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 A B S T R A C T

Unstructured grid data are essential for modelling complex geometries and dynamics in computational 
physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) 
techniques. This paper provides a comprehensive review of advanced ML methodologies designed to handle 
unstructured grid data in high-dimensional dynamical systems. Key approaches discussed include graph neural 
networks, transformer models with spatial attention mechanisms, interpolation-integrated ML methods, and 
meshless techniques such as physics-informed neural networks. These methodologies have proven effective 
across diverse fields, including fluid dynamics and environmental simulations. This review is intended as a 
guidebook for computational scientists seeking to apply ML approaches to unstructured grid data in their 
domains, as well as for ML researchers looking to address challenges in computational physics. It places 
special focus on how ML methods can overcome the inherent limitations of traditional numerical techniques 
and, conversely, how insights from computational physics can inform ML development. For this purpose, we 
mainly focus in this review on recent papers from the past decade that reflect strong interactions between 
computational physics and deep learning methods. To support benchmarking, this review also provides 
a summary of open-access datasets of unstructured grid data in computational physics. Finally, emerging 
directions such as generative models with unstructured data, reinforcement learning for mesh generation, and 
hybrid physics-data-driven paradigms are discussed to inspire future advancements in this evolving field.
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1. Introduction

Machine learning methods are increasingly being adopted in the 
field of computational physics to enhance the efficiency of traditional 
physics-based approaches [1,2]. These methods have shown significant 
promise in accelerating simulations, reducing computational costs, and 
improving prediction accuracy. When dealing with high-dimensional 
dynamical systems, if the data structure is regular both spatially and 
temporally, mature techniques from image and video processing, such 
as tree-based models, Multi layer perceptrons (MLPs), CNNs, and Re-
current neural networks (RNNs), can be effectively applied to tasks like 
field prediction, parameter identification, clustering, and super resolu-
tion [3,4]. However, these approaches generally require a square grid 
structure, homogeneous time steps or fixed input dimensions, which 
limits their applicability to structured grid data. This becomes a signif-
icant challenge in cases where data is irregular or unstructured, as is 
often encountered in high-fidelity simulations [5,6]. Unstructured data 
often comes in the form of various mesh or grid types, such as triangles 
and tetrahedra, quadrilaterals and hexahedra, polyhedral meshes, and 
adaptively refined meshes. Example application areas include cere-
bral haemodynamics [7], cardiac electrophysiology [8], environmental 
modelling [9,10] and DNA rendering [11]. These meshes are essential 
for accurately representing complex geometries in simulations, but they 
lack the regular structure that traditional machine learning methods 
typically require [12].

To address these challenges, there is a growing interest in de-
veloping machine learning techniques that can manage unstructured 
data, common in many areas of computational physics. An impor-
tant family of approaches involves using machine learning models in 
conjunction with grid interpolation (e.g., nearest neighbour [13]) and 
reordering techniques (e.g., space-filling curves [14]). These methods 
2 
map unstructured or sparse data onto a structured grid, enabling the 
application of traditional deep learning models such as CNN. A recent 
representative work is the Voronoi-tessellation-assisted CNN [15,16]. 
Although effective, this approach can introduce interpolation errors 
and may not fully capture the complexities of the original unstructured 
data.

Another promising direction is the use of GNNs, which are specifi-
cally designed to work with data represented as values on graphs rather 
than in grids [17]. In computational physics, where the data often 
consists of points connected in an irregular manner (such as nodes in 
a mesh), GNNs excel by directly modelling the relationships between 
these points. Importantly, GNNs can also handle adaptive meshes with 
a time-varying number of nodes or grids, allowing them to dynamically 
adjust to changes in the mesh structure during simulations [18,19]. This 
capability makes GNNs highly effective at capturing local interactions 
and generalising across various and evolving mesh configurations.

Transformer-type neural networks, equipped with spatial attention 
mechanisms [20,21], have also shown great potential in handling 
unstructured data. These models can focus on relevant spatial features 
regardless of the data’s irregular structure, allowing for improved learn-
ing and generalisation. Like GNNs, transformers can manage adaptive 
meshes where the number of nodes or grids changes over time, provid-
ing flexibility in scenarios where the relationships between data points 
are complex and non-local [22]. The ability to dynamically adjust focus 
based on the importance of different regions in the data makes trans-
formers particularly useful in applications involving complex physical 
systems with evolving geometries.

PINNs [12,23,24] offer another innovative solution, particularly by 
enabling meshless predictions. Unlike traditional methods that require 
a predefined mesh, PINNs can directly incorporate physical laws into 
the learning process without relying on a specific grid structure. This 
meshless approach avoids the challenges associated with unstructured 
meshes. PINNs can effectively model complex physical phenomena 
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Fig. 1. Timeline of some representative works that apply advanced machine learning techniques for unstructured grid data.
by embedding the governing equations of the system into the neural 
network architecture [23], ensuring that predictions remain physically 
consistent. This makes PINNs ideal for a wide range of applications 
where mesh generation can be particularly challenging [25]. In ad-
dition to deep neural networks, efforts have also focused on using 
shallow ML methods, such as Gaussian processes [26,27] and Random 
forests [28], to learn pixel-wise mappings from spatiotemporal data 
points, thereby addressing the challenge of explicitly handling un-
structured spatial data. This approach aligns with the meshless PINNs 
framework.

On the other hand, by adapting the advanced machine learning 
techniques previously discussed, modern AI paradigms like Reinforce-
ment learning (RL) and generative AI could also play a crucial role 
in enhancing the modelling of dynamical systems with unstructured 
grid data. Reinforcement learning is increasingly applied to optimise 
unstructured meshes by dynamically adjusting mesh elements based on 
solution variability, reducing reliance on heuristic rules [29]. Its success 
has been recently observed in simulations of fluid dynamics [30,31]. 
On the other hand, generating unstructured grid data, particularly for 
spatial–temporal systems, has been a long-standing challenge in the 
generative AI community. Efforts have spanned Variational Autoen-
coder (VAE) [32], Generative adversarial network (GAN) [33], and 
score-based diffusion models [34,35]. The latter have recently been 
widely applied to dynamical systems due to their robustness to sparse 
observations [36,37] and flexibility in conditioning [38,39].

These emerging ML techniques, as shown in Fig.  1, are revolution-
ising how unstructured data is processed in computational physics, 
enabling more accurate, efficient, and flexible simulations of complex 
systems. Fig.  1 also illustrates the number of publications indexed 
by Google Scholar that contain both ‘machine learning’ and ‘unstruc-
tured grid/mesh’. A clear upward trend can be observed, particularly 
following the surge in deep learning methods around 2018 and 2019. 
However, there is a lack of a meta-analysis and comparison of these 
methods in the existing literature, which hinders knowledge transfer 
and benchmarking across different application domains. This survey 
explores the latest advancements in machine learning methods specif-
ically tailored for modelling unstructured data, focusing on how these 
approaches are being adapted to overcome the limitations of traditional 
techniques and improve the overall efficiency and effectiveness of 
simulations in complex physical systems. We emphasise that the goal 
3 
of this work is not to compare the performance of existing methods, as 
they were designed to solve different challenges. In summary, the key 
contributions of this paper are as follows:

• To the best of the authors’ knowledge, this is the first review 
paper to comprehensively summarise the development of ma-
chine learning techniques for unstructured grid data in dynamical 
systems within computational science.

• This paper has a special focus on how cutting-edge machine 
learning techniques, in particular deep neural networks, could 
tackle the bottleneck of data sparsity and irregularity challenges 
in simulation data with unstructured or adaptive grids.

• This review covers a variety of significant applications in com-
putational science, such as environmental simulation and mul-
tiphase flow modelling involving complex geometries, though 
it does not provide an in-depth analysis of applications, as the 
primary focus of this paper is on the methodology.

Given the comprehensive scope of the methods covered in this 
review and the large body of related research, the literature selection 
is guided by two principles: milestone studies and citation chaining, 
with a particular focus on recent research outputs published since 
2015. The rest of the paper is organised as follows. Section 2 intro-
duces the concepts of dynamical systems, irregular grid structures, and 
data-driven techniques in dynamical systems, ranging from reduced-
order modelling and shallow machine learning methods to deep neural 
networks. Section 3 discusses advanced neural network architectures 
and processing techniques for handling data with unstructured grids. 
A qualitative comparison is provided at the end of this section. Ma-
chine learning paradigms, including PINNs, RL, and generative AI, are 
introduced in Section 4. We also list current open-access datasets for 
benchmarking machine learning approaches with unstructured grids 
in computational physics in Section 5.2.2. The paper concludes with 
Section 6.

2. Preliminary

In this section, we provide a brief overview of the concept of 
unstructured grid data in computational science. This is followed by an 
introduction to ML methods, including both shallow approaches (such 
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as Random forest (RF) and Gaussian processes) and deep neural net-
works (primarily CNN and RNN) for dynamical systems. Reduced-order 
modelling and spatial interpolation techniques are also discussed in this 
section, as they are important strategies for handling unstructured data 
and have been integrated into many ML models.

2.1. Unstructured meshes in computational physics

To describe the behaviour or state of dynamical problems, such 
as airflow around a spacecraft or stress concentration in a dam, nu-
merical simulations require a finite number of points (in time and 
space) to describe the fields of physical quantities throughout the 
whole computational domain. Numerical methods, such as the finite 
difference method, finite volume methods, and finite element analysis, 
are developed to discretise the equations governing these dynamical 
problems, allowing for the calculation of system’s behaviours over 
time and space shown by variable values at discrete points throughout 
the computational domain. In the implementation of these numerical 
methods, the mesh is the foundation for numerical simulations. Its 
quality and structure significantly influence the simulations’ accuracy, 
efficiency, and stability, especially in complex simulated domains. To 
address this situation, unstructured meshes are noted for adaptation 
on irregular boundaries in simulation-based fluid and solid dynamical 
systems. Their flexibility and efficiency in handling complex geome-
tries and dynamic problems make them highly suitable for accurately 
representing the diverse and changing conditions typical of real-world 
physical systems.

Meshes discretise domains in a space-filling manner such that they 
provide a description of the associated computational topology and 
geometry for the fields and equations of functional data. The quality 
and features of a mesh domain discretisation have been shown through 
many examples to limit the performance quality of the numerical 
scheme being employed [40]. Unstructured meshes are advantaged 
by an arbitrary structure, allowing for flexibility in conformance to 
geometries and boundaries of the physical system they are used to 
represent. The topology of meshes typically is arranged hierarchically, 
built up from nodes connected by edges forming loops which in turn 
define two-dimensional faces which can be grouped individually or 
collectively into elements [41]. Geometrically, the node is related to a 
point, an edge to a curve and a face to a two-dimensional surface. These 
components, when referenced in a discretised mesh are sometimes 
referred to as vertex and segment, respectively [42].

In general, unstructured meshes are constructed from space-filling 
elements of a single or mixed shape-type based on the spatial dimen-
sion of the domain [43]. In one dimension, this is a range of finite 
segments of potentially varying lengths. In two-dimensional surface 
meshes, a simplex or triangle is the most widely utilised element, 
though quadrilaterals or a mix of the two are also permissible. Three-
dimensional, unstructured volume meshes typically replace the surface 
mesh triangular base element with a tetrahedral form. Quadrilaterals 
(pentahedra, hexahedra, prisms, etc.) and other element volumetric 
shapes are also utilised [44]. The associated two-dimensional surface 
meshes can serve as a template for constraining the geometry of the 
space-filling tetrahedra [40].

Unstructured surface and volume meshes are advantaged in their 
flexibility to conform to potentially complex geometries found in both 
static and dynamical applications. Controlling the size, shape and/or 
orientation of the mesh element topology allows for problem-specific 
optimisation. On one hand, principles of equidistribution [45] are used 
to generate unstructured isotropic meshes with elements of roughly the 
same size, shape and orientation. Isotropic meshes are advantageous 
for capturing turbulent flows and more uniformly distributed phenom-
ena [40]. On the other hand, anisotropic meshes allow for a larger 
range of element sizes, shapes and orientations. Anisotropic meshes can 
be constructed or optimised such that the size, shape and distribution 
of elements are designed to align with similar anisotropic physical 
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features such as those seen in shocks [46] or strongly directional flow 
such as tidal regimes [47].

The unstructured mesh features which advantage them in com-
plex geometric and multi-scale problem applications can also lead 
to increased overhead in memory usage, algorithmic complexity, and 
overall computational cost. For the same node count, unstructured 
meshes generally have higher memory requirements to store all vari-
ations of connectivity and additional topology information unique to 
arbitrary cells [48]. In applications such as in geometrical volume-of-
fluid methods extension, where unstructured meshes allow extension 
to more complex domains and improved accuracy, implementation has 
lagged due to the complex geometrical operations required to handle 
the resultant arbitrary, and non-orthogonal orientations [49]. Often 
there is a trade-off between conducting fast, stable simulations needed 
for deployed tool performance and high enough mesh resolution to 
minimise costly numerical prediction errors [7].

Unstructured meshes are commonly employed in modelling of struc-
tures, both to adequately capture complex physical geometries present 
and to enable more efficient Computational fluid dynamics (CFD) sim-
ulations. Quadrilateral meshes (as seen in Fig.  2) are aptly suited to 
modelling complex, holistic aircraft designs where structural member 
interactions need to be captured and can accelerate airframe structural 
analysis in automated workflows [50]. The flexibility of unstructured 
meshes is further illustrated in the coupling of complex fluid–structure 
interactions, where evolving flow dynamics along boundary conditions 
requires compatibility of structure and spatial discretisation between 
the different domains [51]. The feasibility of a 3D finite-volume method 
for dynamic fluid–structure interactions was shown in [51] using a 
loaded fixed-free cantilever wing-like structure in incompressible flow 
with no turbulence modelling. However, without further optimisa-
tion, the cost of extending this workflow to more complex geome-
tries and flow physics, such as flutter dynamics, was predicted to be 
computationally prohibitive [51].

2.2. Reduced order modelling for structured and unstructured data

Despite current advancements in computer technology, computa-
tional mesh sizes remain constrained by available computational re-
sources, especially unstructured mesh, which produces a much larger 
number of meshes for the same conditions of dynamical problems [5,
52]. The Reduced-order modelling (ROM) technique has become a vital 
method for reducing computational burdens through low-dimensional 
reduced models [4]. These models are fast to solve and approximate 
well high-fidelity simulations of dynamic systems [53,54]. Especially, 
non-intrusive reduced order modellings (NIROMs) have become pop-
ular across various research and engineering fields [55–61]. They 
operate independently as robust models, offering accurate descriptions 
from high-fidelity simulations without any modifications to original 
source codes [62]. It is important to note that ROM techniques can also 
be considered a means of transforming unstructured data into a regular 
and often fixed-size reduced space, which facilitates downstream tasks 
such as field prediction or parameter identification.

In ROMs for computational simulations, Proper orthogonal decom-
position (POD), also known as Principal component analysis (PCA) or 
Empirical orthogonal functions (EOF) has proven to be a classic method 
for spatial dimensionality reduction on data [53]. POD and its variants 
have been applied with unstructured meshes in various research areas 
successfully, such as eigenvalue problems in reactor physics [63]; ocean 
models [64]; aerospace design and optimisation [65]; fluid dynamics 
with applications in porous media [66], Navier–Stokes Equations [55,
67], air pollution [68], and shallow water equations [69]. It is often 
applied with Galerkin projection to form intrusive ROMs and applied 
with various interpolation or regression methods, like radial basis 
function, neural network in NIROMs [56,62,70,71].
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Fig. 2. Methods and applications of unstructured meshes.
Developed from SVD techniques, POD aims to identify an optimal 
least squares subspace for approximating data sets. In this method, we 
assumed that any variable 𝐗 ∈ R𝑁𝑠×𝑁ℎ  could be expressed as: 

𝐗 =
𝑁ℎ
∑

𝑖=1
𝛼𝑖𝜙𝑖, (1)

where 𝑁𝑠 denotes the total number of snapshots and 𝑁ℎ denotes the 
general number of nodes on meshes. 𝛼𝑖 denotes the 𝑖th POD coefficient 
and 𝜙𝑖 denotes the 𝑖th POD basis function.

The POD basis functions are obtained through SVD applied on 
discredited numerical solutions 𝐗, which could be shown as 

𝐗 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐱1
𝐱2
⋯
𝐱𝑁𝑠

⎤

⎥

⎥

⎥

⎥

⎦

. (2)

The SVD computed on 𝐗 forms: 
𝐗 = 𝐔Σ𝐕∗, (3)

where orthogonal matrix 𝐔 ∈ R𝑁𝑠×𝑁𝑠 , 𝐕∗ ∈ R𝑁ℎ×𝑁ℎ  contains the left 
and right singular vectors respectively, matrix Σ ∈ R𝑁𝑠×𝑁ℎ  denotes the 
singular values of 𝐗 and these values are listed by their magnitude. In 
the matrix 𝐔, the columns represent the POD basis functions or modes, 
with the singular values indicating the importance of each basis func-
tion. The square of these singular values signifies the energy captured 
by each basis function. Following this truncation, an approximation 𝐗̃
(using the first 𝑛̃ POD basis) of the variables 𝐗 could be calculated 
by truncated matrices and expressed as a linear combination of the 
retained POD basis functions: 

𝐗̃ = 𝐗 ⋅ 𝐕̃ ≈ 𝐔̃Σ̃𝐕∗ ⋅ 𝐕̃ = 𝐔̃Σ̃ =
𝑛̃
∑

𝑗=1
𝛼𝑗𝜙𝑗 , (4)

where truncated matrices 𝐔̃ ∈ R𝑁𝑠×𝑛̃, 𝐕∗ ∈ R𝑛̃×𝑁ℎ  and Σ̃ ∈ R𝑛̃×𝑛̃
are used to create a reduced-order dataset 𝐗̃ that maintains the most 
significant patterns in the data 𝐗. This process is illustrated on flow 
past a cylinder case simulations in Fig.  3.

Moreover, Dynamic mode decomposition (DMD) is also developed 
for ROMs based on the SVD technique [72,73]. It is defined to identify 
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low-order dynamics, providing insights into the system evolution over 
time [74]. SVD in DMD serves as a dimensionality reduction and 
feature extraction tool to identify the dominant spatial and temporal 
patterns in complex systems [75,76]. Furthermore, DMD was developed 
to connect to the underlying nonlinear dynamics through Koopman 
operator theory [77] by Mezić [78,79], and Rowley [80]. In a general 
DMD algorithm, we assume that data are generated by linear dynamics:
𝐱𝑡+1 = 𝐀𝐱𝑡, (5)

where an operator 𝐀 is assumed to exist and approximate the dynamics. 
The DMD modes and eigenvalues are intended to approximate the 
eigenvectors and eigenvalues of 𝐀. For DMD on the selected variable, 
the discredited numerical solution is split into two matrices: 

𝐗 =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝐱1 𝐱2 ... 𝐱𝑁𝑠−1
∣ ∣ ∣

⎤

⎥

⎥

⎦

, 𝐗̄ =
⎡

⎢

⎢

⎣

∣ ∣ ∣
𝐱2 𝐱3 ... 𝐱𝑁𝑠
∣ ∣ ∣

⎤

⎥

⎥

⎦

, (6)

as a set of pairs {(𝐗𝑘, 𝐗̄𝑘)}𝑁𝑠−1𝑘=1 . The SVD of 𝐗 ∈ R𝑁ℎ×(𝑁𝑠−1) is computed 
by Eq. (3) as: 
𝐗 = 𝐔Σ𝐕∗, (7)

where 𝐔 ∈ R𝑁ℎ×𝑁ℎ , 𝐕 ∈ R(𝑁𝑠−1)×(𝑁𝑠−1), Σ ∈ R𝑁ℎ×(𝑁𝑠−1). A low-order 
approximation of 𝐗 can be made by retaining only the first 𝑛̃ singular 
values: 
𝐗 ≈ 𝐔̃Σ̃𝐕∗, (8)

where 𝐔̃ ∈ R𝑁ℎ×𝑛̃, 𝐕∗ ∈ R𝑛̃×(𝑁𝑠−1), Σ̃ ∈ R𝑛̃×𝑛̃. Then the approximation 
of the dynamic matrix 𝐀 in the low-dimensional space, 𝐀̃ ∈ R𝑛̃×𝑛̃, is 
defined as: 
𝐀̃ = 𝐔̃∗𝐗̄𝐕̃Σ̃−1 (9)

The eigenvalues 𝛬 and eigenvectors 𝝎 of 𝐴̃ are computed by: 
𝐀̃𝝎 = 𝝎𝛬, (10)

where 𝛬 is a diagonal matrix with DMD eigenvalues 𝜆𝑛̃ then the 
corresponding DMD mode is given with 𝐔̃: 
𝛷 = 𝐔̃𝝎, (11)



S. Cheng et al. Information Fusion 123 (2025) 103255 
Fig. 3. POD of high-fidelity simulation data over time.
Fig. 4. DMD of dynamic modes in high-fidelity simulation data.
where 𝛷 ∈ R𝑁ℎ×𝑛̃ contains the eigenvectors or dynamic modes corre-
sponding to the DMD eigenvalue 𝛬 in the original high-dimensional 
space. The whole DMD process on flow past a cylinder case is shown 
in Fig.  4.

In addition, ML tools have been developed and shown great poten-
tial in representing complex nonlinear mapping. With strong nonlinear 
fitting ability, ML models are implemented in ROMs’ modal decompo-
sition and evolution regression parts [81,82]. For the establishment of 
the appropriate coordinate system in latent space, the deep learning-
based AE network has been widely used as a nonlinear model reduction 
alternative to linear methods, like POD, capturing features more effi-
ciently [83]. A typical autoencoder is a self-supervised neural network 
with identical inputs and outputs. It includes an encoder  to map the 
inputs 𝑥 into the reduced latent space and a decoder  to reconstruct 
the high-fidelity simulations from the latent representations 𝐱̃: 

𝐱̃ = (𝐱) and 𝐱AE = (𝐱̃). (12)

The encoder  and decoder  are optimised simultaneously for min-
imising the reconstruction loss function: 

𝐿 ,(𝐱) = ‖𝐱 −((𝐱))‖ = ‖

‖

‖

𝐱 − 𝐱AE‖‖
‖

, (13)

where ‖.‖ is the Euclidean norm. A series of algorithms based on AE 
have been developed to construct ROMs for latent-space learning [84–
86].
6 
However, a limitation of these ROMs is their lack of awareness 
of points position. This means that while they efficiently reduce the 
dimensionality of data by capturing dominant features, they might 
overlook spatial dependencies and interactions critical in the mesh 
structure [54,87]. To address this limitation, additional strategies could 
be integrated into ROMs, such as spatial tagging of modes or coupling 
with spatially-aware algorithms, to enhance the position sensitivity of 
these techniques. Meanwhile, these reduced-order methods inherently 
require a fixed mesh configuration. They operate under the assumption 
that the number of mesh points remains constant and that these points 
are consistently positioned throughout the dataset [88]. This limitation 
can be particularly restrictive in fields like fluid dynamics or structural 
mechanics, where adaptive unstructured meshes are often essential 
to capture complex behaviours efficiently. The integration of ROMs 
with adaptive mesh strategies is being explored to overcome these 
challenges, such as Adaptive Mesh Refinement [89,90] and re-meshing 
techniques [91].

Once an appropriate coordinate system is established, various ML 
algorithms are utilised to model the dynamics evolution for forecasting, 
especially in Non-Intrusive Reduced Order Modellings [62]. RNNs (see 
Section 2.4) have improved the modelling of temporal dependencies 
in ROMs [92,93], such as Long short-term memory (LSTM) networks 
excel in capturing long-range time dependencies, addressing the van-
ishing gradient issue [70,94]. Self-attention algorithm-based methods 
like Transformers and its variants have been explored in ROM, fac-
ing challenges in computational efficiency [95,96]. Approaches like 
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Fig. 5. Illustration of a regression problem with irregular data points using decision tree. 
Sparse identification of nonlinear dynamics (SINDy) efficiently derive 
dynamic system models from data [97–100]. Enhanced accuracy in 
ROM predictions is achievable through specialised physical knowledge 
integration by PINN as physical-informed ROMs [101,102]. While ML 
models combined with ROM reducing computational loads in system 
modelling, the prediction process incurs deviation from the physical 
model due to error accumulation over successive predictions.

2.3. Shallow machine learning for dynamical systems

Conventional ML applications are increasingly pivotal in the anal-
ysis and understanding of dynamic systems and unstructured mesh 
environments. These systems, characterised by their complexity and 
ever-changing nature, present unique challenges for computational 
modelling and simulations. Several well-established ML algorithms dis-
cussed herein have been effectively applied to address issues pertaining 
to dynamical systems.

The K-Nearest neighbours (KNN) algorithm [103,104] is a simple 
yet effective method for classification and regression. It operates on 
the principle of selecting a predetermined number of neighbours (𝑘) 
to determine the categorisation or value of new data points, measured 
using metrics such as Euclidean, Manhattan and Minkowski [105]. KNN 
finds considerable application in modelling the dynamics of physical 
systems, where it can analyse spatial or temporal relationships among 
data points to simulate complex behaviours [106]. A notable implemen-
tation is the KNN-DMD [107], which utilises KNN to select and average 
the closest 𝑘 DMD solutions (introduced in Section 2.2). This is based on 
the distances between the parameters of interest and other parameters, 
thereby adapting DMD to parametrised problems effectively.

KNN’s main challenges are high computational demands with large 
datasets [107] and difficulties handling chaotic time-series data [108,
109]. Research continues to improve its efficiency and adaptabil-
ity [107,109].

A decision tree [110] is a binary tree model used to handle un-
structured data [111] and dynamic systems [112], making it ideal 
for classification (categorising phenomena) and regression (predicting 
values, as shown in Fig.  5). The hierarchical nature of this model with 
its nodes and directed edges, offers clear interpretability [113–115], 
which is a critical feature in physics that allows for the detailed tracing 
of the decision-making process [116].

Further advancing on the decision tree’s capabilities, the RF [117] 
model emerges as a robust ensemble technique designed to enhance 
predictive accuracy and prevent overfitting. This ensemble method 
proves particularly potent in dynamic systems, offering enhanced per-
formance and adaptability [106,118,119]. eXtreme gradient boosting
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(XGBoost) [120], on the other hand, marks a significant evolution in the 
realm of ensemble learning, specifically advancing the use of boosting 
techniques. Unlike RF approach, which constructs an ensemble of 
decision trees in parallel, XGBoost builds its tree models sequentially. 
Each tree in the sequence is designed to address and correct the errors 
of its predecessors, leading to progressively improved model accuracy. 
XGBoost has demonstrated exceptional effectiveness in capturing com-
plex relationships within datasets [121,122] and performing reliably 
across various interpolation scenarios [123].

A Gaussian Process (GP) [124] is a probabilistic model for continu-
ous domains that represents any set of points as a multivariate Gaussian 
distribution (Fig.  6). Defined by a mean function 𝜇 and a covariance 
function 𝜎2, GPs model distributions over functions, enabling flexibility 
in regression and classification for dynamical systems [125]. Their 
ability to handle nonlinear relationships stems from the kernel, which 
encodes assumptions like smoothness or periodicity. By optimising ker-
nel hyperparameters and employing non-stationary or autoregressive 
formulations [126,127], GPs adapt to complex, high-dimensional de-
pendencies, such as time-varying noise or evolving dynamics, without 
rigid parametric constraints.

Like KNN, RF, XGBoost, and Gaussian Process models are widely 
used with reduced-order models to capture nonlinear dynamics in 
reduced spaces [129–133]. While effective for dynamical systems on 
unstructured grids, tree models are prone to overfitting in high dimen-
sions and are sensitive to noise, while GP models face limitations like 
the assumption of stationarity and challenges with high-dimensional 
systems, complicating model construction and inference [134,135].

2.4. Convolutional and recurrent neural networks

Deep neural networks are machine-learning techniques that are 
capable of handling high-dimensional, nonlinear dynamical systems, 
and automatically learn complicated patterns from data without exten-
sive manual feature engineering, which are complex to conventional 
methods as described in Section 2.3, especially for large data inputs. 
There are various types of neural networks each designed for a specific 
task; however, CNN [136,137] and RNN [138] will be briefly discussed 
in this section regarding their capability of handling spatial–temporal 
systems.

CNNs are widely used in analysing high-dimensional spatial data 
such as images [136,137,139] and dynamical systems like identifying 
patterns or features in spatially distributed data [140–142]. In dynami-
cal systems with sensor data inputs, CNNs can be leveraged for feature 
extraction and pattern recognition. For instance, in environmental mon-
itoring systems, CNNs can help in identifying anomalies or predicting 
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Fig. 6. Gaussian process regression (as known as Kriging [128]) to predict complex, nonlinear relationships.
Fig. 7. Evolutionary trend of classic CNN models: Visual Geometry Group Network, Regional-Based Convolutional Neural Network, ResNet, Deep Convolutional Generative 
Adversarial Network, Squeeze-And-Excitation Network.
future states based on sensor readings [140]. The architecture of CNN 
has undergone a significant transformation, as illustrated in 7, with 
2017 marking a notable surge in the development of CNN models.

CNNs were designed originally to process structured data, particu-
larly images [139] due to their ability to capture hierarchies through 
convolutional layers. However, through advancements in research and 
engineering, CNNs have been extended to handle unstructured data 
[14,143], like text, audio, and time-series data. Residual Network 
(ResNet) [144] is a specialised CNN that employs skip connections to 
learn residual functions, addressing the vanishing gradient problem and 
enabling the training of deeper networks. Improved Residual Networks 
(iResNet) [145] further enhance information flow, optimise shortcuts, 
and improve spatial feature learning, allowing for extremely deep 
networks without added complexity [146]. Skip connections are also an 
essential component of transformer type neural networks which could 
effectively handle irregular data as detailed in Section 3.3.

The significance of sequential data processing and time series fore-
casting has grown substantially across various domains, encompassing 
finance, economics, weather prediction, and natural language pro-
cessing. Within this landscape, RNNs [138,147,148], notably LSTM 
networks, have risen to prominence as a favourite approach for man-
aging sequential data and predicting time series. The fundamentals of 
RNN are presented in [138] utilising differential equations encoun-
tered in many branches of science and engineering. The canonical 
formulation of RNN by sampling delayed differential equations can be 
applied in modelling of complex processes in physics. Chen et al. [149] 
proposes pyramid convolutional RNN for MRI image reconstruction 
based on low, middle, and high-frequency information in a sequential 
pyramid order with better recovery of fine details different from CNN 
which learns the three frequency categories individually. The more 
robust LSTM, a highly used type of RNN overcomes the challenges 
of the standard RNN, and is capable of representing high-dimensional 
and complex systems, which are typically difficult to model using con-
ventional machine learning techniques [138,150]. For instance, RNN 
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and LSTM are used in capturing dynamical systems with multivariate 
parameters optimisation to minimise errors [151]. Blandin et al. [152] 
use a multi-variate LSTM to predict rapidly changing geomagnetic 
conditions electric fields form within the Earth’s surface and induce 
currents. A Convolutional LSTM network provides a fast and affordable 
prediction of spatio-temporal systems in expensive computation fluid 
solvers [153].

The main models for handling sequential data use advanced re-
current or convolutional neural network that incorporate an encoder 
and a decoder [21]. Complex dynamic systems with multiple time lags 
are regarded as high-dimensional dynamical systems with time lags 
and the temporal dependence plays a key role in modelling them. 
However, in classical CNN models, the number of operations needed 
to relate signals of two arbitrary input or output positions grows in 
the distance between positions, creating complexities in learning de-
pendencies between distant positions. RNNs appear as ideal candidates 
to model, analyse, and predict complex and dynamical systems due to 
their temporal occurrence. However, classical RNNs do not carry out 
sequential reasoning, a process based on attention [21,154]. Position 
embedding technique in attention mechanism incorporates information 
about position of tokens within a sequence that conventional RNN and 
CNN are unable to capture. It has the capabilities of handling sequences 
of variable length without tempering performance and hence is able 
to handle sparse, unstructured, and missing data. More details about 
the attention mechanism and the transformer type neural networks are 
given in Section 3.3 of this review paper.

2.5. Gridding irregular data via interpolation

Discretisation [44,155] constitutes an indispensable step for numer-
ically resolving Partial differential equations (PDEs) that govern the 
evolution of dynamical systems. In this process, continuous physical 
fields in the space–time domain are transformed into discrete represen-
tations by meshing the domain into thousands or even millions of small 
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Fig. 8. Illustration of converting unstructured grid data to structured grid data via interpolation.
elements, making the problem computationally solvable. Generally, 
meshing can be categorised into regular and irregular types, as depicted 
in Fig.  8. While regular meshes facilitate computer programming, ir-
regular meshes are far more prevalent for approximating complex, 
arbitrary geometrical shapes in practical applications.

With the increasing use of computational intelligence across various 
fields, there is a growing demand to convert large volumes of unstruc-
tured data into structured formats that can be processed by machine 
and deep learning models. This is particularly important because many 
models, including perceptrons and convolutional neural networks, are 
usually optimised to work with data arranged in a regular Cartesian 
grid as mentioned in Section 2.4. To meet this need, interpolation meth-
ods are commonly employed to convert irregularly gridded data into 
a raster dataset composed of regularly spaced square pixels, enabling 
further analysis and model training in machine learning applications. 
Commonly used interpolation methods include nearest neighbour in-
terpolation, linear or barycentric interpolation, radial basis function 
interpolation, and Kriging interpolation.

Nearest neighbour interpolation [104,156] estimates the value of a 
variable at any given location by using the value of the nearest known 
data point. The concept of Voronoi tessellation [157] can be employed 
to measure the distance between points and determine proximity, as 
illustrated in Fig.  9a. In this method, the entire domain is subdivided 
into cells based on the locations of the known data points, with each 
cell assigned the value of its corresponding data point. This means that 
the value of each known data point is assigned to all unknown data 
points within its associated cell. While nearest neighbour interpolation 
is computationally efficient due to its simplicity, it typically results 
in lower interpolation accuracy, especially when the data points are 
sparsely distributed or exhibit significant spatial variation.

Linear interpolation [158,159] creates new data points within the 
range of known data points by fitting a linear polynomial. For the 1D 
case, given a field vector 𝐱 and the values of two know data points 
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𝑥𝑖0  and 𝑥𝑖1 , the linear interpolation polynomial 𝑥𝑖 within the range of 
𝑖 ∈ [𝑖0, 𝑖1] is mathematically expressed as: 

𝑥𝑖 =
𝑖1 − 𝑖
𝑖1 − 𝑖0

𝑥𝑖0 +
𝑖 − 𝑖0
𝑖1 − 𝑖0

𝑥𝑖1 . (14)

This univariate interpolation can also be straightforwardly extended to 
multivariate interpolation on 2D and 3D regular grids, called bilinear 
and trilinear interpolation, respectively. Barycentric interpolation [160,
161] generalises linear interpolation for arbitrary (non-regular) grids, 
allowing transformation of unstructured grid data to structured grid 
data. For the 2D case, barycentric interpolation creates new data points 
from three near-neighbours that form a triangle, as depicted in Fig.  9b. 
Given the values of three vertices of the triangle 𝑥(𝑖0 , 𝑗0), 𝑥(𝑖1 , 𝑗1) and 
𝑥(𝑖2 , 𝑗2), the value of an unknown data point (𝑖, 𝑗) within this triangle 
can be estimated via weighted average: 
𝑥(𝑖, 𝑗) = 𝑤0 𝑥(𝑖0 , 𝑗0) +𝑤1 𝑥(𝑖1 , 𝑗1) +𝑤2 𝑥(𝑖2 , 𝑗2) , (15)

where 𝑤0, 𝑤1 and 𝑤2 are the barycentric weights, which can be 
calculated from the coordinates of the three data points, given by: 

𝑤0 =
(𝑗1 − 𝑗2)(𝑖 − 𝑖2) + (𝑖2 − 𝑖1)(𝑗 − 𝑗2)
(𝑗1 − 𝑗2)(𝑖0 − 𝑖2) + (𝑖2 − 𝑖1)(𝑗0 − 𝑗2)

,

𝑤1 =
(𝑗2 − 𝑗0)(𝑖 − 𝑖2) + (𝑖0 − 𝑖2)(𝑗 − 𝑗2)
(𝑗1 − 𝑗2)(𝑖0 − 𝑖2) + (𝑖2 − 𝑖1)(𝑗0 − 𝑗2)

,

𝑤2 = 1 −𝑤0 −𝑤1 .

(16)

These weights, often called barycentric coordinates, are crucial for ac-
curately estimating values at unknown locations based on the positions 
and values of the known data points.

Radial basis function interpolation [162,163] represents a sophisti-
cated technique for constructing high-order accurate interpolants from 
unstructured data. In this method, the interpolant is expressed as a 
weighted sum of radial basis functions. Given a set of data points 
consisting of (𝐢 , 𝑥 ) for 𝑘 = 1, 2,… , 𝑛, where 𝐢  denotes the vector of 
𝑘 𝐢𝑘 𝑘
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Fig. 9. Graphical illustration of unstructured grid interpolation.
coordinates, the goal of radial basis function interpolation is to find an 
interpolant 𝑠(𝐢𝑘), satisfying 
𝑠(𝐢𝑘) = 𝑥𝐢𝑘 , 𝑘 = 1, 2,… , 𝑛. (17)

For any point 𝐢 ∉ {𝐢𝑘}𝑘=1,2,…,𝑛, the interpolant 𝑠(𝐢) is expressed as a 
linear combination of radial basis functions 𝜙(𝐢): 

𝑠(𝐢) =
𝑛
∑

𝑘=1
𝑤𝑘𝜙

(

‖𝐢 − 𝐢𝑘‖
)

, 𝐢 ∈ R𝑑 . (18)

From the condition in Eq. (17), the following system of equations for 
the weights 𝑤𝑘: 
𝑛
∑

𝑘=1
𝑤𝑘𝜙

(

‖𝐢𝑞 − 𝐢𝑘‖
)

= 𝑥𝐢𝑘 , 𝑞 ≠ 𝑘, (19)

where 𝐢𝑞 and 𝐢𝑘 are the vectors of coordinates of different known data 
points.

By solving the above system of linear equations, the unique solution 
for the weight vector 𝒘 = [𝑤1, 𝑤2..., 𝑤𝑛] can be obtained. The unknown 
value 𝑥𝝃 at a point 𝝃 on the structured grid can then be estimated as 

𝑥𝝃 = 𝑠(𝝃) =
𝑛
∑

𝑘=1
𝑤𝑘𝜙

(

‖𝝃 − 𝐢𝑘‖
)

, 𝝃 ∈ R𝑑 , (20)

as illustrated in Fig.  9c.
Kriging [164,165] is a spatial interpolation technique employed to 

derive predictions at unsampled locations based on observed geosta-
tistical data. Given a set of observation points represented as (𝐢𝑘, 𝑥𝐢𝑘 )
for 𝑘 = 1, 2,… , 𝑛, Kriging interpolation estimates the value at an 
unobserved location 𝝃 through a weighted average: 

𝑥𝝃 =
𝑛
∑

𝑘=1
𝑤𝑘𝑥𝐢𝑘 , 𝑘 = 1, 2,… , 𝑛. (21)

This estimation minimises the mean squared prediction error over the 
entire state space, defined as: 
𝐸
[(

𝑥 − 𝑥 )2
]

. (22)
𝝃 𝝃
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The unknown Kriging weights 𝒘 = [𝑤1, 𝑤2..., 𝑤𝑛] in Eq. (21) can be 
derived from the estimated spatial structure of the known dataset. 
Specifically, these weights are obtained by fitting a variogram model 
to the observed data, which elucidates how the correlation between 
observation values varies with distance between locations.

Once the Kriging weights are obtained, they are applied to the 
known data values at observed locations to compute predicted values at 
unobserved locations, as illustrated in Fig.  10. These weights reflect the 
spatial correlation inherent in the data, accounting for both geographi-
cal proximity and similarity among data points. Consequently, observed 
locations that exhibit stronger correlation and are closer to prediction 
sites receive greater weight compared to those that are uncorrelated 
and/or more distant. Additionally, the weighting scheme considers the 
spatial arrangement of all observations; thus, clusters of observations 
in oversampled areas carry less weight due to their lower information 
content relative to single locations. Under certain assumptions, Kriging 
predictions serve as best linear unbiased estimators. There exist various 
types of Kriging methods differentiated by their underlying assumptions 
and analytical objectives [164,165]. For instance, Simple Kriging [166] 
presumes that the mean 𝜇(𝐢) of the random field is known; Ordinary 
Kriging [167] assumes an unknown but constant mean 𝜇(𝐢) = 𝜇0; while 
Universal Kriging [168] is applicable for datasets characterised by an 
unknown non-stationary mean structure.

Other interpolation methods, such as those based on polynomial 
functions, finite element basis functions [169], or splines [170], have 
also been widely adopted for unstructured data. Their combinations 
with ML will be further discussed in Section 3.1.

3. Machine learning models designed for unstructured grid data

In this section, we review machine learning models, focusing on 
neural network structures and specific preprocessing methods that can 
be applied to dynamical systems with unstructured grid data. These 
include architectures such as specific CNNs, GNNs, and transformers.



S. Cheng et al. Information Fusion 123 (2025) 103255 
Fig. 10. Graphical illustration of Kriging interpolation.
Fig. 11. Illustration of ML methods with interpolated inputs for unstructured data. The figure is based on elements in Figure 9 of [180].
3.1. Machine learning with preprocessing

3.1.1. Convolutional neural network with interpolation methods
Traditional ML approaches, in particular, CNN-based methods are 

limited to structured grid data and can only process fixed-size input 
data when an MLP layer is included in the neural network architecture. 
These limitations restrict their applicability to real-world problems, 
where incomplete or sparse observations and time-varying sensors are 
common [171,172]. Significant effort has been dedicated to integrating 
machine learning with interpolation methods to address the challenges 
of data sparsity and irregularity (see review papers [173,174]).

Sparse and continuous CNNs have been developed to handle sparse 
and irregular data points in convolutional operations [175–177]. Some 
pioneering works have applied these advanced CNN approaches in 
CFD with unstructured grid data. For instance, Wu et al. [178] use 
a sparse CNN model for end-to-end prediction of supersonic com-
pressible flow fields around airfoils from spatially sparse geometries, 
while Wen et al. [179] adapt continuous CNNs for irregularly placed 
multiphase flow particles. However, sparse CNNs involve specialised 
algorithms for handling sparse data, leading to increased computational 
overheads and optimisation difficulties. Continuous CNNs, designed for 
continuous input spaces, can encounter discretisation errors and require 
more computational resources for precise computations [176]. Con-
sequently, their application in high-dimensional dynamical systems, 
such as numerical weather prediction or fine-resolution CFD, remains 
limited.

Another common strategy to address the challenge of unstructured 
data involves converting unstructured grid data into structured grid 
data, often resizing it to a fixed dimension before feeding it into a ma-
chine learning model, as shown in Fig.  11. Typically, Hou et al. [181] 
and Cao et al. [182] combined Kriging interpolation with CNN and RNN 
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for spatially irregular input data. Following a similar idea, the recent 
work by Fukami et al. [15] leverages Voronoi tessellation, as introduced 
by [183], to overcome the challenges posed by sparse observations and 
the varying number of sensors in CNN-based field reconstruction. Their 
method considers a set of observable points (sensors) at a given time, 
located at {(𝑖𝑘, 𝑗𝑘)}𝑘∈{1,…,𝑘∗} where 

{𝑖𝑘, 𝑗𝑘} ∈ [1,… , 𝑁𝑥] × [1,… ,𝑀𝑥] and 𝑘 ∗ is the number of sensors.
(23)

Suppose 𝑥𝑘 is the observed value at {𝑖𝑘, 𝑗𝑘}. A Voronoi cell 𝑅𝑘 associ-
ated to the observation {𝑥𝑘, 𝑖𝑡,𝑘, 𝑗𝑡,𝑘} can be defined as
𝑅𝑘 =

{

{𝑖𝑟, 𝑗𝑟} | 𝑑((𝑖𝑟, 𝑗𝑟), (𝑖𝑘, 𝑗𝑘)) ≤ 𝑑((𝑖𝑟, 𝑗𝑟), (𝑖𝑞 , 𝑗𝑞)), ∀ 1 ≤ 𝑞 ≤ 𝑘∗

and 𝑞 ≠ 𝑘
}

. (24)

Here, 𝑑(⋅) is the Euclidean distance. Therefore, the state space can 
be partitioned into several Voronoi cells regardless of the number of 
sensors, that is, 

[1,…,𝑁𝑥]×[1,…,𝑀𝑥] =
𝑘∗
⋃

𝑘=1
𝑅𝑘 and 𝑅𝑘 ∩ 𝑅𝑞 = ∅ (∀ 𝑘 ≠ 𝑞), (25)

where [1,…,𝑁𝑥]×[1,…,𝑀𝑥] designates the full discretised space. A tessel-
lated observation 𝐱̂ = {𝑥̂𝑖𝑥 ,𝑗𝑥} ∈ R𝑁𝑥×𝑀𝑥  in the full state space can be 
obtained by 
𝑥̂𝑖𝑥 ,𝑗𝑥 = 𝑥𝑘 if (𝑖𝑥, 𝑗𝑥) ∈ 𝑅𝑘. (26)

Once the tessellated observation is obtained, regression ML models 
could be implemented to perform field reconstruction, prediction of 
future time steps or parameter calibration.

The Voronoi tessellation-assisted CNN has demonstrated superior 
accuracy and efficiency in CFD and geoscience datasets compared to 
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traditional interpolation techniques like Kriging [100,184]. The recent 
work by [16] integrates Voronoi tessellation-assisted CNN into a vari-
ational data assimilation framework, enhancing prediction accuracy 
using the same unstructured and sparse observation data.

On the other hand, the work of [185] incorporates Kriging in-
terpolation into the loss function calculation for unstructured data. 
This approach differs from previously mentioned methods by explic-
itly accounting for interpolation errors during the training phase. A 
differentiable nearest neighbour algorithm has also been proposed 
by [186]. Although it has primarily been tested on image classifica-
tion and restoration tasks, this method shows promise for enhancing 
interpolation in unstructured grid systems.

ML techniques have also been developed to perform interpolation 
and super-resolution directly on sparse or unstructured grid data [3]. 
Typical examples in computational physics include airfoil wake and 
porous flow [187,188]. Furthermore, Kashefi et al. [189] leveraged 
PointNet architecture [190] to predict flow fields in irregular domains 
by treating CFD grid vertices as point clouds, preserving the accuracy 
of unstructured meshes without data interpolation. The approach ac-
curately represents object geometry, maintains boundary smoothness, 
and predicts flow fields much faster than conventional CFD solvers, 
while generalising well to unseen geometries. Compared to conven-
tional interpolation methods such as Kriging or nearest neighbour, 
which require strong mathematical assumptions, ML-based approaches 
offer more flexible and non-parametric interpolations for irregular 
data [191].

3.1.2. Machine learning with mesh reordering and transformation
As mentioned in Section 2.2, conventional linear projection methods 

for ROM, such as POD and DMD, can be seamlessly applied to unstruc-
tured data by flattening the entire physics field into a single column 
vector. This approach simplifies the integration of machine learning 
models for tasks like field prediction or parameter identification. For 
instance, Xiao et al. [62] and Casenave et al. [125] apply POD to 
unstructured grid data of dynamical systems, followed by a Gaussian 
process to model the dynamics of air pollution within a reduced-order 
space. Similar approaches have also been applied to nuclear reactor 
physics [192] and unsteady flow simulations [193].

Although POD-type methods can be directly applied to unstructured 
grid data, they are less efficient than deep learning techniques, par-
ticularly autoencoders, for handling significantly nonlinear dynamical 
systems. Building on the concepts of POD and DMD, researchers have 
explored the use of autoencoders with one-dimensional CNNs by first 
flattening the physical field into a single column vector. Since the one-
dimensional CNNs uses a fixed-size filter to capture the pattern and 
correlation in input vectors, the ordering of unstructured grids plays 
a key role in the performance of such approaches [14,194]. In [195], 
the authors utilise the Cuthill–McKee algorithm [196], which draws on 
concepts from graph theory, to reorder grid points in a way that min-
imises the bandwidth of the adjacency matrix as shown in Fig.  12(a). 
As a result, the reordering of grids into the same convolutional window 
enhances the numerical accuracy of the autoencoder [195]. In a related 
approach, the recent study by [14] employs space-filling curves to 
determine an ordering of nodes or cells that converts multi-dimensional 
data on unstructured meshes into a one-dimensional format, as illus-
trated by Fig.  12(b). This transformation allows the optimal application 
of 1D convolutional layers to the unstructured data. Such a reordering 
method with space-filling curves has also been applied to regular image 
data [197], where it achieves a superior performance compared to 
conventional CNN approaches.

In line with the principle of grid reordering, coordinate transfor-
mation can be employed to adapt standard machine learning models 
for non-homogeneous mesh structures. For instance, PhyGeoNet [198] 
utilises a coordinate transformation that maps an irregular domain 
onto a structured mesh space, enabling the application of convolutional 
operations on flow fields for fluid flow regression. Along similar lines, 
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Chen et al. [199] select the cell lengths (both horizontal and vertical) 
and maximum included angle to form a three-channel quality feature, 
analogous to the RGB three-channel feature of images, to perform CNN 
for mesh quality evaluation. Another family of approaches involves 
transforming data into the spectral domain to address the challenges 
posed by complex geometries [200–202]. In these methods, the spatial 
coordinates of the mesh cells are typically converted into frequency 
coefficients within the spectral domain before being input into a ma-
chine learning model [200]. In the frequency domain, these methods 
apply a global convolution operation, which is a key differentiator from 
traditional CNNs. Instead of using local convolutions that only capture 
local interactions, spectral domain machine learning [203] can capture 
global patterns across the global input space.

There has also been an effort to merge the flexibility of linear 
projection techniques like POD with the ability of neural networks to 
manage nonlinear patterns. One common approach, known as SVD-AE 
or POD-AE, involves applying ML-based autoencoding to the modal co-
efficients derived from SVD-based methods [85,204–206]. As a result, 
the machine learning model can effectively manage data with complex 
geometries, though it requires a fixed input dimension. More precisely, 
both the input and output of the AE (with encoder  and decoder ) in 
SVD-AE are the compressed vectors 𝐱̃SVD obtained through SVD, i.e., 

𝐱̃SVD = 𝐔𝐱, 𝐱̃ = (𝐱̃SVD) while 𝐱̃𝑟SVD = (𝐱̃), 𝐱𝑟SVD-AE = 𝐔𝑇 𝐱̃𝑟SVD,

(27)

where 𝐱̃𝑟SVD and 𝐱𝑟SVD-AE denote the reconstruction of the POD or DMD 
coefficients and the reconstruction of the full physical field, respec-
tively.

In fact, numerous studies have investigated the equivalence between 
POD and linear autoencoder networks [207,208], leading to the possi-
bility of jointly training these two-stage data processing methods. The 
use of SVD-AE approaches extends to various applications, including 
nuclear reactor physics [85], multiphase flow CFD [195] and street-
level air pollution estimation [204], both of which involve unstructured 
grid data. The latter is illustrated in Fig.  13.

3.2. Graph neural networks

GNNs are specialised in learning structured data on graphs, where 
nodes represent interconnected data points and edges denote the rela-
tionships between them. GNNs are particularly suitable for modelling 
unstructured meshes due to their inherent compatibility with such data 
structures. Unstructured meshes can be directly represented as graphs, 
with mesh vertices as nodes and connections formed by mesh edges. 
This allows for more efficient utilisation of training data by eliminating 
the need to interpolate unstructured meshes onto uniform grids, which 
is, as discussed in Section 3.1, a process typically required when using 
CNNs designed for structured grid-like datasets such as images. It 
should also be noted that multiple means exist for constructing a graph 
from an unstructured mesh. Alternatives such as defining elements 
or cells as nodes and creating edges based on adjacent elements or 
cells sharing a face, or incorporating nearest neighbour methods can 
be equally valid. The selection among these methods depends on the 
specific requirements of the modelling problem.

In the context of physical simulations, a mesh graph can be formu-
lated as  = ( , ), where  ⊆  ×  denotes a set of edges defining 
connections between pairs of nodes whose set is  . Node-level features 
can be represented by 𝐕𝐺 ∈ R||×𝑁𝑣

𝑓 , where 𝑁𝑣
𝑓  is the number of node-

level features, which typically includes spatial locations and physical 
(flow) field parameters measured at the corresponding points in the 
physical domain. The mesh graph connectivity can be described with 
the adjacency matrix 𝐀𝐺 ∈ Z||×||, where an entry 𝑎𝑢𝑣 is set to one if 
there exists an edge from node 𝑢 to node 𝑣, and zero otherwise. 𝐄𝐺 ∈
R||×𝑁𝑒

𝑓  represent edge-level features, with 𝑁𝑒
𝑓  indicating the number 

of edge-level features per edge. Moreover, it can also be beneficial to 
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Fig. 12. 1D CNN-based autoencoder with grid data reordering.
Fig. 13. SVD-AE for simulated air pollution data with unstructured meshes.
define a graph-level attribute 𝐮 ∈ R𝑁
𝑔
𝑓  that contains global information 

pertinent to the entire graph, such as simulation parameters and inflow 
conditions, which are universally applicable to all nodes and edges. 
The final input to the GNN can be represented as the tuple 𝐆 =
(𝐕𝐺 ,𝐄𝐺 ,𝐮,𝐀𝐺). A node-level regression task can then be setup to use 
the input graph processed by layers of GNNs to predict various physical 
quantities at each node, such as pressure, velocity, or temperature, 
depending on the specific application.

While CNNs excel at capturing local patterns and maintaining trans-
lational invariance in images with convolutional filter of fixed sizes, 
GNNs can better adapt to the irregular connectivity structures found 
in unstructured meshes and can accommodate to graphs of diverse 
sizes and structures. GNNs function by processing and integrating 
information from neighbouring nodes within a graph structure. The 
1-hop neighbourhood of node 𝑢 can be defined as 𝑢 = {𝑣|(𝑢, 𝑣) ∈
 or (𝑣, 𝑢) ∈ }, with the neighbourhood’s features represented as the 
multiset 𝐗𝑢

= {{𝐱𝑣 ∶ 𝑣 ∈ 𝑢}} where 𝐱𝑣 represents the feature 
vector of node 𝑣. GNNs aggregate features over local neighbourhoods 
within the graph by applying shared, permutation invariant functions 
𝜙(𝐱𝑢,𝐗𝑢

). Most graph neural networks can generally be categorised 
into one of the three flavours [209,210]: convolutional [211–214], 
attentional [215,216] and message-passing [217,218]. Each flavour 
determines how the features of neighbouring nodes are processed and 
aggregated, offering different levels of complexity for capturing the 
interactions across the graph. The output feature representation for a 
node 𝑢, denoted 𝐡𝑢, varies across different GNN flavours as follows: 
Convolutional ∶ 𝐡𝑢 = 𝜙

(

𝐱𝑢,
⨁

𝑣∈𝑢

𝑐𝑢𝑣𝜓(𝐱𝑣)
)

, (28a)

Attentional ∶ 𝐡𝑢 = 𝜙
(

𝐱𝑢,
⨁

𝑣∈𝑢

𝑎(𝐱𝑢, 𝐱𝑣)𝜓(𝐱𝑣)
)

, (28b)

Message-passing ∶ 𝐡𝑢 = 𝜙
(

𝐱𝑢,
⨁

𝑣∈𝑢

𝜓(𝐱𝑢, 𝐱𝑣)
)

, (28c)

where 𝜙 and 𝜓 are trainable neural networks, ⨁ is a permutation-
invariant aggregation function such as mean, sum or maximum. In 
the convolutional flavour, the importance of a neighbouring node 𝑣
on node 𝑢’s feature representation is quantified by a constant 𝑐𝑢𝑣, 
which is a direct function of the graph’s structural connectivities. 
The attentional flavour, on the other hand, computes this influence 
through a trainable self-attention mechanism 𝑎 (see Section 3.3 for 
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details). In the message-passing flavour, 𝜓 is a trainable function that 
can compute and convey arbitrary vectors or messages from node 𝑣
to 𝑢. While the message-passing flavour offers more expressive and 
flexible modelling by computing vector-valued messages, they tend to 
be more memory-intensive and difficult to train. Attentional GNNs pro-
vide a more scalable middle ground by passing scalar-valued messages 
across edges, and convolutional GNNs are most suited for the efficient 
processing of homophilous graphs.

In particular, graph convolutional network (GCN), a widely used 
variant of GNNs, are effective at handling unstructured meshes and 
capturing spatial dependencies within the data. When combined with 
LSTM networks, which are adept at modelling temporal dependencies 
in sequential data, this integrated approach becomes a powerful frame-
work for simulating dynamic fluid flow. An illustrative schematic of this 
method is shown in Fig.  14.

In recent years, GNNs of these different flavours have been widely 
applied to modelling complex computational physics problems with 
unstructured meshes. For instance, the work of [219] trained convo-
lutional graph networks to accurately predict laminar flows around 
airfoils of different shapes. The work of [220] combined convolutional 
graph networks and a differentiable CFD solver that operates at a 
significantly coarser resolution to develop a surrogate model that can 
better generalise to previously unseen flow conditions. He et al. [221] 
developed graph neural networks that can be trained to reconstruct 
missing information from partial or incomplete flow fields and accu-
rately predict fluid dynamics from sparse inputs. Li et al. [222] applied 
GNNs to accelerate molecular dynamics simulations, where GNNs are 
used to learn interactions between particles and predict the forces be-
tween atoms in molecular systems. Pichi et al. [223] introduced a graph 
convolutional autoencoder for ROM, which shows great physical com-
pliance with unstructured meshes. Their recent work [224] introduced 
a graph feedforward network for resolution-invariant reduced-order 
operators to handle unstructured grid data of different resolutions, 
which is a key challenge in GNNs. Likewise, Liu et al. [225] developed 
UNet inspired multi-resolution GNNs that uses a hierarchical graph 
structure to capture different levels of resolution of the data in order to 
allow for efficient and accurate approximations of PDE solutions. Chen 
et al. [226] trained Convolutional Graph Networks on laminar flow 
around various two-dimensional shapes and the developed surrogate 
model showed promising results in predicting flow fields and aerody-
namic properties including drag and lift. Suk et al. [227] developed 
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Fig. 14. An example schematic for combining GCNs and LSTMs for modelling spatial–temporal unstructured mesh data.
SE(3)-equivariant Convolutional Graph Network that is inherently in-
variant to translations and equivariant to rotations of the unstructured 
mesh, to accurately predict haemodynamic fields on high-resolution 
surfaces meshes of artery walls. Li et al. [228] trained convolutional 
and attentional GNNs on 3D Reynolds-averaged Navier-Stokes (RANS) 
data to accurately predict flow fields around wind turbines and power 
generation. Sanchez-Gonzalez et al. [229] developed graph network 
based simulators using message passing GNNs that can learn to sim-
ulate a wide range of challenging particle-based physical problems, 
including smooth particle hydrodynamics, rigid bodies and interacting 
deformable materials. By injecting strong inductive biases into the 
models, representing physical states with graphs of interacting parti-
cles and approximating physical dynamics by learned message-passing 
among nodes, the models were able to generalise to much larger graphs 
and longer time scales than those encountered during training. The 
work of [18] introduced MeshGraphNets which is a framework for 
learning mesh-based simulations of diverse physical problems, includ-
ing aerodynamics, structural mechanics and cloth dynamics, all using 
message passing GNNs. In particular, the developed models are able 
to adaptively adjust the mesh discretisation during simulation and 
supports the learning of resolution-independent dynamics and scale to 
more complex discretisations at test time. Song et al. [230] proposed 
a GNN based mesh deformer for mesh movement-based mesh adapta-
tion, which accelerates PDE solving. Barwey et al. [231] developed a 
multi-scale message-passing GNN autoencoder with learnable coarsen-
ing operations that can generate interpretable latent graphs that reveal 
regions important for flowfield reconstruction.

In fact, similar to CNNs, GNN layers are inherently scalable. How-
ever, challenges such as the exponential growth of neighbourhoods—
commonly referred to as the neighbour explosion problem [232]—and 
the integration of GNNs with fully connected layers can hinder this scal-
ability. These limitations reduce their effectiveness when dealing with 
heterogeneous datasets, such as simulation data on adaptive meshes. 
Multi-resolution GNNs for dynamical systems remain a very active 
research topic.

Compared to traditional CFD solvers, deep learning models, in par-
ticular GNNs, offer significant advantages for parallel and distributed 
computing. ML models are typically trained offline on fixed datasets, 
such as mesh snapshots, which decouples them from the complexities of 
dynamical mesh handling during simulation. Once the data (e.g., nodal 
values or graph representations) is preprocessed in GNNs, the irregu-
larity of unstructured meshes has minimal impact on parallelisation. 
Moreover, modern ML frameworks (e.g., PyTorch, TensorFlow, JAX) 
are optimised for batched, tensor-based operations. Using techniques 
like mesh-to-graph transformations, even unstructured mesh data can 
be processed efficiently in uniform, GPU-parallel formats, reducing the 
communication overhead and load imbalance issues that commonly 
affect distributed CFD simulations.
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3.3. Transformer and attention mechanism

3.3.1. Transformers: attention-mechanism
The advent of transformer models [21], originally developed within 

the domain of Natural language processing (NLP), has offered novel 
methodologies for addressing the challenges of sparse and irregular 
data. Characterised by their self-attention mechanisms, transformers 
have demonstrated remarkable ability to manage unstructured data 
and interpret data dependencies over long ranges, making them par-
ticularly suited for the intricacies involved in machine learning for 
computational physics.

An overview of the transformer model architecture is shown in 
Fig.  15. Note that for brevity, only the encoder part of the original 
transformer is depicted here. The decoder part has similar architecture 
and is designed for machine translation tasks, which are not relevant 
for many applications in computational physics. For readers interested 
in the decoder, please refer to the seminal paper on transformers [21]. 
Given an input sequence 𝐱 ∈ R𝑛×𝑑 , where 𝑛 and 𝑑 are the number of 
tokens and feature dimension of each token. In the context of language 
processing, an input sequence is a sentence and a token is the word 
embedding (i.e., encoded feature vector) of a word from the sentence. 
In computational physics, an input sequence can be a list consisting of 
all the nodes of an unstructured mesh and a token is the feature vector 
of a node. In the following part, we will introduce self-attention, the 
key component of transformers, and positional encoding mechanism in 
details.

Self-attention. The self-attention mechanism enables a model to selec-
tively focus on different parts of a sequence when processing each token 
of that sequence. It achieves this by generating three vectors for each 
input token: a query vector (𝐐), a key vector (𝐊), and a value vector 
(𝐕), derived from the input through learned linear transformations (the 
MLPs shown in Fig.  15). The essence of self-attention lies in computing 
attention scores by taking the scaled dot product of a query vector 
with all key vectors, including itself, which are then used to create a 
weighted sum of value vectors. This process allows the model to weigh 
the significance of all other tokens when encoding each token, thereby 
encapsulating the context of each token within the sequence. To obtain 
vectors: query 𝐐 ∈ R𝑛×𝑑𝑞 , key 𝐊 ∈ R𝑛×𝑑𝑘  and value 𝐕 ∈ R𝑛×𝑑𝑣 , we 
define three learnable projection matrices 𝐖𝑄 ∈ R𝑑×𝑑𝑞 , 𝐖𝐾 ∈ R𝑑×𝑑𝑘 , 
𝐖𝑉 ∈ R𝑑×𝑑𝑣 , and apply them to the input as linear transformations: 
𝐐 = 𝐱𝐖𝑄, 𝐊 = 𝐱𝐖𝐾 , 𝐕 = 𝐱𝐖𝑉 . (29)

Here we consider computing the simple scaled dot product atten-
tion. The attention scores (i.e., the measure of similarity between two 
vectors) are computed by taking the dot product of the query vector 𝐐
with all key vectors 𝐊, followed by a scaling factor to stabilise gradients 
during training. The scaling factor is usually the square root of the 
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Fig. 15. Transformer architecture. For brevity, only the encoder part of the original transformer is shown as the decoder part has similar architecture.
dimension of the key vectors √𝑑𝑘. To ensure that the attention scores 
sum up to 1 across the sequence for each query, a softmax function is 
applied after the attention score computation: 

Attention(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊𝑇
√

𝑑𝑘

)

𝐕. (30)

To enhance the ability to capture diverse feature and increase repre-
sentation capacity, a multi-head attention mechanism [233] is usually 
applied instead of relying on a single head. When computing the multi-
head attention, we project the input into queries, keys and values 
multiple times with different projection matrices 𝐖𝑄

𝑖 ∈ R𝑑×𝑑𝑞 , 𝐖𝐾
𝑖 ∈

R𝑑×𝑑𝑘 , 𝐖𝑉
𝑖 ∈ R𝑑×𝑑𝑣 . Given 𝑚 heads, the attention of each head 𝐡𝑖 is 

computed in parallel. All computed attentions {𝐡𝑖}𝑚𝑖  are concatenated 
together and projected with a projection matrix 𝐖𝑂 ∈ R𝑚𝑑𝑣×𝑑 : 
MultiHeadAttention(𝐱) = Concat(𝐡1,𝐡2,… ,𝐡𝑚)𝐖𝑂 ,

where 𝐡𝑖 = Attention
(

𝐐𝐖𝑄
𝑖 ,𝐊𝐖𝐾

𝑖 ,𝐕𝐖
𝑉
𝑖

)

,
(31)

where 𝑚 is the number of heads of MultiHeadAttention, 𝑑𝑣 is the 
features dimension of the output after concatenating multi-head atten-
tions. The computed attentions have the same size to value vectors 
𝑉  and each vector in the attention is a weighted summation of each 
vector in value vectors 𝑉 . Intuitively, each vector in the attentions is 
an encoded vector containing aggregated local and global information 
from all other vectors. The amount of information aggregated from 
each vector to the encoded vector is determined by their similarity, 
i.e., weights or attention scores.
Positional encoding. Since the self-attention mechanism does not in-
herently process the sequential order of the input, transformers use 
positional encoding to incorporate information about the position of 
tokens in the sequence. This allows the model to understand the order 
of tokens, which is crucial for tasks in language processing.

In the original transformer paper [21], sine and cosine functions of 
different frequencies are proposed for positional encoding: 

𝐩𝑝𝑜𝑠,2𝜄 = sin
(

𝑝𝑜𝑠
100002𝜄∕𝑑

)

, (32a)

𝐩𝑝𝑜𝑠,2𝜄+1 = cos
(

𝑝𝑜𝑠
)

, (32b)

100002𝜄∕𝑑
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where the 𝑝𝑜𝑠 is the position of a token in a sequence and 𝐩𝑝𝑜𝑠,2𝜄 is the 
2𝜄th element of the 𝑑-dimensional token 𝐩𝑝𝑜𝑠 (i.e., 0 ≤ 2𝜄 ≤ 𝑑). The 
positional encoding is added to input sequence 𝐱 element-wisely for 
injecting position information explicitly for each token. Therefore, the 
query, key and value with positional encoding are extended as: 
𝐐 = (𝐱 + 𝐩)𝐖𝑄, 𝐊 = (𝐱 + 𝐩)𝐖𝐾 , 𝐕 = (𝐱 + 𝐩)𝐖𝑉 . (33)

The positional encoding introduced above is designed for language 
processing. There are different positional encoding methods tailored 
for graph data structures, e.g., [234,235]. For more discussions about 
positional encoding methods, which are out of scope of this review, 
readers can refer to [236] for more details.

3.3.2. Applications in computational physics
Although transformers were originally proposed for language pro-

cessing tasks, their strong modelling abilities and capacities have drawn 
increasing research interest in machine learning for areas among com-
putational physics, for examples, Hamiltonian dynamics [237], particle 
physics [238], computational fluid dynamics [22,239], weather and 
climate forecasting [240]. Transformers can be combined with GNN to 
capture long-term temporal dependencies through its attention mech-
anism for long sequence prediction in physical simulations [241], or 
capturing long-distance spatial information for mesh adaptation  [242]. 
The self-attention mechanism underpins the transformers’ ability to ag-
gregate long-range (or global) information and naturally to handle un-
structured data. The explicit positional encoding enables transformers 
to understand and incorporate the order or position of tokens (or nodes 
in unstructured meshes). These features present advantages comparing 
to CNNs and GNNs in handling spatial data. A visualisation of the 
comparison between different models on processing unstructured mesh 
data is shown in Fig.  16. In addition to using transformers as pure data-
driven model for physical system modelling, there is a special interest in 
building neural PDE solvers using transformers especially in neural op-
erator learning [243]. Intuitively, the self-attention mechanism can be 
interpreted as a learnable Galerkin projection [244] or a learnable ker-
nel integral [245,246] in neural operator learning methods. To handle 
both uniform and non-uniform discretisation grids, OFormer [234] is 
proposed based on an encoder–decoder architecture with self-attention 
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Fig. 16. Comparison between models for the processing of unstructured mesh data. A transformer model employs a self-attention mechanism to consider all mesh nodes. Single 
layer GNNs attend their direct neighbours. CNNs apply a fixed size kernel on a structure grid with interpolated data from the original unstructured mesh.
and cross-attention. The General Neural Operator Transformer [247] 
proposes a heterogeneous normalised attention layer to flexibly handle 
unstructured meshes, multiple and multi-scale input functions. The 
quadratic-complexity of standard scaled-dot product attention com-
putation limits its applications on large scale problems. To improve 
the efficiency and scalability, linear attention is investigated for PDE 
modelling [244]. FactFormer [248], on the other hand, proposes a 
computationally efficient low-rank surrogate for the full attention based 
on an axial factorised kernel integral. Large-scale pre-training has 
emerged as a potential approach demonstrating robust generalisation 
capabilities across a range of downstream tasks in both natural lan-
guage processing [249] and computer vision [250] domains. There 
have been initial attempts to explore pre-training for PDEs [251–254], 
in which transformers serve as backbones.

There has also been significant work applying transformers to 3D 
irregular meshes, addressing tasks such as mesh recovery and 3D mesh 
generation [255–260]. A key aspect of these approaches is the use of 
spatial attention mechanisms, which allow the models to effectively 
capture and utilise the spatial relationships within the mesh data. For 
instance, in the context of mesh recovery, spatial attention enables 
the transformers to focus on crucial areas of the mesh, leading to 
more accurate reconstructions. The Deformable Mesh Transformer, as 
explored in recent work [258], leverages these attention mechanisms 
to improve the accuracy of human mesh recovery by dynamically ad-
justing the attention across different mesh regions, effectively handling 
complex deformations. Additionally, transformer-based models have 
shown promise in generating 3D meshes by focusing on the intricate 
spatial dependencies within the data [256], which is crucial for creating 
detailed and coherent structures. These advances highlight the growing 
role of spatial attention in enhancing the performance of transformers 
for 3D mesh tasks.

In summary, transformers have shown promising abilities in mod-
elling complex physical systems of computational physics. Compared 
to CNNs and GNNs, transformers can naturally handle unstructured 
meshes as well as capture long-range dependencies using the self-
attention mechanism. Furthermore, leveraging their scalability and par-
allelisation capabilities, transformers are extensively utilised in large-
scale pre-training models. They serve as foundational backbones for 
constructing models that facilitate the learning of PDEs in the compu-
tational physics area.

3.4. Summary and comparison

It is clear that the three families of approaches introduced in this 
section have been widely adopted in the computational science commu-
nity to handle spatially unstructured and irregular data. However, each 
of them may exhibit certain advantages and disadvantages depending 
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on the application field. Therefore, we believe a qualitative compar-
ison would be beneficial to highlight the strengths of each family of 
approaches.

CNNs capture local patterns efficiently by applying the same filter 
across different parts of the input, leveraging translational invariance. 
Conventional CNNs struggle with irregular data such as unstructured 
meshes, requiring interpolation onto regular grids, which introduces 
potential errors. An alternative solution could be 1D CNNs, particu-
larly with mesh-dependent reordering as introduced in Section 3.1.2. 
Although 1D CNNs can seamlessly handle unstructured grid data, their 
unidimensionality constrains their ability to capture relative and global 
position awareness within the neural network. Standard CNNs are 
scalable, meaning they can be trained and evaluated on data of varying 
resolutions automatically. However, this review specifically focuses on 
their application to unstructured grid data, where preprocessing or 
interpolation is often required, reducing their overall scalability. 

GNNs are designed to work with graph-structured data, where the 
concept of position is not as straightforward as in structured grid-like 
data structures. Instead of relying on positional information, GNNs 
focus on the structure and relationships between nodes, making them 
inherently scalable to data of varying dimensions. They are aware of 
the node’s position in terms of its connectivity and neighbourhood in 
the graph. Therefore, GNNs excel at capturing the relational invari-
ance and dependencies between elements, but struggle to understand 
the absolute or relative positions which are important in computa-
tional physics. In addition, as GNNs deepen, they can suffer from 
over-smoothing [261], where node features become too homogenised, 
reducing model performance in tasks requiring fine distinctions.

Transformers are the most explicitly position-aware, designed to 
incorporate position information directly into their processing, which 
makes them highly effective for a wide range of tasks that require 
an understanding of element order or position within the data. An 
important strength of the attention mechanism is position awareness, 
i.e., the ability to understand and incorporate the order or position 
of elements. In the context of machine learning in computational 
physics, the ‘‘position’’ indicates both the relative and absolute spatial 
positions of elements in data structures such as meshes. On the other 
hand, transformers, as the foundation of many ‘large’ AI models, re-
quire considerably more data to train compared to CNNs and GNNs, a 
phenomenon often referred to as ‘data-hungry’ [262].

A comparison summary of the abilities of single-layer CNNs, GNNs 
and transformers is shown in Table  1. The column 2DCNN* indicates 
2D CNN methods with grid reordering, interpolation or transforma-
tion. A growing body of research works has explored the comparative 
strengths of CNNs, GNNs and Transformers for solving specific PDEs 
and fluid dynamics tasks on unstructured meshes, seeking a balance 
between simplicity, adaptability, and computational trade-offs. CNNs, 
such as U-Nets, have demonstrated strong accuracy and efficiency on 
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Table 1
Summary of neural network and linear projection methods (✓: correct; 5: incorrect; ○: partially correct).
 Methods POD/DMD MLP 1DCNN 2DCNN* GNN Transformer PINNs 
 Global information ✓ ✓ 5 5 5 ✓ 5  
 Grid information 5 5 5 5 ✓ ✓ ○  
 Adaptive mesh 5 5 ○ ○ ✓ ✓ ✓  
 Computational efficiency ✓ 5 ○ ○ 5 5 5  
 Physics information 5 5 5 5 5 5 ✓  
 Position awareness 5 5 ○ ✓ 5 ✓ ✓  
 Dimension scalability 5 5 ○ ○ ✓ ✓ ✓  
structured and even unstructured meshes, as shown by [263], chal-
lenging the assumption that GNNs are always necessary. However, 
studies such as [221,264] show that GNNs equipped with advanced 
architectures (e.g., Gaussian mixture convolutions or Flow Comple-
tion Networks) significantly outperform CNNs in capturing spatial de-
pendencies and managing incomplete or irregular data in 3D CFD 
scenarios. Building on these insights, recent research has emphasised 
the advantages of incorporating transformer models. The recent work 
of [265] proposed a hybrid architecture that combines GNNs’ local spa-
tial modelling with transformers’ temporal attention, achieving efficient 
and accurate predictions for unsteady flow on unstructured meshes. 
Similarly, [266] introduced the Mesh Transformer, replacing iterative 
GNNs updates with global attention for improved long-range interac-
tion modelling. This trend is further extended in [267] with a multiscale 
GNNs framework that integrates Transformer-based message passing 
and Adaptive Mesh Refinement to enhance multiphysics simulation 
accuracy. In parallel, [268,269] highlighted the limitations of CNNs in 
modelling long-range dependencies and fine-scale structures, showing 
that transformer-based models, particularly those using hierarchical 
attention like Swin-Transformers, achieve superior performance in fluid 
turbulence reconstruction and flow compression tasks. Together, these 
studies underscore that while CNNs remain competitive in structured 
contexts, GNNs and transformer-based models offer significantly im-
proved flexibility, accuracy, and scalability for learning on unstructured 
mesh data.

Regarding the accuracy of predictive or reconstruction models based 
on these neural network architectures, it is crucial to ensure that the 
models maintain strong performance when applied to unseen scenarios, 
across varying geometries, boundary conditions, and physical regimes. 
While GNNs and meshless neural networks such as standard PINNs (see 
Section 4.1) are often promoted as flexible and physically grounded 
frameworks, their robustness in extrapolative settings remains an open 
challenge. For example, [270] showed that message-passing GNNs 
trained on laminar flows over a fixed set of shapes struggled to gen-
eralise to novel geometries with sharper features or different Reynolds 
numbers. Similarly, [271] conducted a systematic evaluation of PINNs 
and found that they fail to generalise reliably when applied to domains 
with unseen boundary conditions or discontinuous solutions, often re-
quiring problem-specific tuning or additional loss weighting strategies. 
The work of [272] also reported limited transferability of PINNs when 
modelling wave propagation across domains with heterogeneous me-
dia, despite incorporating governing equations. These findings suggest 
that despite their theoretical appeal, both GNNs and PINNs still face 
critical limitations in their generalisability, particularly in real-world 
applications involving complex, unseen geometries.

While the architectural flexibility and performance of CNNs, GNNs, 
and transformers have been widely explored, a critical aspect that 
remains under-addressed is uncertainty quantification (UQ) and the 
choice of evaluation metrics in the context of unstructured grids. Tradi-
tional metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM) are designed for structured domains 
and fail to capture topological nuances and local resolution varia-
tions inherent in unstructured meshes. Similarly, many existing UQ 
techniques assume uniformly sampled data, making them ill-suited 
for irregular, sparse domains where mesh quality varies spatially. Re-
cent studies [266,267,269] emphasise the need for mesh-aware met-
rics, such as graph-based Wasserstein distances or geometry-weighted 
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errors, that reflect the physical relevance and numerical fidelity of 
the predictions. Furthermore, reliable UQ in such domains often re-
quires incorporating spatially adaptive uncertainty representations con-
ditioned on mesh connectivity or local flow characteristics. These chal-
lenges underscore the importance of developing new, domain-specific 
evaluation frameworks for robust assessment of ML methods on un-
structured data. For more details about uncertainty quantification in 
dynamical systems, interested readers are referred to recent review 
papers [82,273].

4. Learning paradigms with unstructured data

Machine learning performance on unstructured data is influenced 
not only by neural network structures but also by training objec-
tives, including loss function design and data augmentation strategies. 
This section reviews Physics-Informed Neural Networks with mesh-
less loss functions, reinforcement learning for mesh generation, and 
generative AI approaches for handling unstructured grid data. These 
workflows are largely independent of the neural network structure, 
ensuring adaptability to those introduced in Section 3.

4.1. PINNs: a meshless solution

PINNs mark a significant evolution in scientific machine learning, 
by embedding the physical laws described by the underlying differ-
ential equations in the neural network [23]. Traditional numerical 
methods, while foundational in engineering, struggle with challenges 
such as mesh dependency and computational burdens in high dimen-
sions. Early neural network applications were limited to purely data-
driven techniques but recent advances in automatic differentiation have 
revitalised this approach, with PINNs at the forefront, offering solutions 
to forward and inverse problems by enforcing physical laws within the 
learning process [274,275].

PINNs excel in parametrising high-dimensional PDEs, incorporat-
ing parameters directly into the training data to navigate expansive 
parameter spaces efficiently, which is a significant advantage over 
conventional numerical techniques [276]. This capability is further 
enhanced by Physics-Informed Deep Operator Networks, which learn 
an operator learning architecture to solve parametric problems [277].

Fig.  17 shows the schematic of a parametric PINN for a 3D time-
dependent problem. The inputs to the neural network are the spatio-
temporal coordinates 𝑥, 𝑦, 𝑧, 𝑡 along with a set of parameters 𝜆. Although 
one can obtain these spatial coordinates from the nodal points of an 
unstructured mesh, employing sophisticated pseudo-random sampling 
techniques, such as Latin hypercube sampling, Sobol sequences [278], 
Halton sequences [279], or Hammersley sequences [280], offers a more 
efficient alternative. These techniques generate unstructured point 
clouds that require significantly fewer points for effective domain sam-
pling, compared to using the nodal points from unstructured meshes 
directly.

PINNs inherently manage unstructured data more efficiently than 
conventional architectures like CNNs and RNNs due to their ability 
to integrate differential equations directly into the learning process. 
CNNs, primarily designed for structured grid-like data, such as im-
ages, often struggle with irregular, non-gridded data formats without 
extensive pre-processing to regularise the input space. RNNs, while 
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Fig. 17. Schematic of a parametric PINN for a 3D time dependent problem.
adept at handling sequences, similarly face challenges with spatial ir-
regularities and multidimensional data. In contrast, PINNs leverage the 
underlying physical laws, represented through differential equations, 
to learn the solution to the PDE in the domain. This capacity allows 
PINNs to learn complex patterns with fewer data points [281–283]. 
The performance of PINNs and recently developed KANs (Kolmogorov–
Arnold Networks) [284] on irregular geometries have been extensively 
examined in the recent works of [285,286].

The output from the PINN is the solution to the PDE. This output is 
constrained to satisfy a multitask loss consisting of the initial condition, 
boundary conditions and the PDE. These loss terms are often evaluated 
via a Mean squared error (MSE).

In the analysis of incompressible fluid dynamics, it is fundamental 
to enforce the conservation of mass, expressed as zero divergence of 
the velocity field. For bounded domains with solid boundaries, such 
as in pipes or channels, the no-slip condition is often imposed. The 
mathematical formulation is as follows: 
∇ ⋅ 𝐱 = 0, (34a)

𝐱 = 𝟎 on 𝜕𝛺. (34b)

Here, 𝐱 represents the velocity field vector, comprising components 𝑢, 
𝑣 and 𝑤 in the three directions respectively. 𝜕𝛺 denotes the boundary 
of the domain. The PINN architecture for divergence-free flow prob-
lems incorporates two primary loss components to guide the training 
process: the PDE loss (𝑃𝐷𝐸) and the Boundary Condition loss (𝐵𝐶 ). 
The individual loss terms can be formulated as: 

PDE = 1
𝑁𝑝
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‖
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2 , (35)

where, 𝐱̂ represents the PINN-predicted solution. The vector 𝐢𝑘 denotes 
the spatial coordinates of the 𝑘th point within the domain or on the 
boundary, respectively for PDE and boundary condition losses. 𝑁𝑝
is the total number of collocation points used to evaluate the PDE 
loss, distributed throughout the domain 𝛺. 𝑁𝑏 is the total number of 
collocation points on the boundary 𝜕𝛺, used to evaluate the boundary 
condition loss. Additionally, an optional data loss term (Data) can be 
included if the solution to the PDE is known at sparse locations: 

Data =
1
𝑁𝑑

𝑁𝑑
∑

𝑘=1

‖

‖

𝐱̂(𝐢𝑘) − 𝐱(𝐢𝑘)‖‖
2 , (36)

where 𝑁𝑑 represents the number of data points where direct mea-
surements of the velocity field 𝐱(𝐢 ) are available. For benchmarking 
𝑘

18 
the efficacy of PINN-based frameworks, Mean absolute error (MAE) is 
calculated between the PINN predicted solution and a known solution 
(analytical or numerical), though PINNs themselves are employed as 
solvers for PDEs: 

MAE(𝐱̂) =
1
𝑁𝑣

𝑁𝑣
∑

𝑘=1

‖

‖

𝐱̂(𝐢𝑘) − 𝐱(𝐢𝑘)‖‖ , (37)

where 𝐱(𝐢𝑘) represents the true velocity field at the point 𝐢𝑘, and 𝑁𝑣 is 
the number of data points used for validation. This metric MAE, which 
is not included in the training loss function, provides a measure of the 
average magnitude of error across all sampled points.

Importance sampling is a technique used to enhance the efficiency 
of the training process in machine learning models, including PINNs. 
A probability distribution is first constructed that is proportional to 
the loss distribution observed across the computational domain. This 
distribution then guides the sampling process, whereby training points 
are more frequently selected from regions where the current model 
exhibits higher training loss. This method ensures that the neural 
network training concentrates on areas of the domain where the model 
is under-performing, thereby enhancing overall model accuracy. Essen-
tially, this strategy allows for an adaptive allocation of computational 
resources, focusing efforts on ‘problematic’ areas much like adaptive 
mesh refinement in traditional computational methods [287–289].

Addressing the disparity in loss term magnitudes, which could bias 
learning towards boundary condition at the expense of accurately solv-
ing differential equation, balancing coefficients have been introduced. 
This, along with advancements in adaptive coefficient adjustment, 
underscores efforts to equalise the contribution of each loss component 
to the learning process [290–292].

The development of adaptive activation functions represents an-
other stride, introducing trainable parameters that fine-tune the acti-
vation function’s slope, thus enhancing the network’s ability to model 
complex patterns and behaviours [293,294]. Several neural network 
architectures have been developed to project the low-dimensional input 
of the PINN to a higher dimension. This strategy is useful in addressing 
pathologies such as the spectral bias in neural networks, particularly 
beneficial for learning high-frequency functions indicative of abrupt 
changes such as discontinuity in the solution [295–298].

Domain decomposition within PINNs, analogous to finite element 
methods but with enhanced flexibility, enables tackling complex ge-
ometries and discontinuities. Techniques like Conservative Physics-
Informed Neural Network, Extended Physics-Informed Neural Network 
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and parallel PINNs have emerged, focusing on computational efficiency 
and modelling for discontinuities [299–301]. The ability to decompose 
the domain has been further enhanced in Finite Basis Physics-Informed 
Neural Network [302] by employing overlapping subdomains. Addi-
tionally, the Geometry Aware Physics-Informed Neural Network [303] 
effectively compresses the complexity of irregular geometries, typically 
represented through unstructured meshes, into a latent space. This 
latent representation, alongside spatial coordinates 𝑥, 𝑦, 𝑧, serves as 
input for a subsequent network within the PINN framework. A separate 
neural network is employed specifically to enforce boundary conditions 
with hard constraints during the training phase of the PINN.

In recent developments, input encoding strategies for PINNs have 
been crucial in handling unstructured data more effectively. These 
encodings can generally be categorised as Fourier type, involving com-
binations of sine and cosine functions, or non-Fourier types such as 
radial basis function and hash encoding. In [304], Fourier features 
were utilised to encode spatial coordinates of unstructured data points, 
alongside implementing a hard-constrained output in the neural net-
work, which effectively eliminates the boundary condition loss (𝐵𝐶 ). 
This study also introduced an active sampling technique, an advance-
ment over traditional importance sampling, to efficiently resample un-
structured points. Conversely, Zeng et al. [305] employed non-Fourier 
radial basis function encoding to manage inputs from unstructured 
datasets, complemented by a custom finite difference scheme designed 
to compute derivatives in scenarios involving discontinuous solutions. 
Meanwhile, Huang et al. [306] demonstrated that hash encoding could 
significantly accelerate PINN training, achieving up to a tenfold de-
crease in the training time. These encoding strategies not only enhance 
the computational performance of PINNs but also significantly improve 
the management of unstructured data, influencing the convergence 
behaviours and learning dynamics. This necessitates careful consid-
eration of their integration into existing architectures, particularly as 
the discontinuous nature of hash encoding poses unique challenges 
in derivative handling, impacting the stability and robustness of the 
model.

Additionally, a significant advancement in addressing the limita-
tions of conventional PINNs, particularly their struggle with temporal 
dependencies in dynamic physical systems, has been the development 
of a transformer-based framework known as PINNsFormer [307]. This 
framework utilises multi-head attention mechanisms not only to more 
accurately capture temporal dependencies but also to efficiently process 
unstructured data by transforming point-wise inputs into pseudo se-
quences. This adaptation enhances the model’s ability to deal with non-
uniform and scattered data typically encountered in complex physical 
scenarios.

Recent advancements in operator learning frameworks like Deep-
ONet [277] and Fourier neural operator (FNO) [203] have extended 
their application to unstructured grid data, addressing a long-standing 
limitation in solving PDEs across irregular geometries. For instance, 
the Mesh-Independent Neural Operator [308,309] and Geo-FNO [310] 
have enabled efficient transformations of non-uniform domains into la-
tent spaces, allowing for operations like fast Fourier transform to func-
tion seamlessly on arbitrary geometries. Similarly, frameworks such as 
Non-Uniform Neural Operator [311] leverage domain decomposition 
techniques like K-D trees to handle non-uniform data while maintaining 
computational efficiency. FNO with localised integral and differential 
kernels further address challenges of over-smoothing by introducing 
locally supported kernels, effectively bridging the gap between global 
and local feature representations [312].

DeepONet variants have also seen remarkable progress in address-
ing problems related to unstructured grids. Geom-DeepONet [313] 
augments inputs with signed distance functions and employs sinusoidal 
representation networks to predict field solutions across parametrised 
3D geometries, demonstrating robust generalisation to unseen configu-
rations. Physics-Constrained DeepONet [314] integrates physical laws 
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like divergence-free constraints to enhance learning efficiency, espe-
cially with sparse data. Furthermore, Enriched-DeepONet [315] and 
Decoder-DeepONet [316] tackle challenges such as moving-solution 
operators and unaligned observation data, improving accuracy by or-
ders of magnitude compared to conventional approaches. These ad-
vancements underscore the growing capability of neural operators to 
efficiently solve PDEs on unstructured grids.

In summary, PINNs and neural operators represent a significant ad-
vancement in computational science, combining the strengths of neural 
networks with accurate physical modelling to address many limitations 
of traditional numerical methods for solving differential equations. 
By integrating input encoding techniques such as Fourier and non-
Fourier methods, and employing novel strategies like multi-head atten-
tion mechanisms from transformer-based models, PINNs are uniquely 
equipped to handle unstructured data. Additionally, new techniques 
in sampling, balancing loss terms, and adapting activation functions, 
along with domain-decomposition, enable PINNs to work effectively 
with experimental data and solve complex physical equations.

4.2. Reinforcement learning for unstructured mesh generation

4.2.1. Introduction to reinforcement learning
Reinforcement learning (RL) is a machine-learning technique where 

an agent learns to make decisions by interacting with its environ-
ment [317]. The learning process is guided by the rewards or penal-
ties received from trial-and-error interactions, resulting in an optimal 
decision-making policy that maximises cumulative rewards over time. 
Since a complex problem could often be divided into a sequence of 
manageable sub-tasks, the overall performance hinges on the ability to 
effectively solve these sub-problems.

RL has recently been applied to solve unstructured mesh generation 
problems, due to its underlying mechanism of recursive interactions be-
tween element extractions and its domain boundary environment [318–
320]. The work of [321,322] formulated the mesh generation prob-
lem in terms of sequential decision making problems and developed 
RL-based methods to generate quadrilateral meshes for arbitrary two-
dimensional (2D) geometries. The overall mesh generation procedure 
is shown in Fig.  18. The meshing process is formulated as a Markov 
decision process, consisting of a set of boundary environment states , 
a set of possible actions (𝑏), a set of rewards , and a state transition 
probability 
𝑃 (𝐵𝑡+1 = 𝑏′, 𝑅𝑡+1 = 𝑟|𝐵𝑡 = 𝑏,𝑋𝑡 = 𝑥), (38)

where 𝑏′, 𝑏 ∈ , 𝑥 ∈ (𝑏), 𝑟 ∈ , 𝑏′ is the new state at 𝑡 + 1 and 𝑟
is the reward after action 𝑥 on the boundary state 𝑏. It is important to 
note that the state (solution) variable 𝑥 in this section represents the 
action of mesh generation, unlike in other sections where it denotes 
the provision of simulation or prediction results.

The mesh generator at each time step 𝑡, acting as the RL agent, 
observes a state 𝐵𝑡 from the environment, which is the contour of the 
geometry consisting of a set of vertices and segments. It then performs 
an action 𝑋𝑡 to generate a new element from the given state based 
on an implicit or explicit policy. The environment responds to the 
action by excluding the newly generated element and transits into a 
new state 𝐵𝑡+1, which is the updated geometry contour. It provides 
a reward or penalty 𝑅𝑡 simultaneously that measures the quality of 
the generated element and the updated contour, such as a value of 
1 for a well-balanced quality and −1 for an imbalance. The latter 
could potentially lead to sharp angles and narrow regions. This element 
generation process continues until the updated contour includes only 
four vertices, forming the last element automatically. Eventually, it 
produces a sequence of [𝐵0, 𝑋0, 𝐵1, 𝑅1, 𝑋1,…]. The agent’s goal is to 
learn such a policy 𝜋(𝑥|𝑏) that maximises the cumulative rewards 𝐺𝑟𝑡 , 

𝐺𝑟𝑡 =
𝑇
∑

𝛾 (𝑘−𝑡−1)𝑅𝑘, (39)

𝑘=𝑡+1
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Fig. 18. Reinforcement learning for unstructured mesh generation.
where 0 ≤ 𝛾 ≤ 1 is a discount rate that determines the weight between 
short-term and long-term rewards, and 𝑇  is the total time step.

In deep RL, the policy 𝜋𝛷 is represented by a nonlinear neural 
network with parameters 𝜃, which were updated during the training 
process. Different types of deep RL algorithms could be applied to find 
an optimal policy 𝜋∗𝜃  that maximises an objective function 𝐽 defined as 
the expectation of the return. 𝜋𝜃 is updated by ∇𝜃𝐽 which is calculated 
using the deterministic policy gradient algorithm by applying the chain 
rule to 𝐽 as follows: 
∇𝜃(𝐽 ) = E(𝑏𝑡 ,𝑥𝑡)

[

∇𝜃𝑄𝑣(𝑏𝑡, 𝑥𝑡)
]

, (40)

where 𝑄𝑣(𝑏𝑡, 𝑥𝑡) is an action value function defined by 
𝑄𝑣(𝑏𝑡, 𝑥𝑡) = E𝜋

[

𝑅𝑡|𝑏𝑡, 𝑥𝑡
]

. (41)

Here the notation 𝑄𝑣 for the value function is chosen to avoid conflict 
with the query vector notation of the transformers. The action value 
function estimates the long-term benefit of taking an action for a state, 
which is how well the newly generated element will contribute to the 
optimal mesh quality. The mesh quality is measured by metrics related 
to the mesh’s geometrical and topological properties [323]. Common 
geometrical metrics for a mesh include minimum and maximum angles, 
edge ratio, aspect ratio, stretch, taper, skewness, and scaled Jacobian, 
whereas topological metric includes singularity. Generally, a mesh 
cannot achieve high scores on every metric because of the complexity 
of geometries and specific computational requirements. The choice 
of metric is often related to downstream applications. The stepwise 
reward in the Q-function needs to balance the element quality and mesh 
quality because the optimal individual element does not always lead to 
optimal meshes. Pan et al. [321] demonstrated that a reward function 
considering the trade-off between element quality and the remaining 
contour could achieve overall good performance.

Once the reward function is defined, different types of RL algorithms 
could be applied to estimate the Q-function and the optimal policy. Pan 
et al. [321] applied Advantage Actor–Critic to learn an initial meshing 
policy and then trained a feedforward neural network as the final 
policy with high-quality samples from the RL agent. With the similar 
formulation, Tong et al. [324] further expanded the action space of 
extracting a new element. To achieve a stable learning efficiency, Pan 
et al. [322] solely implemented Soft Actor-Critic to learn the meshing 
policy, which has enabled it for more complex geometries.

4.2.2. Reinforcement learning for mesh optimisation
Mesh optimisation for complex systems plays an important role in 

dynamically refining mesh regions with low or high solution variability, 
facilitating a favourable trade-off between computational speed and 
simulation accuracy. The application of RL to this research area has 
recently started. Wang et al. [325] proposed a smoothing method to 
improve the quality of triangular meshes by combining a heuristic 
Laplacian method with the Deep Deterministic Policy Gradient algo-
rithm. The learned policy maximises the overall mesh skewness quality 
by adjusting the positions of free nodes.
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Some research directly optimise meshes towards an accurate and 
efficient numerical approximation to solve PDE. Reinforcement learn-
ing is applied to automate this process, sidestepping a large amount 
of heuristic rules. The recent work of [326] formulated adaptive mesh 
refinement into a Markov decision process with variable sizes of state 
and action spaces. It makes elementwise decisions with policy trained 
by REINFORCE and Proximal Policy Optimisation (PPO), to minimise 
the final PDE solution error. Gillette et al. [327] applied Proximal 
Policy Optimisation to train a policy that marks a set of elements to be 
refined based on existing error estimates. The specific refinement strat-
egy was based on prior knowledge. Instead of only focusing on refining 
meshes, Foucart et al. [29] formulated the Adaptive Mesh Refinement 
as a partially observable Markov decision process and learned a policy 
that could de-refine mesh elements with local surrounding information. 
Lorsung et al. [30] applied a deep Q network to iteratively coarsen 
meshes, thereby reducing simulation complexity while preserving the 
accuracy of the target properties.

To avoid iteratively refining the elements, some studies applied 
multi-agent RL. Yang et al. [328] further investigates multi-agent GNN 
with a team reward to boost the refinement speed for arbitrary meshes. 
Freymuth et al. [329] formulated adaptive mesh refinement as a Swarm 
Markov Decision Process, treating each mesh element as an agent 
and training all agents under a shared policy using GNNs. Dzantic 
et al. [330] proposed a multi-agent PPO to learn anticipatory refine-
ment strategies, specifically for discontinuous Galerkin finite difference 
method.

A few studies have used RL to optimise the shape of geometries 
with existing mesh generators, such as fin-shaped geometries for op-
timal heat exchange [331] and blade passages with optimal meshing 
parameters [332]. Some complex geometries often require a well de-
composition before meshing. Diprete et al. [333] used PPO to train 
an agent to perform optimal cuts on Computer Aided Design models, 
decomposing them into well-shaped rectangular blocks suitable for 
generating high-quality meshes.

In summary, RL is starting to make significant strides in gen-
erating and optimising unstructured meshes for various engineering 
applications, enhancing both computational efficiency and simulation 
accuracy. RL generally reduces reliance on heuristic rules and en-
hances the accuracy of numerical approximations for PDEs. RL-based 
unstructured meshes could be applied to fields, including fluid dynam-
ics by capturing complex flow patterns, refining meshes in structural 
engineering by predicting stress distributions and material behaviour, 
and modelling biological tissues and organs, which facilitates better 
surgical planning and medical device design. Future research in RL for 
unstructured meshes includes:

1. Leveraging multi-agent RL to coordinate meshing and refine-
ment strategies across mesh elements, as seen in the use of GNNs 
and swarm intelligence.

2. Extending RL applications to optimise geometry shapes in con-
junction with mesh generation, improving design efficiency in 
fields like heat exchange and fluid dynamics.
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Fig. 19. The trilemma of the four most popular generative model types: all models can 
be framed into this triangle, and there is yet to find a method that could concurrently 
exhibit the three assets.
Source: Inspired by Figure 1 from Xiao et al. [350].

3. Developing RL agents capable of performing optimal preprocess-
ing on Computer Aided Design models, enabling better decom-
position for high-quality mesh generation.

4. Evaluating the RL-based methods in diverse applications, in-
cluding fluid dynamics, structural engineering, and biomedical 
engineering.

4.3. Generative AI models with unstructured grid data

4.3.1. Introduction to generative models
Similar to physics-informed machine learning (Section 4.1) and re-

inforcement learning (Section 4.2), generative modelling characterises 
a set of techniques towards a specific inference goal, independent from 
specific neural network architectures. As such, all previously discussed 
architectures for handling unstructured data can also be applied to 
generative modelling. Generative modelling seeks to learn an efficient 
sampler from a state distribution 𝐱 ∼ 𝑝𝜃(𝐱) as parametrised by the 
weights and biases 𝜃 of a neural network. By modelling a conditional 
distribution 𝐱 ∼ 𝑝𝜃(𝐱 ∣ 𝐜), where 𝐜 ∈  is the conditioning information, 
e.g., initial conditions, a coarse-grained field, or observations, drawn 
from the conditioning space , such a sampler can solve many tasks like 
forecasting, downscaling, or Bayesian inference. To avoid specifying an 
explicit distribution, implicit generative modelling represents the distri-
bution through samples generated with a learnable generator applied 
to samples from a known and possibly simpler distribution [334]. For a 
more detailed overview of generative modelling, we refer to the books 
of Tomczak [335] and Murphy [336].

A straightforward way to learn such a generative model is to max-
imise the data likelihood given the assumed model, known as the 
maximum likelihood approach. Most models for generative modelling 
can be trained this way: energy-based models [337,338] and normal-
ising flows [339,340] are examples, as well as Autoregressive mod-
els (ARMs) [341,342], which often rely on maximum likelihood es-
timation. Aiming to maximise a lower bound on the data likelihood, 
VAEs [343,344] and Denoising diffusion models (DDMs) [345–347] 
optimise the so-called Evidence lower bound (ELBO). Differing from 
that maximum likelihood approach, GANs [348,349] are trained with 
an adversarial loss: concurrently to the generator, a deep learning-
based discriminator, or critic, is trained to discriminate between true 
data samples and samples from the generator.
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GANs can generate high-quality samples with high throughput, but 
are notoriously unstable to train [351] and result in mode collapse, 
where only partial modes of the data are generated. Contrastingly, 
maximum likelihood approaches are more stable and easier to train, 
and they can exhibit much higher sample diversity than GANs. VAEs 
can generate samples in one step like GANs, but they often produce 
lower quality samples due to data compression. Conversely, DDMs and 
ARMs can generate high-quality samples but rely on slower multi-
step sampling. Thus, there is a trilemma between training stability, 
sample quality, and generation speed [350]. Fig.  19 categorises the 
main generative modelling approaches within this trilemma, while a 
general overview over the most popular approaches and their original 
citations is shown in Table  2. Since DDMs are currently the most pop-
ular generative modelling approach, we concentrate on its application 
to unstructured data; however, most of the reviewed applications could 
also work with other types of generative modelling.

DDMs establish bidirectional pathways between the distribution of 
training data and a stationary noise distribution, typically a Gaussian 
distribution [345,346]. In the forward path, noise gradually replaces 
information in the data through a diffusion process. Conversely, the 
backward path requires training neural networks to denoise the data 
given a noised field and conditional information. Trained across all 
noise magnitudes, the neural network can then iteratively map ini-
tial fields from the stationary noise distribution back to data space. 
Being inherently probabilistic, the diffusion process is governed by a 
Stochastic differential equation (SDE) [34], and the backward path 
corresponds to a reverse SDE [352]. This connects DDMs to score-
based generative modelling [347,353,354], where the neural network 
approximates the data distribution’s score. Additionally, this connec-
tion allows the drawing of similarities with more traditional physical 
modelling approaches [355–357]. There exists also a deterministic 
Ordinary differential equation (ODE) for the backward path [34,358], 
yielding the same marginal distribution as the reverse SDE. DDMs 
enable advanced generative tasks such as text-to-image or text-to-video 
generation, enhancing generative training stability and quality [359]. 
However, their iterative nature incurs high computational costs and 
ongoing research aims to mitigate these costs [360].

4.3.2. Generative models applied on unstructured data
Early application of generative models to unstructured data are es-

pecially based on GANs or VAEs. Specific examples are their application 
to material modelling [361] and flood forecasting [362]. Combining 
these methods, Quilodrán-Casas and Arcucci [363] uses together a VAE, 
a GAN, and a RNN in latent space for forecasting on unstructured 
grids, as exemplarily shown in Fig.  20. Such applications of GANs on 
spatio-temporal problems are further surveyed in Gao et al. [364].

However, the first applications of DDMs highlighted their poten-
tial for complex fluid prediction [39,365], including for unstructured 
grids. In Google DeepMind’s GenCast [38], a DDM designed for global 
weather prediction outperforms all other ensemble-based prediction 
methods, including ensemble forecasts from the European Centre for 
Medium-range Weather Forecasting (ECMWF). GenCast uses a graph 
neural network inspired by the GraphCast model [366], incorporating 
graph transformer blocks to represent data on a spherical grid, an 
approach also applicable to unstructured grids.

DDMs based purely on transformer blocks and attention mecha-
nisms [367] are well-suited for unstructured data. Additionally, the 
latent mapping in latent diffusion models [360,368] can be readily 
adapted using the methods from Section 3.1.2 to transition from an 
unstructured to a latent structured grid, facilitating the application of 
diffusion models. However, as discussed in [38], the diffusion process 
must isotropically replace information with noise, potentially requiring 
alternative noise sampling strategies beyond purely random sampling 
on unstructured grids.

DDMs can also interact with Neural radiance fieldss (NERFs), which 
are analogous to PINNs without the physics-informed loss function. 



S. Cheng et al. Information Fusion 123 (2025) 103255 
Table 2
The main generative deep learning methods, the criterion on which their loss function is based, and the 
original or overview papers where they are further described. The abbreviations for the loss functions are: 
MaxLL = maximum likelihood; ELBO = evidence lower bound..
Source: Table inspired by Table 20.1 from Murphy [336].
 Method (abbreviation) Loss Citation  
 Energy-based models MaxLL [337,338]  
 Normalising flows MaxLL [339,340]  
 Autoregressive models (ARMs) MaxLL [341,342]  
 Variational autoencoders (VAEs) ELBO [343,344]  
 Denoising diffusion models (DDMs) ELBO [345–347] 
 Generative adversarial networks (GANs) Adversarial [348,349]  
Fig. 20. Variational autoencoder and generative adversarial networks can be combined for forecasting on unstructured grids.
Source: Figure from Quilodrán-Casas and Arcucci [363].
In this context, DDMs can regularise the sampled fields [369] to 
more closely follow the DDM-generated data distribution. Furthermore, 
NERFs enable to train DDMs for 3D synthesis based on pre-trained 
2D text-to-image models [370–373]. As NERFs represent functions 
of coordinates, they are inherently grid-independent and suitable for 
unstructured grids. However, the combined application of NERFs and 
DDMs can be computationally demanding, as both methods typically 
require substantial computational resources.

Neural operators aim to map between infinite-dimensional function 
spaces, allowing evaluation at arbitrary spatial positions [203,243]. To 
learn DDMs on such spaces, data at arbitrary positions can be interpo-
lated to a structured grid, enabling the application of CNNs [374]. Ad-
ditionally, convolutional layers can be replaced with implicit NERF-like 
representations [375], facilitating a grid-independent super-resolution 
operator. By integrating DDMs, neural operators can leverage the ro-
bust generative capabilities to efficiently handle complex and stochastic 
function mappings, potentially enhancing the accuracy and generalisa-
tion of mappings between function spaces.

Generative models have further been applied to three-dimensional 
meshes and point clouds, which are crucial for modelling entities 
such as the human body. VAEs and GANs are frequently utilised in 
this context [376–380]. Nonetheless, with their recent emergence in 
image generation, ARMs [381] and DDMs [382,383] are increasingly 
employed for the generation of such data.

In all these applications, generative models have emerged as power-
ful tools for handling unstructured data, offering a flexible approach to 
model complex and irregular datasets. These models excel in capturing 
the underlying distributions of unstructured data, enabling sophisti-
cated applications such as advanced weather prediction, as demon-
strated by models like GenCast from Google DeepMind. Furthermore, 
their adaptability to unstructured grids through techniques like graph 
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neural networks and transformers enhances their utility in geospatial 
and scientific computing domains. However, the computational de-
mands of these models, particularly when integrating with Neural Radi-
ance Fields (NERFs) and neural operators, present significant challenges 
that require high computational resources and efficient algorithms. 
Despite these challenges, the ongoing research and development in 
optimising these models and expanding their applications suggest a 
bright future, promising enhanced accuracy, efficiency, and broader 
adoption across various scientific disciplines.

5. Public study cases and computational libraries

This section reviews the currently available open-access datasets 
and computational tools for physics problems involving unstructured 
grid data. The datasets can serve as benchmark test cases for assessing 
the performance of machine learning models in simulating dynam-
ical systems on unstructured meshes. For the computational tools, 
we focus on generalisable libraries that include comprehensive user 
documentation and examples, making them adaptable to a wide range 
of applications.

5.1. Open-access datasets

For computational solid dynamics, challenges are faced in defining 
universal standard test cases due to the diverse nature of research areas. 
For example, in material mechanics, common tests for unstructured 
meshes include material tension/compression [384], bending [385], 
and fatigue tests [386,387], each tailored to specific material properties 
and behaviours. Shifting to CFD, we classify test cases with unstruc-
tured meshes into three distinct categories based on the temporal 
characteristics of the flow and the adaptability of the mesh. Each 
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Fig. 21. Steady flow cases: Computational domain and computational mesh for lid-driven cavity flow of (a) homogeneous mesh [388] and (b) heterogeneous mesh [58].
category is designed to evaluate specific aspects of numerical methods 
and algorithms, reflecting the broad range of flow phenomena and 
challenges encountered in fluid dynamics simulations.
Steady flow with unstructured meshes. This category includes open-
access datasets such as lid-driven cavity flow  [58,388], isentropic 
vortex [201] and fluid dynamics around diverse shapes at low Reynolds 
number (Re) [226,389]. These datasets primarily utilise triangular and 
quadrilateral meshes, offering a range of mesh densities and config-
urations. For example, in the case of flow around a cylinder with 
Reynolds number (Re) ranging from 10 to 40, the mesh resolution 
is varied to accurately capture the boundary layer and wake regions. 
Finer meshes are employed near the cylinder surface and in areas with 
steep gradients to resolve complex flow features at different Re [390]. 
Additionally, these datasets provide comprehensive details on flow 
parameters, boundary conditions, and mesh specifications. Specifically, 
the lid-driven cavity flow datasets feature variations in Re, ranging 
from hundreds to thousands, enabling the study of flow behaviours 
from laminar to transitional regimes. Furthermore, the shape of the 
cavity can be modified to introduce additional complexity, as demon-
strated in Fig.  21(a). These variations provide a versatile framework 
for comprehensively testing numerical accuracy, convergence, and the 
adaptability of computational methods to different geometrical con-
figurations. The comparison between homogeneous and heterogeneous 
meshes is illustrated in Fig.  21, highlighting how uniform triangular 
meshes offer consistent resolution throughout the flow domain, while 
heterogeneous meshes adaptively refine regions of interest, such as 
areas with sharp gradients.
Time-dependent flow with fixed unstructured meshes. This category is 
pivotal for simulating dynamic flows using a static mesh, essential for 
assessing an algorithms’ effectiveness in depicting time-varying fluid 
behaviours. Unlike the previous category, which focuses on steady-
state simulations, this category deals with unsteady flows and incor-
porates time series data to capture transient phenomena. It is the 
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most broadly utilised technique in CFD, dedicated to test cases that 
include the dynamics of flow around various shaped objects at high 
Re [221,391,392] such as cylinders, triangles [393] and airfoils [177,
394], alongside complex configurations [264,395] such as channel and 
backward-facing step flows, and extending to large-scale environmental 
phenomena [363,396]. The general mesh settings are similar to those 
in the ‘steady flow with unstructured meshes’ category, employing a 
mix of triangular and quadrilateral meshes [221], often in irregular 
formations. However, the main differences lie in the physical param-
eters, data structure and typically involve larger meshes with higher 
resolutions. Datasets in this category include more mesh elements to 
accurately capture complex, unsteady flow phenomena over time. This 
increased mesh density is essential for resolving finer details in high-
fidelity simulations of dynamical flows. An illustrative example is the 
flow around a cylinder [389], as Re increases from 40 to 3900, the 
flow regime transitions from steady laminar to unsteady. This transi-
tion necessitates increasing the mesh complexity from 648 to 20,736 
elements to accurately capture the complex flow dynamics. Fig.  22 
exhibits typical examples of time-dependent flow with fixed meshes. 
The two-dimensional visualisation captures flow around a cylinder at 
a Re of 2300, using a mesh with 51,66 nodes across 1000 time steps. In 
a three-dimensional context, the figure portrays an urban air pollution 
simulation that incorporates a more extensive mesh with 100,040 nodes 
per dimension over 1000 time steps.
Time-dependent flow with adaptive meshes. This category features
datasets where the mesh resolution is dynamically adjusted during 
simulations. This approach enhances simulation efficiency and accu-
racy by refining the mesh in regions with complex flow dynamics and 
coarsening it where less detail is needed, significantly reducing compu-
tational costs while capturing essential flow features. It is particularly 
effective for physical disturbances such as aerodynamic flows around 
objects [18,397], turbulence [398,399], and fluid–structure interac-
tions [400,401], benefiting from the adaptive refinement’s precision 
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Fig. 22. Dynamic flow with fixed unstructured meshes: Computational domain and computational mesh for flow of water around a cylinder, and azimuthal and isometric view of 
urban air pollution simulation [363].
Fig. 23. Dynamic flow with adaptive unstructured meshes cases: Initial spare mesh and adaptive mesh for flow of water around a irregular object (left) [398] and cylinder 
(right) [402].
in complex flow areas. Specifically, adaptive meshing enables more 
intricate adjustments, which is particularly beneficial when dealing 
with scenarios that are similar but not identical. For instance, in aerody-
namic studies, datasets often include simulations of flow around airfoils 
with slight variations in angle of attack or different Re [397]. These 
variations introduce changes in flow features such as boundary layer 
separation, vortex shedding, and pressure distribution, requiring the 
mesh to adapt dynamically to accurately capture these phenomena. The 
integration with multi-scale analysis is less common in this category, 
as it can be inherently related to multi-scale analysis by its nature. Fig. 
23 shows the evolution from initial to adaptively refined meshes in 
two cases. Initially, heterogeneous meshes concentrate on refinement 
in regions anticipated to require higher resolution. Over time, through 
adaptive mesh refinement processes, these meshes undergo successive 
refinements, optimising the mesh density according to the evolving 
flow dynamics, such as areas of high gradient or vorticity.

By summarising the characteristics of the test cases in these three 
categories, we provide a reference for researchers applying ML to 
CFD. This overview may be used to assist in selecting appropriate 
benchmarks to validate model performance. Table  3 complements this 
discussion by presenting a comprehensive array of CFD test scenar-
ios, detailing the specific characteristics of each test case along with 
available codes and datasets.

5.2. Open-access computational libraries

With benchmark cases established, the next key step is selecting 
suitable computational libraries for implementing and validating ML 
models in CFD. While building from scratch is feasible, leveraging 
mature libraries enhances development efficiency, reproducibility, and 
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scalability by providing optimised solvers, automatic differentiation, 
and robust data handling. In this review, we focus exclusively on fully 
open-access computational libraries that are either specifically designed 
for, or have the potential to handle, computational problems involving 
unstructured grid data.

Computational libraries can be categorised into three main groups 
based on their methodological approach: PINN-based PDE solvers, 
neural operators, and geometric deep learning & graph-based ML. As 
summarised in Section 4.1 of this review paper, while PINNs embed 
physical laws directly into neural networks, neural operators learn 
solution operators for PDEs. These two methodologies often share over-
lapping computational frameworks and libraries. Meanwhile, geometric 
deep learning and graph-based methods provide an alternative ap-
proach by leveraging structured representations of unstructured spatial 
data to enhance predictive accuracy in complex fluid simulations.

5.2.1. PINN-based PDE solvers and neural operators
These solvers combine deep learning with physics-based constraints 

to solve PDEs, offering a data-efficient way to model complex physi-
cal systems. These libraries include DeepXDE, PhysicsNeMo (formerly 
known as Modulus and SimNet), NeuralPDE, and SciANN.

DeepXDE [410] is a flexible, multi-backend library (TensorFlow, 
PyTorch, JAX, PaddlePaddle) for PINNs, ResNets, and neural operators 
(e.g., FNO, DeepONet) that automates solver complexities, requiring 
only the problem’s mathematical definition. It supports a wide range 
of domain geometries [411] (including primitive shapes, constructive 
solid geometry, and point clouds), boundary conditions (Dirichlet, Neu-
mann, Robin, periodic, general), and automatic differentiation modes 
(reverse, forward, zero coordinate shift). Therefore, it is suitable for 
education and research, and new users only need to define the problem, 
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Table 3
Summary of test cases in fluid dynamics with unstructured meshes.
 Category Test case Driven equation Method Solver Adaptive mesh Multi-scale Available 

code/Dataset
 

 
Basic fluid flow

Advection Advection equation FDM – No Yes Data [403]  
 Burgers’ 

equation
Burgers’ equation FDM – No Yes [404]  

 Wave problem Wave equation/
Shallow water 
equation

FDM/FVM OpenFOAM/⋯ No Yes Data [403]  

 Common 
physical 
phenomena

Lid-driven cavity NS FVM/FEM FLUENT/OpenFOAM⋯ No No –  
 Disturbance 

around objects
NS RANS/FVM SU2/FLUENT/⋯ Yes No Data [201,226] 

Data [18] Data 
[405,406]

 

 Channel flow NS RANS/FVM OpenFOAM/Code Saturne/⋯ Yes Yes [264,407]  
 Large-scale 

phenomena
– RANS/FVM PHIFLOW/FLUENT/⋯ Yes Yes [363,408] Data

[409]
 

Note:
• The methods and solvers listed in this table represent a summary of findings from select publications.
• Each method and solver has its advantages and limitations, and should be chosen based on specific project requirements.
• FDM: Finite Difference Method; FEM: Finite Element Analysis; FVM: Finite Volume Analysis.
and then the solver can handle all the underlying complexities and 
solve the problem.

NeuralPDE [412] is a solver package for neural network-based 
solutions of xDEs (including ODEs, SDEs, RODEs, and PDEs), allowing 
for a broader range of problem formulations compared to classical 
approaches. As part of Julia’s SciML ecosystem – a collection of tools 
for scientific computing with bindings to R, Python, and more – it 
focuses on multi-physics simulations and operator learning, supported 
by built-in error estimation. Its compatibility with Flux.jl and Lux.jl en-
ables integration with GPU-powered machine learning layers, making it 
efficient for high-dimensional or complex PDE problems that leverage 
Julia’s performance advantages.

PhysicsNeMo, developed by NVIDIA and formerly known as Sim-
Net and Modulus, is a GPU-accelerated framework based on PyTorch 
designed for physics-informed modelling. PhysicsNeMo [413] contains 
a comprehensive library of state-of-art models designed for physics-ML 
applications, ideal for CFD, heat transfer and multi-physics optimisation 
tasks (e.g., airfoil design). It employs both PINNs and neural operators 
to efficiently tackle high-dimensional engineering problems. It provides 
a comprehensive end-to-end pipeline that covers the entire training 
process, starting from ingesting geometry, adding PDEs, and scaling 
the training to leverage the power of multinode GPUs. Additionally, 
it is designed to be highly extensible, allowing users to customise new 
functionality with minimal effort.

SciANN [414] is a flexible TensorFlow/Keras-based framework em-
phasising ease of use, supporting both PINNs [415] and neural op-
erators [315]. It utilises TensorFlow and Keras capabilities, enabling 
seamless execution on both CPU and GPU for enhancing the com-
putational efficiency. Applications range from surrogate modelling to 
general scientific and engineering simulations.

5.2.2. Geometric deep learning and graph-based ML
By leveraging graph-based representations, graph deep learning 

enables efficient learning on irregular data, capturing spatial and tem-
poral dependencies as mentioned in Section 3.2 of this review paper. In 
this category, two public libraries are widely used: PyTorch-Geometric 
and Deep Graph Library.

PyTorch-Geometric (PyG) [416] is a general-purpose GNN library 
built on PyTorch, providing multi-GPU support and a flexible frame-
work that allows easy implementation and extension to user-defined 
GNN architectures. PyG has been widely used in scientific machine 
learning, including fluid dynamics modelling [417], where its graph-
based structure effectively handles unstructured data in computational 
simulations.

Deep Graph Library (DGL) [418] is an easy-to-use, high-
performance, and scalable Python package for deep learning on graphs. 
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Unlike framework-specific alternatives, DGL is framework-agnostic, al-
lowing seamless integration with major deep learning frameworks such 
as PyTorch, Apache MXNet, and TensorFlow. It is designed for efficient 
training on large-scale graphs, supporting multi-GPU and distributed 
computing across multiple machines. In physical modelling, it has 
been applied to fluid dynamics simulations and PDE-driven processes, 
leveraging its flexible graph-based representation to efficiently handle 
unstructured spatial data in computational physics.

Despite the libraries mentioned above focusing on directly solv-
ing PDEs with neural networks, advanced meshing strategies remain 
equally crucial for accurately capturing complex solution behaviours. 
Pan et al. [321,322] proposed a fully automatic quadrilateral mesh-
ing framework powered by the Soft Actor-Critic RL algorithm, which 
learns an effective policy for element-by-element mesh generation. 
This approach bypasses the need for substantial hand-crafted rules, 
while still yielding high-quality meshes suitable for downstream PDE 
simulations—a complementary capability to the PINN and GNN li-
braries discussed earlier. Li et al. [310] proposed a novel framework, 
Geo-FNO, for solving PDEs on arbitrary geometries. Geo-FNO learns 
to deform potentially irregular input domains into a latent space with 
a uniform grid, where a FNO with fast Fourier transform is applied. 
This approach combines the computational efficiency of fast Fourier 
transform with the flexibility to handle complex geometries. Compared 
to standard numerical solvers, Geo-FNO achieves several times faster 
inference, and it also doubles the accuracy relative to existing machine 
learning-based PDE solvers, such as the standard FNO with direct 
interpolation.

A comprehensive summary of existing computational libraries is 
presented in Table  4. For each library, we detail the class of nu-
merical methods it implements (such as PINNs, neural operators, or 
graph-based approaches), its primary software dependencies – includ-
ing frameworks like TensorFlow, PyTorch, JAX, and Julia – and a 
range of application scenarios where the library has been employed. 
These include basic fluid flow (e.g., Burgers’ or Poisson equations), flow 
simulations around complex geometries, and recent developments such 
as reinforcement learning for mesh generation.

6. Discussion and conclusion

This review highlights significant advancements and current
achievements in the application of machine learning for handling un-
structured grid data in computational physics. Notable strides include 
the adaptation of neural networks such as CNNs, GNNs and trans-
formers for irregular geometries in complex dynamical systems. These 
models have demonstrated potential in various contexts and specific 
applications, including fluid dynamics, environmental modelling, and 

https://dynabench.github.io/
https://dynabench.github.io/
https://github.com/cfl-minds/gnn_laminar_flow
https://github.com/google-deepmind/deepmind-research
https://github.com/locuslab/cfd-gcn
https://data.marine.copernicus.eu/products
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Table 4
Overview of computational libraries for CFD and PDE solving appropriate for unstructured grid data.
 Package Method Dependency Application  
 DeepXDE PINNs and Neural operators TensorFlow, PyTorch, JAX, PaddlePaddle Disturbance around objects [411]  
 NeuralPDE XDE solver Julia (Flux.jl, Lux.jl) Burgers’ equation, 2D Poisson equation [412]  
 PhysicsNeMo PINNs & Neural operators PyTorch Disturbance around objects [419], Channel flow  
 SciANN PINNs & Neural operators TensorFlow, Keras Burgers’ equation, NavierStokes equationsa  
 PyTorch-Geometric Graph neural networks PyTorch Disturbance around objects [420,421]  
 Deep Graph Library Graph-based ML PyTorch, MXNet, TensorFlow Disturbance around objects [222], Large-scale phenomena [422] 
 Geo-FNO FNO PyTorch Disturbance around objects, Channel flow [310]  
 FreeMesh-RL RL for mesh generation PyTorch Automatic quadrilateral mesh generation [321,322]  
Note:
• XDEs = {ODEs, SDEs, RODEs, PDEs}.
• All libraries listed here support GPU computing.
a https://github.com/ehsanhaghighat/sciann-applications.
solid mechanics. In particular, they have shown substantial advantages 
over traditional physics-based solvers in terms of computational effi-
ciency, parallel computing, and the integration of observational data. 
One may choose different neural network structures to work with, 
depending on the specific requirements and the availability of data or 
computational resources, as summarised at the end of Section 3.

On the other hand, different learning paradigms can be seamlessly 
applied to unstructured grid data, as discussed in this review. Physics-
Informed Neural Networks provide a meshless solution by leveraging 
the power of auto-differentiation in neural networks and incorporating 
physics knowledge. Reinforcement learning, from another perspective, 
can be utilised to optimise mesh generation in computational systems. 
The challenge of data irregularity has also been addressed within popu-
lar generative AI paradigms, such as VAEs and diffusion models. These 
learning workflows are model-agnostic, meaning they can potentially 
be implemented using any of the neural network structures mentioned 
above.

However, significant challenges remain that limit the widespread 
adoption and scalability of these methods. A critical concern is compu-
tational efficiency when dealing with high-dimensional systems con-
taining irregular data, as the resource demands of ML algorithms 
often scale exponentially with complexity, particularly for graph-based 
or transformer-type neural networks. Another pressing issue is the 
limited generalisability of developed ML models to unseen scenarios 
or data grids. While this challenge is common for structured data, it 
becomes even more pronounced for unstructured data points. Models 
trained on specific geometries or boundary conditions may struggle to 
adapt to novel configurations, topologies, or external forcing mech-
anisms, such as multi-physics interactions or dynamic environmental 
changes. When dealing with irregular data and varying geometries, 
such as simulation data with adaptive meshes, ensuring the model’s 
generalisability and transferability to unseen scenarios is crucial—and 
remains a key challenge even for state-of-the-art learning approaches 
such as GNNs, PINNs, and Transformers. Furthermore, as a general 
challenge for machine learning algorithms, particularly in the context 
of complex dynamical systems, enhancing model interpretability to 
understand how predictions are made, and whether the model truly 
captures the underlying physics, is essential. In addition, deploying 
lightweight models to enable more efficient online inference is also a 
critical consideration across the various machine learning frameworks 
discussed in this review paper.

Furthermore, the lack of comprehensive and general-purpose
datasets for benchmarking different approaches remains a significant 
challenge for the community. Existing datasets often target specific 
domains, making it difficult to objectively compare the performance 
of various ML techniques. The development of standardised, diverse 
datasets that encompass a wide range of conditions and topologies 
is essential for fostering progress. Similarly, the absence of suitable 
evaluation metrics for comparing systems that predict irregular data 
adds to the complexity. Metrics that account for irregularities in spatial 
resolution, topological structure, and multi-scale characteristics are 
needed to ensure fair and meaningful comparisons.
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By tackling these challenges, interdisciplinary research combining 
computational physics, advanced machine learning, and applied math-
ematics can pave the way for more robust, scalable, and generalisable 
models, unlocking the full potential of ML in modelling unstructured 
grid data.

Notations

 𝐱𝑡 Current state vector/field in the full 
space (𝑡 is the time)

 

 𝑥𝑡𝑖,𝑗 One element (of index {𝑖, 𝑗}) of the state 
field

 

 𝐱̃𝑡 State vector in the reduced space  
 𝐱̂ Predicted field vector  
 {𝐗} An ensemble of state vectors  
 𝐢 Vector of node coordinates  
 𝑛̃ Dimension of the compressed state  
  Loss function in training neural networks  
  and  Decoder and encoder for state variables 

(𝐱̃ = (𝐱), 𝐱 = (𝐱̃))
 

 𝐖𝑙 Weight matrix of the 𝑙th layer in the 
neural network

 

 ∇𝑓 Gradient of a function 𝑓  
 𝜕𝑓𝜕𝑥 Partial derivative of function 𝑓 with 

respect to variable 𝑥
 

 E[𝐱] Expected value of a random vector 𝐱  
  (𝜇, 𝜎2) Normal distribution with mean 𝜇 and 

variance 𝜎2
 

 𝐔,𝐕 Unitary matrices in POD  
 𝚺 Diagonal matrix in POD  
 𝐈 Identity matrix  
 𝜙𝑠 POD vectors  
 ‖𝐱‖ Norm of vector 𝐱  
 𝐀𝐺 Adjacency matrix of graph 𝐆  
 𝐕𝐺 Node-level features of graph 𝐆  
 𝐄𝐺 Edge-level features of graph 𝐆  
 𝑄,𝐾, 𝑉 Attention head in transformer  
 𝑁𝑏 Total number of collocation points on the 

boundary
 

 𝑁𝑝 Total number of collocation points inside 
the domain

 

 𝑁𝑑 Total number of data points where direct 
measurements are available

 

 𝑁𝑣 Total number of data points in the 
validation dataset

 

 𝑃𝐷𝐸 PDE loss  
 𝐵𝐶 Boundary condition loss  
 𝐼𝐶 Initial condition loss  
  Geometry boundary  

 

https://github.com/ehsanhaghighat/sciann-applications
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  Reward for assessing the quality of a new 
mesh element

 

 𝑄𝑣 Action value in reinforcement learning  
 𝐺𝑟 Cumulative rewards in reinforcement 

learning

Acronyms

2D Two-dimensional

AE Autoencoder

ARM Autoregressive model

CFD Computational fluid dynamics

CNN Convolutional neural network
DDM Denoising diffusion model

DMD Dynamic mode decomposition

ELBO Evidence lower bound
FNO Fourier neural operator

GAN Generative adversarial network
GNN Graph neural network

KNN K-Nearest neighbours

LSTM Long short-term memory

MAE Mean absolute error
ML Machine learning

MLP Multi layer perceptron

MSE Mean squared error

NERF Neural radiance fields
NLP Natural language processing

ODE Ordinary differential equation

PCA Principal component analysis

PDE Partial differential equation

PINN Physics-informed neural network

POD Proper orthogonal decomposition

EOF Empirical orthogonal functions

Re Reynolds number

RANS Reynolds-averaged Navier–Stokes

RF Random forest
RL Reinforcement learning

RNN Recurrent neural network
ROM Reduced-order modelling

SDE Stochastic differential equation

SINDy Sparse identification of nonlinear dynamics

SVD Singular value decomposition

VAE Variational Autoencoder
XGBoost EXtreme gradient boosting
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