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1. Introduction
Cognitive decline and dementia represent some of the most pressing challenges to

global public health, especially amid rapidly ageing populations worldwide [1,2]. Accu-
mulating evidence on the risk factors for dementia challenges the traditional genetic and
biomedical frameworks in explaining the heterogeneity in dementia risk, highlighting
that certain lifestyle and environmental factors play more crucial roles in contributing
to the risk of dementia [2,3]. For example, individuals carrying the APOE ε4 allele—a
well-established genetic risk factor for Alzheimer’s disease—do not universally develop
dementia [4], underscoring the limitations of framing dementia aetiology through a purely
genetic lens.

Alzheimer’s disease and related dementias (ADRD) are increasingly recognized as
systemic disorders with multifactorial aetiology [2,3], demanding a shift from isolated risk
factor analyses to integrative models that capture synergistic effects. The 2024 update of the
Lancet Commission on ADRD identified 14 potentially modifiable risk factors for dementia,
including the following: lower educational attainment, hearing impairment, elevated
low-density lipoprotein (LDL) cholesterol levels, traumatic brain injury, low physical
activity, diabetes mellitus, smoking, hypertension, obesity, excessive alcohol intake, social
isolation, air pollution, and visual impairment [2]. Importantly, the majority of these risk
factors demonstrate strong links to broader environmental conditions and socioeconomic
determinants of health [2].

To better understand how these external influences translate into biological processes
that drive neurodegeneration, researchers have increasingly turned to multi-omics ap-
proaches. Advances in multi-omics technologies (e.g., genomics [5,6], proteomics [7–12],
metabolomics [13,14]) have facilitated the omics-wide identification of novel biomarkers
and biological signatures linked to ADRD. These breakthroughs have expanded our un-
derstanding of disease mechanisms, yet they represent only part of a larger, more complex
picture. A growing body of research emphasizes the critical role of environmental expo-
sures across the lifespan, interacting dynamically with genetic and molecular mechanisms
and contributing to the acceleration of cognitive ageing [15,16]. Innovations in environ-
mental monitoring—such as the geospatial tracking of pollution and climate, wearable
devices quantifying direct pollution exposure, and high-resolution biomonitoring of chem-
ical toxins—now enable the precise measurement of external stressors [17]. Recognising
the need to systematically capture the full breadth of environmental influences, recent
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research has expanded into the exposome paradigm, a comprehensive framework that
integrates cumulative environmental exposures (e.g., physical, chemical, social, lifestyle)
and their biological interactions to decode disease aetiology [18]. When examined through
the lens of exposome science—which encompasses the totality of human environmental
exposures from prenatal development through adulthood—these risk factors emerge as
interconnected components of a complex biological–environmental system [19,20]. Rather
than functioning independently, these elements interact in dynamic and often synergistic
ways. This exposomic perspective can fundamentally transform our thinking around
dementia prevention and neurological mechanisms [21,22]. It moves beyond conven-
tional models focused primarily on individual lifestyle choices to recognize how structural
factors—including macro-level determinants such as educational opportunities, urban
planning decisions, environmental regulations, and social support systems—collectively
shape population-level dementia risk trajectories [23,24].

A landmark exposome-wide association study (XWAS) using the UK Biobank data
recently quantified the contribution of exposomes, age, sex, and polygenic risk scores
to 22 major diseases [25]. For dementia, particularly vascular dementia, environmental
exposures accounted for a substantial proportion of the risk, although smaller than the
contributions from age, sex, or genetics [25]. However, exposomes represent the most
modifiable component of dementia risk and thus offer some of the clearest targets for
prevention. Despite this potential, research remains disproportionately focused on late-life
biomarkers, neglecting the long-term exposures accumulating since early life. Longitudinal
epidemiological studies reveal that dementia risk begins accumulating as early as child-
hood [26], or even with transgenerational effect [26,27], underpinned by factors such as
educational access, nutritional deficiencies, and socioeconomic disparities [2,28].

Effectively, an exposomic approach to studying health outcomes requires a comprehen-
sive, discovery-driven framework that addresses the following three key research needs:
(1) comprehensive longitudinal exposure assessment; (2) improved measurement of phys-
iological and biological responses; and (3) integration of multidisciplinary research [29].
This commentary explores these aspects with a focus on dementia and cognitive ageing,
highlighting both methodological challenges and future research opportunities.

2. Methodological Challenges
The shift toward exposome-driven frameworks for understanding dementia risk comes

with a plethora of methodological complexities. While advances in multi-omics and envi-
ronmental monitoring technologies offer unprecedented opportunities to comprehensively
map the interplay between biological, environmental, and social factors, several critical
challenges hinder progress in disentangling causal pathways and translating findings into
prevention strategies.

2.1. Multidimensional Data Complexity

Exposome research necessitates the integration of vast, heterogeneous datasets that
encompass both external exposures and internal biological responses. This integration
introduces several interrelated challenges.

First, measurement granularity poses a significant hurdle. While high-resolution
environmental monitoring tools like wearable sensors and geospatial tracking systems gen-
erate terabytes of dynamic exposure data [30], inconsistencies in the spatial and temporal
resolution across studies limit the comparability of datasets, thereby hindering cross-study
validation and meta-analyses.

Second, the integration of multi-omics, multi-modal data with environmental variables
demands robust computational pipelines to address technical noise, missing data, and
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batch effects [31]. For example, aligning metabolomic, proteomic, or genomic datasets with
external exposure metrics requires harmonizing disparate data types while accounting for
variability introduced by differing laboratory protocols, sampling intervals, or even sample
type, which can obscure biologically meaningful signals.

Third, the high-dimensional nature of exposome data amplifies statistical challenges.
Biomarker studies, for instance, may analyse over thousands of markers simultaneously,
creating a “needle-in-a-haystack” scenario for identifying true associations. To address this,
more researchers are employing machine learning methods (e.g., random forests, support
vector machines, neural networks, gradient boosting), dimensionality reduction techniques
(e.g., principal component analysis or latent variable models), and Bayesian frameworks
that incorporate prior knowledge to improve signal detection [32,33]. These approaches
can help disentangle complex, non-linear relationships and uncover latent patterns in high-
dimensional exposome data. However, even with these advanced analytic approaches, the
proliferation of variables continues to increase the risk of false discoveries, necessitating
stringent corrections for multiple testing, such as using the Benjamini–Hochberg method to
correct for false discovery rate [34]. However, overly conservative statistical approaches
risk overlooking subtle yet critical interactions, such as low-dose chronic exposures or
synergistic effects between multiple factors. Collectively, these challenges underscore the
need for advanced computational frameworks and standardized protocols to manage the
complexity of exposome data [24], while preserving its utility for dementia research.

2.2. Temporal and Lifecourse Dynamics

Dementia risk unfolds over decades, shaped by dynamic interactions between en-
vironmental exposures and biological processes across the lifespan. However, research
often prioritizes late-life exposures, overlooking critical windows of vulnerability during
prenatal, perinatal, and early childhood periods where neurodevelopment is especially
vulnerable. This narrow focus introduces three interrelated methodological challenges.

First, the scarcity of longitudinal data limits insights into lifelong risk trajectories.
Few cohort studies track individuals from early life to old age, and many cohorts often
face attrition biases. Survival bias—where healthier individuals disproportionately re-
main in long-term studies—can skew risk profiles, masking the full impact of early-life
adversities on subsequent cognitive decline [35]. Repeated biomarker measurements are
essential to capture dynamic biological changes in response to both acute and chronic
environmental exposures.

Second, time-varying interactions complicate causal inference [36], as exposures may
exert delayed, nonlinear, or cumulative effects. For instance, childhood poverty could
predispose individuals to midlife metabolic dysfunction and limited cognitive stimulation,
both of which influence brain structure and stress reactivity, amplifying dementia risk
decades later. Such lagged relationships challenge conventional statistical models, which
often assume static or linear associations [36].

Third, retrospective exposure assessment introduces measurement inaccuracies.
Reliance on self-reported childhood exposures—such as dietary habits or residential
history—is prone to recall bias, as older adults may misremember details or conflate
timelines [37]. Proxy informants or historical records are often incomplete or inconsistently
available [38]. Even when objective biomarkers using frozen blood samples are used,
gaps in historical environmental monitoring limit the precision of retrospective exposure
reconstruction [39]. These challenges underscore the urgent need for lifecourse cohorts that
integrate prospective environmental monitoring with longitudinal multi-omics profiling,
enabling researchers to disentangle how the timing, duration, and interactions of exposures
shape dementia risk across the lifespan.
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2.3. Confounding and Reverse Causation

Environmental exposures do not act in isolation but are intricately entwined with
socioeconomic, behavioural, and genetic factors, creating a web of analytical challenges
that complicate efforts to isolate causal pathways in dementia research. Three central issues
arise in this context.

First, residual confounding undermines attempts to disentangle environmental effects
from correlated social determinants. While studies often adjust for confounders, many fail
to account for their cumulative or time-varying impacts across the lifecourse.

Second, reverse causation introduces ambiguity in interpreting exposure–dementia
associations [40,41]. Early neurodegenerative processes, such as the accumulation of
amyloid-beta plaques years before clinical symptoms emerge [42], may subtly alter be-
haviour or lifestyle, thereby distorting exposure measurements. A person in the preclinical
stages of Alzheimer’s disease might reduce outdoor physical activity due to apathy or
motor changes, leading to artificially low pollution exposure readings that may be mistaken
for protective effects, when in fact, they reflect disease-driven behavioural changes.

Third, gene–environment correlation (rGE) obscures causal inferences by linking ge-
netic predispositions to environmental experiences [43]. This may sometimes create a
scenario where genetic and environmental risks are conflated [43], making it difficult to
discern whether outcomes arise from molecular mechanisms, external exposures, or their
interplay. Twin studies have highlighted such dynamics, showing that genetic predis-
positions can influence exposure-prone behaviours [44], which in turn modify dementia
risk trajectories.

These challenges collectively underscore the need for innovative study designs—such
as sibling-matched cohorts, Mendelian randomization, lifecourse-adjusted models, and
triangulating findings through methods like longitudinal cohort replication and quasi-
experimental designs—to disentangle the genetic, environmental, and social threads in
dementia research.

2.4. Equity and Generalizability Gaps

Exposome–dementia research holds promise for advancing prevention strategies, but
methodological oversights risk perpetuating—or even exacerbating—health disparities if
studies fail to account for marginalized populations [45]. The following three interrelated
challenges threaten the equity and generalizability of the findings: First, sampling bias
systematically excludes underrepresented groups from research. Most large-scale exposome
studies disproportionately enrol high-income individuals and predominantly populations
of Caucasian ancestry [46]. This neglects rural communities, low-resource settings, and
racially diverse groups who face unique exposure profiles [45]. The similar pattern is
observed in genomics studies [47]. Consequently, interventions derived from biased
samples may fail to address the exposures most harmful to marginalized groups, widening
global dementia inequities. Second, measurement inequity further compounds these
gaps. Innovative tools like wearable sensors, smartphone-based GPS tracking, and real-
time pollution monitors are often inaccessible in underserved communities due to cost,
infrastructure limitations, or digital literacy barriers [48]. This creates “data deserts” that
obscure localized risks and reinforce a Eurocentric evidence base. Lastly, ethical dilemmas
arise when collecting granular environmental data in vulnerable populations. Linking
precise geospatial tracking (e.g., GPS logs of daily movements) to health outcomes also
raises privacy concerns [49], particularly for stigmatized groups such as undocumented
immigrants or racial minorities already subject to surveillance.

These challenges highlight a plain reality: without intentional efforts to ensure equity
is rooted in study design, exposome-dementia research risks validating interventions that
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benefit already privileged populations while leaving those most vulnerable to systemic
environmental harms behind. Bridging these gaps demands community-engaged method-
ologies, equitable resource allocation for global monitoring tools, and ethical frameworks
that prioritize data sovereignty and actionable redress for marginalized groups.

3. Future Directions and Innovations
3.1. Toward a Lifecourse and System-Level Exposome Framework

To address these gaps, the exposome framework must incorporate temporal and spatial
dimensions, integrating lifecourse epidemiology to identify critical exposure windows
(e.g., prenatal development, midlife) and cumulative risk patterns. For example, childhood
lead exposure may be prime neuroinflammatory pathways, while midlife occupational
stressors compound this risk, culminating in late-life cognitive decline [28,50]. Similarly,
the dynamic interactions between environmental exposures (e.g., green space access) and
individual resilience factors (e.g., cognitive reserve, social networks) must be mapped to
reveal potentially protective pathways.

3.2. Technological Advances in Exposome Measurement

The growing yet fragmented evidence linking exposomes to dementia underscores
the urgency for technological and methodological innovation. Advances in wearable
sensors [51], digital biomarkers [52], and AI-driven exposure tracking offer transformative
potential to address challenges in data harmonization and high-dimensional exposome
data analysis. These tools enable the real-time, granular monitoring of environmental,
lifestyle, and social exposures, while machine learning algorithms can disentangle complex
interactions across heterogeneous datasets. Large-scale biobanks and cohort studies with
longitudinal exposome data further provide a foundation for integrating multi-omics
profiles to identify mechanistic pathways [53].

3.3. Innovative Index Generation and Profile Clustering

Using multi-omics biological data (e.g., genomics, epigenomics, proteomics) in com-
bination with multi-modal neuroimaging (e.g., structural, functional, and diffusion MRI),
more nuanced indices (i.e., brain age index) and ageing clocks (i.e., brain clock) [54,55] can
be constructed to quantify deviations from healthy neurobiological ageing. For instance,
a paper using proteomics data identified three distinct waves of brain ageing [51], under-
scored how integrative approaches can reveal temporally structured biological pathways
underlying brain ageing, enabling the early detection of pathological trajectories and per-
sonalized interventions. These integrative models not only enhance predictive accuracy but
also uncover mechanistic insights into age-related cognitive decline and neurodegenerative
diseases. By leveraging machine learning and cross-modal data fusion, this approach
helps determine personalized biomarkers for early intervention and tailored therapeutic
strategies. Within the context of environmental exposure, metrics such as the Heat In-
dex [56] and the Index of Multiple Environmental Deprivation (IMED) [57] can quantify
cumulative stressors. When combined with multi-omics and neuroimaging-derived brain
ageing indices, these tools enable a systems-level understanding of how external exposures
accelerate or decelerate biological ageing [54]. This integrative approach uncovers criti-
cal gene/bio-environment interactions, offering new avenues for precision public health
interventions. Nevertheless, while machine learning offers promise, its application in
exposome research must be carefully validated to avoid overfitting or spurious correlations
in high-dimensional data.
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3.4. Interdisciplinary Collaboration for Holistic Insights

Progress also hinges on interdisciplinary collaboration bridging environmental health,
neurology, computational biology, and social sciences. Such partnerships are critical to
contextualize exposome–dementia links within broader societal structures and data harmo-
nization, for example, exploring how socioeconomic disparities amplify toxic exposures
or how cognitive reserve modifies risk. Social scientists can elucidate resilience factors,
while computational biologists develop models to untangle gene–environment interactions
and biological mechanisms. Concurrently, neurologists must refine dementia subtypes and
cognitive assessments tied to specific exposures, ensuring prevention strategies are bio-
logically grounded. Large research consortia, such as the International Human Exposome
Network (IHEN) (https://humanexposome.net/, accessed on 9 May 2025), the Gateway
Exposome Coordinating Center (https://gatewayexposome.org/, accessed on 9 May 2025),
Exposome NL (https://exposome.nl/, accessed on 9 May 2025), and the EXPANSE con-
sortium (https://expanseproject.eu/, accessed on 9 May 2025), among others [33], have
systematically mapped and harmonized diverse exposome data across multiple cohorts.
This effort ensures comparability and enhances cross-cohort and cross-national validity.

4. Conclusions
Adopting an exposome lens is indispensable for unravelling the multifactorial aetiol-

ogy of dementia. While methodological hurdles persist, progress in technology, interdis-
ciplinary collaborations, methodological developments and equity-focused data harmo-
nization, as well as policy-driven action can bridge existing gaps. A global call to action is
needed, prioritizing funding for longitudinal exposome studies, standardizing exposure
metrics, and fostering inclusive cohorts that represent diverse populations. By centring
equity in both research and practice, the field can move beyond fragmented evidence
toward actionable strategies that promote cognitive resilience across the lifecourse.

We encourage researchers who use innovative research methods to capture the effects
of exposomes on dementia and cognitive ageing to submit their work to the Special Issue of
the International Journal of Environmental Research and Public Health on “Exposomic Approach
to Dementia and Cognitive Ageing”.
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