting parameters values for ﻿SearchSYS﻿
	﻿﻿6.4﻿ ﻿RQ4: Efficiency of fuzzing

	﻿﻿7﻿ ﻿Discussion
	﻿﻿7.1﻿ ﻿Investigation of two ﻿gem5﻿ bugs
	﻿﻿7.2﻿ ﻿Bugs reported and acknowledged
	﻿﻿7.3﻿ ﻿Comparison of manual vs template prompt ﻿GPT-3.5-turbo﻿ approaches

	﻿﻿8﻿ ﻿Threats to validity
	﻿﻿8.1﻿ ﻿Internal validity
	﻿8.2﻿ ﻿External validity
	﻿8.3﻿ ﻿Transferability and reproducibility

	﻿﻿9﻿ ﻿Related work
	﻿﻿10﻿ ﻿Conclusions
	﻿References


