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A B S T R A C T

Lesion-symptom mapping methods assess the relationship between lesions caused by cerebral small vessel dis
ease and cognition, but current technology like support vector regression (SVR)) primarily provide group-level 
results. We propose a novel lesion-symptom mapping approach that can indicate how lesion patterns contribute 
to cognitive impairment on an individual level. A convolutional neural network (CNN) predicts cognitive scores 
and is combined with explainable artificial intelligence (XAI) to map the relation between cognition and vascular 
lesions.

This method was evaluated primarily using real white matter hyperintensity maps of 821 memory clinic 
patients and simulated cognitive data, with weighted lesions and noise levels. Simulated data provided ground 
truth locations to assess predictive performance of the CNN and accuracy of strategic lesion identification by XAI, 
using an established lesion-symptom mapping method, SVR, and a simple fully connected neural network (FNN) 
as benchmarks. Real cognitive scores were used in a final proof-of-principle analysis.

Predictive performance in simulation experiments was high for the CNN (R2 = 0.964), SVR (R2 = 0.875), and 
FNN (R2 = 0.863). CNN with XAI provided patient-specific attribution maps that highlighted the ground truth 
locations. All methods showed similar sensitivity to noise. Using real cognitive scores, SVR (R2 = 0.291) obtained 
a somewhat higher predictive performance than the CNN (R2 

= 0.216), although both methods substantially 
exceeded the predictive performance of total WMH volume alone (R2 = 0.013). The FNN performed worse on 
real data (R2 = 0.020).

To conclude, results show that CNNs combined with XAI can perform lesion-symptom mapping and generate 
individual attribution maps, which could be a valuable feature with further method development.

1. Introduction

Vascular lesions in the brain can cause cognitive impairment, 
affecting different cognitive domains such as attention and executive 
functioning, but also memory (Weaver et al., 2021; Hamilton et al., 
2021). For brain infarcts (Weaver et al., 2021; Zhao et al., 2018), and 
also for white matter hyperintensities (WMH) (Coenen et al., 2023), 

lesion location influences cognitive impact. In literature, such lesion 
locations with particular cognitive impact are referred to as “strategic”. 
Lesion-symptom mapping (LSM) is increasingly used to identify stra
tegic lesion locations by examining the relationship between lesion lo
cations in the brain and a behavioural score in large datasets on a group 
level (Bates et al., 2003; de Haan and Karnath, 2018). This is done by 
statistically associating lesioned voxels in binary lesion maps (created by 
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segmenting lesions of interest from brain scans) and behavioural scores, 
such as cognitive tests scores.

A variety of LSM methods have been developed, from mass- 
univariate voxel-based (Weaver et al., 2021; Coenen et al., 2023; 
Bates et al., 2003; Rorden et al., 2007) to multivariate analyses (Zhang 
et al., 2014; Pustina et al., 2018; Sperber et al., 2019; Zhao et al., 2018). 
In mass-univariate methods, statistical testing is applied to every voxel 
in the lesion map to evaluate if the presence of a lesion is associated with 
a difference in cognitive scores. Because each voxel is evaluated inde
pendently, this method cannot take interrelations between lesion loca
tions into account. Multivariate methods, such as support vector 
regression (SVR), analyse a lesion pattern as a whole, retaining relations 
between voxels. This is relevant, because vascular lesions occur with 
distinct patterns depending on underlying mechanisms and are therefore 
not randomly distributed throughout the brain. Next to that, different 
lesion locations can have combined or interacting effects on cognition, 
because the brain is organized in (functional) networks. A downside of 
both mass-univariate and multivariate approaches is that they provide 
results on a group level and cannot readily indicate how lesion patterns 
contribute to an individual patient’s cognitive impairment, while this 
could guide impactful use-cases for personalized diagnosis and 
treatment.

The use of neural networks might be a promising novel approach for 
LSM. A neural network, when offered sufficient training data, should be 
able to learn the relationship between vascular lesions and cognitive 
scores, enabling the model to predict cognitive scores for every patient. 
Neural networks are inherently flexible models that can handle multiple 
inputs and outputs, which would be of value for LSM. Convolutional 
neural networks (CNNs) are commonly used to extract information from 
medical images (Lee et al., 2017; Sarvamangala and Kulkarni, 2022). 
For instance, CNNs have been used previously to predict brain age 
(Jonsson et al., 2019; Lee et al., 2022) and a multitude of brain diseases, 
including dementia (Khan et al., 2021). Moreover, Chaucan et al. (2019) 
employed a CNN to predict cognitive scores based on stroke lesion maps 
(Chauhan et al., 2019). The integration of explainable artificial intelli
gence (XAI) methods could extend the use of a CNN from prediction 
model to LSM method. XAI could enable the identification of strategic 
lesion locations, in addition to making the neural network interpretable. 
A key difference from conventional LSM methods, is the potential to 
support use-cases that need to identify strategic lesion patterns at the 
level of an individual patient.

In this work we introduce and evaluate the use of a CNN combined 
with XAI to perform LSM on WMH. SVR and a simple fully connected 
neural network (FNN) were used as benchmarks. Evaluating LSM 
methods is challenging because cognitive performance is influenced by 
factors beyond a lesion image. By definition, LSM methods can only 
partially explain cognitive variance, and without ground truth strategic 
lesion locations, methods can only be compared head-to-head for eval
uation. Moreover, identified lesion locations can only be evaluated 
against prior knowledge. We addressed these limitations by generating 
simulated cognitive data using actual lesion maps. This provided a 
ground truth to which both predictive performance for cognition and 
accuracy of strategic lesion identification were assessed. Our principal 
experiments were therefore performed using simulated cognitive data. 
Additionally, different lesion weights and effects of noise were evalu
ated. Finally, we tested the methods using WMH maps and real attention 
and executive functioning cognitive scores from a large memory clinic 
cohort, to show a proof-of-principle application of combining a CNN and 
XAI in individual patients.

2. Materials & methods

2.1. Study design

A CNN was trained to predict (simulated) cognitive scores of memory 
clinic patients based on the segmentation mask of their WMH. During 

training, the model captured the relationship between WMH and 
(simulated) cognitive score. Subsequently, XAI was used to determine 
the strategic lesion locations for each patient individually. This was done 
by computing the attribution of all WMH locations to the predicted score 
for each individual patient’s lesion map. Two methods were used as 
benchmark for our proposed LSM approach: SVR, a conventional LSM 
method that could be considered as gold standard, and a FNN. Three 
controlled experiments to validate our approach were performed on 
simulated cognitive data: (i) a basic simulation of cognitive data, (ii) 
with modified regional weights, and (iii) with added noise. Furthermore, 
the LSM methods were applied on the real attention and executive 
functioning scores.

2.3. Lesion-symptom mapping approaches

2.3.1. Convolutional neural network
CNNs contain convolutional layers that summarize the information 

of the input image into a smaller representation using a sliding convo
lution kernel. A simple 3D CNN consisting of two convolutional blocks 
was used in the simulation study, see Fig. 1A. Since the real cognitive 
data is far more complex, this network was adapted to include more 
regularization for the experiment using the real attention and executive 
functioning scores. Specifically, a dropout layer was included in the 
convolution block, a max pooling layer was added after each convolu
tion block, and a second linear layer was included (Fig. 1B). The ana
lyses with simulated data did not require the more regularized model.

The number of considered voxels (i.e. features) was reduced in the 
experiment using the real attention and executive functioning scores to 
reduce input dimensionality, as was done in the benchmark methods, 
through feature selection. Relevant voxels were identified by mass- 
univariate LSM and nulled in the 3D WMH maps (Zhao et al., 2018; 
Kuijf et al., 2021). We implemented a standard mass-univariate 
approach as described previously (Zhao et al., 2018). For the simpler 
experiments on simulated data, the full 3D WMH maps were used as 
input for the CNN model. Volume correction was not applied, a neural 
network is able to learn such a feature if necessary.

Post hoc XAI, specifically a method called occlusion, was employed 
to obtain the attribution maps (Zeiler and Fergus, 2014; Kokhlikyan 
et al., 2020). Occlusion is a perturbation-based method and works by 
analysing the change in prediction as a result of occluding parts of the 
lesion image using a sliding window. Occluding locations with high 
attribution result in bigger changes in prediction compared to locations 
with little attribution. Iteratively, the importance of each image location 
was computed and summarized in an attribution map, see Fig. 4 for 
some examples (Borys et al., 2023). A 5 × 5 × 5 voxels sliding window 
was used in combination with a 3 × 3 × 3 voxels stride. Only the positive 
attribution values were used in the analyses.

2.3.2. Support vector regression
SVR with a radial basis function kernel was implemented. Its pa

rameters were optimized in a 5-fold cross-validation grid search using 
scikit’s GridSearchCV function (Pedregosa et al., 2011). Performance 
with and without feature selection was also compared. The combination 
of parameters resulting in the highest Pearson correlation between 
predicted and true values in the test fold was chosen.

WMH maps were corrected for total lesion volume using an estab
lished approach, which involves dividing lesioned voxels by the square 
root of the total lesion volume (Zhang et al., 2014). Subsequently, 
feature selection was applied by removing any voxels deemed irrelevant 
by mass-univariate LSM. Finally, images were flattened into a one- 
dimensional array. SVR beta-maps were used as attribution maps.

2.3.3. Fully connected neural network
In addition to the CNN and SVR models, a simple fully connected 

neural network was used. The reason to include this model was to have a 
benchmark in between a CNN and SVR model, with all the benefits of a 
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neural network in an architecture that was most like SVR. The network 
architecture consisted of one linear layer followed by a ReLU layer, 
mimicking the linear regression combined with a non-linear mapping 
function in SVR. In this model, all nodes in the first layer connected to all 
nodes in the second layer, resulting in a FNN.

The same pre-processing of the images was used as in the SVR 
method in order to adhere to the idea of mimicking SVR in a neural 
network: volume correction was performed first, followed by feature 
selection, and converting images into a one-dimensional array. Because 
of the nature of fully connected networks, the weights of the model 
reflect the contribution of specific voxels to the model’s prediction. 
Therefore, the model’s weights were used as attribution maps.

2.3.4. Neural network implementation and training details
Models were implemented using PyTorch and experiments were run 

on one Nvidia Titan X Pascal GPU. An AdamW optimizer was used 
during training and a batch size of two was used.Training lasted for a 
total of 200 epochs. A learning rate of 5 × 10− 5 was used in all simu
lation experiments, whereas a learning rate of 1 × 10− 4 in combination 
with a reduce on plateau learning rate scheduler was used in the 
application on real cognitive data. The mean squared error (MSE) was 
used as a loss function in simulation experiments. This loss function was 
extended in the application on real cognitive data by including L1 for 
further regularization, resulting in loss = 2*MSE + L1.

2.4. Experiments

Three experiments were conducted using simulated cognitive data
sets, a different dataset for each experiment. Simulated cognitive scores 
were computed based on the overlap of the WMH maps and predefined 
regions of interest (ROIs). The ROIs served as ground truth locations to 
be identified by the LSM methods, allowing evaluation of the accuracy of 
strategic lesion identification. As a final step in all variants of simulated 
cognitive datasets, min–max normalization was applied to normalize 
scores using values within the study population so that 1 corresponded 
to the highest score in each dataset.

2.4.1. Experiment 1: Basic cognitive simulation
A WMH prevalence map was computed by summing all WMH maps 

of all participants in MNI-152 space. Three 10 × 10 × 10 mm3 ROIs were 
defined within the WMH prevalence map, similar to Zhang et al. (2014), 
see Fig. 2. ROI locations were determined based on the following two 
constraints: every voxel in the ROI should have WMH in ten or more 
patients and ROIs should not overlap. From all potential ROI locations, 
three were chosen randomly and were consistently used for all partici
pants in the three simulation experiments. The centers of ROIs 1, 2, 3, 
were located in axial slice 24, 35, and 36 of MNI-152 space. Lesion load 
of an ROI for a patient was determined by the number of lesion voxels in 
the ROI normalized by the total number of voxels of that ROI. To obtain 
the final individual basic simulated cognitive scores, lesion load for the 
three ROIs was summed and, because no patient’s WMH overlapped 
with all ROI voxels, values were subsequently min–max normalized 
between 0 and 1 using the minimum and maximum values in the 
dataset. Hence, a higher simulated score was associated with a higher 
lesion load in the ROIs. Positive values in the attribution maps therefore 
indicated the positive contribution of lesion locations to the predicted 
scores. In section D of the Supplementary Materials, these experiments 
were repeated with six ROIs to study the effect of varying lesion 
prevalence.

2.4.2. Experiment 2: Simulation with modified regional weights
A location in the brain that affects a cognitive domain more than 

other contributing locations should be identified by LSM methods. To 
investigate the methods’ capabilities to do so, a specific lesion location 
was weighted more heavily in its contribution to the simulated cognitive 
scores in the second experiment. The same strategy as described above 
was used to obtain the simulated cognitive data with modified regional 
weights. However, instead of equally summing the lesion loads of all 
three ROIs, they were multiplied by weights {w_1, w_2, w_3} corre
sponding to ROI 1, ROI 2, and ROI 3, respectively (see Eq. (2). In our 
experiments, the weights were set to {1,2,1} and {1,4,1}, weighing the 
contribution of the lesion load of ROI 2 more than those of the other 
ROIs.

Fig. 1. CNN architecture overview. The CNN architecture used in the simulation experiments (A) and the architecture used in the experiments with the real 
attention and executive functioning scores (B).
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The weighted score for patient i, with LL_ROI being the lesion load in 
a specific ROI, is defined as: 

weighted scorei =
∑3

k=1
wkLL ROIi,k (2) 

2.4.3. Experiment 3: Simulation with implemented noise
To compare the robustness of the three LSM methods to noise, basic 

simulation scores were perturbed by adding Gaussian noise. The 
Gaussian noise had a mean of 0 and standard deviation equal to the 
standard deviation of the original simulated score, referred to as noise in 
equation (3). Three different levels of noise were used, referred to as 
noise fraction nf in equation (3): 0.25, 0.50, and 0.75.

The perturbed score for patient i is defined as: 

noise scorei =
(

1 − nf j

)
basic scorei + nf j • noisei (3) 

2.4.4. Experiment 4: Real attention and executive functioning scores
The relation between WMH and the real attention and executive 

functioning scores was analysed in a proof-of-principle experiment. 
Performance of the CNN with enhanced regularization was compared to 
the two benchmark models, SVR and the FNN. The same experiment was 
repeated for two neuropsychological tests that contribute to the atten
tion and executive functioning, see section E of the Supplementary 
Materials.

2.5. Evaluation

2.5.1. Predictive performance
All four experiments were performed in a 5-fold cross-validation. For 

every fold, a different 20 % of the data was used as test set, while the 
remaining 80 % was used to fit/train the models. For every patient in the 
test set, cognitive scores were predicted. This was repeated for the 
complete dataset over the course of 5 folds. Predictive performance was 
assessed for each fold by computing the R2 obtained through an ordinary 
least squares between the predicted and ground truth cognitive scores in 
the test set. In addition, the total WMH lesion volume was correlated 
with the cognitive scores to obtain a frame of reference. This process was 
the same for simulated and real cognitive data.

2.5.2. Quantitative assessment attribution maps
In the basic simulation experiment and the experiment with added 

noise, group attribution maps were quantitatively evaluated using the 
precision-recall area under the curve (AUC). The three ROIs defined to 
generate the simulated cognitive data were used as ground truth loca
tions. Descending threshold values between the maximum and mini
mum attribution values in the attribution maps were applied to create a 

binary image for which true and false positives as well as true and false 
negatives were determined. Precision and recall curves were not 
determined in the experiment using simulations with modified regional 
weights, because the ROIs did not contribute equally to simulated 
cognitive scores. Attributions in ROIs with less contribution are theo
retically also lower in attribution value, skewing the precision-recall 
curves.

In addition to the precision-recall curves, attribution values within 
the ROIs were compared to attribution values outside the ROIs. This 
attribution ratio indicates whether the highest attribution values are 
concentrated in the ROIs. The higher the ratio, the more concentrated 
high attributions are located within the ROIs. The same analyses were 
repeated for a dilated version of the ROIs, for which an additional area of 
5 mm surrounding the ROIs was considered ‘inside’ the ROIs. In case 
false positive attributions with a high value were located within 5 mm of 
the ROIs, the ratios would substantially increase. Attributions above 10 
% of the maximum attribution value were taken into account for these 
analyses. Attribution ratios were determined for all simulation 
experiments.

Dice similarity coefficient and false negative ROIs were also deter
mined. Accuracy of the attribution maps acquired using real cognitive 
data was not evaluated because there are no ground truth strategic 
lesion locations for real data.

2.5.3. Qualitative assessment attribution maps
Attribution maps obtained in the application on real attention and 

executive functioning cognitive scores were assessed visually.

3. Results

3.1. Experiment 1: Model performance with basic cognitive simulations

Total WMH lesion volume had an R2 of 0.725 ± 0.065 with the 
simulated cognitive scores. This high value is because of the fact that the 
simulated cognitive scores were directly derived from the WMH volume 
in the three ROIs. True association between total WMH volume and real 
cognitive scores is usually low (see also Experiment 4 in section 3.4.); 
but for this technical validation study using simulated data this is not of 
concern.

SVR, the FNN, and the CNN were used to predict the basic simulated 
cognitive scores. Predictive performance of all three methods is pro
vided in Table 1. The average predictive performance of the CNN across 
folds was 0.964 ± 0.008. For SVR and the FNN, predictive performances 
were 0.875 ± 0.019 and 0.863 ± 0.027, respectively.

Precision-recall AUC of the 3D lesion attribution maps was highest 
for the FNN, followed by SVR, and the CNN; as can be seen in Table 1
and Figure S-1 in the Supplementary Materials. The group-level 

Fig. 2. WMH prevalence map (n ¼ 821 patients) and the simulated ROI locations in green Axial slices are indicated by z. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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attribution maps are provided in Fig. 3. A standard deviation map for the 
CNN is provided in Figure S-2 of the Supplementary Materials. For all 
models the false positive voxels with the highest values in the attribution 
maps were predominantly directly adjacent to the ROIs. Compared to 
the other methods, the CNN had fewer false positive voxels more distant 
from the ROIs. Hence, the relatively low AUC for the CNN was primarily 
because of voxels with high attribution values directly outside the ROIs. 
Although in the basic simulation all ROIs had equal weight, attribution 
values varied between ROIs, with ROI 3 having the highest values. This 
partly reflects differences in the relative burden of WMH in the ROIs 
(mean percentage of ROI affected by WMH: 1: 8.60 %; 2: 6.23 %; 3: 8.23 
%).

The CNN had the highest ratio between attribution values in- and 
outside the ROIs, see Table 1. Increase in the ratio when ROIs were 
dilated with 5 mm was also highest for the CNN. Figure S-3 in the 
Supplementary Materials provides an overview of the attribution loca
tions that were taken into account for these analyses (threshold of 10 % 
of the maximum attribution value for each method).

Dice similarity coefficient and false negatives are reported in the 
Supplementary Material. The CNN achieved the highest Dice similarity 
coefficient results, consistent with the attribution ratio. No false nega
tive ROIs were detected in group-level attribution maps.

Fig. 4 presents examples of individual attribution maps for the CNN 
with XAI, for three patients with varying WMH volumes and simulated 
cognitive scores. It can be seen that the CNN with XAI method correctly 
highlighted the WMH in the ROIs, and did not assign considerable 
contribution to the other WMHs present in these participants. When the 
relative weight of ROI 2 was increased, this was directly reflected in 
increased attribution values measured at this ROI; suggesting that the 
CNN with XAI was able to capture these differences between ROIs. Some 
attribution values fell outside the ROIs, but were in close proximity or of 
substantially lower value. In case no WMH was present within an ROI, 
that location was not highlighted.

3.2. Experiment 2: Model performance with modified regional weights

The basic simulation of cognitive data were altered by increasing the 
contribution of ROI 2 twice, while retaining the same contribution 
weight for ROIs 1 and 3, i.e.: {1,2,1} and {1,4,1}.

Just as in the analysis using basic cognitive simulations, predictive 
performance for all three models was high, see Table S-3 in the Sup
plementary Materials, with the highest R2 obtained by the CNN for both 
datasets with modified regional weights.

Group level attribution maps for each method are displayed in Fig. 5. 
With increasing weighing of ROI 2′s contribution, its attribution visibly 
increased for all methods. The same outcomes were achieved in the 

individual attribution maps presented in Fig. 4. With the modified 
weights, the amount of false positive voxels distant from the ROIs in SVR 
and the FNN remained essentially the same.

Table 2 shows the ratios between attribution values in- and outside 
the ROIs. Similar to the experiment with basic cognitive simulations, the 
CNN achieved the highest ratio and highest increase with dilated ROIs.

3.3. Experiment 3: Model sensitivity to noise

Three levels of noise were added to the simulated cognitive data to 
test the robustness of the three models. With a noise level of 0.25, 0.50, 
and 0.75, the R2 of total WMH lesion volume alone as regressor for the 
simulated cognitive scores was 0.651, 0.395, and 0.062, respectively. Of 
note, the explained variance of total WMH lesion volume (see Experi
ment 4) for the real attention and executive functioning cognitive scores 
was 0.013.

Changes in predictive performance and precision-recall AUC as a 
result of noise are visualized in Fig. 6. Values can also be found in 
Table S-4 and S-5 of the Supplementary Materials. Overall, performance 
of all methods for both metrics dropped because of increasing noise. The 
three models display a similar decline pattern. Attribution values inside 
the ROIs compared to outside the ROIs, see Table 3, decreased with 
noise. This decrease was most prominent for the CNN. The factors of 
ratio increase with dilated ROIs was relatively consistent with varying 
noise factors for SVR and the FNN. At a noise fraction of 0.75, the factor 
for the CNN increased substantially, coinciding with low attribution 
ratios for the original ROIs.

3.4. Experiment 4: Proof of principle on real world cognitive data

As a proof-of-principle demonstration, the methods were applied to 
predict actual norm adjusted attention and executive functioning scores 
based on WMH maps (Table 4). SVR achieved the highest predictive 
performance with a mean R2 of 0.291 across folds, followed by the CNN 
with a mean R2 of 0.216 and the FNN with a mean R2 of 0.020. Variance 
between cross-validation folds was highest for the CNN and smallest for 
the FNN. The R2 of total WMH lesion volume alone was 0.013, meaning 
both the SVR and CNN achieved a much better predictive performance.

The group-level attribution maps of all methods are shown in Fig. 7. 
Since no ground truth of actual strategic lesion locations can be estab
lished for real cognitive data, maps were compared visually. The group- 
level attribution maps obtained by SVR and the FNN show similar pat
terns. The group-level attribution map of the CNN with XAI differs more, 
but it does show overlapping locations with SVR and the FNN. White 
matter tracts with the highest attribution values can be found in Table S- 
9 of the Supplementary Materials.

Individual attribution maps for three patients with varying combi
nations of WMH volume and attention and executive functioning scores 
can be found in Fig. 8. Again, these analyses of the attribution maps are 
qualitative, because no ground truth data exists. Since the predictive 
performance of the methods is low, caution should be paid when 
inspecting these attribution maps.

4. Discussion

In this study, we introduced a CNN combined with XAI to perform 
lesion-symptom mapping for white matter hyperintensities. The CNN 
showed comparable results to SVR and the FNN benchmarks in three 
simulation experiments. The added benefit is that it was able to generate 
patient-specific lesion attribution patterns. When applied to real data, 
the predictive performance of the CNN was considerably higher than for 
WMH total volume alone, but not superior to SVR. Overall, these results 
support the potential application of neural network technology with XAI 
for lesion-symptom mapping.

When comparing results obtained by SVR and the CNN more spe
cifically, predictive performance of the CNN consistently surpassed that 

Table 1 
Basic cognitive simulations: predictive performance and attribution map 
accuracy For each method, predictions (N = 821 patients) were obtained from 
5-fold cross-validation and the R2 averaged across folds. Precision-recall areas 
under the curve (AUC) were computed on the 5-fold mean (positive) group-level 
attribution map (see Fig. 3). Predictive performance was highest for the CNN, 
while the precision-recall AUC for the CNN was lowest. SVR and the FNN ob
tained similar predictive performance and precision-recall AUCs to one another. 
The ratio between attribution values inside and outside the ROIs was highest for 
the CNN. SVR and the FNN achieved a much lower ratio, but were comparable to 
one another. The same can be observed when ROIs were dilated with 5 mm. SD 
= standard deviation. ROI = region of interest. SVR = support vector regression. 
FNN = fully connected network. CNN = convolutional neural network.

Predictive 
performance in R2 

Mean (SD)

Precision- 
recall AUC

Ratio attributions inside vs. outside 
ROIs (factor increase with 5 mm ROI 
dilation)

SVR 0.875 (0.019) 0.693 0.13 (3.0x)
FNN 0.863 (0.027) 0.718 0.09 (2.3x)
CNN 0.964 (0.008) 0.625 1.02 (17.1x)
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of SVR in experiments using simulated cognitive data. On real attention 
and executive functioning scores, SVR obtained somewhat better pre
dictive performance than the CNN; but it should be noted that overall R2 

was low (<0.3). In the simulation experiments, both methods showed 
high attribution values in the predefined ROIs, while more variation was 
observed between attribution maps obtained with real cognitive data.

Our proposed method creates patient-specific attribution maps, 
whereas conventional LSM methods only establish the relationship be
tween brain lesion and cognitive score on a group level (Seghier and 
Price, 2023; Moore et al., 2024). It should be noted that attribution maps 
obtained for an individual patient, such as in Fig. 8, should always be 
regarded within the context of that specific patient. Lesion locations that 
contribute to a higher predicted score (i.e. worse cognitive performance) 
receive higher attribution values, regardless of the predicted cognitive 
score. This means that individual attribution maps highlight locations 
that explain why an impaired cognitive performance was predicted, not 

why a cognitive score was predicted in general. Therefore, these indi
vidual attribution maps are of value when the predicted score indicates 
similar or worse cognitive ability than the measured cognitive ability. 
When a predicted cognitive score indicates a better cognitive perfor
mance than what was measured, the analysed lesion (in this case, WMH) 
likely does not explain the cognitive decline and the attribution maps are 
less likely to contain relevant information. In those cases, other pa
thology that was not included in the analysis, such as infarcts and am
yloid β deposition, may play a role in the impaired cognitive ability. In 
patients for whom a worse cognitive performance was predicted than 
what was measured, the patient likely has a relatively high cognitive 
reserve compared to other patients in the dataset. But before the indi
vidual attribution maps can be used in clinical research or routine, 
several aspects need to be addressed. For instance, validation of the 
method on different data is necessary. Moreover, a model’s certainty 
score will be required for each patient to provide clinicians with an 

Fig. 3. Basic cognitive simulations: group-level lesion-symptom mapping results ROIs were the ground truth locations for the cognitive simulations. Equal 
weight was assigned to the three ROIs. Positive group-level attribution values are visualized on five axial slices of MNI-152 space, indicated by z. It can be seen that 
all three methods assigned the highest attribution values inside of the three ROIs. However, the CNN with XAI was able to much better localize the three ROIs and had 
less false positive attributions more distant from the ROIs. SVR and the FNN had more false positive attributions further away from the three ROIs. Nevertheless, the 
precision-recall AUC (Table 1) was slightly better for SVR and the FNN, since the false attributions were of relatively low value; whereas the CNN with XAI had 
stronger attributions just outside the ROIs that results in a somewhat lower precision-recall AUC. SVR = support vector regression. FNN = fully connected network. 
CNN = convolutional neural network.
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indication of the potential value of attribution maps. The proposed 
method of a CNN with XAI could be potentially extended in the future to 
include multiple types of pathology and an uncertainty estimate of the 
model’s prediction, further supporting the interpretation of individual 
results.

In general, validation of attribution maps obtained with XAI is 
complex (Nauta et al., 2023). In this study, we used simulated cognitive 
data that enabled the evaluation of attribution maps qualitatively and 
quantitatively using the precision-recall AUC based on the overlap with 
the predefined ROIs. Nevertheless, the point at which attribution maps 
can be considered good enough remains ambiguous. In the precision- 
recall AUC, methods are penalized when attribution values are outside 
of the ROIs, regardless of distance to the ROI. It could be questioned 
whether a difference in a few voxels is clinically relevant and alternative 
evaluation metrics are part of future research in the XAI community. 
Ratios between attribution values in- and outside the ROIs provided 
insight into how concentrated attribution values were located in the 
ground truth locations. By also taking into account the factor increase of 
this ratio when ROIs were dilated with 5 mm, information about attri
bution values extending just beyond the ROI boundaries was considered. 
This shows that the CNN has false positive attributions just outside the 
ROIs, whereas the SVR and FNN approach have much more widespread 
false positives throughout the brain. False negative ROIs do not appear 
to be an issue with all approaches.

Evaluating LSM methods without ground truth strategic lesion lo
cations is challenging. Methods can be compared to each other, but a 
higher explained variance might not always indicate a better strategic 
lesion identification. Therefore, simulated cognitive data were used to 
provide ground truth locations for extensive evaluation and controlled 
experimentation. However, by design, the simulated scores were highly 
correlated with total WMH volume, which does not reflect the real 
relation between WMH and cognitive scores. Cognitive performance in 
patients is also influenced by other vascular lesion types and factors such 
as amyloid β deposition in the brain and educational background. The 
simulations were kept simple to demonstrate basic functioning of this 
novel XAI-based method for LSM. In the simulation experiment with 
noise, more realistic correlations between WMH volume and scores were 
achieved. It should be noted that the noise in this experiment was 
random, which is not the case in real patients. To overcome the limi
tations of the simulated data, the proposed method was also tested on 
real attention and executive functioning scores.

The simulation with modified regional weights, inspired by Zhang 
et al. (Zhang et al., 2014), was implemented with the idea that lesions in 
one location can have a bigger effect on a cognitive domain than other 
locations. For instance, an infarct located in the Broca area will have 
more effect on verbal memory than an infarct located in the motor 
cortex. However, it is unclear whether this holds true for WMH. The 
experiment nonetheless allowed for testing whether the various LSM 
approaches could extract the non-uniform contributions to the 

simulated scores. Visually, all methods assigned higher attribution 
values to the location with increased contribution to the simulated 
cognitive scores. The change in attribution maps as a result of modified 
regional weights was most prominent for the CNN with XAI.

A sufficient amount of data is required to apply LSM methods. 
Studies have been conducted to test the appropriate sample size for SVR, 
where datasets of 100–120 subjects seem sufficient and performance 
plateaus with larger datasets (Sperber et al., 2019). Neural networks are 
known to require substantially larger dataset sizes and show increas
ingly better performance with more data. Over time, more data, infor
mation, and brain coverage has been acquired for LSM studies by 
pooling data and creating large multi-center cohorts (Weaver et al., 
2021; Coenen et al., 2023). These datasets can be used to further vali
date the use of neural networks for LSM with the potential prospect of 
achieving increasingly better results, potentially outperforming SVR. In 
this study, attribution values in ROI 2 were substantially lower without 
modified regional weights, likely because of reduced lesion prevalence, 
suggesting that more data might improve the model further. In the 
additional experiments in section D of the Supplementary Material, we 
observed that the attribution maps computed using the CNN with XAI 
were more sensitive to this effect than SVR and the FNN. However, 
predictive performance was more stable for the CNN when ROIs were in 
low prevalence locations. Effects of varying lesion prevalence will be 
included in future research.

A CNN with XAI might not always be the best LSM option. Once a 
neural network has been trained, it can be applied to smaller datasets as 
long as the training data has a similar distribution as the new data, e.g. 
lesion distribution and volume, patient age, sex, level of education, and 
diagnosis. But when a small dataset needs to be analysed and no trained 
model is available, or the training data characteristics do not match the 
test data, a neural network-based approach might not be ideal. Other 
methods such as mass-univariate, SVR, or sparse canonical correlation 
analysis for neuroimaging may be better suited (Bates et al., 2003; 
Rorden et al., 2007; Zhang et al., 2014; Pustina et al., 2018). In case 
computational power is limited, a neural network-based approach might 
be less convenient than alternatives. However, in case individualized 
information is beneficial, large datasets and computing power are 
available, a CNN with XAI might be a fitting LSM method.

This study has several limitations. First, various XAI methods are 
available that could be used in this study but only occlusion was used 
here (van der Velden et al., 2022). The occlusion method is stable and 
results in attribution maps with little noise, but it is very slow. Choosing 
a different method is a trade-off between speed and crisp, stable attri
bution maps. It should also be noted that a shift in high attribution 
values of a few voxels with respect to the ROI cubes could be observed in 
the attribution maps obtained with the XAI method. This might be 
because occlusion relies on a sliding window principle to compute the 
attribution. Convolution layers in the CNN itself might also contribute to 
the shift because they rely on a similar sliding window. Second, as 

Fig. 4. Basic cognitive simulations and simulation with modified regional weights: individualized lesion-symptom mapping results obtained by the CNN 
with XAI Examples of individual attribution maps for three simulated cognitive scores projected on axial slice 34 (containing ROI 2 right, ROI 3 left) of the MNI-152 
template. WMH volume, simulated cognitive scores and predicted scores for each patient are denoted in the image. Simulated cognitive scores were based on WMH 
lesion load within the three ROIs. All scores were valued between 0 and 1, where 1 related to a higher lesion load in the ROIs. WMH lesion contours are displayed in 
light blue, the predefined ROI contours in green. TOP ROW: For the basic cognitive simulations, lesion load in all three ROIs was weighted equally: {1,1,1}. It can be 
seen that the CNN with XAI correctly highlighted the ROIs that contained lesions and no attributions were present in locations without lesions. In patient C, who had 
lesions in ROI 2 and 3, the attributed weight of ROI 3 was high, similar to the group results (Fig. 3); in patient A who only had lesions in ROI 2 this ROI had a higher 
attribution. MIDDLE AND BOTTOM ROWS: Here, lesion load in ROI 2 was weighted more heavily in the simulations than the other ROIs, depicted in row 2 {1,2,1} 
and 3 {1,4,1}. This yielded different simulated cognitive scores. Patient A had a white matter lesion that overlaps clearly with ROI 2, but not with the other ROIs. 
Different weightings of this ROI in the simulations therefore had little effect in this patient. Patient B had very little WMH in either of the ROIs presented in the figure 
and no prominent attribution can be seen in the lesions in locations outside the ROIs. Figure S-4 in the supplementary materials shows that most of the attribution 
could be found in ROI 1 on axial slice 24 of MNI-152 space. With increasing ROI 2 wt, the small WMH in ROI 2 received higher attribution values. Patient C had the 
highest WMH volume in this example, the lesion covered a substantial portion of the brain and overlapped with ROIs almost completely, resulting in a score of 1.00 
regardless of ROI weights. With equal weighting of the ROIs, the most prominent attribution were found in ROI 3. With increased weighting of ROI 2 in the sim
ulations, the attribution values in ROI 2 increased with higher weight relative to ROI 3. WMH vol = white matter hyperintensity volume. Sim = simulated cognitive 
score. Pred = predicted cognitive score. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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previously mentioned, data is an important factor when using neural 
networks. For training and testing a neural network, 821 subjects is a 
small number. Future work could be conducted to apply the proposed 
method on other and larger datasets to further validate the presented 
LSM approach. In terms of the data itself, WMH were chosen as lesion 

type to develop the new LSM method. A downside of using WMH instead 
of infarcts is the fact that there is a weaker correlation between WMH 
lesions and cognitive outcomes. Applications on infarct data might be of 
value as well, since the association between infarct location and 
cognitive scores is stronger than for WMH and more LSM studies have 

Fig. 5. Simulation with modified regional weights: group-level lesion-symptom mapping results Positive group-level attribution values for each method are 
visualized on axial slice 34 of MNI-152 space. Contours of ROI 2 (right side of the brain) and 3 (left side of the brain) are displayed in green. Each row corresponds to 
a different set of ROI weights. TOP ROW: All ROI contributions to the simulated cognitive score were weighted equally, as shown previously in Fig. 3. MIDDLE AND 
BOTTOM ROWS: The contribution of ROI 2 to the simulated cognitive score was weighted stronger than the other ROIs. The columns correspond to the three 
different methods. It can be seen that for all methods, attribution values in ROI 2 increased with higher contribution. This is most prominent for the CNN with XAI. 
The number of false positive attributions appeared consistently lowest for the CNN with XAI. SVR = support vector regression. FNN = fully connected network. CNN 
= convolutional neural network. XAI = explainable artificial intelligence. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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been conducted on infarcts previously (de Haan and Karnath, 2018). It 
should also be noted that WMH have a high prevalence and can cover a 
relatively high brain volume (Duering et al., 2023). Vascular lesions 
such as cerebral microbleeds and perivascular spaces are much smaller, 
≤10 mm and ≤2 mm respectively (Duering et al., 2023). LSM using 
those smaller lesions poses an additional need for large datasets to 
achieve substantial brain coverage, or a different approach such as a 
regional-based LSM technique. Third, in this study we only considered 
relatively simple CNN architectures. However, this study is intended as a 
proof of principle for the use of neural networks combined with XAI for 
LSM. The results warrant further study of different neural networks. 
Fourth, feature selection was used in the proof-of-principle experiment. 
This step was necessary to achieve a substantial model performance by 
reducing the input complexity using prior knowledge of a mass- 
univariate analysis. In the future, an end-to-end solution without 
feature selection would be preferred to prevent potential bias of the 
mass-univariate analysis. Finally, patients with cognitive decline often 
exhibit multiple vascular lesions in the brain simultaneously. These le
sions can have a cumulative impact and should therefore be accounted 
for (Heinen et al., 2018). Additionally, cognition may be impaired in 
multiple domains, which can be correlated and have both distinctive and 
shared strategic lesion locations (Sperber et al., 2020; Weaver et al., 
2023). The current work was limited to a single input and a single 
output, only enabling the analysis of a single lesion type and single 
cognitive score at a time. Expanding the neural network-based LSM 
method to incorporate supplementary patient information, such as 
additional vascular brain lesions, disconnection information, non-lesion 
related brain changes, fluid biomarkers, and risk factors may be a 
valuable direction for future work.

5. Conclusion

The use of a neural network combined with eXplainable AI for lesion- 
symptom mapping was introduced and evaluated in this study. Results 
obtained using simulated and real cognitive data show the potential of 
this novel approach, with the added benefit of generating individualized 

Table 2 
Simulation with modified regional weights: ratio between attribution 
values inside and outside ROIs Factor of increase with ROIs dilated with 5 mm 
provided in parenthesis. Ratio of attribution values inside and outside the ROIs 
was highest for the CNN. Lower, comparable ratios were found for SVR and the 
FNN. A similar pattern can be observed in increase factors for dilated ROIs. SVR 
= support vector regression. FNN = fully connected network. CNN = convolu
tional neural network.

Modified regional weights configuration

{1,2,1} {1,4,1}

SVR 0.12 (3.1x) 0.13 (3.3x)
FNN 0.08 (2.5x) 0.07 (2.7x)
CNN 0.69 (8.4x) 0.93 (17.2x)

Fig. 6. Effect of noise on model performance Predictive performance in R2 

(A) and precision-recall AUC (B) for each LSM method for different noise 
fractions (0 – 0.75). R2 was determined by concatenating the predictions made 
in the cross-validation and evaluating them against the artificial cognitive 
scores using an ordinary least squares. Precision-recall AUC were computed on 
the (positive) group-level attribution map for each method. Methods showed a 
similar decline in predictive performance and precision-recall AUCs with 
increasing noise fractions. PR AUC=Precision-recall area under the curve. SVR 
= support vector regression. FNN = fully connected network. CNN = con
volutional neural network.

Table 3 
Model sensitivity to noise: ratio between attribution values inside and 
outside ROIs Factor of increase with ROIs dilated with 5 mm provided in 
parenthesis. Ratios between attribution values inside and outside the ROIs 
decrease with noise. For noise fractions 0.25 and 0.50, the CNN obtained the 
highest ratios and factor increase with ROIs that were dilated with 5 mm. SVR 
achieved the second highest ratios, closely followed by the FNN. SVR = support 
vector regression. FNN = fully connected network. CNN = convolutional neural 
network.

Noise fraction

0.25 0.50 0.75

SVR 0.12 (2.9x) 0.07 (3.2x) 0.03 (3.7x)
FNN 0.07 (2.3x) 0.04 (3.1x) 0.03 (3.4x)
CNN 0.60 (5.4x) 0.17 (3.0x) <0.01 (323.4x)

Table 4 
Proof of principle on real attention and executive func
tioning scores: predictive performance Predictions (N =
813) made in the cross-validation were combined and eval
uated against the real attention and executive functioning 
cognitive scores using the R2 obtained through an ordinary 
least squares. SVR = support vector regression. FNN = fully 
connected network. CNN = convolutional neural network.

Predictive performance in R2

SVR 0.291 (0.038)
FNN 0.020 (0.012)
CNN 0.216 (0.063)
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attribution maps. Further validation and development of the method is 
necessary before it can be implemented in clinical research or routine. 
This technique could be expanded to account for multiple lesion types 
and multiple cognitive domains by altering the architecture of the CNN, 
pushing the boundaries of lesion-symptom mapping possibilities even 
further.

2.2. Data

2.2.1. Study population

Patients were included from the “Utrecht-Amsterdam clinical fea
tures and prognosis in vascular cognitive impairment (TRACE-VCI)” 
study population (Boomsma et al., 2017). In short, the aim of the 
TRACE-VCI study was to investigate the clinical features and prognosis 
of patients with possible VCI in a memory clinic setting. TRACE-VCI 
included 860 consecutive patients with evidence of vascular brain 
injury from Amsterdam University Medical Center (N = 664) and from 
two outpatient memory clinics of the University Medical Center Utrecht 
(N = 196). For the current study, only patients with available WMH 
segmentations and successful registrations in Montreal Neurological 
Institute (MNI) space (missing for N = 39) and cognitive test results for 
attention and executive functioning (missing for N = 8) were eligible, 
leaving a study population of 813 (Coenen et al., 2023). Median WMH 
volume was 8 ml and with an interquartile range of 3.2–20.9 ml. Mean 

age was 67.5 years (SD = 8.5 years) and 46.1 % were female. Further 
participant details in Supplementary Table S-1.

All patients presented with cognitive complaints at the clinics and 
were eligible for TRACE-VCI if their brain MRI showed evidence of 
vascular brain injury (i.e. Fazekas scale ≥ 2), ≥1 lacunar infarct(s), ≥1 
non-lacunar (large vessel) infarct(s), ≥ 1 cerebral microbleed(s), ≥1 
intracerebral hemorrhage(s) and/or mild WMH (Fazekas 1) with an 
increased vascular risk defined as the presence of ≥2 vascular risk fac
tors (hypertension, hypercholesterolemia, diabetes mellitus, obesity, 
current smoking or a reported history of a vascular event other than 
stroke) (Boomsma et al., 2017). Patients were included regardless of 
objective cognitive severity, including patients with dementia (51 %), 
mild cognitive impairment (MCI) (25 %) and no objective cognitive 
impairment (24 %).

Each patient underwent a standardized extensive one-day memory 
clinic evaluation including an interview, physical and (cognitive) 
neurological examination, laboratory testing, standardized neuropsy
chological testing and an MRI-scan of the brain. The studies were 
approved by the medical ethics committee of Amsterdam University 
Medical Center and University Medical Center Utrecht. We obtained 
written informed consent from participants before conducting research- 
related procedures.

Fig. 7. Proof of principle on real attention and executive functioning scores: group-level lesion-symptom mapping results Positive group-level attribution 
maps visualized on five axial slices of MNI-152 space for all three models. Axial slices are indicated by z. SVR and the FNN highlighted more dispersed locations and 
the attributions were localized. The CNN with XAI highlighted larger locations, which may be explained by the sliding window principle on which the XAI method 
(occlusion) is based. When a location of high importance is determined, the whole location of the cubic window will receive attribution values. This also explains 
attribution values in non-white matter areas. Overall, all three methods appeared to have their attributions located in roughly the same parts of the brain and seem to 
be in agreement. Since there is no ground truth on the actual associations with the real cognitive scores, this is a qualitative assessment. SVR = support vector 
regression. FNN = fully connected network. CNN = convolutional neural network.
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2.2.2. MRI data and processing

Images were acquired using 3D fluid-attenuated inversion recovery 
(FLAIR) sequences on a variety of scanners and using various parame
ters, as described previously by Boomsma et al. (2017) (Boomsma et al., 
2017). The following scanners were employed: 1.5 T and 3.0 T GE Signa 
HDxt, 3.0 T GE Discovery MR750, as well as 3.0 T Philips Ingenuity. The 
number of acquired slices ranged from 128 to 321, voxel sizes were 
between 0.98–1.21 × 0.98–1.21 × 0.56–1.30 mm3. Repetition times, 
echo times, and inversion times differed between sequences. WMH were 
semi-automatically delineated on the MRI using the k-nearest neighbour 
classification with tissue type priors (kNN-TTP) method, with rigorous 
quality control and visual checks of all segmentations, as described by 
Groeneveld et al. (2019) (Groeneveld et al., 2019; Steenwijk et al., 
2013). Segmentation masks were subsequently registered to the 1 × 1 ×
1 mm3 MNI-152 brain template using Elastix for spatial normalization 
(Fonov et al., 2011; Klein et al., 2010).

2.2.3. Cognition data

Real attention and executive functioning scores were obtained by 
averaging norm-referenced Z-scores of the Trail Making Test part B, 

Digit Span Forward and Backward, semantic fluency (animal naming, 1 
min), and phonemic fluency tasks (letters, 1 min) as described by Coe
nen et al. (2023) (Coenen et al., 2023). Scores were corrected for edu
cation, age, and sex using Dutch population-based normative data 
published on the website of The Dutch Association of Psychologists in 
2012. Dutch normative data from the Wechsler Adult Intelligence Scale 
IV adjusted for age was used for the Digit Span tests. Descriptive sta
tistics summarizing the individual neuropsychological test results are 
provided in Table S-4 of the Supplementary Materials by Coenen et al. 
(2023) (Coenen et al., 2023). The percentage abnormal neuropsycho
logical test results can be found in Table S-2 of the Supplementary 
Materials. Finally, scores were normalized using min–max feature 
scaling using values of the study population, where a higher score is 
related to a worse cognitive performance.

Simulated cognitive scores were used in the first three experiments 
and were computed based on patients’ WMH volume in selected regions- 
of-interest, as described in more detail in Section 2.4.
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Fig. 8. Proof of principle on real attention and executive functioning scores: individualized lesion-symptom mapping results obtained by the CNN with 
XAI Three patient examples of individual attribution maps. Patients were selected based on their WMH volume and attention and executive functioning score. Patient 
D has a high WMH volume and a large negative Z-score, while patient E has a small negative Z-score and a high WMH volume. Patient F has a low WMH volume with 
a large negative Z-score. WMH volume for each patient is denoted in the image, as well as their norm corrected attention and executive functioning Z-score, the 
predicted score, and the difference between measured and predicted score. WMH lesions are depicted in blue. Colour bars were based on the attribution map of 
patient D, which contained the highest attribution value among the selected patients. Because this illustrative colour bar was set based on the attribution map with 
highest values, attribution maps can be compared between patients. For all patients, specific locations within the WMH map were highlighted. The highlighted 
locations mostly differ among these patient examples. The model’s score prediction was best for patient D, with the smallest difference between true attention and 
executive functioning score and predicted score, whereas patient F had the worst prediction. Patient F had a low WMH volume, combined with a substantially 
impaired attention and executive functioning score. The chance that the WMH map would explain the score was therefore low. This combination of low WMH and 
bad score is an indication that the cognitive performance of this patient is at least partly explained by information other than the WMH map. WMH vol = white 
matter hyperintensity volume. AEF = attention and executive functioning. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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