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ABSTRACT: Finite-temperature lattice free energy differences
between polymorphs of molecular crystals are fundamental to
understanding and predicting the relative stability relationships
underpinning polymorphism, yet are computationally expensive to
obtain. Here, we implement and critically assess machine-learning-
enabled targeted free energy calculations derived from flow-based
generative models to compute the free energy difference between
two ice crystal polymorphs (Ice XI and Ic), modeled with a fully
flexible empirical classical force field. We demonstrate that even
when remapping from an analytical reference distribution, such
methods enable a cost-effective and accurate calculation of free
energy differences between disconnected metastable ensembles
when trained on locally ergodic data sampled exclusively from the
ensembles of interest. Unlike classical free energy perturbation methods, such as the Einstein crystal method, the targeted approach
analyzed in this work requires no additional sampling of intermediate perturbed Hamiltonians, offering significant computational
savings. To systematically assess the accuracy of the method, we monitored the convergence of free energy estimates during training
by implementing an overfitting-aware weighted averaging strategy. By comparing our results with ground-truth free energy
differences computed with the Einstein crystal method, we assess the accuracy and efficiency of two different model architectures,
employing two different representations of the supercell degrees of freedom (Cartesian vs quaternion-based). We conduct our
assessment by comparing free energy differences between crystal supercells of different sizes and temperatures and assessing the
accuracy in extrapolating lattice free energies to the thermodynamic limit. While at low temperatures and in small system sizes, the
models perform with similar accuracy. We note that for larger systems and high temperatures, the choice of representation is key to
obtaining generalizable results of quality comparable to that obtained from the Einstein crystal method. We believe this work to be a
stepping stone toward efficient free energy calculations in larger, more complex molecular crystals.

I. INTRODUCTION
Free energy estimates are key to quantitatively understanding
physical-chemical processes ranging from solubility to binding
affinity.1−4 In the case of polymorphism of molecular crystals in
particular, accurate and efficient lattice free energies are needed
to determine the relative stability of crystal packings, which is
important in many industries, including chemicals, pharmaceut-
icals, semiconductors, and food products.5−9 An accurate
prediction of the relative thermodynamic stability of poly-
morphs at different temperatures requires calculating the
entropic contribution to free energy. Including such thermody-
namic detail is often prohibitively expensive due to the
anharmonic nature and the presence of low-frequency modes
in the vibrational free energy.8,10−15 For free energy calculations
to be of industrial relevance, free energy methods are needed

that are suitably cheap and scalable for deployment on larger
data sets of putative finite temperature polymorphs while
retaining accuracy levels on par with states of the art classical
anharmonic free energy methods.8,12,13 Given an atomistic
model of the system of interest and a putative crystal structure,
its finite-temperature lattice free energy can be rigorously
computed using statistical mechanics computational techniques,
often based on the principles of free energy perturbation and
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thermodynamic integration.16,17 Several approaches have been
proposed in the literature, including various implementations of
the Einstein crystal method,17−19 diabat approaches drawing
inspiration from lattice-switch Monte Carlo and Marcus
theory20−22 and enhanced sampling methods based on
introducing biasing potentials,23−25 to name a few. While
these approaches are theoretically well established and formally
yield fully anharmonic lattice-free energies, their computational
cost is frequently too demanding for large-scale deployment. For
this reason, the current state of the field relies on the ad hoc
application of exact methods such as the Einstein crystal and the
more widespread use of methods based on the harmonic
approximation, which are nowadays routinely deployed to carry
out a final refinement of zero-Kelvin energy landscapes.6,12

One of the main limitations of formally exact methods based
on statistical mechanics is that they typically require a significant
amount of computing effort to sample intermediate, unphysical
states, which increases the computational cost without providing
inherent physical insights.16,17 Taking the Einstein crystal
method as the “gold standard” example of a physics-based,
formally exact approach for calculating lattice-free energies, we
note that its convergence requires devising a chain of states with
overlapping configurational distributions that connect the
Hamiltonian describing the physical crystal polymorph to the
Einstein crystal Hamiltonian. To obtain convergence, neighbor-
ing Boltzmann distributions along such a chain of states must
sample overlapping configurations, and in each state, config-
urations must be sampled ergodically. Thus, sampling sets of
tens to hundreds of perturbed Hamiltonians are typically
required to achieve well-converged free energy estimates for a
single putative crystal form.
The emergence of machine learning methods capable of

training deterministic bijective coordinate transformations that
directly map between the probability distributions of two

arbitrarily different metastable states of interest, in this case, the
polymorphic cell of interest and the Einstein crystal reference
state offers a promising alternative to the costly direct sampling
of intermediate, unphysical states.26−31 We have recently shown
that such approaches, coupled with BAR32 and MBAR33

reweighting techniques for free energy estimation can yield
very accurate free energy differences between conformational
states of isolated molecules.34−39

Here, we take stock of the lessons learned in ref39 to critically
compare two different methods of representing the config-
urations of flexible molecules in a crystal for training invertible
flow-based probabilistic generative models (PGMs) that can
effectively map between two metastable water ice crystal
structures (Ice XI and Ic), modeled with an empirical classical
force field. In particular, we assess the efficiency and accuracy of
the lattice-free energy estimates obtained by ML-enabled
targeted free energy estimation against ground truth estimates
obtained with an Einstein Crystal method. We examine the
effect of different temperatures and system sizes on the
convergence of free energy estimates and the quality of
extrapolating these results to the thermodynamic limit. We
note that the two temperatures examined (−150 and 50 °C) are
meant to stress test the methods. For instance, at higher
temperatures, we can expect the configurational distributions to
be significantly less localized and more anharmonic, making
them more challenging to model using neural networks.

II. PROBABILISTIC GENERATIVE MODELS FOR
LATTICE FREE ENERGY CALCULATION

To quantitatively estimate lattice free energies, we build and
expand on our earlier work,39 where we identified several useful
heuristics for applying reweighted PGMs to obtain accurate free
energy estimates. The only MD data that is required for training

Figure 1. (A) Illustration of a water molecule with two representations (model C and model H) of the 9 DOFs. (B) Illustration of the two model
architectures compared in this work (model C; top and model H; bottom). Representations: Both models start by transforming the Cartesian
coordinates of the system r, containing N atoms, as discussed in the main text, to create a vector x containing 3(N − 1) marginal variables. These
variables are then rescaled to a fixed model range (e.g., [−1, 1] or [−1, 1), depending on the type of variable). Mapping: Both models used one-
dimensional monotonically increasing rational quadratic splines40 (with five trainable knots) to transform x in an elementwise manner according to
coupled flow architecture.41 This was implemented as in ref.39 In each system, 4 coupling layers were used in the case of the Hemisphere model, and a
maximumnumber of coupling layers was used in the Cartesianmodel. The partitioning of variables in each layer was based on the heuristic discussed in
SI Figure S1.42 The coupling layers invertibly transform x to z. The maps were trained to approach a uniform remapped distribution in z. For this
reason, in model H, the variables associated with quaternions are transformed back to 4D unit vectors on the specified hemisphere. The details are
discussed in the main text. The amount of data used for training and validating the PGMs was 200,000 samples (extracted from a 20 ns trajectory) in
each system containing 16 or 32 molecules and 400,000 samples (extracted from a 40 ns trajectory) in each system with 64 molecules. A
training:validation split of 3:1 was used during each training run.
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and reweighting the PGMs is that which is sampled in the
physical macrostates of interest. This approach, therefore,
entirely avoids sampling multiple intermediate Hamiltonians
(details provided in the Simulations Setup section), typical of free
energy perturbation methods such as the Einstein Crystal.39,43

In ref,39 we used isolated small molecules in a vacuum as
representative case studies, with 3N − 9 out of 3N − 6 of the
relevant intramolecular degrees of freedom (DOFs) represented
using internal coordinates.44 Those PGMs relied on a mixed
coordinate representation of the given molecule.34 Specifically,
we kept three of the atoms represented in Cartesian coordinates
to serve as a starting point for a bijective reconstruction of all
remaining atoms of the molecule from the internal coordinates.
We referred to these three Cartesian atoms as the Cartesian
block. When dealing with isolated molecules in a vacuum, the
Cartesian block only has three relevant DOFs. However, in
systems containing more than one molecule, like crystal
supercells, all nine DOFs of the Cartesian block of each
molecule must be jointly modeled by the PGM.
Here, we use flow-based PGMs to compute the Helmholtz FE

differences between crystal supercells using two ice polymorphs
(Ic and XI) as simple but representative examples of systems
requiring the explicit representation of all nine DOFs for all
Cartesian blocks. For such systems, it is important to consider
the most cost-effective way of representing a Cartesian block
inside the PGM. In this regard, we highlight ref,30 which has
contributed a powerful method of representing the Cartesian
block based on a unit-quaternion to describe the rotational state
of a given molecule. In particular, they have demonstrated that
building a normalizing flow model with this representation
allows learning an accurate approximation of the Boltzmann
distribution over DOFs belonging to atoms that are not
covalently bonded and, thus, obtaining FE estimates of ice XI
crystal supercells modeled with rigid water molecules.30 In the
following, we compare two PGM architectures, respectively
implementing a quaternions-based representation inspired by
ref30 and a direct Cartesian representation. These two models
only differ in how the hydrogen atoms in each water molecule
are represented. The first representation is based directly on
their Cartesian coordinates (model C, illustrated in Figure 1A),
while the second relies on unit-quaternions and internal
coordinates (model H, illustrated in Figure 1B). Details of the
models are discussed in sections IIA and IIB, respectively. To
assess their accuracy, efficiency, and ability to deal with an
increasing number of DOFs, we extended our comparison to
three system sizes and two temperatures.
To maintain consistency in comparing free energy differences

computed from the two models and the ground truth, we
established the following ground rules:

• Both types of models were trained and evaluated on the
same data, following the same protocol. For instance, the
training validation split was fixed to 3:1 in all cases. This
MD data was taken from λ = 1 simulations defined in
section IIH to establish a fair comparison with the
Einstein crystal method. Each model was trained and
evaluated on batches of 1,000 and 10,000 configurations,
respectively.

• The three DOFs defining the position of the center of
mass were removed from both types of flows identically by
whitening the Cartesian coordinates of all oxygen atoms, as
discussed in section IIC.

• Each spline coupling layer (represented in blue in Figure
1) used a specific nonrandom conditioning protocol
(displayed in Figure S1). The number of trainable
parameters was adjusted by varying the number of
coupling layers to minimize the variance of FE estimates
obtained using the BAR_V estimator (defined in section
IID) evaluated on the models during training. Models
were trained for as long as necessary to observe a
convergent behavior in the running average of these
estimates, as defined in section IIE.

Moreover, we note that it was possible to construct the
trainable part of both models using standard spline coupling
layers, analogously to our previous work in isolated molecules.39

As such, bothmodels (C andH) used standard coupling layers39

that are not inherently equivariant to permutations of anyDOFs.
It was possible to use this approach because none of the water
molecules in the supercells we compared swapped lattice sites
within the MD-accessible time scales. We note that PGM
architectures can be equipped with equivariant functionality by
replacing the standard multilayered perceptrons with attention-
based coupling mechanisms.26−28,30,31 The following sections
describe in detail the approach adopted in models C and H,
respectively.
A. Cartesian Representation of Hydrogen Atoms. In

the Cartesianmodel (modelC in Figure 1B), the positions of the
hydrogen atoms in the whole system [rH1, rH2] were represented
directly with their Cartesian coordinates. Meanwhile, the oxygen
atoms in the system (rO) were instead represented using
whitened Cartesian coordinates, as described in section IIC.
Taken together, the variable xC shown in Figure 1, describes all
the relevantN(N − 1) marginal DOFs of the ice crystal. Finally,
the shift and scale layer (yellow in Figure 1) was initialized to fit
the one-dimensional marginal variables of xC into the working
interval of the 1D splines. This step takes advantage of the
minimum and maximum values explored by each 1D marginal
variable in theMD training and validation data to define the one-
dimensional linear transformations to carry out the scale and
shift, exactly like in ref.39 Likewise, the spline coupling layers in
this work were also implemented according to methods detailed
in ref,39 with each marginal variable of model C assigned to a
nonperiodic [−1, 1] interval. The uniform log base distribution
(ln p0) in model C was therefore set to39

= =p n Nln (9 3)ln(2) 3( 1)ln(2)0 mol (1)

B. Hemisphere Representation of Hydrogen Atoms. In
the hemisphere model (modelH in Figure 1B), the positions of
the hydrogen atoms were described with the help of unit
quaternions. The following paragraphs describe how this
representation was implemented.
Reference30 shows that Cartesian coordinates of the two

hydrogen atoms (rH1 and rH2) of a water molecule rmol = [rO, rH1,
rH2] can be efficiently represented by a set of independent
internal coordinates (xmol), consisting of two bond lengths (d1,
d2), one bond angle (θ), and one (flip invariant) unit-quaternion
±q S( )3 4 , as well as rO.

30,45 For brevity, only the inverse
of this transformation is discussed here. The configuration of a
water molecule can be reconstructed from these coordinates
using the following equation, where we adopt the approach
detailed in ref46 to transform a unit-quaternion into a rotation
matrix R(q):30,45,46
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In relation to eq 2, refs30,45 provide the following closed-form
expression of the log-volume change:
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We observe that eq 3 gives the same quantities as a

= lni i
1
2 1

9 , with eigenvalues λ1, ..., λ9 obtained from

diagonalizing JTJ, where ×J 9 10 is the Jacobian of eq 2
given by automatic differentiation. eq 3 was therefore evaluated
when reconstructing a water molecule (i.e., mapping xmol →
rmol). When mapping in the opposite direction (i.e., rmol → xmol),
as defined in ref,30 the log volume change of ln x rmol mol

was
used.30,45

In model H, all of the intramolecular DOFs (i.e., the bond
lengths and angles [ ]×d d, , n1 2 mol

, see Figure 1) were directly
concatenated to the whitened Cartesian coordinates of the
oxygen atoms (cO), with the latter being treated in the same way
as in model C.
The remaining 3nmol DOFs of the system, corresponding to

the nmol unit-quaternions (specifying the rotations of the
molecule in a supercell relative to a fixed reference frame
ensured by the nonrotating supercell vectors), were treated as
discussed below.
Each unit-quaternion, representing the rotation of a given

molecule in an arbitrary crystal data set, may exist anywhere on
the S3 hyper-sphere. Thus, its four marginal coordinates [q0, q1,
q2, q3] are coupled by the unit-length constraint. Moreover,
antipodal quaternions represent equivalent rotation matrices
(i.e., R(q) = R(−q)). This means that any hemisphere of S3 is
sufficient to describe all possible rotations, or equivalently, only
half of S3 is sufficient to specify a set of all unique quaternion-
based representations of all 3D rotations.47,48 When considering
the curvature of S3, or its hemisphere, it is clear that an explicit
global parametrization of this space is impossible without
encountering singularities. Instead, the recommended singu-
larity-free approach is to work directly with unit vectors
embedded in 4 (implicit representation).46 Indeed, this is
exactly how ref30 approached the problem of mapping between
distributions of rotations. Specifically, two novel flip-equivariant
bijectors (symmetrized Moebius transformations and symmetrized
projective convex gradient maps) were developed in ref30 that
enable modeling smooth flip-symmetric flows on the surface of
any flip-symmetric sphere. In the case of S3, these bijectors serve
as robust flow architectures for modeling distributions on the
rotation manifold (SO3).30 Alternative ways of learning
normalized distributions of rotations that do not rely on flows
can also be found in the literature and retain the unit-vector
representation.49,50

All quaternions are assigned to a specific hemisphere and then
globally parametrized using standard hyper-spherical coordi-
nates despite the presence of singularities. This choice was
implemented to provide model H with sufficient representa-
tional power while minimizing computational costs.
The hemisphere was specified by q* = sign(q0)q, where

= | |xsign( ) x
x
, and the associated maps are
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The log-volume change of eq 4, in the s → q* direction is
ln(sin2(θ0) sin(θ1)). When transforming in the opposite
direction, the same expression is multiplied by −1. The
singularities in this quantity are considered at points where
sin(x) = 0 for any x, where the volume, and thus density, cannot
be defined. For numerical stability of dealing with samples
flowing near these points, the arguments of the log were clipped
to be greater than a small but finite threshold (1e-8). Generally,
clipping of this type can introduce errors during inference, which
in the flow-based PGMs can be quantified by a mismatch in log
volume changes associated with the forward and inverse
transformations of the data. For this reason, we systematically
checked the inversion accuracy of model H in both directions,
before and after training, to ensure that the approximation
introduced in the chosen representation is within reasonable
tolerance levels. An example of this analysis is discussed in SI
Figure S7. One can assume that the small patches of
configurational space surrounding the singularities in each
molecular configuration are negligible compared to the total
volume of configurational space. Thus, the errors associated with
samples flowing near these regions may, on average, yield a
negligible contribution during reweighting.
Furthermore, since s does not preserve the antipodal flip-

symmetry at the edge of the hemisphere, we note that in the
systems we examined so far it was possible to rotate the global
reference frame of the supercell data such that, for eachmolecule
in the data set, the marginal distribution in θ0 is shifted away
from both 0 (one of the singularities) and

2
(edge of the

hemisphere). More generally, one can also note that in a stable
crystal system where none of the molecules samples significantly
larger rotational angles, and thus their quaternion distribution
on S3 is quite narrow, one can define an arbitrary per-molecule
rotation (i.e., a translation of the MD data set on S3) such that
each molecule maps to a formally well behaved joint distribution
in the hyper-spherical coordinates (s). In this regime, the three
marginal variables of s can be transformed and treated
independently.
That being said, we intentionally did not limit the model H

from being capable of generating all possible rotations, even
though this constraint can be trivially imposed on the marginals
of s, as part of scaling and shifting layer.
After each unit-quaternion is transformed to s, the combined

set of 3nmol rotational DOFs of the crystal were concatenated to
the rest of the marginal variables mentioned earlier to give xH
shown in Figure 1B.
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Akin to model C, the coupling layers in a model H were
trained to flatten the configurational distribution of the MD
data, to map it as close as possible to a uniform distribution over
zH (Figure 1). In terms of achieving a uniform distribution of
rotations, this corresponds to uniformly sampling the surface of
the hemisphere of S3. For this reason modelH transforms s back
to q* on both sides of the flow, including the noisy side (Figure
1). The log base distribution ln p0 in model H was therefore set
to

=p n nln 2 ln (6 3)ln 20 mol mol (5)

The first term in eq 5 originates from the fact that a
hemisphere of S3 has a surface area of π2. The second term takes
into account the 6 remaining nonrotational DOFs in each
molecule, with 3 global center-of-mass degrees of freedom of the
supercell missing from the flow.
C. Virtual Atoms and Center of Mass Treatment. The

classical force field used to model water molecules in the
polymorphic forms of ice investigated was TIP4P/Ice: a four-
body potential that, alongside the oxygen and two hydrogen
atoms, employs an additional virtual atom (rM). The dynamics
of the virtual atom do not contribute any additional DOF to the
system because its position can be reconstructed without
uncertainty as

= + × +r r r r r0.13458335 ( 2 )M O H1 H2 O (6)

where ri≠M represents the position of atom i. As such, the virtual
atoms were removed before feeding molecular coordinates to
any PGMmodel. When sampling the supercell configurations of
ice polymorphs using the model, virtual atoms were
reconstructed using eq 6.
The center of mass (COM) of the oxygen atoms was removed

from all theMD-generated configurations used in the training or
validation of the PGM models as

r r rO supercell (7)

After applying eq 7, in which the periodic boundary
conditions (PBCs) of the supercell box are not taken into
account, the Cartesian coordinates of each supercell (r) are
guaranteed to exist on a 3(N − 1) dimensional hyper-plane
specified by the fixed center of mass. In other words, eq 7 always
creates three singular DOFs in r. These three redundant
dimensions were reliably removed from the flow using a PCA
whitening layer, initialized on Cartesian coordinates of the
oxygen atoms from the entire MD data set (after applying eq 7).
The whitening transformation was adopted following the
approach of ref.34 The log volume changes corresponding to
the whitening and unwhitening transformations are

= lnj
n

j
1
2 1

3( 1)mol and = lnj
n

j
1
2 1

3( 1)mol , respectively, where
nmol is the number of molecules, and λj > 0 are the eigenvalues of
the covariance matrix initialized on the entire MD data set, as
detailed in the SI.34

D. Reweighting the Learned Distribution and Com-
puting Lattice Free Energies. Using the relevant log-base
distributions (eqs 1 and 5, in models C and H respectively), the
normalized log-probability ln(q(r)) of each PGMmodel (q) was
defined in the following way:39

= +r rq pln( ( )) ln ( ) ln( )r z 0 (8)

In eq 8, ln γr→z(r) represents the log volume change associated
with transforming r to z, as illustrated in Figure 1.39

Defining the generalized work function ϕ = βU + ln(q), one
can use the two-state BAR equation (extensively discussed in
ref39) to estimate absolute FE of each macrostate corresponding
to a polymorph. Here, one of the two data sets fed into the BAR
algorithm is sampled from the PGMmode. At the same time, the
other originates from the MD data that samples the equilibrium
distribution of a given macrostate. Ergodic samples from the
model distribution q were obtained by sampling the (uniform)
base distribution p0 and then transforming them via the learned
map. Ensemble averages over MD data (⟨•⟩p) were instead
evaluated on locally ergodic configurations, exclusively extracted
from the validation data set (i.e., data not included in the PGM
training set).39 As such, we refer to this estimator as BAR_V and
indicate the absolute free energy estimates in reduced units
obtained from this estimator as _fcrys

BAR V , where the subscript crys
indicates the polymorph.
In each system, _fcrys

BAR V was evaluated on random batches of
104 validation configurations duringmodel training, with a stride
of 25 training batches between evaluations. This reweighing
approach is both computationally cheap and accurate, an
observation that aligns well with results in prior literature.35,36,39

Furthermore, the use of the pymbar library to evaluate the BAR
free energy estimator provides analytical error bars which
quantify the uncertainty of _fcrys

BAR V estimates.51

E. Averaging Free Energies fromMultipleMaps during
Training. When training each PGM by maximum likelihood,
BAR_V was evaluated multiple times during training, resulting
in a set of M different raw estimates of crystal free energy

=_f i i M( ( ); 1, ..., )crys
BAR V , that are stochastically distributed

around an average, most representative, estimate.
Here, we note that the most accurate of these estimates, i.e.,

the one associated with lower variance during training by
maximum likelihood, coincides with the minimum validation
error.36 Employing the same notation of ref,39 we can label such
error when evaluated on the same validation batches as the free
energy estimate _f i( )crys

AVMD V .34

We also note that _f i( )crys
AVMD V increases at the start of training

toward a maximum and then decreases gradually with a rate that
correlates with overfitting, which our previous work has shown
to coincide with increasing variance in the _f i( )crys

BAR V

estimates.39

As such, inspired by ref38 we adopt the following unsupervised
way of averaging multiple _f i( )crys

BAR V estimates obtained from
multiple maps during training:

=
= =

_

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
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Ö
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f w wf i( )

j

M

j
i

M

icrys
1

1

1
crys
BAR V

(9)

where weights are proportional to = _w f iexp( ( ))i crys
AVMD V . This

approach enables to obtain running weighted averages fcrys that
are minimally affected by the large variances seen at the start of
training or, in later stages, due to overfitting. Evaluating eq 9
during training yields a converging curve of final FE values (see
Figures 3, 4) that in practice takes into account estimates from
all the previous versions of the trained maps, and all of the
random validation batches encountered. This approach practi-
cally extends the multimap method described in ref38 by
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introducing a weighting that accounts for model overfitting. In
Figures 3 and 4, the standard error bars ( f BAR_V(i) ± SE(i))
were also averaged using eq 9.
F. PGM Training. Both types of models (C and H) (see

Figure 2) were trained and evaluated in the same way as in our
previous work (ref39). Specifically, to train a model, the
following loss function (eq 11 defined in ref39) was minimized
via stochastic gradient descent (using Adam optimizer), with
respect to the set of model parameters (Θ; located inside the
coupling layers; blue in Figure 1):

=L L f rmin ( ); ( ) ( ; ) pML ML (10)

The averaging in eq 10 is performed over random batches of
the locally ergodic MD training data that are distributed
according to the true Boltzmann distribution p(r) = Z−1

exp(−u(r)). The constant of interest f = − ln Z, appearing eq
10, is unknown prior to performing a FE calculation but does not
affect the gradient that is used for training the model ∂ΘLML. The
quantity averaged in eq 10 corresponds to the generalized work
function, discussed in section IID. Taking into account eq 8,
makes = rL ln ( ; )r z pML .

Figure 2. Samples of supercell configurations generated by transforming 20,000 random samples obtained from a uniform p0, and using four separate
instances of modelH, trained to map configurations of polymorphs XI and Ic at low and high temperature, respectively. The figures show that the four
models produce physically consistent samples in the Cartesian space of supercell coordinates. The chosen Ice polymorphs do not exhibit proton
disorder. By coloring the hydrogen positions in black and gray, we show that the model can consistently map their coordinates, thus enabling a
consistent comparison with the ground-truthmethod. The probability density plots underneath the system’s configurations report themarginal density
obtained from MD data in black solid, and in color, dashed, the marginal probability computed from the mapped configurations, generated
transforming p0. The histograms are virtually indistinguishable, with lines almost perfectly overlapped. An analogous figure showing samples from
model C is reported in the SI.
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G. MD Simulations. Unit cells of most forms of ice can be
found in databases such as American Mineralogist Crystal
Structure Database and crystallography open database, in the
form of .cif files. The specific structures used in this paper are Ic52

and XI.53 The cif. files were converted to .pdb files using
Mercury.54 Both unit cells contain 8 molecules. In this paper, we
are focused on three system sizes (supercells containing 16, 32,
and 64 molecules). The supercells containing these numbers of
molecules were obtained by replicating the unit cells by
translational stacking. Specifically, if the unit cell is 111, then
the two respective sets of supercells of Ic and XI were
211,221,222 and 211,212,222. In creating supercells, we
generally prefer supercells that are as close to cubic as possible.
All MD simulations were run using OpenMM55 using its

TIP4P/Ice force field implementation. The long-range electro-
statics were treated using the Particle-Mesh Ewald (PME)
algorithm, with an error tolerance parameter of 1e-5, a real space
cutoff distance of 0.31 nm, and a switching distance of 0.279 nm.
The cutoff (0.31 nm) was chosen considering the shortest box
length in supercells 211 and 221 of ice Ic, which was 0.6358 nm.
To sample the NVT ensembles, the LangevinMiddleIntegrator

integrator, with a friction coefficient of 20 ps−1, was used. We
note that, at 50 °C, both ice polymorphs are metastable with
respect to liquid water; however, within the sampling performed
to gather data for training PGMmodels, no melting events were
observed. All simulations were performedwith a time step of 2 fs,
saving a configuration every 50 timesteps.
Before running theNVT simulations, each of the six supercells

mentioned earlier was equilibrated for 1 ns usingMonteCarloA-
nisotropicBarostat set to 1 atm at the relevant temperature.
Although Open MM does not provide estimates of instanta-
neous pressure, the average box shapes equilibrated qualitatively
well, according to the histograms of the box lengths during the
simulation. Out of the 10,000 structures sampled during these
simulations, a single structure with a box most similar to the
average box was selected as the initial structure for all
subsequent NVT simulations.
H. Ground Truth Free Energies with the Einstein

Crystal Method. To assess the accuracy of FE estimates
obtained from reweighted PGMs, we employed the Einstein
Crystal method (ECM) based on ref,43 which is representative
of the state-of-the-art in estimating fully anharmonic FEs from
MD data. In our Open MM-based implementation of the ECM,
we adopted a scalar spring constant (k), leading to the following
potential energy expression:43

= +r r r ru U
k

( ) ( ) (1 )
2 0

2
(11)

In eq 11, λ is a coupling parameter controlling the linear
interpolation between the physical ensemble, characterized by
potential energy function (U), and the ensemble of the Einstein
crystal, described by harmonic potential energy function

( )r rk
2 0

2 , where r0 can be any static configuration of the

system with center of mass shifted to zero, and k is the scalar
spring constant. We set r0 to the initial configuration, with the
center of mass removed. The spring constant was fixed to 6× 103
kJ(mol)−1(nm)−2 so that the Gaussian distributions associated
with the harmonic potential have negligible periodic images
along the smallest box length (0.6358 nm).43 The ground truth
FE of a given supercell ( fcrysECM) is then estimated as43

= + =
=

+
f f f f f f; where

i

n

i icrys
ECM

0
1

1

i i1 (12)

where = =( )m mi j
n

j i1

1
are normalized masses mi of the

atoms in the system. In this work, nλ = 20 separate simulations
were ran with λ parameters λ1, ..., λ20 taking on values 0, ..., 1,
respectively. The intermediate values, arranged in ascending
order between zero and one, are reported in SI Figure 6(A). The
same set of lambda values were used in all systems. Since the λ1 =
1 simulation samples the translationally invariant ensemble of
the unperturbed system of interest, all other simulations were
initialized from r0 with CMMotionRemover functionality of
openMM being active. This removes the average momentum of
the center of mass during the simulations. Additionally, every 50
timesteps during these simulations, the center of mass was
actively removed from the positions (r) to make sure that all
systems remained on the same 3(N − 1) dimensional subspace.
In eq 12, Δf i was calculated nλ − 1 = 19 times using BAR
functionality of pymbar.51 This was done several times during
the simulations to show how the FE estimates converge as a
function of more data becoming available for the BAR
calculations (SI Figure 6(B)). The set of ground truth FEs
reported in this paper utilized all of the available data. The
standard error of fcrysECM was estimated by summing the nλ − 1
intermediate standard errors provided by pymbar. This approach
provides a lower-bound estimate of the uncertainty on fcrysECM,
because this error estimate assumes complete decorrelation
between the samples used to compute free energy differences
between neighboring replicas. While underestimating the
uncertainty of the ground-truth method, this approach is fast
(i.e., does not require bootstrapping) and provides a relatively
more ambitious target with which to compare the PGM-based
methods. Finally, f 0 appearing in eq 12 is defined as

= + +
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and takes three additive terms, including the FE of the Einstein
crystal, the FE associated with the removal of the center of mass
from the Einstein crystal, and the FE associated with removing
the center of mass from the unperturbed physical system (where
V was set to the volume of the box).43 Please refer to ref43 for
further details about these terms.
Using the ground truth method described above (ECM), a

total of 1.84 μs of data was sampled, with 0.32 μs of this data
(17.4%) sampling the physical ensembles (i.e., λ = 1). This
percentage is >5% because each physical simulation was four
times longer than any other simulation of the same ECM run to
collect sufficient MD data for later use in the PGM models.
Collecting this data in the context of ECM ensured that the
average potential energy in each system was the same across all
FE methods being compared in this work. Notably, one major
methodological discrepancy between the ground truth method
and the PGMs can be linked to how the center of mass was
removed. In the EC calculations, the center of mass of the
supercells was removed based on the position of all atoms
(including the hydrogens). Meanwhile, in the PGMs, the center
of mass being removed was only based on the oxygen atoms, a
more practical choice given the fact that the oxygens are used to
anchor Cartesian blocks (eq 7). This methodological difference
does introduce small systematic discrepancies between the
absolute free energy of supercells that cancel out when
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considering free energy differences between polymorphs, as
shown in the Results section.

III. RESULTS
In this section, we quantitatively assess the results from the two
types of flow-based PGMs, i.e., models C and H, introduced in
sections IIA and IIB, respectively. The ground truth estimates of
the lattice free energy were obtained using the Einstein crystal
method (ECM), introduced in section IIH.

Two types of plots are used to visualize the comparisons
between methods. Plots showing temperature-reduced crystal
free energy differences Δfcrys(A ‑ B) = fcrys(A) − fcrys(B) , and plots showing
temperature-reduced entropy differences per molecule Δsmol(A ‑ B)

= smol(A) − smol(B), where (A, B) are either the two different Forms of
ice (Ic, XI) (Figure 3) or the two temperatures (−150 °C, 50
°C) (Figure 4).
The average potential energy in each state ⟨U⟩i is constant

across all methods because it is obtained from the same

Figure 3. Free energy and entropy differences between ice polymorphs. A: model H, B: model C. The straight, black, solid colored lines represent
reference ground truth computed with the ECM. The corresponding error bars are shown using straight black dotted lines. For cases where the running
estimate of the PGM-based method renders it difficult to assess the ground truth accurately, we refer the reader to Table 1. Plots labeled with i and ii
report the entropy differences per molecule between forms Ic and XI as a function of the number of training batches (i.e., during training). The
estimates frommodelsH andC are shown using colors corresponding to the three system sizes investigated in this study. The fluctuating colored lines
indicate the raw estimates from the models, and the fluctuating, converging black curves indicate the cumulative weighted averages of these raw
estimates, obtained as discussed in section IIE). Plots labeled iii display the differences in crystal-free energy between the two forms, with a line of best-
fit extrapolating to approximate the same quantities in the thermodynamic limit (y-intercept). All transparent areas represent standard error bars
(colored: PGM models, black: ECM ground truth).
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underlying set of MD-generated configurations. Hence, by
comparing the entropic contribution to the lattice free energy si,
we introduce a more stringent criterion to assess the accuracy of
free energy estimates from PGMs trained by likelihood, akin to
our previous work.39

The per-molecule temperature-reduced entropy of poly-
morph i is defined as

=s n f U( )i i i imol,
1

(14)

where state i is specified by the identity of the metastable state
(Form) and the physical conditions of the given Canonical
ensemble (N, V, T).
Table 1, based on raw data reported in SI Figure 5, reports the

lattice Helmholtz free energy differences (in units of kBT)
between the two forms of ice, computed using all of the methods
(i.e., from models H and C, and from the ECM). These
comparisons show a significant level of agreement between the
different methods, indicating that the results from the PGMs are
accurate. We note, however, that the error bars are higher in
larger systems and at higher temperatures because such
ensembles occupy a larger volume of configurational space.
That being said, we consistently observe smaller error bars from
results of model H, compared to model C. This indicates that
model H (based on the decoupled, quaternion-based
representation of the Cartesian blocks) is better suited for
efficiently learning configurational distributions of ice crystals.
Moreover, since both models we compare used the same
architecture for the trainable part of the model (spline coupling
layers; see Figure 1), we expect that the computational gains
from using the decoupled representation of the Cartesian block
can be generalized to other types of crystals.
Figure 3 reports per-molecule, temperature-reduced entropy

difference (in units of kB) between the two forms of ice (Ic and
XI), estimated using the different methods. In these
comparisons, the two temperatures are plotted separately.
Figures 3A (i, (ii) and Figure 3B (i,ii) report estimates obtained
from the PGM models H and C respectively, plotted as a
function of the training progress. The differences between panels
A and B in Figure 3 indicate that model H was able to converge
more rapidly and with lower variance compared to model C.
These estimates are systematically comparable to the ECM
ground truth (straight black lines).

The reason for the lower variance in the BAR_V estimates
from model H, compared to model C, can be linked to the
differences in the amount of overlap observed between the
potential energies of the data and the potential energies of the
samples drawn from the models during training (shown in SI
Figures 2 and 3). When taken together, the current results show
that in the large systems containing 64 molecules and at the
higher temperature (50 °C) (green error bars in Figure 3A and
B, (ii), both models tend to approach a bottleneck in accuracy.
BothmodelsH andC enable us to consistently extrapolate the

lattice free energy to the thermodynamic limit, achieving results
consistent with the ECM ground truth (see Figure 3A and B,
(iii). Also, in this case, the lower error associated withmodelH is
evident, and the level of accuracy in the high-temperature
simulations is of the same order as the ECM ground truth.
Figure 4 reports per-molecule, temperature-reduced entropy

differences between low and high-temperature ensembles of the
same systems, based on the estimates from the three methods
(PGM models: H (panel A) and C (panel B), and the ground
truth method: ECM (all panels)). These estimates are plotted as
a function of training progress. Also, in this case, the agreements
between the PGM-based and the ground truth (ECM-based)
estimates of the temperature-dependent entropy difference in
the three system sizes are significant. As for the comparison
between polymorphs, estimates obtained from model H are
associated with significantly smaller error bars than the estimates
from model C, once again underscoring the importance of
adopting a physically motivated representation in constructing
flow-based maps for targeted FE calculations.
For completeness, samples drawn from the larger models

(with 64 molecules) are visualized in Figure 2 and SI Figure 4.
There are no significant qualitative differences between the two
types of models (model C vs H respectively).
Our results clearly show that both the computational costs

associated with training and the numerical precision of the
resulting free energy estimates obtained from flow-based PGMs,
even when accurately reweighted,39 are strongly affected by the
representation of the relevant DOFs.

IV. DISCUSSION AND CONCLUSIONS
In this work, we have demonstrated that given an accurate
reweighting scheme,39 the lattice free energy differences
between packing polymorphs of flexible ice crystals, modeled

Table 1. Final Helmholtz Free Energy Differences (in units of kBT) with Their Associated Standard Errors, between Ice Ic and XI
Obtained Using Two PGM Models, H and C, and the ECMa

ΔIc−XI @ T = −150 °C

nmol Δ⟨f⟩ECM Δ⟨f⟩H |Δ⟨f⟩ECM − Δ⟨f⟩H| Δ⟨f⟩C |Δ⟨f⟩ECM − Δ⟨f⟩C|
16 9.27 ± 0.19 9.29 ± 0.04 0.014 ± 0.23 9.29 ± 0.05 0.016 ± 0.24
32 14.25 ± 0.33 14.22 ± 0.09 0.033 ± 0.41 14.17 ± 0.18 0.084 ± 0.51
64 16.95 ± 0.43 16.94 ± 0.26 0.009 ± 0.68 17.05 ± 1.32 0.099 ± 1.75
∞ 19.44 ± 0.49 19.41 ± 0.28 0.033 ± 0.78 19.49 ± 1.39 0.048 ± 1.89

ΔIc−XI @ T = 50 °C

nmol Δ⟨f⟩ECM Δ⟨f⟩H |Δ⟨f⟩ECM − Δ⟨f⟩H| Δ⟨f⟩C |Δ⟨f⟩ECM − Δ⟨f⟩C|
16 2.03 ± 0.20 2.04 ± 0.05 0.005 ± 0.25 2.00 ± 0.06 0.037 ± 0.26
32 5.18 ± 0.32 5.18 ± 0.15 0.002 ± 0.47 5.21 ± 0.36 0.033 ± 0.67
64 6.64 ± 0.42 6.56 ± 0.77 0.075 ± 1.20 6.87 ± 3.93 0.234 ± 4.36
∞ 8.21 ± 0.48 8.13 ± 0.82 0.078 ± 1.31 8.48 ± 4.08 0.269 ± 4.57

aThe accuracy of the PGM estimates is assessed by computing their absolute deviation with respect to the ECM ground truth as |Δ⟨f⟩ECM − Δ⟨f⟩i|,
where i = H, C. This analysis indicates that while agreement is excellent across all models, model H estimates are closer to ECM despite being
trained on the same data. The underlying values of absolute FE estimates for ice Ic and XI are reported in SI Figure 6.
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using a classical force field (TIP4P-ice), can be efficiently
computed using targeted free energy calculations based on
normalizing flow models, remapping from a common, flat,
analytical base distribution.
Demonstrating the method with a uniform base distribution is

significant because it can be generalized to model permutation-
ally invariant distributions, which has been a highlight in prior
literature.26,27,30,31 Furthermore, training with a flat base
distribution generates flows that can be easily composed back-
to-back to connect any pair of ensembles of the same
dimensionality, thus opening up the possibility of connecting

different packings to a common base distribution. This, in turn,
enables reweighting with Multistate BAR, as discussed in ref38

and demonstrated for isolated molecules in ref.39 Furthermore,
mapping across packing polymorphs via a flat base distribution
enables training a number of maps equal to the number of
metastable states, thus scaling favorably with the number of
polymorphs investigated and setting the scene for large-scale
applications of free energy methods based on PGMs. The results
illustrated here show that mapping via a flat base distribution is
not only possible but also accurate and computationally cheaper
than ground truth with the whole range of temperature
conditions of practical relevance for finite-temperature crystal
structure prediction.
Our results show that this approach can handle molecular

crystals where all the internal degrees of freedom of a given
Cartesian block are explicitly modeled. As such, it is a
representative example of how Cartesian blocks can be treated
in larger molecules. We, therefore, believe that the current work
is a useful stepping stone toward assessing the applicability of
PGM-based free energy methods to complex and realistic crystal
systems, including molecular crystals with multiple conforma-
tional degrees of freedom.6

Across all tests performed in this work, we note how the
extrapolation to the thermodynamic limit of an infinitely large
cell shows a convincingly convergent behavior enabling a
quantitative removal of finite-size effects from both lattice-free
energy differences and entropies. The order of magnitude of the
uncertainty is particularly important in these estimates. Our
current setup showed that a PGM-based approach such asmodel
H enables matching the ground-truth error levels.
We note that the PGM approach is more computationally

efficient than the Einstein crystal method (ECM), as it requires
performing only two simulations of the physical end-states of
interest vs multiple simulations in perturbed Hamiltonians
necessary for converging the ECM. The difference in cost can be
quantified by comparing the amount of MD-generated samples
used by the two methods. In this regard, PGM requires only
≈17% of the configurations needed by the ECM, leading to an
increase in MD efficiency of factors between 5 and 6. Given that
the FEs from PGMs in the current work have converged quite
quickly during training, we anticipate that further efficiency
gains can be reached in more complex molecular systems.
We further note that the computational overheads associated

with training PGMs by maximum likelihood are agnostic to the
quality and computational cost of the potential energy functions
used to sample the training data. This opens up future
possibilities of computing fully anharmonic free energy
differences, remapped to force fields at a higher level of
theory.37,38

The choice of a common base distribution, the application to
FE differences in a wide and practically relevant range of
temperatures, the flexible representation of individual mole-
cules, and the application to packing polymorphs with
nonoverlapping high-temperature distributions provide a step
forward with respect to the literature on PGM-based FE
calculations on molecular crystals.30 As such, these results
represent a stepping stone toward adopting normalizing flow
methods into the anharmonic FE toolbox of practitioners
dealing with finite temperature ranking of large sets of molecular
crystalline solids. More broadly, when taken together with
several key recent developments in this field,28,31 we can further
expect normalizing flows to begin solving increasingly diverse
real-world problems in the foreseeable future.

Figure 4. Free energy differences across temperatures, rather than
across polymorphs as reported in Figure 3. A: model H, B: model C.
The solid, straight black lines represent the ground truth estimates
(from ECM). Plots labeled with i and ii report the entropy differences
per molecule between two versions of the same systems at the two
temperatures (Tlow =−150 °C and Thigh = 50 °C), as a function training
progress. The estimates from models H and C are represented using
colors corresponding to the three system sizes investigated in this study.
The fluctuating colored curves are the raw BAR_V estimates on
random subsets of 10,000 points from the validation set, and the black
curves are the cumulative weighted averages of these raw estimates,
obtained as discussed in section IIE). All transparent regions represent
standard error bars (colored: PGMmodels, black: ECM ground truth).
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