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Lesion-symptom mapping methods assess the relationship between lesions caused by cerebral small vessel dis-
ease and cognition, but current technology like support vector regression (SVR)) primarily provide group-level
results. We propose a novel lesion-symptom mapping approach that can indicate how lesion patterns contribute
to cognitive impairment on an individual level. A convolutional neural network (CNN) predicts cognitive scores
and is combined with explainable artificial intelligence (XAI) to map the relation between cognition and vascular
lesions.

This method was evaluated primarily using real white matter hyperintensity maps of 821 memory clinic
patients and simulated cognitive data, with weighted lesions and noise levels. Simulated data provided ground
truth locations to assess predictive performance of the CNN and accuracy of strategic lesion identification by XAI,
using an established lesion-symptom mapping method, SVR, and a simple fully connected neural network (FNN)
as benchmarks. Real cognitive scores were used in a final proof-of-principle analysis.

Predictive performance in simulation experiments was high for the CNN (R2 = 0.964), SVR (R2 = 0.875), and
FNN (R? = 0.863). CNN with XAI provided patient-specific attribution maps that highlighted the ground truth
locations. All methods showed similar sensitivity to noise. Using real cognitive scores, SVR (R? = 0.291) obtained
a somewhat higher predictive performance than the CNN (R? = 0.216), although both methods substantially
exceeded the predictive performance of total WMH volume alone (R? = 0.013). The FNN performed worse on
real data (R% = 0.020).

To conclude, results show that CNNs combined with XAI can perform lesion-symptom mapping and generate
individual attribution maps, which could be a valuable feature with further method development.

1. Introduction

Vascular lesions in the brain can cause cognitive impairment,
affecting different cognitive domains such as attention and executive
functioning, but also memory (Weaver et al., 2021; Hamilton et al.,
2021). For brain infarcts (Weaver et al., 2021; Zhao et al., 2018), and
also for white matter hyperintensities (WMH) (Coenen et al., 2023),

lesion location influences cognitive impact. In literature, such lesion
locations with particular cognitive impact are referred to as “strategic”.
Lesion-symptom mapping (LSM) is increasingly used to identify stra-
tegic lesion locations by examining the relationship between lesion lo-
cations in the brain and a behavioural score in large datasets on a group
level (Bates et al., 2003; de Haan and Karnath, 2018). This is done by
statistically associating lesioned voxels in binary lesion maps (created by
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segmenting lesions of interest from brain scans) and behavioural scores,
such as cognitive tests scores.

A variety of LSM methods have been developed, from mass-
univariate voxel-based (Weaver et al., 2021; Coenen et al., 2023;
Bates et al., 2003; Rorden et al., 2007) to multivariate analyses (Zhang
et al., 2014; Pustina et al., 2018; Sperber et al., 2019; Zhao et al., 2018).
In mass-univariate methods, statistical testing is applied to every voxel
in the lesion map to evaluate if the presence of a lesion is associated with
a difference in cognitive scores. Because each voxel is evaluated inde-
pendently, this method cannot take interrelations between lesion loca-
tions into account. Multivariate methods, such as support vector
regression (SVR), analyse a lesion pattern as a whole, retaining relations
between voxels. This is relevant, because vascular lesions occur with
distinct patterns depending on underlying mechanisms and are therefore
not randomly distributed throughout the brain. Next to that, different
lesion locations can have combined or interacting effects on cognition,
because the brain is organized in (functional) networks. A downside of
both mass-univariate and multivariate approaches is that they provide
results on a group level and cannot readily indicate how lesion patterns
contribute to an individual patient’s cognitive impairment, while this
could guide impactful use-cases for personalized diagnosis and
treatment.

The use of neural networks might be a promising novel approach for
LSM. A neural network, when offered sufficient training data, should be
able to learn the relationship between vascular lesions and cognitive
scores, enabling the model to predict cognitive scores for every patient.
Neural networks are inherently flexible models that can handle multiple
inputs and outputs, which would be of value for LSM. Convolutional
neural networks (CNNs) are commonly used to extract information from
medical images (Lee et al., 2017; Sarvamangala and Kulkarni, 2022).
For instance, CNNs have been used previously to predict brain age
(Jonsson et al., 2019; Lee et al., 2022) and a multitude of brain diseases,
including dementia (Khan et al., 2021). Moreover, Chaucan et al. (2019)
employed a CNN to predict cognitive scores based on stroke lesion maps
(Chauhan et al., 2019). The integration of explainable artificial intelli-
gence (XAI) methods could extend the use of a CNN from prediction
model to LSM method. XAI could enable the identification of strategic
lesion locations, in addition to making the neural network interpretable.
A key difference from conventional LSM methods, is the potential to
support use-cases that need to identify strategic lesion patterns at the
level of an individual patient.

In this work we introduce and evaluate the use of a CNN combined
with XAI to perform LSM on WMH. SVR and a simple fully connected
neural network (FNN) were used as benchmarks. Evaluating LSM
methods is challenging because cognitive performance is influenced by
factors beyond a lesion image. By definition, LSM methods can only
partially explain cognitive variance, and without ground truth strategic
lesion locations, methods can only be compared head-to-head for eval-
uation. Moreover, identified lesion locations can only be evaluated
against prior knowledge. We addressed these limitations by generating
simulated cognitive data using actual lesion maps. This provided a
ground truth to which both predictive performance for cognition and
accuracy of strategic lesion identification were assessed. Our principal
experiments were therefore performed using simulated cognitive data.
Additionally, different lesion weights and effects of noise were evalu-
ated. Finally, we tested the methods using WMH maps and real attention
and executive functioning cognitive scores from a large memory clinic
cohort, to show a proof-of-principle application of combining a CNN and
XAI in individual patients.

2. Materials & methods
2.1. Study design

A CNN was trained to predict (simulated) cognitive scores of memory
clinic patients based on the segmentation mask of their WMH. During
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training, the model captured the relationship between WMH and
(simulated) cognitive score. Subsequently, XAI was used to determine
the strategic lesion locations for each patient individually. This was done
by computing the attribution of all WMH locations to the predicted score
for each individual patient’s lesion map. Two methods were used as
benchmark for our proposed LSM approach: SVR, a conventional LSM
method that could be considered as gold standard, and a FNN. Three
controlled experiments to validate our approach were performed on
simulated cognitive data: (i) a basic simulation of cognitive data, (ii)
with modified regional weights, and (iii) with added noise. Furthermore,
the LSM methods were applied on the real attention and executive
functioning scores.

2.3. Lesion-symptom mapping approaches

2.3.1. Convolutional neural network

CNNs contain convolutional layers that summarize the information
of the input image into a smaller representation using a sliding convo-
lution kernel. A simple 3D CNN consisting of two convolutional blocks
was used in the simulation study, see Fig. 1A. Since the real cognitive
data is far more complex, this network was adapted to include more
regularization for the experiment using the real attention and executive
functioning scores. Specifically, a dropout layer was included in the
convolution block, a max pooling layer was added after each convolu-
tion block, and a second linear layer was included (Fig. 1B). The ana-
lyses with simulated data did not require the more regularized model.

The number of considered voxels (i.e. features) was reduced in the
experiment using the real attention and executive functioning scores to
reduce input dimensionality, as was done in the benchmark methods,
through feature selection. Relevant voxels were identified by mass-
univariate LSM and nulled in the 3D WMH maps (Zhao et al., 2018;
Kuijf et al., 2021). We implemented a standard mass-univariate
approach as described previously (Zhao et al., 2018). For the simpler
experiments on simulated data, the full 3D WMH maps were used as
input for the CNN model. Volume correction was not applied, a neural
network is able to learn such a feature if necessary.

Post hoc XAI, specifically a method called occlusion, was employed
to obtain the attribution maps (Zeiler and Fergus, 2014; Kokhlikyan
et al., 2020). Occlusion is a perturbation-based method and works by
analysing the change in prediction as a result of occluding parts of the
lesion image using a sliding window. Occluding locations with high
attribution result in bigger changes in prediction compared to locations
with little attribution. Iteratively, the importance of each image location
was computed and summarized in an attribution map, see Fig. 4 for
some examples (Borys et al., 2023). A5 x 5 x 5 voxels sliding window
was used in combination with a 3 x 3 x 3 voxels stride. Only the positive
attribution values were used in the analyses.

2.3.2. Support vector regression

SVR with a radial basis function kernel was implemented. Its pa-
rameters were optimized in a 5-fold cross-validation grid search using
scikit’s GridSearchCV function (Pedregosa et al., 2011). Performance
with and without feature selection was also compared. The combination
of parameters resulting in the highest Pearson correlation between
predicted and true values in the test fold was chosen.

WMH maps were corrected for total lesion volume using an estab-
lished approach, which involves dividing lesioned voxels by the square
root of the total lesion volume (Zhang et al., 2014). Subsequently,
feature selection was applied by removing any voxels deemed irrelevant
by mass-univariate LSM. Finally, images were flattened into a one-
dimensional array. SVR beta-maps were used as attribution maps.

2.3.3. Fully connected neural network

In addition to the CNN and SVR models, a simple fully connected
neural network was used. The reason to include this model was to have a
benchmark in between a CNN and SVR model, with all the benefits of a
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Fig. 1. CNN architecture overview. The CNN architecture used in the simulation experiments (A) and the architecture used in the experiments with the real

attention and executive functioning scores (B).

neural network in an architecture that was most like SVR. The network
architecture consisted of one linear layer followed by a ReLU layer,
mimicking the linear regression combined with a non-linear mapping
function in SVR. In this model, all nodes in the first layer connected to all
nodes in the second layer, resulting in a FNN.

The same pre-processing of the images was used as in the SVR
method in order to adhere to the idea of mimicking SVR in a neural
network: volume correction was performed first, followed by feature
selection, and converting images into a one-dimensional array. Because
of the nature of fully connected networks, the weights of the model
reflect the contribution of specific voxels to the model’s prediction.
Therefore, the model’s weights were used as attribution maps.

2.3.4. Neural network implementation and training details

Models were implemented using PyTorch and experiments were run
on one Nvidia Titan X Pascal GPU. An AdamW optimizer was used
during training and a batch size of two was used.Training lasted for a
total of 200 epochs. A learning rate of 5 x 10> was used in all simu-
lation experiments, whereas a learning rate of 1 x 10~ in combination
with a reduce on plateau learning rate scheduler was used in the
application on real cognitive data. The mean squared error (MSE) was
used as a loss function in simulation experiments. This loss function was
extended in the application on real cognitive data by including L1 for
further regularization, resulting in loss = 2*MSE + L1.

2.4. Experiments

Three experiments were conducted using simulated cognitive data-
sets, a different dataset for each experiment. Simulated cognitive scores
were computed based on the overlap of the WMH maps and predefined
regions of interest (ROIs). The ROIs served as ground truth locations to
be identified by the LSM methods, allowing evaluation of the accuracy of
strategic lesion identification. As a final step in all variants of simulated
cognitive datasets, min-max normalization was applied to normalize
scores using values within the study population so that 1 corresponded
to the highest score in each dataset.

2.4.1. Experiment 1: Basic cognitive simulation

A WMH prevalence map was computed by summing all WMH maps
of all participants in MNI-152 space. Three 10 x 10 x 10 mm? ROIs were
defined within the WMH prevalence map, similar to Zhang et al. (2014),
see Fig. 2. ROI locations were determined based on the following two
constraints: every voxel in the ROI should have WMH in ten or more
patients and ROIs should not overlap. From all potential ROI locations,
three were chosen randomly and were consistently used for all partici-
pants in the three simulation experiments. The centers of ROIs 1, 2, 3,
were located in axial slice 24, 35, and 36 of MNI-152 space. Lesion load
of an ROI for a patient was determined by the number of lesion voxels in
the ROI normalized by the total number of voxels of that ROI. To obtain
the final individual basic simulated cognitive scores, lesion load for the
three ROIs was summed and, because no patient’s WMH overlapped
with all ROI voxels, values were subsequently min-max normalized
between 0 and 1 using the minimum and maximum values in the
dataset. Hence, a higher simulated score was associated with a higher
lesion load in the ROIs. Positive values in the attribution maps therefore
indicated the positive contribution of lesion locations to the predicted
scores. In section D of the Supplementary Materials, these experiments
were repeated with six ROIs to study the effect of varying lesion
prevalence.

2.4.2. Experiment 2: Simulation with modified regional weights

A location in the brain that affects a cognitive domain more than
other contributing locations should be identified by LSM methods. To
investigate the methods’ capabilities to do so, a specific lesion location
was weighted more heavily in its contribution to the simulated cognitive
scores in the second experiment. The same strategy as described above
was used to obtain the simulated cognitive data with modified regional
weights. However, instead of equally summing the lesion loads of all
three ROIs, they were multiplied by weights {w_1, w_2, w_3} corre-
sponding to ROI 1, ROI 2, and ROI 3, respectively (see Eq. (2). In our
experiments, the weights were set to {1,2,1} and {1,4,1}, weighing the
contribution of the lesion load of ROI 2 more than those of the other
ROIs.
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Lesion prevalence

Fig. 2. WMH prevalence map (n = 821 patients) and the simulated ROI locations in green Axial slices are indicated by z. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

The weighted score for patient i, with LL,_ROI being the lesion load in
a specific ROL, is defined as:

3
weighted_score; = Z WiLL_ROI;x @
k=1

2.4.3. Experiment 3: Simulation with implemented noise

To compare the robustness of the three LSM methods to noise, basic
simulation scores were perturbed by adding Gaussian noise. The
Gaussian noise had a mean of 0 and standard deviation equal to the
standard deviation of the original simulated score, referred to as noise in
equation (3). Three different levels of noise were used, referred to as
noise fraction nf in equation (3): 0.25, 0.50, and 0.75.

The perturbed score for patient i is defined as:

noise_score; = (1 — nf1> basic_score; + nfj ® noise; 3)

2.4.4. Experiment 4: Real attention and executive functioning scores

The relation between WMH and the real attention and executive
functioning scores was analysed in a proof-of-principle experiment.
Performance of the CNN with enhanced regularization was compared to
the two benchmark models, SVR and the FNN. The same experiment was
repeated for two neuropsychological tests that contribute to the atten-
tion and executive functioning, see section E of the Supplementary
Materials.

2.5. Evaluation

2.5.1. Predictive performance

All four experiments were performed in a 5-fold cross-validation. For
every fold, a different 20 % of the data was used as test set, while the
remaining 80 % was used to fit/train the models. For every patient in the
test set, cognitive scores were predicted. This was repeated for the
complete dataset over the course of 5 folds. Predictive performance was
assessed for each fold by computing the R? obtained through an ordinary
least squares between the predicted and ground truth cognitive scores in
the test set. In addition, the total WMH lesion volume was correlated
with the cognitive scores to obtain a frame of reference. This process was
the same for simulated and real cognitive data.

2.5.2. Quantitative assessment attribution maps

In the basic simulation experiment and the experiment with added
noise, group attribution maps were quantitatively evaluated using the
precision-recall area under the curve (AUC). The three ROIs defined to
generate the simulated cognitive data were used as ground truth loca-
tions. Descending threshold values between the maximum and mini-
mum attribution values in the attribution maps were applied to create a

binary image for which true and false positives as well as true and false
negatives were determined. Precision and recall curves were not
determined in the experiment using simulations with modified regional
weights, because the ROIs did not contribute equally to simulated
cognitive scores. Attributions in ROIs with less contribution are theo-
retically also lower in attribution value, skewing the precision-recall
curves.

In addition to the precision-recall curves, attribution values within
the ROIs were compared to attribution values outside the ROIs. This
attribution ratio indicates whether the highest attribution values are
concentrated in the ROIs. The higher the ratio, the more concentrated
high attributions are located within the ROIs. The same analyses were
repeated for a dilated version of the ROIs, for which an additional area of
5 mm surrounding the ROIs was considered ‘inside’ the ROIs. In case
false positive attributions with a high value were located within 5 mm of
the ROIs, the ratios would substantially increase. Attributions above 10
% of the maximum attribution value were taken into account for these
analyses. Attribution ratios were determined for all simulation
experiments.

Dice similarity coefficient and false negative ROIs were also deter-
mined. Accuracy of the attribution maps acquired using real cognitive
data was not evaluated because there are no ground truth strategic
lesion locations for real data.

2.5.3. Qualitative assessment attribution maps
Attribution maps obtained in the application on real attention and
executive functioning cognitive scores were assessed visually.

3. Results
3.1. Experiment 1: Model performance with basic cognitive simulations

Total WMH lesion volume had an R? of 0.725 + 0.065 with the
simulated cognitive scores. This high value is because of the fact that the
simulated cognitive scores were directly derived from the WMH volume
in the three ROIs. True association between total WMH volume and real
cognitive scores is usually low (see also Experiment 4 in section 3.4.);
but for this technical validation study using simulated data this is not of
concern.

SVR, the FNN, and the CNN were used to predict the basic simulated
cognitive scores. Predictive performance of all three methods is pro-
vided in Table 1. The average predictive performance of the CNN across
folds was 0.964 + 0.008. For SVR and the FNN, predictive performances
were 0.875 £ 0.019 and 0.863 + 0.027, respectively.

Precision-recall AUC of the 3D lesion attribution maps was highest
for the FNN, followed by SVR, and the CNN; as can be seen in Table 1
and Figure S-1 in the Supplementary Materials. The group-level
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Table 1

Basic cognitive simulations: predictive performance and attribution map
accuracy For each method, predictions (N = 821 patients) were obtained from
5-fold cross-validation and the R? averaged across folds. Precision-recall areas
under the curve (AUC) were computed on the 5-fold mean (positive) group-level
attribution map (see Fig. 3). Predictive performance was highest for the CNN,
while the precision-recall AUC for the CNN was lowest. SVR and the FNN ob-
tained similar predictive performance and precision-recall AUCs to one another.
The ratio between attribution values inside and outside the ROIs was highest for
the CNN. SVR and the FNN achieved a much lower ratio, but were comparable to
one another. The same can be observed when ROIs were dilated with 5 mm. SD
= standard deviation. ROI = region of interest. SVR = support vector regression.
FNN = fully connected network. CNN = convolutional neural network.

Predictive Precision- Ratio attributions inside vs. outside
performance in R? recall AUC ROIs (factor increase with 5 mm ROI
Mean (SD) dilation)

SVR 0.875 (0.019) 0.693 0.13 (3.0x)

FNN  0.863 (0.027) 0.718 0.09 (2.3x)

CNN  0.964 (0.008) 0.625 1.02 (17.1x)

attribution maps are provided in Fig. 3. A standard deviation map for the
CNN is provided in Figure S-2 of the Supplementary Materials. For all
models the false positive voxels with the highest values in the attribution
maps were predominantly directly adjacent to the ROIs. Compared to
the other methods, the CNN had fewer false positive voxels more distant
from the ROIs. Hence, the relatively low AUC for the CNN was primarily
because of voxels with high attribution values directly outside the ROIs.
Although in the basic simulation all ROIs had equal weight, attribution
values varied between ROIs, with ROI 3 having the highest values. This
partly reflects differences in the relative burden of WMH in the ROIs
(mean percentage of ROI affected by WMH: 1: 8.60 %; 2: 6.23 %); 3: 8.23
%).

The CNN had the highest ratio between attribution values in- and
outside the ROIs, see Table 1. Increase in the ratio when ROIs were
dilated with 5 mm was also highest for the CNN. Figure S-3 in the
Supplementary Materials provides an overview of the attribution loca-
tions that were taken into account for these analyses (threshold of 10 %
of the maximum attribution value for each method).

Dice similarity coefficient and false negatives are reported in the
Supplementary Material. The CNN achieved the highest Dice similarity
coefficient results, consistent with the attribution ratio. No false nega-
tive ROIs were detected in group-level attribution maps.

Fig. 4 presents examples of individual attribution maps for the CNN
with XAl, for three patients with varying WMH volumes and simulated
cognitive scores. It can be seen that the CNN with XAI method correctly
highlighted the WMH in the ROIs, and did not assign considerable
contribution to the other WMHs present in these participants. When the
relative weight of ROI 2 was increased, this was directly reflected in
increased attribution values measured at this ROI; suggesting that the
CNN with XAl was able to capture these differences between ROIs. Some
attribution values fell outside the ROIs, but were in close proximity or of
substantially lower value. In case no WMH was present within an ROI,
that location was not highlighted.

3.2. Experiment 2: Model performance with modified regional weights

The basic simulation of cognitive data were altered by increasing the
contribution of ROI 2 twice, while retaining the same contribution
weight for ROIs 1 and 3, i.e.: {1,2,1} and {1,4,1}.

Just as in the analysis using basic cognitive simulations, predictive
performance for all three models was high, see Table S-3 in the Sup-
plementary Materials, with the highest R? obtained by the CNN for both
datasets with modified regional weights.

Group level attribution maps for each method are displayed in Fig. 5.
With increasing weighing of ROI 2's contribution, its attribution visibly
increased for all methods. The same outcomes were achieved in the
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individual attribution maps presented in Fig. 4. With the modified
weights, the amount of false positive voxels distant from the ROIs in SVR
and the FNN remained essentially the same.

Table 2 shows the ratios between attribution values in- and outside
the ROIs. Similar to the experiment with basic cognitive simulations, the
CNN achieved the highest ratio and highest increase with dilated ROIs.

3.3. Experiment 3: Model sensitivity to noise

Three levels of noise were added to the simulated cognitive data to
test the robustness of the three models. With a noise level of 0.25, 0.50,
and 0.75, the R? of total WMH lesion volume alone as regressor for the
simulated cognitive scores was 0.651, 0.395, and 0.062, respectively. Of
note, the explained variance of total WMH lesion volume (see Experi-
ment 4) for the real attention and executive functioning cognitive scores
was 0.013.

Changes in predictive performance and precision-recall AUC as a
result of noise are visualized in Fig. 6. Values can also be found in
Table S-4 and S-5 of the Supplementary Materials. Overall, performance
of all methods for both metrics dropped because of increasing noise. The
three models display a similar decline pattern. Attribution values inside
the ROIs compared to outside the ROIs, see Table 3, decreased with
noise. This decrease was most prominent for the CNN. The factors of
ratio increase with dilated ROIs was relatively consistent with varying
noise factors for SVR and the FNN. At a noise fraction of 0.75, the factor
for the CNN increased substantially, coinciding with low attribution
ratios for the original ROIs.

3.4. Experiment 4: Proof of principle on real world cognitive data

As a proof-of-principle demonstration, the methods were applied to
predict actual norm adjusted attention and executive functioning scores
based on WMH maps (Table 4). SVR achieved the highest predictive
performance with a mean R? of 0.291 across folds, followed by the CNN
with a mean R? of 0.216 and the FNN with a mean R? of 0.020. Variance
between cross-validation folds was highest for the CNN and smallest for
the FNN. The R? of total WMH lesion volume alone was 0.013, meaning
both the SVR and CNN achieved a much better predictive performance.

The group-level attribution maps of all methods are shown in Fig. 7.
Since no ground truth of actual strategic lesion locations can be estab-
lished for real cognitive data, maps were compared visually. The group-
level attribution maps obtained by SVR and the FNN show similar pat-
terns. The group-level attribution map of the CNN with XAI differs more,
but it does show overlapping locations with SVR and the FNN. White
matter tracts with the highest attribution values can be found in Table S-
9 of the Supplementary Materials.

Individual attribution maps for three patients with varying combi-
nations of WMH volume and attention and executive functioning scores
can be found in Fig. 8. Again, these analyses of the attribution maps are
qualitative, because no ground truth data exists. Since the predictive
performance of the methods is low, caution should be paid when
inspecting these attribution maps.

4. Discussion

In this study, we introduced a CNN combined with XAI to perform
lesion-symptom mapping for white matter hyperintensities. The CNN
showed comparable results to SVR and the FNN benchmarks in three
simulation experiments. The added benefit is that it was able to generate
patient-specific lesion attribution patterns. When applied to real data,
the predictive performance of the CNN was considerably higher than for
WMH total volume alone, but not superior to SVR. Overall, these results
support the potential application of neural network technology with XAI
for lesion-symptom mapping.

When comparing results obtained by SVR and the CNN more spe-
cifically, predictive performance of the CNN consistently surpassed that
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Fig. 3. Basic cognitive simulations: group-level lesion-symptom mapping results ROIs were the ground truth locations for the cognitive simulations. Equal
weight was assigned to the three ROIs. Positive group-level attribution values are visualized on five axial slices of MNI-152 space, indicated by z. It can be seen that
all three methods assigned the highest attribution values inside of the three ROIs. However, the CNN with XAI was able to much better localize the three ROIs and had
less false positive attributions more distant from the ROIs. SVR and the FNN had more false positive attributions further away from the three ROIs. Nevertheless, the
precision-recall AUC (Table 1) was slightly better for SVR and the FNN, since the false attributions were of relatively low value; whereas the CNN with XAI had
stronger attributions just outside the ROIs that results in a somewhat lower precision-recall AUC. SVR = support vector regression. FNN = fully connected network.

CNN = convolutional neural network.

of SVR in experiments using simulated cognitive data. On real attention
and executive functioning scores, SVR obtained somewhat better pre-
dictive performance than the CNN; but it should be noted that overall R?
was low (<0.3). In the simulation experiments, both methods showed
high attribution values in the predefined ROIs, while more variation was
observed between attribution maps obtained with real cognitive data.
Our proposed method creates patient-specific attribution maps,
whereas conventional LSM methods only establish the relationship be-
tween brain lesion and cognitive score on a group level (Seghier and
Price, 2023; Moore et al., 2024). It should be noted that attribution maps
obtained for an individual patient, such as in Fig. 8, should always be
regarded within the context of that specific patient. Lesion locations that
contribute to a higher predicted score (i.e. worse cognitive performance)
receive higher attribution values, regardless of the predicted cognitive
score. This means that individual attribution maps highlight locations
that explain why an impaired cognitive performance was predicted, not

why a cognitive score was predicted in general. Therefore, these indi-
vidual attribution maps are of value when the predicted score indicates
similar or worse cognitive ability than the measured cognitive ability.
When a predicted cognitive score indicates a better cognitive perfor-
mance than what was measured, the analysed lesion (in this case, WMH)
likely does not explain the cognitive decline and the attribution maps are
less likely to contain relevant information. In those cases, other pa-
thology that was not included in the analysis, such as infarcts and am-
yloid p deposition, may play a role in the impaired cognitive ability. In
patients for whom a worse cognitive performance was predicted than
what was measured, the patient likely has a relatively high cognitive
reserve compared to other patients in the dataset. But before the indi-
vidual attribution maps can be used in clinical research or routine,
several aspects need to be addressed. For instance, validation of the
method on different data is necessary. Moreover, a model’s certainty
score will be required for each patient to provide clinicians with an
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Fig. 4. Basic cognitive simulations and simulation with modified regional weights: individualized lesion-symptom mapping results obtained by the CNN
with XAI Examples of individual attribution maps for three simulated cognitive scores projected on axial slice 34 (containing ROI 2 right, ROI 3 left) of the MNI-152
template. WMH volume, simulated cognitive scores and predicted scores for each patient are denoted in the image. Simulated cognitive scores were based on WMH
lesion load within the three ROIs. All scores were valued between 0 and 1, where 1 related to a higher lesion load in the ROIs. WMH lesion contours are displayed in
light blue, the predefined ROI contours in green. TOP ROW: For the basic cognitive simulations, lesion load in all three ROIs was weighted equally: {1,1,1}. It can be
seen that the CNN with XAI correctly highlighted the ROIs that contained lesions and no attributions were present in locations without lesions. In patient C, who had
lesions in ROI 2 and 3, the attributed weight of ROI 3 was high, similar to the group results (Fig. 3); in patient A who only had lesions in ROI 2 this ROI had a higher
attribution. MIDDLE AND BOTTOM ROWS: Here, lesion load in ROI 2 was weighted more heavily in the simulations than the other ROIs, depicted in row 2 {1,2,1}
and 3 {1,4,1}. This yielded different simulated cognitive scores. Patient A had a white matter lesion that overlaps clearly with ROI 2, but not with the other ROIs.
Different weightings of this ROI in the simulations therefore had little effect in this patient. Patient B had very little WMH in either of the ROIs presented in the figure
and no prominent attribution can be seen in the lesions in locations outside the ROIs. Figure S-4 in the supplementary materials shows that most of the attribution
could be found in ROI 1 on axial slice 24 of MNI-152 space. With increasing ROI 2 wt, the small WMH in ROI 2 received higher attribution values. Patient C had the
highest WMH volume in this example, the lesion covered a substantial portion of the brain and overlapped with ROIs almost completely, resulting in a score of 1.00
regardless of ROI weights. With equal weighting of the ROIs, the most prominent attribution were found in ROI 3. With increased weighting of ROI 2 in the sim-
ulations, the attribution values in ROI 2 increased with higher weight relative to ROI 3. WMH vol = white matter hyperintensity volume. Sim = simulated cognitive
score. Pred = predicted cognitive score. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

indication of the potential value of attribution maps. The proposed
method of a CNN with XAI could be potentially extended in the future to
include multiple types of pathology and an uncertainty estimate of the
model’s prediction, further supporting the interpretation of individual
results.

In general, validation of attribution maps obtained with XAI is
complex (Nauta et al., 2023). In this study, we used simulated cognitive
data that enabled the evaluation of attribution maps qualitatively and
quantitatively using the precision-recall AUC based on the overlap with
the predefined ROIs. Nevertheless, the point at which attribution maps
can be considered good enough remains ambiguous. In the precision-
recall AUC, methods are penalized when attribution values are outside
of the ROIs, regardless of distance to the ROI. It could be questioned
whether a difference in a few voxels is clinically relevant and alternative
evaluation metrics are part of future research in the XAI community.
Ratios between attribution values in- and outside the ROIs provided
insight into how concentrated attribution values were located in the
ground truth locations. By also taking into account the factor increase of
this ratio when ROIs were dilated with 5 mm, information about attri-
bution values extending just beyond the ROI boundaries was considered.
This shows that the CNN has false positive attributions just outside the
ROIs, whereas the SVR and FNN approach have much more widespread
false positives throughout the brain. False negative ROIs do not appear
to be an issue with all approaches.

Evaluating LSM methods without ground truth strategic lesion lo-
cations is challenging. Methods can be compared to each other, but a
higher explained variance might not always indicate a better strategic
lesion identification. Therefore, simulated cognitive data were used to
provide ground truth locations for extensive evaluation and controlled
experimentation. However, by design, the simulated scores were highly
correlated with total WMH volume, which does not reflect the real
relation between WMH and cognitive scores. Cognitive performance in
patients is also influenced by other vascular lesion types and factors such
as amyloid p deposition in the brain and educational background. The
simulations were kept simple to demonstrate basic functioning of this
novel XAl-based method for LSM. In the simulation experiment with
noise, more realistic correlations between WMH volume and scores were
achieved. It should be noted that the noise in this experiment was
random, which is not the case in real patients. To overcome the limi-
tations of the simulated data, the proposed method was also tested on
real attention and executive functioning scores.

The simulation with modified regional weights, inspired by Zhang
etal. (Zhang et al., 2014), was implemented with the idea that lesions in
one location can have a bigger effect on a cognitive domain than other
locations. For instance, an infarct located in the Broca area will have
more effect on verbal memory than an infarct located in the motor
cortex. However, it is unclear whether this holds true for WMH. The
experiment nonetheless allowed for testing whether the various LSM
approaches could extract the non-uniform contributions to the

simulated scores. Visually, all methods assigned higher attribution
values to the location with increased contribution to the simulated
cognitive scores. The change in attribution maps as a result of modified
regional weights was most prominent for the CNN with XAI.

A sufficient amount of data is required to apply LSM methods.
Studies have been conducted to test the appropriate sample size for SVR,
where datasets of 100-120 subjects seem sufficient and performance
plateaus with larger datasets (Sperber et al., 2019). Neural networks are
known to require substantially larger dataset sizes and show increas-
ingly better performance with more data. Over time, more data, infor-
mation, and brain coverage has been acquired for LSM studies by
pooling data and creating large multi-center cohorts (Weaver et al.,
2021; Coenen et al., 2023). These datasets can be used to further vali-
date the use of neural networks for LSM with the potential prospect of
achieving increasingly better results, potentially outperforming SVR. In
this study, attribution values in ROI 2 were substantially lower without
modified regional weights, likely because of reduced lesion prevalence,
suggesting that more data might improve the model further. In the
additional experiments in section D of the Supplementary Material, we
observed that the attribution maps computed using the CNN with XAI
were more sensitive to this effect than SVR and the FNN. However,
predictive performance was more stable for the CNN when ROIs were in
low prevalence locations. Effects of varying lesion prevalence will be
included in future research.

A CNN with XAI might not always be the best LSM option. Once a
neural network has been trained, it can be applied to smaller datasets as
long as the training data has a similar distribution as the new data, e.g.
lesion distribution and volume, patient age, sex, level of education, and
diagnosis. But when a small dataset needs to be analysed and no trained
model is available, or the training data characteristics do not match the
test data, a neural network-based approach might not be ideal. Other
methods such as mass-univariate, SVR, or sparse canonical correlation
analysis for neuroimaging may be better suited (Bates et al., 2003;
Rorden et al., 2007; Zhang et al., 2014; Pustina et al., 2018). In case
computational power is limited, a neural network-based approach might
be less convenient than alternatives. However, in case individualized
information is beneficial, large datasets and computing power are
available, a CNN with XAI might be a fitting LSM method.

This study has several limitations. First, various XAI methods are
available that could be used in this study but only occlusion was used
here (van der Velden et al., 2022). The occlusion method is stable and
results in attribution maps with little noise, but it is very slow. Choosing
a different method is a trade-off between speed and crisp, stable attri-
bution maps. It should also be noted that a shift in high attribution
values of a few voxels with respect to the ROI cubes could be observed in
the attribution maps obtained with the XAI method. This might be
because occlusion relies on a sliding window principle to compute the
attribution. Convolution layers in the CNN itself might also contribute to
the shift because they rely on a similar sliding window. Second, as
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Attribution

Fig. 5. Simulation with modified regional weights: group-level lesion-symptom mapping results Positive group-level attribution values for each method are
visualized on axial slice 34 of MNI-152 space. Contours of ROI 2 (right side of the brain) and 3 (left side of the brain) are displayed in green. Each row corresponds to
a different set of ROI weights. TOP ROW: All ROI contributions to the simulated cognitive score were weighted equally, as shown previously in Fig. 3. MIDDLE AND
BOTTOM ROWS: The contribution of ROI 2 to the simulated cognitive score was weighted stronger than the other ROIs. The columns correspond to the three
different methods. It can be seen that for all methods, attribution values in ROI 2 increased with higher contribution. This is most prominent for the CNN with XAIL
The number of false positive attributions appeared consistently lowest for the CNN with XAI. SVR = support vector regression. FNN = fully connected network. CNN
= convolutional neural network. XAI = explainable artificial intelligence. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

previously mentioned, data is an important factor when using neural
networks. For training and testing a neural network, 821 subjects is a
small number. Future work could be conducted to apply the proposed
method on other and larger datasets to further validate the presented
LSM approach. In terms of the data itself, WMH were chosen as lesion

type to develop the new LSM method. A downside of using WMH instead
of infarcts is the fact that there is a weaker correlation between WMH
lesions and cognitive outcomes. Applications on infarct data might be of
value as well, since the association between infarct location and
cognitive scores is stronger than for WMH and more LSM studies have
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Table 2

Simulation with modified regional weights: ratio between attribution
values inside and outside ROIs Factor of increase with ROIs dilated with 5 mm
provided in parenthesis. Ratio of attribution values inside and outside the ROIs
was highest for the CNN. Lower, comparable ratios were found for SVR and the
FNN. A similar pattern can be observed in increase factors for dilated ROIs. SVR
= support vector regression. FNN = fully connected network. CNN = convolu-
tional neural network.

Modified regional weights configuration

{1,2,1} {1,4,1}
SVR 0.12 (3.1x) 0.13 (3.3x)
FNN 0.08 (2.5x) 0.07 (2.7x)
CNN 0.69 (8.4x) 0.93 (17.2x)
A
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Fig. 6. Effect of noise on model performance Predictive performance in R*
(A) and precision-recall AUC (B) for each LSM method for different noise
fractions (0 — 0.75). R* was determined by concatenating the predictions made
in the cross-validation and evaluating them against the artificial cognitive
scores using an ordinary least squares. Precision-recall AUC were computed on
the (positive) group-level attribution map for each method. Methods showed a
similar decline in predictive performance and precision-recall AUCs with
increasing noise fractions. PR AUC=Precision-recall area under the curve. SVR
= support vector regression. FNN = fully connected network. CNN = con-
volutional neural network.
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Table 3

Model sensitivity to noise: ratio between attribution values inside and
outside ROIs Factor of increase with ROIs dilated with 5 mm provided in
parenthesis. Ratios between attribution values inside and outside the ROIs
decrease with noise. For noise fractions 0.25 and 0.50, the CNN obtained the
highest ratios and factor increase with ROIs that were dilated with 5 mm. SVR
achieved the second highest ratios, closely followed by the FNN. SVR = support
vector regression. FNN = fully connected network. CNN = convolutional neural
network.

Noise fraction

0.25 0.50 0.75
SVR 0.12 (2.9x%) 0.07 (3.2x) 0.03 (3.7x)
FNN 0.07 (2.3x) 0.04 (3.1x) 0.03 (3.4x)
CNN 0.60 (5.4x) 0.17 (3.0x) <0.01 (323.4x)

Table 4

Proof of principle on real attention and executive func-
tioning scores: predictive performance Predictions (N =
813) made in the cross-validation were combined and eval-
uated against the real attention and executive functioning
cognitive scores using the R? obtained through an ordinary
least squares. SVR = support vector regression. FNN = fully
connected network. CNN = convolutional neural network.

Predictive performance in R?

SVR 0.291 (0.038)
FNN 0.020 (0.012)
CNN 0.216 (0.063)

been conducted on infarcts previously (de Haan and Karnath, 2018). It
should also be noted that WMH have a high prevalence and can cover a
relatively high brain volume (Duering et al., 2023). Vascular lesions
such as cerebral microbleeds and perivascular spaces are much smaller,
<10 mm and <2 mm respectively (Duering et al., 2023). LSM using
those smaller lesions poses an additional need for large datasets to
achieve substantial brain coverage, or a different approach such as a
regional-based LSM technique. Third, in this study we only considered
relatively simple CNN architectures. However, this study is intended as a
proof of principle for the use of neural networks combined with XAI for
LSM. The results warrant further study of different neural networks.
Fourth, feature selection was used in the proof-of-principle experiment.
This step was necessary to achieve a substantial model performance by
reducing the input complexity using prior knowledge of a mass-
univariate analysis. In the future, an end-to-end solution without
feature selection would be preferred to prevent potential bias of the
mass-univariate analysis. Finally, patients with cognitive decline often
exhibit multiple vascular lesions in the brain simultaneously. These le-
sions can have a cumulative impact and should therefore be accounted
for (Heinen et al., 2018). Additionally, cognition may be impaired in
multiple domains, which can be correlated and have both distinctive and
shared strategic lesion locations (Sperber et al., 2020; Weaver et al.,
2023). The current work was limited to a single input and a single
output, only enabling the analysis of a single lesion type and single
cognitive score at a time. Expanding the neural network-based LSM
method to incorporate supplementary patient information, such as
additional vascular brain lesions, disconnection information, non-lesion
related brain changes, fluid biomarkers, and risk factors may be a
valuable direction for future work.

5. Conclusion

The use of a neural network combined with eXplainable Al for lesion-
symptom mapping was introduced and evaluated in this study. Results
obtained using simulated and real cognitive data show the potential of
this novel approach, with the added benefit of generating individualized
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Fig. 7. Proof of principle on real attention and executive functioning scores: group-level lesion-symptom mapping results Positive group-level attribution
maps visualized on five axial slices of MNI-152 space for all three models. Axial slices are indicated by z. SVR and the FNN highlighted more dispersed locations and
the attributions were localized. The CNN with XAT highlighted larger locations, which may be explained by the sliding window principle on which the XAI method
(occlusion) is based. When a location of high importance is determined, the whole location of the cubic window will receive attribution values. This also explains
attribution values in non-white matter areas. Overall, all three methods appeared to have their attributions located in roughly the same parts of the brain and seem to
be in agreement. Since there is no ground truth on the actual associations with the real cognitive scores, this is a qualitative assessment. SVR = support vector

regression. FNN = fully connected network. CNN = convolutional neural network.

attribution maps. Further validation and development of the method is
necessary before it can be implemented in clinical research or routine.
This technique could be expanded to account for multiple lesion types
and multiple cognitive domains by altering the architecture of the CNN,
pushing the boundaries of lesion-symptom mapping possibilities even
further.

2.2. Data
2.2.1. Study population

Patients were included from the “Utrecht-Amsterdam clinical fea-
tures and prognosis in vascular cognitive impairment (TRACE-VCI)”
study population (Boomsma et al., 2017). In short, the aim of the
TRACE-VCI study was to investigate the clinical features and prognosis
of patients with possible VCI in a memory clinic setting. TRACE-VCI
included 860 consecutive patients with evidence of vascular brain
injury from Amsterdam University Medical Center (N = 664) and from
two outpatient memory clinics of the University Medical Center Utrecht
(N = 196). For the current study, only patients with available WMH
segmentations and successful registrations in Montreal Neurological
Institute (MNI) space (missing for N = 39) and cognitive test results for
attention and executive functioning (missing for N = 8) were eligible,
leaving a study population of 813 (Coenen et al., 2023). Median WMH
volume was 8 ml and with an interquartile range of 3.2-20.9 ml. Mean
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age was 67.5 years (SD = 8.5 years) and 46.1 % were female. Further
participant details in Supplementary Table S-1.

All patients presented with cognitive complaints at the clinics and
were eligible for TRACE-VCI if their brain MRI showed evidence of
vascular brain injury (i.e. Fazekas scale > 2), >1 lacunar infarct(s), >1
non-lacunar (large vessel) infarct(s), > 1 cerebral microbleed(s), >1
intracerebral hemorrhage(s) and/or mild WMH (Fazekas 1) with an
increased vascular risk defined as the presence of >2 vascular risk fac-
tors (hypertension, hypercholesterolemia, diabetes mellitus, obesity,
current smoking or a reported history of a vascular event other than
stroke) (Boomsma et al., 2017). Patients were included regardless of
objective cognitive severity, including patients with dementia (51 %),
mild cognitive impairment (MCI) (25 %) and no objective cognitive
impairment (24 %).

Each patient underwent a standardized extensive one-day memory
clinic evaluation including an interview, physical and (cognitive)
neurological examination, laboratory testing, standardized neuropsy-
chological testing and an MRI-scan of the brain. The studies were
approved by the medical ethics committee of Amsterdam University
Medical Center and University Medical Center Utrecht. We obtained
written informed consent from participants before conducting research-
related procedures.



R. Offenberg et al. Neurolmage: Clinical 46 (2025) 103790

Patient D

WMH vol 50.41 ml
AEF score -2.53
Predicted -2.64
Score difference 0.11

Patient E

WMH vol 43.16 ml
AEF score -0.84
Predicted -1.18
Score difference 0.34

Patient F

WMH vol 1.47 ml
AEF score -2.36
Predicted -1.64
Score difference 0.72

ATt Max map patient D

Fig. 8. Proof of principle on real attention and executive functioning scores: individualized lesion-symptom mapping results obtained by the CNN with
XAI Three patient examples of individual attribution maps. Patients were selected based on their WMH volume and attention and executive functioning score. Patient
D has a high WMH volume and a large negative Z-score, while patient E has a small negative Z-score and a high WMH volume. Patient F has a low WMH volume with
a large negative Z-score. WMH volume for each patient is denoted in the image, as well as their norm corrected attention and executive functioning Z-score, the
predicted score, and the difference between measured and predicted score. WMH lesions are depicted in blue. Colour bars were based on the attribution map of
patient D, which contained the highest attribution value among the selected patients. Because this illustrative colour bar was set based on the attribution map with
highest values, attribution maps can be compared between patients. For all patients, specific locations within the WMH map were highlighted. The highlighted
locations mostly differ among these patient examples. The model’s score prediction was best for patient D, with the smallest difference between true attention and
executive functioning score and predicted score, whereas patient F had the worst prediction. Patient F had a low WMH volume, combined with a substantially
impaired attention and executive functioning score. The chance that the WMH map would explain the score was therefore low. This combination of low WMH and
bad score is an indication that the cognitive performance of this patient is at least partly explained by information other than the WMH map. WMH vol = white
matter hyperintensity volume. AEF = attention and executive functioning. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

2.2.2. MRI data and processing Digit Span Forward and Backward, semantic fluency (animal naming, 1
min), and phonemic fluency tasks (letters, 1 min) as described by Coe-

Images were acquired using 3D fluid-attenuated inversion recovery nen et al. (2023) (Coenen et al., 2023). Scores were corrected for edu-
(FLAIR) sequences on a variety of scanners and using various parame- cation, age, and sex using Dutch population-based normative data
ters, as described previously by Boomsma et al. (2017) (Boomsma et al., published on the website of The Dutch Association of Psychologists in

2017). The following scanners were employed: 1.5 T and 3.0 T GE Signa 2012. Dutch normative data from the Wechsler Adult Intelligence Scale
HDxt, 3.0 T GE Discovery MR750, as well as 3.0 T Philips Ingenuity. The IV adjusted for age was used for the Digit Span tests. Descriptive sta-

number of acquired slices ranged from 128 to 321, voxel sizes were tistics summarizing the individual neuropsychological test results are
between 0.98-1.21 x 0.98-1.21 x 0.56-1.30 mm®, Repetition times, provided in Table S-4 of the Supplementary Materials by Coenen et al.
echo times, and inversion times differed between sequences. WMH were (2023) (Coenen et al., 2023). The percentage abnormal neuropsycho-
semi-automatically delineated on the MRI using the k-nearest neighbour logical test results can be found in Table S-2 of the Supplementary
classification with tissue type priors (KNN-TTP) method, with rigorous Materials. Finally, scores were normalized using min-max feature
quality control and visual checks of all segmentations, as described by scaling using values of the study population, where a higher score is
Groeneveld et al. (2019) (Groeneveld et al., 2019; Steenwijk et al., related to a worse cognitive performance.
2013). Segmentation masks were subsequently registered to the 1 x 1 x Simulated cognitive scores were used in the first three experiments
1 mm® MNI-152 brain template using Elastix for spatial normalization and were computed based on patients” WMH volume in selected regions-
(Fonov et al., 2011; Klein et al., 2010). of-interest, as described in more detail in Section 2.4.
2.2.3. Cognition data CRediT authorship contribution statement

Real attention and executive functioning scores were obtained by Ryanne Offenberg: Writing — original draft, Methodology, Formal
averaging norm-referenced Z-scores of the Trail Making Test part B, analysis, Conceptualization. Alberto de Luca: Writing — review &
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