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Abstract

We address the setting of Proxy Causal
Learning (PCL), which has the goal of
estimating causal effects from observed
data in the presence of hidden confounding.
Proxy methods accomplish this task using
two proxy variables related to the latent con-
founder: a treatment proxy (related to the
treatment) and an outcome proxy (related
to the outcome). Two approaches have been
proposed to perform causal effect estimation
given proxy variables; however only one of
these has found mainstream acceptance,
since the other was understood to require
density ratio estimation - a challenging task
in high dimensions. In the present work, we
propose a practical and effective implementa-
tion of the second approach, which bypasses
explicit density ratio estimation and is
suitable for continuous and high-dimensional
treatments. We employ kernel ridge regres-
sion to derive estimators, resulting in simple
closed-form solutions for dose-response and
conditional dose-response curves, along
with consistency guarantees. Our methods
empirically demonstrate superior or compa-
rable performance to existing frameworks on
synthetic and real-world datasets.

1 INTRODUCTION

Causal inference aims to measure the impact of inter-
ventions on real-world outcomes, a crucial task across
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Figure 1: An instance of a Directed Acyclic Graph
(DAG) for the PCL setting, which satisfies the re-
quired Assumption (3.2). In this graph, the gray
circles denote the observed variables: A denotes the
treatment, Y denotes the outcome, Z denotes the
treatment proxy, and W denotes the outcome proxy.
The white circle denotes the unobserved confounding
variable U . Bi-directional dotted arrows indicate that
either direction in the DAG is possible, or that both
variables may share a common ancestor.

various scientific disciplines. Examples include as-
sessing how changes in flight ticket prices will alter
consumer demand (Blundell et al., 2012), the conse-
quences of grade retention on students’ cognitive devel-
opment (Fruehwirth et al., 2016), the impact of medi-
cal treatments on patient health (Connors et al., 1996;
Choi et al., 2002), and evaluating policies such as Job
Corps (Schochet et al., 2008). In this context, the in-
tervention is referred to as a treatment, which affects
the outcome. However, estimating the causal relation-
ship between treatment and outcome is a challenging
task due to confounding variables - factors that influ-
ence both the treatment and the outcome - potentially
leading to spurious correlations.

One widely used assumption is that no unobserved
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confounding variable exists (Pearl and Robins, 1995),
which allows causal effect to be estimated via regres-
sion or backdoor adjustment (Pearl, 2009). Although
there are numerous methods relying on this assump-
tion, e.g. (Hill, 2011; Johansson et al., 2016; Yao
et al., 2018; Singh et al., 2023), it is often restric-
tive since it requires measuring all the covariates that
account for the confounding variables. Recently, a
growing literature has explored a milder assumption:
the availability of proxy variables to the latent con-
founding variables. Miao et al. (2018) demonstrated
in the Proxy Causal Learning (PCL) framework that
two proxy variables - a treatment proxy (possibly di-
rectly causally linked to the treatment) and an out-
come proxy (possibly directly causally linked to the
outcome) - are sufficient for recovering the underlying
causal relation by utilizing an outcome bridge function,
without the need to explicitly recover the confounder
(unlike Kuroki and Pearl, 2014, who explicitly recover
the confounder in the discrete-valued categorical set-
ting). The corresponding causal graph is illustrated
in Figure 1. An alternative line of research has pro-
posed methods for causal effect estimation by lever-
aging a treatment bridge function for discrete treat-
ment (Cui et al., 2024) and continuous treatment
(Deaner, 2023; Wu et al., 2024), and our approach
follows this setting. Specifically, Cui et al. (2024);
Deaner (2023) introduced a bridge function φ0(Z, a)
that satisfies E[φ0(Z, a)|W,A = a] = 1/p(A = a|W ),
where Z denotes the treatment proxy, A denotes the
treatment, and W denotes the outcome proxy, as il-
lustrated in Figure 1. They showed that the dose-
response can be identified through the expectation
E[Y φ0(Z,A)1[A = a]]. While the method of Cui et al.
(2024) is limited to discrete treatments, Wu et al.
(2024) address the case of continuous treatments by
replacing the indicator function with a kernel function
K(A − a), yielding a dose-response estimator of the
form E[Y φ0(Z, a)K(A−a)]; and by using a kernel den-
sity estimation or conditional normalizing flows to ap-
proximate p(A = a|W ). Kernel density estimates can
converge slowly when the treatment and proxy vari-
ables are high-dimensional, however (see e.g. Wasser-
man, 2006).

In the present work, we propose a treatment proxy
approach that eliminates the need for explicit density
estimation. By leveraging a slightly different bridge
function, we simplify the loss function by decompos-
ing it into terms that depend on distinct distributions,
akin to the approach of Kanamori et al. (2009), al-
lowing us to express all quantities of interest in terms
of inner products in reproducing kernel Hilbert Spaces
(RKHS), removing the need for density ratio estima-
tion. We further extend our approach to the con-
ditional dose-response curve. In summary, our main

contributions are as follows:

• We propose a novel family of kernel-based algo-
rithms to estimate causal functions in the PCL set-
ting, using a treatment bridge function;

• Our RKHS formulation allows us to provide closed-
form expressions for causal effect estimation, includ-
ing for continuous and high-dimensional treatments;

• We prove the consistency of proposed estimators;

• We demonstrate that our treatment proxy approach
matches or outperforms existing PCL algorithms.

The paper is organized as follows: Section (2) reviews
related work, Section (3) presents the problem defini-
tion and identification results, and Section (4) outlines
our estimation algorithms. Consistency results are in
Section (5), followed by experiments in Section (6).

2 RELATED WORK

Proxy causal learning (Miao et al., 2018; Deaner,
2023), building on the seminal work of Kuroki and
Pearl (2014), tackles the problem of unmeasured con-
founding by using two types of proxy variables, namely
the treatment proxy and the outcome proxy. Given
these proxies, there are two approaches to obtain the
causal effect. One approach is to estimate an outcome
bridge function. This is a function of the outcome
proxy, and we can obtain the causal effect by integrat-
ing the outcome bridge over the (observed) outcome
proxy. Miao et al. (2018) show that the outcome bridge
function is the solution of an inverse problem known as
a Fredholm integral equation of the first kind (Kress,
2013). Although it is ill-posed in general, a number of
methods have been proposed to solve it by limiting the
functional space, including sieve bases (Deaner, 2023),
RKHSs (Mastouri et al., 2021; Singh, 2023) and neural
networks (Xu et al., 2021; Kompa et al., 2022; Kallus
et al., 2021). The other approach, known as alterna-
tive PCL, considers a treatment bridge function. This
is a function of the treatment proxy, which can be
used as the adjustment weights in estimating causal
effects, similar to the inverse propensity score (Rosen-
baum and Rubin, 1983). Such a function can be ob-
tained by solving another Fredholm integral equation
(Deaner, 2023; Cui et al., 2024), but it is more chal-
lenging since it involves the conditional density func-
tion. Recently, Wu et al. (2024) proposed a “plug-in”
approach, which explicitly performs density estimation
in obtaining a treatment bridge. However, conditional
density estimation is costly and suffers from slow con-
vergence when the treatment is high-dimensional. In-
stead, we propose to bypass the need for density esti-
mation using the conditional kernel mean embedding
(Song et al., 2009; Grünewälder et al., 2012a; Park and
Muandet, 2020; Klebanov et al., 2020; Li et al., 2022).
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Proxy methods are also used in domain adaptation
under distribution shifts (Alabdulmohsin et al., 2023;
Tsai et al., 2024), where the underlying DAG resem-
bles ours. Domain adaptation focuses on transferring
models across domains with shifting unobserved
confounders (e.g., patients in different hospitals).
Tsai et al. (2024) use kernel-based outcome-bridge
function similar to (Mastouri et al., 2021), whereas
we employ treatment-bridge functions for causal
effect estimations under unmeasured confounding.
While both they and we use kernel methods, their
objectives and estimands differ, highlighting distinct
but complementary approaches.

3 PROBLEM SETTING AND
IDENTIFICATION

3.1 Problem Setting for Treatment Effects

In this section, we establish the problem setting for
learning causal effects, which are statements about the
counterfactual outcomes that arise from hypothetical
interventions. Consider the treatment A ∈ A and its
associated outcome Y ∈ R that we observe. We as-
sume the existence of an unobserved confounding vari-
able U ∈ U that affects both A and Y . Our aim is to
estimate the causal effects presented in the following
definition.

Definition 3.1. The treatment effects are:

i-) Dose-response: fATE(a) = E[E[Y |A = a, U ]]
quantifies the counterfactual mean outcome
across the entire population given the interven-
tion where everyone receives the treatment a.
ATE signifies that its semiparametric analogue is
the average treatment effect.

ii-) Conditional dose-response: fATT(a, a
′) =

E[E[Y |A = a, U ]|A = a′] quantifies the coun-
terfactual mean outcome for individuals who
actually received treatment A = a′ given the
intervention where they receive treatment a. ATT
signifies that its semiparametric analogue is the
average treatment effect on the treated.

The primary challenge in estimating these functions
is that the confounder U is not directly observable.
To address this issue, we assume access to two proxy
variables: Z, the treatment proxy, and W , the out-
come proxy. We list the assumptions below that will
be used throughout the development of our method.
The following conditional independence assumption
is implied by the graphical model in Figure (1).

Assumption 3.2. We assume the following condi-
tional independence statements: i-) Y ⊥ Z|U,A (Con-
ditional Independence for Y ), ii-) W ⊥ Z|U,A and
W ⊥ A|U (Conditional Independence for W ).

We also make the following completeness assumption.

Assumption 3.3 (Completeness). For any square
integrable function ℓ : U → R, for all a ∈ A:
E[ℓ(U)|W,A = a] = 0 p(W )−almost everywhere (a.e.)
if and only if ℓ(U) = 0 p(U)−a.e.

Both Assumptions (3.2) and (3.3) are used in the al-
ternative PCL frameworks (Deaner, 2023; Cui et al.,
2024; Wu et al., 2024). The completeness condition en-
sures that the proxy variable W has sufficient variabil-
ity relative to the unobserved confounder U , thereby
making it possible to identify the treatment effects.

3.2 Identification of the Structural Functions

In this section, we establish the identifiability of the
structural functions presented in Definition (3.1). To
obtain the ATE function given in Definition (3.1-i), we
consider the bridge function φATE

0 (z, a), defined as a
solution of the functional equation

E[φATE
0 (Z, a)|W,A = a] =

p(W )p(a)

p(W,a)
. (1)

The densities p(W ), p(A), and p(W,A) denote the
marginal distributions of W and A, and the joint dis-
tribution of (W,A), respectively. Similar to ATE, we
consider a bridge function φATT

0 (z, a, a′) to identify
fATT that satisfies the functional equation

E[φATT
0 (Z, a, a′)|W,A = a] =

p(W,a′)p(a)

p(W,a)p(a′)
. (2)

In the following theorem, we establish the identifiabil-
ity of the structural functions fATE and fATT.

Theorem 3.4. Let Assumptions (3.2) and (3.3) hold.
Furthermore, suppose that there exist square integrable
functions φATE

0 and φATT
0 that satisfy Equations (1)

and (2), respectively. Then,

1. The dose-response curve is given by
fATE(a) = E[Y φATE

0 (Z, a)|A = a].

2. The conditional dose-response curve is given by
fATT(a, a

′) = E[Y φATT
0 (Z, a, a′)|A = a].

Theorem (3.4) is proved in the supplementary mate-
rial S.M. (Section 9). The extension to settings with
additional observable confounders is in S.M. (Sec. 15).

Remark 3.5. Our ATE identification result differs
from previous works (Wu et al., 2024; Cui et al.,
2024). Specifically, (Wu et al., 2024) extends (Cui
et al., 2024) by replacing the indicator function with
a kernel for continuous treatments, identifying ATE
via expectations over p(Y, Z,A). By contrast, our ap-
proach uses conditional expectations over p(Y, Z|A =
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a), enabled by a modified bridge function definition
with an additional p(A = a) term. This distinction
highlights the novelty of our approach to ATE identi-
fication. Furthermore, unlike (Wu et al., 2024), our
approach does not require density ratio estimation for
bridge function estimation, as outlined in Section (4).

Remark 3.6. For the simpler case where
{A,Y,W,Z,U} are discrete, we present the identifi-
cation result in Theorem (14.1). Specifically, in this
setting, the dose-response can be identified through
matrix-vector multiplication of probability matrices,
which can be estimated from the variables (A, Y,W,Z),
allowing for the estimation of the dose-response curve.

In order to ensure that solutions exist for both ATE
and ATT bridge functions, we require the following
completeness assumption:

Assumption 3.7. For any square integrable function
ℓ : U → R, for all a ∈ A: E[ℓ(U)|Z,A = a] = 0
p(Z)−a.e. if and only if ℓ(U) = 0 p(U)-a.e.

The assumption above, along with mild regularity and
integrability conditions, suffices for the existence of
solutions to Equations (1) and (2). Further discussions
about the existence are provided in S.M. (Sec. 10).

4 METHODS

With the identification results of ATE and ATT func-
tions in hand, we are prepared to develop algorithms
to estimate these structural functions. To achieve this,
we must solve Equations (1) and (2). We assume that
the bridge functions reside within RKHSs. We then
use a two-stage regression approach to solve for the
bridge functions. Ultimately, we derive closed-form
solutions to estimate the structural functions.

4.1 Reproducing Kernel Hilbert Space

Consider any space F ∈ {A,W,Z}. We denote the
positive semi-definite kernel on F as kF : F ×F → R.
The corresponding canonical feature map is ϕF (f),
where ϕF (f) = kF (f, ·) ∈ HF , and HF refers to the
RKHS of real-valued functions defined on F . The in-
ner product and the norm of the RKHS are denoted by
⟨., .⟩HF and ∥.∥HF , respectively. When it is clear from
the context, we drop the subscript HF from the inner
product notation. For notational convenience, we use
HFG to denote the tensor product space HF⊗HG that
is isometrically isomorphic to S2(HG ,HF ) the Hilbert
space of Hilbert-Schmidt operators from HG to HF
(Aubin, 2011). Correspondingly, ϕFG(f, g) denotes
the tensor product feature map ϕF (f)⊗ϕG(g). Given
any distribution p(F ) on F and a kernel kF for which
E[kF (F, F )] < ∞, µF =

∫
ϕF (f)p(f)df ∈ HF is

known as the kernel mean embedding of p (Smola
et al., 2007; Gretton, 2013). Similarly, for a condi-
tional distribution p(F |g) for each g ∈ G, the operator
µF |G(g) =

∫
ϕF (f)p(f |g)df ∈ HF is called the

conditional mean embedding (CME) of p(F |g) (Song
et al., 2009; Grünewälder et al., 2012a; Park and
Muandet, 2020; Klebanov et al., 2020; Li et al., 2022).

4.2 Algorithms to Estimate Causal Functions

4.2.1 Dose-Response Estimation

To estimate the dose-response curve, we first ap-
proximate the bridge function φATE

0 , which is
defined as the solution of Equation (1). Let r(W,A)
denote p(W )p(A)/p(W,A). Our objective is to
find the optimal solution to the least-squares loss
E[(r(W,A) − E[φ(Z,A)|W,A])2]. Minimizing this
loss is challenging for two reasons: (i) it requires
knowledge of the density ratios; (ii) it involves a
conditional expectation. For the first challenge, one
could perform density ratio estimation, but this is
particularly difficult in high-dimensional settings.
We avoid the need for density ratio estimation by
simplifying the least-squares objective as follows:

E
[(
r(W,A)− E[φ(Z,A)|W,A]

)2]
= E

[
E[φ(Z,A)|W,A]2

]
−
∫

2p(w)p(a)

p(w, a)
E[φ(Z, a)|w, a]p(w, a)dwda+ const.

= E
[
E[φ(Z,A)|W,A]2

]
− 2EWEA

[
E[φ(Z,A)|W,A]

]
+ const. (3)

Here, EWEA[.] denotes decoupled expectations with
respect to p(w) and p(a), i.e., for any function
function ℓ, EWEA[ℓ(W,A)] =

∫
ℓ(w, a)p(w)p(a)dwda,

and ′const.′ represents terms independent of φ. The
above simplification allows us to avoid the need to
estimate a density ratio, since minimizing Equation
(3) does not require knowing r(W,A). To overcome
the second challenge, we assume that φATE

0 resides in
the RKHS HZA. Observe that for any φ ∈ HZA,

E[φ(Z, a)|W = w,A = a]

= E[⟨φ, ϕZ(Z)⊗ ϕA(a)⟩HZA |W = w,A = a]

= ⟨φ,E[ϕZ(Z)|W = w,A = a]⊗ ϕA(a)⟩HZA

= ⟨φ, µZ|W,A(w, a)⊗ ϕA(a)⟩HZA ,

where µZ|W,A(w, a) denotes the CME E[ϕZ(Z)|W =
w,A = a]. With this further simplification, we can
write Equation (3) as

E
[
⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⟩2HZA

]
− 2EWEA

[
⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⟩HZA

]
+ const.
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As a result, our approach to estimate the bridge
function will be a two-stage procedure: (i) The first
stage estimates the CME µZ|W,A(W,A); (ii) the
second stage minimizes the modified regression loss
using the approximated CME. Since we identify the
dose-response through a conditional expectation,
our approach requires learning an additional condi-
tional mean embedding, as outlined below, which we
consider as a third-stage regression.

First Stage Regression: Under the regularity condi-
tion that E[ℓ(Z)|W = ·, A = ·] ∈ HWA for all ℓ ∈ HZ ,
there exist an operator CZ|W,A ∈ S2(HWA,HZ) such
that µZ|W,A(w, a) = CZ|W,AϕWA(w, a) (Song et al.,
2009; Li et al., 2024). CZ|W,A is called the CME oper-
ator and can be estimated by vector-valued regression
(Grünewälder et al., 2012a; Mollenhauer and Koltai,
2020; Li et al., 2022, 2024). The estimation of the
CME operator is referred to as the first-stage regres-
sion. Given first-stage samples {wi, ai, zi}ni=1, CZ|W,A

is learned by minimizing the regularized vector-valued
least-squares cost

L̂c(C) =
1

n

n∑
i=1

∥ϕZ(zi)−CϕWA(wi, ai)∥2HZ
+λ1∥C∥2S2

i.e., ĈZ|W,A = argminC∈S2(HWA,HZ) L̂c(C). The

solution to this problem is given by ĈZ|W,A =

ĈZ,(W,A)(ĈW,A + λ1I)
−1 (Grünewälder et al., 2012b),

where ĈZ,(W,A) = 1
n

∑n
i=1 ϕZ(zi) ⊗ ϕWA(wi, ai) and

ĈW,A = 1
n

∑n
i=1 ϕWA(wi, ai)⊗ ϕWA(wi, ai).

Second Stage Regression: Given the CME estima-
tion µ̂Z|W,A(w, a) = ĈZ|W,AϕWA(w, a) from the first-
stage, we aim to minimize the modified least-squares
loss. We minimize the empirical counterpart of this
loss with Tikhonov regularization, using the CME esti-
mate µ̂Z|W,A and the second-stage data {z̃i, w̃i, ãi}mi=1.

The empirical loss L̂2SR
m (φ) is expressed as

L̂2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⟩2HZA
−

2

m(m− 1)

m∑
i,j=1
j ̸=i

〈
φ, µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)

〉
HZA

+ λ2∥φ∥2HZA

We denote its minimizer on HZA as φ̂λ2,m. This is
referred to as the second-stage regression.

Third Stage Regression: We can then estimate the
ATE function as fATE(a) ≈ E[Y φ̂λ2,m(Z, a)|A = a] in
closed-form via kernel matrices. We note that:

E[Y φ̂λ2,m(Z, a)|A = a]

= E[Y ⟨φ̂λ2,m, ϕZ(Z)⊗ ϕA(a)⟩|A = a]

= ⟨φ̂λ2,m,E[Y ϕZ(Z)|A = a]⊗ ϕA(a)⟩.

The evaluation of the above inner product requires
the estimation of E[Y ϕZ(Z)|A = a]. We obtain this
via kernel ridge regression using data from either
first-stage, second-stage, or a combination of both.
This can be considered as a third-stage regression.
Similar to the first-stage regression, we estimate
the conditional mean operator CY Z|A such that
CY Z|AϕA(a) = E[Y ϕZ(Z)|A = a]. For simplicity
in our algorithm derivations, we use first-stage
data to estimate this conditional mean. Replacing
this conditional mean with its estimate, we can
estimate the dose-response with the inner product
f̂ATE(a) = ⟨φ̂λ2,m, Ê[Y ϕZ(Z)|A = a] ⊗ ϕA(a)⟩. The
algorithm below provides the closed-form solution for
ATE estimation as a result of the three stages, and
its derivation can be found in S.M. (Sec. 11.1).

Algorithm 4.1. Let the first and second-stage data be
denoted by {zi, wi, ai}ni=1 and {w̃i, ãi}mi=1, respectively,
and (λ1, λ2, λ3) be the regularization parameters. For
F ∈ {A,W,Z} with domain F , the first-stage kernel
matrices are denoted as KFF = [kF (fi, fj)]ij ∈ Rn×n,
KFf = [kF (fi, f)]i ∈ Rn, where {fi}ni=1 denotes
the first-stage data samples. For the second-
stage variables F̃ ∈ {Ã, W̃}, the kernel matrices
are denoted as: KF̃ F̃ = [kF (f̃i, f̃j)]ij ∈ Rm×m,

KFF̃ = [kF (fi, f̃j)]ij ∈ Rn×m, KF f̃ = [kF (fi, f̃)]i ∈
Rn, and KF̃ f = [kF (f̃j , f)]j ∈ Rm. Define the
following matrices: i-) B = (KWW ⊙ KAA +
nλ1I)

−1(KWW̃ ⊙ KAÃ) ∈ Rn×m, ii-) B̄ ∈ Rn×m

is the matrix, where j-th column is given by B̄:,j =
1
m

∑m
l=1
l ̸=j

(KWW ⊙ KAA + nλ1I)
−1(KWw̃l

⊙ KAãj
),

where I ∈ Rn×n is the identity matrix. Furthermore,
let {αi}m+1

i=1 be the minimizer of the cost function

L̂2SR
m (α) = 1

mαTLTLα− 2αTM + λ2α
TNα where

L =

[
BTKZZB ⊙KÃÃ

( 1
m )T

[
BTKZZB̄ ⊙KÃÃ

]T]T ∈ Rm×(m+1),

M =

[
[BTKZZB̄ ⊙KÃÃ]

1
m

( 1
m )T

[
B̄TKZZB̄ ⊙KÃÃ

]
1
m

]
∈ R(m+1),

N =
[
L M

]
∈ R(m+1)×(m+1), 1 ∈ Rm is vector of

ones, and α =
[
α1 α2 . . . αm αm+1

]T ∈ Rm+1.
Then the dose-response estimation can be written in
closed-form as f̂ATE(a) = αTE, where

E =

[
BTDKAa ⊙KÃa(
B̄TDKAa ⊙KÃa

)
1
m

]
∈ Rm+1,

D = KZZdiag(Y )[KAA + nλ3I]
−1 ∈ Rn×n and

Y =
[
y1 y2 . . . yn

]T ∈ Rn.
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4.2.2 Conditional Dose-Response Estimation

As with the dose-response, we aim to min-
imize the least-squares loss EW,A[(r(W,A, a′) −
E[φ(Z,A, a′)|W,A])2] for conditional dose-response.
Our method allows for similar simplifications in the
second-stage regression as before, thereby bypassing
explicit density estimation in minimizing the loss func-

tion L2SR. Let r(W,A, a′) = p(W,a′)p(A)
p(W,A)p(a′) and suppose

that the bridge function φ lies in the RKHS HZAA
(which denotes HZ ⊗HA ⊗HA). Specifically, the loss
function can be simplified as (see S.M., Sec. 11.2):

E[(r(W,A, a′)− E[φ(Z,A, a′)|W,A])2]

= E[⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)⟩2]

− 2EA[⟨φ,CZ|W,A(EW |A=a′ [ϕW(W )]⊗ ϕA(A))

⊗ ϕA(A)⊗ ϕA(a
′)⟩] + const.

The notation EW |A=a′ denotes the expectation with
respect to the conditional distribution p(W |A =
a′), i.e., for any function ℓ, EW |A=a′ [ℓ(W )] =∫
ℓ(w)p(w|a′)dw. We need to estimate the CME

E[ϕW(W )|A = a′], which can be obtained using kernel
ridge regression on second-stage data, and expressed in
closed form as Ê[ϕW(W )|A = a′] =

∑m
i=1 θiϕW(w̃i) =

ΦWθ, where θ = (KÃÃ + mζI)−1KÃa′ , ΦW =[
ϕW(w̃1) . . . ϕW(w̃m)

]
, and ζ is the regularization

parameter for this CME estimate. Hence, we can write
the sample-based loss, L̂2SR

m (φ), of the second-stage re-
gression with Tikhonov regularization,

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2

− 2

m

m∑
i,j=1
i̸=j

⟨φ, θiµ̂Z|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′)⟩

+ λ2∥φ∥2HZAA
.

Using the estimate φ̂λ2,m for φATT
0 from the sec-

ond stage regression, the conditional dose-response
curve is given by the inner product f̂ATT(a, a

′) =

⟨φ̂λ2,m, Ê[Y ϕZ(Z)|A = a] ⊗ ϕA(a) ⊗ ϕA(a
′)⟩, where

we again need the conditional mean Ê[Y ϕZ(Z)|A = a]
as for the dose-response algorithm. The algorithm be-
low provides a closed-form solution for the conditional
dose-response estimate, with proof in S.M. (Sec. 11.2).

Algorithm 4.2. Denote the first- and second-stage
data as {zi, wi, ai}ni=1 and {w̃i, ãi}mi=1, respectively,
and let (λ1, λ2, λ3, ζ) be the regularization parameters.
Define the kernel matrices, the matrix D ∈ Rn×n, and
the matrix B ∈ Rn×m as in Algorithm (4.1). Further-
more, define B̃, where j-th column is given by B̃:,j =∑m

l=1
l ̸=j

(KWW ⊙ KAA + nλ1I)
−1(θlKWw̃l

⊙ KAãj
)

with θi = [(KÃÃ + mζI)−1KÃa′ ]i. For a given

a′, let {αi}m+1
i=1 be the minimizer of L̂2SR

m (α) =

kA(a
′, a′)

(kA(a′,a′)
m αTLTLα − 2αTM + λ2α

TNα
)

where

L =

[
BTKZZB ⊙KÃÃ

( 1
m )T

[
BTKZZB̃ ⊙KÃÃ

]T]T ∈ Rm×(m+1),

M =

[
[BTKZZB̃ ⊙KÃÃ]

1
m

( 1
m )T

[
B̃TKZZB̃ ⊙KÃÃ

]
1
m

]
∈ R(m+1),

and N =
[
L M

]
∈ R(m+1)×(m+1). Then, the

conditional dose-response estimate can be written in
closed-form as f̂ATT(a) = kA(a

′, a′)αTE, where

E =

[
BTDKAa ⊙KÃa(
B̃TDKAa ⊙KÃa

)
1
m

]
∈ Rm+1.

5 CONSISTENCY

We present non-asymptotic uniform consistency guar-
antees for the dose-response curve; similar guarantees
for the conditional dose-response curve are provided
in S.M. (Sec. 12). We recall that for the third-stage
regression, we can re-use data from the first and sec-
ond stages, and we denote by t the number of samples
used for that stage; thus n,m, t are the number of
samples used in stages 1, 2, and 3, respectively. Like-
wise λ1, λ2, λ3 are the regularization parameters for
their respective stages. We assume that each regres-
sion stage is well specified, as follows:

Assumption 5.1. (1) There exists CZ|W,A ∈
S2(HWA,HZ) such that µZ|W,A(W,A) =
CZ|W,AϕWA(W,A); (2) There exists a so-
lution φ0 ∈ HZA of Equation (1); (3)
There exists CY Z|A ∈ S2(HA,HZ) such that
E[Y ϕZ(Z)|A] = CY Z|AϕA(A).

We impose the following additional conditions.

Assumption 5.2. For F ∈ {A,W,Z}, we assume

i. F is a Polish space;

ii. kF (f, .), is continuous for almost every f ∈ F and
is also bounded by κ for almost every f ∈ F , i.e.,
supf∈F ∥kF (f, .)∥HF ≤ κ;

iii. There exists R, σ > 0 such that ∀ q ≥ 2, PA−almost
surely, E[(Y − E[Y | A])q | A] ≤ 1

2q!σ
2Rq−2.

Assumption 5.3. Let φ̄0 be the minimum RKHS
norm bridge function solution from Definition (12.2),
and let Σ1, Σ2, and Σ3 be covariance operators asso-
ciated with first, second, and third-stage regressions,
respectively, as defined in Definition (12.4). We as-
sume that the following conditions hold:

i. There exists a constant B1 < ∞ such that for a given

β1 ∈ (1, 3], ∥CZ|W,AΣ
− β1−1

2
1 ∥S2(HWA,HZ) ≤ B1
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ii. There exists a constant B2 < ∞ such that for a

given β2 ∈ (1, 3], ∥Σ− β2−1
2

2 φ̄0∥HZA ≤ B2.

iii. There exists a constant B3 < ∞ such that for a

given β3 ∈ (1, 3], ∥CY Z|AΣ
− β3−1

2
3 ∥S2(HA,HZ) ≤ B3.

Note that Assumption (3.7) implies that there exists
a solution of Equation (1), Assumption (5.1-2) further
requires that at least one solution lies in the RKHS.
The Bernstein condition in Assumption (5.2-iii) regu-
lates observation noise, while the source condition in
Assumption (5.3) links regression smoothness to co-
variance operators (Caponnetto and De Vito, 2007;
Fischer and Steinwart, 2020). Theorem (5.4) also as-
sumes an eigenvalue decay condition in Assumption
(12.9) to characterize RKHSs’ effective dimension.

Theorem 5.4. Let Assumptions (3.2), (3.3), (3.7),
(5.1), (5.2), (5.3) and (12.9) hold with parameters
β1, β2, β3 ∈ (1, 3] and p1, p2, p3 ∈ (0, 1]. Set λ1 =

n− 1
β1+p1 and λ3 = t−

1
β3+p3 . Fix ι > 0 and n =

mι
β1+p1
β1−1 .

i. If ι ≤ β2+1
β2+p2

, let λ2 = m− ι
β2+1 , then

∥f̂ATE − fATE∥∞ = Op

(
t−

1
2

β3−1
β3+p3 +m− ι

2
β2−1
β2+1

)
ii. If ι ≥ β2+1

β2+p2
, let λ2 = m− 1

β2+p2 , then

∥f̂ATE − fATE∥∞ = Op

(
t−

1
2

β3−1
β3+p3 +m− 1

2
β2−1
β2+p2

)
The proof and details on the assumptions are given in
S.M. (Sec. 12). Parameters {pi}3i=1 control the effec-
tive dimension of the RKHSs used in the three stages
(Caponnetto and De Vito, 2007). A value pi → 0 cor-
responds to a finite dimensional RKHS, while larger
pi means slower decay of eigenvalues of the covariance
operator and hence a larger effective dimension. Pa-
rameters {βi}3i=1 control the smoothness of CZ|W,A,
φ0 and CY Z|A respectively. Larger βi corresponds to
a smoother operator or function. ι controls the ratio
between stage 1 and stage 2 samples to achieve a fast
rate in the setting (ii). Indeed, at ι = (β2+1)/(β2+p2),

the convergence rate (m− 1
2

β2−1
β2+p2 ) is minimax optimal

inm while requiring the fewest observations from stage
1 (Caponnetto and De Vito, 2007).

Comparison to outcome bridge function. Con-
vergence guarantees for ATE when the outcome bridge
technique is used have rate t−1/2 instead of our rate

t−
1
2

β3−1
β3+p3 (Mastouri et al. (Proposition 1 2021), Singh

(Theorem 4 2023)). This is a consequence of the fact
that our treatment bridge algorithm requires a third
regression for stage 3, while the outcome bridge ap-
proach only requires an averaging for stage 3. While
this poses a disadvantage in principle, it may be less
important in practice than the ease of estimation of
the treatment bridge vs the outcome bridge, in the

same way that IPW and direct estimates may each be
advantageous in different regimes (Bang and Robins,
2005). This can be observed in our experiments. More-
over, in Mastouri et al. (2021); Singh (2023), the rates
stop improving at smoothness βi = 2 while our rates
improve up to βi = 3. This improvement is obtained
from a tighter control of the approximation error in
RKHS norm, as observed by Meunier et al. (2023, Re-
mark 7). This improvement can also be applied to
previous works with an outcome bridge. Last, we em-
phasize that for consistency in the well-specified case,
as treated by Mastouri et al. (2021); Singh (2023) and
in our work, the kernels are not required to be charac-
teristic (contrary to assumptions made in the earlier
works), nor is Y required to be bounded (Y need only
be sub-exponential).

Saturation effect. Benefits from high smoothness
beyond the saturation point at βi = 3 can be obtained
by using alternative spectral regularization techniques
(Engl et al., 1996). Results were recently obtained by
Meunier et al. (2025) for conditional mean embedding
learning. The application to the proxy setting is an
interesting topic of future study.

6 NUMERICAL EXPERIMENTS

In this section, we assess the empirical performance of
our proposed framework for estimating causal struc-
tural functions using both synthetic data and real-
world tasks. We compare our method to other PCL
frameworks, including Proximal Kernel Inverse Prob-
ability Weighted (PKIPW) (Wu et al., 2024), Kernel
Negative Control (Singh, 2023), Proxy Maximum Mo-
ment Restriction (PMMR) (Mastouri et al., 2021) and
Kernel Proxy Variable (KPV) (Mastouri et al., 2021).
Additionally, for an ATT experiment, we compare
our method to the Kernel-ATT algorithm proposed
in (Singh et al., 2023), which assumes access to the
confounding variable U . For each experiment (except
those involving PKIPW), we employed a Gaussian
kernel kF (fi, fj) = exp(−∥fi − fj∥22/(2l2)) unless oth-
erwise stated, where l is the length-scale of the kernel.
The Gaussian kernel’s length scale was selected using
the median interpoint distance heuristic, if not spec-
ified otherwise. In the PKIPW experiments, we used
the Epanechnikov kernel, consistent with the original
implementation of Wu et al. (2024). To select the reg-
ularization parameters λ1 and λ3 (and ζ for the ATT)
in our proposed methods, we employed leave-one-out
cross-validation (LOOCV), which has a closed-form
expression in the case of kernel ridge regression. For
tuning the second-stage regularization parameter λ2,
we used the first-stage data as a held-out set to mea-
sure the validation loss, with added complexity reg-
ularization to avoid overfitting (Meanti et al., 2022).
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Figure 2: Dose-response curve estimation across various datasets and algorithms: Kernel Alternative Proxy
(Ours), PKIPW (Wu et al., 2024), Kernel Negative Control (Singh, 2023), KPV (Mastouri et al., 2021), and
PMMR (Mastouri et al., 2021). (a) Synthetic low-dimensional setting, (b) dSprite dataset, (c) legalized abortion
and crime dataset, and (d) grade retention and cognitive outcome datasets.

Additional details, including ablation studies, hyper-
parameter selection procedures, and a GitHub link to
our implementation can be found in S.M. (Sec. 13).

6.1 Dose-Response Experiments

We assess the performance of our proposed ATE
algorithm on four datasets that are described below.

Low-Dimensional Setting: We use the data gen-
eration process outlined by (Wu et al., 2024), which
incorporates a non-linear relationship between treat-
ment and outcome:

U1 ∼ U [−1, 2], U2 ∼ U [0, 1]− 1[0 ≤ U1 ≤ 1],

W = [U2 + U [−1, 1], U1 +N (0, 1)]

Z = [U2 +N (0, 1), U1 + U [−1, 1]], A := U1 +N (0, 1)

Y := 3 cos(2(0.3U2 + 0.3U1 + 0.2) + 1.5A) +N (0, 1),

where U [a, b] denotes the uniform distribution over the
interval [a, b], and N (µ, σ2) denotes Gaussian distribu-
tion with mean µ and variance σ2. We use training sets
of size 500, 1000, and 2000 in our experiments. Figure
(2a) illustrates the mean squared error results, aver-
aged over 30 realizations, comparing our method to
other approaches. Our proposed method outperforms
PKIPW and Kernel Negative Control, particularly as
the size of the training data increases.

dSprite: The Disentanglement testing Sprite dataset
(dSprite) contains images of size 64 × 64, described
by latent parameters: scale, rotation, posX, and posY
(Matthey et al., 2017). This dataset has been used
to test the disentenglament properties of unsupervised
models (Higgins et al., 2017). Xu and Gretton (2023)
introduced benchmark dataset for PCL setting, where
they treat the dSprite images as the high-dimensional
treatments. Specifically, they consider the flattened
image that is corrupted by Gaussian noise as the treat-
ment, and the structural function of interest is defined

as fATE(A) = (∥BA∥22 − 3000)/500, where A ∈ R4096

and B ∈ R10×4096, with entries of B given by Bij =
|32− j|/32. The outcome is defined by the expression
Y = 12(posY − 0.5)2fATE(A) + ϵ where ϵ ∼ N (0, 0.5).
The treatment inducing proxy Z ∈ R3 includes three
variables: scale, rotation, posX. The outcome-inducing
proxy is another dSprite image that shares the same
posY variable as the treatment while the remaining
variables are fixed as scale = 0.8. rotation = 0, and
posX = 0.5. We use training sets of size 500, 1000,
and 2000 in our experiments. Figure (2b) shows the
mean squared error results averaged over 30 realiza-
tions, comparing our method to other approaches. As
the code of (Wu et al., 2024) does not support the high
dimensional treatment, we do not report results for
PKIPW in this experiment. Our method outperforms
Kernel Negative Control and achieves comparable per-
formance to KPV and PMMR.

Legalized Abortion and Crime Dataset: We an-
alyze the data from (Donohue and Levitt, 2001), as
preprocessed by (Woody et al., 2020), following a sim-
ilar approach to (Mastouri et al., 2021; Wu et al.,
2024). The data is sourced from the GitHub reposi-
tory of the code published by (Mastouri et al., 2021)1.
The key variables in the causal graph are summa-
rized as follows: (i) treatment variable (A): effec-
tive abortion rate, (ii) outcome varible (Y ): mur-
der rate, (iii) treatment proxy variable (Z): generos-
ity to aid families with dependent children, and (iv)
outcome proxy variable (W ): beer consumption per
capita, log-prisoner population per capita, and con-
cealed weapons law. The remaining variables are cap-
tured by the unobserved confounding variable set U .
Figure (2c) demonstrates the mean squared error re-
sults averaged over 30 realizations and compares our
method to other approaches (we tested each of the
10 data files1 with three different data splits). Our
method outperforms PKIPW and delivers comparable
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results to other kernel-based methods. Compared to
Kernel Negative Control, our method achieves a lower
mean squared error but exhibits a higher variance.

Grade Retention and Cognitive Outcome: We
apply our proposed method to study the effect of grade
retention on the long-term cognitive outcome using
data from the ECLS-K panel study (Fruehwirth et al.,
2016; Deaner, 2023). We obtain the data from (Mas-
touri et al., 2021),1 where the key variables are as fol-
lows: (i) treatment variable (A): grade retention, (ii)
outcome variable (Y ): cognitive test scores in Maths
and Readings at age 11, (iii) treatment proxy variable
(Z): the average of 1st/2nd and 3rd/4th year elemen-
tary scores, and (iv) outcome proxy variable (W ): the
cognitive and behavioral test scores from kindergarten.
Figure (2d) presents the mean squared error results av-
eraged over 30 realizations (3 realizations for each of
the 10 data files), along with a comparison to other
methods. In both of the datasets (IR: Reading grade
retention; IM: Math grade retention), our proposed
method performs better than PKIPW.

Further Comparison of Our Approach With
Outcome Bridge-Based Methods: A key question
as a result of our experiments is whether our method
outperforms outcome bridge-based methods under cer-
tain conditions. To address this, we conduct an abla-
tion study, detailed in S.M. (Sec. 13.5.1), compar-
ing both approaches across six synthetic settings that
vary the informativeness of two proxy variables, Z and
W , relative to the confounders. The results, summa-
rized in Table (1), indicate that our method performs
better in settings where W is more informative, while
outcome bridge-based methods excel when Z is more
informative. Our analysis suggests that our method is
more robust to violations of the completeness Assump-
tion (3.7)—which ensures the existence of treatment
bridge functions—while outcome bridge-based meth-
ods depend on this assumption for identifiability. We
hypothesize that our method is more sensitive to vi-
olations of the identifiability condition (as defined by
Assumption 3.3) than to violations of the bridge func-
tion existence condition. Further experiments with the
Job Corps dataset in S.M. (Sec. 13.5.2) support these
findings and highlight the complementary strengths of
treatment and outcome bridge-based methods. Future
work will explore these trade-offs in greater depth.

6.2 Synthetic Data Experiment for ATT

To demonstrate the effectiveness of our proposed
method in conditional dose-response curve estimation,
we use the low-dimensional synthetic data setting from
the previous section. In particular, we train our

1https://github.com/yuchen-zhu/kernel_proxies

method to estimate fATT(a, a
′) for different values of

a′. Figure (3) shows dose-response estimates for a′ ∈
{−1,−0.5, 0.25, 0.5} using data size of 2000. We com-
pare with Kernel-ATT (Singh et al., 2023) and Kernel
Negative Control (Singh, 2023). The Kernel-ATT al-
gorithm assumes access to the confounding variables U
so we used the variables (A, Y, U) for this algorithm,
making it an oracle method. Notably, our method
produces results closer to Kernel-ATT than achieved
by Kernel Negative Control. S.M. (Sec. 13.5.2) pro-
vides additional experimental results on the Job Corps
dataset for conditional dose-response.
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Figure 3: Conditional dose-response curve estimation
for synthetic low-dimensional data across a′ values
and algorithms (averaged over 30 different runs) -
mean solid line and standard deviation envelopes.

7 CONCLUSION

We propose a methodology for proxy causal learn-
ing that leverages a treatment bridge function. Our
method enables the recovery of causal effects in the
graphical model illustrated in Figure (1). It requires
access to two proxy variables to the latent confounding
variable, along with widely used completeness assump-
tions in the PCL setting. Our approach is practical
for two key reasons. First, it avoids density ratio esti-
mation - a challenging task in high dimensions. This
enables strong performance even for high dimensional
treatments, as demonstrated in the dSprite experi-
ment. Second, the RKHS formulation of the problem
allows for strong consistency guarantees, and closed
form solutions that are easily implemented via matrix
operations.

https://github.com/yuchen-zhu/kernel_proxies
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Grünewälder, S., Lever, G., Baldassarre, L., Pontil,
M., and Gretton, A. (2012b). Modelling transition
dynamics in mdps with rkhs embeddings. In Inter-
national Conference on Machine Learning.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot,
X., Botvinick, M., Mohamed, S., and Lerchner, A.
(2017). beta-VAE: Learning basic visual concepts
with a constrained variational framework. In Inter-
national Conference on Learning Representations.

Hill, J. L. (2011). Bayesian nonparametric modeling
for causal inference. Journal of Computational and
Graphical Statistics, 20:217–240.

Johansson, F., Shalit, U., and Sontag, D. (2016).
Learning representations for counterfactual infer-
ence. In International Conference on Machine
Learning.

Kallus, N., Mao, X., and Uehara, M. (2021). Causal
inference under unmeasured confounding with neg-
ative controls: A minimax learning approach.



Bariscan Bozkurt, Ben Deaner, Dimitri Meunier, Liyuan Xu, Arthur Gretton

Kanamori, T., Hido, S., and Sugiyama, M. (2009). A
least-squares approach to direct importance estima-
tion. J. Mach. Learn. Res., 10:1391–1445.

Klebanov, I., Schuster, I., and Sullivan, T. J. (2020).
A rigorous theory of conditional mean embeddings.
SIAM Journal on Mathematics of Data Science,
2(3):583–606.

Kompa, B., Bellamy, D., Kolokotrones, T., Beam, A.,
et al. (2022). Deep learning methods for proximal in-
ference via maximum moment restriction. Advances
in Neural Information Processing Systems.

Kress, R. (2013). Linear Integral Equations. Applied
Mathematical Sciences. Springer New York.

Kuroki, M. and Pearl, J. (2014). Measurement
bias and effect restoration in causal inference.
Biometrika, 101(2):423–437.

Li, Z., Meunier, D., Mollenhauer, M., and Gretton,
A. (2022). Optimal rates for regularized conditional
mean embedding learning. Advances in Neural In-
formation Processing Systems.

Li, Z., Meunier, D., Mollenhauer, M., and Gretton,
A. (2024). Towards optimal sobolev norm rates
for the vector-valued regularized least-squares al-
gorithm. Journal of Machine Learning Research,
25(181):1–51.

Mastouri, A., Zhu, Y., Gultchin, L., Korba, A., Silva,
R., Kusner, M. J., Gretton, A., and Muandet, K.
(2021). Proximal causal learning with kernels: Two-
stage estimation and moment restriction. In Inter-
national Conference on Machine Learning.

Matthey, L., Higgins, I., Hassabis, D., and Lerchner,
A. (2017). dsprites: Disentanglement testing sprites
dataset. https://github.com/deepmind/dsprites-
dataset/.

Meanti, G., Carratino, L., De Vito, E., and Rosasco,
L. (2022). Efficient hyperparameter tuning for large
scale kernel ridge regression. In Camps-Valls, G.,
Ruiz, F. J. R., and Valera, I., editors, Proceedings
of The 25th International Conference on Artificial
Intelligence and Statistics, volume 151 of Proceed-
ings of Machine Learning Research, pages 6554–
6572. PMLR.

Meunier, D., Li, Z., Christensen, T., and Gretton, A.
(2024). Nonparametric instrumental regression via
kernel methods is minimax optimal. arXiv preprint
arXiv:2411.19653.

Meunier, D., Li, Z., Gretton, A., and Kpotufe, S.
(2023). Nonlinear meta-learning can guarantee
faster rates. arXiv preprint arXiv:2307.10870.

Meunier, D., Shen, Z., Mollenhauer, M., Gretton, A.,
and Li, Z. (2025). Optimal rates for vector-valued

spectral regularization learning algorithms. Ad-
vances in Neural Information Processing Systems,
37:82514–82559.

Miao, W., Geng, Z., and Tchetgen Tchetgen, E.
(2018). Identifying causal effects with proxy vari-
ables of an unmeasured confounder. Biometrika,
105(4):987—993.

Mollenhauer, M. and Koltai, P. (2020). Nonparametric
approximation of conditional expectation operators.
arXiv preprint arXiv:2012.12917.

Mollenhauer, M., Mücke, N., and Sullivan, T. (2022).
Learning linear operators: Infinite-dimensional re-
gression as a well-behaved non-compact inverse
problem. arXiv preprint arXiv:2211.08875.

Muandet, K., Jitkrittum, W., and Kübler, J. M.
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Supplementary Materials for Density Ratio-based Proxy Causal
Learning Without Density Ratios

Section (8) reviews the previous work on treatment bridge function-based and outcome bridge function-based
proxy causal learning frameworks. In Section (9), we provide the proofs for identifiability of the dose-response
and the conditional dose-response curves. Section (10) contains the proofs for existence of the bridge function.
In Section (11), we derive the algorithms for estimating the dose-response and the conditional dose-response
curves. The proofs for the consistency results of our approach are provided in Section (12). Section (13)
offers the additional details on the numerical experiments and ablation studies while Section (14) discusses the
identifiability of the dose-response in the discrete case as a specific example. Finally, Section (15) discusses the
extension of our method to settings with additional observed confounding variables.

8 COMPARISON WITH OTHER METHODS

In Section (6) and S.M. (Sec. 13.5), we compare our method with other proxy causal learning algorithms: Prox-
imal Kernel Inverse Probability Weighted (PKIPW) (Wu et al., 2024), Kernel Proxy Variable (KPV) (Mastouri
et al., 2021), Proximal Maximum Moment Restriction (PMMR) (Mastouri et al., 2021), and Kernel Negative
Control (KNC) (Singh, 2023). Here, we further examine these baselines, focusing on their assumptions, bridge
functions, and suitability for high-dimensional settings.

Proximal Kernel Inverse Probability Weighted (PKIPW): PKIPW extends the binary treatment
framework of (Cui et al., 2024) to continuous treatments (Wu et al., 2024). Cui et al. (2024) introduced a
treatment bridge function φ0(z, a) satisfying

E[φ0(Z, a)|W,A = a] =
1

p(A = a|W )

to identify the ATE in the binary case via

fATE(a) = E[1[A = a]Y φ0(Z,A)].

This result relies on the following completeness assumptions (Assumptions (10) and (11) in (Cui et al., 2024)):

Assumption 8.1. Let ℓ1 : U → R and ℓ2 : W → R be square integrable functions. Assume that the following
conditions hold for all a ∈ A,:

i. E[ℓ1(U)|W = w,A = a] = 0 ∀w ∈ W if and only if ℓ1(U) = 0 p(U)−almost everywhere

ii. E[ℓ2(W )|Z = z,A = a] = 0 ∀z ∈ Z if and only if ℓ2(W ) = 0 p(W )−almost everywhere

Furthermore, they leverage the following completeness assumption in order to obtain the uniqueness of the
treatment bridge function:

Assumption 8.2. Let ℓ : Z → R be any square integrable function. Assume that the following conditions hold
for all a ∈ A: E[ℓ(Z)|W = w,A = a] = 0 ∀w ∈ W if and only if ℓ(Z) = 0 p(Z)−almost everywhere.

PKIPW adapts this to continuous treatments by replacing the indicator function with a kernel function:

fATE(a) = E[1[A = a]Y φ0(Z,A)] ≈
1

n

n∑
i=1

Kl(ai − a)φ0(zi, a)yi, (4)

where Kl is a kernel function with the bandwidth variable l. In particular, their approximation relies on their
result

E[1[A = a]Y φ0(Z,A)] = lim
l→0

[Kl(A− a)Y φ0(Z,A)]
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under the condition that E[1[A = a]Y φ0(Z,A)] is continuous and bounded uniformly with respect to a (see
Theorem 4.2 in (Wu et al., 2024)).

PKIPW requires estimating the policy function 1
p(A=a|W ) via kernel density estimation or conditional normalizing

flows (CNFs) which adds computational complexity. In contrast, our approach bypasses density ratio estimation
by modifying the bridge function (see Section (4)). Moreover, while PKIPW assumes uniqueness of the treatment
bridge function with Assumption (8.2), we show that convergence to the minimum RKHS norm solution suffices
for consistency. Additionally, PKIPW’s completeness condition on Z (Assumption (8.1-ii)) is stronger than
our Assumption (3.7). Thus, our approach is more feasible and computationally desirable as reinforced by the
experimental results shown in Figures (2a), (2c), and (2d). In Figure (2b) for dSprite experiment with high
dimensional treatment, we could not produce result for PKIPW due to its published code being limited to
univariate treatments. However, our method successfully handles high-dimensional treatments, as evidenced by
the results in the dSprite experiment, showcasing another advantage.

Outcome Bridge Function-Based Approaches with Kernel Methods: (Mastouri et al., 2021) and
(Singh, 2023) introduced kernel-based PCL approaches leveraging an outcome bridge function h(w, a) that sat-
isfies

E[Y |A = a, Z = z] =

∫
W

h(a,w)p(w|a, z)dw.

Given this outcome bridge function, Wang Miao and Tchetgen (2024) showed that the dose-response can be
identified as

fATE(a) =

∫
h(a,w)p(w)dw.

Both (Mastouri et al., 2021) and (Singh, 2023) rely on the following completeness conditions:

Assumption 8.3. Let ℓ1 : U → R and ℓ2 : W → R be square integrable functions. Assume that the following
conditions hold for all a ∈ A, x ∈ X :

i. E[ℓ1(U)|Z = z,A = a] = 0 ∀z ∈ Z if and only if ℓ1(U) = 0 p(U)−almost everywhere

ii. E[ℓ2(Z)|W = w,A = a] = 0 ∀w ∈ W if and only if ℓ2(Z) = 0 p(Z)−almost everywhere.

(Xu et al., 2021; Deaner, 2023) later showed that Assumption (8.3-ii) can be replaced by the weaker condition:

Assumption 8.4. Let ℓ : U → R be any square integrable function. Assume that the following conditions hold
for all a ∈ A: E[ℓ(U)|W = w,A = a] = 0 ∀w ∈ W if and only if ℓ(U) = 0 p(U)−almost everywhere.

Notably, these completeness conditions align with those in our approach: Assumption (3.3) corresponds to
Assumption (8.4), while Assumption (3.7) matches Assumption (8.3-i). However, they serve different purposes.
We use Assumption (3.3) to ensure identifiability of the causal structural function with treatment bridge function,
while outcome bridge-based methods use it to guarantee the existence of the outcome bridge function. Similarly,
we employ Assumption (3.7) to establish the existence of the treatment bridge function, whereas outcome bridge-
based methods use it for causal function identifiability.

Mastouri et al. (2021) introduced two estimation algorithms: KPV, which learns the bridge function in two
stages, and PMMR, which leverages a closed-form solution under the Maximum Moment Restriction framework
(Muandet et al., 2020). Singh (2023) proposed KNC, an alternative kernel-based approach with a different
outcome bridge function representation. Since both methods employ kernel techniques, they are well-suited for
high-dimensional settings. For algorithmic details, we refer readers to the respective papers.

9 IDENTIFICATION PROOFS

9.1 Identifiability of Dose-Response Curve

In this section, we prove Theorem (3.4-1.) for fATE. For completeness, we state the theorem here again.
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Theorem 9.1. Suppose that there exists a square integrable bridge function φ0 : Z × A → R that satisfies the
following functional equation

E[φ0(Z, a)|W,A = a] =
p(W )p(A)

p(W,A)
, a ∈ A.

Furthermore, suppose that Assumptions (3.2) and (3.3) hold. Then, the dose-response curve is given by

fATE(a) = E[Y φ0(Z, a)|A = a], a ∈ A.

Proof. Suppose that

E[φ0(Z,A)|W,A] =
p(W )p(A)

p(W,A)
.

Then, note the following, for a ∈ A,

E[φ0(Z, a)|W,A = a] = EU |W,A=a[E[φ0(Z, a)|U,W,A = a]] (by Law of Total Expectation)

= EU |W,A=a[E[φ0(Z, a)|U,A = a]] (since Z ⊥ W |U , Assumption (3.2))

On the other hand,

p(w) =

∫
p(w|u)p(u)du =

∫
p(w|a, u)p(u)du (since W ⊥ A|U , Assumption (3.2))

=

∫
p(u|w, a)p(w|a)

p(u|a)
p(u)du (Baye’s Rule)

=

∫
p(u|w, a)p(w, a)

p(u, a)
p(u)du = p(w, a)

∫
p(u)

p(u, a)
p(u|w, a)du

= p(w, a)E

[
p(U)

p(U, a)

∣∣∣∣∣W = w,A = a

]
As a result,

p(W )

p(W,a)
= E

[
p(U)

p(U, a)

∣∣∣∣∣W,A = a

]
⇒ p(W )p(a)

p(W,a)
= E

[
p(U)p(a)

p(U, a)

∣∣∣∣∣W,A = a

]
. (5)

For every value a ∈ A, it therefore holds p(W )-a.e. that

EU |W,A=a[E[φ0(Z, a)|U,A = a]] = E

[
p(U)p(a)

p(U, a)

∣∣∣∣∣W,A = a

]
.

Therefore, due to Assumption (3.3), we have for all a ∈ A,

E[φ0(Z, a)|U,A = a] =
p(U)p(a)

p(U, a)
p(U)− a.e. (6)

Next, we observe that

E[E[Y |A = a, U ]] =

∫
E[Y |A = a, u]p(u)du =

∫
E[Y |A = a, u]

p(u)p(a)

p(u, a)

p(u, a)

p(a)
du

=

∫
E[Y |A = a, u]

p(u)p(a)

p(u, a)
p(u|a)du = EU |A=a

[
E[Y |A = a, U ]

p(U)p(a)

p(U, a)

]

= EU |A=a

[
E[Y |A = a, U ]E[φ0(Z, a)|U,A = a]

]
(by Equation 6)

= EU |A=a

[∫
yp(y|a, U)dy

∫
φ0(z, a)p(z|U, a)dz

]
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= EU |A=a

[∫
φ0(z, a)

(∫
yp(y|a, U)dy

)
p(z|U, a)dz

]

= EU |A=a

[∫
φ0(z, a)

(∫
yp(y|a, U, z)dy

)
p(z|U, a)dz

]
(since Y ⊥ Z|A,U , Assump. (3.2))

= EU |A=a

[∫ ∫
φ0(z, a)y p(y|a, U, z)p(z|U, a)︸ ︷︷ ︸

p(y,z|a,U)

dydz

]

=

∫ ∫ ∫
φ0(z, a)y p(y, z|a, u)p(u|a)︸ ︷︷ ︸

p(u,y,z|a)

dydzdu

=

∫ ∫
φ0(z, a)y

∫
p(u, y, z|a)du︸ ︷︷ ︸

p(y,z|a)

dydz

=

∫ ∫
φ0(z, a)yp(y, z|a)dydz = E[Y φ0(Z, a)|A = a].

As a result, we obtain

E[Y φ0(Z, a)|A = a] = E[E[Y |A = a, U ]],

which indicates that fATE(a) = E[Y φ0(Z, a)|A = a].

9.2 Identifiability of Conditional Dose-Response Curve

In this section, we prove Theorem (3.4-2.) for fATT. For completeness, we state the theorem here again.

Theorem 9.2. Suppose there exists a square integrable bridge function φ0 : Z × A × A → R that satisfies the
following functional equation

E[φ0(Z, a, a
′)|W,A = a] =

p(W,a′)p(a)

p(W,a)p(a′)
, (a, a′) ∈ A2.

Furthermore, suppose that Assumptions (3.2) and (3.3) hold. Then, the conditional dose-response is given by

fATT(a, a
′) = E[Y φ0(Z, a, a

′)|A = a], (a, a′) ∈ A2.

Proof. First, observe the following, for (a, a′) ∈ A2,

E[φ0(Z, a, a
′)|W,A = a] = EU |W,A=a

[
E[φ0(Z, a, a

′)|U,W,A = a]
]

(by Law of Total Expectation)

= EU |W,A=a

[
E[φ0(Z, a, a

′)|U,A = a]
]

(since Z ⊥ W |U,A = a, Assumption (3.2)) (7)

Furthermore, note that

p(w, a′) =

∫
p(w, a′|u)p(u)du =

∫
p(w|u)p(a′|u)p(u)du (since W ⊥ A|U , Assumption (3.2))

=

∫
p(w|a, u)p(a′|u)p(u)du (again due to W ⊥ A|U , Assumption (3.2))

=

∫
p(u|w, a)p(w|a)

p(u|a)
p(a′|u)p(u)du (Baye’s Rule)

=

∫
p(u|w, a)p(w, a)

p(u, a)
p(u, a′)du = p(w, a)

∫
p(u, a′)

p(u, a)
p(u|w, a)du.

As a result,

p(W,a′)

p(W,a)
= E

[
p(U, a′)

p(U, a)

∣∣∣∣∣W,A = a

]
⇒ p(W,a′)p(a)

p(W,a)p(a′)
= E

[
p(U, a′)p(a)

p(U, a)p(a′)

∣∣∣∣∣W,A = a

]
. (8)
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Recall that our assumption was

E[φ0(Z, a, a
′)|W,A = a] =

p(W,a′)p(a)

p(W,a)p(a)
.

Combining Equation (7) and (8), for every value a, a′ ∈ A, it therefore holds p(W )-a.e. that

EU |W,A=a

[
E[φ0(Z, a, a

′)|U,A = a]
]
= EU |W,A=a

[
p(U, a′)p(a)

p(U, a)p(a′)

]
.

Using the completeness Assumption (3.3), we obtain, for all a, a′ ∈ A

E[φ0(Z, a, a
′)|U,A = a] =

p(U, a′)p(a)

p(U, a)p(a′)
p(U)-a.e. (9)

Next, to obtain the ATT function, consider

fATT(a, a
′) = EU |A=a′ [E[Y |A = a, U ]] =

∫
E[Y |A = a, u]p(u|a′)du

=

∫
E[Y |A = a, u]

p(u, a′)

p(a′)

p(a)

p(u, a)

p(u, a)

p(a)
du

=

∫
E[Y |A = a, u]

p(u, a′)p(a)

p(u, a)p(a′)
p(u|a)du

= EU |A=a

[
E[Y |A = a, U ]E[φ0(Z, a, a

′)|U,A = a]
]

(by Equation (9))

= EU |A=a

[∫
yp(y|a, U)dy

∫
φ0(z, a, a

′)p(z|a, U)dz

]

= EU |A=a

[∫ ∫
yφ0(z, a, a

′)p(y|a, U)p(z|a, U)dydz

]

= EU |A=a

[∫ ∫
yφ0(z, a, a

′) p(y|a, U, z)p(z|a, U)︸ ︷︷ ︸
p(y,z|a,U)

dydz

]
(Y ⊥ Z|U,A, Assumption (3.2) )

= EU |A=a

[∫ ∫
yφ0(z, a, a

′)p(y, z|a, U)dydz

]

=

∫ ∫ ∫
yφ0(z, a, a

′) p(y, z|a, u)p(u|a)︸ ︷︷ ︸
p(u,y,z|a)

dydzdu

=

∫ ∫
yφ0(z, a, a

′)

∫
p(u, y, z|a)du︸ ︷︷ ︸

p(y,z|a)

dydz

=

∫ ∫
yφ0(z, a, a

′)p(y, z|a)dydz = E[Y φ0(Z, a, a
′)|A = a].

Hence, we have shown that fATT(a, a
′) = EU |A=a′ [E[Y |A = a, U ]] = E[Y φ0(Z, a, a

′)|A = a].

10 EXISTENCE OF BRIDGE FUNCTIONS

Our proofs follow the strategy of (Deaner, 2023). We note that Assumption (3.7) is weaker that the assumption
used in (Cui et al., 2024; Wu et al., 2024). Namely they use the stronger assumption that for any square integrable
function ℓ : W → R, for all a ∈ A: E[ℓ(W )|Z,A = a] = 0 p(Z)−a.e. if and only if ℓ(W ) = 0 p(W )-a.e.
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10.1 Existence of Bridge Function for Dose-Response Curve

We will discuss conditions that will guarantee the existence of the bridge function φ0 for the functional Equation
(1). To this end, we consider the following conditional mean operator

Ea :L2(W, pW |A=a) → L2(Z, pZ|A=a),

such that

Eaℓ(z) = E[ℓ(W )|Z = z,A = a], z ∈ Z

whose adjoint is given by

E∗
a :L2(Z, pZ|A=a) → L2(W, pW |A=a)

such that

E∗
aℓ(w) = E[ℓ(Z)|W = w,A = a], w ∈ W,

where L2(W, pW |A=a) denotes the square integrable functions of w ∈ W with respect to the distribution p(W |A =
a) and L2(Z, pZ|A=a) denotes the square integrable functions of z ∈ Z with respect to the distribution p(Z|A =
a). Our result will rely on Picard’s Theorem as stated below.

Theorem 10.1 (Picard’s Theorem; Theorem 15.8 in (Kress, 2013)). Let X ,Y be Hilbert spaces and let A : X → Y
be a compact linear operator with singular system (µn, φn, gn)

∞
n=1. The equation of the first kind

Aφ = f

admits a solution if and only if f ∈ null(A∗)⊥ and

∞∑
n=1

1

µ2
n

|⟨f, gn⟩Y |2 < ∞.

Here, A∗ is the adjoint of the operator A and null(A∗) represents the null-space of the operator A∗. Then a
solution is given by

φ =

∞∑
n=1

1

µn
⟨f, gn⟩Yφn.

Lemma 10.2. Suppose Assumptions (3.2) and (3.7) hold. Then,

null(Ea) ⊆
{
ℓ ∈ L2(W, pW |A=a)

∣∣ E[ℓ(W )|U,A = a] = 0
}
.

Proof. Observe that null(Ea) =
{
ℓ ∈ L2(W, pW |A=a)

∣∣ E[ℓ(W )|Z,A = a] = 0
}
. Let ℓ ∈ null(Ea), then,

0 = Eaℓ = E[ℓ(W )|Z = ·, A = a]

= EU |Z=·,A=a

[
E[ℓ(W )|U,Z = ·, A = a]

]
= EU |Z=·,A=a

[
E[ℓ(W )|U,A = a]

]
(since W ⊥ Z|U,A, Assumption (3.2))

Assumption (3.7) implies that E[ℓ(W )|U,A = a] = 0 almost surely. Hence,

ℓ ∈
{
ℓ ∈ L2(W, pW |A=a)

∣∣ E[ℓ(W )|U,A = a] = 0
}
.
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Let us introduce the notation φa
0 := φ0(·, a) and ra(W ) := p(W )p(a)

p(W,a) . The bridge function is then solution of

E∗
aφ

a
0 = ra.

Ea is well-defined, linear and bounded with ∥Ea∥ ≤ 1. In order to apply Theorem (10.1), we make the following
additional assumptions.

Assumption 10.3. For each a ∈ A, the operator E∗
a is compact with singular system {µa,n, φa,n, ga,n}∞n=1.

Assumption 10.4. The density ratio function ra satisfies

∞∑
n=1

1

µ2
a,n

∣∣⟨ra, ga,n⟩L2(W,pW |A=a)

∣∣2 < ∞.

Lemma 10.5. Suppose that Assumptions (3.2) and (3.7) hold. Then, ra ∈ null(Ea)
⊥.

Proof. Recall that we previously proved that (Eq. 5),

p(W )p(a)

p(W,a)
= E

[p(U)p(a)

p(U, a)

∣∣∣W,A = a
]
.

Let ℓ ∈ null(Ea). Then,〈
ℓ, ra

〉
L2(W,pW |A=a)

= E[ℓ(W )ra(W )|A = a]

= E
[
ℓ(W )E

[p(U)p(a)

p(U, a)

∣∣∣W,A = a
]∣∣∣A = a

]
=

∫∫
ℓ(w)

p(u)p(a)

p(u, a)
p(u|w, a)p(w|a)dudw

=

∫∫
ℓ(w)

p(u)p(a)

p(u, a)
p(u,w|a)dudw

=

∫∫
ℓ(w)

p(u)p(a)

p(u, a)
p(w|u, a)p(u|a)dudw

= E
[
E[ℓ(W )|U,A = a]

p(U)p(a)

p(U, a)

∣∣∣A = a
]
= 0,

where the last equality is due to Lemma (10.2). Therefore, ra ∈ null(Ea)
⊥.

Theorem 10.6. Suppose that Assumptions (3.2), (3.7), (10.3), and (10.4) hold. Then, there exists a solution
to the functional equation

E[φ0(Z, a)|W,A = a] =
p(W )p(a)

p(W,a)
, a ∈ A.

Proof. Fix a ∈ A. The functional equation can be written as E∗
aφ

a
0 = ra. In Lemma (10.5), we proved

that ra ∈ null(Ea)
⊥. Furthermore, combined with Assumptions (10.3) and (10.4), Theorem (10.1) implies the

existence.

10.2 Existence of the Bridge Function for Conditional Dose-Response

Let us fix a, a′ ∈ A. In this section, we introduce the notations:

φa,a′

0 = φ0(·, a, a′),

ra,a′(W ) =
p(W,a′)p(a)

p(W,a)p(a′)
.
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Then, the functional equation of the ATT bridge function

E[φ0(Z, a, a
′)|W,A = a] =

p(W,a′)p(a)

p(W,a)p(a′)
,

can be written as E∗
aφ

a,a′

0 = ra,a′ , where E∗
a is the conditional expectation operator that we defined in S.M.

(10.1). Our result will again rely on Theorem (10.1), so we make the following assumption.

Assumption 10.7. The density ratio function ra,a′ satisfies

∞∑
n=1

1

µ2
a,n

∣∣⟨ra,a′ , ga,n⟩L2(W,pW |A=a)

∣∣2 < ∞.

Lemma 10.8. Suppose that Assumptions (3.2) and (3.7) hold. Then, ra,a′ ∈ null(Ea)
⊥.

Proof. Recall that we previously proved that (Eq. (8),

p(W,a′)p(a)

p(W,a)p(a′)
= E

[p(U, a′)p(a)
p(U, a)p(a′)

∣∣∣W,A = a
]
.

Let ℓ ∈ null(Ea). Then,〈
ℓ, ra,a′

〉
L2(W,pW |A=a)

= E[ℓ(W )ra,a′(W )|A = a]

= E
[
ℓ(W )E

[p(U, a′)p(a)
p(U, a)p(a′)

∣∣∣W,A = a
]∣∣∣A = a

]
=

∫∫
ℓ(w)

p(u, a′)p(a)

p(u, a)p(a′)
p(u|w, a)p(w|a)dudw

=

∫∫
ℓ(w)

p(u, a′)p(a)

p(u, a)p(a′)
p(u,w|a)dudw

=

∫∫
ℓ(w)

p(u, a′)p(a)

p(u, a)p(a′)
p(w|u, a)p(u|a)dudw

= E
[
E[ℓ(W )|U,A = a]

p(U, a′)p(a)

p(U, a)p(a′)

∣∣∣A = a
]
= 0,

where the last equality is due to Lemma (10.2). Therefore, ra,a′ ∈ null(Ea)
⊥.

Theorem 10.9. Suppose that Assumptions (3.2), (3.7), (10.3), and (10.7) hold. Then, there exists a solution
to the functional equation

E[φ0(Z, a, a
′)|W,A = a] =

p(W,a′)p(a)

p(W,a)p(a′)
.

Proof. Fix a, a′ ∈ A. The functional equation can be written as E∗
aφ

a,a′

0 = ra,a′ . In Lemma (10.8), we proved
that ra,a′ ∈ null(Ea)

⊥. Furthermore, combined with Assumptions (10.3) and (10.7), Theorem (10.1) implies the
existence.

11 ALGORITHM DERIVATIONS

11.1 Dose-Response Curve Algorithm

Here, we will derive the Algorithm (4.1). For completeness, we restate the algorithm first.

Algorithm (Algorithm (4.1)). Let {zi, wi, ai}ni=1 and {w̃i, ãi}mi=1 be the first-stage and second-stage data, respec-
tively, and (λ1, λ2, λ3) be the regularization parameters of first, second, and third stage regressions. Furthermore,
let {αi}m+1

i=1 be the minimizer of the following cost function:

L̂2SR(α) =
1

m

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ

( 1
m )T

[
BTKZZB̄ ⊙KÃÃ

]T] [BTKZZB ⊙KÃÃ

[
BTKZZB̄ ⊙KÃÃ

]
1
m

] [ α1:m

αm+1

]



Density Ratio-based Proxy Causal Learning Without Density Ratios

− 2

[
α1:m

αm+1

]T [ [BTKZZB̄ ⊙KÃÃ]
1
m

( 1
m )T

[
B̄TKZZB̄ ⊙KÃÃ

]
1
m

]

+ λ2

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ [BTKZZB̄ ⊙KÃÃ]
1
m

( 1
m )T [BTKZZB̄ ⊙KÃÃ]

T ( 1
m )T

[
B̄TKZZB̄ ⊙KÃÃ

]
1
m

] [
α1:m

αm+1

]

where I ∈ Rn×n is the identity matrix, 1 is vector of ones, α1:m =
[
α1 α2 . . . αm

]T ∈ Rm, B = (KWW ⊙
KAA + nλ1I)

−1(KWW̃ ⊙KAÃ) ∈ Rn×m, and B̄ is the matrix whose j-th column is given by

B̄:,j =
1

m

m∑
l=1
l ̸=j

(KWW ⊙KAA + nλ1I)
−1(KWw̃l

⊙KAãj ).

Then, the dose-response curve estimation fATE(a) is given by

fATE(a) = αT
1:m

(
BT
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

)
+ αm+1

(
B̄T
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

) 1

m

Here, for F ∈ {A,W,Z} with domain F , the first-stage kernel matrices are denoted as KFF = [kF (fi, fj)]ij ∈
Rn×n, KFf = [kF (fi, f)]i ∈ Rn, where {fi}ni=1 denotes the first-stage data samples. Similarly, with second-stage

variables F̃ ∈ {Ã, W̃}, the kernel matrices are denoted as follows: KF̃ F̃ = [kF (f̃i, f̃j)]ij ∈ Rm×m, KFF̃ =

[kF (fi, f̃j)]ij ∈ Rn×m, KF f̃ = [kF (fi, f̃)]i ∈ Rn, and KF̃ f = [kF (f̃j , f)]j ∈ Rm.

Derivation of Algorithm (4.1). Let r(W,a) denote p(W )p(a)/p(W,a). We would like to find the optimum of the
following loss function

L2SR(φ) = EW,A[(r(W,A)− E[φ(Z,A)|W,A])2] + λ2∥φ0∥2HZ⊗HA
.

This loss cannot be directly optimized as it involves the conditional mean E[φ(Z,A)|W,A]. A similar problem in
(Mastouri et al., 2021; Singh, 2023; Xu and Gretton, 2024) is addressed using a two-stage regression approach:
the first stage approximates the conditional expectation, and the second stage minimizes the loss. We build on
the approach of Xu and Gretton (2024) in our algorithm derivation, which is shown to be more numerically
stable, and to require optimizing fewer parameters, than the earlier approaches: see Xu and Gretton (2024,
Appendix F)

First Stage: Assume that the bridge function φ is the RKHS HZ ⊗HA. Then,

E[φ(Z, a)|W = w,A = a] = E[⟨φ, ϕZ(Z)⊗ ϕA(a)⟩HZ⊗HA |W = w,A = a]

= ⟨φ,E[ϕZ(Z)|W = w,A = a]⊗ ϕA(a)⟩HZ⊗HA

= ⟨φ, µZ|W,A(w, a)⊗ ϕA(a)⟩HZ⊗HA

where µZ|W,A(w, a) = E[ϕZ(Z)|W = w,A = a] is the CME. Considering the sample-based first-stage regression
with given data {zi, wi, ai}ni=1

L̂c(C) =
1

n

n∑
i=1

∥ϕZ(zi)− C(ϕW(wi)⊗ ϕA(ai))∥2HZ
+ λ1∥C∥2S2(HW⊗HA,HZ)

The minimizer ĈZ|W,A of the loss function L̂c(C) is given by:

ĈZ|W,A(ϕW(w)⊗ ϕA(a)) = µ̂Z|W,A(w, a) =

n∑
i=1

βi(w, a)ϕZ(zi) = ΦZβ(w, a)

where

β(w, a) = (KWW ⊙KAA + nλI)−1(KWw ⊙KAa)
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ΦZ =
[
ϕZ(z1) . . . ϕZ(zn)

]
Second-Stage: We first consider the simplification of the population loss for two-stage regression:

L2SR(φ) = E
[(
r(W,A)− E[φ(Z,A)|W,A]

)2]
+ λ2∥φ∥2HZ⊗HA

∝ E
[
E[φ(Z,A)|W,A]2

]
− 2

∫
p(w)p(a)

p(w, a)
E[φ(Z, a)|w, a]p(w, a)dwda+ λ2∥φ∥2HZ⊗HA

= E
[
E[φ(Z,A)|W,A]2

]
− 2EWEA

[
E[φ(Z,A)|W,A]

]
+ λ2∥φ∥2HZ⊗HA

= E
[
⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⟩2HZ⊗HA

]
− 2EWEA

[
⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⟩HZ⊗HA

]
+ λ2∥φ∥2HZ⊗HA

.

Recall that the set {z̃i, w̃i, ãi}mi=1 denotes the second-stage data. Then, the empirical objective can be written as

L̂2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⟩2HZ⊗HA

− 2
1

m(m− 1)

m∑
i=1

m∑
j=1
j ̸=i

〈
φ, µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)

〉
HZ⊗HA

+ λ2∥φ∥2HZ⊗HA
(10)

The minimizer of this objective should be in the span of the following set,

φ ∈ span

{
{µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)}mi=1 ∪

{ 1

m(m− 1)

m∑
i=1

m∑
j=1
j ̸=i

µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)
}}

.

Hence, we write

φ =

m∑
i=1

αiµ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi) +
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)

Let us notice the result of the following inner product which will come up a lot in our derivations,〈
µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi), µ̂Z|W,A(w̃p, ãl)⊗ ϕA(ãl)

〉
HZ⊗HA

= ⟨µ̂Z|W,A(w̃j , ãi), µ̂Z|W,A(w̃p, ãl)⟩⟨ϕA(ãi), ϕA(ãl)⟩

= β(w̃j , ãi)
TΦT

ZΦZβ(w̃p, ãl)kA(ãi, ãl) = β(w̃j , ãi)
TKZZβ(w̃p, ãl)kA(ãi, ãl) (11)

Next, we will calculate the terms in our second-stage regression loss individually. We begin with the squared
norm of φ0:

∥φ∥2 = ⟨φ,φ⟩

=

〈
m∑
i=1

αiµ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi) +
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj),

m∑
p=1

αpµ̂Z|W,A(w̃p, ãp)⊗ ϕA(ãp) +
αm+1

m(m− 1)

m∑
r=1

m∑
s=1
s̸=r

µ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr)

〉

=

m∑
i=1

m∑
p=1

αiαp⟨µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi), µ̂Z|W,A(w̃p, ãp)⊗ ϕA(ãp)⟩

+ 2αm+1
1

m(m− 1)

m∑
i=1

m∑
j=1

m∑
l=1
l ̸=j

αi⟨µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi), µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⟩
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+ α2
m+1

1

m2(m− 1)2

m∑
j=1

m∑
l=1
l ̸=j

m∑
r=1

m∑
s=1
s ̸=r

⟨µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), µ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr)⟩

Using Equation (11), we can write

∥φ∥2 = ⟨φ,φ⟩

=

m∑
i=1

m∑
p=1

αiαpβ(w̃i, ãi)
TKZZβ(w̃p, ãp)kA(ãi, ãp) (12)

+ 2αm+1
1

m(m− 1)

m∑
i=1

m∑
j=1

m∑
l=1
l ̸=j

αiβ(w̃i, ãi)
TKZZβ(w̃l, ãj)kA(ãi, ãj) (13)

+ α2
m+1

1

m2(m− 1)2

m∑
j=1

m∑
l=1
l ̸=j

m∑
r=1

m∑
s=1
s̸=r

β(w̃l, ãj)
TKZZβ(w̃s, ãr)kA(ãj , ãr) (14)

The component in Equation (12):

m∑
i=1

m∑
p=1

αiαpβ(w̃i, ãi)
TKZZβ(w̃p, ãp)kA(ãi, ãp) = αT

1:m

[
BTKZZB ⊙KÃÃ

]
α1:m

where

α1:m =
[
α1 α2 . . . αm

]T
B = (KWW ⊙KAA + nλ1I)

−1(KWW̃ ⊙KAÃ)

The component in Equation (13):

2αm+1
1

m(m− 1)

m∑
i=1

m∑
j=1

m∑
l=1
l ̸=j

αiβ(w̃i, ãi)
TKZZβ(w̃l, ãj)kA(ãi, ãj)

= 2αm+1
1

m

m∑
i=1

m∑
j=1

αiβ(w̃i, ãi)
TKZZ

( 1

m− 1

m∑
l=1
l ̸=j

β(w̃l, ãj)
)
kA(ãi, ãj)

= 2αm+1α
T
1:m

[
BTKZZB̄ ⊙KÃÃ

]
(1/m)

where B̄ is the matrix whose j-th column is given by

B̄:,j =
1

m− 1

m∑
l=1
l ̸=j

β(w̃l, ãj) =
1

m− 1

m∑
l=1
l ̸=j

(KWW ⊙KAA + nλ1I)
−1(KWw̃l

⊙KAãj
)

Finally, the third component in Equation (14):

α2
m+1

1

m2(m− 1)2

m∑
j=1

m∑
l=1
l ̸=j

m∑
r=1

m∑
s=1
s̸=r

β(w̃l, ãj)
TKZZβ(w̃s, ãr)kA(ãj , ãr)

= α2
m+1

1

m2

m∑
j=1

m∑
r=1

( 1

m− 1

m∑
l=1
l ̸=j

β(w̃l, ãj)
)T

KZZ

( 1

m− 1

m∑
s=1
s̸=r

β(w̃s, ãr)
)
kA(ãj , ãr)

= α2
m+1(1/m)T

(
B̄TKZZB̄ ⊙KÃÃ

)
(1/m)

As a result,

∥φ∥2 = ⟨φ,φ⟩
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= αT
1:m

(
BTKZZB ⊙KÃÃ

)
α1:m + 2αm+1α

T
1:m

(
BTKZZB̄ ⊙KÃÃ

)
(1/m)

+ α2
m+1(1/m)T

(
B̄TKZZB̄ ⊙KÃÃ

)
(1/m)

=
[
αT
1:m αm+1

] [ BTKZZB ⊙KÃÃ (BTKZZB̄ ⊙KÃÃ)(1/m)

(1/m)T (BTKZZB̄ ⊙KÃÃ)
T (1/m)T

(
B̄TKZZB̄ ⊙KÃÃ

)
(1/m)

] [
α1:m

αm+1

]
(15)

Next, to derive the matrix-vector multiplication form for the first component of the objective given in Equation
(10), consider the following:.〈

φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)
〉

=

〈
m∑
l=1

αlµ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl) +
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)

〉

=

m∑
l=1

αl

〈
µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl), µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)

〉
+

αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

〈
µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)

〉

=

m∑
l=1

αlβ(w̃l, ãl)
TKZZβ(w̃i, ãi)kA(ãl, ãi) +

αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

β(w̃l, ãj)
TKZZβ(w̃i, ãi)kA(ãj , ãi)

=

m∑
l=1

αlβ(w̃l, ãl)
TKZZβ(w̃i, ãi)kA(ãl, ãi) +

αm+1

m

m∑
j=1

( 1

m− 1

m∑
l=1
l ̸=j

β(w̃l, ãj)
)T

KZZβ(w̃i, ãi)kA(ãj , ãi)

=
[(
BTKZZB ⊙KÃÃ

)
α1:m

]
i
+ αm+1

[(
BTKZZB̄ ⊙KÃÃ

)
(1/m)

]
i

=

[ [
BTKZZB ⊙KÃÃ

(
BTKZZB̄ ⊙KÃÃ

)
(1/m)

] [ α1:m

αm+1

]]
i

As a result, the first component in Equation (10) is given by

1

m

m∑
i=1

〈
φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)

〉2
=

1

m

[
αT
1:m αm+1

] [ BTKZZB ⊙KÃÃ

( 1
m )T

(
BTKZZB̄ ⊙KÃÃ

)T] [BTKZZB ⊙KÃÃ

(
BTKZZB̄ ⊙KÃÃ

)
1
m

] [ α1:m

αm+1

]
(16)

Lastly, for the second component in Equation (10), we note that

1

m(m− 1)

m∑
i=1

m∑
j=1
j ̸=i

〈
φ, µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)

〉
HZ⊗HA

=
1

m(m− 1)

m∑
i=1

m∑
j=1
j ̸=i

m∑
l=1

αl

〈
µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl), µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)

〉
HZ⊗HA

+
αm+1

m2(m− 1)2

m∑
i=1

m∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
s̸=r

〈
µ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr), µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)

〉
HZ⊗HA

=
1

m(m− 1)

m∑
i=1

m∑
j=1
j ̸=i

m∑
l=1

αlβ(w̃l, ãl)
TKZZβ(w̃j , ãi)kA(ãl, ãi)
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+
αm+1

m2(m− 1)2

m∑
i=1

m∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
s̸=r

β(w̃s, ãr)
TKZZβ(w̃j , ãi)kA(ãr, ãi)

=
1

m

m∑
i=1

m∑
l=1

αlβ(w̃l, ãl)
TKZZ

( 1

m− 1

m∑
j=1
j ̸=i

β(w̃j , ãi)
)
kA(ãl, ãi)

+
αm+1

m2

m∑
i=1

m∑
r=1

( 1

m− 1

m∑
s=1
s̸=r

β(w̃s, ãr)
)T

KZZ

( 1

m− 1

m∑
j=1
j ̸=i

β(w̃j , ãi)
)
kA(ãr, ãi)

=
1

m
αT
1:m

(
BTKZZB̄ ⊙KÃÃ

)
1+ αm+1

1

m2
1T
(
B̄KZZB̄ ⊙KÃÃ

)
1

=

[
α1:m

αm+1

]T [
(BTKZZB̄ ⊙KÃÃ)

1
m

( 1
m )T (B̄TKZZB̄ ⊙KÃÃ)

1
m

]
(17)

Using Equation (15), (16) and (17), we can write

L̂2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⟩2HZ⊗HA

− 2
1

m(m− 1)

m∑
i=1

m∑
j=1
j ̸=i

〈
φ, µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)

〉
HZ⊗HA

+ λ2∥φ0∥2HZ⊗HA

=
1

m

[
αT
1:m αm+1

] [ BTKZZB ⊙KÃÃ

( 1
m )T

(
BTKZZB̄ ⊙KÃÃ

)T] [BTKZZB ⊙KÃÃ

(
BTKZZB̄ ⊙KÃÃ

)
1
m

] [ α1:m

αm+1

]
− 2

[
α1:m

αm+1

]T [ (BTKZZB̄ ⊙KÃÃ)
1
m

( 1
m )T

(
B̄TKZZB̄ ⊙KÃÃ

)
1
m

]

+ λ2

[
αT
1:m αm+1

] [ BTKZZB ⊙KÃÃ (BTKZZB̄ ⊙KÃÃ)
1
m

( 1
m )T (BTKZZB̄ ⊙KÃÃ)

T ( 1
m )T

(
B̄TKZZB̄ ⊙KÃÃ

)
1
m

] [
α1:m

αm+1

]
(18)

The optimal coefficients {α1:m, αm+1} can be found by setting the derivative of Equation (18) to zero.
With these optimal coefficients, let φ̂λ2,m denote the minimizer of L̂2SR

m (φ). Using φ̂λ2,m, we can estimate
E[Y φ̂λ2,m(Z, a)|A = a], thus obtaining the desired ATE function estimation. First, observe that

E[Y φ̂λ2,m(Z, a)|A = a] = E[Y ⟨φ̂λ2,m, ϕZ(Z)⊗ ϕA(a)⟩|A = a]

=
〈
φ̂λ2,m,E[Y ϕZ(Z)|A = a]⊗ ϕA(a)

〉
= ⟨φ̂λ2,m, CY Z|AϕA(a)⊗ ϕA(a)⟩

where CY Z|A is the conditional mean operator, i.e., CY Z|AϕA(a) = E[Y ϕZ(Z)|A = a] and it is estimated by
kernel ridge regression:

ĈY Z|A = argmin
C

1

n

n∑
i=1

∥yiϕZ(zi)− CY Z|AϕA(ai)∥2 + λ3∥CY Z|A∥2

= argmin
C

1

n
∥ΦZdiag(Y )− CY Z|AΦA∥2 + λ3∥CY Z|A∥2. (19)

The solution for Equation (19) is given by

ĈY Z|AϕA(a) = ΦZdiag(Y )[KAA + nλ3I]
−1KAa

As a result,

E[Y φ̂λ2,m(Z, a)|A = a] = ⟨φ̂λ2,m, ĈY Z|AϕA(a)⊗ ϕA(a)⟩
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=
〈 m∑

l=1

αlµ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl), ĈY Z|AϕA(a)⊗ ϕA(a)
〉

+
〈
αm+1

1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), ĈY Z|AϕA(a)⊗ ϕA(a)
〉

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl), ĈY Z|AϕA(a)⊗ ϕA(a)⟩

+ αm+1
1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

⟨µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), ĈY Z|AϕA(a)⊗ ϕA(a)⟩

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl), ĈY Z|AϕA(a)⟩⟨ϕA(ãl), ϕA(a)⟩

+ αm+1
1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

⟨µ̂Z|W,A(w̃l, ãj), ĈY Z|AϕA(a)⟩⟨ϕA(ãj), ϕA(a)⟩

=

m∑
l=1

αlβ(w̃l, ãl)
TΦT

ZΦZdiag(Y )[KAA + nλ3I]
−1KAakA(ãl, a)

+ αm+1
1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

β(w̃l, ãj)
TΦT

ZΦZdiag(Y )[KAA + nλ3I]
−1KAakA(ãj , a)

=

m∑
l=1

αlβ(w̃l, ãl)
TKZZdiag(Y )[KAA + nλ3I]

−1KAakA(ãl, a)

+ αm+1
1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

β(w̃l, ãj)
TKZZdiag(Y )[KAA + nλ3I]

−1KAakA(ãj , a)

= αT
1:m

(
BT
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

)
+ αm+1

(
B̄T
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

) 1

m

As a result,

fATE(a) = αT
1:m

(
BT
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

)
+ αm+1

(
B̄T
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

) 1

m

One observation that is a result of the Algorithm (4.1) is that we can compute the bridge function in the
closed-form as stated in the following remark.

Remark 11.1. Given the optimal coefficients {α1:m, αm+1} from Algorithm (4.1), the bridge function can be
written in closed-form as

φ̂λ2,m(z, a) = αT
1:m[(BTKZz)⊙KÃa] + αm+1

( 1

m

)T
[(B̄TKZz)⊙KÃa]

Proof.

φ̂λ2,m(z, a) = ⟨φ̂λ2,m, ϕZ(z)⊗ ϕA(a)⟩
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=

〈
m∑
l=1

αlµ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl) +
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), ϕZ(z)⊗ ϕA(a)

〉

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl), ϕZ(z)⊗ ϕA(a)⟩

+
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

⟨µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), ϕZ(z)⊗ ϕA(a)⟩

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl), ϕZ(z)⟩kA(ãl, a) +
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

⟨µ̂Z|W,A(w̃l, ãj), ϕZ(z)⟩kA(ãj , a)

=

m∑
l=1

αl⟨ΦZβ(w̃l, ãl), ϕZ(z)⟩kA(ãl, a) +
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

⟨ΦZβ(w̃l, ãj), ϕZ(z)⟩kA(ãj , a)

=
m∑
l=1

αlK
T
Zzβ(w̃l, ãl)kA(ãl, a) +

αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

KT
Zzβ(w̃l, ãj)kA(ãj , a)

=

m∑
l=1

αlK
T
Zz(KWW ⊙KAA + nλ1I)

−1(KWw̃l
⊙KAãl

)kA(ãl, a)

+
αm+1

m2

m∑
j=1

m∑
l=1
l ̸=j

KT
Zz(KWW ⊙KAA + nλ1I)

−1(KWw̃l
⊙KAãj

)kA(ãj , a)

=

m∑
l=1

αlK
T
Zz(KWW ⊙KAA + nλ1I)

−1(KWw̃l
⊙KAãl

)kA(ãl, a)

+
αm+1

m

m∑
j=1

KT
Zz(KWW ⊙KAA + nλ1I)

−1
( 1

m− 1

m∑
l=1
l ̸=j

KWw̃l
⊙KAãj

)
kA(ãj , a)

= αT
1:m[(BTKZz)⊙KÃa] + αm+1

( 1

m

)T
[(B̄TKZz)⊙KÃa]

11.2 Conditional Dose-Response Curve Algorithm

In this section, we provide the derivation of Algorithm (4.2). For the completeness, we write the algorithm first.

Algorithm (Algorithm (4.2)). Let {zi, wi, ai}ni=1 and {w̃i, ãi}mi=1 be the first-stage and second-stage data, re-
spectively, and (λ1, λ2, λ3, ζ) be the regularization parameters. Furthermore, let {αi}m+1

i=1 be the minimizer of the
following cost function for a given a′:

L̂2SR
m (α) =

1

m

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ

( 1
m )T

[
BTKZZB̃ ⊙KÃÃ

]T] [BTKZZB ⊙KÃÃ

[
BTKZZB̃ ⊙KÃÃ

]
1
m

] [ α1:m

αm+1

]
kA(a

′, a′)2

− 2

[
α1:m

αm+1

]T [ [BTKZZB̃ ⊙KÃÃ]
1
m

( 1
m )T

[
B̃TKZZB̃ ⊙KÃÃ

]
1
m

]
kA(a

′, a′)

+ λ2

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ [BTKZZB̃ ⊙KÃÃ]
1
m

( 1
m )T [BTKZZB̃ ⊙KÃÃ]

T ( 1
m )T

[
B̃TKZZB̃ ⊙KÃÃ

]
1
m

] [
α1:m

αm+1

]
kA(a

′, a′)

where B̃ is the matrix whose j-th column is given by B̃:,j =
∑m

l=1
l ̸=j

(KWW ⊙KAA+nλ1I)
−1(θlKWw̃l

⊙KAãj
) and

θl = [(KÃÃ +mζI)−1KÃa′ ]l. Furthermore, the kernel matrices and the matrix B are as defined in Algorithm
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(4.1). Then, the conditional dose-response curve estimation can be written in the closed-form as

fATT(a, a
′) = αT

1:m

(
BT
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

)
kA(a

′, a′)

+ αm+1

(
B̃T
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

) 1

m
kA(a

′, a′)

Derivation of Algorithm (4.2). Let r(W,a, a′) denote p(W,a′)p(a)
p(W,a)p(a′) . We aim to find the optimum of the following

loss function:

L2SR(φ) = E[(r(W,A, a′)− E[φ(Z,A, a′)|W,A])2] + λ2∥φ∥2HZ⊗HA⊗HA

in which we assume that the bridge function φ is the RKHS HZ ⊗ HA ⊗ HA. Similar to the dose-
response algorithm, this loss function cannot be directly optimized as it involves the conditional expectation
E[φ(Z,A, a′)|W,A]. Following (Xu and Gretton, 2024), we similarly employ a two-stage regression approach.
The first-stage is identical to the one used for the dose-response curve as described in S.M. (11.1). In this stage,
we find the conditional mean embedding:

µ̂Z|W,A(w, a) =

n∑
i=1

βi(w, a)ϕZ(zi) = ΦZβ(w, a)

where

β(w, a) = (KWW ⊙KAA + nλ1I)
−1(KWw ⊙KAa)

ΦZ =
[
ϕZ(z1) . . . ϕZ(zn)

]
For the second-stage, we note the following:

E[(r(W,A, a′)− E[φ(Z,A, a′)|W,A])2]

= E[E[φ(Z,A, a′)|W,A]2]− 2E[r(W,A, a′)E[φ(Z,A, a′)|W,A]] + const.

= E[E[φ(Z,A, a′)|A,W ]2]− 2

∫
p(w, a′)p(a)

p(w, a)p(a′)
E[φ(Z,A, a′)|A = a,W = w]p(w, a)dwda+ const.

= E[E[φ(Z,A, a′)|W = w,A = a]2]− 2

∫
p(w|a′)p(a)E[φ(Z,A, a′)|W = w,A = a]dwda+ const.

= E[E[φ(Z,A, a′)|W = w,A = a]2]− 2EW |A′=a′EA[E[φ(Z,A, a′)|W = w,A = a]] + const.

Recall that under Assumption 5.1-(1), µZ|W,A(w, a) = CZ|W,A(ϕW(w)⊗ ϕA(a)). Hence, we can write,

E[(r(W,A, a′)− E[φ(Z,A, a′)|W,A])2]

= E[⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)⟩2]

− 2EW |A′=a′EA[⟨φ,CZ|W,A(ϕW(W )⊗ ϕA(A))⊗ ϕA(A)⊗ ϕA(a
′)⟩] + const.

= E[⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)⟩2]

− 2EA[⟨φ,CZ|W,A(EW |A=a′ [ϕW(W )]⊗ ϕA(A))⊗ ϕA(A)⊗ ϕA(a
′)⟩] + const.

This expectation can be estimated from the second stage data {w̃i, z̃i, ãi} using the following expression, up to
a constant factor:

E[(r(W,A, a′)− E[φ(Z,A, a′)|W,A])2]

≈ 1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2

− 2

m

m∑
j=1

⟨φ, ĈZ|W,A(ÊW |A=a′ [ϕW(W )]⊗ ϕA(ãj))⊗ ϕA(ãj)⊗ ϕA(a
′)⟩.
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Here, ÊW |A′=a′ [ϕW(W )] is the estimation of conditional mean embedding for p(W |A = a′), and can be expressed
in the closed-form as the result of kernel ridge regression with regularization parameter ζ:

Ê[ϕW(W )|A = a′] = ΦW(KÃÃ +mζI)−1KÃa′ =

m∑
i=1

θiϕW(w̃i) = ΦWθ

where θ = (KÃÃ + mζI)−1KÃa′ and ΦW =
[
ϕW(w̃1) . . . ϕW(w̃m)

]
. Hence, the least-squares loss can be

estimated by second-stage data {w̃i, ãi}mi=1 as follows:

E[(r(W,A, a′)− E[φ(Z,A, a′)|W,A])2]

≈ 1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2

− 2
1

m

m∑
j=1

⟨φ, ĈZ|W,A(

m∑
i=1
i ̸=j

θiϕW(w̃i)⊗ ϕA(ãj))⊗ ϕA(ãj)⊗ ϕA(a
′)⟩

=
1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2

− 2
1

m

m∑
j=1

m∑
i=1
i ̸=j

⟨φ, ĈZ|W,A(θiϕW(w̃i)⊗ ϕA(ãj))⊗ ϕA(ãj)⊗ ϕA(a
′)⟩

=
1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2

− 2
1

m

m∑
j=1

m∑
i=1
i ̸=j

⟨φ, θiµ̂Z|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′)⟩.

As a result, we can write the sample loss for two-stage regression with Tikhonov regularization as

L̂2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2

− 2
1

m

m∑
j=1

m∑
i=1
i ̸=j

⟨φ, θiµ̂Z|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′)⟩+ λ2∥φ∥2HZ⊗HA⊗HA

. (20)

We can see that the minimizer of this objective should be in the span of the following set,

φ ∈ span

{
{µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)}mi=1 ∪
{ 1

m

m∑
i=1

m∑
j=1
j ̸=i

θj µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)
}}

.

Hence, we write

φ =

m∑
i=1

αiµ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′) +

αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′)

Let us notice the result of the following inner product which will come up a lot〈
µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)⊗ ϕA(a

′), µ̂Z|W,A(w̃p, ãl)⊗ ϕA(ãl)⊗ ϕA(a
′)
〉
HZ⊗HA⊗HA

= ⟨µ̂Z|W,A(w̃j , ãi), µ̂Z|W,A(w̃p, ãl)⟩⟨ϕA(ãi), ϕA(ãl)⟩⟨ϕA(a
′), ϕA(a

′)⟩
= β(w̃j , ãi)

TΦT
ZΦZβ(w̃p, ãl)kA(ãi, ãl)kA(a

′, a′)

= β(w̃j , ãi)
TKZZβ(w̃p, ãl)kA(ãi, ãl)kA(a

′, a′) (21)
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We will now compute the individual terms in L2SR
m (φ) one by one. We start by the squared norm of φ:

∥φ∥2 = ⟨φ,φ⟩

=

〈
m∑
i=1

αiµ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′) +

αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′),

m∑
p=1

αpµ̂Z|W,A(w̃p, ãp)⊗ ϕA(ãp)⊗ ϕA(a
′) +

αm+1

m

m∑
r=1

m∑
s=1
s ̸=r

θsµ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr)⊗ ϕA(a
′)

〉

=

m∑
i=1

m∑
p=1

αiαp⟨µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′), µ̂Z|W,A(w̃p, ãp)⊗ ϕA(ãp)⊗ ϕA(a

′)⟩

+ 2
αm+1

m

m∑
i=1

m∑
j=1

m∑
l=1
l ̸=j

αi⟨µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′), θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a

′)⟩

+
α2
m+1

m2

m∑
j=1

m∑
l=1
l ̸=j

m∑
r=1

m∑
s=1
s̸=r

⟨θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′), θsµ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr)⊗ ϕA(a

′)⟩

Using Equation (21), we can write

∥φ∥2 = ⟨φ,φ⟩

=

m∑
i=1

m∑
p=1

αiαpβ(w̃i, ãi)
TKZZβ(w̃p, ãp)kA(ãi, ãp)kA(a

′, a′) (22)

+ 2
αm+1

m

m∑
i=1

m∑
j=1

m∑
l=1
l ̸=j

αiβ(w̃i, ãi)
TKZZθlβ(w̃l, ãj)kA(ãi, ãj)kA(a

′, a′) (23)

+
α2
m+1

m2

m∑
j=1

m∑
l=1
l ̸=j

m∑
r=1

m∑
s=1
s ̸=r

θlβ(w̃l, ãj)
TKZZθsβ(w̃s, ãr)kA(ãj , ãr)kA(a

′, a′) (24)

The component in Equation (22) is equal to:

m∑
i=1

m∑
p=1

αiαpβ(w̃i, ãi)
TKZZβ(w̃p, ãp)kA(ãi, ãp)kA(a

′, a′) = αT
1:m

[
BTKZZB ⊙KÃÃ

]
α1:mkA(a

′, a′)

where

α1:m =
[
α1 α2 . . . αm

]T
B = (KWW ⊙KAA + nλ1I)

−1(KWW̃ ⊙KAÃ)

The component in Equation (23) is equal to:

2
αm+1

m

m∑
i=1

m∑
j=1

m∑
l=1
l ̸=j

αiβ(w̃i, ãi)
TKZZθlβ(w̃l, ãj)kA(ãi, ãj)kA(a

′, a′)

= 2
αm+1

m

m∑
i=1

m∑
j=1

αiβ(w̃i, ãi)
TKZZ

( m∑
l=1
l ̸=j

θlβ(w̃l, ãj)
)
kA(ãi, ãj)kA(a

′, a′)

= 2αm+1α
T
1:m

[
BTKZZB̃ ⊙KÃÃ

]
(1/m)kA(a

′, a′)

where

B̃:,j =

m∑
l=1
l ̸=j

θlβ(w̃l, ãj) =

m∑
l=1

(KWW ⊙KAA + nλI)−1(θlKWw̃l
⊙KAãj

)
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= (KWW ⊙KAA + nλ1I)
−1
( m∑

l=1
l ̸=j

θlKWw̃l
⊙KAãj

)

Finally, the third component in Equation (24):

α2
m+1

m2

m∑
j=1

m∑
l=1
l ̸=j

m∑
r=1

m∑
s=1
s̸=r

θlβ(w̃l, ãj)
TKZZθsβ(w̃s, ãr)kA(ãj , ãr)kA(a

′, a′)

=
α2
m+1

m2

m∑
j=1

m∑
r=1

( m∑
l=1
l ̸=j

θlβ(w̃l, ãj)
)T

KZZ

( m∑
s=1
s̸=r

θsβ(w̃s, ãr)
)
kA(ãj , ãr)kA(a

′, a′)

= α2
m+1(1/m)T

[
B̃TKZZB̃ ⊙KÃÃ

]
(1/m)kA(a

′, a′)

As a result,

∥φ∥2 = ⟨φ,φ⟩

= αT
1:m

[
BTKZZB ⊙KÃÃ

]
α1:mkA(a

′, a′) + 2αm+1α
T
1:m

[
BTKZZB̄ ⊙KÃÃ

]
(1/m)kA(a

′, a′)

+ α2
m+1(1/m)T

[
B̃TKZZB̃ ⊙KÃÃ

]
(1/m)kA(a

′, a′)

=

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ [BTKZZB̃ ⊙KÃÃ](1/m)

(1/m)T [BTKZZB̃ ⊙KÃÃ]
T (1/m)T

[
B̃TKZZB̃ ⊙KÃÃ

]
(1/m)

] [
α1:m

αm+1

]
kA(a

′, a′) (25)

Next, to derive the matrix-vector multiplication form for the first component of the objective given in Equation
(20), consider the following:〈

φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)
〉

=

〈
m∑
l=1

αlµ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a
′) +

αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′),

µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)

〉

=

m∑
l=1

αl

〈
µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a

′), µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)
〉

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

〈
θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a

′), µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)
〉

=

m∑
l=1

αlβ(w̃l, ãl)
TKZZβ(w̃i, ãi)kA(ãl, ãi)kA(a

′, a′)

+
αm+1

m

m∑
j=1

( m∑
l=1
l ̸=j

θlβ(w̃l, ãj)
)T

KZZβ(w̃i, ãi)kA(ãj , ãi)kA(a
′, a′)

=
[[
BTKZZB ⊙KÃÃ

]
α1:m

]
i
kA(a

′, a′) + αm+1

[[
BTKZZB̃ ⊙KÃÃ

]
(1/m)

]
i
kA(a

′, a′)

=

[ [
BTKZZB ⊙KÃÃ

[
BTKZZB̃ ⊙KÃÃ

]
(1/m)

] [ α1:m

αm+1

] ]
i

kA(a
′, a′)

As a result, the first component in Equation (20) is given by

1

m

m∑
i=1

〈
φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
〉2
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=
1

m

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ

( 1
m )T

[
BTKZZB̃ ⊙KÃÃ

]T] [BTKZZB ⊙KÃÃ

[
BTKZZB̃ ⊙KÃÃ

]
1
m

] [ α1:m

αm+1

]
kA(a

′, a′)2

(26)

Lastly, for the second component in Equation (20), we note that

1

m

m∑
i=1

m∑
j=1
j ̸=i

〈
φ, θjµ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
〉

=
1

m

m∑
i=1

m∑
j=1
j ̸=i

m∑
l=1

αl

〈
µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a

′), θj µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)
〉

+
αm+1

m2

m∑
i=1

m∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
s̸=r

〈
θsµ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr)⊗ ϕA(a

′), θj µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)
〉

=
1

m

m∑
i=1

m∑
j=1
j ̸=i

m∑
l=1

αlβ(w̃l, ãl)
TKZZθjβ(w̃j , ãi)kA(ãl, ãi)kA(a

′, a′)

+
αm+1

m2

m∑
i=1

m∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
s̸=r

θsβ(w̃s, ãr)
TKZZθjβ(w̃j , ãi)kA(ãr, ãi)kA(a

′, a′)

=
1

m

m∑
i=1

m∑
l=1

αlβ(w̃l, ãl)
TKZZ

( m∑
j=1
j ̸=i

θjβ(w̃j , ãi)
)
kA(ãl, ãi)kA(a

′, a′)

+
αm+1

m2

m∑
i=1

m∑
r=1

( m∑
s=1
s ̸=r

θsβ(w̃s, ãr)
)T

KZZ

( m∑
j=1
j ̸=i

θjβ(w̃j , ãi)
)
kA(ãr, ãi)kA(a

′, a′)

=
1

m
αT
1:m

[
BTKZZB̃ ⊙KÃÃ

]
1kA(a

′, a′) + αm+1
1

m2
1T
[
B̃KZZB̃ ⊙KÃÃ

]
1kA(a

′, a′)

=

[
α1:m

αm+1

]T [ [BTKZZB̃ ⊙KÃÃ]
1
m

( 1
m )T

[
B̃TKZZB̃ ⊙KÃÃ

]
1
m

]
kA(a

′, a′) (27)

Now, we are ready to combine our findings and write the loss function in terms of matrix-vector multiplications.
Using Equation (25), (26) and (27), the loss function can be expressed as

L̂2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2HZ⊗HA⊗HA

− 2
1

m

m∑
i=1

m∑
j=1
j ̸=i

〈
φ, θj µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
〉
HZ⊗HA⊗HA

+ λ2∥φ0∥2HZ⊗HA⊗HA

=
1

m

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ

( 1
m )T

[
BTKZZB̃ ⊙KÃÃ

]T] [BTKZZB ⊙KÃÃ

[
BTKZZB̃ ⊙KÃÃ

]
1
m

] [ α1:m

αm+1

]
kA(a

′, a′)2

− 2

[
α1:m

αm+1

]T [ [BTKZZB̃ ⊙KÃÃ]
1
m

( 1
m )T

[
B̃TKZZB̃ ⊙KÃÃ

]
1
m

]
kA(a

′, a′)

+ λ2

[
α1:m

αm+1

]T [ BTKZZB ⊙KÃÃ [BTKZZB̃ ⊙KÃÃ]
1
m

( 1
m )T [BTKZZB̃ ⊙KÃÃ]

T ( 1
m )T

[
B̃TKZZB̃ ⊙KÃÃ

]
1
m

] [
α1:m

αm+1

]
kA(a

′, a′) (28)

The optimal coefficients {α1:m, αm+1} can be found by setting the derivative of Equation (28) to zero.
With these optimal coefficients, let φ̂λ2,m denote the minimizer of L̂2SR

m (φ). Using φ̂λ2,m, we can estimate
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E[Y φ̂λ2,m(Z, a, a′)|A = a]. First, observe that

E[Y φ̂λ2,m(Z, a, a′)|A = a] = E[Y ⟨φ̂λ2,m, ϕZ(Z)⊗ ϕA(a)⊗ ϕA(a
′)⟩|A = a]

=
〈
φ̂λ2,m,E[Y ϕZ(Z)|A = a]⊗ ϕA(a)⊗ ϕA(a

′)
〉

≈ ⟨φ̂λ2,m, ĈY Z|AϕA(a)⊗ ϕA(a)⊗ ϕA(a
′)⟩

where ĈY Z|A is the estimation of the conditional mean E[Y ϕZ(Z)|A = ·], as used in the dose-response curve
algorithm. It is found by kernel ridge regression:

ĈY Z|AϕA(a) = ΦZdiag(Y )[KAA + nλ3I]
−1KAa

Thus,

Ê[Y φ̂λ2,m(Z, a, a′)|A = a] = ⟨φ̂λ2,m, ĈY Z|AϕA(a)⊗ ϕA(a)⊗ ϕA(a
′)⟩

=
〈 m∑

l=1

αlµ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a
′), ĈY Z|AϕA(a)⊗ ϕA(a)⊗ ϕA(a

′)
〉

+
〈αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′), ĈY Z|AϕA(a)⊗ ϕA(a)⊗ ϕA(a

′)
〉

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a
′), ĈY Z|AϕA(a)⊗ ϕA(a)⊗ ϕA(a

′)⟩

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θl⟨µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′), ĈY Z|AϕA(a)⊗ ϕA(a)⊗ ϕA(a

′)⟩

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl), ĈY Z|AϕA(a)⟩⟨ϕA(ãl), ϕA(a)⟩⟨ϕA(a
′), ϕA(a

′)⟩

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

⟨θlµ̂Z|W,A(w̃l, ãj), ĈY Z|AϕA(a)⟩⟨ϕA(ãj), ϕA(a)⟩⟨ϕA(a
′), ϕA(a

′)⟩

=

m∑
l=1

αlβ(w̃l, ãl)
TΦT

ZΦZdiag(Y )[KAA + nλ3I]
−1KAakA(ãl, a)kA(a

′, a′)

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlβ(w̃l, ãj)
TΦT

ZΦZdiag(Y )[KAA + nλ3I]
−1KAakA(ãj , a)kA(a

′, a′)

=

m∑
l=1

αlβ(w̃l, ãl)
TKZZdiag(Y )[KAA + nλ3I]

−1KAakA(ãl, a)kA(a
′, a′)

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlβ(w̃l, ãj)
TKZZdiag(Y )[KAA + nλ3I]

−1KAakA(ãj , a)kA(a
′, a′)

= αT
1:m

(
BT
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

)
kA(a

′, a′)

+ αm+1

(
B̃T
(
KZZdiag(Y )[KAA + nλ3I]

−1KAa

)
⊙KÃa

) 1

m
kA(a

′, a′)

The conditional dose-response curve can therefore be expressed in the closed-form as

fATT(a, a
′) = αT

1:m

(
BT
(
KZZdiag(Y )[KAA + nλ2I]

−1KAa

)
⊙KÃa

)
kA(a

′, a′)

+ αm+1

(
B̃T
(
KZZdiag(Y )[KAA + nλ2I]

−1KAa

)
⊙KÃa

) 1

m
kA(a

′, a′)
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Remark 11.2. Given the optimal coefficients {α1:m, αm+1} from Algorithm (4.2), the bridge function can be
written in the closed-form as

φ̂λ2,m(z, a, a′) = kA(a
′, a′)αT

1:m[(BTKZz)⊙KÃa] + kA(a
′, a′)αm+1

( 1

m

)T
[(B̃TKZz)⊙KÃa]

Proof.

φ̂λ2,m(z, a, a′) = ⟨φ̂λ2,m, ϕZ(z)⊗ ϕA(a)⊗ ϕA(a
′)⟩

=

〈
m∑
l=1

αlµ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a
′) +

αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′),

ϕZ(z)⊗ ϕA(a)⊗ ϕA(a
′)

〉

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a
′), ϕZ(z)⊗ ϕA(a)⊗ ϕA(a

′)⟩

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θl⟨µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′), ϕZ(z)⊗ ϕA(a)⊗ ϕA(a

′)⟩

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl), ϕZ(z)⟩kA(ãl, a)kA(a′, a′)

+
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

θl⟨µ̂Z|W,A(w̃l, ãj), ϕZ(z)⟩kA(ãj , a)kA(a′, a′)

=

m∑
l=1

αl⟨ΦZβ(w̃l, ãl), ϕZ(z)⟩kA(ãl, a)kA(a′, a′)

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θl⟨ΦZβ(w̃l, ãj), ϕZ(z)⟩kA(ãj , a)kA(a′, a′)

=

m∑
l=1

αlK
T
Zzβ(w̃l, ãl)kA(ãl, a)kA(a

′, a′) +
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlK
T
Zzβ(w̃l, ãj)kA(ãj , a)kA(a

′, a′)

=

m∑
l=1

αlK
T
Zz(KWW ⊙KAA + nλ1I)

−1(KWw̃l
⊙KAãl

)kA(ãl, a)kA(a
′, a′)

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlK
T
Zz(KWW ⊙KAA + nλ1I)

−1(KWw̃l
⊙KAãj

)kA(ãj , a)kA(a
′, a′)

=

m∑
l=1

αlK
T
Zz(KWW ⊙KAA + nλ1I)

−1(KWw̃l
⊙KAãl

)kA(ãl, a)kA(a
′, a′)

+
αm+1

m

m∑
j=1

KT
Zz(KWW ⊙KAA + nλ1I)

−1
( m∑

l=1
l ̸=j

θlKWw̃l
⊙KAãj

)
kA(ãj , a)kA(a

′, a′)

= kA(a
′, a′)αT

1:m[(BTKZz)⊙KÃa] + kA(a
′, a′)αm+1

( 1

m

)T
[(B̃TKZz)⊙KÃa]
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12 CONSISTENCY RESULTS

In this section, we provide the consistency result of our proposed method. We make the following assumptions
on the kernels and on the noise between the outcome and the treatment.

Assumption 12.1 (Replication of Assumption (5.2)). For F ∈ {A,W,Z}, we assume that

• F is a Polish space;

• kF (f, .), is continuous for almost every f ∈ F ;

• kF (f, .), is bounded by κ for almost every f ∈ F , i.e.,

sup
f∈F

∥kF (f, .)∥HF ≤ κ.

• There exists R, σ > 0 such that for all q ≥ 2, PA−almost surely,

E[(Y − E[Y | A])q | A] ≤ 1

2
q!σ2Rq−2. (29)

The last assumption is a Bernstein moment condition used to control the noise of the observations (see Caponnetto
and De Vito (2007); Fischer and Steinwart (2020) for more details). If Y is almost surely bounded, then the
condition is automatically satisfied. It is possible to prove that the Bernstein condition is equivalent to sub-
exponentiality, see Mollenhauer et al. (2022, Remark 4.9).

12.1 Consistency Results for Dose-Response Curve

12.1.1 Assumptions for ATE

Under Assumption (5.1-2), there exists a solution to the bridge equation within the RKHS HZA. However, this
solution might not be unique. We therefore introduce the following minimum norm solution in the set of valid
bridge functions.

Definition 12.2 (Bridge solution with minimum RKHS norm). We define

φ̄0 = argmin
φ∈HZA

∥φ∥HZA s.t. E[φ(Z,A)|W,A] = r(W,A),

with r(W,A) = p(W )p(A)
p(W,A) .

Under Assumption (5.1-2), φ̄0 is well-defined. We will show that the estimator from stage 2 converges to φ̄0 in
RKHS norm and we will therefore be able to obtain consistency guarantees for the dose-response function.

Remark 12.3 (Uniqueness of the bridge function). We notice that previous works on Proximal Causal Learning
(Mastouri et al., 2021; Xu et al., 2021; Singh, 2023; Cui et al., 2024; Wu et al., 2024) require the bridge solution
to be unique. However, we show that this assumption is not needed and convergence to the minimum norm bridge
solution is enough to obtain consistency on the estimation of the dose-response curve. Our results build upon
recent advances in instrumental variable regression with kernel methods Meunier et al. (2024).

We now introduce the covariance operators associated to stages 1, 2 and 3.

Definition 12.4. The covariance operators are defined as

1. (Stage 1) Σ1 := E [ϕWA(W,A)⊗ ϕWA(W,A)] , ϕWA(W,A) = ϕW(W )⊗ ϕA(A);

2. (Stage 2) Σ2 := EW,A

[((
µZ|W,A(W,A)⊗ ϕA(A)

)
⊗
(
µZ|W,A(W,A)⊗ ϕA(A)

))]
;

3. (Stage 3) Σ3 := E[ϕA(A)⊗ ϕA(A)].

Σ1,Σ2,Σ3 are self-adjoint and positive semi-definite operators. Under Assumption (12.1), they are trace class,
and therefore compact, which implies that they have a countable spectrum (Steinwart and Christmann, 2008).

The next proposition relates φ̄0 to Σ2.
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Proposition 12.5. Under Assumption (5.1-2), φ̄0 is well-defined and is the unique element of HZA satisfying
E[φ̄0(Z,A)|W,A] = r(W,A) and such that φ̄0 ∈ null(Σ2)

⊥.

Proof. Note that the bridge equation, for an element φ ∈ HZA, can be written as

r(W,A) = E[φ(Z,A)|W,A] = ⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⟩HZA = Aφ,

by using the reproducing property and introducing the operator A : HZA → L2(W × A, pW,A), φ 7→
⟨φ, µZ|W,A(W,A) ⊗ ϕA(A)⟩HZA where L2(W × A, pW,A) denotes the square integrable functions with respect
to the measure p(W,A). By Assumption (5.1-2), A−1({r}) ⊆ HZA is not empty. Fix φ an element of A−1({r}).
Since HZA = null(A)⊕ null(A)⊥ there exists a unique pair (φ′, φ′′) ∈ null(A)⊥ × null(A) such that φ = φ′ +φ′′.
Since φ ∈ A−1({r}) and φ′′ ∈ null(A), we have:

r = Aφ = Aφ′ +Aφ′′ = Aφ′.

Therefore φ′ ∈ A−1({r}). Furthermore, ∥φ∥2HZA
= ∥φ′∥2HZA

+ ∥φ′′∥2HZA
≥ ∥φ′∥2HZA

. This proves that the

minimum norm solution in HZA exists and is uniquely defined as φ′ and belongs to null(A)⊥∩A−1({r}). We then
show that null(A)⊥∩A−1({r}) contains only one element. Assume that there exists φ, φ̃ ∈ null(A)⊥∩A−1({r}),
then A(φ− φ̃) = r− r = 0, therefore φ− φ̃ ∈ null(A). But since we also have φ− φ̃ ∈ null(A)⊥, it implies φ = φ̃.
To conclude, observe that A is such that Σ2 = A∗A, therefore null(A) = null(A∗A) = null(Σ2).

To characterize the smoothness of the target functions for each respective stage we employ the following source
assumption.

Assumption 12.6 (Replication of Assumption (5.3)). We assume that the following conditions hold:

1. There exists a constant B1 < ∞ such that for a given β1 ∈ (1, 3],

∥CZ|W,AΣ
− β1−1

2
1 ∥S2(HWA,HZ) ≤ B1

2. There exists a constant B2 < ∞ such that for a given β2 ∈ (1, 3],

∥Σ− β2−1
2

2 φ̄0∥HZA ≤ B2.

3. There exists a constant B3 < ∞ such that for a given β3 ∈ (1, 3],

∥CY Z|AΣ
− β3−1

2
3 ∥S2(HA,HZ) ≤ B3.

This assumption is referred to as the source condition in the literature (Caponnetto and De Vito, 2007; Fischer
and Steinwart, 2020). It measures the smoothness of the regression functions with respect to the covariance
operators. The inverse covariance operators have to be understood as Moore–Penrose pseudoinverses (Ben-Israel

and Greville, 2006). In particular, Σ
β2−1

2
2 Σ

− β2−1
2

2 = P2, with P2 the orthogonal projection onto null

(
Σ

β2−1
2

2

)⊥

=

null(Σ2)
⊥. Combined with Proposition (12.5), we obtain the following result.

Proposition 12.7. Under Assumption (5.1-2), φ̄0 = Σ
β2−1

2
2 Σ

− β2−1
2

2 φ̄0.

Remark 12.8 (Smoothness and minimum norm solution). φ̄0 is the unique RKHS solution to the bridge equation
such that Proposition (12.7) holds. Indeed by Proposition (12.5), φ̄0 is the unique RKHS solution to the bridge
equation such that φ̄0 ∈ null(Σ2)

⊥ and therefore such that φ̄0 = P2φ̄0. This crucial property will allow us to
show that our bridge estimator converges to φ̄0.

The next assumption characterize the effective dimension of the RKHSs associated to each stage. It is a standard
assumption on the eigenvalue decay of the covariance operators (see more details in Caponnetto and De Vito
(2007); Fischer and Steinwart (2020)).

Assumption 12.9. We assume the following conditions hold
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1. Let (λ1,i)i≥1 be the eigenvalues of Σ1. For some constant c1 > 0 and parameter p1 ∈ (0, 1] and for all i ≥ 1,

λ1,i ≤ c1i
−1/p1 .

2. Let (λ2,i)i≥1 be the eigenvalues of Σ2. For some constant c2 > 0 and parameter p2 ∈ (0, 1] and for all i ≥ 1,

λ2,i ≤ c2i
−1/p2 .

3. Let (λ3,i)i≥1 be the eigenvalues of Σ3. For some constant c3 > 0 and parameter p3 ∈ (0, 1] and for all i ≥ 1,

λ3,i ≤ c3i
−1/p3 .

12.1.2 Proof sketch for ATE

We provide non-asymptotic uniform consistency guarantees for the dose-response curve. Below we provide a
proof sketch.

First Stage regression. The estimator from stage 1 aims at estimating the conditional mean embedding
µZ|W,A = E[ϕZ(Z) | W,A]. We recall that under the well-specifiedness assumption (Assumption (5.1-1)), we
have µZ|W,A(·, ·) = CZ|W,A(ϕW(·)⊗ϕA(·)), with CZ|W,A ∈ S2(HWA,HZ). We point out that Assumption (5.1-1)
is equivalent to the assumption that µZ|W,A(·, ·) belong to the vector-valued RKHS associated to the vector-valued
kernel K((w, a), (w′, a′)) = ⟨ϕWA(w, a), ϕWA(w

′, a′)⟩HWA IdHZ , where IdHZ denotes the identity operator in HZ
(see Li et al. (2022) for a detailed discussion).

Given the regularization parameter λ1 > 0, we recall that the objective to learn the conditional mean embedding
operator is,

L̂c(C) =
1

n

n∑
i=1

∥ϕZ(zi)− C(ϕW(wi)⊗ ϕA(ai))∥2HZ
+ λ1∥C∥2S2(HWA,HZ), C ∈ S2(HWA,HZ),

whose minimizer is denoted as,

ĈZ|W,A = argmin
C∈S2(HWA,HZ)

L̂c(C).

The conditional mean embedding is then approximated as

µ̂Z|W,A(w, a) = ĈZ|W,A(ϕW(w)⊗ ϕA(a)), w ∈ W, a ∈ A.

We bound ∥ĈZ|W,A − CZ|W,A∥S2 in S.M. (Sec. 12.1.3), using the main result from (Li et al., 2022). We then
convert this bound to a bound on ∥µ̂Z|W,A − µZ|W,A∥∞, that will allow us to obtain the uniform consistency of
the dose-response function.

Second Stage regression. We recall that for the second stage we have the following loss at the population
level:

L2SR(φ) = E
[
(r(W,A)− E[φ(Z,A) | W,A])2], φ ∈ HZA.

We showed in Eq. (3) that L2SR can be equivalently written as

L2SR(φ) = E
[
E[φ(Z,A) | W,A]2

]
− 2EWEA

[
E[φ(Z,A) | W,A]

]
+ const.

We introduce the regularized version of the population loss, for λ2 > 0,

L2SR
λ2

(φ) = L2SR(φ) + λ2∥φ∥2HZA
.

Let us introduce g2 = EWEA

[
µZ|W,A(W,A)⊗ ϕA(A)

]
.

Proposition 12.10. g2 can be alternatively written as

g2 = E[r(W,A)µZ|W,A(W,A)⊗ ϕA(A)].

Furthermore, for any element φ0 ∈ HZA solution to the bridge equation, we have g2 = Σ2φ0. Finally,

φλ2
:= argmin

φ∈HZA

L2SR
λ2

(φ) = (Σ2 + λ2IdHZA)
−1

g2.
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Proof. The first part follows from the same derivations as in Eq. (3). For the second part, if φ0 is such that
r(W,A) = ⟨φ0, µZ|W,A(W,A)⊗ ϕA(A)⟩HZA , then,

g2 = EW,A[r(W,A)µZ|W,A(W,A)⊗ ϕA(A)] = Σ2φ0.

For the final part, notice that for φ ∈ HZA, by the reproducing property,

L2SR
λ2

(φ) = EW,A

[
⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⟩2HZA

]
− 2EWEA

[
⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⟩HZA

]
+ λ2∥φ∥2HZA

+ const

= ⟨φ,Σ2φ⟩HZA − 2⟨φ, g2⟩HZA + λ2∥φ∥2HZA
+ const

= ⟨φ, (Σ2 + λ2 Id)φ⟩HZA − 2⟨φ, g2⟩HZA + const.

We conclude by setting the Fréchet derivative to 0.

We would now like to consider the empirical version of the previous loss. The standard kernel ridge regression
estimator would obtain an estimator by replacing both the population covariance Σ2 and the term g2 by their
empirical counterpart in Proposition (12.10). However, as g2 takes a different form, we need to specify how we
build its empirical counterpart.

• Option 1: take the empirical counterpart of g2 = Σ2φ0; this is not feasible as it would require the knowledge
of a bridge function.

• Option 2: take the empirical counterpart of g2 = E[r(W,A)µZ|W,A(W,A) ⊗ ϕA(A)]; this would require the
estimation of the density ratio r(W,A) and would be inefficient in high dimension.

• Option 3 (ours): take the empirical counterpart of g2 = EWEA

[
µZ|W,A ⊗ ϕA(A)

]
; this is the estimator

suggested in Section (4.2) that allows us to by-pass density ratio estimation.

We therefore introduce

Σ̄2,m =
1

m

m∑
i=1

(
µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)

)
⊗
(
µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)

)
,

ḡ2,m =
1

m(m− 1)

m∑
i,j
i ̸=j

µZ|W,A(w̃j , ãi)⊗ ϕA(ãi).

However, as we do not directly observe the conditional mean embedding µZ|W,A, we plug-in its approximation
obtained in the first stage regression. This leads us to,

Σ̂2,m =
1

m

m∑
i=1

(
µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)

)
⊗
(
µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)

)
,

ĝ2,m =
1

m(m− 1)

m∑
i,j
i ̸=j

µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi).

Let us then introduce the following empirical losses,

L̄2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µZ|W,A(w̃i, ãi)⊗ϕA(ãi)⟩2HZA
− 2

m(m− 1)

m∑
i,j=1
j ̸=i

⟨φ, µZ|W,A(w̃j , ãi)⊗ϕA(ãi)⟩HZA+λ2∥φ∥2HZA
,

L̂2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, , ãi)⊗ϕA(ãi)⟩2HZA
− 2

m(m− 1)

m∑
i,j=1
j ̸=i

⟨φ, µ̂Z|W,A(w̃j , ãi)⊗ϕA(ãi)⟩HZA+λ2∥φ0∥2HZA
.

We can observe that the minimizers of the objective functions are given by

φλ2
= (Σ2 + λ2I)

−1g2 = argmin
φ∈HZA

L2SR
λ2

(φ),
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φ̄λ2,m = (Σ̄2,m + λ2I)
−1ḡ2,m = argmin

φ∈HZA

L̄2SR
m (φ),

φ̂λ2,m = (Σ̂2,m + λ2I)
−1ĝ2,m = argmin

φ∈HZA

L̂2SR
m (φ).

φ̂λ2,m is the final estimator presented in Section (4.2). In S.M. (Sec. 12.1.4), we show the convergence of φ̂λ2,m

to the minimum norm bridge φ̄0 introduced in Definition (12.2). φ̄λ2,m and φλ2 are introduced for theoretical
reasons. Indeed, we will consider the following decomposition,

∥φ̂λ2,m − φ̄0∥HZA ≤ ∥φ̂λ2,m − φ̄λ2,m∥HZA + ∥φ̄λ2,m − φλ2∥HZA + ∥φλ2 − φ̄0∥HZA .

Third Stage regression. The estimator from stage 3 aims at estimating Ψ(A) := E[Y ϕZ(Z)|A]. We recall
that under the well-specifiedness assumption (Assumption (5.1-3)), we have Ψ(·) = CY Z|AϕA(·), with CY Z|A ∈
S2(HA,HZ).

Given the regularization parameter λ3 > 0, we recall that the objective to learn CY Z|A is,

L̂3(C) =
1

t

t∑
i=1

∥ȳiϕZ(z̄i)− CϕA(āi))∥2HZ
+ λ3∥C∥2S2(HA,HZ), C ∈ S2(HA,HZ),

where {(āi, z̄i, ȳi)}ti=1 can re-use data from stage 1 or 2 or both. The minimizer is denoted as,

ĈY Z|A = argmin
C∈S2(HA,HZ)

L̂3(C),

leading to

Ψ̂(a) = ĈY Z|AϕA(a), a ∈ A.

We note that Ψ(A) can be interpreted as the conditional kernel mean embedding of the random variable (Y,Z)
given A with the following kernel: kY Z((y, z), (y

′, z′)) = yy′kZ(z, z
′), (y, z), (y′, z′) ∈ R×Z. Indeed, the canonical

feature map of kY Z is yϕZ(z) for (y, z) ∈ R × Z. We could therefore proceed as for stage 1 and apply results
from (Li et al., 2022). However, the analysis of (Li et al., 2022) would require kY Z to be bounded on the
support of (Y,Z) and therefore requires Y to be almost surely bounded. Instead, in Section (12.1.5), we apply
results from (Li et al., 2024) which generalize consistency guarantees for conditional mean operator learning
to general vector-valued regression. The results applies with the weaker assumption that Y is sub-exponential
(Assumption (12.1), Equation (29)).

Uniform consistency guarantees for ATE. We recall that after obtaining the estimators φ̂λ2,m from stage

2 and Ψ̂ from stage 3, we have
f̂ATE(·) = ⟨φ̂λ2,m, Ψ̂(·)⊗ ϕA(·)⟩HZA .

On the other hand, under Assumption (5.1),

fATE(·) = ⟨φ̄0,Ψ(·)⊗ ϕA(·)⟩HZA .

For any a ∈ A, we apply the following decomposition,

|f̂ATE(a)− fATE(a)| = |⟨φ̂λ2,m, Ψ̂(a)⊗ ϕA(a)⟩HZA − ⟨φ̄0,Ψ(a)⊗ ϕA(a)⟩HZA |
= |⟨φ̂λ2,m, (Ψ̂−Ψ)(a)⊗ ϕA(a)⟩HZA + ⟨(φ̂λ2,m − φ̄0),Ψ(a)⊗ ϕA(a)⟩HZA |
= |⟨φ̂λ2,m − φ̄0, (Ψ̂−Ψ)(a)⊗ ϕA(a)⟩HZA + ⟨φ̄0, (Ψ̂−Ψ)(a)⊗ ϕA(a)⟩HZA + ⟨(φ̂λ2,m − φ̄0),Ψ(a)⊗ ϕA(a)⟩HZA |

≤ κ
(
∥φ̂λ2,m − φ̄0∥HZA∥Ψ̂(a)−Ψ(a)∥HZ + ∥φ̄0∥∥Ψ̂(a)−Ψ(a)∥HZA + ∥φ̂λ2,m − φ̄0∥HZA∥Ψ(a)∥HZ

)
(30)

By plugging the consistency results from stage 2 and 3, we obtain the final bound that leads to Theorem (5.4).
See S.M. (Sec. 12.1.6) for details. In the next sections, we detail each step of the proof.
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12.1.3 First-Stage Regression Consistency Result

We adapt Li et al. (2022, Theorem 2) to our setting.

Theorem 12.11 (Theorem 2 Li et al. (2022)). Suppose Assumptions (5.1-1), (12.1), (12.6-1) and (12.9-1) hold

and take λ1 = Θ
(
n− 1

β1+p1

)
. There is a constant J1 > 0 independent of n ≥ 1 and δ ∈ (0, 1) such that

∥∥∥ĈZ|W,A − CZ|W,A

∥∥∥
S2(HWA,HZ)

≤ J1 log(4/δ)

(
1√
n

) β1−1
β1+p1

=: r1(δ, n, β1, p1),

is satisfied for sufficiently large n ≥ 1 with probability at least 1− δ.

Proof. We apply Li et al. (2022, Theorem 2-case 2.), with γ = 1 which corresponds to the Hilbert-Schmidt norm
S2(HWA,HZ). As we focus on the well-specified setting with β1 ≥ 1, we can apply case 2. of Li et al. (2022,
Theorem 2) as in their paper α ≤ 1, hence β1 + p1 ≥ α. Note that Li et al. (2022, Theorem 2) applies under
the assumption that kZ is bounded, which is the case under Assumption 12.1. We note that in Li et al. (2022,
Theorem 2), the bound is valid for β1 ∈ (1, 2] while we allow for β1 ∈ (1, 3] (see Remark 12.14 below).

Corollary 12.12. Under the same assumptions as Theorem 12.11, with λ1 = Θ
(
n− 1

β1+p1

)
, for any δ ∈ (0, 1),

the following holds with probability at least 1− δ:

sup
(w,a)∈W×A

∥µ̂Z|W,A(w, a)− µZ|W,A(w, a)∥HZ ≤ κ2r1(δ, n, β1, p1).

Proof. For any (w, a) ∈ W ×A, under Assumption (12.1), we have

∥ϕW(w)⊗ ϕA(a)∥HWA = ∥ϕW(w)∥HW∥ϕA(a)∥HA ≤ κ2.

As a result, we observe that,

∥µ̂Z|W,A(w, a)− µZ|W,A(w, a)∥HZ = ∥(ĈZ|W,A − CZ|W,A)ϕW(w)⊗ ϕA(a)∥HZ

≤ ∥ĈZ|W,A − CZ|W,A∥S2(HWA,HZ)∥ϕW(w)⊗ ϕA(a)∥HWA

≤ κ2∥ĈZ|W,A − CZ|W,A∥S2(HWA,HZ),

and the conclusion follows from Theorem (12.11).

12.1.4 Second-Stage Regression Consistency Results

We recall that we consider the following decomposition,

∥φ̂λ2,m − φ̄0∥HZA ≤ ∥φ̂λ2,m − φ̄λ2,m∥HZA + ∥φ̄λ2,m − φλ2
∥HZA + ∥φλ2

− φ̄0∥HZA .

We first consider an upper bound for ∥φλ2 − φ̄0∥HZA .

Lemma 12.13. Suppose that Assumption (12.6-2.) holds with parameter β2 ∈ (1, 3]. Then, for any λ2 > 0,

∥φλ2
− φ̄0∥HZA ≤ B2λ

β2−1
2

2 .

Proof. We saw in Proposition (12.10) that

φλ2
= (Σ2 + λ2 Id)

−1
g2 = (Σ2 + λ2 Id)

−1
Σ2φ̄0 = φ̄0 − λ2 (Σ2 + λ2 Id)

−1
φ̄0.

Therefore, under Assumption (12.6-2.),

∥φλ2 − φ̄0∥HZA
= λ2

∥∥∥(Σ2 + λ2 Id)
−1

φ̄0

∥∥∥
HZA

≤ B2λ2

∥∥∥∥(Σ2 + λ2 Id)
−1

Σ
β2−1

2
2

∥∥∥∥
op

,
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where we used Proposition (12.7) and ∥.∥op denotes the operator norm.. Note that, by Lemma (12.46),

∥∥∥∥(Σ2 + λ2 Id)
−1

Σ
β2−1

2
2

∥∥∥∥
op

= sup
i≥1

λ
β2−1

2
2,i

λ2,i + λ2
≤ λ

β2−1
2 −1

2 ,

as long as β2−1
2 ∈ (0, 1], i.e. β2 ∈ (1, 3]. By merging the bounds, we obtain the final result.

Remark 12.14. The commonly known saturation effect of Tikhonov regularization comes for the approximation
error bound. As demonstrated above, the range of smoothness is limited to β2 ≤ 3. However, past works on
kernel ridge regression (e.g. Fischer and Steinwart (2020)) or kernel PCL (e.g. Mastouri et al. (2021); Singh
(2023)) observed a saturation effect at β2 = 2. It was observed in Meunier et al. (2023, Remark 7 & Proposition
7) – see also Blanchard and Mücke (2018) – that saturation happens at β2 = 2 when we measure the error in
the L2−norm while saturation happens at β2 = 3 when we measure the error in the RKHS norm, as seen in the
previous proof. As the error is measured in RKHS norm in both works Mastouri et al. (2021); Singh (2023),
they can apply the same reasoning to extend their results from the range β2 ∈ (1, 2] to the range β2 ∈ (1, 3].

We will need the following result to pursue our proof.

Lemma 12.15. For any λ2 > 0, ∥φλ2
∥HZA ≤ ∥φ̄0∥HZA .

Proof. We saw in Proposition 12.10 that

∥φλ2
∥HZA

=
∥∥∥(Σ2 + λ2 Id)

−1
Σ2φ̄0

∥∥∥
HZA

≤
∥∥∥(Σ2 + λ2 Id)

−1
Σ2

∥∥∥
op

∥φ̄0∥HZA
≤ ∥φ̄0∥HZA

.

Our proof of the convergence result relies on an Hoeffding concentration inequality (Corollary 12.48) and a
Bernstein concentration inequality (Theorem 12.49) for Hilbert space-valued random variables. We introduce
the effective dimension for the stage 2 error: for λ2 > 0, N (λ2) := Tr((Σ2+λ2 Id)

−1Σ2) Caponnetto and De Vito
(2007).

Proposition 12.16 (Lemma 11 & Lemma 13 Fischer and Steinwart (2020)). Under Assumption (12.9-2), there
is a constant D > 0 such that the following inequality is satisfied, for λ2 > 0, N (λ2) ≤ Dλ−p2

2 . Furthermore, we
have the equality,

E
[∥∥∥(Σ2 + λ2 Id)

−1/2µZ|W,A(W,A)⊗ ϕA(A)
∥∥∥2
HZA

]
= N (λ2).

Lemma 12.17. Let us introduce gλ2
= log

(
2eN (λ2)

∥Σ2∥op+λ2

∥Σ2∥op

)
. Suppose Assumption (12.1) holds. Then, with

probability at least 1− δ for all δ ∈ (0, 1), for m ≥ 8κ4 log(2/δ)gλ2λ
−1
2 ,

∥φ̄λ2,m − φλ2
∥HZA ≤ 3√

λ2

(
log(2/δ)

√
32

m

(
N (λ2)κ4∥φ̄0∥2HZA

+
κ8∥φ̄0∥2HZA

mλ2

)
+

∥g2 − ḡ2,m∥HZA√
λ2

)
.

Proof. We decompose the error as

∥φ̄λ2,m − φλ2∥HZA =
∥∥(Σ̄2,m + λ2I)

−1
(
ḡ2,m − (Σ̄2,m + λ2I)φλ2

)∥∥
HZA

≤
∥∥∥(Σ2 + λ2I)

−1/2
∥∥∥
op

∥∥∥(Σ2 + λ2I)
1/2(Σ̄2,m + λ2I)

−1(Σ2 + λ2I)
1/2
∥∥∥
op

×
∥∥(Σ2 + λ2I)

−1/2
(
ḡ2,m − Σ̄2,mφλ2 − λ2φλ2︸ ︷︷ ︸

=g2−Σ2φλ2

)∥∥
HZA

≤ λ
−1/2
2

∥∥∥(Σ2 + λ2I)
1/2(Σ̄2,m + λ2I)

−1(Σ2 + λ2I)
1/2
∥∥∥
op

×
(
∥(Σ2 + λ2I)

−1/2(Σ̄2,m − Σ2)φλ2
∥HZA + λ

−1/2
2 ∥ḡ2,m − g2∥HZA

)
,
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The first term is bounded by Lemma (12.45),∥∥∥(Σ2 + λ2I)
1/2(Σ̄2,m + λ2I)

−1(Σ2 + λ2I)
1/2
∥∥∥
op

≤ 3,

for m ≥ 8κ4 log(2/δ)gλ2λ
−1
2 with probability at least 1 − δ for all δ ∈ (0, 1). To bound the remaining term, we

wish to apply Theorem (12.49) with H = HZA. Consider the measurable map ξ : W ×A → HZA defined by

ξ(w, a) := (Σ2 + λ2I)
−1/2⟨φλ2 , µZ|W,A(w, a)⊗ ϕA(a)⟩HZAµZ|W,A(w, a)⊗ ϕA(a),

inducing random variables such that

1

m

m∑
i=1

(ξ(w̃i, ãi)− E[ξ(W,A)]) = (Σ2 + λ2I)
−1/2(Σ̄2,m − Σ2)φλ2

.

By Assumption (12.1), Lemma (12.15) and Cauchy-Schwarz inequality,

|⟨φλ2 , µZ|W,A(w, a)⊗ ϕA(a)⟩HZA | ≤ κ2∥φ̄0∥HZA .

We can now bound the q-th moment of ξ, for q ≥ 2,

E ∥ξ(W,A)∥qHZA
≤
(
κ2∥φ̄0∥HZA

)q E∥∥∥(Σ2 + λ2I)
−1/2µZ|W,A(W,A)⊗ ϕA(A)

∥∥∥q
HZA

≤
(
κ2∥φ̄0∥HZA

)q ( κ2

√
λ2

)q−2

E
∥∥∥(Σ2 + λ2I)

−1/2µZ|W,A(W,A)⊗ ϕA(A)
∥∥∥2
HZA

=
(
κ2∥φ̄0∥HZA

)q ( κ2

√
λ2

)q−2

N (λ2)

≤ 1

2
q!

(
κ4

√
λ2

∥φ̄0∥HZA

)q−2

N (λ2)κ
4∥φ̄0∥2HZA

,

where in the equality, we used Proposition (12.16). An application of Bernstein’s inequality from Theorem (12.49)
with

L =
κ4

√
λ2

∥φ̄0∥HZA , σ2 = N (λ2)κ
4∥φ̄0∥2HZA

,

yields the final bound.

We will now derive a bound for ∥g2 − ḡ2,m∥HZA .

Lemma 12.18. With probability at least 1− δ for δ ∈ (0, 1) the following bound holds:

∥g2 − ḡ2,m∥HZA ≤ 2κ2

√
2 log(2/δ)

m(m− 1)
.

Proof. Observe that, by Proposition (12.10),

ḡ2,m =
1

m(m− 1)

m∑
i,j
i ̸=j

µZ|W,A(w̃j , ãi)⊗ ϕA(ãi),

EWEA[ḡ2,m] = EWEA

[
µZ|W,A(W,A)⊗ ϕA(A)

]
= g2.

Let

ξ(W,A) := µZ|W,A(W,A)⊗ ϕA(A).

Then, note that

∥ξ(W,A)∥HZA ≤ κ2 (by Assumption (12.1)).
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Now, we apply Corollary (12.48) such that with probability at least 1− δ,

∥g2 − ḡ2,m∥HZA ≤ 2κ2

√
2 log(2/δ)

m(m− 1)
.

Theorem 12.19. Suppose Assumptions (12.1), (12.6-2.) and (12.9-2) hold. Then, with probability at least
1− 2δ for all δ ∈ (0, 1/2), for m ≥ 8κ4 log(2/δ)gλ2λ

−1
2 ,

∥φ̄λ2,m − φ̄0∥HZA ≤ J2

(
log(2/δ)√

λ2

(√
1

m

(
1

λp2

2

+
1

mλ2

)
+

√
1

m(m− 1)λ2

)
+ λ

β2−1
2

2

)
,

where J2 is a constant depending on κ, β2, B2, D.

Proof. Combining the bounds in Lemma (12.13), Lemma (12.17) and Lemma (12.18) with a union bound, we
obtain that with probability at least 1− 2δ,

∥φ̄λ2,m − φ̄0∥HZA ≤ J̊

 log(2/δ)√
λ2

√ 1

m

(
N (λ2)∥φ̄0∥2HZA

+
∥φ̄0∥2HZA

mλ2

)
+

√
1

m(m− 1)λ2

+ λ
β2−1

2
2

 ,

where J̊ is a constant depending on κ,B2. Under Assumption (12.9-2), using Proposition (12.16), there is a
constant D > 0 such that N (λ2) ≤ Dλ−p2

2 . Furthermore, under Assumption (12.6-2.),

∥φ̄0∥HZA = ∥Σ
β2−1

2
2 Σ

− β2−1
2

2 φ̄0∥HZA ≤ κ
β2−1

2 B2.

Next, we will derive a bound for ∥φ̂λ2,m − φ̄λ2,m∥.
Lemma 12.20. Under the same assumptions as Theorem (12.11), with probability at least 1− δ for δ ∈ (0, 1),
the following bound holds

∥φ̂λ2,m − φ̄λ2,m∥ ≤ 1

λ2
κ3r1(δ, n, β1, p1) +

1

λ2

(
κ6r1(δ, n, β1, p1)

2 + 2B1κ
6+

β1−1
2 r1(δ, n, β1, p1)

)
∥φ̄λ2,m∥HZA .

Proof.

∥φ̂λ2,m − φ̄λ2,m∥HZA = ∥(Σ̂2,m + λ2I)
−1(ĝ2,m − ḡ2,m + ḡ2,m)− φ̄λ2,m∥HZA

= ∥(Σ̂2,m + λ2I)
−1(ĝ2,m − ḡ2,m) + (Σ̂2,m + λ2I)

−1ḡ2,m − φ̄λ2,m∥HZA

= ∥(Σ̂2,m + λ2I)
−1(ĝ2,m − ḡ2,m) + (Σ̂2,m + λ2I)

−1ḡ2,m − (Σ̂2,m + λ2I)
−1(Σ̂2,m + λ2I)φ̄λ2,m∥HZA

= ∥(Σ̂2,m + λ2I)
−1(ĝ2,m − ḡ2,m) + (Σ̂2,m + λ2I)

−1ḡ2,m − (Σ̂2,m + λ2I)
−1(Σ̂2,mφ̄λ2,m + λ2φ̄λ2,m︸ ︷︷ ︸

ḡ2,m−Σ̄2,mφ̄λ2,m

)∥HZA

= ∥(Σ̂2,m + λ2I)
−1(ĝ2,m − ḡ2,m) + (Σ̂2,m + λ2I)

−1ḡ2,m − (Σ̂2,m + λ2I)
−1ḡ2,m

− (Σ̂2,m + λ2I)
−1(Σ̂2,mφ̄λ2,m − Σ̄2,mφ̄λ2,m)∥HZA

= ∥(Σ̂2,m + λ2I)
−1(ĝ2,m − ḡ2,m)− (Σ̂2,m + λ2I)

−1(Σ̂2,m − Σ̄2,m)φ̄λ2,m∥HZA

≤ ∥(Σ̂2,m + λ2I)
−1∥op∥ĝ2,m − ḡ2,m∥HZA + ∥(Σ̂2,m + λ2I)

−1∥op∥Σ̂2,m − Σ̄2,m∥op∥φ̄λ2,m∥HZA

≤ λ−1
2

(
∥ĝ2,m − ḡ2,m∥HZA + ∥Σ̂2,m − Σ̄2,m∥op∥φ̄λ2,m∥HZA

)
.
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We have two terms to bound. First, we observe that

∥ĝ2,m − ḡ2,m∥HZA =

∥∥∥∥∥ 1

m(m− 1)

∑
i,j=1
j ̸=i

µ̂Z|W,A(w̃j , ãi)⊗ ϕA(ãi)−
1

m(m− 1)

∑
i,j=1
j ̸=i

µZ|W,A(w̃j , ãi)⊗ ϕA(ãi)

∥∥∥∥∥
HZA

=

∥∥∥∥∥ 1

m(m− 1)

∑
i,j=1
j ̸=i

(µ̂Z|W,A(w̃j , ãi)− µZ|W,A(w̃j , ãi))⊗ ϕA(ãi)

∥∥∥∥∥
HZA

≤ κ

m(m− 1)

∑
i,j=1
j ̸=i

∥∥µ̂Z|W,A(w̃j , ãi)− µZ|W,A(w̃j , ãi)
∥∥
HZ

(by Assumption (12.1))

≤ κ3r1(δ, n, β1, p1) (with probability 1− δ, Corollary (12.12)).

For the second component, we note that for i = 1, . . . ,m,

ξi := (µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi))⊗ (µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi))− (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi))⊗ (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi))

= ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi))⊗ ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi))

+ ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi))⊗ (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi))

+ (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi))⊗ ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi)),

and therefore, under Assumption (12.1), by the triangular inequality and by Corollary (12.12),

∥ξi∥op ≤ κ2
∥∥µ̂Z|W,A(w̃j , ãi)− µZ|W,A(w̃j , ãi)

∥∥2
HZ

+ 2κ2
∥∥µZ|W,A(w̃j , ãi)

∥∥
HZ

∥∥µ̂Z|W,A(w̃j , ãi)− µZ|W,A(w̃j , ãi)
∥∥
HZ

≤ κ6r1(δ, n, β1, p1)
2 + 2κ4

∥∥µZ|W,A(w̃j , ãi)
∥∥
HZ

r1(δ, n, β1, p1).

with probability at least 1− δ. We also note that under Assumptions (5.1), (12.1) and (12.6-1), for all (w, a) ∈
W ×A,

∥µZ|W,A(w, a)∥HZ = ∥CZ|W,A(ϕW(w)⊗ ϕA(a))∥HZ

≤ ∥CZ|W,A∥S2(HWA,HZ)∥ϕW(w)⊗ ϕA(a)∥HWA

≤ κ2∥CZ|W,A∥S2(HWA,HZ)

≤ B1κ
2+

β1−1
2 .

Finally, we obtain that with probability at least 1− δ,

∥Σ̂2,m − Σ̄2,m∥op =

∥∥∥∥∥ 1

m

m∑
i=1

ξi

∥∥∥∥∥
op

≤ 1

m

m∑
i=1

∥ξi∥op

≤ κ6r1(δ, n, β1, p1)
2 + 2B1κ

6+
β1−1

2 r1(δ, n, β1, p1). (31)

The following Theorem provides convergence rates in RKHS norm for the estimation of the bridge solution with
minimum RKHS norm.

Theorem 12.21. Suppose Assumptions (5.1-1 & 2), (12.1), (12.6-1 & 2) and (12.9-1 & 2) hold and set λ1 =

Θ
(
n− 1

β1+p1

)
and n = mι

β1+p1
β1−1 where ι > 0. Then,

i. If ι ≤ β2+1
β2+p2

then ∥φ̂λ2,m − φ̄0∥HZA = Op

(
m− ι

2
β2−1
β2+1

)
with λ2 = Θ

(
m− ι

β2+1

)
;

ii. If ι ≥ β2+1
β2+p2

then ∥φ̂λ2,m − φ̄0∥HZA = Op

(
m− 1

2
β2−1
β2+p2

)
with λ2 = Θ

(
m− 1

β2+p2

)
.
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Proof. Let us abbreviate r1(n) = r1(δ, n, β1, p1). From Lemma (12.20), we obtain with high probability that

∥φ̂λ2,m − φ̄0∥HZA ≤ ∥φ̄λ2,m − φ̄0∥HZA +
J̄

λ2
r1(n) (1 + (r1(n) + 1)∥φ̄λ2,m∥HZA)

≤ ∥φ̄λ2,m − φ̄0∥HZA +
J̄

λ2
r1(n) +

J̄

λ2
(1 + r1(n))r1(n)(∥φ̄λ2,m − φ̄0∥HZA + ∥φ̄0∥HZA),

where J̄ is a constant depending on κ,B1, β1. Furthermore, from Theorem (12.19),

∥φ̄λ2,m − φ̄0∥HZA = Op

(
r2(m)

)
with r2(m) =

1√
λ2

(√
1

m

(
1

λp2

2

+
1

mλ2

)
+

√
1

m(m− 1)

)
+ λ

β2−1
2

2 .

as long as m ≥ 8κ4 log(2/δ)gλ2
λ2. Note that the term [m(m − 1)]−1/2 is of faster order and can be removed.

Putting it together, we obtain,

∥φ̂λ2,m − φ̄0∥HZA = Op

(√√√√ 1

mλ1+p2

2

(
1 +

1

mλ1−p2

2

)
+ λ

β2−1
2

2 +
r1(n)

λ2
+

r1(n)(1 + r1(n))(∥φ̄λ2,m − φ̄0∥+ ∥φ̄0∥)
λ2

)

= O

(√√√√ 1

mλ1+p2

2

(
1 +

1

mλ1−p2

2

)
+ λ

β2−1
2

2 +
1

λ2

(
1√
n

) β1−1
β1+p1

)
,

where in the second equation we removed the last term that is of faster order with respect to r1(n)λ
−1
2 and we

plugged the expression for r1(n) given in Theorem (12.11). We are now ready to prove cases i. and ii. For each

choice of λ2 we are required to check the condition gλ2
λ−1
2 m−1 = O(1) where gλ2

= log
(
2eN (λ2)

∥Σ2∥op+λ2

∥Σ2∥op

)
.

Let us fix a lower bound 0 < c ≤ 1 with c ≤ ∥Σ2∥op. Since λ2 → 0 we choose m0 ≥ 1 such that λ2 ≤ c ≤
min{1, ∥Σ2∥op} for all m ≥ m0. We get for m ≥ m0, by Proposition (12.16),

gλ2

mλ2
=

1

mλ2
· log

(
2eN (λ2)

∥Σ2∥op + λ2

∥Σ2∥op

)
≤ 1

mλ2
· log

(
4Deλ−p2

2

)
=

log (4De)

mλ2
+

p2 log λ
−1
2

mλ2
.

Therefore, to check gλ2λ
−1
2 m−1 = O(1), it is sufficient to check λ−1

2 m−1 log λ−1
2 = O(1).

Case i. Let n = mι
β1+p1
β1−1 with ι ≤ β2+1

β2+p2
and λ2 = m− ι

β2+1 . We first check λ−1
2 m−1 log λ−1

2 = O(1), with this
choice of λ2, we have,

log λ−1
2

mλ2
=

ι

β2 + 1

log(m)

m
m

ι
β2+1 =

ι

β2 + 1

log(m)

m1− ι
β2+1

.

As ι ≤ (β2 + 1)(β2 + p2)
−1 implies 1 − ι(β2 + 1)−1 > 0, we have log(λ−1

2 )/(mλ2) → 0, as m → ∞. Next note
that with this choice of λ2, we have,

λ
β2−1

2
2 = m− ι

2
β2−1
β2+1 =

1

λ2

(
1√
n

) β1−1
β1+p1

.

Furthermore,
1

mλ1+p2

2

≤ λβ2−1
2 ⇐⇒ ι ≤ β2 + 1

β2 + p2
,

and
1

mλ1−p2

2

≤ 1

mλ1+p2

2

≤ 1.

Therefore,

∥φ̂λ2,m − φ̄0∥HZA = O

(
λ

β2−1
2

2

)
= O

(
m− ι

2
β2−1
β2+1

)
.
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Case ii. Let n = mι
β1+p1
β1−1 with ι ≥ β2+1

β2+p2
and λ2 = m− 1

β2+p2 . We first check λ−1
2 m−1 log λ−1

2 = O(1), with
this choice of λ2, we have,

log λ−1
2

mλ2
=

1

β2 + p2

log(m)

m
m

1
β2+p2 =

1

β2 + p2

log(m)

m1− 1
β2+p2

.

As β2 + p2 > 1, we have log(λ−1
2 )/(mλ2) → 0, as m → ∞. Next note that with this choice of λ2, we have,

1

λ2

(
1√
n

) β1−1
β1+p1

= λ
β2−1

2
2

λ
− β2+1

2
2

(
1√
n

) β1−1
β1+p1

 ,

and

λ
− β2+1

2
2

(
1√
n

) β1−1
β1+p1

=
√
m

β2+1
β2+p2

(
1√
n

) β1−1
β1+p1

≤ 1 ⇐⇒ n ≥ m
β1+p1
β1−1

β2+1
β2+p2 .

Therefore, λ−1
2

√
n
− β1−1

β1+p1 ≤ λ
β2−1

2
2 since we have assumed n = mι

β1+p1
β1−1 ≥ m

β1+p1
β1−1

β2+1
β2+p2 . Furthermore,

1

mλ1+p2

2

=

(
1

m

) β2−1
β2+p2

= λβ2−1
2 ,

and

1

mλ1−p2

2

=

(
1

m

) β2−1+2p2
β2+p2

≤ 1

mλ1+p2

2

.

Therefore,

∥φ̂λ2,m − φ̄0∥HZA = O

(
λ

β2−1
2

2

)
= O

(
√
m

− β2−1
β2+p2

)
.

12.1.5 Third-Stage Regression Consistency Results

The following theorem is obtained from Li et al. (2024) that provides convergence guarantees for vector-valued
regression with Tikhonov regularization.

Theorem 12.22 (Theorem 3 Li et al. (2024)). Suppose Assumptions (5.1-3), (12.1), (12.6-3) and (12.9-3) hold

and take λ3 = Θ
(
t−

1
β3+p3

)
. There is a constant J3 > 0 independent of t ≥ 1 and δ ∈ (0, 1) such that

∥∥∥ĈY Z|A − CY Z|A

∥∥∥
S2(HA,HZ)

≤ J3 log(5/δ)

(
1√
t

) β3−1
β3+p3

=: r3(δ, t, β3, p3),

is satisfied for sufficiently large t ≥ 1 with probability at least 1− δ.

Proof. To apply Theorem 3 Li et al. (2024), we prove that the following noise condition is satisfied, for q ≥ 2,
PA−almost surely,

E[∥Y ϕZ(Z)−Ψ(A)∥qHZ
| A] ≤ 1

2
q!σ̃2R̃q−2, (32)

for some σ̃ > 0 and R̃ > 0. We first notice that the Bernstein condition given by Assumption 12.1 Eq. (29)
implies that conditionally on A, |Y −E[Y | A]| is sub-exponential (Section 1.4 Buldygin and Kozachenko, 2000),
which then implies sub-exponentiality of |Y | given A. As, ∥ϕZ(Z)∥HZ ≤ κ is almost surely bounded, we obtain
that ∥Y ϕZ(Z)∥HZ given A is sub-exponential. Finally, Mollenhauer et al. (2022, Remark 4.9 and Appendix A.2)
shows that ∥Y ϕZ(Z)∥HZ given A being sub-exponential implies Eq. (32). We can then apply Theorem 3 Li
et al. (2024) with γ = 1 which corresponds to the Hilbert-Schmidt norm of S2(HA,HZ). Similarly to the proof
of Theorem 12.11, we can take the smoothness up to β3 = 3 as we work with the RKHS norm.

Corollary 12.23. Under the same assumptions as Theorem (12.22), with λ3 = Θ
(
n− 1

β3+p3

)
, for any δ ∈ (0, 1),

the following holds with probability at least 1− δ:

sup
a∈A

∥µ̂Y Z|A(a)− µY Z|A(a)∥HZ ≤ κr3(δ, t, β3, p3).



Density Ratio-based Proxy Causal Learning Without Density Ratios

12.1.6 Consistency for Dose-Response Curve

Theorem 12.24. Suppose Assumptions (5.1), (12.1), (12.6) and (12.9) hold and set λ1 = Θ
(
n− 1

β1+p1

)
, λ3 =

Θ
(
t−

1
β3+p3

)
and n = mι

β1+p1
β1−1 where ι > 0. Then,

i. If ι ≤ β2+1
β2+p2

then ∥f̂ATE − fATE∥∞ = Op

(√
t
− β3−1

β3+p3 +m− ι
2

β2−1
β2+1

)
with λ2 = Θ

(
m− ι

β2+1

)
;

ii. If ι ≥ β2+1
β2+p2

then ∥f̂ATE − fATE∥∞ = Op

(√
t
− β3−1

β3+p3 +m− 1
2

β2−1
β2+p2

)
with λ2 = Θ

(
m− 1

β2+p2

)
.

Proof. We recall that we showed in Equation (30) that for any a ∈ A,

|f̂ATE(a)− fATE(a)|

≤ κ
(
∥φ̂λ2,m − φ̄0∥HZA∥Ψ̂(a)−Ψ(a)∥HZ + ∥φ̄0∥HZA∥Ψ̂(a)−Ψ(a)∥HZA + ∥φ̂λ2,m − φ0∥HZA∥Ψ(a)∥HZ

)
.

Note that, under Assumption (5.1-3), Assumption (12.1) and Assumption (12.6-3),

∥Ψ(a)∥HZ = ∥CY Z|AϕA(a)∥HZ ≤ κ∥CY Z|AΣ
− β3−1

2
3 Σ

β3−1
2

3 ∥S2(HA,HZ) ≤ B3κ
1+

β3−1
2 =: α1.

Furthermore, under Assumption (12.6-2), by Proposition 12.7,

∥φ̄0∥HZA = ∥Σ
β2−1

2
2 Σ

− β2−1
2

2 φ̄0∥HZA ≤ B2κ
β2−1

2 =: α2.

Therefore,

|f̂ATE(a)− fATE(a)| ≤ κ
(
∥φ̂λ2,m − φ̄0∥HZA∥Ψ̂(a)−Ψ(a)∥HZ + α2∥Ψ̂(a)−Ψ(a)∥HZA + α1∥φ̂λ2,m − φ0∥HZA

)
.

As the first term is faster than the two last terms, plugging the results of Theorem 12.21 and Corollary 12.23,
we obtain the final bound.

12.2 Consistency Results for Conditional Dose-Response

In this section, we present the consistency result for the estimation of fATT. We note that the first-stage and
third-stage regressions are identical to the ones for fATE. Hence, we first derive the consistency of the second-stage
regression of conditional dose-response curve. Then, by incorporating the first and third-stage consistency results
for dose-response curve from previous sections, we prove the non-asymptotic uniform consistency guarantees for
conditional dose-response curve estimation.

Throughout the whole section a′ ∈ A is fixed.

12.2.1 Second-Stage Regression Consistency Results

First, we will assume that the problem is well-defined.

Assumption 12.25 (RKHS bridge for ATT). There exists φ0 ∈ HZAA that is a solution of Equation (2).

Similarly to ATE we define the minimum norm bridge solution for ATT.

Definition 12.26 (Bridge solution with minimum RKHS norm). We define

φ̄0 = argmin
φ∈HZAA

∥φ∥HZAA s.t. E[φ(Z,A, a′)|W,A] = r(W,A, a′),

where r(W,A, a′) = p(W,a′)p(a)
p(W,a)p(a′) .

Definition 12.27. We define the second stage covariance operator for the conditional dose-response:

Σ4 := EW,A

[((
µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a

′)
)
⊗
(
µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a

′)
))]

.
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Proposition 12.28. Under Assumption (12.25), φ̄0 is well-defined and is the unique element of HZAA satisfying
Equation (2) and such that φ̄0 ∈ null(Σ4)

⊥.

Proof. Note that the bridge equation, for an element φ ∈ HZAA, can be written as

r(W,A, a′) = E[φ(Z,A, a′)|W,A] = ⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)⟩HZA = Aφ,

by using the reproducing property and introducing the operator A : HZAA → L2(W × A, pW,A), φ 7→
⟨φ, µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a

′)⟩HZAA . The rest of the proof follows from the steps of the proof of Proposi-
tion (12.5).

Recall that we have the following loss at the population level:

L2SR(φ) = E[(r(W,A, a′)− E[φ(Z,A, a′)|W,A])2].

This loss can be equivalently written as

L2SR(φ) = E[E[φ(Z,A, a′)|W,A]2]− 2EW |A′=a′EA[E[φ(Z,A, a′)|W,A]] + const.

We introduce the regularized version of the population loss, for λ2 > 0,

L2SR
λ2

(φ) = L2SR(φ) + λ2∥φ∥2HZAA
.

We modify Assumptions (12.6) and (12.9) for ATT as follows.

Assumption 12.29. We assume that the following condition holds: there exists a constant B4 < ∞ such that
for a given β4 ∈ (1, 3],

∥Σ− β4−1
2

4 φ̄0∥HZAA ≤ B4.

Assumption 12.30. We assume that the following condition holds: let (λ4,i)i≥1 be the eigenvalues of Σ4, for
some constant c4 > 0 and parameter p4 ∈ (0, 1] and for all i ≥ 1,

λ4,i ≤ c4i
−1/p4 .

Let us also introduce g4 defined as

g4 = EW |A′=a′EA[µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)].

Proposition 12.31. g4 can be equivalently written as

g4 = E[r(W,A, a′)µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)].

Furthermore, for any element φ0 ∈ HZAA solution to the bridge function equation, we have g4 = Σ4φ0. Finally,

φλ2
:= argmin

φ∈HZAA

L2SR
λ2

(φ) = (Σ4 + λ2IdHZAA)
−1

g4.

Proof. The proof follows the same steps of the proof of Proposition (12.10)

Combined with Proposition (12.28), we obtain the following result.

Proposition 12.32. Under Assumption (12.25), φ̄0 = Σ
β4−1

2
4 Σ

− β4−1
2

4 φ̄0.

Now, we introduce the empirical version of the loss function. Define

L̄2SR
m (φ) =

1

m

m∑
i=1

〈
φ, µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
〉2
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− 2

m

m∑
i,j=1
i ̸=j

〈
φ, θiµZ|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a

′)
〉
+ λ2∥φ∥2HZAA

,

L̂2SR
m (φ) =

1

m

m∑
i=1

〈
φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
〉2

− 2

m

m∑
i,j=1
i ̸=j

〈
φ, θiµ̂Z|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a

′)
〉
+ λ2∥φ∥2HZAA

.

where θi = [(KÃÃ + mζI)−1KÃa′ ]i. To write down the minimizers of these loss functions, we introduce the
following sample based operators

Σ̄4,m =
1

m

m∑
i=1

(
µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
)
⊗
(
µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
)
,

ḡ4,m =
1

m

m∑
i,j
i̸=j

θiµZ|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′),

Σ̂4,m =
1

m

m∑
i=1

(
µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
)
⊗
(
µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′)
)
,

ĝ4,m =
1

m

m∑
i,j
i̸=j

θiµ̂Z|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′).

We can observe that the minimizers of the objective functions are given by

φλ2
= (Σ4 + λ2I)

−1g4 = argmin
φ∈HZA

L2SR
λ2

(φ),

φ̄λ2,m = (Σ̄4,m + λ2I)
−1ḡ4,m = argmin

φ∈HZA

L̄2SR
m (φ),

φ̂λ2,m = (Σ̂4,m + λ2I)
−1ĝ4,m = argmin

φ∈HZA

L̂2SR
m (φ).

φ̂λ2,m is the final estimator presented in Section (4.2). To show the convergence of φ̂λ2,m to the minimum norm
bridge φ̄0 introduced in Definition (12.26), we will consider the following decomposition,

∥φ̂λ2,m − φ̄0∥HZAA ≤ ∥φ̂λ2,m − φ̄λ2,m∥HZAA + ∥φ̄λ2,m − φλ2
∥HZAA + ∥φλ2

− φ̄0∥HZAA .

First, consider an upper bound for ∥φλ2
− φ̄0∥HZAA

Lemma 12.33. Suppose that Assumption (12.29) holds with parameter β4 ∈ (1, 3]. Then, for any λ2 > 0,

∥φλ2 − φ̄0∥HZAA ≤ B4λ
β4−1

2
2 .

Proof. We saw in Proposition (12.31) that

φλ2 = (Σ4 + λ2 Id)
−1

g4 = (Σ4 + λ2 Id)
−1

Σ4φ̄0 = φ̄0 − λ2 (Σ4 + λ2 Id)
−1

φ̄0.

Therefore, under Assumption (12.29),

∥φλ2 − φ̄0∥HZAA
= λ2

∥∥∥(Σ4 + λ2 Id)
−1

φ̄0

∥∥∥
HZA

≤ B4λ2

∥∥∥∥(Σ4 + λ2 Id)
−1

Σ
β4−1

2
4

∥∥∥∥
op

,
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where we used Proposition (12.32). Note that, by Lemma (12.46),

∥∥∥∥(Σ4 + λ2 Id)
−1

Σ
β4−1

2
4

∥∥∥∥
op

= sup
i≥1

λ
β4−1

2
4,i

λ4,i + λ2
≤ λ

β4−1
2 −1

2 ,

as long as β4−1
2 ∈ (0, 1], i.e. β4 ∈ (1, 3]. By merging the bounds, we obtain the final result.

Lemma 12.34. For any λ2 > 0, ∥φλ2
∥HZAA ≤ ∥φ̄0∥HZAA .

Proof. We saw in Proposition (12.31) that

∥φλ2
∥HZAA

=
∥∥∥(Σ4 + λ2 Id)

−1
Σ4φ̄0

∥∥∥
HZAA

≤
∥∥∥(Σ4 + λ2 Id)

−1
Σ4

∥∥∥
op

∥φ̄0∥HZAA
≤ ∥φ̄0∥HZAA

.

Similar to the consistency result for the dose-response curve, our convergence proof uses both the Hoeffding
concentration inequality (Corollary 12.48) and the Bernstein concentration inequality (Theorem 12.49) for Hilbert
space-valued random variables. We also define the effective dimension for the stage 2 error: for λ2 > 0, N (λ2) :=
Tr((Σ4 + λ2 Id)

−1Σ4) Caponnetto and De Vito (2007).

Proposition 12.35 (Lemma 11 & Lemma 13 Fischer and Steinwart (2020)). Under Assumption (12.30), there
is a constant D > 0 such that the following inequality is satisfied, for λ2 > 0, N (λ2) ≤ Dλ−p4

2 . Furthermore, we
have the equality,

E
[∥∥∥(Σ4 + λ2 Id)

−1/2µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)
∥∥∥2
HZAA

]
= N (λ2).

Lemma 12.36. Let us introduce gλ2
= log

(
2eN (λ2)

∥Σ4∥op+λ2

∥Σ4∥op

)
. Suppose Assumption (12.1) holds. Then, with

probability at least 1− δ for all δ ∈ (0, 1), for m ≥ 8κ6 log(2/δ)gλ2
λ−1
2 ,

∥φ̄λ2,m − φλ2
∥HZAA ≤ 3√

λ2

(
log(2/δ)

√
32

m

(
N (λ2)κ6∥φ̄0∥2HZAA

+
κ12∥φ̄0∥2HZAA

mλ2

)
+

∥g4 − ḡ4,m∥HZAA√
λ2

)
.

Proof. We decompose the error as

∥φ̄λ2,m − φλ2∥HZAA =
∥∥(Σ̄4,m + λ2I)

−1
(
ḡ4,m − (Σ̄4,m + λ2I)φλ2

)∥∥
HZAA

≤
∥∥∥(Σ4 + λ2I)

−1/2
∥∥∥
op

∥∥∥(Σ4 + λ2I)
1/2(Σ̄4,m + λ2I)

−1(Σ4 + λ2I)
1/2
∥∥∥
op

×
∥∥(Σ4 + λ2I)

−1/2
(
ḡ4,m − Σ̄4,mφλ2 − λ2φλ2︸ ︷︷ ︸

=g4−Σ4φλ2

)∥∥
HZAA

≤ λ
−1/2
2

∥∥∥(Σ4 + λ2I)
1/2(Σ̄4,m + λ2I)

−1(Σ4 + λ2I)
1/2
∥∥∥
op

×
(
∥(Σ4 + λ2I)

−1/2(Σ̄4,m − Σ4)φλ2
∥HZAA + λ

−1/2
2 ∥ḡ4,m − g4∥HZAA

)
,

where ∥.∥op denotes the operator norm. In the same fashion as in Lemma (12.45), we obtain that∥∥∥(Σ4 + λ2I)
1/2(Σ̄4,m + λ2I)

−1(Σ4 + λ2I)
1/2
∥∥∥
op

≤ 3,

for m ≥ 8κ6 log(2/δ)gλ2
λ−1
2 with probability at least 1 − δ for all δ ∈ (0, 1). To bound the remaining term, we

wish to apply Theorem (12.49) with H = HZAA. Consider the measurable map ξ : W ×A → HZAA defined by

ξ(w, a) := (Σ4 + λ2I)
−1/2⟨φλ2

, µZ|W,A(w, a)⊗ ϕA(a)⊗ ϕA(a
′)⟩HZAµZ|W,A(w, a)⊗ ϕA(a)⊗ ϕA(a

′),
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inducing random variables such that

1

m

m∑
i=1

(ξ(w̃i, ãi)− E[ξ(W,A)]) = (Σ4 + λ2I)
−1/2(Σ̄4,m − Σ4)φλ2

.

By Assumption (12.1), Lemma (12.34) and Cauchy-Schwarz inequality,

|⟨φλ2
, µZ|W,A(w, a)⊗ ϕA(a)⊗ ϕA(a

′)⟩HZAA | ≤ κ3∥φ̄0∥HZAA .

We can now bound the q-th moment of ξ, for q ≥ 2,

E ∥ξ(W,A)∥qHZA
≤
(
κ3∥φ̄0∥HZAA

)q E∥∥∥(Σ4 + λ2I)
−1/2µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a

′)
∥∥∥q
HZAA

≤
(
κ3∥φ̄0∥HZAA

)q ( κ3

√
λ2

)q−2

E
∥∥∥(Σ4 + λ2I)

−1/2µZ|W,A(W,A)⊗ ϕA(A)⊗ ϕA(a
′)
∥∥∥2
HZAA

=
(
κ3∥φ̄0∥HZAA

)q ( κ3

√
λ2

)q−2

N (λ2)

≤ 1

2
q!

(
κ6

√
λ2

∥φ̄0∥HZA

)q−2

N (λ2)κ
6∥φ̄0∥2HZA

,

where in the equality, we used Proposition (12.35). An application of Bernstein’s inequality from Theorem (12.49)
with

L =
κ6

√
λ2

∥φ̄0∥HZA , σ2 = N (λ2)κ
6∥φ̄0∥2HZA

,

yields the final bound.

We will now derive a bound for ∥g4 − ḡ4,m∥HZA . We need the following assumption.

Assumption 12.37. Suppose that there exists CW |A ∈ S2(HA,HW) such that E[ϕW(W )|A] = CW |AϕA(A).

Since we also need the consider the variables θi in deriving this bound, we will introduce an intermediate operator
as follows:

g̃4 =
1

m

m∑
j=1

CZ|W,A

(
EW |A=a′ [ϕW(W )]⊗ ϕA(ãj)

)
⊗ ϕA(ãj)⊗ ϕA(a

′)

=
1

m

m∑
j=1

CZ|W,A

(
CW |AϕA(a

′)⊗ ϕA(ãj)
)
⊗ ϕA(ãj)⊗ ϕA(a

′)

where CW |A ∈ S2(HA,HW) is the conditional mean operator, i.e., E[ϕW(W )|A = a] = CW |AϕA(a). Recall that,
in our conditional dose-response algorithm, we estimate this operator using second-stage data. Therefore, we
need the following bound for the estimation error of CW |A.

Assumption 12.38. We assume that the following condition holds: there exist a constant B5 < ∞ such that
for a given β5 ∈ (1, 3],

∥CW |AΣ
− β5−1

2
3 ∥S2(HA,HW) ≤ B5.

Theorem 12.39 (Theorem 2 Li et al. (2022)). Suppose Assumptions (12.1), (12.9-3), (12.37), (12.38), hold,

and take ζ = Θ
(
m− 1

β5+p3

)
. Then, there is a constant J5 > 0 independent of m ≥ 1 and δ ∈ (0, 1) such that

∥ĈW |A − CW |A∥S2(HA,HW) ≤ J5 log(4/δ)

(
1√
m

) β5−1
β5+p3

is satisfied for sufficiently large m ≥ 1 with probability at least 1− δ.
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Lemma 12.40. With probability at least 1− δ for δ ∈ (0, 1) the following bound holds:

∥ḡ4,m − g4∥ ≤ κ4J5 log(4/δ)

(
1√
m

) β5−1
β5+p3 ∥∥CZ|W,A

∥∥+ 2κ3

√
2 log(2/δ)

m

Proof. Let

ξ(A) = CZ|W,A (E[ϕW(W )|A = a′]⊗ ϕA(A))⊗ ϕA(A)⊗ ϕA(a
′)

ξi = CZ|W,A (E[ϕW(W )|A = a′]⊗ ϕA(ai))⊗ ϕA(ai)⊗ ϕA(a
′)

Note that E[ξi] = g4. Furthermore, we observe that

∥ξ(A)∥ = ∥CZ|W,A (E[ϕW(W )|A = a′]⊗ ϕA(A))⊗ ϕA(A)⊗ ϕA(a
′)∥

= ∥EW |A=a′E[ϕZ(Z)|W,A]⊗ ϕA(A)⊗ ϕA(a
′)∥ ≤ κ3.

Now, we apply Corollary (12.48) such that with probability at least 1− δ,

∥g̃4 − g4∥ ≤ 2κ3

√
2 log(2/δ)

m
.

Now, consider the decomposition

∥ḡ4,m − g4∥ ≤ ∥ḡ4,m − g̃4∥+ ∥g̃4 − g4∥

≤ ∥ḡ4,m − g̃4∥+ 2κ3

√
2 log(2/δ)

m

Next, we bound the component ∥ḡ4,m − g̃4∥.

∥ḡ4,m − g̃4∥ =

∥∥∥∥∥ 1

m

m∑
j=1

CZ|W,A

(
Ê[ϕW(W )|A = a′]⊗ ϕA(aj)

)
⊗ ϕA(aj)⊗ ϕA(a

′)

− 1

m

m∑
j=1

CZ|W,A (E[ϕW(W )|A = a′]⊗ ϕA(aj))⊗ ϕA(aj)⊗ ϕA(a
′)

∥∥∥∥∥
=

∥∥∥∥∥ 1

m

m∑
j=1

CZ|W,A

(
(Ê[ϕW(W )|A = a′]− E[ϕW(W )|A = a′])⊗ ϕA(aj)

)
⊗ ϕA(aj)⊗ ϕA(a

′)

∥∥∥∥∥
≤ 1

m

m∑
j=1

κ3
∥∥CZ|W,A

∥∥∥∥Ê[ϕW(W )|A = a′]− E[ϕW(W )|A = a′]
∥∥

= κ3
∥∥CZ|W,A

∥∥∥∥Ê[ϕW(W )|A = a′]− E[ϕW(W )|A = a′]
∥∥

Appealing to the Theorem (12.39),

∥∥Ê[ϕW(W )|A = a′]− E[ϕW(W )|A = a′]
∥∥ ≤ κJ5 log(4/δ)

(
1√
m

) β5−1
β5+p3

,

with probability at least 1− δ for δ ∈ (0, 1). As a result,

∥ḡ4,m − g̃4∥ ≤ κ4J5 log(4/δ)

(
1√
m

) β5−1
β5+p3 ∥∥CZ|W,A

∥∥.
This implies that

∥ḡ4,m − g4∥ ≤ κ4J5 log(4/δ)

(
1√
m

) β5−1
β5+p3 ∥∥CZ|W,A

∥∥+ 2κ3

√
2 log(2/δ)

m

with probability 1− 2δ for δ ∈ (0, 1).
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Theorem 12.41. Suppose Assumptions (12.1), (12.29), and (12.30) hold. Then, with probability at least 1− 2δ
for all δ ∈ (0, 1), for m ≥ 8κ6 log(2/δ)gλ2λ

−1
2 ,

∥φ̄λ2,m − φ̄0∥HZAA ≤ J4
log(4/δ)√

λ2

(√
1

m

(
1

λp4

2

+
1

mλ2

)
+

1√
λ2

(
1√
m

) β5−1
β5+p3

+

√
1

λ2m

)
+ λ

β4−1
2

2 ,

where J4 is a constant depending on κ, β4, B4, D.

Proof. Combining the bounds in Lemma (12.33), Lemma (12.36) and Lemma (12.40) with a union bound, we
obtain that with probability at least 1− 2δ,

∥φ̄λ2,m − φ̄0∥HZAA ≤ J̊

(
log(4/δ)√

λ2

(√
1

m

(
N (λ2)∥φ̄0∥2HZAA

+
∥φ̄0∥2HZAA

mλ2

)
+

1√
λ2

(
1√
m

) β5−1
β5+p3 ∥∥CZ|W,A

∥∥
+

√
1

λ2m

)
+ λ

β4−1
2

2

)
,

where J̊ is a constant depending on κ,B4. Under Assumption (12.30), using Proposition (12.35), there is a
constant D > 0 such that N (λ2) ≤ Dλ−p4

2 . Furthermore, under Assumption (12.29),

∥φ̄0∥HZAA = ∥Σ
β4−1

2
4 Σ

− β4−1
2

4 φ̄0∥HZAA ≤ κ
β4−1

2 B4.

Next, we will derive a bound for ∥φ̂λ2,m − φ̄λ2,m∥.
Lemma 12.42. Under the assumptions of Theorems (12.11) and (12.39), with probability at least 1 − 2δ for
δ ∈ (0, 1), the following bound holds

∥φ̂λ2,m − φ̄λ2,m∥ ≤ 1

λ2
κ3r1(δ, n, β1, p1)

κJ5 log(4/δ)

(
1√
m

) β5−1
β5+p3

+ κ


+

1

λ2

(
κ8r1(δ, n, β1, p1)

2 + 2B1κ
8+

β1−1
2 r1(δ, n, β1, p1)

)
∥φ̄λ2,m∥HZA .

Proof.

∥φ̂λ2,m − φ̄λ2,m∥HZAA = ∥(Σ̂4,m + λ2I)
−1(ĝ4,m − ḡ4,m + ḡ4,m)− φ̄λ2,m∥HZAA

= ∥(Σ̂4,m + λ2I)
−1(ĝ4,m − ḡ4,m) + (Σ̂2,m + λ2I)

−1ḡ4,m − φ̄λ2,m∥HZAA

= ∥(Σ̂4,m + λ2I)
−1(ĝ4,m − ḡ4,m) + (Σ̂4,m + λ2I)

−1ḡ4,m − (Σ̂4,m + λ2I)
−1(Σ̂4,m + λ2I)φ̄λ2,m∥HZAA

= ∥(Σ̂4,m + λ2I)
−1(ĝ4,m − ḡ4,m) + (Σ̂4,m + λ2I)

−1ḡ4,m − (Σ̂4,m + λ2I)
−1(Σ̂4,mφ̄λ4,m + λ2φ̄λ2,m︸ ︷︷ ︸

ḡ4,m−Σ̄4,mφ̄λ2,m

)∥HZAA

= ∥(Σ̂4,m + λ2I)
−1(ĝ4,m − ḡ4,m) + (Σ̂4,m + λ2I)

−1ḡ4,m − (Σ̂4,m + λ2I)
−1ḡ4,m

− (Σ̂4,m + λ2I)
−1(Σ̂4,mφ̄λ2,m − Σ̄4,mφ̄λ2,m)∥HZAA

= ∥(Σ̂4,m + λ2I)
−1(ĝ4,m − ḡ4,m)− (Σ̂4,m + λ2I)

−1(Σ̂4,m − Σ̄4,m)φ̄λ2,m∥HZAA

≤ ∥(Σ̂4,m + λ2I)
−1∥op∥ĝ4,m − ḡ4,m∥HZA + ∥(Σ̂4,m + λ2I)

−1∥op∥Σ̂4,m − Σ̄4,m∥op∥φ̄λ2,m∥HZAA

≤ λ−1
2

(
∥ĝ4,m − ḡ4,m∥HZAA + ∥Σ̂4,m − Σ̄4,m∥op∥φ̄λ2,m∥HZAA

)
.

We have two terms to bound. First, we observe that

∥ĝ4,m − ḡ4,m∥ =

∥∥∥∥∥ 1

m

m∑
i,j=1
j ̸=i

θiµ̂Z|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′)− 1

m

m∑
i,j=1
j ̸=i

θiµZ|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′)

∥∥∥∥∥
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≤ κ2

∥∥∥∥∥ 1

m

m∑
i,j=1
j ̸=i

θiĈZ|W,A(ϕW(w̃i)⊗ ϕA(ãj))−
1

m

m∑
i,j=1
j ̸=i

θiCZ|W,A(ϕW(w̃i)⊗ ϕA(ãj))

∥∥∥∥∥
= κ2

∥∥∥∥∥ 1

m

m∑
j=1

ĈZ|W,A

( m∑
i=1
i ̸=j

(θiϕW(w̃i))⊗ ϕA(ãj)
)
− 1

m

m∑
j=1

CZ|W,A

( m∑
i=1
i̸=j

(θiϕW(w̃i))⊗ ϕA(ãj)
)∥∥∥∥∥

= κ2

∥∥∥∥∥ 1

m

m∑
j=1

ĈZ|W,A

(
Ê[ϕW(W )|A = a′]⊗ ϕA(ãj)

)
− 1

m

m∑
j=1

CZ|W,A

(
Ê[ϕW(W )|A = a′]⊗ ϕA(ãj)

)∥∥∥∥∥
≤ κ2

m

m∑
j=1

∥ĈZ|W,A − CZ|W,A∥∥Ê[ϕW(W )|A = a′]∥∥ϕA(aj)∥

≤ κ3r1(δ, n, β1, p1)
∥∥∥Ê[ϕW(W )|A = a′]− E[ϕW(W )|A = a′] + E[ϕW(W )|A = a′]

∥∥∥
≤ κ3r1(δ, n, β1, p1)

(∥∥∥Ê[ϕW(W )|A = a′]− E[ϕW(W )|A = a′]
∥∥∥+ ∥∥∥E[ϕW(W )|A = a′]

∥∥∥)
≤ κ3r1(δ, n, β1, p1)

(∥∥∥Ê[ϕW(W )|A = a′]− E[ϕW(W )|A = a′]
∥∥∥+ κ

)
(with probability 1− δ, Corollary (12.39))

≤ κ3r1(δ, n, β1, p1)

κJ5 log(4/δ)

(
1√
m

) β5−1
β5+p3

+ κ

 (with probability 1− 2δ, Theorem (12.39).

For the second component, we note that for i = 1, . . . ,m,

ξi := (µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′))⊗ (µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′))

− (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′))⊗ (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′))

= ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi)⊗ ϕA(a
′))⊗ ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi)⊗ ϕA(a

′))

+ ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi)⊗ ϕA(a
′))⊗ (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a

′))

+ (µZ|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′))⊗ ((µ̂Z|W,A(w̃i, ãi)− µZ|W,A(w̃i, ãi))⊗ ϕA(ãi)⊗ ϕA(a

′)),

and therefore, under Assumption (12.1), by the triangular inequality and by Corollary (12.12)),

∥ξi∥op ≤ κ4
∥∥µ̂Z|W,A(w̃j , ãi)− µZ|W,A(w̃j , ãi)

∥∥2
HZ

+ 2κ4
∥∥µZ|W,A(w̃j , ãi)

∥∥
HZ

∥∥µ̂Z|W,A(w̃j , ãi)− µZ|W,A(w̃j , ãi)
∥∥
HZ

≤ κ8r1(δ, n, β1, p1)
2 + 2κ6

∥∥µZ|W,A(w̃j , ãi)
∥∥
HZ

r1(δ, n, β1, p1).

with probability at least 1− δ. Also, recall that we observe in the proof of Lemma (12.20) that

∥µZ|W,A(w, a)∥HZ ≤ B1κ
2+

β1−1
2 .

As a result, we have the following bound with probability at least 1− δ,

∥Σ̂4,m − Σ̄4,m∥op =

∥∥∥∥∥ 1

m

m∑
i=1

ξi

∥∥∥∥∥
op

≤ 1

m

m∑
i=1

∥ξi∥op

≤ κ8r1(δ, n, β1, p1)
2 + 2B1κ

8+
β1−1

2 r1(δ, n, β1, p1). (33)

The following Theorem provides convergence rates in RKHS norm for the estimation of the bridge solution with
minimum RKHS norm.

Theorem 12.43. Suppose Assumptions (5.1-1), (12.1), (12.6-1), (12.9-1), (12.25),(12.29), (12.30), (12.37).

(12.38) hold and set λ1 = Θ
(
n− 1

β1+p1

)
, ζ = Θ

(
m− 1

β5+p3

)
and n = m

ι
(β4+1)(β1+p1)

(β4+p4)(β1−1) where ι > 0. Then,



Density Ratio-based Proxy Causal Learning Without Density Ratios

i. If ι ≤ (β5−1)(β4+p4)
(β5+p3)(β4+1) then ∥φ̂λ2,m − φ̄0∥HZAA = Op

(
m

− ι(β4−1)

2(β4+p4)

)
with λ2 = Θ

(
m

−ι
β4+p4

)
,

ii. If ι ≥ (β5−1)(β4+p4)
(β5+p3)(β4+1) then ∥φ̂λ2,m − φ̄0∥HZAA = Op

(
m

− (β4−1)(β5−1)

2(β4+1)(β5+p3)

)
with λ2 = Θ

(
m

−(β5−1)

(β4+1)(β5+p3)

)
.

Proof. Let us abbreviate r1(n) = r1(δ, n, β1, p1). From Lemma (12.42), we obtain with high probability that

∥φ̂λ2,m − φ̄0∥HZAA ≤ ∥φ̄λ2,m − φ̄0∥HZAA +
J̄

λ2
r1(n)

1 +

(
1√
m

) β5−1
β5+p3


+

J̄

λ2
(1 + r1(n))r1(n)(∥φ̄λ2,m − φ̄0∥HZA + ∥φ̄0∥HZA),

where J̄ is a constant depending on κ,B1, β1, J5. Furthermore, from Theorem (12.41),

∥φ̄λ2,m − φ̄0∥HZAA = Op

(
r2(m)

)
,

with

r2(m) =
1√
λ2

(√
1

m

(
1

λp4

2

+
1

mλ2

)
+

1√
λ2

(
1√
m

) β5−1
β5+p3

+

√
1

λ2m

)
+ λ

β4−1
2

2

=

√√√√ 1

mλp4+1

(
1 +

1

mλ1−p4

2

)
+

1

λ2

(
1√
m

) β5−1
β5+p3

+
1

λ2
√
m

+ λ
β4−1

2
2

as long as m ≥ 8κ6 log(2/δ)gλ2λ2. Note that the term 1
λ2

√
m

is of faster order with respect to 1
λ2

(
1√
m

) β5−1
β5+p3

and can be removed. Discarding the other faster terms similar to Theorem (12.21) and putting it together, we
obtain

∥φ̂λ2,m − φ̄0∥HZAA = Op


√√√√ 1

mλp4+1

(
1 +

1

mλ1−p4

2

)
+

1

λ2

(
1√
m

) β5−1
β5+p3

+ λ
β4−1

2
2 +

1

λ2

(
1√
n

) β1−1
β1+p1


In this proof, similar to Theorem (12.21) we check, λ−1

2 m−1 log λ−1
2 = O(1).

Case i. Let ι ≤ (β5−1)(β4+p4)
(β5+p3)(β4+1) and λ2 = m

−ι
β4+p4 . We need to check that λ−1

2 m−1 log λ−1
2 = O(1).

log λ−1
2

mλ2
=

ι

β4 + p4

logm

m1− ι
β4+p4

.

As ι
β4+p4

≤ β5−1
(β5+p3)(β4+1) ≤ 1, we have λ−1

2 m−1 log λ−1
2 → 0 as m → ∞. Next, note that with this choice of λ2

we have

λ
β4−1

2
2 = m− ι

2
β4+1
β4+p4 =

1

λ2
n− 1

2
β1−1
β1+p1 .

Furthermore,

i.

λβ4−1
2 ≥ 1

mλp4+1
2

⇐⇒ λβ4+p4

2 ≥ m−1

⇐⇒ mι
β4+p4
β4+p4 ≤ m ⇐⇒ ι ≤ 1

that is true due to our assumption in this condition ι ≤ (β5−1)(β4+p4)
(β5+p3)(β4+1) ≤ 1.
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ii.

λ
β4−1

2
2 ≥ 1

λ2
m− 1

2
β5−1
β5+p3 ⇐⇒ λ

β4+1
2

2 ≥ m− 1
2

β5−1
β5+p3

⇐⇒ m− ι
2

β4+1
β4+p4 ≥ m− 1

2
β5−1
β5+p3

⇐⇒ ι ≤ (β4 + p4)(β5 − 1)

(β4 + 1)(β5 + p3)

iii.

1

mλ1−p4

2

=
1

mm− ι(1−p4)
β4+p4

=
1

m1− ι(1−p4)
β4+p4

≤ 1

since β4 + p4 − ι(1− p4) ≥ 0 due to the fact that ι ≤ (β5−1)(β4+p4)
(β5+p3)(β4+1) ≤ 1.

iv. Also

1

mλ1−p4

2

≤ 1

mλ1+p4
.

Therefore

∥φ̂λ2,m − φ̄0∥HZA = O

(
λ

β4−1
2

2

)
= O

(
m− ι

2
β4−1
β4+p4

)
.

Case ii. Let ι ≥ (β5−1)(β4+p4)
(β5+p3)(β4+1) and λ2 = m

−(β5−1)

(β4+1)(β5+p3) . Let us first check λ−1
2 m−1 log(λ−1

2 ) = O(1).

log λ−1
2

mλ2
=

β5 − 1

(β5 + p3)(β4 + 1)

logm

m
1− β5−1

(β5+p3)(β4+1)

.

As β5−1
(β5+p3)(β4+1) < 1, we have λ−1

2 m−1 log λ−1
2 → 0 as m → ∞. Next, note that with this choice of λ2 we have

λ
β4−1

2
2 =

1

λ2
m− 1

2
β5−1
β5+p3 .

Furthermore,

i.

λβ4−1
2 ≥ 1

mλp4+1
2

⇐⇒ λβ4+p4

2 ≥ m−1

⇐⇒ m
− (β5−1)(β4+p4)

(β5+p3)(β4+1) ≥ m−1

which is true since (β5−1)(β4+p4)
(β5+p3)(β4+1) ≤ 1

ii.

λ
β4−1

2
2 ≥ 1

λ2
n− 1

2
β1−1
β1+p1 ⇐⇒ λ

β4+1
2

2 ≥ n− 1
2

β1−1
β1+p1

⇐⇒ m
− 1

2
(β5−1)(β4+1)

(β5+p3)(β4+1) ≥ m
− ι

2
(β1−1)(β4+1)(β1+p1)

(β1+p1)(β4+p4)(β1−1)

which is true since ι ≥ (β5−1)(β4+p4)
(β5+p3)(β4+1) .

iii.

1

mλ1−p4

2

=
1

mm
−(β5−1)

(β4+1)(β5+p3)

=
1

m
1− (1−p4)(β5−1)

(β4+1)(β5+p3)

≤ 1

since (1−p4)(β5−1)
(β4+1)(β5+p3)

≤ 1.
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iv. Also,

1

mλ1−p4

2

≤ 1

mλ1+p4

2

.

Hence,

∥φ̂λ2,m − φ̄0∥HZA = O

(
λ

β4−1
2

2

)
= O

(
m

− 1
2

(β5−1)(β4−1)

(β4+1)(β5+p3)

)
.

12.2.2 Consistency for Conditional Dose-Response Curve

Theorem 12.44. Suppose that Assumptions (5.1), (12.1), (12.6-1 & 3) and (12.9-1 & 3), (12.29), (12.30) hold

and set λ1 = Θ
(
n− 1

β1+p1

)
, λ3 = Θ

(
t−

1
β3+p3

)
, ζ = Θ

(
m− 1

β5+p3

)
, and n = m

ι
(β4+1)(β1+p1)

(β4+p4)(β1−1) where ι > 0. Then,

i. If ι ≤ (β5−1)(β4+p4)
(β5+p3)(β4+1) then supa |f̂ATT (a, a

′) − fATT (a, a
′)| = Op

(√
t
− β3−1

β3+p3 +m
− ι(β4−1)

2(β4+p4)

)
with

λ2 = Θ
(
m

−ι
β4+p4

)
,

ii. If ι ≥ (β5−1)(β4+p4)
(β5+p3)(β4+1) then supa |f̂ATT (a, a

′) − fATT (a, a
′)| = Op

(√
t
− β3−1

β3+p3 +m
− (β4−1)(β5−1)

2(β4+1)(β5+p3)

)
with

λ2 = Θ

(
m

−(β5−1)

(β4+1)(β5+p3)

)
.

Proof. For fix a′ and for any a ∈ A, we apply the following decomposition,

|f̂ATT (a, a
′)− fATT (a, a

′)| = |⟨φ̂λ2,m, Ψ̂(a)⊗ ϕA(a)⊗ ϕA(a
′)⟩HZAA − ⟨φ̄0,Ψ(a)⊗ ϕA(a)⊗ ϕA(a

′)⟩HZAA |
= |⟨φ̂λ2,m, (Ψ̂−Ψ)(a)⊗ ϕA(a)⊗ ϕA(a

′)⟩HZAA + ⟨(φ̂λ2,m − φ̄0),Ψ(a)⊗ ϕA(a)⊗ ϕA(a
′)⟩HZAA |

= |⟨φ̂λ2,m − φ̄0, (Ψ̂−Ψ)(a)⊗ ϕA(a)⊗ ϕA(a
′)⟩HZAA + ⟨φ̄0, (Ψ̂−Ψ)(a)⊗ ϕA(a)⊗ ϕA(a

′)⟩HZAA (34)

+ ⟨(φ̂λ2,m − φ̄0),Ψ(a)⊗ ϕA(a)⊗ ϕA(a
′)⟩HZAA |

≤ κ2
(
∥φ̂λ2,m − φ̄0∥HZA∥Ψ̂(a)−Ψ(a)∥HZ + ∥φ̄0∥∥Ψ̂(a)−Ψ(a)∥HZA + ∥φ̂λ2,m − φ̄0∥HZA∥Ψ(a)∥HZ

)
(35)

Note that, under Assumption (5.1-3), Assumption (12.1) and Assumption (12.6-3),

∥Ψ(a)∥HZ = ∥CY Z|AϕA(a)∥HZ ≤ κ∥CY Z|AΣ
− β3−1

2
3 Σ

β3−1
2

3 ∥S2(HA,HZ) ≤ B3κ
1+

β3−1
2 =: α1.

Furthermore, under Assumption (12.29), by Proposition (12.32),

∥φ̄0∥HZAA = ∥Σ
β4−1

2
2 Σ

− β4−1
2

2 φ̄0∥HZAA ≤ B2κ
β4−1

2 =: α2.

Therefore,

|f̂ATT (a, a
′)−fATT (a, a

′)| ≤ κ2
(
∥φ̂λ2,m − φ̄0∥HZA∥Ψ̂(a)−Ψ(a)∥HZ + α2∥Ψ̂(a)−Ψ(a)∥HZA + α1∥φ̂λ2,m − φ0∥HZA

)
.

As the first term is faster than the two last terms, plugging the results of Theorem (12.43) and Corollary (12.23),
we obtain the final bound.

12.3 Additional results

Here, we present the results that we used in deriving the consistency bounds for dose-response and conditional
dose-response estimations.

The following is a direct consequence of Fischer and Steinwart (2020, Lemma 17).



Bariscan Bozkurt, Ben Deaner, Dimitri Meunier, Liyuan Xu, Arthur Gretton

Lemma 12.45. For any δ ∈ (0, 1) and m ≥ 8κ4 log(2/δ)gλ2
λ−1
2 where gλ2

= log
(
2eN (λ2)

∥Σ2∥op+λ2

∥Σ2∥op

)
and under

Assumption 12.1 ∥∥∥(Σ2 + λ2I)
1/2(Σ̄2,m + λ2I)

−1(Σ2 + λ2I)
1/2
∥∥∥
op

≤ 3,

Proof. By Fischer and Steinwart (2020, Lemma 17), for δ ∈ (0, 1), λ2 > 0, and m ≥ 1, the following operator
norm bound is satisfied probability not less than 1− δ,

∥∥∥(Σ2 + λ2I)
−1/2

(
Σ2 − Σ̄2,m

)
(Σ2 + λ2I)

−1/2
∥∥∥ ≤ 4κ4 log(2/δ)gλ2

3mλ2
+

√
2κ4 log(2/δ)gλ2

mλ2
,

where we took α = 1 in their result since the kernels are bounded. In their notations, for α = 1 (see Fischer and
Steinwart (2020, Eq. (15) & Eq. (16))

∥kαν ∥∞ = sup
(w,a)∈W×A

∥µZ|W,A(w, a)⊗ ϕA(a)∥HWA ≤ κ2.

Therefore, with m ≥ 8κ4 log(2/δ)gλ2
λ−1
2 ,

∥∥∥(Σ2 + λ2I)
−1/2

(
Σ2 − Σ̄2,m

)
(Σ2 + λ2I)

−1/2
∥∥∥ ≤ 4

3
· 1
8
+

√
2 · 1

8
=

2

3

with probability not less than 1− δ. Consequently, the inverse of

Id−(Σ2 + λ2I)
−1/2

(
Σ2 − Σ̄2,m

)
(Σ2 + λ2I)

−1/2

can be represented by the Neumann series. In particular, the Neumann series gives us the following bound,∥∥∥(Σ2 + λ2I)
1/2(Σ̄2,m + λ2I)

−1(Σ2 + λ2I)
1/2
∥∥∥2

=
∥∥∥Id−(Σ2 + λ2I)

−1/2
(
Σ2 − Σ̄2,m

)
(Σ2 + λ2I)

−1/2
∥∥∥2

≤

( ∞∑
k=0

∥∥∥(Σ2 + λ2I)
−1/2

(
Σ2 − Σ̄2,m

)
(Σ2 + λ2I)

−1/2
∥∥∥k)2

≤

( ∞∑
k=0

(
2

3

)k
)2

= 9

Lemma 12.46 (Lemma 25 Fischer and Steinwart (2020)). Let, for λ > 0 and 0 ≤ α ≤ 1, the function
fλ,α : [0,∞) → R be defined by fλ,α(t) := tα/(λ+ t). The supremum of fλ,α satisfies the following bound

sup
t≥0

fλ,α(t) ≤ λα−1.

The following result is the direct consequence of (Pinelis, 1994, Theorem 3.5).

Proposition 12.47 (Hoeffing’s inequality in Hilbert space). Let ξ1, . . . , ξm be independent centered random
variables taking values in a separable Hilbert space H such that ∥ξi∥H ≤ M almost surely for all 1 ≤ i ≤ m.
Then for all δ ∈ (0, 1), with probability at least 1− δ, we have,∥∥∥∥∥ 1

m

n∑
i=1

ξi

∥∥∥∥∥
H

≤ M

√
2 log(2/δ)

m

We obtain the following inequality for non-centered random variables.
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Corollary 12.48 (Hoeffing’s inequality in Hilbert space). Let ξ1, . . . , ξm be independent (not necessarily centered)
random variables taking values in a separable Hilbert space H such that ∥ξi∥H ≤ M almost surely for all 1 ≤ i ≤
m. Then for all δ ∈ (0, 1), with probability at least 1− δ, we have,∥∥∥∥∥ 1

m

(
n∑

i=1

ξi − E[ξi]

)∥∥∥∥∥
H

≤ 2M

√
2 log(2/δ)

m

Proof. By Jensen’s inequality and the triangular inequality, for all 1 ≤ i ≤ m,

∥ξi − E[ξi]∥H ≤ ∥ξi∥H + ∥E[ξi]∥H ≤ ∥ξi∥H + E[∥ξi∥H] ≤ 2M,

and the result follows from Proposition (12.47).

The following Bernstein’s inequality can be found in Fischer and Steinwart (2020, Theorem 26).

Theorem 12.49 (Bernstein’s inequality in Hilbert space). Let ξ1, . . . , ξm be independent and identically dis-
tributed random variables taking values in a separable Hilbert space H such that

E[∥ξ1∥qH ] ≤ 1

2
q!σ2Lq−2

for all q ≥ 2. Then for all δ ∈ (0, 1), with probability at least 1− δ, we have,∥∥∥∥∥ 1

m

m∑
i=1

ξi − Eξi

∥∥∥∥∥
H

≤ log(2/δ)

√
32

m

(
σ2 +

L2

m

)
.

13 SUPPLEMENTARY ON NUMERICAL EXPERIMENTS

In this section, we provide more detail on the numerical experiments as well as further ablation studies. We
first provide details on the kernel function that we used in our experiments and the procedure to tune the
regularization parameters. After that, we provide further information about the experimental setups and discuss
the complexity of our proposed methods.

13.1 Kernel

In our experiments, we employed the Gaussian kernel function

kF (fi, fj) = exp

(
−∥fi − fj∥22

2l2

)
(36)

for fi, fj ∈ RdF . Gaussian kernel is bounded, continuous and characteristic. The parameter l is called the
length scale of the kernel and there is a simple heuristic to determine the length scale called median length scale
heuristic. In particular, consider the data {fi}ni=1. Then, we set the length scale squared l2 to the half of the
median value of the pairwise squared distances, i.e.,

l2 =
1

2
median({∥fi − fj∥22 : 1 ≤ i < j ≤ n}).

This heuristic has also been utilized in causal inference literature, e.g., (Singh et al., 2023; Mastouri et al., 2021;
Singh, 2023; Xu and Gretton, 2024).

The Gaussian kernel in Equation (36) can also be considered as multiplication of Gaussian kernels for each
dimension, i.e.,

kF (fi, fj) =

dF∏
k=1

exp

(
−∥f (k)

i − f
(k)
j ∥22

2l(k)
2

)
(37)

where f
(k)
i is the k-th dimension of fi ∈ RdF . In that case, each of the length scale in the set {l(k)}dF

k=1 can
be determined by the median distance length-scale heuristic for each dimension separately. We will refer to the
kernel in Equation (37) as columnwise Gaussian kernel. In our synthetic low-dimensional experiment in Section
(6.1) we used columnwise Gaussian kernel for outcome proxy variable W . For all the other experiments and
variables with our proposed method, we used Gaussian kernel.
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13.2 Hyperparameter Selection

13.2.1 Tuning λ1 and λ2 Regularization Parameters

To tune the regularization parameters λ1 and λ3, we employ leave-one-out cross validation (LOOCV) technique
since it has a closed-form expression in the kernel ridge regression setup. The following theorem provides the
closed-form expression for the LOOCV loss in kernel ridge regression.

Theorem 13.1 (Theorem F.1 in (Singh et al., 2023)). Consider the kernel ridge regression setup from measure-
ments {xi}ni=1 to the outcomes {yi}ni=1, and we minimize the regularized squared loss:

argmin
f∈HX

L(f) = argmin
f∈HX

[ 1
n

n∑
i=1

(yi − ⟨f, ϕX (xi)⟩H)2 + λ∥f∥2H
]

= argmin
f∈HX

[ 1
n
∥Y − ΦT

X f∥22 + λ∥f∥2H
]

where ϕX (.) is the canonical feature map for the assumed kernel function kX (., .), HX is the corresponding RKHS,

Y =
[
y1 y2 . . . yn

]T ∈ Rn and ΦX =
[
ϕX (x1) ϕX (x2) . . . ϕX (xn)

]
. Then, the LOOCV loss is given by

LOOCVf (λ) =
1

n
∥H̃−1

λ HλY ∥22 (38)

where

Hλ = I −KXX(KXX + nλI)−1 ∈ Rn×n

H̃λ = diag(Hλ) ∈ Rn×n

The proof of this theorem can be found in (Singh et al., 2023) (see Algorithm F.1 in that paper). As a result o
this theorem, one can tune the hyperparameter λ of kernel ridge regression over a grid Λ ⊂ R, i.e.,

λ∗ = argmin
Λ⊂R

1

n
∥H̃−1

λ HλY ∥22.

Tuning of First Stage Regression Regularization (λ1): Recall that in first-stage regression, we solve the
following optimization problem (see derivation of Algorithm (4.1) in S.M. (11.1):

L̂c(C) =
1

n

n∑
i=1

∥ϕZ(zi)− C(ϕW(wi)⊗ ϕA(ai))∥2HZ
+ λ1∥C∥2S2(HW⊗HA,HZ).

This is a kernel ridge regression from the (infinite dimensional) measurements {ϕW(wi) ⊗ ϕA(ai)}ni=1 to the
(infinite dimensional) outcomes {ϕZ(zi)}ni=1. Since the kernel function for the tensor product features ϕW(wi)⊗
ϕA(ai) is kW(wi, .)kA(ai, .), we can write

Hλ1 = I − (KWW ⊙KAA)(KWW ⊙KAA + nλ1I)
−1 ∈ Rn×n

H̃λ1
= diag(Hλ1

) ∈ Rn×n.

Furthermore, we see that the LOOCV can be written as

LOOCVC(λ) =
1

n
∥H̃−1

λ1
Hλ1Φ

T
Z∥22

=
1

n
Tr(H̃−1

λ1
Hλ1Φ

T
ZΦZH

T
λ1
H̃−T

λ1
)

=
1

n
Tr(H̃−1

λ1
Hλ1

KZZH
T
λ1
H̃−T

λ1
). (39)

Hence, we can tune λ1 over a grid Λ1 ⊂ R that minimizes the LOOCV loss in Equation (39). In each of our
experiments, we generated the grid Λ1 with logspace with maximum and minimum values of 1.0 and 10−7,
respectively, and we used 150 grid points. This procedure applies to both Algorithms for dose-response curve
and conditional dose-response curve estimations.
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Tuning of Third Stage Regression Regularization (λ3): Recall that in order to estimate the causal
functions after second-stage regression, we solve the following optimization problem (see derivation of Algorithm
(4.1) in S.M. (11.1):

ĈY Z|A = argmin
C

1

n

n∑
i=1

∥yiϕZ(zi)− CϕA(ai)∥2 + λ2∥C∥2

= argmin
C

1

n
∥ΦZdiag(Y )− CΦA∥2 + λ3∥C∥2.

Again, this is kernel ridge regression from (infinite dimensional) measurement {ϕA(ai)}ni=1 to the (infinite di-
mensional) outcomes yiϕZ(zi). Then, we construct

Hλ3
= I −KAA(KAA + nλ3I)

−1 ∈ Rn×n

H̃λ3
= diag(Hλ3

) ∈ Rn×n.

Therefore, LOOCV loss can be written as

LOOCVF (λ3) =
1

n
∥H̃−1

λ3
Hλ3

(ΦZdiag(Y ))T ∥22

=
1

n
∥H̃−1

λ3
Hλ3

diag(Y )TΦT
Z∥22

=
1

n
Tr
(
H̃−1

λ3
Hλ3

diag(Y )TΦT
ZΦZdiag(Y )HT

λ3
H̃−T

λ3

)
=

1

n
Tr
(
H̃−1

λ3
Hλ3(KZZ ⊙ Y Y T )HT

λ3
H̃−T

λ3

)
(40)

As a result, we can tune λ3 over a grid Λ3 ⊂ R that minimizes the LOOCV loss in Equation (40). In each of
our experiments, we generated the grid Λ3 with logspace with maximum and minimum values of 1.0 and 10−7,
respectively, and we used 150 grid points. This procedure applies to both Algorithms for dose-response curve
and conditional dose-response curve estimations.

13.2.2 Tuning λ2 Regularization Parameter in ATE Algorithm

Recall that in the second-stage regression, we use the stage 2 data {z̃i, w̃i, ãi}ni=1. We can estimate the out-
of-sample loss of the second-stage regression using the data from first-stage {zi, wi, ai}ni=1 in order to tune the
regularization parameter λ2. Then, the out-of-sample loss can be expressed as follows:

L̂Val(φ) =
1

n

n∑
i=1

⟨φ, µ̂Z|W,X,A(wi, ai)⊗ ϕA(ai)⟩2HZ⊗HA
(41)

− 2
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

〈
φ, µ̂Z|W,X,A(wj , ai)⊗ ϕA(ai)

〉
HZ⊗HA

(42)

where

φ =

m∑
i=1

αiµ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi) +
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj),

and the set {αi}m+1
i=1 are the optimizer of the loss function in Equation (18). Now, let us compute the closed-form

expression for out-of-loss. First, consider the following inner product:

⟨φ, µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⟩

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl), µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⟩
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+
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

⟨µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj), µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⟩

=

m∑
l=1

αl⟨µ̂Z|W,A(w̃l, ãl), µ̂Z|W,A(wi, ai)⟩⟨ϕA(ãl), ϕA(ai)⟩

+
αm+1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

⟨µ̂Z|W,A(w̃l, ãj), µ̂Z|W,A(wi, ai)⟩⟨ϕA(ãj), ϕA(ai)⟩

=

m∑
l=1

αlβ(w̃l, ãl)
⊤KZZβ(wi, ai)kA(ãl, ai)

+
αm+1

m

m∑
j=1

(
m∑
l=1
l ̸=j

1

m− 1
β(w̃l, ãj)

)⊤

KZZβ(wi, ai)kA(ãj , ai)

=

[(
C⊤KZZB ⊙KAÃ

)
α1:m + αm+1

(
C⊤KZZB̄ ⊙KAÃ

)
1

m

]
i

where

C =
(
KWW ⊙KAA + nλ1I

)−1

(KWW ⊙KXX ⊙KAA).

As a result,

1

n

n∑
i=1

⟨φ, µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⟩2HZ⊗HA

=
1

n

[
α1:m

αm+1

] [
BTKZZC ⊙KÃA

( 1
m )T

(
B̄TKZZC ⊙KÃA

)] [CTKZZB ⊙KAÃ

(
CTKZZB̄ ⊙KAÃ

)
1
m

] [ α1:m

αm+1

]
Secondly, consider the following sum of inner products:

1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

〈
φ, µ̂Z|W,A(wj , ai)⊗ ϕA(ai)

〉
HZ⊗HA

=
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

m∑
l=1

αl

〈
µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl), µ̂Z|W,A(wj , ai)⊗ ϕA(ai)

〉
HZ⊗HA

+
αm+1

mn(m− 1)(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
l ̸=r

〈
µ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr), µ̂Z|W,A(wj , ai)⊗ ϕA(ai)

〉
HZ⊗HA

=
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

m∑
l=1

αlβ(w̃l, ãl)
⊤KZZβ(wj , ai)kA(ãl, ai)

+
αm+1

mn(m− 1)(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
l ̸=r

β(w̃s, ãr)
⊤KZZβ(wj , ai)kA(ãr, ai)

=
1

n

n∑
i=1

m∑
l=1

αlβ(w̃l, ãl)
⊤KZZ

(
1

n− 1

n∑
j=1
j ̸=i

β(wj , ai)

)
kA(ãl, ai)

+
αm+1

mn

n∑
i=1

m∑
r=1

(
1

m− 1

m∑
s=1
l ̸=r

β(w̃s, ãr)

)⊤

KZZ

(
n∑

j=1
j ̸=i

β(wj , ai)

)
kA(ãr, ai)
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=
1

n
αT
1:m

(
B⊤KZZC̄ ⊙KÃA

)
1+ αm+1

1

nm
1⊤(B̄⊤KZZC̄ ⊙KÃA)1

=

[
α1:m

αm+1

]⊤ [ (
B⊤KZZC̄ ⊙KÃA

)
1
n

( 1
m )⊤

(
B̄⊤KZZC̄ ⊙KÃA)

1
n

]
where C̄ is the matrix whose j-th column is given by

C̄ =
1

n

n∑
l=1
l ̸=j

(
KWW ⊙KXX ⊙KAA + nλ1I

)−1

(KWwl
⊙KXxl

⊙KAaj ).

As a result, we can write the hold-out sample loss as:

L̂Val(φ) =
1

n

n∑
i=1

⟨φ, µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⟩2HZ⊗HA

− 2
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

〈
φ, µ̂Z|W,A(wj , ai)⊗ ϕA(ai)

〉
HZ⊗HA

=
1

n

[
α1:m

αm+1

] [
BTKZZC ⊙KÃA

( 1
m )T

(
B̄TKZZC ⊙KÃA

)] [CTKZZB ⊙KAÃ

(
CTKZZB̄ ⊙KAÃ

)
1
m

] [ α1:m

αm+1

]
− 2

[
α1:m

αm+1

]⊤ [ (
B⊤KZZC̄ ⊙KÃA

)
1
n

( 1
m )⊤

(
B̄⊤KZZC̄ ⊙KÃA)

1
n

]
(43)

One can choose the regularization parameter λ2 that will minimize ˆLVal in Equation (43). However, even though
validation error is an estimator of the test error, its variance may cause overfitting (Meanti et al., 2022). Hence,
we will propose a similar method to (Meanti et al., 2022) that will avoid overfitting via utilizing the additional
complexity regularization cost. Now, recall our original population level cost function for the second-stage (before
simplification):

L2SR(φ) = E
[(
r(W,A)− E[φ(Z,A)|W,A]

)2]
+ λ2∥φ∥2HZ⊗HA

(44)

Recall that our analysis has shown that φ must be in the form of

φ =

m∑
i=1

αiµ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi) + αm+1
1

m(m− 1)

m∑
j=1

m∑
l=1
l ̸=j

µ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj),

if we optimize the corresponding sample loss in Equation (10). Now, suppose that we observe the noisy version
of the target r(W,A) (even though we do not observe the density-ratios, for theoretical analysis here we can see
that Equation (44) is regression on the target variable r(W,A)). We write the sample-based counterpart of the
loss in Equation (44) as follows:

L̂2SR,ϵ
m (φ) =

1

m
∥Rϵ −Lα∥2 + λ2α

TNα (45)

where Rϵ = R+ ϵ with Var(ϵi) = σ2 and E[ϵi] = 0 for all i, and

L =
[
BTKZZB ⊙KÃÃ

[
BTKZZB̄ ⊙KÃÃ

]
1
m

]
N =

[
BTKZZB ⊙KÃÃ [BTKZZB̄ ⊙KÃÃ]

1
m

( 1
m )T [BTKZZB̄ ⊙KÃÃ]

T ( 1
m )T

[
B̄TKZZB̄ ⊙KÃÃ

]
1
m

]
.

Also, consider the noiseless case

L̂2SR
m (φ) =

1

m
∥R−Lα∥2 + λ2α

TNα
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The optimum of L̂2SR,ϵ(φ) can be written as

α = argmin
α

L̂2SR,ϵ
m (φ) =

(
LTL+mλ2I

)−1
LTRϵ

=
(
LTL+mλ2I

)−1
LT (R+ ϵ).

Now, consider the following expectation

E
[ 1
m
∥Rϵ −Lα∥2

]
= E

[ 1
m
∥R−Lα∥2

]
+

2

m
E
[
⟨R−Lα, ϵ⟩

]
+ σ2

= E
[ 1
m
∥R−Lα∥2

]
+

2

m
E
[
⟨R−Lα, ϵ⟩

]
+ σ2

= E
[ 1
m
∥R−Lα∥2

]
− 2

m
E
[
⟨L
(
LTL+mλ2I

)−1
LT (R+ ϵ), ϵ⟩

]
+ σ2

= E
[ 1
m
∥R−Lα∥2

]
− 2

m
E
[
⟨L
(
LTL+mλ2I

)−1
LT ϵ, ϵ⟩

]
+ σ2

= E
[ 1
m
∥R−Lα∥2

]
− 2σ2

m
Tr
((

LTL+mλ2I
)−1

LTL
)
+ σ2.

Hence,

E
[ 1
m
∥R−Lα∥2

]
= E

[ 1
m
∥Rϵ −Lα∥2

]
+

2σ2

m
Tr
((

LTL+mλ2I
)−1

LTL
)
− σ2.

Note that the term E
[

1
m∥R − Lα∥2

]
is the expected risk in the noise free setup. Furthermore, the term

2σ2

m Tr
((

LTL + mλ2I
)−1

LTL
)

is referred as degrees of freedom (or complexity) of the estimator, and it is

a positive scalar. It penalizes the complex estimators. Having derived this, now consider the validation loss
L̂Val(φ) that we have previously derived. As we pointed out earlier, optimizing the regularization parameter λ2

with respect to this validation loss can still lead to overfitting due to its variance. Hence, we propose to optimize
the regularization parameter λ2 with respect to the following surrogate cost that is both an upper bound on the
validation error and penalizes the overly complex models:

L̂Val(φ) ≤ L̂Val
σ2 (φ) ∀σ ≥ 0,

where

L̂Val
σ2 (φ) =

1

n

[
α1:m

αm+1

] [
BTKZZC ⊙KÃA

( 1
m )T

(
B̄TKZZC ⊙KÃA

)] [CTKZZB ⊙KAÃ

(
CTKZZB̄ ⊙KAÃ

)
1
m

] [ α1:m

αm+1

]
− 2

[
α1:m

αm+1

]⊤ [ (
B⊤KZZC̄ ⊙KÃA

)
1
n

( 1
m )⊤

(
B̄⊤KZZC̄ ⊙KÃA)

1
n

]
+

2σ2

m
Tr
((

LTL+mλ2I
)−1

LTL
)

(46)

Hence, we can tune λ2 over a grid Λ2 ⊂ R that minimizes the surrogate loss in Equation (46). One drawback of
this approach is that we need to either estimate σ2 or treat it as another hyperparameter. In our experiments,
we opted to treat σ2 as a hyperparameter. For the synthetic low-dimensional data and the legalized abortion
and crime dataset, we set σ2 = 1. In our dSprite and grade retention experiments, we used σ2 = 3.

13.2.3 Tuning λ2 Regularization Parameter in ATT Algorithm

Recall that in the second-stage regression for ATT estimation, we minimize the following loss:

L̂2SR
m (φ) =

1

m

m∑
i=1

⟨φ, µ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′)⟩2

− 2
1

m

m∑
j=1

m∑
i=1
i ̸=j

⟨φ, θiµZ|W,A(w̃i, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′)⟩+ λ2∥φ∥2HZ⊗HA⊗HA

.
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We can compute the validation loss using the first-stage data {zi, wi, ai}ni=1 similar to ATE algorithm with the
following expression

LVal(φ) =
1

n

n∑
i=1

⟨φ, µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⊗ ϕA(a
′)⟩2

− 2
1

n

n∑
j=1

n∑
i=1
i ̸=j

⟨φ, θ(2)i µ̂Z|W,A(wi, aj)⊗ ϕA(aj)⊗ ϕA(a
′)⟩ (47)

where θ
(2)
i = [(KAA + nζ(2)I)−1KAa′ ]i. Furthermore, recall that the expression for φ that we have is

φ =

m∑
i=1

αiµ̂Z|W,A(w̃i, ãi)⊗ ϕA(ãi)⊗ ϕA(a
′) +

αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′).

where the set {αi}m+1
i=1 are the optimizer of the loss function in Equation (28). Now, we need to compute this

validation loss in terms of matrix-vector multiplications. First, consider the following inner product:〈
φ, µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⊗ ϕA(a

′)
〉

=

〈
m∑
l=1

αlµ̂Z|W,A(w̃l, x̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a
′) +

αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a
′),

µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⊗ ϕA(a
′)

〉

=

m∑
l=1

αl

〈
µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a

′), µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⊗ ϕA(a
′)
〉

+
αm+1

m

m∑
j=1

m∑
l=1
l ̸=j

〈
θlµ̂Z|W,A(w̃l, ãj)⊗ ϕA(ãj)⊗ ϕA(a

′), µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⊗ ϕA(a
′)
〉

=

m∑
l=1

αlβ(w̃l, ãl)
TKZZβ(wi, ai)kA(ãl, ai)kA(a

′, a′)

+
αm+1

m

m∑
j=1

( m∑
l=1
l ̸=j

θlβ(w̃l, ãj)
)T

KZZβ(wi, ai)kA(ãj , ai)kA(a
′, a′)

=
[[
CTKZZB ⊙KAÃ

]
α1:m

]
i
kA(a

′, a′) + αm+1

[[
CTKZZB̃ ⊙KAÃ

]
(1/m)

]
i
kA(a

′, a′)

=

[ [
CTKZZB ⊙KAÃ

[
CTKZZB̃ ⊙KAÃ

]
(1/m)

] [ α1:m

αm+1

] ]
i

kA(a
′, a′)

where

C =
(
KWW ⊙KAA + nλ1I

)−1

(KWW ⊙KAA).

As a result, the first component in Equation (47) is given by

1

n

n∑
i=1

〈
φ, µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⊗ ϕA(a

′)
〉2

=
kA(a

′, a′)2

n

[
α1:m

αm+1

]T [ [
CTKZZB ⊙KAÃ

]T
( 1
m )T

[
CTKZZB̃ ⊙KAÃ

]T
] [

CTKZZB ⊙KAÃ

[
CTKZZB̃ ⊙KAÃ

]
1
m

] [ α1:m

αm+1

]
(48)
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Next, for the second component in Equation (47), we note that

1

n

n∑
i=1

n∑
j=1
j ̸=i

〈
φ, θ

(2)
j µ̂Z|W,A(wj , ai)⊗ ϕA(ai)⊗ ϕA(a

′)
〉

=
1

n

n∑
i=1

n∑
j=1
j ̸=i

m∑
l=1

αl

〈
µ̂Z|W,A(w̃l, ãl)⊗ ϕA(ãl)⊗ ϕA(a

′), θ
(2)
j µ̂Z|W,A(wj , ai)⊗ ϕA(ai)⊗ ϕA(a

′)
〉

+
αm+1

mn

n∑
i=1

n∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
s ̸=r

〈
θsµ̂Z|W,A(w̃s, ãr)⊗ ϕA(ãr)⊗ ϕA(a

′), θ
(2)
j µ̂Z|W,A(wj , ai)⊗ ϕA(ai)⊗ ϕA(a

′)
〉

=
1

n

n∑
i=1

n∑
j=1
j ̸=i

m∑
l=1

αlβ(w̃l, ãl)
TKZZθ

(2)
j β(wj , ai)kA(ãl, ai)kA(a

′, a′)

+
αm+1

mn

n∑
i=1

n∑
j=1
j ̸=i

m∑
r=1

m∑
s=1
s ̸=r

θsβ(w̃s, ãr)
TKZZθ

(2)
j β(wj , ai)kA(ãr, ai)kA(a

′, a′)

=
1

n

n∑
i=1

m∑
l=1

αlβ(w̃l, ãl)
TKZZ

( n∑
j=1
j ̸=i

θ
(2)
j β(wj , ai)

)
kA(ãl, ai)kA(a

′, a′)

+
αm+1

mn

n∑
i=1

m∑
r=1

( m∑
s=1
s̸=r

θsβ(w̃s, ãr)
)T

KZZ

( n∑
j=1
j ̸=i

θ
(2)
j β(wj , ai)

)
kA(ãr, ai)kA(a

′, a′)

=
1

n
αT
1:m

[
BTKZZC̃ ⊙KÃA

]
1kA(a

′, a′) + αm+1
1

mn
1T
[
B̃TKZZC̃ ⊙KÃA

]
1kA(a

′, a′)

=

[
α1:m

αm+1

]T [ [BTKZZC̃ ⊙KÃA]
1
n

( 1
m )T

[
B̃TKZZC̃ ⊙KÃÃ

]
1
n

]
kA(a

′, a′) (49)

where

C̃:,j = (KWW ⊙KAA + nλ1I)
−1
( n∑

l=1
l ̸=j

θ
(2)
l KWwl

⊙KAaj

)

Now, we are ready to combine our findings and write the loss function in terms of matrix-vector multiplications.
Using Equations (48) and (49), the loss function can be expressed as

L̂Val(φ) =
1

n

n∑
i=1

⟨φ, µ̂Z|W,A(wi, ai)⊗ ϕA(ai)⊗ ϕA(a
′)⟩2

− 2
1

n

n∑
j=1

n∑
i=1
i ̸=j

⟨φ, θ(2)i µ̂Z|W,A(wi, aj)⊗ ϕA(aj)⊗ ϕA(a
′)⟩

=
kA(a

′, a′)2

n

[
α1:m

αm+1

]T [ CTKZZB ⊙KAÃ

( 1
m )T

[
CTKZZB̃ ⊙KAÃ

]T] [CTKZZB ⊙KAÃ

[
CTKZZB̃ ⊙KAÃ

]
1
m

] [ α1:m

αm+1

]

− 2

[
α1:m

αm+1

]T [ [BTKZZC̃ ⊙KÃA]
1
n

( 1
m )T

[
B̃TKZZC̃ ⊙KÃA

]
1
n

]
kA(a

′, a′) (50)

Similar to the tuning procedure of λ2 in dose-response curve estimation, we can augment this validation loss
with the complexity loss that will upper bound the hold-out loss while penalizing the overly complex models.
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As a result, we can write the final surrogate loss to tune λ2 as:

L̂Val(φ)

≤ kA(a
′, a′)2

n

[
α1:m

αm+1

]T [ CTKZZB ⊙KAÃ

( 1
m )T

[
CTKZZB̃ ⊙KAÃ

]T] [CTKZZB ⊙KAÃ

[
CTKZZB̃ ⊙KAÃ

]
1
m

] [ α1:m

αm+1

]

− 2

[
α1:m

αm+1

]T [ [BTKZZC̃ ⊙KÃA]
1
n

( 1
m )T

[
B̃TKZZC̃ ⊙KÃA

]
1
n

]
kA(a

′, a′) +
2σ2

m
Tr
((

LTL+mλ2I
)−1

LTL
)

where the matrix L is defined as

L =
[
BTKZZB ⊙KÃÃ

[
BTKZZB̃ ⊙KÃÃ

]
( 1
m )
]

In our ATT experiment that is illustrated in Figure (3), we used σ2 = 1.

13.2.4 Tuning ζ Regularization Parameter in ATT Algorithm

In Algorithm (4.2), we estimate the conditional mean embedding E[ϕW(W )|A = a′] by

Ê[ϕW(W )|A = a′] = ΦW(KÃÃ +mζI)−1KÃa′ =

m∑
i=1

θiϕW(w̃i) = ΦWθ

where θ = (KÃÃ + mζI)−1KÃa′ . This is kernel ridge regression solution for measurements {ϕA(ãi)}mi=1 and
targets {ϕW(w̃i)}mi=1. Hence, one can use the LOOCV procedure presented in S.M. (13.2.1) to tune the regu-
larization parameter in this estimator. Here, we will present another method that can be used for conditional
mean embeddings that is provided in (Singh, 2023). Its proof can be found in the derivation of Algorithm 7 of
(Singh, 2023).

Theorem 13.2 (Algorithm 7 in (Singh, 2023)). Consider the conditional mean embedding

E[ϕW(W )|A = a′] = µW |A(a
′) =

∫
ϕW(w)p(w|a′)dw.

Sample based estimation using data {w̃i, ãi}mi=1 for this conditional mean embedding is given by

µ̂W |A(a
′) = ΦW(KÃÃ +mζI)−1KÃa′

where ΦW =
[
ϕW(w̃1) ϕW(w̃2) . . . ϕW(w̃m)

]
, [KÃÃ]ij = kA(ãi, ãj), [KÃa′ ]i = kA(ãi, a

′) and I ∈ Rm×m is
the identity matrix. The LOOCV loss for the conditional mean embedding estimation is given by

LOOCVµW |A(ζ) =
1

m
Tr
(
S
(
KW̃W̃ − 2KW̃W̃RT +RKW̃W̃RT

))
(51)

where

[KW̃W̃ ]ij = kW(w̃i, w̃j)

R = KÃÃ(KÃÃ +mζI)−1 ∈ Rm×m

S ∈ Rm×m s.t. [S]ij = 1[i = j]

(
1

1− [R]ij

)2

.

In our numerical experiments, we utilized Theorem (13.2) to tune regularization parameters ζ in ATT algorithm.
In particular, we picked the regularization parameter that minimizes the LOOCV loss given in Equation (51) over
a grid ζ ∈ Z that is generated with a logspace with maximum and minimum values of 1.0 and 10−7, respectively.
We used 150 grid points in our numerical experiments.
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13.3 Discussion on the Time Complexity of the Proposed Methods

Similar to kernel ridge regression, the complexity of our methods is governed by the matrix inversion. For
simplicity, we consider the dose-response curve estimation in Algorithm (4.1). In the first-stage regression, the
following matrix must be inverted:

KWW ⊙KAA + nλI ∈ Rn×n.

This inversion operation has complexity of O(n3), making the first-stage sample size the limiting factor. Fur-
thermore, to tune the regularization parameter λ1 with LOOCV procedure, as discussed in S.M. (Sec. 13.2.1),
this inversion must be performed for each grid point of λ1 ∈ Λ1.

In the second-stage, the following matrix needs to be inverted to obtain the optimizer coefficients {αi}m+1
i=1 of

Equation (18):

1

m
LTL+ λ2N ∈ R(m+1)×(m+1)

where

L =

[
BTKZZB ⊙KÃÃ

( 1
m )T

[
BTKZZB̄ ⊙KÃÃ

]T]T ∈ Rm×(m+1),

N =

[
BTKZZB ⊙KÃÃ [BTKZZB̄ ⊙KÃÃ]

1
m

( 1
m )T [BTKZZB̄ ⊙KÃÃ]

T ( 1
m )T

[
B̄TKZZB̄ ⊙KÃÃ

]
1
m

]
∈ R(m+1)×(m+1),

as given in Algorithm (4.1). This inversion has complexity of O((m+1)3). Additionally, tuning the regularization
parameter λ2, as discussed in S.M. (Sec. 13.2.2), requires performing this inversion for each grid point for λ2 ∈ Λ2.

Finally, we note that the third-stage regression is another kernel ridge regression, where the matrix to be inverted
(if only first-stage data is used) is

KAA + nλ3I ∈ Rn×n.

As previously mentioned, data from either first-stage, second-stage, or a combination of both can be used in the
third-stage regression. If the combination of first and second-stage data is used, the matrix to be inverted will
have dimensions (n +m) × (n +m). Denoting by t the number of samples used for third-stage regression, the
required inversion have complexity of O(t3). Therefore, to tune the regularization parameter λ3 with LOOCV,
as outlined in S.M. (Sec. 13.2.1), this inversion must be performed for each grid point of λ3 ∈ Λ3.

Overall, assuming t = m + n, the time complexity of our proposed method scales as O(t3). A similar analysis
applies to our algorithm for conditional dose-response curve estimation.

13.4 Further Notes on Numerical Experiments

Our implementation code is available on GitHub link2, which includes the instructions for reproducing the
experiments presented in this paper.

For the tuning of the regularization parameters (λ1, λ2, λ3) (and ζ for ATT), we followed the procedures described
in S.M. (Sec. 13.2.1), (Sec. 13.2.2), (Sec. 13.2.3) and (Sec. 13.2.4). In all experiments, the variables are
normalized by subtracting mean and dividing by the standard deviation unless otherwise stated. The data were
split uniformly into equal-sized first-stage and second-stage sets for the experiments. In the third-stage regression
of our proposed methods, we used the combination of first and second-stage data.

13.5 Additional Numerical Experiments and Ablation Studies

13.5.1 Comparison of Our Approach and Outcome Bridge Function-Based Methods

A key question arising from our experiments in Section (6) is whether our method outperforms outcome bridge-
based methods under specific conditions. To investigate this, we conducted synthetic experiments where one

2https://github.com/BariscanBozkurt/Density-Ratio-Based-Proxy-Causal-Learning-without-Density-Ratios

https://github.com/BariscanBozkurt/Density-Ratio-Based-Proxy-Causal-Learning-without-Density-Ratios
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proxy variable was highly informative of confounders while the other was noisier. We adapted the data generation
process from (Tsai et al., 2024, Appendix D.5) to construct various scenarios. We considered six scenarios where
U follows different Beta distributions, and proxies Z and W vary in informativeness. The treatment and outcome
variables were generated as follows:

Setting 1: U ∼ Beta(5, 4), W = g(U)+U [0, 1] where the function g(x) = 0.8 exp(x)
1+exp(x)+0.1 is applied elementwise,

Z = (1− U)× Z1 + U × Z2 + U [0, 100] where Z1 = N (−1, 0.1) and Z2 = N (1, 0.1), A = 0.1U + 0.1Z + U [0, 1],
and Y = (2U − 1) + cos(1.5A).

Setting 2: U ∼ Beta(5, 4), Z = g(U)+U [0, 1], W = (1−U)×W1 +U ×W2 +U [0, 100] where W1 = N (−1, 0.1)
and W2 = N (1, 0.1), A = 0.1U + 0.1Z + U [0, 1], and Y = (2U − 1) + cos(1.5A).

Setting 3: U ∼ Beta(8, 4), W = U + U [0, 1], Z = g((1− U)× Z1 + U × Z2) + U [0, 100] where Z1 = N (−1, 0.1)
and Z2 = N (1, 0.1), A = 0.1U + 0.1Z + U [0, 1], and Y = (2U − 1) + cos(1.5A).

Setting 4: U ∼ Beta(8, 4), Z = U +U [0, 1], W = g((1−U)×W1 +U ×W2)+U [0, 100] where W1 = N (−1, 0.1)
and W2 = N (1, 0.1), A = 0.1U + 0.1Z + U [0, 1], and Y = (2U − 1) + cos(1.5A).

Setting 5: U ∼ Beta(3, 5), W = −U2+U [0, 1], Z = g((1−U)×Z1+U ×Z2)+U [0, 100] where Z1 = N (−1, 0.1)
and Z2 = N (1, 0.1), A = 0.25

√
|U | − 0.2Z + U [0, 1], and Y = 3W − 0.1A− cos(0.5A+ 5U).

Setting 6: U ∼ Beta(3, 5), Z = −U2+U [0, 1], W = g((1−U)×W1+U×W2+U [0, 100]) where W1 = N (−1, 0.1)
and W2 = N (1, 0.1), A = 0.25

√
|U | − 0.2Z + U [0, 1], and Y = 3W − 2A− cos(10A+ 5U).

For each setting, we generated 1000 samples and evaluated our method against outcome bridge-based approaches
over five runs, approximating the ground truth dose-response via Monte Carlo. Table (1) reports mean squared
error and standard deviation across five independent realizations of each setting. Additionally, we compare the
PCL algorithms to the oracle method Kernel-ATE, which directly uses the confounding variable U , in Table
(1). Our method outperformed in odd-numbered settings where W was more informative, while outcome bridge-
based methods excelled in even-numbered settings where Z was more informative. When the link between Z
and U is highly noisy (or incomplete as in the next section), Assumption (3.7)—which ensures the existence
of our treatment bridge function—is likely violated. Conversely, outcome bridge-based methods rely on this
assumption for causal function identifiability. Thus, we hypothesize that our method is more robust when
existence is challenged rather than identifiability. Meanwhile, we use Assumption (3.3) for identifiability, while
KPV and KNC use it for outcome bridge function existence. This assumption is likely violated when the link
between W and U is highly noisy (or incomplete), as in Settings 2, 4, and 6, where KPV and KNC outperform
our method. We conjecture that violating our method’s identifiability condition impacts performance more than
violating bridge function existence.

Experimental results in S.M. (Sec. 13.5.2) also validates this hypothesis with the Job Corps dataset, where high-
dimensional proxies were synthetically generated. Results reinforce the complementary strengths of treatment
and outcome bridge-based methods. Understanding these trade-offs warrants deeper analysis, which we leave
for future work. Nonetheless, our findings highlight the importance of further exploring treatment bridge-based
approaches.

Table 1: Mean squared error for ablation studies with synthetic settings in S.M. (Sec. 13.5.1). We report mean
± standard deviation from n = 5 independent realizations of each setting.

Kernel Alternative Proxy KNC KPV Kernel-ATE
Setting 1 0.00553± 0.00069 0.29752± 0.08545 0.04184± 0.02661 0.00026± 0.00019
Setting 2 0.00932± 0.00529 0.01086± 0.00373 0.00541± 0.00217 0.00018± 0.00021
Setting 3 0.00347± 0.00104 0.25505± 0.09238 0.05122± 0.04610 0.00014± 0.00009
Setting 4 0.01532± 0.00548 0.01333± 0.00437 0.00899± 0.00491 0.00004± 0.00003
Setting 5 0.01129± 0.00823 0.03312± 0.02424 0.01982± 0.00885 0.01105± 0.00701
Setting 6 0.18436± 0.04889 0.09568± 0.02510 0.05394± 0.01516 0.00330± 0.00262
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13.5.2 Dose-Response and Conditional Dose-Response Estimations in Job Corps Dataset

In this section, we conduct a new set of semi-synthetic experiments to compare our proposed method with the
outcome bridge function-based algorithm based on the US Job Corps dataset (Schochet et al., 2008; Flores et al.,
2012), adapted for the Proxy Causal Learning (PCL) setting. The US Job Corps Program is an educational
intervention targeting disadvantaged youth. In this context, the continuous treatment variable A represents the
total hours spent in academic or vocational training, while the continuous outcome variable Y corresponds to
the proportion of weeks employed during the second year of training. Consistent with the setup in (Singh et al.,
2023), the covariates U ∈ R65 include factors such as gender, ethnicity, age, language proficiency, education
level, marital status, household size, and others. We obtained the dataset from the publicly available code of
(Singh et al., 2023) (see https://github.com/liyuan9988/KernelCausalFunction/tree/master). To adapt
this dataset to the PCL framework, we synthetically generated two proxy variables, Z and W , from U using the
following settings:

Setting 1: W = U + ϵ, Z = g
(
U (1:20)/max

(
U (1:20)

))
+ ν where the function g(x) = 0.8 exp(x)

1+exp(x) + 0.1 is the

elementwise truncated logistic link function, ϵ(i) ∼ N (0, 1) ∀i = 1, . . . , 65, ν(i) ∼ U [−1, 1] ∀i = 1, . . . , 20, and
U (1:20) indicates taking the first 20 components of the vector U . The division operation and the max function
are executed elementwise.

Setting 2: Z = U + ϵ, W = g
(
U (1:20)/max

(
U (1:20)

))
+ ν where ϵ(i) ∼ N (0, 1) ∀i, ν(i) ∼ U [−1, 1] ∀i.

Setting 3: W = U + ϵ, Z = g
(
U (20:40)/max

(
U (20:40)

))
+ ν where ϵ(i) ∼ N (0, 1) ∀i, ν(i) ∼ U [−1, 1] ∀i.

Setting 4: Z = U + ϵ, W = g
(
U (20:40)/max

(
U (20:40)

))
+ ν where ϵ(i) ∼ N (0, 1) ∀i, ν(i) ∼ U [−1, 1] ∀i.

Setting 5: W = U + ϵ, Z = g
(
U (40:60)/max

(
U (40:60)

))
+ ν where ϵ(i) ∼ N (0, 1) ∀i, ν(i) ∼ U [−1, 1] ∀i.

Setting 6: Z = U + ϵ, W = g
(
U (40:60)/max

(
U (40:60)

))
+ ν where ϵ(i) ∼ N (0, 1) ∀i, ν(i) ∼ U [−1, 1] ∀i.

Setting 7: W = U + ϵ, Z(1:20) = g
(
U (1:20)/max

(
U (1:20)

))
+ ν, Z(21:65) ∼ N (0, I), where ϵ(i) ∼ N (0, 1) ∀i,

ν(i) ∼ U [−1, 1] ∀i.

Setting 8: Z = U + ϵ, W (1:20) = g
(
U (1:20)/max

(
U (1:20)

))
+ ν, W (21:65) ∼ N (0, I), where ϵ(i) ∼ N (0, 1) ∀i,

ν(i) ∼ U [−1, 1] ∀i.

Setting 9: W = U + ϵ, Z(46:65) = g
(
U (46:65)/max

(
U (46:65)

))
+ ν, Z(1:45) ∼ N (0, I), where ϵ(i) ∼ N (0, 1) ∀i,

ν(i) ∼ U [−1, 1] ∀i.

Setting 10: Z = U + ϵ, W (46:65) = g
(
U (46:65)/max

(
U (46:65)

))
+ ν, W1:45 ∼ N (0, I), where ϵ(i) ∼ N (0, 1) ∀i,

ν(i) ∼ U [−1, 1] ∀i.

Setting 11: W = U + ϵ, Z(21:39) = g
(
U (21:39)/max

(
U (21:39)

))
+ ν, Z(1:20) ∼ N (0, I), Z(40:65) ∼ N (0, I), where

ϵ(i) ∼ N (0, 1) ∀i, ν(i) ∼ U [−1, 1] ∀i.

Setting 12: Z = U + ϵ, W (21:39) = g
(
U (21:39)/max

(
U (21:39)

))
+ ν, W (1:20) ∼ N (0, I), W (40:65) ∼ N (0, I),

where ϵ(i) ∼ N (0, 1) ∀i, ν(i) ∼ U [−1, 1] ∀i.

Settings 1, 3, and 5 feature an incomplete link between the treatment proxy Z and the confounding variable U ,
combined with a nonlinearity function. These setups are likely to violate Assumption (3.7), which is crucial for
the identifiability of KPV and KNC, as well as for the existence of the treatment bridge function in our method.
Conversely, Settings 2, 4, and 6 feature an incomplete link between the outcome proxy W and the confounding
variable U , along with a nonlinearity function. These setups are likely to violate Assumption (3.3), which is
essential for the identifiability of our method and plays a role in establishing the existence of the outcome bridge
function for KPV/KNC algorithms (Xu et al., 2021).

Figures (4a)-(4f) illustrate the simulation results, averaged over five runs with different two-stage splits, for
Settings 1-6. We also compare our method against the Kernel-ATE algorithm (Singh et al., 2023), which uses
U directly and serves as an oracle benchmark. For all algorithms, we employed Gaussian kernels with median
length scale heuristics for all input variables. Each dimension of the input variables Z, W , and A (as well as
U) is normalized by subtracting the mean and dividing by the standard deviation before being fed into our
method, KPV, KNC, and Kernel-ATE. In settings where there is an incomplete link between Z and U , our

https://github.com/liyuan9988/KernelCausalFunction/tree/master
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method outperforms KPV and KNC, yielding results closer to the oracle method. In contrast, in settings where
there is an incomplete link between W and U , KPV and/or KNC outperform our method. Consistent with our
hypothesis in S.M. (Sec. 13.5.1), our method demonstrates better robustness when the existence of the bridge
function is violated rather than when causal function identifiability is compromised, as seen in Settings 1, 3,
and 5. Conversely, outcome bridge-based methods show better robustness when the existence of the outcome
bridge function is violated rather than when causal function identifiability is compromised. These experimental
results highlight the complementary strengths of treatment and outcome bridge-based methods under different
assumptions.

We also investigate scenarios where the confounding variable U has a noisy link with one of the proxies, as
detailed in Settings 7-12. Specifically, we generate a proxy variable of the same dimension as the confounding
variable, but some of its dimensions consist entirely of noise. In Settings 7, 9, and 11, the proxy variable Z has
a highly noisy link to the confounder U , in addition to nonlinearity, which is likely to violate Assumption (3.7).
Similarly, in Settings 8, 10, and 12, the proxy variable W has a highly noisy link to the confounder U , which is
likely to violate Assumption (3.3). Figures (4g)-(4l) present the estimation results for each setting, comparing
treatment and outcome bridge-based methods against the oracle Kernel-ATE method. Our findings indicate
that our method performs better in settings where Z has a noisy link with U , producing results closer to the
oracle method. Conversely, outcome bridge-based algorithms perform better in settings where W has a noisy
link with U , yielding estimates closer to the oracle method. In these noisy link experiments, we constructed the
input kernel as a product of separate kernels for noisy and non-noisy dimensions. For instance, in Setting 7, we

used the kernel kZ(zi, zj) = k
(1)
Z (z

(1:20)
i , z

(1:20)
j )× k

(2)
Z (z

(21:65)
i , z

(21:65)
j ) where k

(1)
Z and k

(2)
Z are Gaussian kernels

with length scales determined using the median heuristic. Here, z
(1:20)
i denotes the first 20 dimension of the i-th

training variable zi.
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Figure 4: Dose-response estimation curves for the Job Corps experimental settings that are introduced in S.M.
(Sec. 13.5.2). Panels (a)-(l) illustrate the estimation curves for our approach, KPV, KNC, and the oracle method
Kernel-ATE across Settings 1-12, respectively.

To illustrate the conditional dose-response estimation capability of our proposed method in high dimensional
settings, we also conduct experiments using the Job Corps dataset in Settings 1, 2, 5, and 6. Figures (5a) and
(5b) show the ATT estimation results of our algorithm in comparison with the Kernel Negative Control method
and the Kernel-ATT algorithm for a′ = 500 and a′ = 1000 in Setting 1, respectively. Figures (5c) and (5d)
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present the ATT estimation results for Setting 2. Figures (5e) and (5f) show the results for Setting 5, while
Figures (5g) and (5h) provide results for Setting 6.
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Figure 5: Conditional dose-response estimation curves for Job Corps experimental settings 1, 2, 5, and 6 that
are introduced in S.M. (Sec. 13.5.2). Panels (a) and (b) show estimation curves for our approach, KNC, and the
oracle method Kernel-ATT in Setting 1 for a′ = 500 and a′ = 1000, respectively. Panels (c) and (d) display the
corresponding curves for Setting 2. Similarly, panels (e) and (f) illustrate the results for Setting 5, while panels
(g) and (h) present those for Setting 6.

13.5.3 Ablation Study on the Effect of Bandwidth Selection of Gaussian Kernel

In this section, we present an ablation study to investigate the effect of kernel bandwidth selection on the
performance of our dose-response curve estimation algorithm. Figure (6) illustrates the performance of our
proposed method across different bandwidth selections for the kernels kA(., .), kW(., .), and kZ(., .). Specifically,
Figure (6a) shows the performance our dose-response curve estimation algorithm for various bandwidth values
for kA(., .) in the low-dimensional data generation setting (see Section (6)). The bandwidths of other kernels are
set using median heuristic. Similarly, Figure (6b) and (6c) depicts the performance our method across different
bandwidth selection for the kernels kW(., .) and kZ(., .), respectively.

We observe that while median heuristic does not always yield the best result, it generally produces robust or
comparable results. Although one could perform a grid search on the kernel bandwidth to minimize the validation
error in the second stage (see Equation (43)), this procedure introduces additional search complexity. Therefore,
for simplicity, we opted to use median heuristic in our experiments.

14 Identifiability of Dose-Response Curve in Discrete Case

Here, we additionally present the identification of dose-response curve in the discrete variable case. Assume that
each space F ∈ {Y,W,Z,U} are discrete and F = {1, 2, . . . , dF}. Note that the dose-response can be written in
terms of matrix-vector products in this case:

fATE(a) = EU [E[Y |U,A = a]] =

dU∑
i=1

E[Y |U = i, A = a]p(U = i)

=

dU∑
i=1

dY∑
j=1

djp(Y = j|U = i)p(U = i) = dT
YP (Y |U,A = a)P (U) (52)

where dY =
[
1 2 . . . dY

]T ∈ RdY , and P (Y |U,A = a) ∈ RdY×dU , P (U) ∈ RdU are probability matrices with

[P (Y |U,A = a)]ij = p(Y = i|U = j, A = a)
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Figure 6: Ablation study on kernel bandwidth selection in the low-dimensional synthetic data experiment: (a)
effect of the bandwidth of kernel kA(., .) on the performance, (b) effect of the bandwidth of kernel kW(., .) on
the performance, (c) effect of the bandwidth of kernel kZ(., .) on the performance.

[P (U)]i = p(U = i).

Equation (52) cannot be computed directly since it involves the distribution of the unobserved confounder U .
However, we can determine fATE by only the observable variables Y,W,Z. This approach is formalized in the
following theorem.

Theorem 14.1. Given the observed variables Y,W,Z from their corresponding discrete sets {Y,W,Z}, the
dose-response curve can be calculated by

fATE(a) = dT
YP (Y, Z|A = a)P−T (Z|W,A = a)

1

P (A = a|W )T
p(A = a) (53)

where P (Y, Z|A = a) ∈ RdY×dZ and P (Z|W,A = a) ∈ RdZ×dW are the probability matrices defined as

[P (Y,Z|A = a)]ij = p(Y = i, Z = j|A = a),

[P (Z|W,A = a)]ij = p(Z = i|W = j, A = a),

P−T (Z|W,A = a) is the transpose of the inverse of the probability matrix P (Z|W,A = a), and

1

P (A = a|W )T
=
[

1
p(A=a|W=1) . . . 1

p(A=a|W=dW)

]
∈ R1×dW .

Note that every component in the Equation (53) is in terms of the observed variables and they can be estimated
from the data.

Proof. We will prove the theorem in four steps:

Step 1: We will first prove that

P (Z|W,A = a) = P (Z|U,A = a)P (U |W,A = a). (54)

First consider the right-hand side of the Equation (54):

[P (Z|U,A = a)P (U |W,A = a)]ij =

dU∑
k=1

p(Z = i|U = k,A = a)p(U = k|W = j, A = a)

=

dU∑
k=1

p(Z = i|U = k,A = a,W = j)p(U = k|W = j, A = a)

(the above equality is due to Assumption (3.2))
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=

dU∑
k=1

p(Z = i, U = k|A = a,W = j) (by Baye’s Rule)

= p(Z = i|W = j, A = a) = [P (Z|W,A = a)]ij

and this verifies the Equation (54). It also implies that

P (U |W,A = a)︸ ︷︷ ︸
∈RdU×dW

= P−1(Z|U,A = a)︸ ︷︷ ︸
∈RdU×dZ

P (Z|W,A = a)︸ ︷︷ ︸
∈RdZ×dW

(55)

where P−1(Z|U,A = a) is the (left) inverse of the probability matrix P (Z|U,A = a).

Step 2: Secondly, we want to show that

P−T (Z|U,A = a)
p(A = a)

P (A = a|U)T
= P−T (Z|W,A = a)

p(A = a)

P (A = a|W )T
(56)

Equivalently, we will show that

1

P (A = a|U)
P−1(Z|U,A = a) =

1

P (A = a|W )
P−1(Z|W,A = a)

which also implies that

1

P (A = a|U)
P−1(Z|U,A = a)P (Z|W,A = a) =

1

P (A = a|W )
. (57)

Next, consider the left-hand side of the equation (57):[ 1

P (A = a|U)
P−1(Z|U,A = a)P (Z|W,A = a)

]
i
=
[ 1

P (A = a|U)
P (U |W,A = a)

]
i

(by Equation (55))

=

dU∑
k=1

1

p(A = a|U = u)
p(U = k|W = i, A = a)

=

dU∑
k=1

1

p(A = a|U = u)

p(A = a|U = k,W = i)p(U = k|W = i)

p(A = a|W = i)
(by Baye’s Rule)

=

dU∑
k=1

1

p(A = a|U = u)

p(A = a|U = k)p(U = k|W = i)

p(A = a|W = i)
(since W ⊥ A|U , Assumption (3.2))

=
1

p(A = a|W = i)

dU∑
k=1

p(U = k|W = i)︸ ︷︷ ︸
=1

=
1

p(A = a|W = i)

=

[
1

P (A = a|W )

]
i

,

and that verifies the Equation (57). As a result, we proved that Equation (56) holds.

Step 3: We will further prove that

P (Y |U,A = a) = P (Y, Z|A = a)P−T (Z|U,A = a)diag{P (U |A = a)}−1 (58)

where

diag{P (U |A = a)}−1 =


1

p(U=1|A=a) 0
1

p(U=2|A=a)

. . .

0 1
p(U=dU |A=a)

 ∈ RdU×dU
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= p(A = a)


1

p(A=a|U=1)p(U=1) 0
1

p(A=a|U=2)p(U=2)

. . .

0 1
p(A=a|U=dU )p(U=dU )


= p(A = a)diag

{ 1

P (A = a|U)

}
diag

{ 1

P (U)

}
(59)

= p(A = a)diag
{
P (A = a|U)

}−1

diag
{
P (U)

}−1

(60)

Next, consider

[
diag{P (U |A = a)}P T (Z|U,A = a)

]
ij
=

dU∑
k=1

[
diag{P (U |A = a)}

]
ik
p(Z = j|U = k,A = a)

= p(U = i|A = a)p(Z = j|U = i, A = a) (since
[
diag{P (U |A = a)}

]
ik

is nonzero iff k = i)

= p(Z = j, U = i|A = a) (by Baye’s Rule)

Hence, this illustrates that

diag{P (U |A = a)}P T (Z|U,A = a) = P T (Z,U |A = a) (61)

where [P (Z,U |A = a)]ij = p(Z = i, U = j|A = a).

Furthermore, note that[
P (Y |U,A = a)diag{P (U |A = a)}P T (Z|U,A = a)

]
ij
=
[
P (Y |U,A = a)P T (Z,U |A = a)

]
ij

(by Eq. (61))

=

dU∑
k=1

p(Y = i|U = k,A = a)p(Z = j, U = k|A = a)

=

dU∑
k=1

p(Y = i|U = k,A = a)p(Z = j|U = k,A = a)p(U = k|A = a)

=

dU∑
k=1

p(Y = i, Z = j|U = k,A = a)p(U = k|A = a) (since Y ⊥ Z|U,A, Assumption (3.2))

=

dU∑
k=1

p(Y = i, Z = j, U = k|A = a) = p(Y = i, Z = j, U = k|A = a)

=
[
P (Y,Z|A = a)

]
ij
.

Thus, we showed that

P (Y |U,A = a)diag{P (U |A = a)}P T (Z|U,A = a) = P (Y,Z|A = a) (62)

which also implies Equation (58). That is also equivalent to (due to Equation (60))

P (Y |U,A = a) = P (Y,Z|A = a)P−T (Z|U,A = a)p(A = a)diag
{ 1

P (A = a|U)

}
diag

{ 1

P (U)

}
(63)

Step 4 (Combining all the steps above and finishing the proof):

Finally, consider the dose-response

fATE(a) = EU [E[Y |U,A = a]] = dT
YP (Y |U,A = a)P (U)
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= dT
YP (Y, Z|A = a)P−T (Z|U,A = a)p(A = a)diag

{ 1

P (A = a|U)

}
diag

{ 1

P (U)

}
P (U)︸ ︷︷ ︸

1

(the above equality is due to Equation (63))

= dT
YP (Y, Z|A = a)P−T (Z|U,A = a)p(A = a)diag

{ 1

P (A = a|U)

}
1

= dT
YP (Y, Z|A = a)P−T (Z|U,A = a)p(A = a)

1

P (A = a|U)T︸ ︷︷ ︸
P−T (Z|W,A=a)p(A=a) 1

P (A=a|W )T

= dT
YP (Y, Z|A = a)P−T (Z|W,A = a)p(A = a)

1

P (A = a|W )T
(by Equation (56))

As a result, the ATE functions can be calculated by

fATE(a) = dT
YP (Y,Z|A = a)P−T (Z|W,A = a)p(A = a)

1

P (A = a|W )T

where every component in the above equation is observed and the corresponding probability matrices can be
estimated from the data.

15 KERNEL ALTERNATIVE PROXY METHOD WITH OBSERVABLE
CONFOUNDERS

In the section, we formulate the identifiability our proposed method when there exists observable confounding
variables. In this setting, we consider the causal graph shown in Figure (7). In addition to the variables
(A, Y, Z,W ), we also assume that there exists observable confounding variables X. In this case, the structural
functions of interest are defined as follows:

i-) Dose-response: fATE(a) = E[E[Y |A = a, U,X]]

ii-) Conditional dose-response: fATT(a, a
′) = E[E[Y |A = a, U,X]|A = a′]

The conditional independence and completeness assumptions can be stated as follows:

Assumption 15.1. We assume the following conditional independence statements: i-) Y ⊥ Z|U,X,A (Con-
ditional Independence for Y ), ii-) W ⊥ Z|U,X,A = a and W ⊥ A|U,X (Conditional Independence for W ).

Assumption 15.2. Let ℓ : U → R be any square integrable function. We assume that the following conditions
hold for all a ∈ A, x ∈ X :

• E[ℓ(U)|W = w,X = x,A = a] = 0 ∀w ∈ W if and only if ℓ(U) = 0 p(U)−almost everywhere

• E[ℓ(U)|Z = z,X = x,A = a] = 0 ∀z ∈ Z if and only if ℓ(U) = 0 p(U)−almost everywhere

Next, we show the identifiability results of our proposed framework when there exist observable confounding
variables X ∈ X for both dose-response and conditional dose-response case.

Theorem 15.3. Assume there exists a bridge function φ0(z, x, a) that satisfies:

E[φ0(Z,X, a)|W,X,A = a] =
p(W |X)p(a)

p(W,a|X)
.

Given the Assumptions (15.1) and (15.2), the dose-response curve is given by

fATE(a) = E[Y φ0(Z,X, a)|A = a]

Proof. Suppose that

E[φ0(Z,X, a)|W,X,A = a] =
p(W |X)p(a)

p(W,a|X)
.
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Figure 7: An instance of a Directed Acyclic Graph (DAG) for the PCL setting, which satisfies the required
Assumption (15.1). In this graph, the gray circles denote the observed variables: A denotes the treatment,
Y denotes the outcome, X denotes the additional observable confounding variables, Z denotes the treatment
proxy, and W denotes the outcome proxy. The white circle denotes the unobserved confounding variable U .
Bi-directional dotted arrows indicate that either direction in the DAG is possible, or that both variables may
share a common ancestor.

Then, note the following,

E[φ0(Z,X, a)|W,X,A = a] = EU |W,X,A=a[E[φ0(Z,X, a)|U,W,X,A = a]] (by Law of Total Expectations)

= EU |W,X,A=a[E[φ0(Z,X, a)|U,X,A = a]] (since Z ⊥ W |U,X, Assumption (15.1))
(64)

Furthermore, note that

p(w|x) =
∫

p(w|u, x)p(u|x)du

=

∫
p(w|a, u, x)p(u|x)du (since W ⊥ A|U,X, Assumption (15.1))

=

∫
p(u|w, a, x)p(w|a, x)

p(u|a, x)
p(u|x)du (Baye’s Rule)

=

∫
p(u|w, a, x)p(w, a|x)

p(u, a|x)
p(u|x)du

= p(w, a|x)
∫

p(u|x)
p(u, a|x)

p(u|w, a, x)du

= p(w, a|x)E

[
p(U |x)
p(U, a|x)

∣∣∣∣∣W = w,A = a,X = x

]

As a result,

p(w|X)

p(w, a|X)
= E

[
p(U |X)

p(U, a|X)

∣∣∣∣∣W = w,A = a,X

]
.
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Hence,

p(w|X)p(a)

p(w, a|X)
= E

[
p(U |X)p(a)

p(U, a|X)

∣∣∣∣∣W = w,A = a,X

]
.

Using the assumption of the Theorem and Equation (64), we see that

EU |W=w,X,A=a[E[φ0(Z,X, a)|U,X,A = a]] = EU |W=w,X,A=a

[
p(U |X)p(a)

p(U, a|X)

]
Therefore, due to the Assumption (15.2), we have

E[φ0(Z,X, a)|U,X,A = a] =
p(U |X)p(a)

p(U, a|X)
almost surely. (65)

Next, we observe that

E[E[Y |A = a, U,X]] =

∫
E[Y |A = a, u, x]p(u, x)dudx

=

∫
E[Y |A = a, u, x]

p(u, x)p(a)

p(u, a, x)

p(u, a, x)

p(a)
dudx

=

∫
E[Y |A = a, u, x]

p(u, x)p(a)

p(u, a, x)
p(u, x|a)dudx

= EX,U |A=a

[
E[Y |A = a, U,X]

p(U,X)p(a)

p(U, a,X)

]

= EX,U |A=a

[
E[Y |A = a, U,X]E[φ0(Z,X, a)|U,X,A = a]

]
(by Equation 65)

= EX,U |A=a

[∫
yp(y|A = a, U,X)dy

∫
φ0(z,X, a)p(z|U,X,A = a)dz

]

= EX,U |A=a

[∫ ∫
φ0(z,X, a)y p(y|A = a, U,X, z)p(z|U,X,A = a)︸ ︷︷ ︸

p(y,z|A=a,U,X)

dydz

]
(since Y ⊥ Z|A = a, U,X, Assump. (15.1))

=

∫ ∫ ∫ ∫
φ0(z, x, a)y p(y, z|A = a, u, x)p(x, u|A = a)︸ ︷︷ ︸

p(u,x,y,z|A=a)

dydzdudx

=

∫ ∫ ∫
φ0(z, x, a)y

∫
p(u, x, y, z|A = a)du︸ ︷︷ ︸

p(y,z,x|A=a)

dydzdx

=

∫ ∫ ∫
φ0(z, x, a)yp(y, z, x|A = a)dydzdx = E[Y φ0(Z,X, a)|A = a].

As a result, we obtained

E[Y φ0(Z,X, a)|A = a] = EX,U [E[Y |A = a,X,U ]],

which indicates that fATE(a) = E[Y φ0(Z,X, a)|A = a] and finishes the proof.

Theorem 15.4. Assume there exists a bridge function φ0(z, x, a, a
′) that satisfies:

E[φ0(Z,X, a, a′)|W,X,A = a] =
p(W,a′|X)p(a)

p(W,a|X)p(a′)
.

Given the Assumptions (15.1) and (15.2), the conditional dose-response curve is given by

fATT(a, a
′) = E[Y φ0(Z,X, a, a′)|A = a]
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Proof. First, observe the following

E[φ0(Z,X, a, a′)|W,X,A = a] = EU |W,X,A=a

[
E[φ0(Z,X, a, a′)|U,W,X,A = a]

]
(by Law of Total Expectations)

= EU |W,X,A=a

[
E[φ0(Z,X, a, a′)|U,X,A = a]

]
(since Z ⊥ W |U,X,A = a, Assumption (15.1)). (66)

Furthermore, note that

p(w, a′|x) =
∫

p(w, a′|u, x)p(u|x)du =

∫
p(w|u, x)p(a′|u, x)p(u|x)du (since W ⊥ A|U,X, Assumption (15.1))

=

∫
p(w|a, u, x)p(a′|u, x)p(u|x)du (again due to W ⊥ A|U,X, Assumption (15.1))

=

∫
p(u|w, x, a)p(w|a, x)

p(u|a, x)
p(a′|u, x)p(u|x)du (Baye’s Rule)

=

∫
p(u|w, x, a)p(w, a|x)

p(u, a|x)
p(u, a′|x)du = p(w, a|x)

∫
p(u, a′|x)
p(u, a|x)

p(u|w, x, a)du.

As a result,

p(w, a′|x)
p(w, a|x)

=

∫
p(u, a′|x)
p(u, a|x)

p(u|w, x, a)du.

Hence

p(w, a′|x)p(a)
p(w, a|x)p(a′)

= EU |W=w,X=x,A=a

[
p(U, a′|x)p(a)
p(U, a|x)p(a′)

]
. (67)

Recall that our assumption was

E[φ0(Z,X, a, a′)|W,X,A = a] =
p(W,a′|X)p(a)

p(W,a|X)p(a)

Thus, combining Equation (66) and Equation (67) yields

EU |W=w,X,A=a

[
E[φ0(Z,X, a, a′)|U,X,A = a]

]
= EU |W=w,X,A=a

[
p(U, a′|X)p(a)

p(U, a|X)p(a′)

]
.

Using the completeness Assumption (15.2), we obtain

E[φ0(Z,X, a, a′)|U,X,A = a] =
p(U, a′|X)p(a)

p(U, a|X)p(a′)
almost surely (68)

Next, to obtain the ATT function, consider

fATT(a, a
′) = EU,X|A=a′ [E[Y |A = a, U,X]] =

∫
E[Y |A = a, u, x]p(u, x|A = a′)du

=

∫
E[Y |A = a, u, x]

p(u, x,A = a′)

p(a′)

p(a)

p(u, x,A = a)

p(u, x,A = a)

p(a)
du

=

∫
E[Y |A = a, u, x]

p(u, a′|x)p(a)
p(u, a|x)p(a′)

p(u, x|A = a)du

= EU,X|A=a

[
E[Y |A = a, U,X]E[φ0(Z,X, a, a′)|U,X,A = a]

]
(by Equation (68))

= EU,X|A=a

[∫
yp(y|A = a, U,X)dy

∫
φ0(z,X, a, a′)p(z|A = a, U,X)dz

]
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= EU,X|A=a

[∫ ∫
yφ0(z,X, a, a′) p(y|A = a, U,X, z)p(z|A = a, U,X)︸ ︷︷ ︸

p(y,z|A=a,U,X)

dydz

]

= EU,X|A=a

[∫ ∫
yφ0(z,X, a, a′)p(y, z|A = a, U,X)dydz

]
(Y ⊥ Z|U,X,A, Assumption (15.1) )

=

∫ ∫ ∫ ∫
yφ0(z, x, a, a

′) p(y, z|A = a, U = u,X = x)p(u, x|A = a)︸ ︷︷ ︸
p(u,x,y,z|A=a)

dydzdudx

=

∫ ∫ ∫
yφ0(z, x, a, a

′)

∫
p(u, x, y, z|A = a)du︸ ︷︷ ︸

p(y,z,x|A=a)

dxdydz

=

∫ ∫
yφ0(z, x, a, a

′)p(y, z, x|A = a)dxdydz = E[Y φ0(Z,X, a, a′)|A = a].

Hence, we have shown that fATT(a, a
′) = EU,X|A=a′ [E[Y |A = a, U,X]] = E[Y φ0(Z,X, a, a′)|A = a].
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