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Abstract—This paper addresses the unsourced/uncoordinated
random access problem in an integrated sensing and com-
munications (ISAC) system, with a focus on uplink multiple
access code design. Recent theoretical advancements highlight
that an ISAC system will be overwhelmed by the increasing
number of active devices, driven by the growth of massive
machine-type communication (mMTC). To meet the demands of
future mMTC network, fundamental solutions are required that
ensure robust capacity while maintaining favorable energy and
spectral efficiency. One promising approach to support emerging
massive connectivity is the development of systems based on
the unsourced ISAC (UNISAC) framework. This paper proposes
a spectrum-sharing compressive sensing-based UNISAC (SSCS-
UNISAC) and offers insights into the practical design of UNISAC
multiple access codes. In this framework, both communication
signals (data transmission) and sensing signals (e.g., radar echoes)
overlap within finite channel uses and are transmitted via
the proposed UNISAC protocol. The proposed decoder exhibits
robust performance, providing 20-30 dB capacity gains compared
to conventional protocols such as TDMA and ALOHA. Numerical
results validate the promising performance of the proposed
scheme.

Index Terms—Unsourced random access, integrated sensing
and communications system, massive machine-type communica-
tion, spectrum sharing compressive sensing

I. INTRODUCTION

1) Background and Related Work: Massive machine-type
communication (mMTC) is deemed as one of the most crucial
application scenarios for the future communication networks.
Unfortunately, the coordinated multiple access protocols [1]
become invalid dealing with dense number of cheap devices.
From information theory perspective [2], the users’ average
channel capacity will converge to zero as the number of
devices approaches infinity, even if other system metrics, such
as sum-rate, are satisfactorily optimized.

To tackle the aforementioned issue, an uncoordinated mul-
tiple access technique called unsourced random access (URA)
is posed in [3] and has the potentiality to support unbounded
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number of users with an optimized concatenated multiple
access code design. Recent advances on information theory
aspect can be referred in [4, 5], where achievable bounds for
different channel models are established. While many state-
of-the-arts solely focus on communication task, integrated
sensing and communication (ISAC) has become an inevitable
trend for the future networks [6]. Recent work [7] demon-
strates that an ISAC system will be overwhelmed by the
surging number of users, unveiling the challenges of unsourced
ISAC (UNISAC) and providing theoretical benchmarks for the
practical design of UNISAC multiple access codes. The novel
UNISAC architecture demonstrates significant capacity gains
compared to traditional multiple access protocols, such as
time division multiple access (TDMA), ALOHA, and treating
interference as noise (TIN). UNISAC offers favorable features
in terms of energy and spectral efficiency, while conventional
protocols either fail to support the increasing activity density
or require intolerable energy consumption. Yet, the practical
design of UNISAC remains an open topic.

2) Motivations: Currently, communications-radar spectrum
sharing (CRSS) [8, 9] is considered one of the most promising
methods for enabling efficient spectrum utilization and for
designing novel systems that benefit from the cooperation
between radar and communications. In CRSS, dual-functional
waveforms support sensing and detection while simultaneously
carrying information. The concept of CRSS aligns closely with
the UNISAC approach [7], where both sensing and commu-
nication signals overlap over a fixed duration of channel use.
This resource-sharing approach, which provides access to all
resources across potential users, maximizes the degrees of
freedom for future network architectures.

The information for sensing and communication is projected
onto distinct common codebooks, and the receiver must de-
couple the overlapping signals to simultaneously decode the
information carried by the transmitted codewords and detect
sensing targets. Notably, only a small portion of the codewords
is activated at any given duration, introducing a sparsity
feature. This sparsity in the code domain aligns with the
design principle of compressive sensing (CS), enabling robust
solutions for both linear and nonlinear regression models.

3) Contributions: Although the theory of UNISAC has
provided system metric benchmarks, the design of a practical
scheme remains an open challenge. Compressive sensing (CS)-
based schemes [10, 11] demonstrate robust anti-disturbance
capabilities and effective collision-error resolution. Treating
the overlapped signals as a sparse recovery problem naturally



aligns with the structure of a CS-based receiver.
Inspired by the aforementioned approach, we propose a

spectrum-sharing compressive sensing method for UNISAC
(SSCS-UNISAC), leveraging the sparsity of the signal com-
ponents. Specifically, the non-linear projection of binary mes-
sages onto spreading sequences or pilots significantly reduces
multi-user interference and provides practical solutions for
multi-user detection. The sensing and communication users
are effectively separated in both the code and power domains
through non-orthogonal transmission. Furthermore, the com-
plexity of the main decoding procedures is analyzed. Extensive
numerical results validate the potential of the proposed scheme
and compare it with the achievable limits of both UNISAC and
conventional protocols.

4) Content Structures: In Sec. II, the system description
and encoder design for the proposed SSCS-UNISAC scheme
are explained. In Sec. III, the proposed decoder design is elab-
orated. In Sec. IV, extensive numerical results are presented to
demonstrate the superiority of the proposed scheme compared
to conventional protocols. Finally, conclusions are drawn in
Sec. V.
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Fig. 1: Illustration of uplink transmission in UNISAC system.

II. SSCS-UNISAC SYSTEM MODEL

A. System Descriptions

This work considers uplink transmission with active sensing
in a manner of UNISAC illustrated in Fig. 1. Let set Ac denote
the binary message list of communication users (CUs) and
set As contains all the angles of arrival (AOAs) of sensing
users (SUs), i.e., θi ∈ As. Assuming there are |Ac| CUs
and |As| SUs with single antenna served by an M -antenna
receiver, each CU intends to send B bits of information with L
channel uses and each SU selects a pilot from sensing common
codebook via Bs bits. Omitting asynchronous errors, signals
of CUs and SUs are overlapped and received by the receiver.
The system follows the power constraint of energy-per-user
E/N0 aligning with work [7]:

E

N0
=

P

(|Ac|+ |As|)σ2
, (1)

where scalar σ2 denotes the variance of the background
additive white Gaussian noise (AWGN) and scalar P is the
total power of all users. We use β ∈ [0 : 1] to denote the ratio
of power allocated to sensing users, i.e., single CU follows
the power constraint of (1−β)P

|Ac| and each SU of βP
|As| .

The system metrics are denoted by the per-user probability
error (PUPE) and AOA mean square error (AOAMSE):

PUPE =
|Lc,md|+ |Ls,md|
|Ac|+ |As|

,

AOAMSE =
1

L̃s,d

∑
i∈L̃s,d

E
{
| cos θi − cos θ̃i|2

}
,

(2)

where sets Lc,md and Ls,md denote the missed detection of
CUs and SUs, set L̃s,d denotes the detected AOA list of SUs
and angles θ̃i ∈ L̃s,d. The UNISAC receiver aims to reach a set
of goals (PUPE and AOAMSE) with energy-per-user as low
as possible. Meanwhile, due to the finite common codebook
size, the codeword collision-derived error is an inherent issue
for UNISAC when the information restoration hinges on
codeword selection. If collision brings about decoding error,
it will automatically be reflected by PUPE. While part of the
collision error can be mitigated using channel coding[13], the
fundamental solution for practical scheme design is to enlarge
the codebook size, making the collision error negligible.

We use hk ∈ C1×M , k ∈ [1 : |Ac|+ |As|] to denote the
channel coefficients between users and the receiver. For CUs,
the channel coefficient element distributes as CN (0, 1). The
Raleigh fading model can be commonly seen in environment
with significant obstructions leading to multiple reflections
and scattering, such as urban environment. For SUs, they
might be static sensors deployed close to the receiver, typically
experiencing a dominant line-of-sight (LOS) component. This
setup aligns well with the uniform linear array (ULA) channel
model. For ULA with half-wavelength rule[7], i.e., the gap
distance equals half wavelength d = λ

2 , the channel vector
can be expressed as:[

1, e−jπ cos θk , . . . , e−jπ(M−1) cos θk
]
. (3)

B. Encoder Design

The overall transmission is uniformly divided into Jc
chunks/sub-frames with L̃ = L

Jc
channel uses and every user

selects a chunk to transmit the signal. The encoder design
will explain how the user chooses chunks and encodes their
binary messages. The proposed UNISAC encoder and decoder
designs are illustrated in Fig. 2.

1) SUs’ Encoder Design: Let uk,s ∈ {0, 1}Bs denote the
k-th SU’s binary bits divided into Bchunk and Bp,s, i.e., Bs =
Bchunk+Bp,s. Each SU selects a chunk for transmission by the
decimal value of Bchunk = log2 Jc bits. Then, by the decimal
value of Bp,s bits, SUs select a pilot codeword from sensing
codebook As =

[
as,1,as,2, . . . ,as,2Bp,s

]
∈ CL̃×2Bp,s where

codeword follows the power constraint of ‖as,i‖22 = βP
|As| , i ∈

[1 : 2Bs,p ]. Thereby, the signal component of SUs at given
transmission chunks can be written as Ys =

∑K̄s
k=1 xs,khs,k,
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Fig. 2: Illustration of the proposed UNISAC encoder and decoder designs. Notably, the encoder design for sensing does not
imply that the SUs are coordinated or intend to transmit data. The sensing signals can be equivalently treated as simultaneous
radar echoes from multiple targets.

where vector xs,k denotes the signal a SU transmit and scalar
K̄s denotes the number of SUs at given chunk.

2) CUs’ Encoder Design: Let uk,c ∈ {0, 1}B denote the
k-th CU’s binary message bits. CUs’ B bits are split into two
portion of Bchunk and Bc bits, i.e., B = Bchunk + Bc. The
transmission chunk is selected via Bchunk bits. The rest Bc
bits are then channel code encoded into E bits, interleaved
and then uniformly divided into J segments with Bp bits
each, i.e., Bp = E

J . Each binary segment will be used to
select a pilot codework from communication common code-
book Ac ∈

[
ac,1,ac,2, . . . ,ac,2Bp

]
∈ CLp×2Bp where scalar

Lp = L̃
J and each codeword follows the power constraint of

‖ac,i‖22 = (1−β)P
J|Ac| , i ∈ [1 : 2Bp ]. Let xc,k ∈ CL̃×1 denote the

transmitted communication signal, i.e., signal xc,k contains J
randomly selected Lp-length pilot codeword. Thus, the signal
component of CUs at given transmission chunks can be written
as Yc =

∑K̄c
k=1 xc,khc,k where scalar K̄c denotes the number

of CUs at given chunk. Both common codebooks are generated
from sub-sampled Discrete Fourier Transform (DFT) matrix
and scaled by the power constraint.

III. SSCS-UNISAC DECODER DESIGN

After encoding procedures of CUs and SUs, the overlapped
signals from all users at given chunk can be written as:

Y = Yc + Ys + N,

=

K̄c∑
k=1

xc,khc,k +

K̄s∑
k=1

xs,khs,k + N,
(4)

where matrix N is the AWGN following CN (0, σ2I). All
chunks share identical decoding procedures due to their in-
dependence. Reminding that the CUs and SUs are divided

not only in codeword domain i.e., As,Ac but also in power
domain, i.e., power ratio β. In our case, the pilot codeword
length of SUs is much longer than that of CUs offering more
spreading gain. Therefore, the proposed decoder can work in
a manner of successive interference cancellation (SIC) with
treating interference as noise (TIN).

A. Iterative Decoding on CUs’ Signal Component

When the receiver decodes the signal component of CUs,
the AWGN and the signals of SUs are treated as pseudo noise
Nc,p with variance of σ2

c,p ≈ σ2 + βPK̄s
|As|L̃

:

Y =

K̄c∑
k=1

xc,khc,k︸ ︷︷ ︸
CUs’ Signal Component

+

K̄s∑
k=1

xs,khs,k + N︸ ︷︷ ︸
Nc,p,σ2

c,p≈σ2+ βPK̄s
|As|L̃

.
(5)

1) Activity Detection and Channel Estimation (ADCE):
For signal model Y =

∑K̄c
k=1 xc,khc,k + Nc,p, let Y(j) =

Y ((j − 1)Lp + 1 : jLp, :) , j ∈ [1 : J ] denote the received
signal at the j-th chunk transmission. Following the spirit of
simultaneous orthogonal matching [12], the receiver conducts
compressive sensing (CS) decoding following procedures to
achieve ADCE at all chunks:

- Initialization: R← Y(j), A ← ∅
- Activity Detection (AD):
i← arg max

i∈{1,2,...,2Bp}

‖RHAc(:,ik)‖2
‖Ac(:,ik)‖2 , A ← A∪ i;

- Residual Update (RU):
Φ← Ac (:, {A}), R←

(
R−ΦΦ†Y(j)

)
- Repeat the AD and RU procedures to obtain the final A
- Channel Estimation (CE):
{h̃c,k}, k ∈ [1 : K̄c]← Ac (:, {A})†Y(j).



Moore-Penrose inverse is denoted by (·)† which dominates the
computational complexity of ADCE around O(MLp2

Bp).
Since we assume the time of transmission L is within

the channel coherence time, the channel coefficient remains
unchanged during each chunk of transmission. Meanwhile,
there will be ambiguity issue of randomized order in the
AD results among chunks, which will be solved by the later
segment stitching procedure.

Path with Most Compatible Candidates

Stitching by Channel Estimation

Fig. 3: Illustration of stitching segments by channel estima-
tion: Each selected candidate at next node is determined by
evaluating the resemblance of channel estimation via (6), i.e.,
The channel coefficients can be treated as natural user tags
due to the random nature of the channel conditions.

2) Segment Stitching by Channel Estimation: After ADCE,
the receiver obtains the information of all active pilot code-
words and corresponding channel estimation. However, since
the restored AD results have randomized order, the receiver
needs to filter out the AD results of single CU to form a valid
transmitted signals and restore the information.

To fulfill this goal, the receiver treats the channel vectors
as user tags of CUs and stitches a set of potential sub-frames
together by evaluating the resemblance of the CE results across
chunks:

arg min
h̄c,k,j

∥∥h̄c,k,i − h̄c,k,j
∥∥2

2
, (6)

where the normalized h̄c,k,i denotes the current node waiting
for a match and the normalized h̄c,k,j denotes the node to be
matched at the next node. Each by each via (6), the receiver
filters out a list of K̄c AD result frames. We illustrate the
stitching procedure in Fig. 3. The complexity of searching
and stitching scales around O(k̄cJ

2).
3) Single Input Soft Output (SISO) Decoder: For channel

code decoding, the receiver starts by estimating likelihood
information of each bits and then calculate the corresponding
log-likelihood ratio (LLR). To calculate the LLR of the bits
in a segment of singe CU form the observations at j-th sub-
frame, we first form the noisy observations from the k-th CU
by subtracting the signal from other CUs at given chunk:

Yj,k = Yj −
∑
k′ 6=k

xk′ h̃k′ ≈ xkh̃k + Nj . (7)

Then, the likelihood of different pilot codewords of k-th CU
can be estimated as:

P (xk = Ac(:, i) | Yj,k), i = 1, . . . , 2Bp

∝ exp

−‖Yj,k −Ac(:, i)h̃c,k‖2F
σ2
c,p︸ ︷︷ ︸

βk,j,i

 ,
(8)

where ‖ · ‖2F denotes the Frobenius norm. Let bc,k(n) denote
the n-th bit in the segment and bin(i, n) denote the n-th bit
of the binary expression of integer i. Thereupon, the LLR of
the n-th bit in the binary segment vector can be calculated by:

LLRn , log
P
(
bc,k(n) = 0 | Yj,k

)
P
(
bc,k(n) = 1 | Yj,k

)
= log

∑
i:bin(i,n)=0 exp (βk,j,i)∑
i:bin(i,n)=1 exp (βk,j,i)

≈ max
i:bin(i,n)=0

βk,j,i − max
i:bin(i,n)=1

βk,j,i.

(9)

Bit by bit, one can obtain all the LLR information of the
Bp-bit. The SISO procedure is the process of non-linear
demodulation whose complexity scales as O(2Bp) for single
codeword and O(JK̄c2

Bp) in total. Subsequently, the receiver
inputs the estimated LLRs into the channel code decoder and
then conduct parity check to verify whether the channel code
is correctly decoded.

4) Successive Interference Cancellation (SIC): The receiver
treats the parity check passed codeword as the correctly
decoded messages and then re-encoded and re-modulate the
parity check passed binary messages to conduct channel
estimation refinement:

Hrefine =
(
XH

passXpass + σ2
c,pIKpass

)−1
XH

passY, (10)

where matrix Xpass is the re-encoded and re-modulated L̃-
length frame. Different to the channel estimator with Lp length
pilot in ADCE part, longer frame is used to estimate the
channel, i.e., with L = JLp � Lp, more precise channel
estimation becomes possible. With refined channel estimation,
the receiver subtracts XpassHrefine from the original noisy
observation, i.e., Y ← Y − XpassHrefine and start the
aforementioned decoding procedures iteration by iteration.

B. Decoding on SUs’ Signal Component

Ideally, the signal component of CUs will be eliminated
from the received noisy observations and only signal com-
ponent of SUs and AWGN will exist. However, we consider
a more generalized case where there may be Kc,md missed
detection of CUs in the noisy observation after SIC:

YSIC =

K̄s∑
k=1

xs,khs,k︸ ︷︷ ︸
SUs’ Signal Component

+

Kc,md∑
k=1

xc,khc,k + N︸ ︷︷ ︸
Ns,p,σ2

s,p

,
(11)

where signals of missed detection in communication and
AWGN are treated as pseudo noise Ns,p with approximate



variance of σ2
s,p ≈ σ2 +

(1−β)PKc,md
|Ac| . To estimate the SUs’

AOA, the receiver needs to conduct channel estimation and
then detect the AOA information out of the estimation results.
The solution to channel estimation from YSIC is also a sparse
recovery problem and can be tackled with by the referred
CS decoder in Sec. III-A-1). Notably, the CS decoder utilizes
the sensing common pilot codebook As. After ADCE, the
receiver estimates the AOA from estimation h̃s,k in the spirit
of multiple signal classification (MUSIC):

- Construct covariance matrix: Rs = 1
M h̃H

s,kh̃s,k;
- Eigen value decomposition: Rs = UΣUH;
- Formulate noise subspace with the eigen vectors of

the M − 1 smallest eigen values: Rs = UsΣsU
H
s +

UNΣNUH
N ;

- AOA search: θ̃i ← arg maxθ
1

aH(θ)UNUH
Na(θ)

, where a(θ)

is the array response of given angles in (3).

IV. NUMERICAL RESULTS

1) Parameter Setups And Benchmarks: In this section, the
numerical results of different power allocation and capacity
under various system setups are illustrated. The benchmarks
are achievable and optimistic (performance floor) bounds
in work [7]. The universal parameter setups are: For SUs,
Bs = 15, Bchunk = 2, Bs,p = 13, L̃ = 1250; For CUs,
B = 100, Jc = 4, J = 10, Bp = 14, Lp = 125, E = 140, low
density parity check (LDPC) code is utilized as channel code.
The LDPC decoding is done with standard belief propagation
(BP) algorithm. The overall channel uses are fixed to L =
5000 and the number of receiving antenna M ∈ {5, 50, 100}.
Without loss of generality, the number of CUs and SUs are
assumed to have |Ac| = |As|. The estimation targets are
fixed to PUPE = 0.1,AOAMSE = 5 × 10−4 in terms of
the minimum-required energy-per-user. For the benchmarks,
the performance capacity of the proposed scheme will be
compared not only with the recently established bounds of
UNISAC but also with various conventional protocols, includ-
ing time-division multiple access (TDMA), TMDA-MUSIC,
and ALOHA. For more detailed setups on conventional pro-
tocols, please refer to [7].

2) Power Ratio Selection β: The power allocation ratio
between CUs and SUs is essentially needed and vital for
the pseudo noise variance calculation. We conduct extensive
simulations to search out a recommended ratio β in Fig. 4
where energy-per-user equals to E/N0 = 20dB, total number
of active user is |Ac| + |As| = 200, the number of receiving
antenna is M = 5. One can observe a lowest PUPE point
at β = 0.03 and a point with AOAMSE around 5 × 10−4 at
β = 0.05. Meanwhile, the performance of sensing error and
AOAMSE features fluctuation which is normal due to different
interference level from communication error. Considering the
target goal of 0.1 PUPE has been reached, the final power
allocation ratio is fixed to β = 0.05 and the simulations in the
sequel are conducted accordingly. Although β = 0.05 may
only be near-optimal, the numerical results in the following
sections demonstrate the effectiveness of this power division
ratio setups.
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Fig. 4: Illustration of error rate under different power alloca-
tion ratio β with E/N0 = 20dB, |Ac|+ |As| = 200, M = 5.
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Fig. 5: Minimum-required energy-per-user E/N0 (dB) with a
small number of receiving antennas, M = 5. The benchmarks
[7] include the theoretically achievable and optimistic (per-
formance floor) bounds of UNISAC, along with conventional
protocols (ALOHA and TMDA-MUSIC).

3) Capacity Performance With a Small Number of Anten-
nas: In Fig. 5, the capacity performance of the proposed
SSCS-UNISAC is illustrated, alongside theoretical bench-
marks for both UNISAC and conventional protocols such as
ALOHA and TMDA-MUSIC. Overall, the proposed scheme
demonstrates greater robustness as the access density in-
creases. Contrarily, TMDA-MUSIC fails to support the grow-
ing number of users, and the required minimum energy-per-
user of ALOHA increases rapidly after Ka = 100. The
proposed scheme achieves a 30 dB capacity gain around 400
active users compared with ALOHA.

4) Capacity Performance Under Large Number of Anten-
nas: In Fig 6, We also compare the performance of the
minimum required energy-per-user with a large number of an-
tennas, where M ∈ {50, 100}. The proposed scheme shows a
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Fig. 6: Minimum-required energy-per-user E/N0 (dB) under
large number of antennas, M ∈ {50, 100}. The benchmarks
[7] include the theoretically achievable and optimistic (per-
formance floor) bounds of UNISAC, as well as conventional
protocol (TDMA).

significant performance gain compared to traditional protocols.
For instance, there is a 25 dB performance improvement with
1000 active users and 50 receiving antennas, and more than a
30 dB performance gain when M = 100. More importantly, by
doubling the number of antennas from 50 to 100, the proposed
scheme achieves nearly a 9 dB better performance, offering
a favorable trade-off between resource utilization and energy
consumption.

V. CONCLUSION

In this work, we propose a practical multiple access scheme
called SSCS-UNISAC. The encoder and decoder designs for
both CUs and SUs are presented, along with complexity
analyses. The signal components of SUs and CUs are effec-
tively separated in both the code and power domains, where
the proposed non-linear decoder demonstrates excellent anti-
interference and anti-noise capabilities. The SSCS-UNISAC
scheme achieves favorable system capacity under both low and
high numbers of receiving antennas, outperforming conven-
tional schemes such as TDMA, ALOHA, and TDMA-MUSIC,
particularly in high activity regions with a performance gain of
20-30 dB. However, the scheme’s performance is influenced by
the CS decoder design. Future work will focus on developing
more powerful CS decoder designs and conducting further
system analyses.
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