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Abstract

Quantum computers can perform computational tasks in an exponentially large state space,

provided the system maintains high fidelity. However, quantum systems are highly susceptible

to errors arising from environmental coupling and intrinsic quantum processes. Building and

operating a quantum processor therefore requires a robust strategy to protect the encoded

information from errors. This challenge gave rise to the field of quantum error correction,

which employs redundancy to encode quantum information using sophisticated protocols. In

parallel, topological phases of matter have emerged as exciting platforms for achieving fault-

tolerant and scalable quantum computation. These states exhibit intrinsic error resistance

due to their topological nature, making them ideal candidates for encoding and manipulating

quantum information. A symbiotic relationship has developed between these research areas,

inspiring the study of topological quantum error-correcting codes. This thesis explores four

themes: candidate logical encodings for topological quantum computing systems using the

braiding and interaction of quasi-particle defects, including the surface code and a chain of

parafermions; improved decoding for topological quantum codes; and proposals for quantum

simulation leveraging the power of neutral atoms for braiding qudit topological states, and

simulating quantum effects in black holes.
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Impact Statement

Quantum computers are expected to perform tasks in exponentially large computational

spaces, provided a high enough operational fidelity. Accessing such operations can provide

an advantage in specific problems that remain intractable for state-of-the-art supercomput-

ers, including modelling atoms in a molecule [Llo96], cryptography [Sho97] and optimisa-

tion [FGG14; Jor+24].

Building and operating large-scale quantum processors requires strategies to protect quan-

tum information from errors that arise due to interactions with the environment and processes

intrinsic to quantum systems. A prominent technique for addressing this challenge is quantum

error correction, which redundantly encodes quantum states into a larger number of physical

qubits. Another promising approach is topological quantum computing, where information

is encoded in the topological properties of quantum states that emerge in two-dimensional

systems.

In Part I, this thesis presents contributions to both quantum error correction and topo-

logical quantum computing. While these paradigms differ in their physical realisations, they

are connected through their reliance on encoding quantum information in fault-tolerant struc-

tures. We demonstrate this by exploring non-Abelian anyonic behaviour in toric code defects,

where punctures with peculiar boundaries reproduce exotic fusion rules and logical opera-

tions via braiding. Additionally, our insights from quasiparticles in the colour code lead to a

decoding algorithm for the surface code, providing exponential improvements in logical error

rates under depolarising noise. We also investigate another non-Abelian anyon species, Z3

iii
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parafermions, and show how their interactions enable the generation of non-Clifford gates,

advancing the toolkit for topological qudit-based quantum computing. Collectively, these re-

sults strengthen the connection between topological quantum computing and error correction,

contributing to both the theoretical and practical feasibility of robust quantum technologies.

We emphasise that defect-based computation, and the decoding of topological quantum codes,

are critical areas of research for the development of practical fault-tolerant quantum compu-

tation. Moreover, the discovery and implementation of non-Clifford gates are essential for

achieving universal quantum computation.

In Part II, we explore a third paradigm: analogue quantum simulation. Unlike gate-based

quantum computation, which processes information through discrete sequences of quantum

gates, analogue quantum simulation mimics the dynamics of complex quantum systems by

directly mapping them onto controllable physical platforms. This method allows the study of

phenomena that are otherwise difficult to explore in natural systems.

We propose a scheme for simulating aspects of black hole physics using ultracold atoms

in locally Floquet-driven optical lattices. By creating a position-dependent tunnelling profile,

the system encodes the curved spacetime geometry of (1+1)-dimensional black holes, enabling

the study of effects like Hawking radiation. We develop a simple method for measuring the

Hawking temperature, relying on onsite atom population measurements. We extend our

simulation to (2 + 1)-dimensional black holes using 2D optical lattices, incorporating atom-

atom interactions to probe quantum properties such as information scrambling. This work

demonstrates the potential of analogue quantum simulation to advance our understanding of

quantum gravity and explore complex quantum phenomena.
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Chapter 1

Introduction

There exist certain classes of problems that are intractable to solve using classical computers,

whereas quantum computers are expected to surpass this limitation. These are processors

which exploit quantum theory to encode information using quantum systems that can exist in

states of superposition, entanglement, and experience interference [NC10]. Such problems are

found in the fields of simulation of materials, such as individual atoms in a molecule [Llo96],

cryptographic protocols [Sho97], and optimisation [FGG14; Jor+24]. We envisage that operat-

ing quantum computers will lead to the development of new technologies, and understanding of

complex physics from sub-atomic to supergalactic scales. To this effect, various hardware plat-

forms are currently investigated, including superconducting chips [Han+24; Ach+24], neutral

atom arrays [Blu+23], trapped ions [Mos+23], photonic and bosonic architectures [Bou+21;

Mar+23; Bar+23], silicon-based qubits [Cir+21], topological quantum states [Bon+10] and

more.

The road to building a quantum computer is a noisy one. Indeed, carrying out even a

small quantum computation with sufficiently low failure rates requires high fidelity of qubits

and operations. These correspond to components in a physical quantum circuit, that each

undergo errors. These errors occur due to the delicate nature of quantum systems, as these

experience decoherence through interactions with their environment. Moreover, hardware

1
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limitations (e.g. miscalibrated pulses, faulty control signals), imperfect readout devices and

leakage out of the computational space can all affect the quality of quantum circuit execution.

For instance, it is estimated that factoring 2048-bit RSA integers in 8 hours requires 20 million

noisy qubits with a characteristic physical gate error rate of 10−3 [GE21].

Along with improved hardware, quantum errors are addressed by using redundancy to

encode logical information in a protected subspace. This is in many ways analogous to tech-

niques in classical coding theory, which are ubiquitous in our communication systems and

cryptographic protocols. Classical computers manipulate bits of information according to

deterministic algorithms, where each bit is in a specific state at any given time, and vulner-

able to being “flipped”. In contrast, quantum systems are subject to a continuum of errors,

generally modelled using Pauli error channels. Quantum error-correction (QEC) consists of

techniques to detect and correct these errors, by encoding information into entangled states

of larger numbers of physical quantum bits [Sho95]. QEC has successfully been demonstrated

in a recent experiment [Ach+24].

A separate approach to achieving fault-tolerant quantum computation consists of encod-

ing quantum information in the decoherence-free ground subspace of a topologically ordered

quantum state [Pac12]. The computational space consists of the fusion pathways of a collec-

tion of emergent quasiparticles, anyons, and quantum gates are carried out by adiabatically

winding anyons around each other. The topological nature of the system is the key to the

protection against errors that quantum systems typically incur.

Quantum simulation is a third method for manipulating quantum information [Dal23].

This technique consists of utilising an accessible and highly controlled quantum system to

infer knowledge of another quantum system, that is not directly accessible. Analogue quan-

tum simulation is distinguished from digital computational models in that it often involves

continuous interactions that naturally replicate the behaviour of a target system, instead of

discrete operations on qubits. Note that errors in analogue evolution do tend to accumulate,

unlike active quantum error-correction in the digital case. A prominent platform for quantum

simulation is trapped ultracold atoms near absolute zero temperature in a grid-like potential,
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referred to as optical lattices [Blo05; GB17b; Sch+20b; NUS23]. These systems are effectively

described by a Bose-Hubbard model, and offer versatile ways of tuning its Hamiltonian to

simulate diverse complex models. The ability to independently tune all Hamiltonian param-

eters, i.e. the local potentials, hopping and coupling, and achieve next-to-nearest-neighbour

interactions as well as different periodicities, offers an exciting platform to simulate quan-

tum many-body phenomena. Combined with the high-resolution probing of cold atoms in

the lattice, this allows us to learn properties of physical systems that remain intractable via

alternative computational models.

This thesis is divided in two Parts. In Part I, we present a collection of works showcasing

results in various aspects of topological quantum computing and QEC. We start with the

relevant background theory in Chapter 2. In Chapter 3, we explored how exotic defects,

namely mixed-boundary punctures, can emulate Majorana anyon behaviour by combining

their Abelian statistics with a nonlocal encoding. In Chapter 4, we extended the work in

[BK05] to the more general parafermions with fractional non-Abelian statistics, by analysing

the Z3 parafermion edge mode interaction to obtain a tunable non-Clifford gate, thereby

contributing to universal quantum computing by accessing resourceful non-contextual states.

In Chapter 5, we designed a decoder by mapping the surface code onto the colour code,

improving resilience of the former to depolarising noise. This resulted in an exponential

reduction in logical error rates for minimum-weight errors, inspiring further investigations

into hybrid decoding approaches and fault-tolerant schemes. In Part II of this thesis, we

present an experimental proposal to simulate the emergent curved spacetime at the event

horizon of a Schwarzschild black hole. In Chapter 6, we introduce background theory and

context behind this system, as well as the many-body quantum Hamiltonians describing our

simulator. Our work in Chapter 7 describes this mapping, and introduces a scheme to measure

Hawking temperatures in the laboratory by leveraging the controllable interactions in optical

lattices, combined with precise single-site measurements. We conclude with general remarks

and future directions in Chapter 8.



Part I

Defects, logic and decoding on

topological quantum codes

4



Chapter 2

Preliminaries

In this chapter, we review the foundational concepts, key topics, and relevant literature in

the fields of fault-tolerant quantum computing and quantum error correction. We start with

necessary concepts in quantum theory and establish some notation. Next, we delve into

the field of error correction, examining both classical and quantum error-correcting codes.

We then introduce topological order, a central theme in this work, that is pivotal in the

development of fault-tolerant quantum computation. This chapter provides a comprehensive

overview of the theoretical tools and systems addressed in this thesis.

2.1 Basics of quantum information

We begin by introducing the notions and notation that will be used throughout this thesis to

describe the states and dynamics of quantum systems [Pre15]. Quantum theory is a complete

mathematical framework for physical phenomena which specifies how to represent states,

observables, measurements, evolutions and interactions. In quantum mechanics, states of

physical systems are represented by elements |ψ⟩ in a Hilbert space H, that is a vector space

over the complex field C. This space is equipped with an inner product ⟨.⟩ which respects

5
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positivity, linearity, and skew-symmetry such that for two quantum states |ψ⟩ , |ϕ⟩ ∈ H,

⟨ψ|ψ⟩ > 0 for |ψ⟩ ≠ 0 (2.1)

⟨ϕ| (a |ψ1⟩+ b |ψ2⟩) = a ⟨ϕ|ψ1⟩+ b ⟨ϕ|ψ2⟩ (2.2)

⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗ (2.3)

with the space complete in the norm ||ψ||=
√
⟨ψ|ψ⟩. States inH are represented by normalised

vectors, which are physically invariant under overall phases, such that |ψ⟩ ≡ eiα |ψ⟩ where

|eiα|= 1. Linear superpositions of quantum states can exist, such that the overall state can

be written as a sum of orthogonal basis states, with relative phases between these states.

Operators acting on quantum systems are linear maps of the form Ô : |ψ⟩ −→ Ô |ψ⟩, where

the adjoint operator O† is defined by

⟨ϕ|Oψ⟩ = ⟨O†ϕ|ψ⟩ (2.4)

for all states |ψ⟩ , |ϕ⟩, where |Ôψ⟩ = Ô |ψ⟩. Observables in quantum mechanics refer to mea-

surable features of a physical system, and are described by self-adjoint (Hermitian) operators,

i.e. operators respecting

⟨ϕ| Ô |ψ⟩ = ⟨ψ| Ô |ϕ⟩∗ ∀ |ψ⟩ , |ϕ⟩ . (2.5)

Eigenstates of self-adjoint operators Ô ∈ H form a complete orthonormal basis in H, s.t. one

can write

Ô =
∑
i

oi |i⟩⟨i| (2.6)

where each |i⟩⟨i| is the orthogonal projection onto the space of eigenvectors with eigenvalue

oi, and {|i⟩} the orthonormal basis of eigenstates of Ô. Information in a quantum state can

be retrieved through the process of measurement. Consider a quantum system in a state |ψ⟩.

Measurement corresponds to the interaction between the system and a measurement operator
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Ô, which has eigenstates {|oj⟩} with eigenvalues {oj}. When a measurement is performed,

the quantum state collapses into one of the eigenstates |oj⟩, and the outcome oj is observed.

The probability of this outcome is given by the Born rule:

p(oj) = |⟨oj |ψ⟩ |2. (2.7)

Repeating the same measurement will yield the same outcome oj with probability 1, as the

system is now in the eigenstate |oj⟩.

In quantum mechanics, the Schrödinger equation describes how the state of a system

evolves in time. If the system is closed, this time evolution is described by a unitary operator

U . Specifically, given an initial quantum state |ψ(t1)⟩, the final state at time t2 is obtained

under the transformation

|ψ(t2)⟩ = U(t2, t1) |ψ(t1)⟩ (2.8)

where this time evolution obeys

d

dt
|ψ(t)⟩ = −iĤ(t) |ψ(t)⟩ . (2.9)

The operator Ĥ, referred to as the Hamiltonian of the system, is Hermitian, and has the

dimensions of energy. If Ĥ is a time-independent operator, the evolution takes the simpler

form

Û(t2, t1) = e−i(t2−t1)Ĥ . (2.10)

An important feature of quantum mechanics lies in the way composite systems behave. A

two-composite system consisting of subsystems A and B, respectively prepared in states |ψ⟩A
and |ψ⟩B, lives in a Hilbert space defined by the tensor product of the individual subsystem

Hilbert spaces, HAB = HA ⊗ HB, and is denoted by the tensor product |ψ⟩A ⊗ |ψ⟩B. The

joint Hilbert space is spanned by basis states of the form {eA, eB} where |eA, eB⟩ ≡ |eA⟩⊗|eB⟩

which respectively designate the basis states spanning HA and HB. Operators acting on the
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first or second system independently take the form

OA ⊗ 1B , 1A ⊗OB. (2.11)

where the identity operator 1i∈{A,B} indicates the trivial action on a subsystem.

Since a quantum processor can operate on multiple subsystems as both input and output,

we can characterise the nature of these states from an information-theoretic perspective. A

quantum bit, or qubit, is a unit of quantum information, analogous to the classical bit which

takes a value in {0, 1}. A qubit is described by a state in the smallest non-trivial Hilbert

space, the two-dimensional vector space H = C⊗2, spanned by {|0⟩ , |1⟩}. This is known as

the computational basis, where |0⟩ = (1 0)T and |1⟩ = (0 1)T . A general qubit state can be

written as a linear superposition of the these states:

|ψ⟩ = α |0⟩+ β |1⟩ (2.12)

where α, β ∈ C and |α|2+|β|2= 1. A measurement on a qubit in the computational basis

returns the outcome |0⟩ with probability |α|2, and |1⟩ with probability |β|2. A qubit can be

described using a geometrical interpretation of the state in Eq. 2.12. Indeed, a qubit in an

arbitrary state can be written as

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩ (2.13)

using the polar representation of the complex amplitudes α and β, as the quantum state does

not change if we multiply it with any number of unit norm. The angles θ, ϕ ∈ R define a

point on the three-dimensional unit sphere, known as the Bloch sphere, such that 0 ≤ θ < π,

and 0 ≤ ϕ < 2π, as shown in Fig. 2.1. This formally follows from a 2-to-1 homomorphism of

SU(2) on SO(3). The state of a qubit can be represented by a density operator

ρ =
1

2
(I + r · σ) (2.14)
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where r is the Bloch vector r = (sin θ cosϕ, sin θ sinϕ, cos θ), and σ is the three-component

vector of Pauli matrices, i.e.

σx =

0 1

1 0

 , σy =

 0 i

−i 0

 , σz =

1 0

0 −1

 (2.15)

with the 2× 2 identity matrix 1 sometimes included. The Pauli matrices form an orthogonal

basis for the complex vector space for all 2×2 matrices, and satisfy the following commutation

and anti-commutation relations:

[σi, σj ] = 2iϵijkσ
k, {σi, σj} = 2δijI (2.16)

where i, j, k ∈ {x, y, z}, ϵijk is the Levi-Civita symbol, and the Kronecker delta δij . An

isolated quantum state, as described in Eq. 2.13, is known as a pure state. Pure states are

characterised by having a trace Tr(ρ2) = 1, and are represented by points on the surface of the

Bloch sphere. A qubit can also be described by a classical mixture of pure states described

by density matrices of the form

ρ =
∑
i

pi |ψi⟩⟨ψi| , (2.17)

with Tr(ρ2) < 1 and probabilities pi ∈ [0, 1]. Mixed states can arise due to interactions with

the environment or lack of full knowledge of the system. In the Bloch sphere representation,

they occupy points inside the sphere. A single-qubit quantum gate is a unitary linear operation

which can be visualised as a rotation on the Bloch sphere, and written as

U = eiαRn̂(θ) (2.18)

for α, θ ∈ R, and n̂ a three-dimensional unit vector on the Bloch sphere. The operator

Rn̂(θ) ≡ exp
(
−i θ2 n̂ · σ

)
rotates the state vector on the Bloch sphere by an angle θ about the

n̂ axis.

As described earlier, consider a bipartite composite system to which we assign orthonormal
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Figure 2.1: The Bloch sphere representing the state of a single qubit.

bases {|0⟩A , |1⟩A} and {|0⟩B , |1⟩B}. Quantum mechanics allows for states of the joint system

which describe quantum correlations between A and B, such that an arbitrary state of the

system is given by

|ψ⟩AB =
∑
eA,eB

aeA,eB |eA⟩ ⊗ |eB⟩ , where
∑
eA,eB

|aeA,eB |
2= 1. (2.19)

The density operators of systems A and B are obtained by performing partial traces over the

respective other subsystem, as follows:

ρA = TrB(|ψ⟩⟨ψ|AB) , ρB = TrA(|ψ⟩⟨ψ|AB), (2.20)

where ρA and ρB are self-adjoint, positive semidefinite, and have unit trace. Entanglement

is a fundamental concept in quantum mechanics that describes a type of correlation between

quantum systems. When two or more quantum systems become entangled, their states are

interdependent, meaning the state of one system cannot be described independently of the
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others. For example, the following states are known as the Bell states,

|Φ±⟩ =
1√
2

(|00⟩ ± |11⟩) , (2.21)

|Ψ±⟩ =
1√
2

(|01⟩ ± |10⟩) , (2.22)

which are referred to as maximally entangled since the reduced density matrices ρA = ρB =

1/2 indicate that neither qubit has coherence or a definite state on its own, i.e. rA = rB = 0.

Hence, the state of each qubit is completely mixed when traced over the other subsystem.

In this notation, we abbreviated a state |a⟩ ⊗ |b⟩ as |ab⟩. The earlier definitions naturally

extend to larger multipartite composite systems, but cannot be visualised as simply as the

single-qubit case due to the higher dimensionality and the complex nature of entanglement.

In this thesis, we focus on examples of many-body quantum systems that exhibit strong

entanglement, which is leveraged for applications in quantum computing.

2.2 Elements of quantum computing

Quantum computing harnesses properties of quantum systems as processing units, and quan-

tum operations which are not accessible by classical systems, to enable speed-ups over classical

algorithms for certain families of problems [DJ92; BV93; Kit95; Gro96]. In this section, we

will define fundamental concepts of quantum computing which will be relevant to our work.

2.2.1 Qubits and qudits

In classical information theory, the information characterising a message is encoded in strings

of bits of the form x1x2 . . . xn, where xi ∈ F2. Each bit can take one of two values: 0 or 1, and

the information is processed using logic gates such as AND, OR, and NOT, and information

is processed deterministically using classical algorithms. In Sec. 2.1 we defined the qubit as

a two-level system living in the vector space C2. A collection of n such qubits constitutes a

register with 2n basis states written as |q1⟩⊗ |q2⟩ ...⊗ ... |qn⟩ where qi ∈ F2. Qudits are higher-
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dimensional quantum systems, generalising the binary quantum bit in Eq. 2.12 to d-ary digits

where d > 2 is the dimension of the system, and are an alternative to qubits as quantum

information units [BB02]. A qudit state can be described as a vector

|ψ⟩ =
d−1∑
i=0

αi |ei⟩ , (2.23)

where αi ∈ Cd and
∑

i|αi|2= 1. Like qubits, qudits can be used to encode information,

and computation is performed by applying qudit gates on the encoded states. Since qudits

inhabit a larger Hilbert space compared to qubits, they can store more quantum information

and enable the simultaneous execution of multiple control operations. These advantages offer

the potential to reduce circuit complexity, and improve the efficiency of quantum algorithms

and scalability [NC10; Wan+20].

2.2.2 Quantum gates

After initialising a set of quantum registers, quantum computation proceeds with a sequence of

unitary operations that evolve the quantum state, known as quantum gates. These operations

are prescribed by a quantum algorithm, and projective measurements on the system are

performed to read out the outcomes [NC10]. The Pauli matrices in Eq. 2.15 are examples of

single-qubit unitary and Hermitian gates with eigenvalues ±1. We can also consider n-fold

tensor products of Pauli matrices, e.g. the three-qubit gate X⊗I⊗Z. Henceforth, we refer to

the Pauli matrices σx, σy, and σz as X, Y , and Z, respectively, in the context of QEC. Every

n-qubit quantum gate can be written as a unique linear combination of n-qubit Pauli gates

(of which there are 4n). The Pauli matrices act on the computational basis in the following

way

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ ,

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ ,

Y |0⟩ = −i |1⟩ , Y |1⟩ = i |0⟩ .

(2.24)
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Other important gates include the phase gate Rϕ and Hadamard gate, which respectively

apply a specific ϕ-phase shift on the quantum state, and create a superposition:

Rϕ |0⟩ = |0⟩ , Rϕ |1⟩ = eiϕ |1⟩ ,

H |0⟩ = |+⟩ , H |1⟩ = |−⟩ ,
(2.25)

where

Rϕ =

1 0

0 eiϕ

 , H =
1√
2

1 1

1 −1

 , (2.26)

and the states |±⟩ = (|0⟩ ± |1⟩)/
√

2 represent the equal superpositions shown in Fig. 2.1.

An example gate which generates entanglement between two qubits is the controlled-NOT

(CNOT) gate which negates the second qubit if the first qubit is in state |1⟩, i.e.

CNOT |0⟩ |ψ⟩ = |0⟩ |ψ⟩ ,

CNOT |1⟩ |ψ⟩ = |1⟩X |ψ⟩ .
(2.27)

The theory behind quantum computation relies upon access to gates from different levels

of the Clifford hierarchy, defined by Gottesman and Chuang in Ref. [GC99] as

C(k+1) := {U |UPU † ∈ C(k),∀P ∈ Pn} (2.28)

where Pn := P⊗n is the n-qubit Pauli group defined at k = 1. This definition classifies

quantum gates based on their ability to map Pauli operators to other operators through

conjugation. The second level in the hierarchy is known as the Clifford group, and includes

the Pauli group, H and CNOT gates. In fact, the full single-qubit Clifford group is given by

C(2) = ⟨H,S, ω⟩, where S =
√
Z, and is promoted to the n-qubit Clifford group by addition of

the CNOT in the generating set. The Clifford group is significant in fault-tolerant quantum

computing, as it is composed of gates that map Pauli operators to Pauli operators, hence

preserving the structure of the Pauli group under conjugation.
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A set of quantum gates is called universal if any unitary transformation on an arbitrary

number of qubits can be realised to an arbitrary precision by composing gates from this set.

This can be, for example, the set of operations accessible using a quantum processor. It is

known that complementing the single-qubit Clifford group with a gate in C(3) such as the T

gate,

T =
√
S =

1 0

0 eiπ/4

 , (2.29)

generates a group that is dense in SU(2), thereby providing a universal gate-set according to

the Solovay-Kitaev theorem [Kit97; BK05]. Hence, any single-qubit unitary operator can be

expressed in the form O = CnTCn−1T...C1TC0 where Ci ∈ C(2) ∀i, which can be optimised

such as to minimise the number of T gates, also known as the T -count, using a reduction

procedure [MA08; KMM12; Boy+00].

Universality of computation extends naturally to logic in qudit systems. For prime d, it

is known that Clifford unitaries together with an arbitrary non-Clifford gate are sufficient

for universal quantum computing [CAB12]. In the general case, earlier results proved that

a set of single-qudit unitaries dense in SU(d), supplemented with a two-qudit gate that acts

non-trivially on the full d × d Hilbert space, i.e. does not map separable states to separable

states, is sufficient to approximate any unitary on n qubits [Vla02; Sch19; SK17]. The Clifford

hierarchy in Eq. 2.28 also extends to qudit systems. The first level is the qudit Pauli group,

generated by qudit analogues of the X and Z Pauli matrices known as the cyclic shift and

clock operators, which act on the d-dimensional Hilbert space defining a qudit such that

σ |k⟩ = |(k + 1) mod d⟩ , τ |k⟩ = ωk |k⟩ , (2.30)

where ω = e2πi/d is the primitive d-th root of unity. The gate σ effectively cycles through the d

computational states, while τ generalises the phase application of the Pauli-Z operator. With

this definition, we can identify the Clifford group as C(2). Higher levels are of interest for any

d-dimensional qudit system in order to achieve universality, and in particular, any gate from
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the third level C(3) supplementing the Clifford group generates a universal gate set. While

in general for k ≥ 3 the gate sets in the Clifford hierarchy do not form a group, the subset

of diagonal operators C(k)d ⊂ C(k) does, making investigations for a T -gate qudit analogue

tractable as shown in Refs. [HV12; CAB12; CGK17]. In particular, Cui et al. showed that a

diagonal gate U in any level of the Clifford hierarchy for qudits of dimension d can be written

as

U =
∑
j∈Zd

exp

(
2πi

∑
m

δm(j)/dm

)
|j⟩⟨j| , (2.31)

where δm(j) is a polynomial over Zmd , and the level of the Clifford hierarchy containing U is

given by the degree of δm(j) with the largest m [CGK17]. In Chapter 4, this definition will

be useful to characterise a unitary operator acting on a qutrit subspace.

2.3 Quantum error correction

2.3.1 Correcting classical information

In any given system, transferring information from one party to another can incur errors on

the message if the transfer medium, or communication channel, is subject to noise. The most

general error is a single bit-flip, which enacts the operation

0↔ 1.

One of the simplest noise channels, the binary symmetric channel, describes a scenario in

which a bit-flip occurs independently on each bit of a string with a probability p ∈ [0, 1] at

each time step. Hence, the expected time for a bit to be corrupted is approximately O(1/p)

time steps, with higher p leading to a greater likelihood of error in the transmission or storage

process. To protect the information against such noise, it can be encoded redundantly using an

error-detecting, or error-correcting code. For instance, one bit of information can be encoded
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in two copies under the mapping

0↔ 00 , 1↔ 11. (2.32)

The parity of a bit string x1x2...xn is defined as P =
⊕n

i=1 xi, where ⊕ is the XOR operation.

An even and odd parity respectively refers to the values P = 0 mod 2 and P = 1 mod 2.

Hence, 00 and 11 have even parity, but if an error occurs on one of the two copies, the pairs

detected by the receiver will be either 01 or 10, which have odd parity and are therefore

outside the codespace defined by Eq. 2.32.

An error is therefore detectable on this message. Beyond detection, an error-correction

mechanism is required to ensure the recovery of the message. This is achieved by increasing

the redundancy of the encoding. Error-correcting codes, such as the Hamming codes or Reed-

Solomon codes, are widely used to improve reliability in digital communication systems and

quantum information processing [Sha48; MS77; CS96].

An [n, k] error-correcting code C of length n over the binary field is a subset of Fn2 that

encodes k bits’ worth of logical information into n physical bits, where n > k in order to

introduce redundancy to protect the message from errors. Its codewords are elements ci ∈ C

where the block length n refers to the size of a bit string. The code C is the image of an

encoding map which maps a set of messages to the codewords of C. A code has two crucial

properties. First, the encoding rate refers to the redundancy parameter given by the minimum

number of bits necessary to convey the protected information, that is

R = k/n. (2.33)

This rate measures the efficiency of the code as its capacity to stock information. Secondly,

its (minimum) distance d is defined as the minimum Hamming distance between two distinct

codewords, where the Hamming distance between two binary strings c1, c2 of equal length is
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the number of locations in the strings where their binary entries differ:

d = min
c1,c2∈C
c1 ̸=c2

d(c1, c2), d(c1, c2) = |{i|c1,i ̸= c2,i}|. (2.34)

For example, the [3, 1] repetition code encodes a single logical bit using the map

0 −→ 000 , 1 −→ 111. (2.35)

When a received word is outside of the codespace {000, 111}, one or more errors must have

occurred. A decoder uses knowledge of the noise model, the structure of the code, and the

received word, to predict which codeword was sent. In this case, the decoder can use a

majority vote strategy, whereby the bit-string 010 (110) would be corrected to 000 (111).

Given a prior error rate p, this reduces the overall logical error rate pL to

pL = p3 + 3p2(1− p). (2.36)

For higher n, pL follows a binomial expression which is suppressed to zero as n → ∞ for p

below a threshold value.

A linear [n, k, d] code is typically defined as the row space of a generator matrix, allowing

any codeword to be expressed as a linear combination of the rows of G. The code can also be

defined by the kernel of a parity-check matrix H, which itself is the generator matrix for the

code C⊥ dual to C, which consists of all vectors in Fn2 orthogonal to the vectors in C. The

following relations ensue:

GHT = 0, rank G = k, rank H = n− k. (2.37)

This formalism can also be generalised to alphabets larger than F2, such as Fq, but we

exclusively consider binary codes in this thesis. Error-detection in a classical code is achieved

by evaluating one or more parity checks. Each parity check corresponds to the sum over F2 of
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the values of sets of physical bits. These checks are mathematically represented by the matrix

H in Eq. 2.37, in which each row corresponds to a parity check on a subset of the n bits. A

valid codeword satisfies the linear constraints imposed by these parity checks, i.e.

Hc⊤ = σ = 0, (2.38)

where σ is the syndrome vector. The syndrome indicates which parity checks are violated.

Indeed, a bitstring x lying outside the codespace satisfies

Hx⊤ = σ ̸= 0, (2.39)

which indicates that errors have corrupted the information. After detection, we must correct

the errors to restore the original message. This task can be formulated as solving a linear

system defined by Eq. 2.39. This problem, known as the decoding problem, is central to

error correction. While Gaussian elimination provides an exact solution for many cases,

practical decoding algorithms often aims to approximate optimal solutions efficiently. These

may incorporate heuristics or probabilistic techniques to handle complexities arising from

practical considerations [Gal63; MS77; FL97].

Figure 2.2: Tanner Graph of the 7-bit Hamming Code, where c and b respectively represent check
and bit nodes. An edge is drawn between bi and cj if Hj,i = 1 in Eq. 2.40.

Among the simplest classes of error-correcting codes are the Hamming codes [Ham50].

These are are linear block codes with parameters [n, k] = [2m−1, 2m−1−m], where m = n−k

is the number of parity-check constraints imposed on each codeword. The simplest case is the
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[7, 4] Hamming code, defined by the generator and parity check matrices:

G =


1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

 , H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

 . (2.40)

The Tanner graph is a graphical representation of a code consisting of a bipartite graph

connecting bit nodes to check nodes, representing the parity check constraints, as shown in

Fig. 2.2 [Tan81].

While classically one of the simplest ways to handle errors is through repetition, this

strategy cannot be applied on quantum information due to the no-cloning theorem, which

prohibits the exact duplication of an arbitrary unknown quantum state [NC10]. Hence, a

more complex formalism is necessary to address quantum errors, as we discuss below.

2.3.2 Correcting quantum information

Quantum information is subject to decoherence, a phenomenon that corrupts quantum states

and thereby undermines the reliability of quantum computation. To mitigate and control this

effect, several strategies have been developed including quantum error mitigation [Cai+23], dy-

namical decoupling [VKL99] and quantum error correction (QEC). In this thesis, we focus on

QEC, a method aimed at protecting logical quantum information by encoding it redundantly,

in a computational subspace of a larger physical Hilbert space. A quantum error-correcting

code involves the encoding of k logical qubits into a larger number of physical qubits n, and

is defined as an isometry between two Hilbert spaces:

Q : C2k → C2n .

A QEC code is characterised by its parameters Jn, k, dK, where the code distance d is the

minimum weight of an error configuration that can trigger a logical error, that is the smallest
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number of qubits that must be affected to cause a logical error. The theoretical feasibility of

QEC codes was established in seminal work by Shor and Steane [Sho95; Ste96b], and Gottes-

man’s mathematical framework for stabilizer codes which greatly simplified the understanding

and construction of quantum error-correcting codes [Got96].

2.3.3 Stabilizer codes

Stabilizer codes encompass a broad class of QEC codes and offer a structured framework

for designing and analysing quantum codes with desirable properties. Consider an Abelian

subgroup S ⊂ Pn of the n-qubit Pauli group Pn = {±1,±i1, X, Y, Z}⊗n, generated by a set

of elements g1, g2, ...gm ∈ Pn known as the stabilizer generators, and satisfying −1 /∈ S. A

stabilizer code is defined as the subspace of states in Q, where

Q = {|ψ⟩ ∈ C2n | s |ψ⟩ = |ψ⟩ ∀s ∈ S}, (2.41)

meaning that the states in the codespace Q are eigenstates of the elements s ∈ S with a +1

eigenvalue. A stabilizer code defined on n qubits with m stabilizer generators encodes

k = n−m (2.42)

logical qubits. The logical operators of a stabilizer code are elements of Pn that commute

with every stabilizer s ∈ S but that are not themselves in S, i.e. elements of the normaliser

N (S) = {P ∈ Pn | Ps = sP, ∀s ∈ S} (2.43)

which satisfy N (S) \ S. These operators act non-trivially on the codespace while preserving

its structure (i.e., they map codewords to other codewords). The distance of the code is

d = min
L∈N (S)\S

|L|, (2.44)
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where the weight | . | of an operator is the number of qubits on which it acts non-trivially.

The stabilizer generators of a quantum code are measured during information processing,

and by design the measurement outcome of a stabilizer s ∈ S on a code state |ψ⟩ must return

the outcome +1. Errors on the physical qubits are modelled as elements of Pn. An error

E ∈ Pn is detectable if it anticommutes with at least one s ∈ S such that

s(E |ψ⟩) = −E |ψ⟩ ,

in which case measuring s yields a −1 outcome, indicating the presence of the error. These

observed values form a syndrome, where the term is borrowed from classical coding theory

as defined in Sec. 2.3.1. The syndrome is then used to recover the encoded information by

identifying the most likely error pattern, using a decoder.

A notable category of stabilizer codes is the Calderbank-Shor-Steane (CSS) codes [CS96;

Ste96a]. A CSS code Q is defined as the direct sum of two classical linear codes CX and CZ

that work together to correct both phase-flip and bit-flip errors, i.e.

Q := CX + CZ . (2.45)

The stabilizers of a CSS code are products of Pauli-X and Pauli-Z operators. A key condition

for CSS codes is that the dual of CZ satisfies C⊥
Z ⊆ CX , which ensures commutativity of the

stabilizer generators and proper encoding of the logical qubits. Each of the classical codes is

defined by a parity check matrix, HX and HZ respectively. This orthogonality condition then

becomes

HXH
T
Z = 0. (2.46)

A CSS code using n physical qubits encodes

k = dim(CX)− dim(C⊥
Z )

= n− rank(HX)− rank(HZ)
(2.47)
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logical qubits, and protects information up to the code distance min(dX , dZ), where

dX := min{|LX | : LX ∈ CX \ C⊥
Z },

dZ := min{|LZ | : LZ ∈ CZ \ C⊥
X}.

(2.48)

One of the simplest CSS codes is the Steane code with parameters J7, 1, 3K [Ste96b]. The

Steane code is constructed by using two copies of the [7, 3, 4] Hamming code in Eq. 2.40,

where each copy respectively defines the codes CX and CZ . This code can be represented

using the graph in Fig. 2.4(1), where each stabilizer (face) represents a stabilizer generator

supported on four qubits of the code. The Steane code encodes one logical qubit, and can

correct up to ⌊(d− 1)/2⌋ = 1 bit-flip or phase-flip errors on any of the seven qubits.

In QEC, the syndrome information—whether an error occurred and its type—is extracted

without directly measuring the data qubits. This preserves the encoded logical state, en-

abling error correction without collapsing the quantum state. This syndrome extraction is

achieved by entangling the data qubits associated with a stabilizer generator to ancillary

qubits, through a carefully designed syndrome extraction circuit [Den+02]. While this thesis

does not explicitly utilise such circuits, it is implied that some of the codes and operations

discussed are implemented in this way.

2.3.3.1 Noise models

The time evolution of a closed quantum system is described by unitary quantum operations.

However, it is natural for quantum systems to interact with their environment, which leads

to correlations building up between the two, regardless of whether the principal system and

environment started in a product state or with initial correlations.

There exists a set of noise channels of relevance to quantum error correction, namely the

bit-flip, phase-flip and depolarising channels. We start with a description of the latter, since

we can obtain the remaining channels in its limits. The depolarising noise channel provides a

simple yet generic description of the system-environment interaction. Since it simplifies noise
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modelling, it is used as a benchmark for engineered quantum systems such as QEC codes.

This is due to the fact that it describes how likely a quantum state is to evolve toward the

maximally mixed state, and therefore directly relates to the decoherence process, i.e. how

the state degrades over time. More complex noise channels, such as amplitude and phase

damping, can then be considered as extensions or generalisations of the depolarising channel,

incorporating additional phenomena. Given a multi-qubit quantum state described by a

density operator ρ, the depolarising channel assumes that errors occur independently on each

qubit, meaning that each qubit interacts with a different environment, and acts according to

E(ρ) = (1− px − py − pz)ρ+ pxXρX + pyY ρY + pzZρZ. (2.49)

This expression simplifies further when the error rates for each Pauli operator are equal, i.e.

p = px = py = pz, yielding the uniform depolarising noise channel

E(ρ) = (1− p)ρ+
p

3
XρX +

p

3
Y ρY +

p

3
ZρZ. (2.50)

Additionally, for this and any noise channel, if each qubit experiences the same error prob-

abilities pi∈{x,y,z}, the errors are said to be identically distributed. The bit-flip channel is

found by setting the error probabilities in Eq. 2.49 to py = pz = 0 and p = px followed by

renormalisation, i.e.

Eflip(ρ) = (1− p)ρ+ pXρX, (2.51)

which describes the action of the bit-flip error. Similarly the phase-flip channel is derived by

setting px = py = 0, p = pz, and is related to the bit-flip channel through conjugation with

the Hadamard operator in Eq. 2.26.

These noise models provide an appropriate error modelling framework to test the proper-

ties of a quantum error-correcting code, but they do not capture the full picture. However,

it is known that correcting all weight ≤ t Pauli errors is sufficient to correct any arbitrary

weight-≤ t quantum error, as general noise processes can be expressed as linear combinations
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of Pauli errors [Got97; NC10]. In practice, executing a code involves running a quantum

circuit composed of quantum state preparation, single and multi-qubit operations, and mea-

surements. A more comprehensive noise model to evaluate code performance is one in which

errors occur randomly at each gate, including during measurement errors during the syndrome

extraction. This model reveals how entangling gates can induce correlated failure mechanisms,

causing errors to propagate in the circuit. This circuit-level noise model is commonly used as

a benchmark for QEC codes and decoding algorithms [Fow+12a]. When relaxed to consider

only Pauli errors, it is referred to as the code capacity error model, and phenomenological

model when accounting for additional measurement errors [WHP03; Den+02]. Both varia-

tions are valuable for studying the impact of error patterns on the code performance.

2.3.4 Fault-tolerance

The QEC formalism offers a framework to transmit quantum information reliably. However,

it is not sufficient to realise robust quantum computation for several reasons. First, quantum

information encoded in a collection of qubits is vulnerable to errors even in an idle state due

to environmental interactions. Additionally, QEC codes depend on single- and multi-qubit

operations for error detection, recovery, and logical gates, which are inherently imperfect

in practice. Another critical requirement of QEC is the preparation of fixed initial states

and reliable quantum state measurement, both of which are prone to errors from imperfect

protocols and faulty measurement apparatus. These challenges are taken into account within

the broader theory of fault-tolerant quantum computation [KL97; KLZ98b; Den+02].

In this framework, quantum information is encoded using a QEC code, and the error

correction procedure is applied frequently in order to prevent the accumulation of errors,

thereby maintaining a low probability of code failure. Achieving this requires designing gates,

state preparation protocols, and measurement circuits that minimize uncorrectable errors. A

cornerstone of the theory of fault-tolerance is the threshold theorem, which informs us that

arbitrarily long quantum computation is possible under realistic assumptions of the noise

model undergone by the quantum computer. This theorem can be formulated in various ways
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[AB97; KLZ98a; AGP05], and states that:

Theorem 2.1. A ideal quantum circuit consisting of N operations (including state prepara-

tion, unitary gates, measurements, and storage steps) can be simulated with a probability of

error less than ϵ using a noisy quantum circuit. The noisy circuit will require O(N logm(N/ϵ))

operations, where each operation introduces errors with probability p, provided that p is below

a fixed threshold value pth, and where m is a constant.

This theorem asserts that in order to simulate the ideal circuit with a low probability of error,

the number of operations in the noisy circuit must increase, and importantly that if the error

probability of quantum gates throughout a circuit remains below a critical threshold value

pth, errors can be corrected effectively, enabling successful and efficient quantum computation

with arbitrarily high fidelity. This highlights the role of QEC in achieving fault-tolerance.

This result also highlights the major need to reduce the physical error rates at the level

of quantum computing hardware, design efficient QEC codes, and accurate classical post-

processing algorithms for error correction to achieve fault tolerance. The value of pth depends

on the specific error correction or fault-tolerant method being used. Different QEC codes have

different thresholds for noise tolerance, based on how effectively they can detect and correct

errors. For instance, surface codes and colour codes are known to have high thresholds, as

discussed in Sec. 2.3.6.2, meaning they can tolerate higher error rates.

Fault-tolerant protocols are typically discussed as a family since, as circuit size increases

or the target logical error rate decreases, controlling error propagation requires a resource

overhead that must scale efficiently. The threshold theorem guarantees that for a fault-

tolerant family, this overhead grows polynomially with log (N/ϵ). This theorem has been

proven using various approaches including code concatenation [KLZ96; AGP05], statistical

mechanics models of topological codes (discussed in Sec. 2.3.5), and quantum Low-Density

Parity Check (qLDPC) codes with constant encoding rate [Got13].
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2.3.5 Topological quantum codes

A prominent approach to designing QEC codes leverages the properties of topological man-

ifolds, as first demonstrated by Kitaev in Ref [Kit01]. Topological quantum codes (TQCs)

represent families of codes that integrate geometric locality, a crucial feature for addressing

the locality constraints in various quantum computing architectures, using stabilizer operators

that act through local interactions between qubits arranged on a lattice, while information is

encoded in the system’s global degrees of freedom. Formally, a TQC is defined as a local and

translationally invariant stabilizer code. These characteristics can be described as follows.

Consider a set of qubits arranged in a D-dimensional array, with a stabilizer group S

generated by local and translationally invariant operators (excluding boundaries and defects).

In this setting, locality means that each stabilizer generator acts only on qubits that are

nearby in the lattice. More precisely, there exists a constant w, independent of system size,

such that

|s|< w ∀s ∈ S, (2.52)

where |s| denotes the size of the smallest ball that contains all the qubits acted on by s,

generally in terms of graph connectivity, or in this case specifically the geometric support of

the operator s on the lattice. This notion of locality is used to define a family of stabilizer

codes with members of arbitrary large distance. This property plays a central role in the

construction and scalability of topological quantum codes. Moreover, the condition that

Z(S) ∝ S ensures that undetectable errors do not affect the encoded states, and Z(S) is the

centraliser of S [Bom13]. Here we review two examples of TQCs which will be relevant to our

work.

2.3.5.1 The surface code

The toric code is a CSS stabilizer code originally defined on a two-dimensional lattice with

periodic boundary conditions, as shown in Fig. 2.3(1) [Kit03a; Den+02]. Each edge e of the

lattice hosts a single physical qubit. The stabilizer group of the code is generated by two type
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(1) (2)

Figure 2.3: (1) The distance-7 unrotated surface code with qubits on the edges. (a) An X-type (star)
parity check operator. (b) A Z-type (face) parity check operator. (c,d,e) Single-qubit X,
Y and Z errors and their syndromes. (f) A vertical X logical operator. (g) A horizontal
Z logical operator. (2) The rotated surface code. Both codes in (1) and (2) become toric
when considering periodic boundary conditions.

of operators: vertex operators Av and face operators Bf . The vertex operator is defined at

each site v of the lattice, acting on the qubits located on the incident edges ∂v, and the face

operator is defined for each face f such that the set ∂f of edges is adjacent to the face f , i.e.

Av =
∏
e∈∂v

Xe, Bf =
∏
e∈∂f

Ze. (2.53)

The toric code encodes two logical qubits, one of which is defined by the logical operators X

and Z in Fig. 2.3(1)(f) and Fig. 2.3(1)(g). We review this code in detail in Sec. 2.4.4.

The planar variant of the toric code, knows as the surface code, is defined on an open

lattice with boundaries as shown in Fig. 2.3(1), when ignoring periodicity. In this code, the

product of Z stabilizer operators gives rise to smooth boundaries at the top and bottom of

the lattice, while the product of the X stabilizers creates rough left and right boundaries on

the lattice. Since these boundary conditions emerge from essentially slicing the torus, only

one logical qubit is encoded, with the logical Z and X operators respectively generated by
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(1) (2)

Figure 2.4: (1) The distance-3 colour code on a hexagonal lattice. (2) The distance-8 square-
octagonal colour code with square boundaries. (a) An octagonal stabilizer generator.
(b) A square stabilizer generator. (c) a single-qubit X-error. (d) A two-qubit X-error.
(e) A horizontal logical operator.

strings of Pauli operators terminating at the rough boundaries and smooth boundaries, as

shown in Fig. 2.3(1) [BK98; Den+02]. A Pauli error on a single qubit is detected by adjacent

stabilizers as indicated in Fig. 2.3. In this thesis we also encounter the rotated surface code, a

variant of the surface code where the lattice is rotated by π/4, as depicted in Fig. 2.3(2). The

rotated surface code has parameters [[n, 1,
√
n]], or k = 2 when toric boundary condition are

considered [Wen03; NO09; Bev+19]. The qubits of the code are positioned on the vertices, and

the stabilizers correspond to X and Z face operators, forming the characteristic chequerboard

pattern visible in the figure.

2.3.5.2 The colour code

The colour code is a CSS topological quantum code introduced in Ref. [BM06]. In its two-

dimensional form, the physical qubits v occupy the vertices of a three-colourable lattice, with

stabilizers associated with the faces on the lattice. The colour code was first introduced on

a hexagonal lattice, as illustrated in Fig. 2.4(1) on a 7-qubit lattice. Note that this example

also corresponds to the Steane code, which is the smallest instance in the family of quantum
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Hamming codes [Ste96a]. In fact, the HX and HZ parity check matrices of the 7-qubit colour

code are both exactly that of the [7, 4, 3] Hamming code defined in Eq. 2.40. We also show

the colour code defined on the regular square-octagonal lattice with square boundaries in

Fig. 2.4(2). Each face f on the colour code supports two stabilizer operators

SXf =
∏
v∈∂f

Xv , SZf =
∏
v∈∂f

Zv (2.54)

where ∂f denotes the qubits on the boundaries of face f . A set of colour labels red, green

and blue in the set C = {r,g,b} can be chosen to label the objects on this code. For

instance, each face is assigned a label u ∈ C such that no two faces of same colour touch.

The square-octagonal lattice in Fig. 2.4(2) features boundaries and corners highlighted with

distinct colours. A colour label is attributed to a boundary such that the qubits lying on

the boundary of colour u ∈ C do not support a face of colour u, meaning that there is no

stabilizer operator of colour u that acts on the qubits of this boundary. A region of the lattice

containing a single qubit, that is part of stabilizer operators of colour u only, is referred to

as a corner of colour u. These two definitions imply that we find a u-coloured corner at a

vertex (i.e qubit) where two boundaries of colours v and w overlap, where u ̸= v ̸= w ̸= u,

as illustrated by the four red-coloured corner vertices, and blue (resp. green) vertical (resp.

horizontal) boundaries of the square-octagonal (4.8.8) colour code shown in Fig. 2.4(2). We

note that a corner of colour u is also a member of its two adjacent boundaries, which must

necessarily have colours v and w. The colour code in Fig. 2.4 encodes two logical qubits with

an even code distance d, using n = 2(d − 1)2 + 2 physical qubits. We define representatives

of the logical operators of the code as follows:

Xu =
∏
v∈δu

Xv, Zu =
∏
v∈δu

Zv (2.55)

where the product is taken over qubits lying on a boundary δu of colour u ∈ {g,b}, and

obey the commutation relation XuZv = −ZvXu if and only if u ̸= v. Otherwise, the logical
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operators commute. These represent strings terminating at opposite boundaries of the same

colour, of which we show an example in Fig. 2.4(e). Pauli errors on the qubits of the code

give rise to a syndrome, also referred to as a syndrome defect, as shown in Fig. 2.4(c) for a

bit-flip error which is detected by the three adjacent Z stabilizers. A defect is attributed the

colour from C of the violated stabilizer it lies on. Unlike the surface code, a single error in

the colour code generates three syndrome defects instead of two. This reflects the richness of

the colour code Tanner graph, resulting in more sophisticated decoding requirements.

2.3.5.3 Relationship between toric and colour codes

A special relationship exists between the toric and colour code. Indeed, Yoshida and Bombin

established that 2D stabilizer Hamiltonians with local interactions that obey certain symme-

tries—particularly translational symmetry—are equivalent to the toric code [Yos11; BDP12].

This equivalence implies that the ground states of the Hamiltonians reside in the same quan-

tum phase. The latter is defined as a state of matter that arises from quantum mechanical

effects, typically at near or absolute-zero temperature, and cannot be captured by classi-

cal order parameters [Sac23]. Typically, quantum phases exhibit nonlocal correlations, often

characterised by entanglement, where the state of one part of the system depends on the state

of another, regardless of distance.

It was shown in Ref. [CGW10] that two gapped ground states belong to the same quantum

phase if and only if they are related by a local unitary evolution. From this follows the

possibility to map one to the other using local unitary operations, up to the addition and

removal of ancillary qubits. This equivalence was specifically derived in Ref. [KYP15] between

the toric code and colour code, which we briefly describe in 2D here.

Consider the colour code defined on a lattice Lc.c using the set of stabilizer generators Cc.c.,

without boundaries, as shown in Fig 2.5(a). There exists a local Clifford unitary operator U

that decouples the colour code into two lattices Lc1 and Lc2 where c1, c2 ∈ {r,g,b} such that

U [Cc.c.(Lc.c.)]U † = Ct.c.(Lc1)⊗ Ct.c.(Lc2) (2.56)
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Figure 2.5: Schematic of the mapping from the colour code in (a) to two copies of the toric code in
(c), where the coupling between the lattices in shown in (b).

where we can choose the product operator

U =
⊗
f∈F

Uf , (2.57)

where F is the set of all faces in Lc.c of colour c3 ∈ {r,g,b}, such that c1 ̸= c2 ̸= c3, and

Uf is a Clifford unitary acting on the qubits in F . Performing this tensor product of local

unitaries can be interpreted as shrinking the faces of colour c3 on Lc.c., for c3 = r w.l.o.g.,

that transforms the stabilizer generators of Cc.c. such that every Z or X operator is mapped

onto a stabilizer supported either on a face of colour c1 or c2, specifically g or b in Fig. 2.5(b).

Two lattices emerge from this local deformation of the colour code, Lc1 and Lc2 , that define

two disentangled toric codes as depicted in Fig. 2.5(c). The number of logical qubits encoded

in the colour code on a torus is the difference between the number of physical qubits and the

number of linearly-independent stabilizer constraints. This is exactly k = 4, consistent with

the topology and the tri-valent structure of the lattice [CT16]. A local unitary as described

above maps the four qubits of each r stabilizer onto two qubits of the toric codes defined on

Lc1 and Lc2 respectively. For instance, On an L×L torus, the 4.8.8 colour code contains 8L2

qubits and 8L2 − 4 linearly independent stabilizers, resulting in the parameters [[8L2, 4, L]].

The lattice includes 2L2 red faces supported on the 8L2 qubits, with both X- and Z-type check

defined on each face. The local unitary mapping the four qubits at the vertices of a red face

onto two qubits, respectively belonging to Lc1 and Lc2 , creating two toric code layers, each
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using 2L2 physical qubits. This means that the logical qubits from the colour code split into

two pairs of logical qubits respectively defined on each [[2L2, 2, L]] toric code. This mapping

between the stabilizer groups is rigorously described in Ref. [KYP15], and generalises to other

geometries, the higher-dimensional toric and colour codes, with and without boundaries. We

exploit this structural connection in the context of decoding in Chapter 5.

2.3.6 Decoding quantum codes

Quantum error-correcting codes protect information by encoding it into logical degrees of

freedom resilient to noise. For this purpose, they rely on a recovery process that involves

solving a decoding problem.

2.3.6.1 The quantum decoding problem

During computation, noise generates errors, which are identified by measuring the stabilizer

generators of the code. This produces syndrome data represented by a binary vector σ ∈ Fm2 ,

where each bit corresponds to the eigenvalue o ∈ {−1,+1} of a stabilizer measurement (+1

is mapped to bit 0 and −1 to bit 1). Consider an error E on the n physical qubits of the

code, which triggers the syndrome σ(E). Analogously to the classical case (cf. Sec. 2.3.1), a

decoder is a classical algorithm that takes as input σ(E), and prior knowledge of the noise

model, to determine which physical errors occurred. The decoder outputs a recovery operator

C ∈ {1, X, Y, Z}⊗n such that the syndrome of the correction satisfies σ(C) = σ(E). Applying

this operator restores the state to the code space, and if successful, ensures CE |ψ⟩ = |ψ⟩,

thereby recovering the original quantum state. If the error and correction operators differ by

an element of the stabilizer group, i.e. C ′ = sE for s ∈ S, then

C ′(E |ψ⟩) = s |ψ⟩ = |ψ⟩ (2.58)

for a code state |ψ⟩. This property follows from σ(E) = σ(C) = σ(C ′), and defines an

equivalence of Pauli error (and correction) operators. Hence, the decoder only needs to
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output a correction which is in the same equivalence class as the error E affecting the code

state.

The decoding problem can be optimally solved using a Maximum likelihood Decoder

(MLD). In classical coding theory, the MLD finds the codeword that maximises the likelihood

of the observed outcome, given an underlying noise model. MLD works similarly in QEC, in

that it attempts to find the encoded code state that maximises the probability of successful

recovery, conditioned on the syndrome, and under a given noise model (usually a stochastic

Pauli noise channel) [Den+02; BSV14]. An exact implementation of MLD comes with high

computational complexity, due to the need to evaluate the sum of probabilities of all error

configurations, for each logical equivalence class. Moreover, this computation scales exponen-

tially in the number of logical qubits, and must be repeated for each syndrome. Hence, this

problem is generally approximated to balance accuracy and speed. Approximate polynomial-

time algorithms, including renormalisation group decoders [DP10] and neural network-based

decoders [TM17; CR18; Bai+19; Bau+23b], are commonly used. Moreover, practical de-

coders must be capable of handling more complex noise models, including measurement and

gate errors, to maintaining the advantage of QEC codes in a fault-tolerant setting.

Decoders must also be efficient in real-time decoding during quantum computation, where

syndrome data accumulates and needs decoding at each round of error-correction. Efficient

and practical decoding strategies have been developed by tailoring decoding methods to spe-

cific types of codes, such as the minimum-weight perfect matching (MWPM) decoder [Den+02]

for the surface code, and approximations like the Union-Find decoder [DN21]. Rather than

finding the most probable error configuration, these aim to minimise the total sum of er-

ror probabilities of the corrections needed to match the syndrome. For more general QEC

codes, belief-propagation (with ordered statistics decoding) is used—a probabilistic iterative

algorithm that estimates marginal probabilities of different error configurations based on the

syndrome data [Rof+20; PK21].

At sufficiently low error rates and with an appropriate error model, the probability of a

decoder finding a successful correction rapidly approaches 1 as the code distance increases.
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(a) (b) (c)

Figure 2.6: A schematic of the minimum-weight perfect matching decoder. (a) The MWPM decoder
sees a graph where nodes are −1 syndrome measurement outcome locations (b) A simple
implementation of the MWPM decoder builds a complete graph weighted by length of
the (weighted) shortest path between two nodes on the graph. The purple edges are
matched to a virtual node when the code has open boundaries. (c) The result after
finding the minimum-weight subset of edges is shown in red, and the remaining edges
are shaded.

The threshold and sub-threshold scaling of the success rate both depend on the noise model

incurred. MLD can be mapped onto sampling from the partition function of a disordered

classical statistical-mechanics model (e.g. percolation theory or random-bond Ising models),

where the behaviour of errors on the code resembles that of spin configurations leading to frus-

trated terms in a classical Hamiltonian [Den+02]. The decoder thus seeks to find the ground

state of a system with noise or disorder, and a phase transition occurs at the threshold (cf.

Theorem 1 in Sec. 2.3.4). Below this error rate, the system is “ordered”, and error-correction

succeeds with high probability. Above the threshold, the system becomes disordered, in-

creasing the likelihood of logical errors. Increasing code distance (akin to increasing system

size) enhances error suppression, much like how an ordered phase stabilises below the critical

temperature in a thermodynamic system [CF21].

2.3.6.2 Minimum-weight perfect matching

The minimum-weight perfect matching (MWPM) decoder is one of the most well-studied

decoding algorithms, and the most successful decoder implemented on the surface code
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[Den+02]. It employs a combinatorial optimisation algorithm to find the most likely set

of errors given some syndrome data. A perfect matching in a graph G = (V,E) is a subset

M ⊆ E where every vertex v ∈ V is incident to exactly one edge in M . In other words, every

vertex is paired with exactly one other vertex, and no vertex is left unmatched. A graph that

has a perfect matching must have an even number of vertices, as each edge in the matching

covers exactly two vertices. The Tanner graph of the surface code satisfies this condition,

and in general, it is this fundamental structure—namely, a parity conservation law in the

syndromes—that makes this decoding problem suitable for matching-based decoding [Bro22].

Consider an error E supported on |E| qubits on the surface code, and assumed to be Pauli,

which gives rise to the syndrome σ upon measurement. The MWPM decoder is designed to

find the lowest-weight error configuration that generates σ, and returns a correction operator

based on this identification. The measured syndrome discloses information on the boundary

of the error strings, as shown in Fig 2.6(a). Assuming errors are independently and identically

distributed, the probability of an error string E occurring is determined by the probabilities

of individual errors in the operator, i.e.

p(E) = (1− p)n−|E|p|E| (2.59)

= (1− p)n
(

p

1− p

)|E|
(2.60)

where p is the underlying physical error rate, assumed constant for all qubits, and for all error

types. The most probable error is one that maximises the likelihood p(E), and equivalently

minimises |E|. Consider a fully connected graph with vertices given by the locations of the

syndromes, as shown in Fig. .2.6(b). Each edge is assigned a weight given by the Manhattan

distance between the vertices it connects. Note that when the lattice has open boundaries,

matching a syndrome to the boundary is represented by an edge connecting the syndrome

to a virtual node located at the boundary, as indicated in Fig. 2.6(c). The weight of the

error E can be expressed as the sum of the weights of edges along the path connecting the
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corresponding syndromes. We can re-express Eq. 2.60 as

p(E) = (1− p)n
∏

e∈edges(E)

(
p

1− p

)|e|
. (2.61)

A solution is obtained by maximising any function proportional to p(E). Indeed, since max-

imising p(E) is equivalent to maximising log p(E), and the logarithm is a monotonic function,

we can instead minimise the negative log-likelihood, i.e. given by

log p(E) ∝ −
∑

e∈edges(E)

|e| log

(
1− p
p

)
(2.62)

which translates into minimising the total path weight. Thus, maximising p(E) corresponds

to finding a set of edges that connects the syndromes in pairs with minimal weight, i.e. a

minimum-weight perfect matching. This problem was first introduced by Edmonds in 1965

then solved by the Blossom algorithm [Edm65; Kol09], with a worst-case runtime of O(n4).

For the surface code under bit-flip (or phase-flip) noise, MWPM achieves the high threshold

of 10.3% [Wan+09], just below the estimated ∼ 10.9% from the phase transition of the spin

model associated with the toric code and its decoder threshold [MC02; HPP01]. The colour

code is also known to admit comparatively high thresholds [KBM09; Kat+10; SB22; GJ23].

State-of-the-art implementations of MWPM achieve an expected runtime that is linear

in the number of graph nodes below threshold and under stochastic noise [HG23]. In gen-

eral, MWPM tolerates a large rate of errors, particularly when errors are identically and

independently distributed. It also performs well in the presence of measurement errors and

circuit-level noise, with thresholds around 3% and ∼ 1% respectively for the surface code

[WHP03; Wan+09; Fow+12a]. It is important to note that the MWPM decoder operates

by separately matching the syndromes from X and Z stabilizer measurements on decou-

pled matching graphs, treating the errors as uncorrelated. Additional strategies must then

be adopted to address Y -type correlations which simultaneously affect X and Z stabilizers

(since Y = iXZ) as shown in Fig. 2.3(1)-(d). These include two-stage decoding, where the X
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graph is decoded first, and the solution is used to re-weigh the edges of the graph before de-

coding the Z syndrome graph [Wan+09], or belief-matching which employs the BP algorithm

to weigh the edges before calling MWPM [CA18; Hig+23]. The MWPM decoder has been

applied to the colour code, surface codes on hyperbolic geometry, fracton codes and more

[DT14; Bre+17; BW20]. It has also been conjectured that MWPM could be generalised to

decode arbitrary topological and qLDPC codes[BW20; Bro22].

2.3.7 Fault-tolerant logic and code deformations

2.3.7.1 Fault-tolerant gates

In Sec. 2.2.2 we reviewed the universal quantum computational model, then introduced QEC

codes as a means to achieve fault-tolerant computation. Logical gates act on logical qubits to

process quantum information. To ensure fault-tolerance beyond the state encoding, physical

errors must propagate throughout the computation in a controlled and harmless fashion. In

principle, fault-tolerance requires that a logical gate U be implemented by a constant-depth

quantum circuit to prevent excessive error spread throughout the system [Got13]. Addition-

ally, geometric locality in the circuit simplifies its physical implementation and control of the

error propagation [PY15].

Given two quantum codes C1 and C2, respectively defined by the stabilizer groups S1 and

S2, using the same number of qubits n and encoding the same number of logical qubits k, the

set of Clifford operators that transform these codes such that US1U † = S2 defines operations

on the code specified by the description of U . For instance, when C1 = C2, and U = u⊗n is

a tensor product of local single-qubit unitaries, U is referred to as a transversal operation on

the code [Sho96]. Transversal operations are the simplest fault-tolerant operations, as local

errors on a physical qubit do not propagate to other qubits, making them significant in the

context of error correction. However, there are two important caveats: transversal operations

are not guaranteed to preserve the codespace or implement a valid logical operation, and

the Eastin-Knill theorem [EK09] shows that no quantum code can have both transversal and
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universal gate sets.

A promising technique for achieving universal fault-tolerant quantum computation is

magic state distillation (MSD) [BK05]. This method leverages resource states and stabi-

lizer operations to enable the execution of non-Clifford gates, which are crucial for universal

quantum computation. The input states, known as magic states, can be produced via MSD

and subsequently injected (i.e. teleported) into the quantum code for processing.

However, the production of these resource states and Clifford operations incurs significant

costs. MSD typically involves a trade-off between fidelity and resource consumption, as higher-

quality magic states require greater numbers of noisy initial states and distillation rounds.

Each round amplifies the fidelity of the magic states at the expense of increased operational

overhead. Furthermore, these processes are highly sensitive to errors, as imperfections in the

input magic states or the operations can propagate and degrade the overall performance of the

protocol. The cost is exacerbated by the non-zero failure rates of the Clifford operations used

in the distillation process, particularly due to two-qubit gate errors. Efficient MSD protocols

and alternative techniques are being developed to mitigate these costs [CC19; WHY24; GSJ24;

Rod+24].

2.3.7.2 Code deformations

Code deformation is an alternative method for operating on a quantum code fault-tolerantly.

This method consists of a sequence of operations that modifies a quantum code by changing

some or all of the stabilizer generators of its stabilizer group. This can be used to initialise,

transform and measure the logical qubits of the code, and typically proceeds by incremental

changes to the codespace [BM09b; Vui+19].

Here, we focus on code deformations via unitary transformations, under which the stabi-

lizer group S1 defining a code C1 changes as follows

US1U † = S2, (2.63)
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where generally only a small subset of generators of S1 are acted on non-trivially. If a unitary

U transforms a code such that C1 = C2, the logical operators transformed by U reveal the

unitary transformation applied to the encoded logical qubits, up to a phase. This evolution

is given by:

UXiU
† ∼S

∏
j

X
aij
j Z

bij
j (2.64)

UZiU
† ∼S

∏
j

X
cij
j Z

dij
j (2.65)

where aij , bij , cij , dij ∈ Z2 and ∼S indicates equivalence up to a stabilizer s ∈ S. Applying a

code deformation involves a sequence of unitaries U = Ul...U1 which map the code onto itself.

Such a sequence can give rise to logical Clifford gates acting on the encoded qubits. More

generally, since a code can always be expanded by adding ancillary initialised qubits, code

deformation extends to cases where the initial and final number of qubits differ. The number

of encoded qubits can also vary between the original and transformed codes, in which case,

the condition in Eq. 2.63 cannot be enforced, as it corresponds to deformations that change

the topology of the code.

Let C1 encode k qubits, and C2 encode k + 1 qubits. It follows from Eq. 2.47 that |S2|=

|S1|−1. The Clifford operators U which transform encoded states to encoded states satisfy

S2 ⊊ US1U †. Upon transformation, US1U † is a subset of the normaliser of S2, generated by

{Si}n−ki=1 ∪ {L}

where L ∈ N (S2) \ S2 is a logical Pauli operator initialised with eigenvalue +1 after U is

applied, meaning that the code deformation introduces a logical degree of freedom initialised

in a specific state. In Chapter 3, we make use of several logical qubits introduced in this

way. Additionally, degrees of freedom can be removed via code deformation by considering

the reverse scenario, where C1 encodes k qubits and C2 encodes k − 1 qubits. In this case,

a logical Pauli operator of C1 is mapped onto a stabilizer s ∈ S2 by the action of U , and is
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effectively measured, which reduces the number of logical qubits in C1 by one. The degrees

of freedom of this qubit map to the syndrome measurement outcomes of a stabilizer s ∈ S2.

Code deformations on the surface code have been extensively studied, first introduced in

Ref. [Den+02] as a means to enlarge the code, and extended to apply fault-tolerant logic

on the code. These deformations modify the stabilizer group that defines the surface code

in a way that reshapes its lattice geometry. Indeed, given a surface code defined on a fixed

underlying lattice, code deformations can alter the boundaries of the code, introduce non-

trivial cycles by puncturing the lattice, and add defect lines that drastically reconfigure the

stabilizer generators [BM09b]. Code deformations can also move these defects on the lattice to

apply operations on the codespace fault-tolerantly [Bro+17], which we explore in Chapter 3.

Undesired measurement outcomes can be corrected by direct application of a suitable

unitary operator, or by applying many rounds of QEC to infer and correct the errors that

occurred when measuring the logical qubits. Therefore, in practice, code deformations can be

interleaved with QEC, provided the error-correction procedure succeeds with high probability,

as is the case with the surface code.

2.4 Topological phases and quantum computing

Topology is pervasive in the description of certain quantum states. As we briefly touched upon

in Sec. 2.3.5, a topological phase of matter (TPM) is an umbrella term encompassing many-

body quantum states that fundamentally differ from classical matter. Indeed, these quantum

states are not described by the Landau theory of phase transitions, i.e. by spontaneous

symmetry breaking [Lan+37], but rather by topological invariants. This means that they

are not simply described by local order parameters, such as magnetisation, but rather global

characteristics [Tho+82]. For example, consider a collection of bosons or fermions confined to

a (2 + 1)-dimensional manifold. At zero-temperature, this system is in a (2 + 1)-dimensional

topological phase of matter, if it is described by a (2+1)-dimensional unitary spin topological

quantum field theory (TQFT) [Wit88; Pac12]. In the following, we will consider states which
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behave according to the laws of TQFTs in the low energy limit, and review how these systems

provide a natural way to encode, manipulate, and transmit quantum information.

2.4.1 Topological order

Topological order (TO) refers to a type of quantum order in many-body systems that cannot

be characterised by local order parameters or spontaneous symmetry breaking. A system is

said to exhibit topological order when it possesses a degenerate ground state manifold that

is robust against local perturbations and when its low-energy excitations obey non-trivial

braiding statistics. These features typically emerge in systems with a finite energy gap ∆ sep-

arating the ground state from excited states. That is, there exists a non-zero minimum energy

required to excite the system, even in the thermodynamic limit. This energy gap provides

topological protection, meaning that local perturbations to the system do not lift the ground-

state degeneracy nor cause transitions between the ground and excited states. Physically, this

implies that certain global properties of the system—such as ground state degeneracy depend-

ing on the topology of the underlying manifold—remain invariant under smooth, continuous

deformations. This is analogous to how continuous deformations preserve the topological

properties of a surface. For example, in the case of topological insulators, variations in pres-

sure or electric fields leave the topological properties of the state unchanged [HK10]. In

practice, the protection becomes more effective as system size increases, often scaling such

that the energy splitting between degenerate ground states decays exponentially with system

size L, i.e. δE ∝ exp−L/ξ where ξ is a length characterising the spatial decay of correlations

in the system. The size L is the characteristic length scale of the system, such as the lattice

constant, or the length of a topological nanowire [LSD10]. Importantly, this is not the bulk

energy gap ∆, but rather the finite-size splitting between the ground states.

Another defining feature of TO is the presence of emergent localised quasi-particles known

as anyons [Kit06]. In classical mechanics, exchanging two identical particles does not alter

the state of the system. However, in quantum mechanics, particle exchanges lead to far richer

behaviour. In three-dimensional quantum systems described by a wavefunction |ψ⟩, such an



CHAPTER 2. PRELIMINARIES 42

exchange results in a sign change, i.e.

U |ψ⟩ = eiθ |ψ⟩ , (2.66)

and θ = 0 or θ = π correspond to the exchange statistics of bosons and fermions, respectively.

In contrast, anyons emerge in topologically ordered phases and can exhibit any exchange

statistics. This generalisation allows for a continuous spectrum of exchange behaviours beyond

the binary classification of bosons and fermions, and even extends to unitary matrices instead

of simple phases in Eq. 2.66. Importantly, while TO in a material implies it is a TPM,

the converse is not always true. TO specifically relates to the existence of anyons within

the system. Moreover, two gapped states of matter belong to the same topological phase if

and only if their Hamiltonians can be continuously deformed into each other without closing

the excitation gap. This invariance under gap-preserving transformations is fundamental to

the classification of topological phases. The classification and study of topologically ordered

systems remain active areas of research due to the complexity and richness of their structures

[Yos11; Wen13; ABK21].

2.4.2 Algebraic properties of anyons

Anyonic models are mathematical structures that describe the quasiparticle excitations in

topologically ordered systems. Formally, they are described by a unitary braided fusion

category C, whose simple objects a, b, c... ∈ C label the distinct anyon types, each associated

with a topological charge [Kit06]. The set includes a unique trivial (or vacuum) object 1 ∈ C

which acts as the identity under fusion. Anyons obey rules given by a unitary braided tensor

category [Wan10]. Specifically, the charges of anyons obey an associative fusion algebra,

described by the fusion rule:

a× b =
∑
c∈C

N c
abc (2.67)
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where the N c
ab ∈ Z≥0 are the fusion multiplicities. These integers indicate the number of

different ways anyons of type a and b can combine to form an anyon of type c. The fusion

process must be finite ensuring that for any fixed a and b, the sum
∑

cN
c
ab is a finite integer.

Furthermore, the associativity of the fusion algebra imposes the condition

∑
e

N e
abN

d
ec =

∑
f

Nd
afN

f
bc. (2.68)

This associativity ensures the consistency of combining anyons in different orders. To each

fusion product, we associate an N c
ab-dimensional vector space V c

ab and, in the time-reversed

picture, a splitting space V ab
c defining its dual. The vacuum charge 1 fuses trivially, meaning

N c
a1 = N c

1a = δac. For every a ∈ C, there exists a conjugate particle ā ∈ C such that a and ā

fuse trivially, i.e. a+ ā = 1. The quantum dimension di of an anyon i ∈ C is the dimension of

the Hilbert space associated with its fusion, and need not be an integer, which is a hallmark

of non-Abelian anyons, characterising a fusion space that grows non-trivially with the number

of anyons. In fact, anyons are classified as Abelian if their fusion space is one-dimensional

(di = 1), meaning the fusion outcome is deterministic, and independent of prior operations.

In contrast, non-Abelian anyons have fusion outcomes that are not uniquely determined, as

their fusion can result in a superposition of different anyon species. This multiplicity (di > 1)

reflects intrinsic degrees of freedom associated with the possible fusion outcomes. Moreover,

the relation

dadb =
∑
c

N c
abdc (2.69)

ensures that the quantum dimensions form a one-dimensional representation of the fusion

algebra [Wan10]. The total quantum dimension of an anyon model is given by D =
√∑

i d
2
i

where i ∈ C, and governs, for instance, the topological entanglement entropy and the scaling

of the Hilbert space dimension in the thermodynamic limit. An important result is that

the dimension Mn of the Hilbert space Hn, obtained by the fusion of n anyons of species i,

corresponds to the number of possible fusion outcomes. In the limit of large n, this scales
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exponentially as Mn = dim(Hn) ∼ dni . This scaling is an approximation. The exact dimension

depends on the detailed structure of the fusion algebra and interactions between the anyons.

Consider a fixed collection of n anyons that undergo successive fusions, ultimately resulting

in either a single final state or multiple states spanning a higher-dimensional Hilbert space

Hn. If the same final state can be achieved through a different sequence of fusions, then these

two fusion paths are related by a change of basis in Hn known as an F move, as illustrated

in Fig. 2.7(a) [Pac12]. This relationship can be expressed as:

|(a× b) −→ d; (d× c) −→ f⟩ =
∑
e

(F fabc)
d
e |(b× c) −→ e; (a× e) −→ f⟩ . (2.70)

Anyon models are also characterised by their exchange statistics, which determine a set

of braiding rules. For a fixed fusion channel |a, b −→ c⟩, the exchange of anyons a and b is

described by the evolution Rcab, known as an R-move, or a half-twist of anyon c as shown in

Fig. 2.7(b). This exchange introduces a global phase factor

Rab |a× b −→ c⟩ = eiθab |a× b −→ c⟩ . (2.71)

A matrix R can be constructed with diagonal entries given by the phases obtained from all

possible fusion outcomes of a × b. If the result of a × b is a superposition of multiple fusion

outcomes, then the exchange is affected by F -moves and is described by a braiding operator.

This is a unitary operator B corresponding to a representation of the braid group Bn on n

strands representing the anyons in (1+1)D. A braid interlaces these strands, as shown in

Fig. 2.8, and can be expressed as a product of elements in the generating set of BN . Since

this braiding is dependent on F moves, the B matrix is generally non-diagonal. For example,

consider the fusion of anyons a, b and c as depicted in Fig. 2.7(a) with f as the total fusion

outcome. The braiding of the anyons a and b is given

Bab = F f
−1

acb RabF
f
acb (2.72)
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Figure 2.7: (a) An F move is a unitary operator which transforms between two fusion basis states
representing different orders of fusions of anyons a, b and c to obtain outcome f , where
time flows downwards and d and e are intermediate anyons. The index e on the right
hand side runs over all possible outcomes of the fusion b× c. (b) An R move represents
the clockwise exchange of anyons a and b leading to fusion outcome c. This exchange is
equivalent to a half-twist of anyon c, and generates an overall phase Rc

ab.

where the F -matrices depend on the intermediary fusion states and final fusion outcome. This

equation can be interpreted as a change of basis in which a and b are fused first, followed by

an R-move, and finally a return to the original basis. The braiding operation alters the phase

or mixes fusion outcomes in a manner that preserves the topological properties of the anyons.

These relations are summarised by the pentagon and hexagon equations:

∑
n

(F kefc)
d
a(F

k
agh)cb =

∑
i

(F dfgh)ci (F
k
eih)db(F

b
efg)

a
i (2.73)

∑
b

(F hfge)
c
bR

h
eb(F

h
efg)

b
a = Rceg(F

h
feg)

c
aR

a
ef (2.74)

named after the geometric configuration they inherit from their representation as commuta-

tive diagrams (cf. Figs. 4.6&4.7 in Ref. [Pac12]). These equations become trivial for Abelian

anyons, since the fusion space is one-dimensional, and exchange operators are simply scalars.

The physics of these systems is described using a category-theoretic formalism in the mathe-

matical literature [Wan10; Bar+19].

2.4.2.1 The toric code anyon model

The toric code is a quantum double of Z2, characterised by Abelian anyons comprising a

vacuum charge 1, excitations e and m, and their composite ϵ. These anyons obey specific
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fusion rules: each anyon fuses with another of the same type to yield the vacuum, and

e×m = ϵ. The self and mutual statistics of these anyons are captured by R-matrices, which

describe the evolution of the system under the exchange of anyons:

Ree = Rmm = 1,

Rϵϵ = −1,

RemRme = ReϵRϵe = −1.

(2.75)

The braiding relations in Eq. 2.75 indicate that e and m are both bosons, while ϵ is a fermion.

The anyons e and m are mutual semions, meaning that braiding an e around an m introduces

a phase of −1. Similarly, e and ϵ, as well as m and ϵ, exhibit semionic behaviour. On the toric

code, defined on a lattice of qubits, these anyons manifest at the ends of operator strings:

e anyons at the ends of Pauli-Z operators, and m anyons at the ends of strings of Pauli-X

operators.

2.4.2.2 The Ising anyon model

Ising anyons belong to the non-Abelian Ising model, characterised by the anyon charges 1, σ

and ψ [Kit06], with the following fusion rules:

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ, (2.76)

where ψ is a fermion. Two Ising anyons σ can fuse to either the vacuum charge 1 or one

ψ. Consequently, a pair of σ-anyons spans a two-dimensional Hilbert space, with basis states

labelled by their fusion channels:

|σσ −→ 1⟩ , |σσ −→ ψ⟩ . (2.77)

To access this two-dimensional space for computation, a qubit can be encoded in the global

state of a composite system of four σ-anyons, subject to the constraint of total fermion parity
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conservation. The basis in this space can be spanned by the states

|(σσ)(σσ) −→ 1;1⟩ , |(σσ)(σσ) −→ ψ;ψ⟩ . (2.78)

Here, the notation (σσ) refers to grouping pairs of σ-anyons for fusion. Consider a set of

four Ising anyons labelled 1, 2, 3 and 4. Changing the fusion order from (12)(34) to (13)(24)

represents a basis transformation in this Hilbert space, given by the fusion matrix

FIsing =
1√
2

1 1

1 −1

 , (2.79)

while all other F -matrices in the model contribute phase factors only [Pac12]. The braiding

properties of Ising anyons are described by R-matrices:

Rψψ = −1,

Rσσ = e−i
π
8

1 0

0 i


RψσRσψ = −1.

(2.80)

Using the F and R operators above, the braiding operator for Ising anyons is expressed as

B = FR2F−1 = e−i
π
4

0 1

1 0

 . (2.81)

This operation implements a non-trivial unitary gate, specifically the Pauli-X logical operation

(up to a global phase factor). By combining such operations, one can generate the Clifford

group through braiding anyons from two σ-pairs encoding a qubit. [Iva01; LO18].
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Figure 2.8: Schematic of a topological quantum computation. Four anyons are created at the start
of the computation from the vacuum. A set of braiding operations is performed, here a
double exchange of the second and third anyons, and the pairs of anyons are fused again
at the end. The dotted loops indicate two qubits 1 and 2, each encoded in a fixed state
corresponding to the fusion outcome of the enclosed anyons, for instance here the vacuum
state |0⟩1 |0⟩2. The result of the computation is encoded in the amplitudes of the state
of the system after the braiding, i.e. the worldlines of the anyons, and is revealed by
the probabilistic fusion outcomes of the measurement encoded by the final dotted loops.
For instance, if the particles here were four Fibonacci anyons, the final state would be
|0⟩1 |0⟩2 [FS18] with probability ≈ 15%, and |1⟩1 |1⟩2 with ≈ 85%. If no braid had been
performed, each of the two pairs would deterministically fuse to vacuum. Note that in
(3+1)D the path configurations of N worldlines are elements of the permutation group
SN , and the power of topological quantum computation is lost.
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2.4.3 Topological quantum computing

Systems that support anyons can be used to encode a degenerate subspace that is decoherence-

free, hence providing a quantum memory inherently robust against control errors and local

perturbations. The braiding of such quasi-particles can implement quantum gates on the

encoded system. Topological quantum computation (TQC) originally referred to a model of

quantum computation that uses the braiding and fusion of non-Abelian anyons to approx-

imate any unitary transformation in the Hilbert space associated with the anyonic degrees

of freedom [Fre+03; Pac12]. This model arose from the observation that the computation

of certain knot invariants [Kau90] is classically hard, yet becomes tractable using particles

whose dynamics are characterised by such invariants. This is closely tied to the definition of

anyons, which naturally encode representations of the braid group. Indeed, the evolution of

anyonic systems is governed by operations in a topological quantum field theory (TQFT), al-

lowing for the computation of knot invariants like the Kauffman polynomial [KB93], to encode

and extract information about the state of the system. Because evaluating certain Kauffman

invariants (e.g., the Jones polynomial at appropriate roots of unity) is BQP-complete, a topo-

logical quantum computer that can realise these evaluations through braiding operations is

theoretically capable of universal quantum computation.

Specific anyon models were shown in [Fre+03] to support universal quantum computation,

the simplest being the Fibonacci model. This model supports a single non-trivial anyon, τ ,

with the fusion rule τ = 1 + τ [RR99]. In contrast, the Ising model (cf. Sec. 2.4.2.2) is not

universal through braiding alone, as it requires additional resources like magic state distillation

to achieve universal quantum computation.

Schematically, TQC involves initialising a system of n non-Abelian anyons located at

positions zi for i ∈ [1, n]. This many-body system defines an M -dimensional protected com-

putational subspace H, as described in Sec. 2.4.2. An arbitrary wavefunction in this subspace

can be expressed as:

|ψ(z)⟩ =

M∑
m=1

am |m; z⟩ (2.82)
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where z = (z1, z2, ..., zn), and am ∈ C are amplitude coefficients. A non-trivial operation

on this state is performed by a braid b ∈ Bn, representing a controlled unitary operation

realised by adiabatically exchanging the positions of the anyons along paths defined by z, as

illustrated in Fig. 2.8. This process exploits the Aharonov-Bohm effect, where the system

acquires a statistical phase directly related to the exchange statistics of the anyons and the

topology of the braiding paths.

After the computation, the state of the system is determined by fusing anyons in pairs

and measuring the outcomes. Each fusion result corresponds to a unique basis state of the

computational subspace, and their amplitudes determine the probability of each set of fusion

outcomes. As illustrated in Fig. 2.8 for two qubits encoded using four Fibonacci anyons, the

outcome of the computation is obtained by repeated measurements to construct a probability

distribution reflecting the state of the quantum system. Implementing a specific quantum

algorithm in this framework involves designing an appropriate sequence of braids, a process

known as topological quantum compiling, which is analogous to how classical compilers convert

high-level code into machine instructions [Hor+07].

Two significant remarks about TQC are warranted. First, the experimental realisation of

anyons, particularly non-Abelian anyons, remains a substantial challenge [SFN15a]. Secondly,

the topological protection can still be compromised. Potential errors include anyon leakage

into non-computational states [XW08], interaction-induced splitting of the ground state de-

generacy or phase transitions [Fei+07], and temperature-induced closing of the topological

gap.

2.4.4 The Kitaev models

To illustrate the concepts introduced in this section, we review two influential and analytically

solvable models of topological order proposed by A. Yu. Kitaev [Kit03a]: the toric code

[Kit03a], and the Kitaev honeycomb model [Kit06].

The toric code is defined on a two-dimensional lattice of size L×L with periodic boundary

conditions, i.e. a tessellated torus. It features a degenerate, topologically protected ground
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state, making it suitable for use as a quantum memory, as detailed in Sec. 2.3. This is the

ground state of the Hamiltonian

Htcm = −
∑
v

Av −
∑
p

Bp, (2.83)

where the terms consist of the following four-body interactions

Av ≡
∏
j∈∂v

σxj , Bp ≡
∏
j∈∂p

σzj ,
∏
v

Av =
∏
p

Bp = +1 (2.84)

which are precisely the stabilizer generators in Eq. 2.53 defining a quantum code. These terms

each have eigenvalues ±1, and respect the relations

[Av, Av′ ] = [Bp, Bp′ ] = [Av, Bp] = 0 (2.85)

for any v, v′, p, p′. The ground state is a common eigenstate of all Av and Bp terms with

eigenvalue +1, with energy E0 = −4L2. Since the system contains n = 2L2 sites, and there

are 2L2−2 independent terms in the Hamiltonian, the ground state is 4-fold degenerate. This

ground state takes the form

|Ψ⟩ ∝
∏
v

1

2
(1 +Av) |0⟩⊗n , (2.86)

which follows from the fact that σz |0⟩ = |0⟩ for all spins on the lattice, and indicates the

absence of excitations. It can be interpreted as the superposition of all trivial loops on the

lattice. These excitations can be created by applying a Pauli operator on a spin, which violates

(flips the eigenvalue of) a term of the Hamiltonian. An operator σzj flips two neighbouring

star operators, and thereby creates two quasiparticles, the e-anyons of the toric code model,

c.f. Sec. 2.4.2.1. Similarly, a σxj operator flips two neighbouring plaquette operators, and

thereby creates two m-anyons at these locations. These operations, and their combination,
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Figure 2.9: A genus-1 torus representing a lattice on which the toric code Hamiltonian is defined.
The ground state of the code is four-fold degenerate as represented by the states shown
in the figure from left to right. These respectively indicate the vacuum state |Ψ⟩, the
state L1

z |Ψ⟩ obtained by creating a pair of e anyons and wrapping them around one non-
trivial loop on the torus – as represented by the red string –, the state L2

z |Ψ⟩ obtained
by creating a pair of e anyons and wrapping them around the second non-trivial loop,
and the state L2

zL
1
z |Ψ⟩ obtained by combining both non-contractible loops.

create the following excited states

σzj |Ψ⟩ = |e, e⟩ , σxj |Ψ⟩ = |m,m⟩ , σyj |Ψ⟩ = |ϵ, ϵ⟩ (2.87)

where the latter is the fermion in the toric code anyon model. Since any two terms share

overlap on an even number of sites, the minimum excitation energy is Emin = 4. Measuring

the interaction terms of the Hamiltonian reveals the presence of anyons, which is analogous to

measuring the stabilizer generators to obtain a syndrome in QEC. Anyons can also be fused

by application of Pauli rotations to return to vacuum, which is exactly the decoding problem

solved by a MWPM algorithm in Sec. 2.3.6.2.

Encoding information using this quantum phase can be done by considering how to tran-

sition between the four degenerate ground states. This can be achieved using the ability to

create a string of anyons, extend it by applying a series of Pauli rotation on the sites supported

on the string, and fusing the end points of the string such as to annihilate the two boundary

anyons. In doing so, the final state is excitation-free and therefore a ground state. Since the

torus has non-trivial genus, consider creating such a string using a series of σz rotations along

each non-contractible loop of the lattice. This final configuration, while being a ground state,

is different from the original |Ψ⟩. The four states, namely |Ψ⟩, L1
z |Ψ⟩, L2

z |Ψ⟩ and L2
zL

1
z |Ψ⟩

are invariant under continuous deformations, linearly independent since they are topologically
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inequivalent, and form the four-fold degeneracy derived above, as shown in Fig. 2.9. Consider

the loop defined by the operator L1
z, which has eigenvalue ±1 based on whether there is a

non-trivial topological excitation around a loop encircling the torus in the vertical direction.

Similarly, the operation L2
z encircles the torus in the opposite direction, and has eigenvalue

±1 depending on the presence of a topological excitation around the torus in the horizontal

direction. It is obvious that [L1
z, L

2
z] = 0, and the four combinations of their eigenvalues

encode a two-qubit Hilbert space which can be used to define two logical qubits. Consider

next the action of an operator L1
x defining a non-contractible loop composed of a series of σx

rotations, as shown in Eq. 2.10. This operator does not affect L1
z, since it can be smoothly

displaced to avoid overlap with this σz-loop, and similarly for the L2
x and L2

x, summarised as

[L1
x, L

1
z] = [L2

x, L
2
z] = 0. (2.88)

In the case where a loop of σx and σz operators wrap around the torus in opposite directions,

they unavoidably overlap at an odd number of sites, meaning that

{L1
x, L

2
z} = {L2

x, L
1
z} = 0. (2.89)

The relations in Eq. 2.88 and Eq. 2.89 show that the Lz and Lx operators define the Pauli Z

and X operators of the two logical qubits encoded in the ground state of the toric code.

These logical basis states encoding a qubit in the ground state manifold are topologically

distinct, and provide robustness against local perturbations, which is the hallmark of TQC.

Indeed, consider the excitation gap in the toric code Hamiltonian

H = Htcm + λV (2.90)

where V is an arbitrary Hamiltonian with local terms only, and λ small. The energy splitting
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Figure 2.10: A genus-1 torus representing a lattice on which the toric code Hamiltonian is defined.
The operators L1

x and L2
x respectively represent two strings of σx rotations which wrap

around the torus in the horizontal (left) and vertical (right) directions. This process
describes the creation, transport and annihilation of two m anyons around the toric
code lattice.

induced by the perturbation V , which attempts to couple two ground states, is given by

∆E = ⟨Ψi|V |Ψj⟩ ∼ e−β∆L, (2.91)

where β is the inverse temperature. Any splitting or mixing of the four ground state sectors

is exponentially suppressed with the system size L, due to V being local. This means that

V cannot effectively couple states with different global properties unless anyons are created

that traverse the torus completely. Hence, the information stored in these states is inherently

protected for sufficiently large system sizes.

The anyon excitations that arise in the toric code are all Abelian (cf. 2.4.2.1) and therefore

not directly useful as a resource for topological quantum computing. However, their compu-

tational power can be increased by introducing local defects that behave like the Ising anyon

(cf. 2.4.2.2). The latter is a non-Abelian quasiparticle excitation which natively emerges in

other models, such as the Kitaev honeycomb model (KHM). To understand the motivations

of Chapter 3, it will be useful to highlight the relationship between this model and the toric

code phase.

The KHM describes a nearest-neighbour two-spin interaction on a planar honeycomb
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(a) (b)

Figure 2.11: (a) Schematic of the bulk of the Kitaev honeycomb model with two-body Pauli terms
on links of different directions of a hexagon on the lattice, and the emergent plaquette
operator Ŵp. (b) The phase diagram of the honeycomb model, indicating the gapless
∆ = 0 and gapped ∆ > 0 regions referring to the non-Abelian and toric code phases
respectively, dependent of the coupling constants Jx, Jy and Jz.

lattice given by the Hamiltonian

Hhcm = −Jx
∑
x links

σxi σ
x
j − Jy

∑
y links

σyi σ
y
j − Jz

∑
z links

σzi σ
z
j (2.92)

where Jx, Jy, Jz ∈ R are coupling constants. As shown in Fig. 2.11(a), the interactions couple

quantum spins depending on their direction on the lattice. From this model, we can extract

hexagonal plaquette operators of the form

Wp ≡ σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 , (2.93)

which commute with all the terms of Eq. 2.92(a) that do not involve the plaquette spins, since

each spin operator in Eq. 2.93 acts on a vertex which is part of the same spin-type link, as well

as terms involving the boundary links of Wp using the fact that [σαi σ
β
j , σ

γ
i σ

γ
j ] = 0. Moreover,

any two plaquettes commute since their support overlaps on zero or two sites. Hence, each

plaquette term Wp can be simultaneously diagonalised, with eigenvalues wp = ±1. Moreover,

it can be shown that the plaquette operators form a maximal set of independent commuting

conserved quantities, whose eigenvalues label distinct sectors of the full Hilbert space. In
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particular, in the regime Jx, Jy, Jz > 0, the ground state of the honeycomb model is described

by the wp = +1 sector for all p [Kit06]. Moreover, since
∏
Wp = 1, excitations living on

such plaquettes, known as vortices and corresponding to an eigenvalue of −1 of the plaquette

operator, always appear in pairs. In fact, this model has been solved exactly by Kitaev

[Kit03b] by representing the spin operators in an extended Hilbert space of two Majorana

fermions located at each lattice site. Alternatively, it can be mapped to a 2D p-wave Fermi

superfluid [CN08].

In the limit where one coupling Jα for α ∈ {x, y, z} is larger than the sum of the remaining

two, there is a non-zero gap between the ground state manifold and any state hosting an

excitation Wp = −1. The low-energy effective Hamiltonian of the system with periodic

boundary conditions, at the lowest non-trivial perturbation order, is equivalent to the toric

code phase. The excitations living on the plaquettes are known as vortices, and behave

precisely as the toric code anyons, as indicated in Fig. 2.11(b) [Kit03b; SDV08]. In contrast,

the central region of Fig. 2.11(b) is a highly frustrated phase under any of the following

conditions:

|Jx| ≤ |Jy|+|Jz|, (2.94)

|Jy| ≤ |Jz|+|Jx|, (2.95)

|Jz| ≤ |Jx|+|Jy|, (2.96)

which is gapless unless a magnetic field term is introduced to Eq. 2.92. Under this condition,

vortices in this phase behave like the non-Abelian Ising anyons, c.f. Sec. 2.4.2.2. Consider

the case where only two vortices live in the system, separated by a distance δ. In the Abelian

phase, the gap in the fermionic spectrum is practically oblivious to δ and to the presence of a

magnetic field. In contrast, the gap in the non-Abelian phase decreases exponentially with δ.

For sufficient distance, the presence of two vortices located at sites i and i+1 carries a nonlocal

massless Majorana mode, and the fusion outcome of the vortices reveals the occupation of

this mode. An unoccupied mode corresponds to the vacuum 1 fusion outcome, while an
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occupied mode is the fusion yielding a fermion ψ, as prescribed by the Ising anyon model.

The occupation of these modes does not alter the energy of the system, from which the name

Majorana zero-mode arises. The presence of n zero-modes in the spectrum is associated with

a 2n-fold ground state degeneracy, which can be lifted when the vortices are brought closer,

such that the fusion outcome is revealed (which removes the protection needed in topological

quantum computing) [Pac07; Lah+08]. The Kitaev honeycomb model is a rich and attractive

platform for the study of materials supporting exotic quasiparticles, particularly since it is

experimentally tractable [Ban+16; CJK10], in contrast with the four-body interactions of the

toric code Hamiltonian.

2.4.5 The Majorana chain and zero-energy edge modes

In this thesis, we will consider logical encodings using non-Abelian anyons which behave

like Majorana modes at the edge of a domain wall, and a generalisation of the Ising chain

supporting similar objects. For this purpose, let us review how edge modes emerge in the

Majorana chain. The Ising model is a fundamental system of interest in various fields, most

notably statistical mechanics. Tremendous effort has gone into computing properties of this

model in one and two dimensions, which was made easier by its mapping from spins to free

fermions [SML64]. In [Kit01], Kitaev introduced a different perspective by considering the

fermions as degrees of freedom of a “quantum wire”, and showed the emergence of topological

order in the ordered phase of the Ising chain, where the magnetisation used as the spin local

order parameter becomes nonlocal.

In 1D, the Ising model is given by the Hamiltonian

HIsing = −f
L∑
j=1

σxj − J
L−1∑
j=1

σzjσ
z
j+1 (2.97)

where f, J ∈ R≥0, and the system exhibits a Z2 symmetry upon flipping all the spins. This

chain has two phases with a critical point at f = J , such that the phase is ordered at f < J ,

with a two-fold ground state degeneracy that is lost in the disordered phase when f > J .
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The Hamiltonian in Eq. 2.97 can be mapped to a model of nonlocal free fermions using the

Jordan-Wigner transformation [JW28],

aj =

(
j−1∏
k=1

σxk

)
σzj , bj = i

(
j−1∏
k=1

σxk

)
σzjσ

x
j (2.98)

which describes a chain with two fermions at each site i. The nonlocal strings in these

expressions lead to the following commutation relations for all i, j:

{aj , bk} = 2δjk, {bj , bk} = 2δjk, {aj , bk} = 0 (2.99)

where a2j = b2j = 1, and the Hermitian operators aj and bj are referred to as Majorana

operators, similarly to those encountered in Sec. 2.4.4. Under this transformation, Eq. 2.97

becomes

HM = if
L∑
j=1

ajbj + iJ
L−1∑
j=1

bjaj+1. (2.100)

This chain can be rewritten in terms of complex fermions c† = a+ib which obey the ubiquitous

anti-commutation relations, and admits a symmetry operator (−1)F =
∏L
j=1(−iajbj) which

measures the fermion parity in the system where F =
∑

j c
†
jcj .

A fermionic zero mode Ψ is a fermion operator which respects [H,Ψ], {(−1)F , H} = 0 and

limL→∞ Ψ†Ψ = 1. Moreover, when localised near the edge of the system, this becomes a zero-

energy edge mode, such that the dependence of the fermion operator in the bulk of the chain

drops exponentially with the distance. The previous conditions ensure that the spectrum is

the same in the even and odd fermion parity sectors, and the operator Ψ maps between these

two sectors. In the case where f = 0 in Eq. 2.97 only the hopping term remains, in which

case the fermions a1 and bL vanish in Eq. 2.99, resulting in

[HM , a1]f=0 = [HM , bL]f=0 = 0. (2.101)

This indicates that a1 and bL are two edge zero-modes since they anticommute with the
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fermion parity operator. Since the model is free, these modes can be found exactly for

f < J , even with spatially-varying couplings, and their support exponentially decays with

chain length. Note that the Kitaev honeycomb model in 2D, as presented in Sec. 2.4.4,

arises from coupling three Ising spin chains, and is equivalent to a free-fermion model in a

background Z2 gauge field, on which Majorana zero-modes also emerge as paired vortices. In

fact, various proposals exist to realise and detect Majorana fermions [Ali12].

The Ising-Majorana chain can be generalised to richer systems with n-spin states and

Zn symmetry, also shown to support topologically ordered phases [Fen12]. In Chapter 4, we

study how zero-energy edge modes in the Z3 case can be exploited in the context of quantum

computation.

2.4.6 Twist defects in topological codes

In this section we review the definition of twist defects, namely defects associated with an

anyon symmetry. Consider a mapping of the form

K : C1 −→ C2 (2.102)

where C1 and C2 are two anyon models characterising two topologically ordered phases. This

mapping K is said to be an anyonic symmetry if it implements automorphisms on an anyon

model C, thereby permuting the labels of anyons in C. The anyons of the model get mapped

under the action of the symmetry, such that

a −→ Ka (2.103)

for any a ∈ C. Twist defects are semiclassical defects which behave like immobile fluxes, and

are associated with the action defined by the element of the anyon symmetry group, which is

enacted by adiabatically winding an anyon around the location of the twist defect, as shown

in Fig. 2.12. Twist defects are not dynamical excitations of a Hamiltonian, but can them-
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selves trap non-Abelian zero-modes at their location. Since these non-Abelian excitations are

not deconfined, only their projective non-Abelian statistics are accessible [BJQ13a; TRC14;

KTH14]. Despite this characteristic, their confinement to twist defects offers a potential plat-

form for trapping non-Abelian excitations. This is particularly promising for robust TQC and

nonlocal storage of quantum information. An extensive study of the theory and realisation of

twists is presented in Ref. [Teo16].

Given that a twist defect acts on a charge label as per Eq. 2.103, it is natural to wonder

how the defect itself changes from this quasi-particle exchange. The physical consistency

comes from considering the internal structure of the twists. Indeed, we can consider the

fusion of two defects with conjugate symmetries K and K−1 attached by a branch cut. The

fusion outcome of this pair of defects must be trivial, as an anyon winding around the pair

experiences a trivial action. However, if an anyon encircles a defect, the fusion outcome is

affected. This can be seen as an absorption process by the twist when a charge is exchanged,

which allows the twist to mediate interactions between multiple anyonic sectors, effectively

generating fusion channels that combine characteristics of the anyons involved. Hence, the

action of a twist defect can be framed as a multi-channel fusion as described in Sec. 2.4.2.

To reveal topological the properties of twist defects, it is useful to consider the Wilson loop

algebra of pairs of twist defects [TRC14; BJQ13b], which we implicitly consider for defects

on the toric code in Chapter 3.

It has been shown that twists can be realised using lattice dislocations which break trans-

lational or rotational symmetries in topologically ordered lattice models [Bom10; TRC14;

BQ12; YW12]. These “domain walls” act as a map from one phase of matter to another, such

that anyons traversing this defect line are acted on by a symmetry, as per Eq. 2.103. At each

end of this line are located point-like boundary defects, i.e. twists, as shown in Fig. 2.12.

To illustrate this point, we consider the implementation of twist defects in the toric code

anyon model. A twist defect on the toric code, as discussed in Sec. 2.3.5.1 and Sec. 2.4.4, can be

realised by modifying the stabilizer pattern on the lattice to enact a Z2 symmetry on the anyon

model, i.e. e↔ m, as shown in Fig. 2.12. This can be achieved by dislocating the chequerboard
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Figure 2.12: Schematic of the action of twists using the toric code anyon model. (a) An anyon e
passing through a domain wall is mapped to the an anyon m in the middle on the domain
wall or at the edge around a twist (indicated as a cross). (b) An anyon e exchanges
type twice under a 360° rotation around a twist, and goes back to the identity under
the Z2 symmetry of the model.

stabilizers depicted in Fig. 2.3(b), or performing a series of Pauli-Y measurements along a

string of qubits on the lattice [Bom10; Bro+17]. Both methods disrupt the regular stabilizer

structure to create defects known to exhibit the non-Abelian properties of Ising anyons, cf.

Appendix B of Ref [Bom10]. Importantly, these twists enable novel mechanisms for topological

quantum computation. For instance, Ref. [Bro+17] demonstrated how the braiding and fusion

of twist defects in the toric code can be used to perform fault-tolerant Clifford gates.



Chapter 3

Non-Abelian statistics with

mixed-boundary punctures on the

toric code

3.1 Introduction

Lattice models consisting of a qubit ensemble arranged on a two-dimensional surface are a

practical tool to study certain topological systems. These models, such as stabilizer codes [Got97;

Fow+12a], allow for computational schemes that encode quantum information in nonlocal de-

grees of freedom. In Sec. 2.3.5.1 and Sec. 2.4.4, we reviewed the canonical example of the

toric code, which encodes logical qubits in the degenerate ground states of a square spin

lattice defined on a torus, and outlined how it emerges in the Abelian phase of the Kitaev

honeycomb model [Kit03b; Kit06; KSV09]. The toric code admits local, point-like defects and

nonlocal, line-like defects. Punctures are local defects corresponding to holes on the lattice.

They were introduced as candidates for quantum memory and computation through their

braiding [Den+02; DIP16; RHG07], while twists are the endpoints of nonlocal domain walls

that enforce a symmetry on the toric code anyons as described in Sec. 2.4.6 [BJQ13a; Teo16].

62
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Twists are computationally interesting since they were shown to behave like Majorana zero

modes under fusion and exchange [Bom10; ZDJ15; YW12]. A novel hybrid of these two defect

types was even introduced in Ref. [KP20], also capable of encoding logical qubits.

This chapter presents the results published in Ref. [BPB22], in which we investigate the

topological properties of yet another defect on the toric code, namely mixed-boundaries punc-

tures. Following the adiabatic equivalence between vortices and twists demonstrated in the

non-Abelian phase of Kitaev’s honeycomb lattice model [HFP20], we studied all possible de-

formations of twists that could be adiabatically deformed to punctures. We find that no

deformation of these defects provides point-like defects that could support the desired statis-

tics. Thus, we resorted to the mixed-boundary punctures as the optimal tool for an encoding

of Majoranas that takes advantage of the Abelian statistics of anyons on the toric code,

and the nonlocal encoding of gates. Moreover, our choice is congruent with the insight in

Ref. [Woo+08] that the quantum dimensions of the Ising model and of the toric code are

equal. This lays the basis for utilising toric code anyon statistics in order to realise more com-

plex Ising anyon properties. In particular, we demonstrate non-Abelian fusion and braiding

properties reminiscent of Majorana exchange. To achieve this, we employ local lattice defects

of the toric code with mixed boundaries, in conjunction with a nonlocal logical encoding be-

tween them. Our approach enriches the class of defects capable of reproducing the behaviour

of Majorana anyons, helping bridge the gap between their exotic statistics and physical re-

alisation, and expanding directions for their simulation on a quantum processor [Bau+23a;

KML23; Xu+23; 23; Xu+24; Iqb+24].

This chapter is organised as follows. The defects on the surface code relevant to the

following investigation are introduced in Sec. 3.2. In Sec. 3.3, we introduce defects which

generalise punctures to instances with hybrid boundaries in order to encode non-Abelian

fusion channels, and demonstrate their Ising-like fusion and braiding statistics after defining

a logical encoding based on a superposition of their population states. We discuss our results

in Sec. 3.4.
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(a) (b) (c) (d)

Figure 3.1: Different types of puncture defects on the toric code. The puncture and code boundary
in (a) are rough while the puncture and code boundary in (c) are smooth. The measured
stabilizers creating the punctures, and non-contractible loops stabilising them, are also
shown for each puncture type in (a) and (c). Panels (b) and (d) show their respective
diagrammatic representations as introduced in Ref. [Bro+17].

3.2 Defects on the surface code

A useful way to encode information on the toric code with open boundary conditions, i.e. the

surface code, is to introduce defects on the lattice. One such defect is the puncture, which

corresponds to a region of the code where certain stabilizer generators are no longer enforced.

This effectively removes those parity-check constraints, creating a hole in the lattice. The

qubits in this region are disentangled from the code by ceasing to measure the associated

stabilizers, which modifies the code space and introduces logical degrees of freedom localised

at the boundary of the puncture [DIP16; Fow+12a], see Sec. 2.3.7.

The type of boundary of a puncture depends on which type of stabilizer was measured

in its creation, namely rough (smooth) boundary for Pauli Z(X)-type as shown in Fig. 3.1.

When the code and puncture boundaries are of the same type, a logical qubit is encoded by

defining a logical operator X as a sequence of Pauli-X operations supported on qubits along a

loop enclosing the puncture, and Z as a string of Pauli-Z applied on qubits between code and

puncture boundaries, satisfying the necessary anti-commutation as described in Fig. 3.1 (a)

and (b), and equivalently for a smooth puncture in Fig. 3.1 (c) and (d). From the topological

anyon picture, the two-level system is designed by encoding the parity of the puncture’s anyon

population, where each anyon has been passed from the code boundary to the puncture. These

are e anyons if the boundaries are rough, and m if smooth. Another type of extrinsic defects
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(a) (b)

Figure 3.2: Twists on the toric code. Panel (a) shows a qubit encoded using two pairs of twists, with
logical operators X and Z. Panel (b) shows twist defect lines moved to the corners of
the code boundary [Bro+17].

on the planar code is the twist defect, which is created in a pair by introducing a translation

[Bom10] or a series of measurements on the lattice [Bro+17] modifying its stabilizers. Locally,

the lattice is modified in such a way that X and Z stabilizers are interchanged. One way

to realise a twist is by deforming the code such that two neighbouring plaquette operators

ZaZbZcZd and XcXdXeXf (i.e. adjacent white and blue faces on the rotated surface code

shown in Fig. 3.1(a)), are deformed through measurement or dislocation to a stabilizer oper-

ator of the form ZaZbXeXf . This is shown in Fig. 3.2(a), where several such stabilizers are

combined on a vertical line, resulting in weight-5 operators of the form XXY ZZ located at

the end points, which support the twist defect locations. As with MZMs, twists were shown to

behave like Ising anyons. Two pairs of twists can encode a logical qubit as shown in Fig. 3.2,

and logical Pauli operations are achieved by braiding twists. In Ref. [Bro+17] Brown et al.

showed that the planar code with mixed boundaries supports corner defects which can be

deformed into twists on the lattice. Hence, there is an equivalence between the right and left

panels in Fig. 3.2.

The graphical notation here is consistent with the language introduced in Ref. [Bro+17].

The blue background represents the planar code bulk; a dashed line is a smooth boundary

condensing m anyons, while a continuous one is rough and condenses e anyons.
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Figure 3.3: A mixed-boundary puncture. Both blue (X-type) and red (Z-type) strings can terminate
at its boundaries. The red and blue loops stabilise this defect, and the crosses indicate
the meeting point of rough and smooth boundaries, i.e. twists. Note that we need a
hybrid code boundary for the attached strings.

3.3 Fusion and exchange of mixed-boundary punctures

3.3.1 The system

In Fig. 3.2(b) corners of the surface code correspond to points at which smooth and rough

boundaries are juxtaposed. Given their relationship with twists, we ask whether punctures

with mixed boundaries can exhibit Ising-like behaviour. Indeed, by this definition, one can

see that a puncture with mixed boundaries, shown in Fig. 3.3, carries two twists, located at

the meeting point of the different boundaries. A mixed-boundary puncture is created by mea-

suring both X and Z-type stabilizers [BM09a; DIP16]. The strings allowed at its boundaries,

and the loop operators that stabilise it in Fig. 3.3 indicate that a mixed-boundary puncture

condenses both e and m anyons. Since one can encode a qubit using four MZMs or twists on

the toric code, and achieve Clifford gates on its state through pair-wise braidings, our system

will be composed of four copies of mixed boundary-punctures. However, despite the ability

of these punctures to hold both toric code anyons, their braiding remains Abelian. Hence, we

introduce nonlocality in the encoding of Abelian anyons in order to generate the non-Abelian

character. This is done by taking superpositions of anyons populating the punctures, which

translates into superpositions of strings between each pair of punctures.
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Figure 3.4: A state of a pair of mixed-boundary punctures. This state is defined in Eq. 3.1 and
describes a superposition of red and blue string configurations, respectively describing
p1 and p2 each one absorbing an e or an m anyon.

3.3.2 Logical encoding

We consider a pair of punctures with mixed boundaries created from vacuum, denoted by p1

and p2, and allow strings between their matching boundaries. We denote the state of a pair

of punctures by its anyon population such that the state of a pair enclosing an e anyon in

each puncture is |ee⟩; this corresponds to a red string with endpoints at each puncture, and

likewise blue for |mm⟩. Since the anyons are inside the punctures, we remain in the ground

state of the code as opposed to an open string which has excitations at its endpoints. We now

let the pair (p1,p2) be in the superposition of states given by

|p1, p2;±⟩ =
|e1e2⟩ ± |m1m2⟩√

2
, (3.1)

where this notation translates to the two-puncture system being in a superposition of red and

blue string configurations, as shown in Fig. 3.4, and the states given by Eq. 3.1 are degenerate.

In fact, this choice of superposition is motivated by the fusion rules of Ising anyons in Eq. 2.76.

We will consider two such pairs of punctures (p1,p2) and (p3, p4), and using Eq. 3.1 we
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(a) (b) (c) (d)

Figure 3.5: Logical encoding of four mixed-boundary punctures. The system is separated into two
pairs each in a state described in Fig. 3.4. The string configurations and their correspond-
ing quantum states are based on puncture populations, and each quadrant represents a
term in the joint state in Eq. 3.2.

can write their joint states concisely as

|(p1, p2;±)(p3, p4;±)⟩ =

1

2
(|e1e2⟩ |e3e4⟩ ± |e1e2⟩ |m3m4⟩

± |m1m2⟩ |e3e4⟩+ |m1m2⟩ |m3m4⟩). (3.2)

Note that these configurations are constructed from local lattice defects where nonlocal quan-

tum operations can be encoded. The terms in Eq. 3.2 correspond to the string configurations

indicated in Fig. 3.5.

3.3.3 Fusion action

We can verify that this system of punctures reproduces the fusion properties characteristic

of Ising anyons by respectively fusing the charge contents of the pairs (p1, p3) and (p2, p4).

Indeed, the fusion takes the joint state in Eq. 3.2 to the state

|p13, p24;±⟩ =
1√
2

(|113, 124⟩ ± |ψ13, ψ24⟩) (3.3)

where we define

|113, 124⟩ =
1√
2

(|e1e2⟩ |e3e4⟩+ |m1m2⟩ |m3m4⟩) (3.4)
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and

|ψ13, ψ24⟩ =
1√
2

(|e1e2⟩ |m3m4⟩+ |m1m2⟩ |e3e4⟩) (3.5)

analogously to the scheme in Ref. [HFP20]. We can understand this as the punctures from

the terms in Eq. 3.4 behaving as the vacuum charge since each composite object is made up

of either two e or two m anyons, while the terms in Eq. 3.5 each behave as a fermion string

(i.e. both red and blue strings). If we identify the states |113, 124⟩ and |ψ13, ψ24⟩ respectively

with the vacuum and ψ fermion sectors as described by the basis states in Eq. 2.78, then they

are related to the fusion outcomes in Eq. 3.3 by a fusion matrix

Fpunct =
1√
2

1 1

1 −1

 (3.6)

which matches the Ising model fusion properties in Eq. 2.79.

3.3.4 Braiding action

We are now interested in how the state in Eq. 3.2 is affected by braiding individual punctures.

For this purpose, we can encode a logical qubit using the configuration described in Eq. 3.2,

in the logical basis {|++⟩ , |−−⟩} where

|++⟩ = |p1, p2; +⟩ |p3, p4; +⟩ (3.7)

|−−⟩ = |p1, p2;−⟩ |p3, p4;−⟩ (3.8)

which corresponds to the even parity sector. The basis in the odd parity sector is {|+−⟩ , |−+⟩}

but we will not require it here.

Braiding p1 around p3 affects the states shown in Fig. 3.5 differently. The case for

|e1e2⟩ |m3m4⟩ is detailed in Fig. 3.6, where the step between panels (c) and (d) consists

of respectively multiplying the red and blue strings by a Z-type stabilizer (i.e. a red loop)

and X-type stabilizer (i.e. a blue loop) operator, which are trivial operations on the toric
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(a) (b) (c) (d)

Figure 3.6: Braiding operation shown for state |e1e2⟩ |m3m4⟩. The steps are shown in (a) - (d), taking
p1 around p3 for the string configuration in Fig. 3.5(c), and illustrate the full exchange of
the e anyon in p1 around m in p3. The braiding has to be carried out without performing
a self-twist of p1 in order to recover (d).

code. We notice that in addition to the initial string configuration, punctures p1 and p3 are

now enclosed by X (blue) and Z (red) loop operators after the braiding, crossing the original

strings which are of opposite type. This evolution is a result of braiding the e anyon in p1

around the m anyon in p3. This is particularly interesting when considering how each term in

Eq. 3.2 evolves under the braiding. Indeed, we show the final configurations in Fig. 3.7, where

only panels (b) and (c) have X and Z strings crossing and hence anti-commuting, while the

braiding in (a) and (d) results in string crossings of the same type, i.e. Abelian. In fact, the

braiding in (a) and (b) panels is equivalent to full self-rotations of p1 and p3. The combined

effect from this exchange acts on an encoded qubit non-trivially. Indeed, braiding p1 around

p3 flips the sign in the second and third terms of Eq. 3.2 due to the mutual statistics of the

toric code e and m anyons, resulting in the state in Eq. 3.10

|(p1, p2;∓)(p3, p4;∓)⟩ =
1

2
(|e1e2⟩ |e3e4⟩ ∓ |e1e2⟩ |m3m4⟩ (3.9)

∓ |m1m2⟩ |e3e4⟩+ |m1m2⟩ |m3m4⟩). (3.10)

Upon rewriting Eq. 3.10 as a product of the states of pairs (p1, p2) and (p3, p4), one can

see that the braiding changes the relative phase in the superpositions of both states. This
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(a) (b) (c) (d)

Figure 3.7: Logical gate by braiding operation in the four-puncture system. In all panels p1 and p3
were exchanged. The evolution in (a) and (d) is trivial, but combined with (b) and (c)
affects the nonlocal superposition state in Eq. 3.2 (as shown in Fig. 3.5) non-trivially.
This results in this final string configuration describing the state in Eq. 3.10.

transforms the logical encoding basis following

B2
13 |++⟩ = |−−⟩ , (3.11)

B2
13 |−−⟩ = |++⟩ , (3.12)

where B2
23 denotes the full braid of p1 around p3. This is identified with the logical Pauli-X

operation on the qubit encoded in the four-puncture system, which is the signature of non-

Abelian statistics of Ising anyon exchange given in Eq. 2.81. We also observe from Eq. 3.2

that braiding p1 and p4 or alternatively p2 and p3 or p2 and p4 changes the state in an

equivalent fashion. However, braiding p1 and p2 or p3 and p4 (i.e. punctures from the same

pair) acts trivially on Eq. 3.2 and likewise on our logical basis. Therefore, it appears that

we cannot recreate the full set of operations achievable with Ising anyons (and twists by

association). Indeed, obtaining a Pauli-Z operation in the same basis starting from the state

in Eq. 3.2 requires an operation that transforms states according to: |e1e2⟩ −→ |m1m2⟩ and

|m1m2⟩ −→ |e1e2⟩, which cannot be done exclusively by braiding operations in our system.

We identify this Z logical operator with the string combination in Fig. 3.8. In consequence,

the above encoding does not benefit from the simplicity of the logical operators available with

twists since the logical X, which corresponds to applying the loop superposition in Fig. 3.7,

and Z cannot be interchanged by puncture braiding only.
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Figure 3.8: Logical Z operator for the logical encoding described in Eq. 3.2 using the four mixed-
boundary punctures.

3.4 Discussion

We studied an unusual defect on the toric code referred to as mixed-boundary puncture,

which is introduced by two types of stabilizer measurements creating a hybrid boundary.

This opened interesting possibilities of anyon configurations combined with the punctures.

It was recently shown that twists in the non-Abelian phase of the KHLM not only localise

Majorana zero-modes but are also equivalent to vortices via an adiabatic lattice transformation

[HFP20]. Motivated by this we explored such an equivalence between twists and punctures

using code deformations, in an attempt to find a local defect on the toric code that localises

MZMs. However, we found no such adiabatic transformation. Indeed, in the Abelian phase

of the KHM twists and punctures behave differently in that only twists have the ability

to act as sources and sinks for ψ fermions and recreate the Ising anyon fusion space. In

contrast, while punctures ensure fault-tolerance, regardless of their boundary composition

they cannot provide the mechanical nonlocality offered by twists. In fact, mixed-boundary

punctures inherently support a pair of twists on their boundary, and we find that any adiabatic

mechanism that would promote them to an object that behaves as an Ising anyon requires

moving the twists from the puncture boundary to the bulk of the code, which undermines

the integrity of the puncture. Therefore, in order to recover the non-Abelian statistics on the

toric code, we introduced a scheme that embraces the nonlocality of twists by simulating their

domain wall using our logical encoding. Indeed, we considered a logical basis for computation

formulated on a superposition of the anyonic population of four mixed-boundary punctures,



CHAPTER 3. NON-ABELIAN STATISTICS OF MIXED-BOUNDARY PUNCTURES 73

and found that braiding punctures from distinct pairs created from vacuum induces a Pauli-

X operation on the encoded qubit, thus reproducing the non-Abelian exchange statistics

characteristic of the Ising model. This type of structure appears to be the way around using

twist defects in order to recreate Majorana statistics on the toric code.

The existing schemes such as those presented in Refs. [BM09a; DIP16] also utilise punc-

tures to realise fault-tolerant gates by braiding, using combinations of X and Z boundary

configurations, and can achieve Clifford and entangling gates. In contrast, further braiding

operations with our chosen encoding do not expand our gate set to the full scope of logical

operations accessible with twist and MZM exchange, and therefore does not recover the full

set of Clifford gates topologically. However, we emphasize that the aforementioned operations

are produced by the Abelian braiding of toric code anyons, while we exploit similar defects,

with a different encoding combined with braiding to give rise to non-Abelian statistics.



Chapter 4

Universality of Z3 parafermions via

edge mode interaction

4.1 Introduction

Fault-tolerant quantum computing schemes were shown to exist using error-correcting tech-

niques [Kit03a; Kni05; 96] aimed at diminishing logical error rates by minimising the error

rate on individual gates. In this context, physical systems that provide access to a set of

exact elementary gates are advantageous. Topological quantum computation was introduced

as a way to provide a computational framework for fault-tolerant quantum computation by

Kitaev, Freedman and Preskill [WP99; Fre+03], which directly addresses the very low error

rate requirement. The proposal is based on the use of anyons i.e. localised two-dimensional

many-body quantum systems that display exotic exchange statistics. While the braiding of

Abelian anyons is characterised by an arbitrary phase factor, the statistics of non-Abelian

anyon exchange are described by representations of the braid group. The non-Abelian char-

acter renders these objects useful for computation, which is carried out by creating pairs

of anyons from the vacuum, inducing operations by adiabatically moving them around each

other and fusing them, with the classical outcome defined by the resulting charge types and

74
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a very low estimated error rate. Quasi-particle modes emerging in condensed matter systems

have been shown to carry (projective) non-Abelian statistics which can be identified with

known anyon models. The most prominent example of such objects are Majorana zero-modes

(MZMs) whose exchange is described by statistics of the Ising model [Kit01; Kit06], and

which were found to appear in a two-dimensional electron gas in the Fractional Quantum

Hall (FQH) regime [MR91], as one candidate for an experimental realisation.

Majorana fermions constitute the Z2 case of the more general Zd parafermion model. The

latter can be used to encode qudits, and provides a wider set of braiding evolutions, mak-

ing it a more computationally powerful and attractive counterpart [Fen12]. Indeed, in con-

trast with Majorana sparse encoding where additional measurements are required [SFN15b],

parafermions can provide a scalable entangling gate by braiding alone [CAS13; HL16]. Much

like MZMs, proposals to realise non-Abelian anyons typically consist of exploiting the edge

states of FQH systems. In the following, we consider parafermionic zero-energy modes pro-

posed to appear at the edges of suitably defined one-dimensional fractional topological super-

conductors [Lin+12; CAS13], arising in Hamiltonians described by Ref. [Fen12].

The braid group representation describing Ising and parafermionic statistics provides a

reliable implementation of Clifford gates, but does not extend to a universal quantum gate

set and can therefore be efficiently simulated classically [Got98b; Got98a]. Proposals exist to

remedy this drawback for Majorana qubits, by allowing for additional noisy non-topological

operations which take the form of direct short-range edge mode interaction, i.e. a tunnelling

process. Such operations can give rise to the π/8-rotation that together with Clifford oper-

ations constitute a universal gate set [Bra06; BK05]. Parafermions generalise the Majorana

encoding to topological qudits. For prime-d Clifford unitaries complemented by any arbitrary

non-Clifford gate are sufficient for universal quantum computing (UQC) [ACB12]. Hence, the

parafermion edge mode (PEM) interaction is expected to provide a noisy non-Clifford gate

to be made fault-tolerant using magic state distillation (MSD) protocols. Such schemes have

been extensively studied in particular for qudits of prime d.

Recent research has focused on quantum simulation with Rydberg atoms due to their
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versatility [MW21]. They offer strong and controllable long-range interactions realised by se-

lecting different Rydberg states and applying a wide range of optical fields [APS19]. With the

development of experimental techniques improving the controllability of individual Rydberg

atoms, such as optical tweezers, these systems represent an effective tool for simulating many-

body physics of both coherent or dissipative, in- or out-of-equilibrium systems. This can be

achieved by engineering the system Hamiltonian in order to simulate various spin systems

and quantum phases of matter [BL20; Wei+10; Eba+21]. Lienhard et al. and Verresen et al.

[VLV21; Lie+20] also suggested that geometric phases and topological effects can be probed

with Rydberg atom-based quantum simulations. Additionally, Rydberg systems provide a

way of encoding a qutrit by driving the Rydberg atom around three levels, using microwave

lasers as described in Refs. [Bar+15; Spo+21], which is of interest in the light of works such

as Ref. [Gok+19].

In this study, we investigate which family of gates the interaction between the PEMs

of a Z3 parafermion chain gives rise to. Our main result concerns the adequacy of such

gates for universal quantum computing with parafermions. We have chosen to focus on the

three-dimensional qutrit space in this study since it has the benefit of prime dimension and

computational tractability, though many of the features that we uncover are likely to be

generic. In addition to this work, we suggest a scheme using a four-Rydberg level atomic

system interacting with four microwave lasers, in order to simulate the topological evolution

of the ground state of the parafermion chain Hamiltonian under parafermion interaction and

two-parafermion braiding which we include in Appendix A1.

This chapter contains work published in Ref. [Ben+23c], and is structured as follows. In

Sec. 4.2, we describe the Z3 parafermion chain and its edge modes, and how computation

is carried out using parafermions. In Sec. 4.3 we investigate the parafermion edge mode

interaction and its action on the ground state space. In Sec. 4.4 we show that the addition

of the dynamical gate available using the parafermion edge-mode interaction to the Clifford

group, accessible through braiding operations, generates a gate-set dense in SU(3). Finally,

our results are discussed in Sec. 4.5.
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4.2 Parafermion edge-modes and computation

The study of fractionalisation in quantum phases offers valuable insights into the nature of

long-range entanglement, and plays a crucial role in identifying candidates for topological

quantum computing. Fractionalisation refers to the phenomenon where collective excitations

in a system behave as independent particles with fractional quantum numbers, leading to

novel topological properties. In this context, parafermions are exotic emergent excitations

that generalise Majorana fermions [AF16]. In the context of clock models with Zn symmetry,

parafermions arise as excitations that are intrinsically linked to the topological nature of the

system [FK80; Fen12], highlighting the connection between spin systems and their generalisa-

tion to topological phases of matter. The edge states associated with such topological phases

are distinct from conventional boundary states in non-topological systems. Such quasi-particle

modes, present in both 1D and 2D systems, can exhibit (projective) non-Abelian statistics,

described by non-Abelian anyon models. This is similar to the case of Majorana edge modes,

which are known to behave as Ising anyons. As a generalisation, the algebraic properties of

anyon models based on parafermions offer a richer set of gates via fusion and braiding. Beyond

lattice models, parafermions have also been proposed as localised zero-modes in fractional

topological insulators, i.e. counter-propagating edge states with opposite spin using prox-

imity with a superconductor or via backscattering between the counter-propagating states

to generate the necessary topological gap [Lin+12; CAS13; Sni+18; SEG18]. Parafermions

have also been proposed in 2D topological insulators and fractional topological superconduc-

tors [FK09; LLK19] amongst other proposals. In the following, we will explore the properties

of a chain of Z3 parafermions.

4.2.1 The parafermion chain

The concept of parafermion chains extends the Kitaev chain to parafermion operators. This

generalisation, introduced by Fendley in Ref. [Fen12], offers a new platform for exploring non-

Abelian statistics and topological quantum computing. The Hamiltonian of a parafermion
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chain takes the general form

H = −
L−1∑
j=1

Jj(ψ
†
jχj+1αω̄ + h.c)−

L∑
j=1

fj(χ
†
jψjα̂ω̄ + h.c) (4.1)

where L is the length of the chain, and at each site j lie two parafermions χj and ψj . The

parameters α and α̂ are complex coefficients. The ω = e
2πi
3 factors ensure Hermiticity, and

the couplings fj and Jj are real and non-negative. The above Hamiltonian can be rewritten

in terms of the chiral clock model, by re-expressing the parafermion operators as

χj =

(
j−1∏
k=1

τk

)
σj and ψj = ω

(
j−1∏
k=1

τk

)
σjτj , (4.2)

where σ and τ generalise the usual Pauli σz and σx matrices to a three-dimensional space, as

defined in Eqs. 2.30. These respectively characterise the flip and shift Hamiltonian terms in

Eq. 4.1. For j < k, these operators follow the commutation relations

χjψj = ωψjχj ,

χjχk = ωχkχj , ψjψk = ωψkψj , χjψk = ωψkχj (4.3)

and one can verify that χ3
j = ψ3

j = 1 while each operator individually squares to its Hermitian

conjugate. The three physical parameters of significance are the relative strengths of couplings

in Eq. 4.1, and two angles ϕ, ϕ̂ which determine the parameters α and α̂. In the following,

we consider the symmetric case of α = α̂ = e−i
π
6 , which lies at the mid-section between the

ferromagnetic and anti-ferromagnetic phases of the model in order to ensure chiral interactions

and robust edge modes. Recent investigations of the parameter space of the system using

DMRG tools offer detailed insight into the phases of this model [Zhu+15; MWS20].
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Figure 4.1: Schematic of the localised (a) and delocalised (b) edge modes, such that the latter are
described by extended operators as introduced in Eq. (4.5), where the χi and ψi operators
represent left and right parafermions occupying each site of the chain, as per Eq. 4.1.
The shaded curves indicate their support on the bulk parafermions.

4.2.2 Parafermion edge modes

When both time-reversal and spatial-parity symmetries are broken, parafermion zero-energy

modes can emerge in the parafermion chain, localised at its edges. These are characteristic of

topological order, and described by the left and right edge mode operators ΨL and ΨR, which

obey the relations

[H,ΨL] = [H,ΨR] = 0, ωPΨ = ωΨωP (4.4)

where ωP =
∏L
j=1 τ

†
j is the Z3 symmetry generator. These properties respectively describe

that these are zero energy modes, which map between Z3 parity sectors, giving rise to the

three-fold degeneracy of the energy spectrum of H. From Eq. (4.1) it is clear that exact PEMs

exist when fi = 0 ∀ i such that [H,χ1]fi=0 = [H,ψL]fi=0 = 0 for a chain of length L.

Since the system exhibits an energy gap, one expects its PEMs to remain approximate

zero-modes for small enough f/J , with their support on the bulk of the chain exponentially

suppressed in their distance to the bulk parafermions, as shown in Fig. 4.1 (b). The left edge

mode operator of a chiral parafermion was constructed in Ref. [Fen12] up to order f/J (where

the couplings were taken to be uniform across the chain) using an iterative procedure, and

takes the form

ΨL = χ1 − 2ife−iϕ̂X + 2ifeiϕ̂χ†
1Y + ... (4.5)
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(a) (b)

Figure 4.2: Schematic of single qutrit gates on a logical qutrit encoded in four parafermions denoted
by the black dots. Their world-lines are depicted as time flows upwards. Sub-figure (a)
represents a topological S gate produced by parafermion braiding [HL16]. In sub-figure
(b) the closing distance between the world-lines of the first two parafermions represents
the non-topological dynamical gate accessible by parafermion edge mode interaction.

where

X =
1

4J

1

sin(3ϕ)
(ψ1 + e2iϕχ2 + e−2iϕωψ†

1χ
†
2) (4.6)

and Y = −X†. It is straightforward to show that the right edge mode can be derived in a

similar fashion. This procedure can be iterated, with the dimensionless expansion parameter

f/(2Jsin(3ϕ̂)), but does not work at the approach of the parity-invariant ferromagnetic and

anti-ferromagnetic points. One can see that the symmetric points ϕ = π
6 (mod π

3 ) are the

most robust for the existence of edge modes. We note that such edge modes have a strong

character, necessary for such an analysis to hold [Mor+17].

4.2.3 Computing with parafermions

Regardless of the underlying physical system which gives rise to parafermionic excitations,

computation relies on the ability to adiabatically braid and fuse parafermions and distinguish

between their fusion outcomes. Combining these capabilities realises a set of exact unitary

operators and measurements. In Ref. [HL16], Hutter and Loss derived the braiding operators

acting on a logical qudit encoded using four Zn parafermions. In the qutrit case, one can
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write the most general unitary representation of such gates as

Ui =
1√
3

∑
m∈Z3

cm(Λi)
m, (4.7)

where Λi = ωpip
†
i+1 are local parity operators for parafermions pi and pi+1, and cm are

coefficients derived by satisfying far-commutativity and the Yang-Baxter equation [Jim89].

The parity operators can be identified with

Λ2i−1 = X†
i , Λ2i = ZiZ

†
i+1 (4.8)

which admit the same spectrum as that of the generalised qutrit Pauli operators, namely

{1, ω, ω̄}. Hence, an eigenbasis {|0⟩ , |1⟩ , |2⟩} can be defined for each parity operator such

that Λi |mi⟩ = ωm |m⟩i, for m ∈ Z3. These states form a basis of the fusion space of the

pair of parafermions pi and pi+1. The form of the ansatz in Eq. 4.7 expresses the most

general way of combining local phase shifts, introduced by powers of the parity operators Λi,

into a unitary braid operation. Summing over these powers allows the braid operation to

involve different levels or excitations of the parafermions. The coefficients cm represent the

amplitude of each phase shift, enabling a general unitary transformation that captures all

possible braiding operations.

More generally, a three-dimensional Hilbert space is associated with each pair of parafermions.

A qutrit can also be encoded into the fusion space of four parafermions {p1, p2, p3, p4}. The

corresponding Hilbert space can be restricted under a global parity constraint Λ1Λ3 = 1. The

group of unitaries generated by U1, U2 and U3 as defined in Eq. 4.7 acts on this computational

subspace, spanned by the states {|0⟩1 |3⟩3 , |1⟩1 |2⟩3 , |2⟩1 |1⟩3}. The authors showed that the

braids U1 and U1U2U1 (up to global phases) respectively act on the logical space following

X −→ XZ†, Z −→ Z and X −→ Z, Z −→ X†.

These gates have been proven to generate the single qutrit Clifford group [Far14]. In Fig. 4.2(a)
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we show the U1U2U1 braid which realises the topological S gate. However, Clifford unitary

operators alone do not allow for universal quantum computing. In our study, we consider a

similar approach to that in Ref. [BK05], namely allowing the parafermion modes to interact

by bringing them close together so as to generate a dynamical non-Clifford unitary on the

logical space.

4.3 A dynamical gate from parafermion interaction

The main objective of this section is to understand how parafermion edge modes interact

when the fi couplings in Eq. (4.1) are non-zero. This interaction ensures that one can induce

a tunnelling process by transporting such PEMs within a sufficient distance of each other,

running the interaction for a desired time interval and returning the anyons to their initial

positions, whereby a dynamical gate is applied on a qutrit encoded in the degenerate ground

subspace of the system [BK05; SFN15b].

4.3.1 Decimation of the highest-energy term

The strongly interacting nature of parafermion systems makes their analytical study challeng-

ing, particularly the computation of their spectrum.

A common approach for studying complex systems with strong interactions is to employ

numerical techniques such as Density Matrix Renormalisation Group (DMRG) methods. This

provides a powerful method for solving one-dimensional systems by truncating the Hilbert

space efficiently, in order to compute the ground states and low-energy excitations. However,

such techniques are not analytically tractable for the purpose of deriving the full spectrum of

a system, or other critical properties. Real-space renormalisation group (RG) methods offer

an alternative approach, particularly effective in strongly interacting disordered systems. In

Ref. [Fis95], Fisher introduced a real-space RG method for the random transverse-field Ising

model, which proceeds by decimating, i.e., removing, the largest local energy scale in the

Hamiltonian. By iteratively applying this decimation, the system is simplified to an effective
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description that retains the dominant physics at large length scales. Fisher’s method involves

two types of terms: transverse fields hi, and nearest-neighbour couplings Ji. At each RG step,

the largest energy scale is identified:

Ω = max{Ji, hi},

and the term associated with Ω is treated exactly, while neighbouring terms are treated

perturbatively to generate effective couplings. If the largest term is a transverse field hi,

the dominant Hamiltonian term is H0 = −hiσxi , with eigenstates |+⟩i and |−⟩i, with energy

splitting 2hi. The spin at site i is thus ‘frozen’ in the ground state, which effectively eliminates

it from the chain. Then, the perturbation includes the neighbouring bonds:

V = −Ji−1σ
z
i−1σ

z
i − Jiσzi σzi+1.

To second order in perturbation theory, this generates an effective interaction between sites

i− 1 and i+ 1, i.e.

J̃ =
Ji−1Ji
hi

.

The resulting effective Hamiltonian is H̃ = −J̃σzi−1σ
z
i+1. Hence, the original two bonds are

replaced by a single effective bond, and one spin is eliminated from the chain. Alternatively,

if the largest coupling is a bond Ji, the dominant Hamiltonian term is H0 = −Jiσzi σzi+1, with

two degenerate ground states, and an energy gap of 2Ji to excited states. The cluster of sites

(i, i+1) is therefore treated as an effective spin. The perturbation now comes from transverse

fields:

V = −hiσxi − hi+1σ
x
i+1,

which induces tunnelling between the two degenerate ground states. To second order, this

results in an effective transverse field acting on the cluster:

h̃ =
hihi+1

Ji
.
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Hence, after decimating bond Ji, spins i and i + 1 are replaced by one effective spin with

renormalised transverse field h̃. These RG steps can be repeated recursively, and exhibit a

duality between bond and field decimation. An important result in Ref. [Fis95] is that in a

disordered system, as the energy scale of the system decreases, the randomness in couplings

and fields increases without bound. This leads to infinite-randomness fixed points at criticality,

where the system becomes asymptotically dominated by large fluctuations in couplings. In

contrast, a clean system has translational invariance, with uniform couplings. If there exists

a clear hierarchy between energy scales, i.e. h≪ J or h≫ J , the RG method can still yield

reliable approximations. In these regimes, the dominant coupling is well-defined, allowing

controlled perturbative decimation. However, near the zero-temperature phase transition at

h/J = 1, where h ∼ J , there is no natural hierarchy. In this case, higher-order corrections

become significant, and real-space RG loses its predictive power.

We utilise this method for the treatment of a Z3-parafermion chain where the fi onsite

couplings are weak, such that the largest energy is the bond between chain sites as shown in

Fig. 4.3 (a) for a three-site chain. This process freezes the clock states at neighbouring sites

together in a ferromagnetic cluster with an effective field f ′ = fifi+1

2Ji,i+1
. This coupling is weaker

than the individual fi and fi+1 since the new interaction is a next-to-nearest neighbour one,

which decimates the interaction between sites i and (i + 1) (i.e. a parafermion pair). This

process is illustrated in Fig. 4.3 (a-c). Hence, the form of the Hamiltonian remains the same,

apart from an overall constant shift in the spectrum that can be neglected.

4.3.2 Effective Hamiltonian from PEM interaction

We first consider a two-site Z3-parafermion chain with a Hamiltonian H2 describing the two-

site version of Fig. 4.3(a), such that H2 = F2 + V2 where

F2 = − 2√
3
e−iϕω̄(J1ψ

†
1χ2) + h.c.

V2 = − 2√
3
e−iϕ̂ω̄(f1χ

†
1ψ1 + f2χ

†
2ψ2) + h.c.

(4.9)
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Figure 4.3: Schematic of a three-site parafermion chain with weak f and strong J couplings defined
as per Eq. (4.1), where the χi and ψi represent the left and right parafermion operators
at each site of the chain (a). The chains in (b) and (c) represent the decimation of the
terms connecting parafermions in the bulk upon applying the RG method, with a final
weaker effective coupling f ′′.

and we set the phase parameters to ϕ = ϕ̂ = π
6 . To define the Hamiltonian we chose the

representation

σ =


1 0 0

0 ω 0

0 0 ω2

 and τ =


0 0 1

1 0 0

0 1 0

 , (4.10)

to express the parafermion operators in Eq. (4.2). The eigenspectrum of F2 is three-fold degen-

erate, with eigenvalues {−2J1, 0, 2J1} and three degenerate ground states {|e0⟩ , |e1⟩ , |e2⟩}.

When f1 and f2 are non-zero, the edge modes of the parafermion chain are no longer exactly

localised, as described by Eq. (4.5). A perturbative treatment of the effect of F2 on the ground

state manifold, in terms of f1/J1 and f2/J1, produces the effective coupling induced by an

interaction between the edge parafermions χ1 and ψ2 up to arbitrary order. The first order

perturbation vanishes for our system, while the second order terms contribute to an effective
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Hamiltonian given by

H
(2)
2 = −f

2
1 + f22
J1

+
f1f2
J1

(ωχ1ψ
†
2 + ω̄ψ2χ

†
1). (4.11)

where we can see that the first term is a global energy shift which we neglect, and the second

term characterises the interaction of the PZMs, which happens with a coupling f ′ = f1f2
J1

, and

acts on the ground energy subspace with the following Hamiltonian

H
(2)
2 =


0 ω ω̄

ω̄ 0 ω

ω ω̄ 0

 . (4.12)

Following the prescription described in 4.3.1, the form of the second term in Eq. (4.11) in-

dicates that the decimation of the parafermion pair (ψ1, χ2) induces an f ′ interaction be-

tween the edge parafermions. This result is similar to the Majorana case explicitly shown

in Ref. [Shi11] where the coupling between Majorana zero-modes takes an similar form for

L = 2. We iterate the above decimation procedure for a chain of arbitrary length L by deci-

mating bonds from left to right to derive the interaction between the edge modes of a chain

of arbitrary size, as shown in Fig. 4.3. We find that the effective Hamiltonian up to second

order in the energy perturbation is given by

H
(2)
L = − 1

JL−1


L−1∏
i=1

f2i

L−2∏
i=1

J2
i

+ f2L

+

L∏
i=1

fi

L−1∏
i=1

Ji

(ωχ1ψ
†
L + ω̄ψLχ

†
1) (4.13)

The PEM interaction term remains exactly H
(2)
2 in Eq. (4.12), and has an eigenspectrum of

E0 = 2A

E1 = −A

E2 = −A

(4.14)



CHAPTER 4. UNIVERSALITY OF Z3 PARAFERMIONS VIA EDGEMODE INTERACTION87

Figure 4.4: The three lowest energy eigenvalues for H2 with Ji = 1 ∀i and varying f . The numerical
values are indicated by the continuous lines. The perturbative approximations up to
third order are indicated with red dotted lines, which are in agreement with the exact
results for a wide range of f values.

which now discriminates between the basis states up to a global Z3 rotation), where the energy

scale is given by

A =

L∏
i=1

fi

L−1∏
i=1

Ji

. (4.15)

The exact eigenvalues of the three lowest energy states of H2 (for numerical convenience) are

numerically plotted in Fig. 4.4 for fi = f ∀ i and Ji = 1 ∀ i, where the global energy shift was

deducted. The degeneracy is lifted by the splitting of the eigenstates when f ̸= 0. The energy

shifts obtained using the decimation prescription to study the effect of edge mode interaction

are plotted up to third order in f/J , and agree with the exact spectrum in the perturbative,

i.e. low f/J regime.

4.3.3 Asymmetric Z3 parafermion chain

In this subsection we report the same procedure as in 4.3.2 while allowing the parafermion

chain to deviate from the super-integrable point of the chiral phase by setting ϕ = π/6 and

leaving ϕ̂ as a free parameter. In this case, the effective Hamiltonian for the two-site chain
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up to second order in f/J is given by

H
(2)
2 (ϕ̂) = −f

2
1 + f22
J1

− f1f2
J1

(ω̄e2iϕ̂χ1ψ
†
2 + ωe−2iϕ̂ψ2χ

†
1) (4.16)

such that the parafermion interaction takes the form

H
(2)
2 (ϕ̂) =


0 e−2iϕ̂ e2iϕ̂

e2iϕ̂ 0 e−2iϕ̂

e−2iϕ̂ e2iϕ̂ 0

 (4.17)

up to a global energy shift, which maintains the structure of H
(2)
2 in Eq. (4.11), with an extra

phase factor in the interaction term. The eigenvalues of H
(2)
2 (ϕ̂) are given by:

E0 = 2 cos(2ϕ̂)

E1 = − cos(2ϕ̂) +
√

3 sin(2ϕ̂)

E2 = − cos(2ϕ̂)−
√

3 sin(2ϕ̂),

(4.18)

where setting ϕ̂ = π
6 recovers the result in Eq. (4.13). This suggests that by allowing a margin

of deviation closer to the ferromagnetic or anti-ferromagnetic phases of the system, one can

modify the form of the interaction in Eq. (4.17). We note that while the following will focus on

the dynamical gate from the symmetric point, setting the parameter ϕ̂ = π
4 , which still exists

in the chiral phase of the chain, gives rise to an interesting eigenspectrum for the purpose of

quantum computation.
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4.4 A Non-Clifford gate U from parafermion edge-mode in-

teraction

4.4.1 Dynamical gate

The results in section 4.3.2 show that the interaction between the parafermions edge modes is

described by a Hamiltonian which acts non-trivially on the encoded ground space, for which

the leading term is shown in Eq. (4.12). Moreover, one can verify that this interaction (i.e.

Hint = ωχ1ψ
†
L + h.c.) commutes with the parity operator Λ1 defined in subsection 4.2.3 and

therefore preserves the computational subspace [HL16]. Hence, bringing the parafermion edge

modes closer together allows for a dynamical unitary operation given by the evolution of the

interaction Hamiltonian

U ≈ e−iβHintt, (4.19)

where β is a constant which depends on the effective coupling between the edge modes, namely

up to second order
L∏
i=1

fi/
L−1∏
i=1

Ji. (4.20)

4.4.2 U in the Clifford hierarchy

The Clifford hierarchy introduced in Eq. 2.28 is useful to categorise the accessible non-Clifford

gates using the dynamical gate U , and probe geometrically significant gates and eigenstates

for fault-tolerant universal quantum computation. In particular, defining gates such as the

qudit equivalent of the π/8-gate is useful to design magic state distillation protocols. It was

shown in Ref. [CGK17] that a diagonal gate in any level of the Clifford hierarchy for qudits

of dimension d can be written in a diagonal form. The qutrit case is given by

Uv = U(v0, v1, ...) =
∑
j∈Z2

ζvk |k⟩ ⟨k| (vk ∈ Z9), (4.21)
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where ζ = e
2πi
9 , the indices vk are given by: v0 = 0 mod 9, v1 = 6z′ + 2γ′ + 3ϵ′ mod 9,

v2 = 6z′ + γ′ + 6ϵ′ mod 9 and z′, γ′, ϵ′ ∈ Z3. Following this insight, one can see that the

dynamical gate U generated by the parafermion interaction on a logical qutrit state can be

decomposed as

U = H UDH† (4.22)

where U if the gate in eq. 4.19, H is the qutrit Hadamard operator, and UD the diagonal

matrix (up to a global phase) respectively given by the following matrix representations

H =
1√
3


1 1 1

1 ω ω̄

1 ω̄ ω

 , UD ∼


1 0 0

0 1 0

0 0 eiθ

 (4.23)

where θ is specified by the interaction strength and duration in Eq. (4.19).

Furthermore, it was shown that analogously to the qubit case, the qutrit T -gate is required

to be in C(3)3 /C(2)3 , i.e. belong in the third level of the Clifford hierarchy but not be a Clifford

gate. For that, one requires that TXT † ∈ C(2), where X =
∑

j∈Z3
|j + 1 mod 3⟩ ⟨j| is the

qutrit Pauli-X operator. Since we are interested in which gates we can access with U , we

similarly verify its action on X and find that

UDXU†
D = XM(θ) (4.24)

where M(θ) = diag{1, eiθ, e−iθ}. In particular, M(2π3 ) = Z and M(2π9 ) = T where

Z =
∑
j∈Z3

ωj |j⟩⟨j| and T =
∑
j∈Z3

ζj
3 |j⟩⟨j| (4.25)

are matrix representations of the qutrit Z and T (analogous to a qubit π
8 -phase gate) gates.

Hence, for θ = 2π
9 , UD ∈ C(4), i.e. in the fourth level of the Clifford hierarchy.

In general, for a phase θ = 2π
3m , we can write M in the following diagonal form [CGK17]
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where p = 3 is the qudit dimension:

M

(
2π

3m

)
= Pm(k) =

p∑
j=0,k ̸=j

(
|j⟩⟨j|+ e

2πi
3m |k⟩⟨k|

)
(4.26)

where Pm(k) ∈ Dm,p−1, the set of diagonal qutrit unitary operators with precision m and

degree a is defined recursively as

Dm,a = ⟨Um,b⟩ab=1{eiϕ}Dm−1,p−1 (4.27)

where

Um,b :=
∑
j∈Zp

exp(
2πi

pm
jb) |j⟩⟨j| ,

where ⟨Um,b⟩ab=1 is the group generated by the set of diagonal unitary gates Um,b where

b ∈ {1, ..., a}, and {eiϕ} accounts for all global phase factors. This definition implies that

UD ∈ Dm,2. Cui et. al. also showed that for m ∈ N and 1 ≤ a ≤ p−1, Dm,a = C((p−1)(m−1)+a)
d .

According to this result Dm,2 = C
(2m)
d , which signifies that for θ = 2π

3m , the corresponding UD

belong to the 2m-th levels of the Clifford hierarchy, i.e.

UD ∈ C(2m), (4.28)

so that for m ≥ 2, UD is a non-Clifford operator. As stated in Eq. (4.22), U is related to UD

by a Hadamard operator, which belongs to C(2). It is useful here to introduce Lemma 1 below

which follows from Eq. (2.28), along with the observation that H3 = H†.

Lemma 4.1. Let U ∈ C(k) and P ∈ C(1). Then,

(HUH†)P (HU †H†) = HŨH† (4.29)

for some Ũ ∈ C(k−1).

Theorem 4.1. Let U = HVH† where H ∈ C(2), V ∈ C(n) and C(k) is k-th level of the Clifford
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hierarchy, it then follows that U ∈ C(n).

Proof. Let V ∈ C(n) and P be an arbitrary Pauli operator such that V PV † ∈ C(n−1). We

define the unitary operator U = HVH†. By Lemma 1, it follows that

UPU † ∼ Hβn−1H
† (4.30)

where βi is a unitary operator in the ith level of the Clifford hierarchy, i.e. βi ∈ C(i). The case

n = 2 is straightforward, since V PV † ∈ C(1), from which we obtain

(HVH†)P (HV †H†) ∈ C(1). (4.31)

For general n ≥ 3, starting from Eq. (4.30) and again acting on an arbitrary Pauli operator

with Hβn−1H
†, the following holds:

(Hβn−1H
†)P (Hβ†n−1H

†) ∼ Hβn−2H
†, (4.32)

where P ∈ C(1). This procedure can be iterated m times such that for m = 0 :

(HβnH
†)P (Hβ†nH

†) ∼ Hβn−1H
†. (4.33)

Then, for general m, it follows that

(Hβn−mH
†)P (Hβ†n−mH

†) ∼ Hβn−m−1H
†. (4.34)

Finally, when m = n− 3 :

(Hβ3H
†)P (Hβ†3H

†) ∼ Hβ2H† (4.35)

where one identifies Hβ2H
† ∈ C(2). Using equation 4.33 recursively, we conclude that

HβnH
† ∈ C(n), and therefore that U ∈ C(n).

Moreover, using Theorem 1, we show that parametrising θ = 2π
3m gives rise to the gates in
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(a) (b)

Figure 4.5: Magnitude (a) and phase (b) plots for 5000 sampled states computed by creating random
words of length 50 using U and Clifford operations, and applying them on the initial state
|ψ⟩ = |0⟩.

even levels of the Clifford hierarchy, i.e. that

U ∈ C(2m). (4.36)

Setting m = 2 gives rise to the gate U in C(4) directly, from which implementing the qutrit

T -gate is done with the combination

T = X†UDXU†
D. (4.37)

In order to obtain a set dense in SU(d), one requires at least one non-Clifford element in the

operational gate-set as shown in Ref. [CAB12] for prime d by combining results from Nebe,

Rains and Sloane [NRA10]. The above illustrates how the parafermion interaction provides

such gates, by choosing a parametrisation which creates a gate from low levels of the Clifford

hierarchy, namely third and fourth. Additionally, we note that the form of the qutrit T -gate

arises naturally from the eigenspectrum of the interaction Hamiltonian in Eq. (4.17) for ϕ̂ = π
4 .

4.4.3 Universality with U

In the following, we consider a generic logical qutrit state encoded in a set of parafermions,

as described in 4.2.3. In order to study the universality of the parafermion computing scheme
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(a) (b)

Figure 4.6: Magnitude (a) and phase (b) plots of a dense set of 10000 sampled qutrit states using
random words of length 50 composed of the U and Clifford operations. The colour plot
indicates the values of M.

(a) (b)

Figure 4.7: Magnitude (a) and phase (b) plots of states close to the strange states |Sa⟩, |Sb⟩ and |Sc⟩,
within a trace distance of 0.2. The states were sampled using random words of length 50
composed of the U and Clifford operations. The colour plot indicates the values of M.

that encompasses parafermion zero-mode braiding as well as interaction, we created a series

of words W := U1U2...Un such that Ui is chosen randomly from the set {X,S,H,U} where

the first three elements are Clifford operators. In this representation S takes the form

S =


1 0 0

0 ω 0

0 0 1

 , (4.38)

generalising the qubit
√
Z, and H is the qutrit Hadamard defined in Eq. (4.23). The non-

Clifford U of the set is given by Eq. (4.19) with θ = 1 for simplicity. We apply words W
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to an initial logical qutrit state |ψini⟩ = |0⟩, and write the final states |ψfin⟩ = W |ψini⟩ as

|ψfin⟩ = α |0⟩+ eiδ1β |1⟩+ eiδ2γ |2⟩ where α, β, γ ∈ R. We plot the resulting phases (δ1, δ2) and

magnitudes (α, β, γ) from the final states in Fig. 4.5 (a) and (c) by sampling 5000 words of

length 50 and applying them to |ψini⟩. The resulting parameter spaces are densely populated,

which indicates the universality of the braiding Clifford operations supplemented with U .

4.4.4 Contextual qutrit states using U

With the consideration that the set {X,S,H,U} is dense in SU(3), and can be used to generate

arbitrary elements in the qutrit state space using four parafermions, one can characterise such

accessible states by their resourcefulness in the context of magic state distillation protocols

(MSD). Indeed, MSD represents a powerful method to distil reliable quantum states from

multiple noisy counterparts, which proves useful in our context since contrary to the Clifford

operations, the dynamical gate U is non-topological. Moreover, MSD can also be used to

obtain useful non-stabiliser states granted one accesses a state in the appropriate distillable

region to the former. In Ref. [Vei+12], Veitch et. al. showed that all qutrit states with positive

Wigner function are undistillable, and the positive region was charted out in Ref. [ACB12].

In particular, Howard et. al. argued in Ref. [How+14] that contextuality supplies the magic

for quantum computation, and introduced the following contextuality inequality

M≡ max
r

Tr[Arρ]
NCHV
≤ 0 (4.39)

where ρ is an arbitrary qutrit state and the Ar are projectors onto eigenstates of the qutrit

stabilizer operators given by Ax,z = Dx,zA0,0Dx,z† where x, z ∈ Z3 and A0,0 = 1
3

∑
x,zD

x,z

using Dx,z = ω2xzXxZz, where X and Z are the qutrit Pauli operators. The inequality sets

the threshold for a non-contextual hidden variable (NCHV) model reproducing such quantum

tests. We sampled a large set of qutrit states starting from a random choice of basis states,

and plot the negative Wigner states, i.e. violating Eq. (4.39) indicating their contextuality

measure in Fig. 4.6. In Fig. 4.6, we see an overlap of points with different M. This is clearly
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due to the fact that the phase and magnitude projections introduced in the figures above

do not constitute a direct map of the state space, though are useful to witness the coverage

density of the Hilbert space accessible with our parafermion universal gate set. Indeed, we use

this representation as a witness that our gate set provides access to a dense set of negative,

and therefore potentially distillable states. In fact states which considerably violate Eq. (4.39)

can be obtained from short gate combinations (eg. U(t1)HU(t2) |0⟩ given optimal evolution

times t1 and t2). We note from Fig. 4.6 that the majority of the 10000 sample states created

using the full gate-set fulfill the condition M < 0.

There exists a class of states which maximally violates Eq. (4.39), namely the “strange”

states defined by having one negative Wigner function entry of value −1/3 [Vei+14] such as

|Sa⟩ = |1⟩−|2⟩√
2

[JP20]. These are the eigenstates of the qutrit Fourier transform, and are located

at the mid-sections between basis states on the magnitude plot as indicated in Fig. 4.7, with

M = −0.5. Finding a combination of gates to generate |S⟩ exactly is a non-trivial problem.

However, we show in Fig. 4.5 that using U and Clifford gate combinations one can access

states close to the strange states. We indicate in Fig. 4.7 the points of maximal M by labels

|Sa,b,c⟩, and characterise this using the trace distance, i.e. D = Tr(ρ, σ) = 1
2 ||ρ− σ||1 where ρ

and σ are the density matrices of the sampled states and |Sa,b,c⟩ respectively. In Fig. 4.7 states

with Tr(ρ, σ) < 0.2 are plotted to indicate the regions of interest, and Table. 4.1 summarises

the trace distances and M for the three points closest to the strange states in Fig. 4.7. We

note that both points admit a close to maximal violation of Eq. (4.39).

|Sa⟩ |Sb⟩ |Sc⟩

D 0.059 0.057 0.035

M -0.436 -0.422 -0.469

Table 4.1: Trace distances D and non-contextuality inequality M of the three sampled states in
Fig. 4.7 closest to |Sa⟩, |Sb⟩ and |Sc⟩.

Hence, using the Clifford gates supplemented with U one can possibly reach states arbitrar-

ily close to the strange states, allowing for large enough gate sequences, and time evolutions in
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Eq. (4.19). Recent results in Ref. [Pra20] show how one can distil strange states using an MSD

protocol (Ternary Golay Code [Ple68]), with particularly high threshold. This showcases the

advantage of accessing such states.

4.5 Discussion

Motivated by the use of direct short-range interaction between Majorana quasi-particles to

achieve the π
8 -phase gate on a topologically encoded qubit [BK05], we investigated a similar

prescription in the case of Z3 parafermions. We studied the interaction between the edge

modes of a parafermion chain using exact perturbation for low orders, in order to find its

effect on the degenerate ground space of the system, which is used to encode one qutrit. We

find that allowing the edge modes a degree of delocalisation facilitates the generation of a non-

topological dynamical gate. In particular, the structure of this gate can directly be exploited

to realise interesting non-Clifford operations such as the qutrit equivalent of the (qubit) π
8 -

phase gate (provided access to extra Clifford operations), as well as unitaries in higher levels

of the Clifford hierarchy. This is a crucial complement to the topological operations since

the addition of any non-Clifford gate to the Clifford group generates a set of unitaries that is

dense in SU(d) [CAB12]. We illustrated this universality by sampling states obtained with

Clifford operations (as provided by braiding parafermions [HL16]), complemented with the

dynamical non-Clifford gate U , visualised using two parameter spaces which we defined to

characterise qutrit states. While such representations served their purpose within our study,

we refer the reader to the recent Ref. [Elt+21] by Eltschka et al. for a three-dimensional

model of the qutrit state space that captures its prominent and essential geometric features.

We additionally adopted recent results on the universality of one-qudit gates [SK17] in order to

test our gate set supplemented with the non-topological U with success, which was completed

as a sanity check and left outside the scope of our presented results.

The non-Clifford gate accessible through PEM interaction is not topologically protected.

However, fault-tolerance can be reinstated using stabilizer operations in a magic state distil-
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lation protocol [BK05; CAB12; ACB12]. Contextuality represents a critical resource for MSD

and can be characterised by a state-independent measureM [How+14]. Using this result, we

showed that our gate set provides states with contextuality under stabilizer measurements,

which can be exploited in appropriate distillation routines. While we studied the Z3 case for

convenience, one could generalise the above analysis to Zd parafermion edge-mode interaction,

particularly for prime odd d as the emergent gates are of interest in the context of quantum

information processing.

Finally, in additional related work presented in Appendix A1, we demonstrate how the

interaction and braiding of two parafermion edge modes can be simulated using a four-level

Rydberg system. This provides an experimental platform for probing simulated topological

qudits. Alternatively, it has been suggested to use ultra-cold molecules to realize qudits with

different four vibrational levels as shown in [Saw+20] which benefits from its longer coherence

time [Gre+21]. However, the strength of dipole-dipole interactions between molecules remains

less significant than in the case of Rydberg atoms, making them more favourable to implement

a qutrit. Finally, it is worth mentioning that quantum simulations with qutrits might yield

a novel tool for studying quantum many-body physics such as quantum phase transitions

and out-of-equilibrium phenomena. It is of interest that the Hamiltonian of many qutrit

systems with dipole-dipole interactions can show quantum phase transitions or topological

effects, which might yield exotic results in condensed matter physics. As an example, in

recent work from Blok et al. [Blo+21] quantum information scrambling was witnessed on

a superconducting processor which can provide insight into quantum chaos and black hole

dynamics.



Chapter 5

Minimising surface-code failures

using a colour-code decoder

5.1 Introduction

We envisage that a large-scale quantum computer will operate by performing fault-tolerant

logic gates on qubits encoded using quantum error-correcting codes (QEC) [Sho95; Sho96;

CS96; Ter15; Bro+16; CTV17]. As quantum information is processed, a classical decoding

algorithm [Den+02; DP10; WL12; Anw+14; HWL14; TM17; PK21; DN21] will be used

to interpret syndrome information that is collected by making parity measurements over the

physical qubits of a code, to determine the errors it experiences. It is important to design high-

performance and practical decoding algorithms to minimise the number of failure mechanisms

that lead to a logical qubit error in real quantum systems. Such algorithms will reduce the

high resource cost of encoding logical qubits, as better decoding algorithms will allow us to

achieve a target rate of logical failures using fewer physical qubits.

Topological codes, such as the surface code [Kit03a; BK98; Den+02; Fow+12b] and colour

code [BM06; BM07; Bom15; KB15], are among the most promising quantum error-correcting

codes to be realised with quantum technology that is now under development [Ega+21;

99
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Rya+21; Kri+22; Sun+23; AI23; Gup+23]. This is due to their layout which can be realised

with a planar array of qubits with only nearest-neighbour interactions, and their demonstrated

high threshold error rates, such that they can function under significant laboratory noise. A

well-established class of decoders for the surface code [Den+02; WHP03; RH07; Fow+12b] is

based on the minimum-weight perfect-matching algorithm (MWPM) [Edm65; HG23].

We colloquially refer to these decoders as matching decoders. Matching decoders give rise

to high thresholds for topological codes, and have been demonstrated to be highly versatile

in that they can be adapted to correct for different noise models [Fow13a; FM14; HL14;

NB19; Tuc+20; Bon+21; SBB21; Sie+22; Lin+23], as well as different codes [BW20; NB21;

MWB23], including the colour code [Wan+10; DT14; Cha+20; BKS21; SB22; KD23] and

surface code variants [RBH05; HB21; GNM22; Pae+23; Kes+22]. See the perspective article,

Ref. [Bro22] for a discussion.

A matching decoder exploits the structure of the code to identify errors which likely caused

the error syndrome. Specifically, we take subsets of the syndrome data and represent them

on a lattice, such that this syndrome data respects certain symmetries of the code [Kit03a;

BW20; Bro22]. These symmetries are characterised by the fact that errors produce syndrome

violations, commonly known as defects, in spatially local pairs over the lattice. Given such a

lattice, the MWPM algorithm can be used to pair spatially local defects. In turn, this pairing

can be interpreted to identify an error that is likely to have given rise to the syndrome, such

that a correction that recovers the encoded state can be determined.

The performance of a matching decoder is determined by the choice of syndrome lattice.

The surface code has consistently demonstrated high thresholds by concentrating on syndrome

lattices which correct for bit-flip errors and dephasing errors separately. However, without

additional decoding steps [Fow13b; DT14; Hig+23], such decoders cannot identify correla-

tions between these two error types that occur in common error models such as depolarising

noise. See for example Refs. [DP10; Fow13b] where candid discussions are presented on the

limitations of matching decoder variations correcting for depolarising noise. In this work,

we introduce a syndrome lattice for the surface code that accounts for correlations between



CHAPTER 5. CORRELATED MATCHING ON THE SURFACE CODE 101

bit-flip and dephasing errors, which we obtain by exploiting a correspondence between the

surface code and the colour code, commonly known as an unfolding map [BDP12; KYP15;

BS15; CT16]. Through this mapping, we can adopt colour-code decoding algorithms to cor-

rect noise on the surface code. Indeed, a syndrome lattice for our decoder naturally ensues

by adapting the decoding methods introduced in Ref. [SB22].

We find that our unified decoder determines a least-weight correction for all weight d/2

depolarising noise errors for surface codes with even distance d. As such, in the limit of

low error rate, we obtain optimal logical failure rates. In contrast, conventional matching

decoders that do not account for spatially-correlated multi-qubit errors have a logical failure

rate O(2d/2) higher than the decoder we present. We adopt a number of methods to analyse

the performance of our decoder at low error rates. We first evaluate the number of weight

d/2 errors that should lead to a logical failure for both our matching decoder, as well as a

conventional matching decoder. We verify our expressions with exhaustive searching of weight

d/2 errors. In addition, we measure the logical failure rate of our decoder using the splitting

method [Ben76; BV13]. We find the numerical results we obtain to be consistent with our

analytic results in the limit of vanishing physical error rate, thereby verifying the performance

of our decoder in comparison to conventional decoders. We also show that the threshold of

our decoder is comparable to more conventional decoding methods. Finally, we investigate

the performance of our scheme to decode the colour code undergoing bit-flip noise. We find

our analysis sheds light on the role of entropy in quantum error correction with the matching

decoders that are central to our study [SB10; CA18; Bev+19].

This chapter reports the work in Ref. [Ben+23a], and is structured as follows. The quan-

tum error-correcting codes of relevance in this study, namely the surface code and colour code,

were introduced in Sec. 2.3. In Sec. 5.2, we define the concept of symmetries of QEC codes,

apply it to the colour code, then explain how it can be used to obtain matching decoders. We

also explain why the unified decoder is capable of decoding high-weight errors. In Sec. 5.3,

we describe the mapping from surface to colour code, and introduce a noise mapping from

depolarising errors on the surface code to bit flips on the colour code. We present analytical
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Figure 5.1: The manifold which preserves the global symmetry of the square-octagonal colour code
is a punctured torus.

and numerical results supporting the out-performance of the unified decoder over its restricted

counterpart under depolarising noise on the surface code in Sec. 5.4, and we present results

using the same decoder to correct bit-flip noise on the colour code in Sec. 5.5. We finally offer

concluding remarks in Sec. 3.4.

5.2 Materialised symmetries and decoding

We start by reviewing the concept of materialised symmetries for topological quantum codes

introduced in Refs. [Kit03a; BW20; SB22; Bro22]. These symmetries give rise to a parity

conservation law among syndrome defects, that is, any error creates an even number of defects

on the symmetry. We exploit this parity conservation law to make a matching decoder for the

square-boundary colour code. In Ref. [SB22], a global symmetry termed the unified lattice was

derived for the triangular colour code with a single red, blue and green boundary. Notably, the

unified lattice presented in Ref. [SB22] had the topology of a Möbius strip. Due to the unified

lattice’s improved capacity to handle correctable errors at the boundary [GJ23], Ref. [SB22]

reported improvements in both the threshold and logical failure rates for the triangular colour

code using decoding on the unified lattice. Motivated by this, we introduce a unified decoder

for the colour code presented in Sec. 2.3.5.2. In addition to introducing the unified lattice

decoder, we will also review the matching decoder on the restricted lattice [Wan+10; DT14;
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Cha+20; BKS21; KD23]. In later sections, we will compare the restricted-lattice decoder to

the unified-lattice decoder.

5.2.1 Symmetries of the colour code

In this work, we use symmetries of the colour code to devise a matching decoder. We define

a symmetry as a subset of stabilizers Σ such that

∏
s∈Σ

s = 1. (5.1)

This definition is such that the elements of the symmetry Σ necessarily give rise to an even

number of syndrome defects under any error. Given an appropriate choice of Σ we can thus

design a matching decoder, demonstrated with a number of examples [Den+02; Wan+10;

DT14; NB19; Tuc+20; Bon+21; NB21; SFG22; SB22; KD23; MWB23; Hua+22] which are

summarised in Ref. [Bro22].

The colour code is a CSS code defined in Sec. 2.3.5.2. We find the symmetries of the

colour code by considering subsets of its stabilizer generators with specific colours [DT14;

SB22]. These subsets are known as restricted lattices, as we will define below. Our goal is to

derive a single ‘unifying’ symmetry for the colour code with boundaries. We also investigate

other colour code decoders based on restricted lattices. Interestingly, we find that the square-

boundary colour code has a unified lattice with a topology that is distinct from that in

Ref. [SB22], and is given by the manifold in Fig. 5.1. In this subsection, we show how to

derive this unified lattice for the square boundary colour code, which we will adopt in our

matching decoder implementation. In the following, we restrict our interest to the Pauli-Z

stabilizer generators of the colour code, and as such, we omit the superscript label indicating

the stabilizer type, such that Sf = SZf . Moreover, we henceforth refer to the instance of the

square-octagon colour code shown in Fig. 2.4 merely as the colour code, and alternatively as

the square-boundary colour code when paying specific attention to its boundary conditions.

Prior work has established a specific set of bulk symmetries, referred to as restricted lattices
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on the colour code [DT14]. A uv-restricted lattice, denoted by Rw (where u ̸= v ̸= w ̸= u),

is defined as

Rw = {{Sf}col(f )̸=w}. (5.2)

We show the restricted lattices Rb,Rr, and Rg in Fig. 5.2(a). Errors in the bulk of the colour

code preserve defect parity on any single restricted lattice. We show examples of bulk errors

on the restricted lattices in Fig. 5.2(a), where the bottom left error on the lattice flips a single

qubit and creates a single defect of each colour, and the top right error flips two qubits, and

creates two green defects.

Note that the restricted lattices are not symmetries for the colour code with boundaries.

Errors at the boundary may give rise to a single defect on the restricted lattice, see the error in

Fig. 5.2(a) (bottom right). We must therefore introduce a boundary operator to complete the

restricted lattice symmetry; see Refs. [SB22; Bro22] for discussions on boundary operators.

We introduce a boundary operator for each restricted lattice, defined as

b˙u =
∏

col(f )̸=u Sf

(5.3)

where we take the product over all faces of the restricted lattice, i.e. those not coloured

u. This operator is highlighted for each restricted lattice in Fig. 5.2(b). We note that the

boundary operator bu is supported on all boundaries and corners that are not u-coloured.

We find that the inclusion of the boundary operator with its restricted lattice gives rise

to a materialised symmetry [SB22]. A set that includes this boundary operator, bu, together

with the face operators of its respective restricted lattice, Ru, completes a symmetry and

thereby allows us to match lone defects on the restricted lattice to the boundary. Explicitly,
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we write this symmetry as follows

Σu = {bu,Ru},
∏
s∈Σu

s = 1. (5.4)

Figure 5.2: (a) One and two-qubit errors with the corresponding syndromes on the three restricted
lattices of the d = 6 colour code. (b) Stitching the lattices together along the boundary
operators. (c) Edge weights for the matching graph. This configuration is empirically
chosen to correct for all expected minimum-weight uncorrectable errors, but is non-
unique.

We now derive a global symmetry by taking products of smaller symmetries. Relation-

ships among the boundary operators reveal that restricted lattices can be unified by their

boundaries, brbgbb = 1. This is discussed in generality in Ref. [SB22]. Let us describe this

unification procedure in steps. We start by examining the subproduct brbg of this equation;

this is essentially the combination of the gb and rb restricted lattices, as in Fig. 5.2(b) (centre

right). Because the qubits at the right (left) of Rr are the same as those on the left (right)

of a horizontally flipped Rg, this product stitches the symmetries together, thus forming a

cylinder. We now add bb, the product of all faces on Rb to this subproduct. Analogously,

the qubits at the top (bottom) of Rr are the same as that on the bottom (top) of a vertically

flipped Rb, and we join them accordingly, as in Fig. 5.2(b) (left). This creates the manifold

seen in Fig. 5.1.
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We now provide an alternate explanation of the stitching procedure adopted to produce

the unified lattice. To do so, we consider the syndromes created by errors at the lattice

boundary. Let us specifically consider a single qubit error at the lattice boundary, such as

the single error shown at the green boundary in Fig. 5.2(a) (bottom right). We concentrate

our attention on the two single defects created by this error on both the Rr and Rb lattices.

Ideally, these defects should be paired by a single low-weight edge. As such, we can consider

stitching these two restricted lattices together along the green boundary, such that these two

defects are adjacent on the unified lattice. Next, by analogy, we join Rr with Rg along the b

boundaries. The system takes on the topology of a torus with a disk-shaped puncture, again

resulting in the manifold of Fig. 5.1.

Let us additionally examine a single qubit error at the corner of the lattice to show how we

stitch the corners of the unified lattice. See for example the top left error in Fig. 5.2(a). This

error produces syndromes only on Rb and Rg, not on Rr. Consequently, we would like our

matching decoder to pair defects across any corner of Rb to the equivalent corner of Rg. This

manifests on the unified lattice as a string stretching from the top of the cylinder diagonally

across to the sheet-like handle.

5.2.2 Matching decoders code symmetries

We can use symmetries to design decoders based on minimum-weight perfect matching. See

Ref. [Bro22] for a discussion. Here, let us briefly review the restricted-lattice decoder and the

unified lattice decoder that we use throughout this work.

Prior work has proposed using the individual restricted lattices for error correction [KD23].

In the restriction-lattice decoder, defects on each of the Rg and Rb lattices are matched

within the lattice or to the boundary operator that completes the symmetry to produce local

correction operators {Cg, Cb}. In Fig.5.3(a), for instance, these consist of Pauli corrections on

the qubits lying along the highlighted paths. In order to apply a global correction, the union

of the local correction operators Cg ∪ Cb is applied to the underlying physical qubits.

The unified-lattice decoder is obtained from the global symmetry of the colour code de-
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Figure 5.3: Here we consider a weight-4 error on a d = 8 colour code lattice, which can be interpreted
as a weight-2 error on the d = 4 surface code as per Sec. 5.3, further shown in Fig. 5.5.
We examine correction operators found by matching using (a) the restricted decoder,
and (b) the unified decoder. A correct (incorrect) pairing of defects that returns the
encoded qubit to the correct (incorrect) state in the logical subspace is depicted in grey
(yellow). Matching on the restricted lattice is unable to reliably determine the correct
defect pairing. Matching on the unified lattice correctly pairs the syndrome defects when
the error string contains a Pauli-Y error, by having a demonstrably lower weight.

scribed in the previous subsection, on which errors give rise to pairs of defects. Given a

collection of defects on the unified lattice, the matching-based decoding problem reduces to

finding a pairing between these defects that is created by an underlying error with maximal

probability. Towards this goal, a matching between a pair of defects is assigned a weight

inversely dependent on the probability of errors on all the qubits along the shortest path

connecting the two. As a result, decoding is equivalent to finding the perfect matching of
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minimum weight on this weighted graph.

It was seen in Ref. [SB22] that the choice of edge weights on this graph can be determined

by examining simple error patterns at the bulk, boundary and corners of the unified lattice.

We apply the same basic concept in this work, but we set the edge weights as free parameters

wA to bulk edges on Rg and Rb, and wB on Rr, as shown in Fig 5.2(c), where we adopt

a matching graph which allows for the correction of all expected errors when the global

symmetry is respected. In the following sections, specific weights were found by numerical

tests depending on the noise model.

Given a matching on a particular lattice – unified or restricted –, we now lay out the

procedure to obtain the relevant correction to the logical qubit subjected to X errors on the

underlying physical qubits. Note that the following procedure is valid for both the restricted

and unified lattices. We first apply the Pauli-Z corrections to qubits along the shortest paths

between the pairs of defects determined by the matching algorithm. This returns the logical

qubit to the code space. During this process, we track the parity of a logical operator, here

the vertical Z logical depicted in Fig. 5.3. We successfully return the encoded qubit to the

correct logical state if the decoding algorithm has determined that the parity of matched

paths across this logical operator path is the same as the parity of the number of physical

Pauli errors on the qubits along the logical, a method discussed in more detail in Ref. [Bro22;

SB22]. In Fig. 5.3, if the decoder finds the yellow matching, the corresponding correction,

together with the initial error, applies X to the encoded qubit; the grey matching returns the

lattice to the correct state. Henceforth, we will refer to the MWPM-based decoder applied to

syndrome data on the restricted (unified) lattice as the restricted (unified) decoder.

5.3 Mapping surface code errors to colour code errors

We have introduced the surface code and the colour code in Sec. 2.3.5, and proposed a decoding

procedure for bit-flip errors acting on the colour code by matching on either the restricted

lattice or the unified lattice. We now describe the local mapping from the surface code onto
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Figure 5.4: The surface-colour code mapping. (a) The colour code with an overlay of two surface
codes - blue and green - to indicate their positioning with respect to the colour code
stabilizers, along with weight-2 bit-flip errors and their syndromes on the colour code.
(b) Correspondence of the indicated weight-2 bit-flip errors on the colour code to single-
qubit depolarising noise on the surface codes. For a given error on the colour code in (a),
the corresponding error for the blue (green) surface code is shown on the blue (green) edge
across the red squares in (i-iii), with the surface code stabilizer measurements to its left
and top displayed in the same colour. (c) Stabilizers and logical operators of the J4, 2, 2K
code defined on a single square with qubits on its vertices. The displayed orientation is
used for a red square traversed by a horizontal (vertical) edge of the blue (green) surface
code. In the alternate case, an orientation rotated by 90◦ applies. (d,e) Stabilizers of the
(d) blue and (e) green surface codes obtained from the mapping in Sec. 5.3. The star
operators of the blue (green) surface code are Pauli-X stabilizers, where each X operator
is encoded as the logical X1(X2) operator of the J4, 2, 2K codes shown in (c). The face
operators are Pauli-Z stabilizers where each Z operator is encoded as the logical Z1(Z2)
operator of the J4, 2, 2K codes.

the square-octagonal colour code, inspired by the unfolding of the colour code [KYP15], and

introduce a mapping from depolarising errors on the former to spatially-correlated pairs of

bit-flip errors on the latter. We exploit this mapping to adopt the restricted-lattice and

unified-lattice colour code decoder for the surface code undergoing depolarising noise.

The two-dimensional colour code is locally equivalent to two copies of the surface code [Yos11;

BDP12; BS15; KYP15; CT16], as mentioned Sec. 2.3.5. We first describe this equivalence

via operators, before providing a formalism to reconstruct it. As a guide for the mapping, we

show the surface code in blue overlaid with the colour code in Fig. 5.4(a). The figure addi-
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tionally depicts a second copy of the surface code in green, laid out on the dual lattice, that

duplicates the syndrome of the blue copy. Considering two copies of the duplicate syndrome

facilitates the unfolding map between two copies of the surface code and the colour code.

Let us begin by stating the equivalence between the different lattice elements under this

mapping, by considering the surface code displayed with a blue lattice in Fig. 5.4(a). First, we

map the vertex and face operators of this blue surface code onto octagonal face operators of

the colour code. Specifically, each surface code star operator corresponds to a blue octagon Sf

of the colour code and, likewise, each face operator of the surface code corresponds to a green

octagonal face operator in the colour-code picture Sf . This is shown in Fig. 5.4(a), where the

star and face operators of the blue surface code align with their corresponding colour code

stabilizers exactly, thereby illustrating this mapping. We also show the surface code displayed

with a green lattice, which represents a rotation of the blue counterpart, and where a similar

argument holds.

Now that we have identified stars and plaquettes of each surface code with octagonal face

operators of the colour code, we must choose errors in the colour-code picture that give rise

to equivalent syndromes in the surface code picture. A Pauli-Z error on the surface code will

violate its two adjacent vertex operators, as shown in Fig. 2.3. In the colour code picture,

this error will violate the corresponding blue octagonal operators as shown in Fig. 5.4(b)(i)

where we indicate this Z-flip on the blue surface code edge. To obtain this violation in the

colour code picture, we add two horizontal bit-flip errors onto the single red face of the colour

code on which the edge lies such that its two adjacent blue octagons support a syndrome, see

Fig. 5.4(a). Similarly, a Pauli-X error in the surface code picture will violate two adjacent face

operators, which correspond to green octagons in the colour code picture in Fig. 5.4(b)(ii).

We find that the error in the colour code picture that violates these appropriate colour code

octagons is a pair of bit-flip errors lying vertically on a single red square-shaped face operator

shown in the corresponding diagram in Fig. 5.4(a).

We can obtain a Pauli-Y error by adding a Pauli-Z error and a Pauli-X error to the same

red face of the colour code, which results in a diagonal bit-flip pair on the latter. Since the
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surface code defined using the green lattice is rotated, so is the orientation of the errors it

detects, namely a horizontal(vertical) pair of bit-flips on such a red plaquette in the colour

code picture corresponds to a Pauli-X(Z) error, also shown in Fig. 5.4(a) and (b).

We have now proposed an error model that violates pairs of either blue or green face

operators according to the mapping from the surface code undergoing a depolarising noise

model. As we have alluded, single qubit errors in the surface code picture correspond to

two-qubit errors supported on individual red faces of the colour code. Indeed, we see that the

edges in the surface code picture each have an underlying red face operator in the colour-code

picture, where the red square inherits an orientation from the underlying edge. We therefore

identify qubits in the surface code picture with red faces in the colour code picture. In what

follows, it will be helpful to keep this identification in mind as we describe the mapping

more rigorously. We note that this mapping is non-trivial in the sense that the commutation

relations of the errors are not preserved. Nevertheless, we find a valid decoder for the surface

code with the equivalence we have proposed.

Let us make this mapping more concrete using the more rigorous language of the unfolding

map [BDP12; BS15; KYP15]. Specifically, we duplicate the surface code supporting the

syndrome, where the second copy differs from the first by a transversal Hadamard rotation.

We show the duplicate surface code syndrome on the dual lattice in green in Fig. 5.4. We then

put the two duplicate copies through a folding map, see e.g. Refs. [BDP12; KYP15; CT16].

Specifically, we will consider the unfolding map of Ref. [CT16] where pairs of surface code

qubits are encoded with the J4, 2, 2K-code. See also Ref. [Bre+11] on this equivalence. This

four-qubit code can be regarded as an inner code for a concatenated model with the surface

code as the outer code. All together, this concatenated model gives the square-octagon colour

code we have studied throughout this work.

Under this mapping, the inner J4, 2, 2K code can be regarded as a red face of the colour code.

Indeed each disjoint red face supports the four qubits of the J4, 2, 2K code lying on its vertices

as shown in Fig. 5.4(c). Furthermore, the stabilizer group of the inner code is generated by

SX = XXXX and SZ = ZZZZ, which coincide with the red face operators of the square-
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octagon colour code. Moreover, the inner code encodes two logical qubits represented by

the operators X1 = XIXI, Z1 = ZZII, X2 = XXII and Z2 = ZIZI visualised per the

convention in Fig. 5.4(c).

We then express the stabilizers of the blue and green surface codes respectively, using

the two logical operators of the inner code {X1, Z1} and {X2, Z2}, where the first(second)

qubit encodes the blue(green) copy of the surface code, as shown in Fig. 5.4(d) (Fig. 5.4(e)).

We emphasize that that the orientation of the edge qubit of the surface code dictates the

orientation of the encoding of the J4, 2, 2K code. See Fig. 5.4(c). Indeed, a red square associated

with a horizontal (vertical) edge of the blue (green) surface code is encoded as per Fig. 5.4(c),

but when traversed by a vertical edge, this encoding must be rotated by 90° to preserve our

mapping.

Hence, in this mapping, a Pauli operator on a surface code qubit corresponds to a pair

of Pauli operators on the red stabilizer lying on the associated edge, where this pair defines

the appropriate logical operator of the J4, 2, 2K code. This is summarised in the following

equivalences between stabilizers of the surface codes, colour codes, and product of logical

operators of the inner code

SXSC,b ≡ SXf,b ≡
∏
r∈∂f

X
r
1 (5.5)

SZSC,b ≡ SZf,g ≡
∏
r∈∂f

Z
r
1 (5.6)

SXSC,g ≡ SXf,g ≡
∏
r∈∂f

X
r
2 (5.7)

SZSC,g ≡ SZf,b ≡
∏
r∈∂f

Z
r
2 (5.8)

where the product over r ∈ ∂f indicates that the logical operator is applied to all four red

square operators on the boundary of the appropriate colour code stabilizer.

Finally, since the surface code on the green lattice is a duplicate of its blue counterpart up

to a Hadamard rotation, we identify certain logical operators of the inner code to complete our
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Figure 5.5: The d = 4 surface code, with depolarising errors giving rise to the corresponding set of
syndrome defects seen in Fig. 5.3 on the colour code.

mapping. Indeed, under the duplication, with the Hadamard rotation, we have the following

relations between pairs of logical operators of the inner code, namely X1 ≡ Z2 and Z1 ≡ X2.

This ensures the syndrome correspondence in Fig. 5.4(a) such that all depolarising errors on

the surface code now have a one-to-one correspondence with a commuting two-qubit bit-flip

error model. Most importantly, this enables us to use a decoder for a CSS code [CS96] to

correct after depolarising noise on the surface code, represented in the colour code picture.

5.4 Surface code performance under depolarising noise

In this section, we study the surface code under depolarising Pauli noise on data qubits and

perfect measurements. We compare the performance of the surface-code decoder we have

introduced to the conventional matching decoder. Under the mapping, these correspond to

the unified decoder and the restricted decoder, respectively.

Our analysis begins by counting the number of minimum-weight uncorrectable errors on

the lattice for each decoder. The unified decoder provides an advantage that results in a logical

error rate suppression in the low physical error-rate regime. We interrogate our analytical

estimates numerically using the splitting method [BV13]. Additionally, we investigate the

threshold performance of the code numerically using PyMatching [HG23].

5.4.1 Correcting Pauli-Y errors on the surface code

Under the depolarising noise channel, introduced in Sec. 2.3.3.1, the probability of each single-

qubit Pauli error is uniform. Since Y = XZ, breaking Y s down into X and Z creates corre-
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lated X and Z errors and corresponding correlated syndromes among the star and plaquette

stabilizers. However, these correlations generally elude decoders which treat X and Z errors

independently. As we will argue, the unified decoder identifies these correlations.

We use the unified decoder on the syndrome of the surface code mapped onto the colour

code lattice to correct for a depolarising noise model. This is motivated by the ability of

such a decoder to identify Pauli-Y errors on the surface code, since each one gives rise to a

distinct syndrome pattern on the unified lattice. Indeed, a Pauli-X error on the blue surface

code introduces a syndrome defect on Rr and Rb as shown in Fig. 5.4. Similarly, a Pauli-Z

error leads to a syndrome on Rr and Rg, and finally a Pauli-Y error is distinguished by its

syndrome featuring on all three restricted lattices. Hence, we find that in the presence of at

least one Y error, decoding on the unified lattice captures correlations that any one or pair

of restricted lattices remain oblivious to.

To illustrate our argument, we provide an example of a minimum-weight uncorrectable

error on the surface code with one Pauli-Y that corresponds to a weight d/2 bit-flip error

on the colour code in Fig. 5.3. Note that due to the presence of a diagonal bit-flip pair on

a red stabilizer of the colour code, the syndrome on the unified decoder spans all three sub-

lattices and a lower-weight matching path emerges for the successful correction (Fig. 5.3(a)).

We numerically find that this improvement from the unified decoder is valid for a range of

values of weights wA and wB in the matching graph depicted in Fig. 5.2(c). For example,

wA = wB = 1 achieves an optimal number of successful corrections.

5.4.2 Path-counting of failure mechanisms

The advantages of using the unified-lattice decoder are very apparent in the limit where

physical error rates p are low. In the regime of asymptotically low p, the logical failure rate

is dominated by minimum-weight failure mechanisms, such that the following holds

P 0,n := lim
p→0

P (p, n) ∼ Nfailp
d/2 (5.9)
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where Nfail is the entropic term that denotes the number of least-weight errors leading to a

logical failure.

In what follows we evaluate the entropic term for both the restricted-lattice decoder and

the unified lattice decoder, N res
fail and Nuni

fail respectively. We find the restricted-lattice decoder

has an exponentially larger number of failure mechanisms in the low error rate regime than

the unified-lattice decoder as a function of the code distance:

N res
fail/N

uni
fail = 2d/2. (5.10)

We attribute this factor to the ability of the unified-lattice decoder to identify the occurrence of

Pauli-Y errors. First, we count N res
fail and Nuni

fail exactly. In the following section we interrogate

the relative performance of the two decoders numerically, and verify our expressions with

exhaustive testing.

We now evaluate the number of least-weight errors that lead the surface code to failure

using the restricted-lattice decoder. This decoder cannot distinguish between Pauli-Z or Pauli-

Y errors. As such we count the number of weight d/2 configurations of errors along a major

row of the colour-code lattice, where we say a major row is a row of d red plaquettes. In

contrast, a minor row of the lattice is a row of d − 1 red colour-code plaquettes. Since the

lattice is square, it supports d major rows and d− 1 minor rows.

The probability of d/2 Pauli-Z or Pauli-Y errors occurring is (1− p)n−d/2(2p/3)d/2. There

are d major rows on which one of these error configurations can occur, and on each of these

rows, there are d!×(d/2)!−2 distinct configurations the d/2 errors can find on the d plaquettes

of the major row. We therefore find that

P
res
0,n = (1− p)nd

2

(
d
d
2

)(
2p

3(1− p)

) d
2

(5.11)

≈ d

2

(
d
d
2

)(
2

3

) d
2

p
d
2 . (5.12)

where we include an additional prefactor of one half due to the matching decoder correctly
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guessing a correction that successfully corrected the error with probability 1/2 and, on the

right hand side, we assume that 1−p ≈ 1 in the limit of very small p. Expressing the equation

this way allows us to read off the entropic term,

N res
fail =

d

2

(
d
d
2

)
(2/3)d/2. (5.13)

We verify Eq. 5.13 by exhaustively testing the restricted-lattice decoder for all configura-

tions of weight d/2 across the lattice of distances d = 4, 6 and 8.

Let us next evaluate the entropic term for the unified-lattice decoder. As discussed in

Sec. 5.4.1, unlike the restricted-lattice decoder, the unified-lattice decoder allows us to identify

correlations between the syndromes caused by Pauli-Y errors to distinguish Pauli-Y errors

from Pauli-Z errors. The unified-lattice decoder fails when d/2 Pauli-Z errors are configured

along a major row of the lattice. This occurs with probability (1 − p)n−d/2(p/3)d/2. These

errors may be configured along the d sites of one of the d major rows. We therefore obtain a

logical failure rate in the low error rate limit,

P
uni
0,n = (1− p)nd

2

(
d
d
2

)(
2p

3(1− p)

) d
2

(5.14)

≈ d

2

(
d
d
2

)(
1

3

) d
2

p
d
2 . (5.15)

where, as in the restricted-lattice decoder case, a factor 1/2 is included to account for error

configurations where the decoder guesses the correct solution. We can therefore identify the

entropic term for the unified-lattice decoder

Nuni
fail =

d

2

(
d
d
2

)
(1/3)d/2. (5.16)

We again verify this numerically by exhaustively generating all errors of weight d/2 on the

lattice, and decoding each error using the unified lattice for surface code distances d = 4, 6

and 8, using different values of wA and wB. We find that a range of weight configurations
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Figure 5.6: The logical failure rate data (in logarithmic scale) for the surface code under low physical
error rates computed using the splitting method [BV13] to test the restricted and unified
decoders for even surface code distances. The dashed and solid lines respectively indicate
the fits obtained using Eqs. 5.13 and 5.16 for the restricted and unified decoders.

minimises the entropic term by achieving Eq. 5.16, with the constraint that 0 < wB < δ,

where δ is a constant changing with code distance. We numerically find that when wA ≈ wB,

the entropic term is recovered. With Eq. 5.13 and Eq. 5.16 evaluated, the ratio stated at the

beginning of this subsection, Eq. 5.10 is readily checked.

5.4.3 Low error-rate performance

We adopt the splitting method [BV13] for the simulation of rare events, in order to numerically

investigate logical failure rates at low physical error rates p. These estimates are used to

numerically verify the analytical expressions derived from path-counting in Sec. 5.4.2.

As discussed in Refs. [BV13; Bev+19], the splitting method is used to evaluate ratios of

logical failure rates Rj = P (pj , n)/P (pj+1, n) evaluated at physical error rates pj and pj+1

that are similar. The product of many such ratios can be used to interpolate between the high

error rate regime where logical failure rates can be obtained using Monte Carlo sampling, and
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the path-counting regime discussed in the previous subsection where logical error rates are

very small. Each term in a given ratio is evaluated by averaging over a sample of failure paths

drawn from the appropriate error distribution. We note that when sampling these errors, we

heuristically chose a number of steps such that statistical fluctuations are smaller than the

desired logical error rate precision, and discard 50% of the total generated Metropolis samples

to ensure that the mixing time of the Markov process was surpassed. We adopt the heuristic

sequence of ratios Rj with physical error rates pj+1 = pj2
±1/

√
wj , as proposed in Ref. [BV13]

to minimise statistical error, where wj = max(d/2, pjn) for a code distance d.

We use this splitting method to numerically interpolate between initial estimates obtained

using Monte Carlo sampling at p = 5%, and the analytical path counting results in the low

error rate regime derived in Sec. 5.4.2. Our numerical results show good agreement with our

analytical estimates for the logical error rates for both the restricted and unified decoders. In

Fig. 5.6 we compare logical failure rates obtained with the splitting method to our analytical

expressions.

5.4.4 Thresholds

The threshold is a critical physical error rate pth below which a topological code is protected

such that error correction succeeds with an probability exponentially suppressed as the code

distance increases. Decoding becomes ineffective above this threshold, and the logical failure

rate increases with the size of the code. We fit the logical failure rate data from Monte Carlo

sampling near the threshold to a second order Taylor function given by

f = Ax2 +Bx+ C (5.17)

where x is the re-scaled error rate x = (p − pth)1/ν [WHP03]. We find a fitted threshold of

pth ∼ 15.4(7)% for the restricted decoder under depolarising errors using the data shown

in Fig. 5.7, where we obtain a fitted critical exponent ν ≈ 0.611, and Taylor fit constants

A = 0.471, B = 0.540 and C = 0.153. For the unified decoder, we find that the threshold
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estimate varies slightly with the chosen values of wA and wB. We considered multiple weights

wB with fixed wA = 1 for edges of the matching graph in Fig. 5.2(c), and find a threshold

of pth ∼ 15.2(1)% using wA = 1 for wB = 0.5, as shown in Fig. 5.7 where ν = 0.664,

A = 0.606, B = 0.452 and C = 0.127. We provide the data for different weight configurations

in Appendix A3, where the threshold is still comparable to that of the standard surface code,

with a minor discrepancy.

5.5 Colour code performance under bit-flip noise

In this section, we compare the performance of the restricted and unified decoders used

to decode the colour code undergoing independent and identically distributed bit-flip noise

and perfect measurements, where a bit flip occurs on each qubit with probability p. We

begin by counting the number of minimum-weight uncorrectable errors on the lattice for each

decoder. We show that using the unified decoder achieves a higher success rate, providing

an advantage in the low physical error-rate regime. We verify the estimates numerically

using the splitting method as was done in Sec. 5.4.3 [BV13], as well as direct Monte Carlo

sampling. We investigate the threshold performance of the code numerically assuming perfect

measurements.

5.5.1 Path-counting

We start by counting the number of minimum-weight uncorrectable error configurations on

each row of the colour code nresfail of distance D supporting M = D
2 square plaquettes. We

define these new parameters to avoid confusion with the surface code parameters used in

earlier sections. Since the lattice is square, there are M such rows. Using the restricted

decoder, the number of errors that cannot be corrected is given by counting configurations

consisting of errors lying on such rows. The possible paths an error can take depend on the

configuration of X errors in an error string lying on each red square of a row, where each

square can support a single-qubit X error, or a two-qubit error lying either on the two vertex
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Figure 5.7: The logical failure rate Pfail (in logarithmic scale) as a function of physical error rate p
for the restricted and unified surface codes of even distance d, under an i.i.d depolarising
noise channel. The threshold pth is indicated by the intersection. Edge weights were set
to wA = 1 and wB = 0.5 in Fig. 5.2(c). Each dashed line indicates the fit to a Taylor
expansion for a given system size, and the error bars show the standard deviation of the
mean logical failure rate where each data point is collected using > 6× 104 Monte Carlo
samples.

qubits of a horizontal edge, or on diagonal vertices of the square. Placing any of these four

combinations on ⌊M/2⌋ locations on a row accounts for a number of strings

nresfail =

⌊M2 ⌋∑
k=0

M
k

M − k

M − 2k

 4k4M−2k, (5.18)

where k is the number of red plaquettes that support a weight-2 error, and M − 2k the

number of weight-1 errors. Hence, the total number of logical failures on the restricted lattice
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corresponds to the number of equivalent configurations supported on all M rows, namely

N res
fail =

1

2
nresfailM

=
M

2

⌊M2 ⌋∑
k=0

M
k

M − k
k

 4M−k
(5.19)

where the prefactor of one half is due to the classical decoder misidentifying the right correction

with a 50% probability.

We consider the MWPM problem on the unified lattice shown in Fig. 5.2(c). Unlike

decoding on the restricted lattice, a diagonal error gives rise to a syndrome mapped onto all

sub-lattices of the unified lattice, as depicted in Fig. 5.3. On each row supporting M square

plaquettes, the number of weight-M error configurations that cannot be corrected is given by

nunifail =

⌊M2 ⌋∑
k=0

M
k

M − k

M − 2k

 2k4M−2k, (5.20)

where k is the number of weight-2 errors that can reside on each square plaquette. As for the

restricted lattice, the total number of logical failures when decoding on the unified lattice is

Nuni
fail =

1

2
nunifailM

=
M

2

⌊M2 ⌋∑
k=0

M
k

M − k
k

 4M− 3
2
k.

(5.21)

We numerically verified these estimate by exhaustively generating all error strings of weight

M on each M -square row of the colour code, mapping the error configuration respectively to

a restricted and unified lattice, and running the MWPM decoder.
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Figure 5.8: The logical failure rates at low physical error rates (in logarithmic scale) computed using
the splitting method [BV13] for the restricted and unified decoders on the colour code
under i.i.d bit-flip noise. For the latter, edge weights were set to wA = 1.1, wB = 1. The
dashed and solid lines respectively indicate the fits using Eq. 5.19 and 5.21.

5.5.2 Low error-rate performance

We implement the splitting method under the assumption of errors drawn from an i.i.d bit-flip

noise on the colour code, which can be written as

πj(E) = p
|E|
j (1− pj)n−|E| (5.22)

where n is the number of physical qubits in the colour code, |E| the weight of an error operator

E. Once again, we adopt the sequence pj+1 = pj2
±1/

√
wj to split ratios [BV13] to minimise

statistical error, where wj = max(d/2, pjn) for a code distance d. We numerically interpolate

between initial estimates obtained using Monte Carlo sampling at physical error rate p = 5%,

and the analytical path counting results in the low error rate regime shown in Sec. 5.5.1.

The results are shown in Fig. 5.8 where a MWPM decoder was executed on the colour code

restricted and unified lattices respectively, under bit-flip noise and perfect measurements. For
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the distances considered, the analytic estimates in Eqs. 5.19 and 5.21 accurately predict the

dominant behaviour of the error chains in the low error rate regime, as indicated by the solid

line fits. We note that in order to correct for all expected minimum-weight configurations

for bit-flip errors on the colour code there is a constraint on the edge weights, namely that

wA > wB, which does not exist is the case of depolarising errors on the even-distance surface

code. The source code and data used in the figures in this manuscript can be accessed at

https://github.com/abenhemou/unimatch.

5.5.3 Thresholds

The restricted decoder recovers the threshold pth ∼ 10.2% under independent and identically

distributed bit-flip noise, see Fig. 5.9, where we obtain a fitted critical exponent ν = 0.628, and

Taylor fit constants A = −0.0419, B = 1.136 and C = 0.165 for Eq. 5.17. This is consistent

with that of the surface code on a square lattice [WHP03; DT14]. In the case of the unified

decoder, we considered multiple weights wA with wB = 1 for edges of the matching graph

in Fig. 5.2(c), and find a peak in threshold at pth ∼ 10.1(3)% around wA = 2.1 (Fig. 5.9).

Surprisingly, the unified decoder demonstrates a marginally lower threshold than the restricted

decoder. This pattern is consistent with the threshold comparison applied to the surface code

in Sec. 5.4.4. We hypothesize that in the near-threshold regime, the presence of additional

defects on the unified lattice contributes to an increased number of incorrect minimum-weight

paths that the decoder may choose, leading to this reduction.

5.6 Discussion

In conclusion, we demonstrated a method to reduce the logical error rate of the surface code

under depolarising errors. This was done by first outlining a mapping from the surface to

the colour code. We then showed that this noise model on the surface code can be mapped

onto a set of two-qubit bit-flip errors on the colour code. Subsequently, we constructed a

unified lattice in the form of a punctured torus, for use under a minimum-weight perfect

https://github.com/abenhemou/unimatch
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Figure 5.9: The logical failure rate Pfail (in logarithmic scale) as a function of physical error rate p for
codes of different distance d, under an i.i.d bit-flip noise model. The threshold indicated
by the intersection is found to be pth ∼ 10.2% for the restricted decoder (top). The
unified decoder threshold (bottom) is pth ∼ 10.1(3)%, using edge weights wA = 2.1 and
wB = 1 with the matching graph in Fig. 5.2(c). Each dashed line indicates this fitting for
a given system size, and the error bars show the standard deviation of the mean logical
failure rate where each data point is collected using > 6× 104 Monte Carlo samples.

matching decoder to correct high-weight errors. To evaluate the performance of our decoder

we analytically and numerically investigated the logical failure rates at low physical error

rates and verified their agreement. For even code distances, our unified decoder achieves a

least-weight correction for all weight d/2 depolarising errors on the surface code. We also

demonstrated an exponential suppression in the logical error rate for the colour code under

independent and identically distributed bit-flip noise, extending the work in Ref. [SB22] to

the square-octagonal colour code with boundaries.

It will be interesting to determine how the performance of our decoder compares to other
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practical decoders that are designed to account for depolarising noise, both in terms of error-

correction performance and runtime. For instance, both iterative [DT14; Fow13b] and belief-

matching decoders [Hig+23] have been proposed to augment matching decoders with the

ability to take advantage of correlations between the syndromes measured by the star and

plaquette operators. To complete such a comparison, it will first be necessary to determine

the performance of other decoding algorithms in the limit of low error rate. Of course, the

matching decoder we have presented here is compatible with other decoding techniques such as

belief-matching and two-stage decoding [CA18; Rof+23], at the cost of added computational

complexity, and it may be interesting to design versatile decoders for other codes by adapting

these techniques. However, it is important to note that our decoder only requires a single

invocation of an MWPM decoder to address Pauli correlations. As a result, it benefits from

the expected linear time complexity of MWPM [HG23], with only a constant factor increase

of 4 in the size of the matching graph. One could also readily combine our decoder with fast

decoders such as union-find [DN21; CB23; GB23] or weighted union-find [HNB20] to improve

its runtime. We note that we can also generalise our versatile matching decoder to deal

with non-trivial syndrome correlations that occur in fault-tolerant error correction [WHP03;

RBH05; Fow+12b], and may be adapted for use in other variations of the surface code with

boundaries such as Floquet codes [HH22; Kes+22]. One might also explore generalising our

decoding method to surface codes with alternative topologies, or perhaps using other colour

code symmetries. Both of these directions are discussed in Appendix F of Ref. [SB22].

Broadly speaking, we have shown that we can obtain a matching decoder for the surface

code capable of correcting depolarising noise by mapping its syndrome onto an enlarged

state space, namely, the syndrome of the colour code. It will be interesting to explore this

method further to determine the extent to which it generalises. For instance, it is compelling

to investigate whether we obtain near-optimal performance using our mapped decoder for

different lattice geometries [Bev+19]. It is also crucial to incorporate circuit-level noise,

where decoding is conducted on a (2 + 1)-dimensional syndrome history. Trivially, we can

adapt the matching graph obtained from the unified lattice for this setting by extending it
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along the time direction in the standard way [Den+02; BW20; Bro22]. Nevertheless, the

novel decoding methods we have proposed have the potential to be generalised to offer an

advantage in correcting the types of correlated errors at the circuit level. For instance, the

edge weights on the unified lattice can be chosen appropriately to account for correlated errors

such as hook errors. Perhaps there exists an alternative lattice that can be found to offer an

advantage in dealing with this more complicated noise model. More generally, it is exciting

to consider other decoding problems on extended Hilbert spaces. This may lead to practical,

high-performance decoders for more sophisticated codes and noise. We leave this exploration

to future work.



Part II

Simulation of black hole properties

using a quantum system
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Chapter 6

Preliminaries

This chapter introduces the preliminary background and context for the work presented in

Chapter 7. It is also intended to provide the necessary definitions to understand the physics

of the quantum platform chosen for our quantum simulation proposal in [Ben+23b], namely

optical lattices. Lattice systems displaying quantum many-body physics provide a platform

to explore continuum phenomena. A prominent example is graphene, whose low-energy be-

haviour in the continuum limit is governed by the Dirac equation in Minkowski spacetime

[KNG06]. In Part II of the thesis, we apply this to simulate quantum properties of black

holes. Indeed, black holes are among the most enigmatic objects in the universe, described

by seemingly simple solutions to the Einstein equations of general relativity, yet displaying

quantum mechanical properties. The ability to probe black hole phenomena in the semiclassi-

cal regime and beyond, using quantum many-body systems, is a powerful tool to test theories

of quantum gravity and push the limits of quantum simulation platforms, both in theory and

experiment.
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(a) (b)

Figure 6.1: The Finkelstein spacetime diagram in ingoing (a) and outgoing (b) Eddington-Finkelstein
coordinates. Ingoing null geodesics are shown in red and outgoing one in blue, with the
event horizon located at rS = 2GM in. In panel (a), outgoing geodesics do not leave the
black hole interior, while in panel (b) ingoing geodesics do not cross the horizon to enter
the black hole. The light cones in (a) indicate regions of spacetime that can be influenced
by signals or events at the origin of the cone, while the region outside the light cone is
causally disconnected from the event. Notice that the light cone tilts inwards inside the
horizon.

6.1 Black hole phenomena and quantum systems in curved

spacetime

6.1.1 Black holes and thermodynamics

General relativity predicts that a massive hot star will undergo a complete gravitational

collapse and form a black hole. A black hole is an asymptotically flat spacetime that contains

a region in spacetime delimited by a surface, the event horizon, behind which no causal signal

can reach an observer located infinitely far away. The simplest model is a black hole in a

Schwarzschild metric, i.e. the solution to the Einstein equations in Schwarzschild coordinates

(t, r, θ, ϕ),

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (6.1)
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where G is Newton’s constant. This equation solves the vacuum Einstein equation Rµν = 0

and represents a static and spherically symmetric black hole with mass M and no charge,

discovered by Karl Schwarzschild in 1916 [Sch16]. Note that this coordinate system presents

an “unphysical” singularity at the Schwarzschild radius rS = 2GM where a component of the

metric diverges, which can be remedied by a coordinate transformation, unlike the singularity

at the centre r = 0 which indicates that the theory breaks down. In the region near the event

horizon rS , the singularity can be removed by introducing a radial coordinate defined by

dr2f =

(
1− 2GM

r

)−2

dr2 (6.2)

such that r −→ rf = r + 2GM log
(
r−2GM
2GM

)
, which maps the region r ∈ (2GM,∞) to rf ∈

(−∞,+∞) [Edd24; Fin58]. Note that r increases slowly with rf , which led to the name

tortoise coordinate. In these coordinates, null radial geodesics are given by t± rf = C where

C is a constant, and the ± sign designates ingoing and outgoing geodesics respectively. Using

the change of coordinates to v = t+ rf , and substituting in Eq.6.1, returns a new metric

d2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2

2, (6.3)

describing a Schwarzschild black hole in ingoing Eddington-Finkelstein metric which avoids

the unphysical singularity at the horizon. However, in that limit, the dv2 term disappears

at r = rS and changes sign when r < rS . This behaviour can be understood by examining

the structure of the metric. Outside the event horizon, the term gvv is negative, indicating

the timelike nature of the coordinate v. Inside the horizon, the gvv term becomes positive,

indicating that v behaves as a spacelike coordinate. This change reflects the fact that the

roles of time and space are effectively reversed across the event horizon. Next, we consider

Eq. 6.1 under the change of coordinates u = t− rf which results in,

ds2 = −
(

1− 2GM

r

)
du2 − 2dudr + r2dΩ2, (6.4)



CHAPTER 6. PRELIMINARIES 131

where the sign of the dudr differs from Eq. 6.4. In fact, these two formulae describe different

black hole interiors, which can be seen using the diagram in Fig. 6.1.

Under the metric in Eq. 6.3, which defines the outgoing Eddington-Finkelstein coordinates,

light rays travelling into the black hole follow constant trajectories v = t+ rf unimpeded by

the event horizon at a 45◦ angle towards r = 0, as shown in red in Fig. 6.1(a). In contrast,

outward-travelling light rays starting outside at r ≫ rS appear at a 45◦ angle, while the strong

curvature near rS causes them to bend near the horizon, as shown in blue in Fig. 6.1(a) for

r > rS . If initially located at r < rS , outgoing null geodesics initially directed outward turn

inward towards r = 0 as they are dragged by the black hole’s gravity. The light cones in this

figure represent all possible paths that light or causal signals can take through spacetime from

an event at the origin of the cone. They respectively illustrate that the causal structure is

such that outside the horizon, outgoing light rays can escape to infinity, yet in the black hole

interior all light cones are tilted inwards, indicating that no signal can escape. The spacetime

diagram in outgoing Finkelstein diagram is shown in Fig. 6.1(b), where outgoing light rays

correspond to surfaces of constant (r, u+ rf ) as shown in blue at a 45◦ angle. Contrastingly,

ingoing null geodesics (in red) pass through the event horizon, and eventually converging at

the singularity r = 0, while bending sharply at r −→ rS under the curvature. This illustrates

how in Eddington-Finkelstein coordinates all paths ultimately converge inwards once inside

the horizon.

As we have seen, black holes are classical objects with a boundary such that anything that

falls into the black hole is causally disconnected from the exterior. Therefore, one would expect

that an outside observer cannot know the microscopic composition of the black hole interior,

which leads to the assumption that the entropy of a black hole vanishes. However, notions

of thermodynamics are still encountered in the study of black holes, which proves otherwise.

Indeed, an analogy was formulated by Hawking in Ref. [Haw71] through his derivation of the

area theorem for a black hole, which states that the total surface area of an event horizon

can only increase or stagnate over time, even if the black hole is interacting with other

systems (e.g. accreting matter or mergers). This observation was key in establishing the
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laws of thermodynamics of black hole physics, since it is reminiscent of the behaviour of

entropy. Note that the Penrose process [PF71] provides an interesting exception for rotating

black holes, allowing energy to be extracted through the emission of particles. This process

decreases the black hole mass, angular momentum, and size, while still respecting the area

theorem, as it does not violate the general principle that horizon area cannot decrease.

Bekenstein proposed in Ref. [Bek73] that black holes should have entropy proportional

to the area of their event horizon rather than volume. Loosely, his argument was that the

entropy of infalling matter into a black hole must be accounted for in order for the entire joint

system to respect the second law of thermodynamics, which requires that a black hole must

have entropy. Since in general relativity nothing escapes from the horizon, information in

the interior becomes inaccessible to an outside observer, which leads to the interpretation of

the event as a membrane that captures the maximum amount of information about infalling

systems. In this sense, the complete thermodynamic state of the black hole is determined

entirely by the properties of the event horizon, as described by the relationship

S ∝ A. (6.5)

Nevertheless, the dimensions of these quantities do differ. Subsequently, Hawking derived the

proportionality constant using first principles in Ref. [Haw75]. By applying the thermody-

namic law dU = TdS to a Schwarzschild black hole (where U = Mc2 comes from its mass

M), the entropy emerges for the black hole given by the Bekenstein-Hawking formula,

S =
A

4l2P
=
c3A

4h̄G
, (6.6)

where lP =
√
h̄G/c3 is the Planck length. While in general relativity black holes do not

emit any radiation, and are therefore zero-temperature stellar bodies, that is no longer true

when incorporating this thermodynamic treatment. Their temperature is referred to as the
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Hawking temperature, defined as

TH =
h̄c3

8πGMkB
. (6.7)

A remarkable feature of Eq. 6.6 is that the presence of the Planck constant hints at

the existence of an ensemble of microscopic states contributing to the black hole entropy,

which requires a quantum mechanical framework even though the black hole itself arises as a

solution to classical equations. This highlights the need for a full theory of quantum gravity.

Additionally, the scaling of the black hole entropy with area rather than volume indicates

that the degrees of freedom of the black hole are stored in one less dimension than in ordinary

systems –this fact inspired the development of the holographic principle, which stipulates that

a theory of gravity could be holographic. This in turn led to the formulation of the AdS/CFT

correspondence [Mal99], a duality suggesting that a theory of gravity in a bulk Anti-de-Sitter

space (a maximally symmetric solution to Einstein’s field equations exhibiting a hyperbolic

geometry) is equivalent to a Conformal Field Theory (a quantum field theory that is invariant

under conformal transformations) living on the boundary of this space. This area of research

is outside the scope of this thesis, but we hope that the work we propose in Chapter 7 could

offer a platform to test features of such theories.

6.1.2 Hawking radiation and black hole evaporation

A blackbody at temperature T emits an average photon per mode given by the Bose-Einstein

distribution with energy E = h̄ω, i.e. ⟨nω⟩ = (e
h̄ω

kBTH −1)−1. Since a black hole is characterised

by an effective temperature TH , Hawking expected that it must radiate, and derived the

distribution of its radiation, namely a black body spectrum at temperature TH [Haw74]. His

approach considers an initially stationary star collapsing into a black hole, which becomes

stationary in the asymptotic future. This assumption allows for time-translation symmetry

in the spacetime, which permits a notion of energy both in the distant past and future, using

Noether’s theorem. However, this symmetry typically breaks down at finite times leading to

different energies in causally distinct regions of spacetime.
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The problem can then be framed in multiple ways, which converge to the same blackbody

solution. For instance, consider quantised Klein-Gordon fields which satisfy the wave equa-

tion in Schwarzschild spacetime, with its modes decomposed differently for different observers.

The first is an inertial observer in the asymptotic future, and observes Fourier modes that

vary with time as eiωt, where t is the Schwarzschild coordinate time. The second is an infalling

observer crossing the horizon, using the advanced time coordinate u = t − rf as defined in

the previous section, observing Fourier modes eiνt. To the first observer we assign the cre-

ation (annihilation) operators a†ω (aω) which are well-defined only in the region outside the

event horizon due to the time translation symmetry, and to the second, the creation (annihi-

lation) operators b†ν (bν) well-defined because the infalling observer’s experience is regular as

they cross the horizon. Using the adiabatic principle [BD84], the modes crossing the horizon

approach the vacuum state of the black hole such that bν = |Ψ⟩. The Bogoliubov transforma-

tions connect these two sets of operators and encode how different observers perceive particle

creation. To the asymptotic observer, the vacuum observed by the infalling observer appears

to be filled with a number of particles ⟨Ψ| a†ωaω |Ψ⟩, given by the spectrum

⟨Nω⟩ = ⟨Ψ| a†ωaω |Ψ⟩ ∝
Γ

e
h̄ω

kBTH − 1
, (6.8)

which describes the thermal radiation emanating from the black hole perceived by a far

observer, known as the Hawking radiation, and where the proportionality constant encodes

the lower intensity of the emitted radiation in comparison to that of an ideal black body at

temperature TH , referred to as the greybody factor. A distant observer perceives particles with

a non-zero energy coming out of the black hole. This process carries energy from the black

hole which in turn loses mass and is said to evaporate. This process is typically considered

slow, even for small astrophysical black holes. For instance, a black hole of mass 1012 kg has

temperature TH ∼ 101 K, and therefore completely evaporates in several trillion years, and

even longer for stellar-mass and supermassive black holes for which TH ≪ 1 making them

effectively undetectable. For completeness, we also mention other paradigms which provide
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insights into Hawking radiation in Appendix A4.

Much like the relationship between entropy and the area of the black hole, the Hawking

temperature of the blackbody spectrum in Eq. 6.8 finds its analogue in the surface gravity of

the black hole. This is defined as the gravitational acceleration near its event horizon,

κ =
1

2

∂gtt
∂r

∣∣∣∣
r=rS

(6.9)

i.e. force per unit mass, to keep a particle at rest near the event horizon as seen from infinity.

From the time component of the Schwarzschild metric in Eq. 6.1 it is easy to see that the

surface gravity in Schwarzschild coordinates is given by

κS =
GM

rS
=

c2

4GM
, (6.10)

which is also valid in Eddington-Finkelstein coordinates since the surface gravity is a geometric

property of the spacetime in which the black hole is defined, and is therefore not dependent

on the coordinate system. Using the definition in Eq. 6.7, the relationship

TH =
h̄cκ

2πkB
(6.11)

emerges, which indicates that the Hawking temperature is a property of the curvature at the

horizon, and is exactly what we probe in Chapter 7. In fact, this expression can be derived

using quantum field theory in curved spacetime [BD84]. This expression also reveals that

the Hawking temperature is directly proportional to the surface gravity, which characterises

the acceleration experienced by particles at the event horizon. This mirrors the Unruh ef-

fect [Unr76], whereby an observer undergoing uniform acceleration perceives a thermal bath

in what is perceived as vacuum by an inertial observer.

The evaporation of black holes raised a concern put forward by Hawking in the 1970s,

known as the black hole information paradox [Haw76b]. This problem suggests that informa-

tion of the infalling matter into a black hole seems to be permanently lost, thereby violating
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the principle of unitarity in quantum mechanics, which asserts that the evolution of quan-

tum states is deterministic and reversible. Several proposals exist to resolve this issue [t

H95; Haw15], as well as protocols framing the retrieval of infalling quantum information as a

decoding experiment [HP07; YK17].

6.2 Introduction to relevant quantum many-body systems

6.2.1 The XY model

We start by introducing the one-dimensional spin-1/2 XY model, an infamous cornerstone in

the study of condensed matter physics and quantum magnetism. The XY model emerged

as a simpler variant of the more general Heisenberg spin chain, obtained by turning off the

z components of neighbouring spins [LSM61]. The system is defined using an L-spin chain,

with Hilbert space given by H = H⊗L
1/2, where H1/2 is the Hilbert space of a spin-1/2 particle,

and dim(H1/2) = 2. The Hamiltonian of the XY model is expressed as

H = −u
2

L−1∑
l=0

[
σxl σ

x
l+1 + σyl σ

y
l+1

]
(6.12)

where u ∈ R, and σxl , σ
y
l are the Pauli matrices acting on the lth spin (cf. Eq. 2.15) on the

chain such that σpl = 1⊗l−1 ⊗ σpl ⊗ 1⊗L−l, where p ∈ {x, y, z}. This Hamiltonian simplifies

to a free theory of spinless fermions under the Jordan-Wigner transformation [JW28]. This

mapping arises from the similarity of half-spin raising(lowering) operators σ±l = (σxl + iσyl )/2

and fermion creation(annihilation) operators c†l (cl), with the following transformations

σ+l = exp

(
−iπ

l−1∑
m=0

c†mcm

)
c†l , σ−l = exp

(
iπ

l−1∑
m=0

c†mcm

)
cl (6.13)

where σzl = 1− 2c†l cl. The fermionic operators respect the commutation relations

{cl, c†m} = δlm, {cl, cm} = 0, {c†l , c
†
m} = 0. (6.14)
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Using Eq. 6.14 and Eq. 6.13, Eq. 6.12 takes the simple form

H = −u
L−1∑
l=0

c†l cl+1 + c†l+1cl (6.15)

which describes a chain with nearest-neighbour hopping that is quadratic in the fermionic

operators. Since this Hamiltonian is non-interacting, it can be exactly diagonalised, as shown

in Appendix A5.

Despite its simplicity, the XY model shares key physical features with the Heisenberg

model, such as gapless excitations and the absence of long-range magnetic order in its ground

state. Moreover, it provides a versatile framework to explore rich physics through variations

such as anisotropy and inhomogeneous couplings. This allows for the study of phenomena such

as phase transitions, localisation of spin excitations, modified spin correlation behaviour, and

more. In particular, inhomogeneous couplings –where the interaction strengths vary across the

lattice–introduce spatial disorder or structure to the system, significantly altering its physical

properties, which can be leveraged to simulate tunnelling effects across a barrier.

6.2.2 The Bose-Hubbard model

The Bose-Hubbard model describes the dynamics of bosons on a lattice with onsite repulsion.

Consider the bosonic creation and annihilator operators acting on a boson at site i, b†i and bi

respectively, and the number operator which counts the number of bosons at a given site i,

ni = b†ibi. (6.16)

In a 1D system, the Hamiltonian for this model is given by

HBH = J
∑
i

(
b†ibi+1 + b†i+1bi

)
− µ

∑
i

ni +
U

2

∑
i

ni(ni − 1). (6.17)
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The three terms inHBH respectively account for the boson hopping between nearest-neighbouring

sites with an energy coupling J , a chemical potential term with coefficient µ, which couples

to the total number of bosons, and an onsite pairwise repulsive interaction of magnitude U

between bosons. This model can also describe higher-dimensional systems where the nearest-

neighbouring term accounts for nearest-neighbour pairings ⟨i, j⟩ on the lattice.

In the limit where the onsite interaction becomes large, U −→ ∞, the system is restricted

to at most one boson per site, i.e. ni = 0 or 1. This constraint plays a critical role in

shaping the effective interactions between particles. Indeed, this constraint effectively enforces

a Pauli-like exclusion principle for bosons, mimicking the behaviour of spin-1/2 particles. This

regime is known as the hardcore boson limit, and is equivalent to the XY Hamiltonian in

Eq. 6.12, where b†i and bi act as the spin-half raising and lowering operators σ+i and σ−i . The

hopping in terms in Eq 6.12 now represent boson hopping between nearest-neighbour sites

⟨i, j⟩. Interestingly, the forbidden double-site occupation induces correlations in the spatial

arrangement and dynamics of the bosons, such that if a boson occupies a site, neighbouring

sites become less favourable for occupation, which effectively creates a repulsive interaction

between bosons.

The Bose-Hubbard model is a faithful approximation for spinless bosonic atoms in an

optical lattice with repulsive interaction between atoms [Jak+98]. In general, the Bose-

Hubbard model can be realised in laboratory using various quantum simulation platforms,

such as optical lattices [BDZ08], superconducting qubits [HTK12], and trapped ions [PC04].

6.2.3 Optical lattices and Floquet driving

Optical lattices are periodic potential landscapes created by the interference of laser beams,

which can trap ultracold atoms. Ultracold atoms in optical lattices provide an excellent plat-

form for probing many-body phenomena in translationally invariant systems, since they allow

for high control over the system parameters, long coherence times, scalability and advanced

measurement schemes [Blo05; GB17b; Sch+20b]. This allows for the quantum simulation of

condensed matter [Zha+22], high energy physics [ZCR15], statistical physics [Yu+23], quan-
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tum chemistry [Arg+19] and more. Furthermore, advances in the control and manipulation

of single lattice sites allows for the use of optical lattices beyond the translationally invariant

regime, which is necessary to probe inhomogeneous systems where individual tunnelling links

must be tuned independently.

It has been shown in Ref. [NUS23] that this full local control over tunnelling elements

can be realised by periodically modulating the onsite energy of individual lattice sites, such

that two nearest-neighbour tunnelling elements can be addressed by controlling the relative

modulation between the two connected lattice sites. This method relies on Floquet driving,

which consists of applying a periodic time-dependent perturbation to a system, which involves

modulating its parameters such as lattice depth, position, and trapped atom interactions.

These modulations enable experimental control over the system properties, so that an effective

time-independent Hamiltonian emerges that exhibits properties not present in the non-driven

system. This powerful technique can be employed to induce gauge fields, spin-orbit couplings,

introduce topological bands and edge states, control the tunnelling rate between lattice sites,

and stabilise exotic phases of matter such as time crystals [Tah+22] and Floquet topological

insulators [Cay+13]. Experimentally, this is realised by a combination of lattice shaking,

amplitude modulation, and periodically driven interactions between atoms. In Chapter 7,

we proposed a scheme using such a full local control in one and two dimensions to simulate

quantum properties of a black hole in the semiclassical regime and potentially beyond, and

provide a description of the Floquet engineering in Appendix A6.



Chapter 7

Probing quantum properties of

black holes with a Floquet-driven

optical lattice simulator

7.1 Introduction

A classical particle in the gravitational pull of a black hole cannot escape once it crosses the

event horizon. However, quantum fluctuations from the interior of a black hole can tunnel

across the horizon and radiate outwards, a phenomenon known as Hawking radiation which we

reviewed in Sec. 6.1.2 [Bek73; Haw74; Haw75; DR76; AMV05; PW00]. The emitted thermal

radiation carries no information about the quantum state inside the black hole and its temper-

ature only depends on the gravitational curvature around the horizon. Hawking radiation can

be fully analysed in the semiclassical limit (h̄ small), which describes a non-interacting theory

of free fields in a static background geometry [Haw80; BD84]. In addition, any quantum state

entering the black hole is expected to scramble (thermalise) with the highest possible rate.

This optimal ergodicity property is caused by quantum gravity interactions that are present

beyond the semiclassical description of black holes, and is the subject of intense ongoing
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Figure 7.1: Schematic of the black hole simulator. (a) The black hole geometry is encoded in the
position-dependent tunnelling amplitudes κl l+1 of a fermionic tight-binding chain, and
change sign across the horizon. The tunnelling elements κl l+1 = [f(ld)+f((l+1)d)]/(8d),
where d is the discretisation length, follow the behaviour of the black hole curvature f(x),
an example of which is given in (b). Insets show the local dispersion relation E(q) at
different positions. The left-moving branch is shifted in momentum by π to highlight the
analogy with light cones. At low energies |E|≪ J0, E(q) is linear and describes massless
Dirac fermions in a curved background. (c) The light-cones collapse on each other at the
horizon, xh = 0, signalling that it is impossible for classical particles to cross.

investigations [SS08; Kit15; MS16; BD84].

There are several classical and quantum analogues that can simulate the geometric prop-

erties of a black hole, e.g. by studying sound waves propagating in a supersonic fluid [Unr81;

Unr95; Wei+11a; MP14; Ngu+15; CW16; BRN18; JWK20; Jac+20; Jac+22; RBF22], using

ultracold atoms in the continuum [Lah+10; Ste16; Muñ+19; Vie+22; FS04; FF04], ion trap-

ping [Tia+22] or quantum circuits [Jaf+22]. However, an open question remains as to how to

devise a system that can produce the geometrical features of the black hole’s horizon, while

also exhibiting the scrambling behaviour expected to be present in its interior [SY93; Swi+16;

Has+21]. As an alternative, theoretical proposals have demonstrated how lattice Hamilto-

nians can simulate quantum field theories in curved space-time geometry [Mal+19; Yan+20;



CHAPTER 7. BLACK HOLE SIMULATION USING OPTICAL LATTICES 142

Shi+23; She+21; Lap+20] and ultracold atoms in optical lattices have emerged as highly

flexible and effective analogue quantum simulators of lattice Hamiltonians [GB17a; Sch+20a;

Cho23]. Indeed, optical lattices already allow us to probe intriguing quantum many-body

phenomena such as entanglement entropy [Isl+15; Kau+16], many-body localisation [Sch+15;

Kon+15; Cho+16; Bor+16; Ris+19] and quantum scars [Zha+20; Hud+20].

In this Chapter, we propose to simulate both (1+1)D and (2+1)D black holes using an

optical lattice, and investigate the resulting behaviour. We employ local Floquet driving

to realise position-dependent tunnelling [WÜE18; NUS23] in order to encode massless Dirac

fermions in the gravitational curvature of a black hole, as shown in Fig. 7.1 and explained

in Sec. 7.2 and Sec. 7.3. We show that wave packets of single atoms initialised inside the

black hole in 1D eventually tunnel across the horizon and can be witnessed from outside

the black hole as thermal Hawking radiation. Based on the effect local curvature has on

the quantum evolution of the system, we propose a straightforward scheme to measure the

Hawking temperature from onsite population measurements of atoms in Sec. 7.4. In Sec. 7.5,

we demonstrate the resilience of our 1D optical lattice simulator under a range of experimental

imperfections. The simplicity of our scheme paves the way for various extensions. We show

how our simulator is generalised to (2+1)D black holes in Sec. 7.6, by using readily available

higher-dimensional optical lattices. Introducing tuneable interactions between the atoms in

an optical lattice quantum simulator can be achieved using Feshbach resonances [Chi+10].

Numerical simulations of an interacting 2D black hole in Sec. 7.7 across a 7 × 7site lattice

show level statistics of a diffusive phase. Our simulator provides an opportunity to study

the many-body physics of black holes beyond the semiclassical regime, where information

scrambling can be witnessed.

7.2 The tight-binding model and the Dirac Equation

In this section we present a brief derivation of the dynamics of non-interacting atoms moving

in an optical lattice can simulate the dynamics of a relativistic particle described by the Dirac
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equation. We start with the Heisenberg equation of motion for the fermionic annihilation

operator cl at a specific site l, i.e.

i∂tcl = [cl,H], (7.1)

where fermionic anti-commutation relations {cl, c†l′} = δl,l′ apply. The tight-binding Hamilto-

nian describing atoms moving in an optical lattice is given as

H = −
∑
l

[
κl(ĉ

†
l ĉl+1 + ĉ†l+1ĉl)

]
, (7.2)

where we set the global energy scale to J0 = c = h̄ = 1. It can be shown that [cl,H] =

−κlcl+1 − κl−1cl−1. After substituting cl = ilϕl where the fermionic operator is transformed

to the field operator ϕ, we arrive at the following equation of motion for the (discrete) field

ϕl:

∂tϕl = −κlϕ(l+1) + κl−1ϕ(l−1) (7.3)

We next discuss the solution of the (1+1)D Dirac equation in the massless limit

iγaeµa(∂µ + ωµ)ψ = 0, (7.4)

which takes a similar form, allowing us to identify the relationship between the tunnelling

elements κl of the lattice model and a curved background with the metric ds2 = f(x)dt2 −
1

f(x)dx
2. To be concrete, we consider a black hole with a horizon at x = xh and transform

the Schwarzschild metric to Eddington-Finkelstein coordinates [Edd24; Fin58]. In this metric

the time coordinate remains constant along the radial null geodesics, resulting in non-singular

metric components. The metric can be expressed as ds2 = f(x)dt2 − 2dtdx. Next, we select

vierbeins as e0t = [−f(x)−1]/2, e1t = [−f(x) +1]/2, while the remaining vierbein components

are equal to 1 and gamma matrices as γ0 = σz, γ1 = iσy [Yan+20]. The vierbeins are linking

the curved metric gµν = ηabe
a
µe
b
ν to the flat metric ηab = diag(1,−1), while ωµ represents the

spin connection. We select the following spinor ψ = (ϕ,−ϕ)/
√

2, where the two components
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are interdependent. Upon incorporating all these elements into the Dirac equation [Yan+20],

we arrive at the formula

∂tϕx = −1

4
{∂x [f(x)ϕx] + f(x)∂xϕx}. (7.5)

We now discretise Eq. (7.5) by replacing the continuous coordinate x with a discretised version

ld, where l is an integer and d denotes the discretisation length (lattice constant). Together

with the central difference formula for functions

∂x(f(x)ϕx) =
f(l+1)ϕ(l+1) − f(l−1)ϕ(l−1)

2d
, (7.6)

we obtain the following form

∂tϕl = −
[
fl+1 + fl

8d

]
ϕ(l+1) +

[
fl−1 + fl

8d

]
ϕ(l−1). (7.7)

Now, by comparing Eq. (7.3) with Eq. (7.7), we obtain the following relationship

κl =
fl+1 + fl

8d
. (7.8)

7.3 An optical lattice simulator of Dirac fermions in a black

hole background

We now present the fermionic lattice Hamiltonian that in the low energy limit is mathe-

matically equivalent to the Dirac equation in the curved space around a black hole [BD84;

Yan+20; Shi+23; Mer+22; Mor+22; Hor22; DHP23; HHP23]. Our optical lattice simulator

is described by a fermionic tunnelling Hamiltonian given by

H = −J0
∑
⟨i,j⟩

κij(ĉ
†
i ĉj + ĉ†j ĉi) (7.9)



CHAPTER 7. BLACK HOLE SIMULATION USING OPTICAL LATTICES 145

where the ĉ†j(ĉj) denote the fermionic creation (annihilation) operators on site j, J0 defines a

global energy scale, and the κij ’s are position-dependent dimensionless tunnelling amplitudes

that encode the metric of the curved space. When varying the amplitudes κl l+1 in a 1D model

[Fig. 7.1(a)] according to a possible metric describing a 1D black hole [Fig. 7.1(b)], the (local)

dispersion relation of the lattice near zero energy mirrors the behaviour of the relativistic light

cones, see Fig. 7.1(c). In the continuum limit and at half filling, the behaviour of the fermionic

chain can be faithfully described by the massless Dirac equation iγaeµa(∂/∂xµ + ωµ)ψ = 0.

Here the coordinates are (x0, x1) = (ct, x) with c the speed of light, γa are the two-dimensional

Dirac matrices, eaµ are the vierbeins connecting the curved metric gµν = ηabe
a
µe
b
ν , to the flat

metric ηab = diag(1,−1), where ωµ is the spin connection and ψ is the two-component spinor

as previously defined –see Refs. [Bor61; Yep11] for an introduction to this formalism. The

time evolution under the lattice Hamiltonian Eq. (7.9) is equivalent to that of a Dirac field in

a curved background under the metric

ds2 = f(x)c2dt2 − 1

f(x)
dx2, (7.10)

when γ0 = σz, γ1 = iσy, h̄c = J0 [CMP10], where the spacetime curvature f(x) is encoded

in the lattice tunnelling amplitudes via κl l+1 = [f(ld) + f((l + 1)d)]/(8d) and d is a cho-

sen discretisation length [Yan+20]. A typical Schwarzschild-like metric f(x) in Eq. (7.10)

possesses a horizon at a distance xh where f(xh) = 0, while f(x) < 0 describes the black

hole interior (x < xh) and f(x) > 0 the exterior (x > xh), as shown in Fig. 7.1(b). In this

metric, that corresponds to the free-falling frame, the light cones compress radially near the

event horizon due to the strong gravitational pull as depicted in Fig. 7.1(c). At the horizon,

the light cone collapses to a vertical line, signalling the impossibility for classical particles to

cross. Nevertheless, quantum particles can tunnel across the horizon resulting in Hawking

radiation. The change of sign in f(x) across the event horizon reflects the interchange of the

role of the temporal and radial coordinates inside the black hole. While there is no singularity

at the horizon, this means that within the black hole interior the radial coordinate becomes
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timelike, and all future-directed paths inevitably lead toward the singularity at x = 0. This

reversal is encoded in the sign change of the tunnelling amplitudes κl l+1, which capture the

shift in causal structure across the horizon. A typical profile for (1+1)-dimensional black holes

is f(x) = A tanh(x/w) [Yan+20; HHP23], where w is positive and controls the steepness of

the curve around the horizon and A is a scaling factor, see Fig. 7.1(b). For simplicity, in

our proposed simulator we approximate this profile around the horizon with a linear function

where the dimensionless slope α = Ad/w is controlled by the width w. This corresponds to

tunnelling coefficients of the form

κl l+1 = α(l − lh + 0.5)/4, (7.11)

such that κl l+1 ̸= 0 at the horizon despite the required f(xh) = 0.

The discrete lattice representation of a black hole with curvature encoded into the local

tunnelling coefficients κl l+1 in Eq. (7.9) can be implemented using a locally-driven, one-

dimensional optical lattice, where tightly-focused far off-resonant optical tweezers [Ber+17;

Bar+18; MBV24; Tri+22; You+22] independently drive the onsite potentials of individual

lattice sites in an optical lattice [NUS23], as illustrated in Fig. 7.2. In the following, we utilise

Floquet-Bloch theory to capture the long-term evolution of the periodically driven system

and demonstrate that it corresponds to a time-independent effective Hamiltonian [GD14;

BDP15; Eck17; WS21] that matches the desired position-dependent tunnelling profile given

by Eq. (7.11). The full time-dependent Hamiltonian of the driven system is given by

H(t) = −J0κ
∑
⟨i,j⟩

(ĉ†i ĉj + ĉ†j ĉi) + cos(ωt)
∑
j

Aj ĉ
†
j ĉj . (7.12)

where κ is a dimensionless value such that κJ0 is the bare tunnelling between neighbouring

lattice sites, Aj is the driving amplitude of site j, and ω is the global driving frequency

ensuring H(t) = H(t + T ) with period T = 2π/ω. Given a fixed global energy scale J0, the

constant κ is required to encode a larger range of Hawking temperatures in our simulator, as
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Figure 7.2: A black hole simulator implemented using local Floquet driving of a 1D optical lattice.
(a) The onsite potential of each site l is modulated according to ϵl(t) = Al cos(ωt) with
an independent amplitude Al using individual tweezer beams indicated by the light-blue
shading. (b) Driving amplitudes Al for a nine-site lattice that generate renormalised
dimensionless tunnelling elements κl l+1 following the linear profile given by Eq. (7.11).
The inverted sign of neighbouring driving amplitudes indicates the modulations are π
out of phase. (c) The numerically calculated stroboscopic Hamiltonian Ht0

S for t0 = 0,
h̄ω/κJ0 = 25, and the Al shown in (b). The inset shows that the stroboscopic tunnelling
elements perfectly follow the target linear profile in Eq. (7.11) (red line). Here we took
α/κ = 0.4 and lh = 5.

seen in Sec. 7.2. The T -periodic nature of Eq. (7.12) ensures that the resulting stroboscopic

evolution during multiples of the global driving period T can be captured by

U(t0 + nT, t0) = e−
i
h̄
nTH

t0
S , (7.13)

where n ∈ N, and Ht0
S is the time-independent, “stroboscopic Hamiltonian” [Eck17; BDP15].

The stroboscopic Hamiltonian is analytically difficult to calculate, but can be accessed nu-

merically as mentioned in Appendix A6. A convenient analytical approximation of Ht0
S can

be obtained in the high-frequency regime, resulting in Hamiltonian Eq. (7.9) with

κij = κJ0
(
|Ai −Aj |

h̄ω

)
, (7.14)
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where J0 is the Bessel function of the 0th kind. Crucially, Eq. (7.14) illustrates that local

tunnelling elements depend only on the relative modulation between neighbouring lattice

sites [NUS23]. We can now reverse-engineer Eq. (7.14) to generate a sequence of Al and a

global κ that result in the desired tunnelling profile given in Eq. (7.11), and hence encode the

black-hole geometry. For example, Figure 7.2(b) shows a series of driving amplitudes Al that

generate κl l+1 following the linear profile of Eq. (7.11) with α/κ = 0.4 and lh = 5. In order

to minimise the absolute size of the required Al, and thereby the resulting Floquet heating

[Wei+15; Rei+17; Eck17], we alternate their signs.

Figure 7.2(c) shows the numerically generated stroboscopic Hamiltonian obtained from

the driving amplitudes of Fig. 7.2(b) - cf. Appendix A6. This operator matches the analytic

approximation in Eq. (7.14) up to small higher-order corrections such as next-to-nearest neigh-

bour tunnelling elements, and new onsite energies that are invisible on this scale [NUS23].

As we demonstrate later, our analogue black hole simulator is resilient to these corrections

and the resulting stroboscopic Hamiltonian can faithfully reproduce the expected Hawking

radiation.

7.4 Hawking temperature from radiation population

To demonstrate the reliability of our simulator in reproducing the quantum features of a black

hole, we first investigate the behaviour of the Hawking temperature

TH =
h̄c

4πkB

df(x)

dx

∣∣∣∣
x=xh

, (7.15)

which depends on the curvature of the black hole at the horizon [GH77]. Then we propose a

simple method to measure TH in an optical lattice experiment by utilising easily accessible in-

situ density measurements to analyse the quantum walk of an initially localised atom [Dür+02;

Wei+11b; Fuk+13]. In the following, we take for simplicity h̄ = 1, kB = 1 and c = J0 = 1

unless stated otherwise. This leads to α = 4πTH in our linearised simulator given in (7.11).
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To study the physics close to the simulated event horizon we consider the evolution of a

single quantum particle, termed the walker, initially positioned inside the black hole, and its

potential tunnelling across the horizon. In Fig. 7.3(a) we show the density evolution of such

a walker under the linearised tunnelling profile of Eq. (7.11) with lh = 50, α = 1 on a chain

of 100 sites where the walker is initially at site l = 45, i.e. inside the black hole. The walker

noticeably remains mostly confined inside the black hole but with a non-zero probability of

escaping, i.e. evaporating [Sab+22; Hor22]. This forms the outgoing Hawking radiation.

We explore walker dynamics for a range of Hawking temperatures by evolving the initially

localised state |Ψi⟩ numerically using |Ψ(t)⟩ = e−iHt |Ψi⟩.

An observer outside the horizon only has access to the visible (outside) part of the system

and will therefore see the emergence of an incoherent state expected to correspond to a black-

body spectrum at temperature TH [GH77]. We compute the probability Pn = ⟨En| ρout |En⟩

of a particle with energy En being detected outside the horizon, where ρout = Trin (ρt) is

the reduced density matrix of the evolved state ρt = |ψ(t)⟩⟨ψ(t)| at time t in the exterior

of the black hole, and |En⟩ are the energy eigenstates of the Hamiltonian Hout taken to be

acting only on the sites outside the horizon. In analogy with the particle-type solutions of

the Dirac equation, we focus our analysis on positive energies, and indeed find that this spec-

trum decays exponentially as Pn ∝ e−En/T̃H , as shown in Fig. 7.3(b). In fitting the slopes

in Fig. 7.3(b) we ignored the exponentially suppressed contributions from very large energies

as our Dirac simulation is valid in the low energy regime, and also from very small energies

where discretisation effects become dominant.

Experimentally, directly monitoring the populations of all eigenstates |En⟩ necessitates

full state tomography in the black hole exterior, which is a difficult task. Using the full

tanh profile sketched in Fig. 7.1(b), it would also be possible to extract the spectrum from

the experimentally accessible momentum distribution of the walker in the flat region of space.

However, this would require large systems that might be challenging to realise experimentally.

Hence, in the following we propose an alternative means to extract the Hawking temperature,

and hence the curvature at the horizon, purely from in-situ population measurements routinely
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Figure 7.3: (a) Density evolution (log-scale) of a single particle initialised at l = 45 under the Hamil-
tonian in Eq. (7.9) for a Hawking temperature TH = α/(4π) ≈ 0.08. (b) Probability
(log scale) of finding a particle with energy En outside the event horizon satisfying a

blackbody spectrum Pn ∝ e−En/T̃H , evaluated at time t = 6/α, for varying α. Extracted
temperatures T̃H from the thermal distribution agree with the expected Hawking tem-
perature TH encoded in the Hamiltonian. (c) Time evolution of the density nh at the
horizon site lh = 50 for several α (or TH). Same colours in (b) and (c) corresponds to
the same α. tf denotes the time at which peak density is reached at the horizon. (Inset)

Collapsed curves with time rescaled by 1/α. (d) Hawking temperature T̃H extracted
from spectrum in (b) against the measured time tf of the peak of the density at the

event horizon. The solid line fits the data to the ansatz T̃H ∝ t−1
f (inset in log-log scale).

This relationship allows for the extraction of T̃H from an experimentally measured peak
time tf .

available in quantum gas microscopes [Bak+09; She+10; Pre+15; GB21]. Intuitively, due to

the decreasing tunnelling amplitudes close to the horizon, the walker will slow down in this

region, before either being reflected back into the black hole or tunnelling through to the

exterior, resulting in a pronounced maximum in density that depends on α, i.e. on the local

curvature at the horizon.
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To demonstrate this, we plot in Fig. 7.3(c) the time evolution of the population density

nh = ⟨c†lhclh⟩ at the event horizon site lh. The density nh is initially zero until the wave packet

has reached the horizon, after which it reaches a maximum at a time tf before decreasing again.

In Fig. 7.3(d) we plot tf against the temperature T̃H extracted from the thermalised spectrum

and find the simple inverse relationship

tf = γ(4πT̃H)−1 (7.16)

with a proportionality constant γ, directly linking Hawking temperature and time dynamics.

This effect also transpires in the inset of Fig. 7.3(c), where the density evolutions at the

event horizon are collapsed by a linear rescaling of the time axis. Note that γ depends on

the particular experimental conditions, in particular the initial position of the walker. We

highlight that monitoring density at a single site is sufficient since the Hawking temperature

is controlled by the local curvature at the horizon [Haw75; DR76; PW00; AMV05; LTT20].

Alternatively, one can measure the total probability density outside the horizon, i.e. Pout =∑l=L
l=lh+1 nl, where nl = ⟨c†l cl⟩, which provides a direct measure for the total intensity of the

Hawking radiation. Within the linear profile of Eq. (7.11), scaling the encoded Hawking

temperature TH amounts to an equivalent global scaling of the tunnelling coefficients κl l+1,

which is directly equivalently to an inverse scaling of time and hence explains the behaviour

observed in (7.16).

Our simulator is described by a single-particle Hamiltonian, hence we do not anticipate

thermalisation or scrambling. However, due to the specific tunnelling profile that simulates

the black hole horizon, components of quantum states that tunnel through the horizon appear

thermal for the degrees of freedom outside the black hole even for a pure initial quantum state.

This corresponds to the notion that the Hawking radiation loses memory of the initial state

of the black hole when observed from the outside. This is manifested in our simulator by

obtaining a thermal spectrum outside the black hole with the same Hawking temperature

regardless of the initial position of the walker inside the black hole.
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Figure 7.4: (a) Error resilience to random onsite potentials (blue) with ε = 0.1, additive random
nearest-neighbour (nn) tunnelling error (orange) (ε = 0.1) and random next-nearest
neighbour (nnn) tunnelling with ε = 0.01 (green). These results are averaged over
time, initialised sites and 100 realisations for a system with size L = 100 and horizon
lh = 50. The error bar indicates the standard deviation across different realisations. The
theoretical Hawking temperature value is represented by the black lines. (b) Density-
density interaction of strength V for a system size of L = 30 and lh = 15.

7.5 Resilience to errors

We now investigate the sensitivity of the extracted Hawking temperature to errors pertinent to

Floquet-driven optical lattice experiments. Specifically, we extract the Hawking temperature

T̃H as per the method used in Fig. 7.3(b), after introducing noise to the system Hamiltonian in

Eq. (7.9). We model random onsite potentials as an additional term of the form J0
∑N

l=1 εlnl in

the Hamiltonian with the coefficients εl drawn randomly from a standard normal distribution

with mean zero and variance ε. Despite the existence of random potentials, the essential

features of the extracted TH persist even with an impurity strength of ε = 0.1 for a wide

range of α’s, as shown in Fig. 7.4(a). We next evaluate nearest-neighbour (k = 1), and

next-nearest neighbour (k = 2) tunnelling errors, represented by J0
∑N

l=1 εl(ĉ
†
l ĉl+k + ĉ†l+k ĉl).

These errors can reflect higher-order corrections beyond Eq. (7.14). Fig. 7.4(a) shows that
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the extracted Hawking temperature remains stable for error strength ε = 0.1 for k = 1

and ε = 0.01 for k = 2. The observed robustness against all these errors stems from the

independence of Hawking temperature on various details of the black hole.

Finally, we extend our analysis to include two-particle dynamics. Fig. 7.4(b) depicts the

outcome of introducing an interaction term J0V
∑N

l=1 nlnl+1 between two particles. Our

results underscore the resilience of our method against attractive interactions, i.e. negative

values of V , which encourage particle clustering, causing them to act as a single entity,

effectively replicating the single-particle behaviour. In contrast, for repulsive interactions

(V = 1, 2), the Hawking temperature is consistently higher than the theoretical values across

various ranges of α.

7.6 2D Implementation of the black hole simulator

The Floquet simulator can directly be extended to a two-dimensional configuration. This

opens the door to the probing of non-trivial quantum features that are not present in the one-

dimensional case. This includes hallmarks such as the area law for the Bekenstein-Hawking

entropy, namely that the black hole entropy scales with the size of its boundary according

to thermodynamic arguments [Bom+86; Sre93; Car86; Str98; Emp06]. This property also

arises in the Ryu–Takayanagi formula conjectured to describe the relationship between the

entanglement entropy of a conformal field theory, and the geometry of an Anti-de-Sitter

spacetime, i.e. the AdS-CFT correspondence [RT06b; RT06a; Ran+17; Mal99; CCW22].

We can generate an analogue 2D black-hole simulator using a Floquet-driven 2D lattice

as given by Eq. (7.12). As an example, Figure 7.5 illustrates driving amplitudes Al on a

square 2D lattice for a black hole centred at the origin. The resulting effective Hamiltonian

is given by Eq. (7.9) and encodes the behaviour of free Dirac fermions in a curved space-time

background [DHP23]. The event horizon rh is indicated by the dashed line and the chosen

amplitudes approximately encode a linear curvature profile f(r) = α(r− rh) where r denotes

the Euclidean distance from the centre of the black hole.
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Figure 7.5: (a) Analogue quantum simulation of a 2D black hole using a Floquet-driven square optical
lattice. Sites are driven with amplitudes Al as labelled and arrows of the same colour
indicate the same amplitude. Neighbouring sites are driven π out of phase as depicted by
opposite arrow directions. The simulated event horizon is at the dashed grey line and the
centre of the black hole (x, y) = 0 is at the site driven by the red arrow with amplitude
A1. Pictured is the top right quarter of the simulator; the simulation is symmetric
under 90° rotations around the centre. (b) The driving amplitudes indexed by l are
chosen such that the tunnelling amplitudes along the 45° path (blue line in (a)) follow
a linear gradient. The alternating sign of Al shown in (b) indicates that neighbouring
sites are driven π out of phase. (c) The resulting tunnelling coefficients κij according

to Eq. (7.14) vs. the Euclidean distance rij =
√

(xi/2 + xj/2)2 + (yi/2 + yj/2)2 of each
tunnelling link to the black hole centre. The tunnelling coefficients for the blue line give
a perfectly linear profile. Tunnelling coefficients following the x axis (orange line) are
also approximately linear. Sites marked by a black circle in (a) have been changed to
ensure that all plaquettes have an even number of negative tunnelling links and hence
zero flux.

In a 2D tight-binding scheme, one needs to ensure that for any given plaquette, the

number of links with negative tunnelling amplitudes is always even, i.e. 0, 2, or 4, in order

to not create unwanted artificial gauge fields [NUS23]. To achieve this and to minimize the

total number of amplitudes required, in the given example we first set the tunnelling elements

κij along the diagonal (blue path) to match the desired linear gradient. Eq. (7.14) then
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provides a set of corresponding amplitudes Al that are shown in Fig 7.5(b). Similarly to the

1D case, neighbouring sites are driven out of phase to each other to minimize the required

driving amplitudes. Next, all other amplitudes are chosen from the above set such that they

match the site on the diagonal blue path with the closest matching Euclidean distance to

the centre, while also requiring that neighbouring sites are driven out of phase. As a last

step, certain sites just outside of the event horizon (marked by black circles in Figure 7.5(a))

are changed to ensure the condition of even numbers of negative tunnelling amplitudes for all

plaquettes. Figure 7.5(c) shows the resulting tunnelling amplitudes for all links and highlights

the approximate linear relationship between κij and the Euclidean distance from the link to

the centre of the black hole.

The Hawking temperature TH is encoded in the 2D tunnelling profile analogously to the

1D case, i.e. by the prefactor α = 2πTH . In a square lattice, we do not expect to preserve

the perfect rotational symmetry of the black hole. However, in the limit of large rh or small

d, the small distortions visible in Figure 7.5(c) will disappear. An analytical and numerical

investigation of similarly encoded linear tunnelling profiles and the robust validity of the

resulting encoded Hawking temperature is given in Ref. [DHP23].

7.7 Chaotic behaviour

A central but conjectured property of real black holes is that they are the fastest scrambling—

and hence most chaotic—systems in nature [SS08; SS14; MSS16], a property stemming from

the interactions between the particles in the black hole. Crucially, the simulation platform

described above can be extended to interacting quantum particles in the curved spacetime of a

black hole by making use of the widely tunable contact interactions natural for fermionic and

bosonic cold atoms [Chi+10]. This leads to a Hubbard model with an onsite interaction term in

addition to the spatially-dependent hopping term from Eq. 7.9 [BDZ08]. Interacting 2D Hub-

bard models are non-integrable and generally show thermalising, ergodic dynamics [RDO08;

Sch+12; Ron+13; Kar+24].
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While the experimental implementation can directly use fermionic or bosonic atoms with

tunable interactions, we now consider hard-core bosons, i.e. bosonic atoms in the strongly-

interacting limit where the interactions suppress site occupations higher than one, for numer-

ical convenience. In this limit, the Bose-Hubbard Hamiltonian is reduced back to the form

of Eq. 7.9, but with the ladder operators ĉ†i , ĉj now describing hard-core bosons with the

commutation relations

[ci, c
†
j ] = [ci, cj ] = [c†i , c

†
j ] = 0, ∀i ̸= j (7.17)

{ci, c†i} = 1, (ci)
2 = (c†i )

2 ∀i. (7.18)

This model is expected to be ergodic in the homogeneous case where all tunnellings are equal,

corresponding to flat space [RDO08; Ron+13; Kar+24]. To demonstrate the ergodicity of

this model also in the black-hole setting, we turn to its level statistics and analyse the ratio

between energetically adjacent energy gaps as introduced in Ref. [OH07]. Namely we calculate

rn =
min(gn, gn−1)

max(gn, gn−1)
, (7.19)

where gn = En+1−En ≥ 0 is the gap between two adjacent eigenvalues of the Hamiltonian at a

given fixed number of particles, giving rn ∈ [0, 1]. In an ergodic system in the thermodynamic

limit, the distribution of rn will show level repulsion and follow the Wigner-Dyson statistics

characteristic of the Gaussian Orthogonal Ensemble (GOE) of random matrix theory [BT77;

BGS84; GMW98; OH07]. However, in an integrable system where one would not expect

scrambling, there is no level repulsion and the resulting distribution is Poissonian. Figure 7.7

compares the mean adjacent energy gap ratios

⟨r⟩ =
1

s− 2

s−1∑
n=1

rn, (7.20)

where s is the Hilbert space dimension, between multiple 2D systems for varying particle

number N . The orange data corresponds to a system with homogeneous tunnelling, i.e.
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Figure 7.6: An 8×8 lattice with 90° rotational symmetry can be simulated using 16 sites. The black
and yellow dots show the full 8× 8 lattice, only the yellow dots in the shaded region are
needed for the 16 site simulation described in Sec. 7.7. Black lines indicate tunnelling
between neighbouring sites common to both the full system and the 16 site simulation.
To the simulation, we add three additional tunnelling terms indicated by blue curves,
connecting sites 1→ 16, 5→ 15, 9→ 14.

encoding a flat spacetime, while blue data shows the black hole case with site-dependent

tunnellings following Eq. (7.9). Both the curved and flat systems effectively simulate an 8× 8

lattice using cone-like boundary conditions, as shown in Fig. 7.6. In a finite-sized system,

Hamiltonian symmetries cause degeneracies in the spectrum, perturbing the level statistics.

To circumvent this, we introduce a local potential of size ε on a single site of the lattice.

The flat system is expected to be ergodic in the thermodynamic limit [Ron+13; Kar+24].

The data in Figure 7.7 shows that our black-hole simulator gives level statistics that are con-

sistently closer to an ergodic distribution compared to the flat system for the same parameter

values, thereby demonstrating the potential to study chaotic and scrambling dynamics in this

platform.
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Figure 7.7: Comparing level statistics between finite 2D square lattices encoding flat (orange) and
curved (blue) space-time backgrounds. The mean gap ratio ⟨r⟩ is computed using Eq. 7.19
for varying particle number N . For the blue data, α = 0.46, J0 = 1 and we add
a perturbation of strength ϵ = 0.01 (dashed lines) or ϵ = 0.0625 (solid lines) to lift
degeneracies. For the flat system, homogeneous tunnelling is set to κJ0 = 0.28. The
expected mean gap ratios ⟨rGOE⟩ = 0.5295 ± 0.0006 and ⟨rPoiss⟩ ≈ 0.386 [OH07] for a
GOE and Poissonian ensemble in the thermodynamic limit are indicated by red-dotted
and black-dotted lines. The curved spacetime encoded in the blue data gives rise to
higher values of ⟨r⟩ and hence does not break the ergodicity expected for the flat system.
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7.8 Discussion

Our study utilises the power of locally driving the sites of an optical lattice to generate an

efficient analogue quantum simulator for the intricate physics of Dirac particles in a black hole.

We introduced a direct approach for determining the Hawking temperature of the simulated

black hole from readily accessible onsite atom population measurements at the horizon. The

resulting Hawking temperatures exhibit a remarkable resilience against the common sources

of errors inherent in Floquet-driven optical lattices, as corroborated by our numerical findings.

Additionally, we have unveiled that the presence of weak interatomic interactions introduces

a minor, albeit systematic, deviation in the measured value of TH .

Our approach can furthermore be directly extended to higher dimensions. We give an

example of a (2+1)D geometry, capitalising on the experimental accessibility of higher-

dimensional optical lattices. Furthermore, optical lattices offer a natural platform for im-

plementing tuneable (non-gravitational) interactions [Chi+10]. Our simulator can therefore

probe thermalising (scrambling) quantum behaviour with the background curvature of a black

hole. By analysing level statistics, we show that the background curvature in a 2D system

results in a more ergodic phase relative to flat space. Together with the realisation of Hawk-

ing radiation, being able to implement such chaotic behaviour could enable us to realise the

Hayden-Preskill quantum teleportation protocol responsible for the information retrieval from

evaporating black holes [HP07; Lan+22; ALX23].

Finally, combined with quantum gas microscopes, optical lattices naturally provide access

to multi-particle correlations, thus offering an ideal system to monitor the behaviour of quan-

tum information during the evaporation of black holes encoded in our simulator by changing

the tunnelling coefficients in a time-dependent fashion.

Moving forward, we aim to experimentally realise our simulation in 1D to validate our

methodology, then realise the 2D counterpart to explore more complex phenomena.



Chapter 8

Conclusion

The fields of quantum error correction (QEC) and topological quantum computing (TQC) are

both aimed at achieving reliable quantum computation using an underlying physical system,

that is prone to decoherence and various intrinsic noise processes. The former aims to redun-

dantly encode information using entangling operations on a set of physical qubits. The latter,

however, considers information storage in the ground state of a many-body Hamiltonian de-

scribed by a topological quantum field theory at zero temperature. As we have seen, these two

frameworks share certain aspects and mathematical formalism. Beyond a quantum memory,

building a quantum processor requires addressing the encoded logical information to enact

non-trivial quantum logic gates. Developing encoding mechanisms, as well as logical gates are

fundamental for both quantum error correction and topological quantum computing.

In Chapter 3, we investigated the logical operations accessible on the toric code using

a collection of hybrid defects, namely mixed-boundary punctures. We found that while the

computational power of these defects is limited in that it does not recover the full Clifford

group, our defects reproduce the exotic behaviour of Majorana anyons, much like vortices and

twists, while providing a different physical realisation which does not require lattice disloca-

tions. Moreover, our approach adds understanding of the similarities and divergence between

local and nonlocal defects in the different coupling strength configurations of the Kitaev Hon-
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eycomb model. Moving forward, we would like to turn our attention to the computational

power of defects beyond topological codes. Indeed, a specific instance thereof has been stud-

ied, namely punctures on hypergraph product codes [KP20; KP21], but further explorations

lack in the literature since the nonlocal nature of general candidates for quantum codes ren-

ders the study of these defects quite involved. However, these graphical structures could see a

new description in light of the emerging understanding of the physics of quantum low-density

parity check codes [RK23a; RK23b].

In Chapter 4, we considered a logical encoding scheme based on a generalisation of the

Majorana chain, known as the parafermion chain. Parafermions enable the encoding of topo-

logical qudits and fault-tolerant Clifford operations through braiding. We analytically derived

the quantum gate induced by the short-range interaction of parafermion edge modes in a Z3

parafermion chain. Our results demonstrate that this (tunable) interaction produces a non-

Clifford phase gate, which can be configured to reside in even levels of the Clifford hierarchy,

enabling a universal qutrit gate set. We also proposed an experimental simulation of the braid-

ing and dynamical evolutions of the Z3 topological states, using Rydberg atom technology.

We showed that this gate allows access to highly non-contextual, albeit noisy, quantum states.

To address this limitation, this work can be extended by devising a magic state distillation

protocol to increase the fidelity of these states.

In Chapter 5, we proposed a novel decoder for the surface code tailored to the depolar-

ising noise model. By mapping the surface code syndrome onto that of the colour code, we

leveraged sophisticated matching decoders originally designed for the colour code to achieve

an exponential improvement in the logical error rate, compared to traditional decoders. In

future work, the methods included in this work could be extended to other types of correlated

noise, as well as other codes exhibiting materialised symmetries.

Quantum simulation is a technique that consists of manipulating an accessible and highly

controlled quantum system, to infer knowledge of another quantum system, that is not directly

accessible. In this work, we propose using optical lattices, which trap ultracold atoms near

absolute zero temperature in a grid-like potential.
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In Chapter 7, we proposed a novel simulation of black hole physics using a one and two-

dimensional optical lattice, with position-dependent tunnelling achieved through local Floquet

driving. This simulation encodes massless Dirac fermions under gravitational curvature, re-

producing Hawking radiation as atom populations tunnelling across the event horizon. The

Hawking temperature can be extracted via onsite atomic population measurements, and the

setup demonstrates robustness to experimental imperfections. Our aim is to realise this pro-

posal in the laboratory, and extend its scope to explore additional aspects of black hole physics

both in the semiclassical regime and beyond. For instance, our platform could enable exper-

imental verification of the entanglement entropy of (2+1)D and (3+1)D black holes, which

involves more subtleties [DHP23]. Moreover, black holes are expected to optimally scramble

quantum information due to quantum gravity interactions. Hence, a platform to simulate

models of their spacetime curvature could allow simulating their scrambling behaviour.



Appendices

A1 Simulating parafermions with Rydberg atoms

Rydberg systems offer an attractive potential candidate for quantum simulation, since they

possess several advantageous properties [MW21]. For instance, their strong interactions, long

lifetimes, greater than about 50 µs at room temperature, allow high-fidelity state-resolved

readout [Mad+20; Cov+19], high-fidelity entangling operations [Mad+20], and high-control

native multi-qubit gates [Lev+19]. Various experimental techniques to suppress the error

and enhance the fidelity of Rydberg operations also exist in the literature [Lev+18; Shi18].

Rydberg systems hold great promise for simulating topologically protected quantum systems.

In light of these facts, Rydberg atoms offer alternative ways to effectively simulate the Hamil-

tonian, such as that in Eq. (4.12). In practice, it is preferable to use ground state hyperfine

levels for the qutrit basis states, and Rydberg states only for entangling operations.

Here, we propose a setting for the quantum simulation of PEM interaction by engineering

the interaction Hamiltonian in the three-fold ground subspace with four atomic levels coupled

by four classical light fields as shown in Fig. A.1(a). In order to use a Rydberg atom to

simulate the Hamiltonian as in Eq. (4.12), we need a three-dimensional Rydberg atom which

can be realised by many-photon excitations to 3 different Rydberg states, denoted |0⟩, |1⟩ and

|2⟩. In general, this process is not trivial, since some transitions may be dipole-forbidden due

to the selection rule of dipole interaction. However, this can be overcome by introducing an

intermediate state |3⟩, which can later be removed via adiabatic elimination (see Fig. A.1(a)
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for the setting). This experimental technique is analogous to the one used in stimulated

Raman transitions. In the following procedure, we first derive the Hamiltonian for a general

four-level system and then perform an adiabatic elimination to the intermediate state |3⟩ to

obtain the desired effective three-level Hamiltonian. We then choose the specific parameters to

imitate the Hamiltonian in Eq. (4.12). All classical light fields are monochromatic microwave

Figure A.1: (a) The four-level atomic system coupled by four monochromatic classical microwave
fields, where we indicate the respective Rabi frequencies and detunings between our
levels by Ωi and ∆i for i ∈ {1, 2, 3, 4} (b) The additional states |0′⟩, |1′⟩ and |2′⟩ coupled
to states |0⟩, |1⟩ and |2⟩ with Rabi frequencies Ω′

0, Ω′
1, Ω′

2 and detunings ∆′
0, ∆′

1,
∆′

2, respectively. These additional couplings are to induce the light-shifts that could
compensate out the diagonal terms.

lasers, described by the overall field

E = ϵ̂1E1cos(ω1t+ ϕ1) + ϵ̂2E2cos(ω2t+ ϕ2)+

ϵ̂3E3cos(ω3t+ ϕ3) + ϵ̂4E4cos(ω4t+ ϕ4)
(A.1)

where ϵ̂α and ϕα are a unit polarization vector and relative phase of each field, respec-

tively. The electric fields can then be decomposed into two exponential terms E = E(+) +

E(−), where E(+) =
∑4

j=1
1
2 ϵ̂jEje

−i(ωjt+ϕj) is the positive-rotating component and E(−) =∑4
j=1

1
2 ϵ̂jEje

i(ωjt+ϕj) negative-rotating. Additionally, we assume that the wavelength of the

field is much longer than the size of the atom. Hence, the spatial dependence of the field can

be ignored over the size of the atom as per the dipole approximation.

Since the dipole operator d = −ere is an odd parity operator, its diagonal elements vanish,
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and the (real) dipole matrix elements of each coupling pair are given by

d = ⟨0|d |1⟩ (σ1 + σ†1) + ⟨0|d |2⟩ (σ2 + σ†2)+

⟨2|d |3⟩ (σ3 + σ†3) + ⟨0|d |3⟩ (σ4 + σ†4),
(A.2)

where σ1 = |0⟩⟨1|, σ2 = |1⟩⟨2|, σ3 = |2⟩⟨3| and σ4 = |0⟩⟨3|. Under free atomic evolution, the

expectation values of σ1,2,3,4 have unperturbed time-dependence terms of e−iω01t, e−i(ω02−ω01)t,

e−i(ω03−ω02)t, e−iω03t which are all positive-rotating. These terms can be considered as d(+).

Similarly, the expectation values of σ†1,2,3,4 have unperturbed time dependence of opposite sign,

which therefore can be considered as d(−), such that the dipole operator can be decomposed

as d = d(+) + d(−). The interaction Hamiltonian caused by dipole interaction is given by

Ĥint = −d · E. After applying the rotating-wave approximation, which focuses on slow

dynamics rather than fast, thereby ignoring interaction terms d(+) ·E(+) and d(−) ·E(−). The

interaction Hamiltonian becomes

Ĥint = −(d(+) ·E(−) + d(−) ·E(+)) (A.3)

=
Ω1

2
(σ1e

i(ω1t+ϕ1) + σ†1e
−i(ω1t+ϕ1)) (A.4)

+
Ω2

2
(σ2e

i(ω2t+ϕ2) + σ†2e
−i(ω2t+ϕ2)) (A.5)

+
Ω3

2
(σ3e

i(ω3t+ϕ3) + σ†3e
−i(ω3t+ϕ3)) (A.6)

+
Ω4

2
(σ4e

i(ω4t+ϕ4) + σ†4e
−i(ω4t+ϕ4)), (A.7)

where the Rabi frequencies for each coupling pair are Ω1 = −⟨0| ϵ̂1 · d |1⟩E1, Ω2 = −⟨1| ϵ̂2 ·

d |2⟩E2, Ω3 = −⟨0| ϵ̂3 · d |3⟩E3 and Ω4 = −⟨0| ϵ̂4 · d |3⟩E4. The free atomic Hamiltonian is

defined as

ĤA = ω01 |1⟩⟨1|+ ω02 |2⟩⟨2|+ ω03 |3⟩⟨3| , (A.8)

where |0⟩ is the zero energy ground state. The evolution of the system is calculated by solving
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the Schrödinger equation

i∂t |ψ̃⟩ = (ĤA + Ĥint) |ψ̃⟩ (A.9)

The state |ψ̃⟩ is defined as the quantum state in the rotating-frame. In this frame, we assume

that the state |3⟩ maintains the same velocity of its dynamics in the original frame, while

other states are sped up with different velocities, such that |ψ̃⟩ = c̃0 |0⟩+ c̃1 |1⟩+ c̃2 |2⟩+ c3 |3⟩

where c̃0 = e−i(ω1+ω2+ω3)tc0, c̃1 = e−i(ω2+ω3)tc1 and c̃2 = e−iω3tc2. The multiplied exponential

factors are inserted to fasten the dynamics of states |0⟩, |1⟩ and |2⟩. It can be shown that

the resulting Hamiltonian under which the state |ψ̃⟩ evolves, is explicitly time-independent

when the condition ∆4 = ∆1 + ∆2 + ∆3 is satisfied, also known as the four-photon resonance

condition. The time-independent Schrödinger equation is given by

i∂t


c̃0

c̃1

c̃2

c3

 =


−(∆1 + ∆2 + ∆3)

Ω1
2 eiϕ1 0 Ω4

2 eiϕ4

Ω1
2 e−iϕ1 −(∆2 + ∆3)

Ω2
2 eiϕ2 0

0 Ω2
2 e−iϕ2 −∆3

Ω3
2 eiϕ3

Ω4
2 e−iϕ4 0 Ω3

2 e−iϕ3 0




c̃0

c̃1

c̃2

c3

 , (A.10)

where for convenience the energy reference is adjusted such that the state |3⟩ is the zero-energy

level.

Since the ground subspace of the parafermion chain is three-dimensional, we will perform

an adiabatic elimination to the system’s equations of motion in Eq. (A.10), which yields the

effective three-level Hamiltonian that can simulate the desired subspace. Firstly, we multiply

the system’s four-state vector by an overall phase factor ei∆t, to shift all the energy level by

∆. However, to satisfy the condition of an adiabatic elimination, the ∆, which is the fast

oscillation term of c3 from the Schrödinger equation, needs to be much larger compared to

other oscillation terms for c̃0, c̃1 and c̃2, i.e., |∆|≫ |∆ − ∆3|, |∆ − (∆2 + ∆3)|, |∆ − (∆1 +

∆2 + ∆3)|. The last three terms here are respectively the oscillation terms for c̃2, c̃1 and

c̃0 after multiplying ei∆t. To make sure that the state |3⟩ is never populated, the condition

∆3 ≫ Ω3 and ∆4 ≫ Ω4 are required. Besides, the condition |∆3,4|≫ Γ, where Γ is natural
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decay rate of the state |3⟩, is also needed to make sure that the spontaneous emission can be

negligible. For convenience, we can set ∆ = ∆3 = ∆4, and overall constraints on ∆ by the

above conditions due to adiabatic elimination are : (1) |∆|≫ |∆1|+|∆2|, (2) |∆|≫ |Ω3,4|, (3)

|∆|≫ Γ. Considering the equation of motion for c3, when ∆ is satisfied all above conditions,

it is obvious that c3 carries the fast oscillation at frequencies of order |∆|≫ Γ so that c3

is damped by coupling to the vacuum on timescales of 1/Γ. Here, we only consider the

motions on timescales slow compared to 1/Γ, i.e., c̃2, c̃1 and c̃0, and thus can make the

approximation that c3 damps to equilibrium instantaneously, i.e. ∂tc3 = 0. Therefore, we

can obtain the substitution for c3 by c̃0, c̃1, c̃2 from the last equation of Eq. (A.10) such

that c3 = −
(
Ω4
2∆e−iϕ4 c̃0 + Ω3

2∆e−iϕ3 c̃2
)
. Substituting this into the equation for c̃0, c̃1, c̃2 in

Eq. (A.10), we finally obtain the effective three-level Hamiltonian in which the state |3⟩ is

eliminated.

i∂t


c̃0

c̃1

c̃2

 =


−
(

∆1 + ∆2 + ∆3 +
Ω2

4
4∆

)
Ω1
2 eiϕ1 −Ω4Ω3

4∆ ei(ϕ4−ϕ3)

Ω1
2 e−iϕ1 −(∆2 + ∆3)

Ω2
2 eiϕ2

−Ω4Ω3
4∆ e−i(ϕ4−ϕ3) Ω2

2 e−iϕ2 −
(

∆3 +
Ω2

3
4∆

)


c̃0

c̃1

c̃2

 . (A.11)

Since the state |0⟩ and |2⟩ initially interact directly with the state |3⟩, the adiabatic

elimination of the state |3⟩ gives rise to an effective Rabi coupling between the state |0⟩ and

|2⟩, which is ΩR = −Ω4Ω3
2∆ ei(ϕ4−ϕ3). Additionally, the energy terms are also shifted due to AC

Stark shifts, amounting to Ω2
4/(4∆) and Ω2

3/(4∆) for the state |0⟩ and |2⟩, respectively.

In order to recover the parafermion interaction Hamiltonian given in Eq. 4.12, we first

need the all diagonal terms to be zero. This can be realised by coupling the states |0⟩,

|1⟩ and |2⟩ to complemented states |0′⟩, |1′⟩ and |2′⟩ respectively as shown in Fig. A.1(b).

This is to allow the additional light shifts, i.e., Ω
′2
0 /4∆′

0, Ω
′2
1 /4∆′

1 and Ω
′2
2 /4∆′

2, for each

diagonal term to be cancelled. Experimentally, one can choose the complemented states and

parameters such that the diagonal terms disappear. Additionally, the non-diagonal terms

can also be set to simulate the Hamiltonian as in Eq. (4.12) by choosing the states and
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parameters such that |Ω1|= |Ω3Ω4
2∆ |= |Ω2|= g, and relative phases of the laser fields following

ϕ1 = ϕ2 = −(ϕ4 − ϕ3) = 2π
3 , where g is a controllable factor depending on laser detuning.

By fixing the external field parameters according to these identities, we can implement

the braiding of parafermions, by realising a Berry phase evolution on states |2⟩ and |3⟩. This

entails turning on solely the interaction between the latter states, and allowing for an adiabatic

evolution in order for a geometric phase to accumulate, as described in Ref. [AMT09], where

it was shown that the adiabatic evolution of a two-level model in the presence of an external

classical electric field yields the Berry phase

γl =
l

2

∮ T

0
dt
|D(t)|2

Fl(t)
ϕ̇3(t), (A.12)

where l indicates the instantaneous eigenstates of the model,

D(t) = ⟨2|d |3⟩ · ϵ̂3E3(t), (A.13)

Fl(t) =
(ω23

2

)2
+ |D(t)|2−l ·

(ω23

2

)√(ω23

2

)2
+ |D(t)|2, (A.14)

and ϕ3(t) is the time-dependent relative phase of the coupling laser between state |2⟩ and

|3⟩. While dynamical phases arise in this procedure, leading to unwanted dephasing in the

time evolution, these can be closely monitored and compensated for. Indeed, to cancel out the

accumulated dynamical phase, the other coupling channels are turned on, as shown in Fig. A.1.

This allows us to apply adiabatic elimination to state |3⟩, which yields the additional AC Stark

shift to state |2⟩, that destructively compensates for the unwanted dephasing, leaving only

the geometric phase. This corresponds to the Berry phase required to simulate the braiding

of parafermion as derived in Eq. (A6) in Ref. [HL16].



APPENDIX A. APPENDICES 169

A2 Pseudocode for unified decoding on the surface code

Here, we outline the Unified decoder presented in Chapter 5. The procedure requires a set of

syndrome measurements of the colour code stabilizers σc.c, a subroutine which restricts σc.c

to syndromes on restricted lattices, and one which builds the unified lattice as prescribed in

Fig. 5.2. A minimum-weight perfect matching decoder, mwpmdecoder, is then used to decode

the syndrome and provide a correction C̄. The correction operator returns the code to the

codespace, and its success is given by the following condition. Namely, that the decoding

algorithm has determined that the parity of the edges in the matching solution crossing a

chosen logical representative Z̄, is equal to the parity of Pauli errors which occurred on qubits

q ∈ Z̄, as mentioned in Sec. 5.2.2.

Algorithm 1: Unified Decoder

1 Require:
Restricted lattices Ru = {{Sf}col(f )̸=u} on a manifold GRu

Unified lattice constructor U(.)
A MWPM decoder mwpmdecoder

2 Input: A colour code syndrome σc.c. on the colour code manifold Gc.c

3 Output: A correction operator C̄
/* Map syndromes to restricted lattices */

4 foreach u ∈ {r, g, b} do
5 foreach σi ∈ σc.c. do
6 if colour(σi) = u then
7 Ru(σi) on GRu ←σi on Gc.c

8 end

9 end

10 end
/* Construct unified lattice, and map syndrome on the unified lattice

*/

11 (GU , σi,U )← U(GRr , GRg , GRb
,Rr(σi),Rg(σi),Rb(σi))

/* Decode */

12 C̄ = mwpmdecoder(GU , σi,U )
/* Apply Pauli-Z corrections to qubits along the shortest paths

determined by the decoder */

13 Apply
∏
q∈C̄ Zq
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A3 Thresholds for the even-distance surface code using varied

weights

(a) wB = 0.7 (b) wB = 1.0

(c) wB = 1.1 (d) wB = 2

Figure A.2: The logical failure rate Pfail (in logarithmic scale) as a function of physical error rate p for
surface codes of different even distance d, under i.i.d depolarising noise. The restricted
decoder threshold is shown against the unified decoder configured with weights wA = 1,
and (a) wB = 0.7, (b) wB = 1 and (c) wB = 1.1, (d) wB = 2 using the matching graph
in Fig. 5.2(c). Each dashed line indicates the fit to a Taylor expansion for each system
size, and the error bars show the standard deviation of the mean logical failure rate
where each data point is collected using > 6× 104 Monte Carlo samples.
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A4 A note on other derivations of Hawking radiation

The spectrum in Eq. 6.8 can also be derived by considering the creation of particle-antiparticle

pairs near the black hole horizon, as first proposed by Hawking in [Haw74]. In this picture,

quantum fluctuations near the event horizon give rise to pairs of particles, with one falling into

the black hole and the other escaping to infinity, forming the thermal spectrum characteristic

of Hawking radiation. A second approach was introduced by Hawking in Ref. [Haw76a],

which recovers the Hawking radiation spectrum by analytically continuing the Schwarzschild

(Lorentzian) black hole metric into a Riemannian (Euclidean) metric using the introduction

of an imaginary time t −→ iτ . In this framework, quantum fields are analysed in the Euclidean

Schwarzschild background, and the periodicity of the imaginary time coordinate implies that

the quantum field is in a thermal equilibrium state at the Hawking temperature, with this

state responsible for the Hawking radiation observed in the Lorentzian picture.

Moreover, Unruh’s seminal work in [Unr76] reinforces the importance of the causal struc-

ture on Hawking radiation. This argument draws on the Unruh effect, where an accelerating

observer in flat spacetime perceives the vacuum as populated by a thermal bath of particles

due to the observer’s acceleration and the frame-dependent nature of the vacuum state. Simi-

larly, near the event horizon of a black hole, an infalling observer detects no particles, whereas

an observer in a distant stationary frame perceives the region near the horizon as a hot ther-

mal bath. Hence, this reasoning shows that the black hole emits Hawking radiation due to

the relative acceleration between the event horizon and the distant observer, but overlooks

the quantum mechanical treatment of the state of the field near the horizon.

Finally, Parikh and Wilczek offered a semiclassical approximation whereby particles escape

the black hole via quantum tunnelling through the potential barrier formed by the event

horizon. The spectrum of outgoing particles reflects the emission of Hawking radiation [PW00]

at a temperature TH , but their approach also accounts for non-thermal corrections due to the

effect of back-reaction from the emitted particle on the black hole. As the black hole radiates,

these corrections accumulate, eventually leading to its complete evaporation as predicted by
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Hawking. Moreover, this slight deviation from thermality implies that Hawking radiation

carries information about the black hole’s microstates. This is significant in discussions of the

black hole information paradox.

A5 Diagonalising the XY model

Let us rewrite the Hamiltonian in Eq. 6.15 as

H =
∑
l,m

hlmc
†
l cm (A.15)

where the matrix h with entries [h]lm is Hermitian. Hence, there exists a unitary operator U

satisfying h = UDU †, for a diagonal matrixD containing the corresponding energy eigenvalues

Dij = δijEj . Upon substitution, we can rewrite the Hamiltonian in Eq. A.15 as

H =
∑
j

Ejc
†
jcj (A.16)

where the new fermionic modes follow from the above transformation such that

cj =
∑
k

U∗
kjcj , c†j =

∑
k

Ukjcj (A.17)

which obey the canonical fermionic commutation relations. In this basis, H is diagonalised,

and represents a sum of harmonic oscillators. The ground state of this Hamiltonian corre-

sponds to the configuration where all modes with negative energy are occupied, i.e.

|GS⟩ = Πj:Ej<0c
†
j |0⟩ . (A.18)
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A6 Floquet Engineering

The full time-dependent Hamiltonian describing a Floquet-driven 2D lattice system is given

by

H(t) = −J0κ
∑
⟨i,j⟩

(ĉ†i ĉj + ĉ†j ĉi) + cos(ωt)
∑
j

Aj ĉ
†
j ĉj . (A.19)

The equivalent of Eq. (A.19) in 1D is shown in Eq. (4) in the main text. The stroboscopic

Hamiltonian Ht0
S generates the evolution over one driving cycle from t0 to t0 + T . The choice

of t0 is a gauge choice, named the “Floquet gauge”. There exists a family of stroboscopic

Hamiltonians Ht0
S for each t0 ∈ {0, T} and they are all related by a unitary transformation.

We can numerically calculate the stroboscopic Hamiltonian by simulating the evolution

of time-independent basis elements under the Schrödinger equation using the time-dependent

Hamiltonian Eq. (A.19). After one period, we diagonalise the time evolution operator U(t0 +

T, t0)|ψn(t0)⟩ = un|ψn(t0)⟩. The quasienergy {ϵn} is given by the natural logarithm ϵn =

i
T log(un), defining the stroboscopic Hamiltonian via Ht0

S =
∑

n ϵn|ψn(t0)⟩⟨ψn(t0)|.

We can change basis and work with a representation of the stroboscopic Hamiltonian

which is expressly t0-independent. This Floquet-gauge invariant Hamiltonian is labelled the

“effective Hamiltonian,” Heff [EA15]. To explore the analytical behaviour of the effective

Hamiltonian and utilise the high-frequency expansion [BDP15; EA15], it is convenient to

make a gauge transformation from Eq. (A.19) into the “lattice frame” given by

H̃(t) = −J0κ
∑
⟨i,j⟩

ei
Ai−Aj

h̄ω
sin(ωt)ĉ†i ĉj , (A.20)

where the time dependence has been transferred to time-dependent Peierls phases [Eck17].

There exists an infinite series expansion, which describes the effective Hamiltonian involv-

ing terms of increasing order of the inverse frequency

Heff =
∞∑
n=0

1

ωn
H

(n)
eff . (A.21)
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For sufficiently large driving frequencies, the effective Hamiltonian can be well approximated

by the first two terms [EA15; BDP15]

H
(0)
eff = H̃0, H

(1)
eff =

1

h̄

∞∑
l=1

1

l
[H̃l, H̃−l] (A.22)

where H̃l = 1
T

∫ T
0 e−ilωtH̃(t) are Fourier harmonics of the time-dependent Hamiltonian in the

lattice frame given by Eq. (A.20). They are given by H̃m = −J0κ
∑

⟨i,j⟩ ĉ
†
i ĉjJm

(
Ai−Aj

ω

)
where Jm is the Bessel function of the mth kind. The first term (n = 0) of the high-frequency

expansion Eq. (A.21) is therefore the first Fourier harmonic which corresponds to a Hamilto-

nian

H = −J0
∑
⟨i,j⟩

κij(ĉ
†
i ĉj + ĉ†j ĉi) (A.23)

with tunnelling elements given by

κij = κJ0
(
|Ai −Aj |

h̄ω

)
, (A.24)

see also the main text. We utilise this approximation to generate a sequence of local driving

amplitudes that generate the desired tunnelling profile encoding the black hole geometry. The

dimensionless constant κ relates the chosen energy scale J0 to the bare tunnelling in the non-

driven optical lattice, i.e. the first term of Eq. (A.19). We make an explicit distinction between

these energy scales to enable a wider variety of Hawking temperatures in our simulator. The

Bessel function in Eq. A.24 is limited to values between 1 and ∼ −0.4; the constant κ acts as

essential leverage to achieve larger effective tunnelling elements and therefore larger simulated

α and encoded Hawking temperatures [see Eq. (3) in the main text]. For instance, the analysis

on error resilience in the main text simulates α values between 1 and 3 which would require

κ≫ 1 for large lattices.

Since [Hm, H−m] = 0, the second-order term of the high-frequency expansion vanishes and

the leading-order corrections to the effective Hamiltonian scale as 1/ω2 as discussed in the
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main text.

Finally, we note that the complex phase of the tunnelling elements in a one-dimensional

lattice constitutes a gauge freedom. Hence, a system with a purely real and positive “V-

shaped” tunnelling profile would deliver the same dynamics given in Fig. 7.2 and provide

an equally valid simulation of Hawking radiation. In contrast, tunnelling phases cannot be

gauged away in 2D.
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[FS04] Uwe R Fischer and Ralf Schützhold. “Quantum simulation of cosmic inflation in

two-component Bose-Einstein condensates”. In: Physical Review A 70.6 (2004),

p. 063615. doi: https://doi.org/10.1103/PhysRevA.70.063615.

[Fis95] Daniel S. Fisher. “Critical behavior of random transverse-field Ising spin chains”.

In: Phys. Rev. B 51 (10 Mar. 1995), pp. 6411–6461. doi: 10.1103/PhysRevB.

51.6411. url: https://link.aps.org/doi/10.1103/PhysRevB.51.6411.

[96] FOCS ’96: Proceedings of the 37th Annual Symposium on Foundations of Com-

puter Science. USA: IEEE Computer Society, 1996.

[FL97] M.P.C. Fossorier and Shu Lin. “Soft Decision Decoding of Linear Block Codes

Based on Ordered Statistics for the Rayleigh Fading Channel with Coherent

https://doi.org/https://doi.org/10.1103/PhysRevA.69.033602
https://doi.org/https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1088/1742-5468/2012/11/p11020
http://dx.doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/https://doi.org/10.1088/2058-9565/aacad2
https://doi.org/https://doi.org/10.1103/PhysRev.110.965
https://doi.org/https://doi.org/10.1103/PhysRev.110.965
https://doi.org/https://doi.org/10.1103/PhysRevA.70.063615
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1103/PhysRevB.51.6411
https://link.aps.org/doi/10.1103/PhysRevB.51.6411


BIBLIOGRAPHY 193

Detection”. In: IEEE Transactions on Communications 45.1 (Jan. 1997), pp. 12–

14. issn: 1558-0857. doi: 10.1109/26.554278. (Visited on 04/18/2024).

[Fow13a] Austin G. Fowler. “Coping with qubit leakage in topological codes”. In: Phys.

Rev. A 88 (4 Oct. 2013), p. 042308. doi: 10.1103/PhysRevA.88.042308. url:

https://link.aps.org/doi/10.1103/PhysRevA.88.042308.

[Fow13b] Austin G. Fowler. “Optimal complexity correction of correlated errors in the

surface code”. In: arXiv:1310.0863 (2013). doi: https://doi.org/10.48550/

arXiv.1310.0863.

[FM14] Austin G. Fowler and John M. Martinis. “Quantifying the effects of local many-

qubit errors and nonlocal two-qubit errors on the surface code”. In: Phys. Rev.

A 89 (3 Mar. 2014), p. 032316. doi: 10.1103/PhysRevA.89.032316. url:

https://link.aps.org/doi/10.1103/PhysRevA.89.032316.

[Fow+12a] Austin G. Fowler et al. “Surface codes: Towards practical large-scale quantum

computation”. In: Physical Review A 86.3 (Sept. 2012). issn: 1094-1622. doi:

10.1103/physreva.86.032324. url: http://dx.doi.org/10.1103/PhysRevA.

86.032324.

[Fow+12b] Austin G. Fowler et al. “Surface codes: Towards practical large-scale quantum

computation”. In: Phys. Rev. A 86 (3 Sept. 2012), p. 032324. doi: 10.1103/

PhysRevA.86.032324. url: https://link.aps.org/doi/10.1103/PhysRevA.

86.032324.

[FK80] Eduardo Fradkin and Leo P Kadanoff. “Disorder variables and para-fermions

in two-dimensional statistical mechanics”. In: Nuclear Physics B 170.1 (1980),

pp. 1–15. doi: https://doi.org/10.1016/0550-3213(80)90472-1.

[Fre+03] Michael H. Freedman et al. “Topological Quantum Computation”. In: Bull.

Amer. Math. Soc. 40.10S (Oct. 2003). issn: 31-38. doi: doi.org/10.1090/

S0273-0979-02-00964-3. url: https://www.ams.org/journals/bull/2003-

40-01/S0273-0979-02-00964-3/.

https://doi.org/10.1109/26.554278
https://doi.org/10.1103/PhysRevA.88.042308
https://link.aps.org/doi/10.1103/PhysRevA.88.042308
https://doi.org/https://doi.org/10.48550/arXiv.1310.0863
https://doi.org/https://doi.org/10.48550/arXiv.1310.0863
https://doi.org/10.1103/PhysRevA.89.032316
https://link.aps.org/doi/10.1103/PhysRevA.89.032316
https://doi.org/10.1103/physreva.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://doi.org/https://doi.org/10.1016/0550-3213(80)90472-1
https://doi.org/doi.org/10.1090/S0273-0979-02-00964-3
https://doi.org/doi.org/10.1090/S0273-0979-02-00964-3
https://www.ams.org/journals/bull/2003-40-01/S0273-0979-02-00964-3/
https://www.ams.org/journals/bull/2003-40-01/S0273-0979-02-00964-3/


BIBLIOGRAPHY 194

[FK09] Liang Fu and Charles L Kane. “Josephson current and noise at a superconductor/quantum-

spin-Hall-insulator/superconductor junction”. In: Physical Review B—Condensed

Matter and Materials Physics 79.16 (2009), p. 161408. doi: https://doi.org/

10.1103/PhysRevB.79.161408.

[Fuk+13] Takeshi Fukuhara et al. “Microscopic Observation of Magnon Bound States and

Their Dynamics”. In: Nature 502.7469 (Oct. 2013), pp. 76–79. issn: 1476-4687.

doi: 10.1038/nature12541.

[Gal63] Robert G Gallager. Low density parity check codes, monograph. 1963. doi: https:

//doi.org/10.7551/mitpress/4347.001.0001. url: https://direct.mit.

edu/books/monograph/3867/Low-Density-Parity-Check-Codes.

[GH77] Gary W Gibbons and Stephen W Hawking. “Action integrals and partition func-

tions in quantum gravity”. In: Physical Review D 15.10 (1977), p. 2752. doi:

https://doi.org/10.1103/PhysRevD.15.2752.

[GE21] Craig Gidney and Martin Eker̊a. “How to factor 2048 bit RSA integers in 8

hours using 20 million noisy qubits”. In: Quantum 5 (2021), p. 433. doi: https:

//doi.org/10.22331/q-2021-04-15-433.

[GJ23] Craig Gidney and Cody Jones. New circuits and an open source decoder for the

color code. 2023. arXiv: 2312.08813 [quant-ph]. url: https://arxiv.org/

abs/2312.08813.

[GNM22] Craig Gidney, Michael Newman, and Matt McEwen. “Benchmarking the Planar

Honeycomb Code”. In: Quantum 6 (Sept. 2022), p. 813. issn: 2521-327X. doi:

10.22331/q-2022-09-21-813. url: https://doi.org/10.22331/q-2022-09-

21-813.

[GSJ24] Craig Gidney, Noah Shutty, and Cody Jones. “Magic state cultivation: growing

T states as cheap as CNOT gates”. In: arXiv preprint arXiv:2409.17595 (2024).

doi: https://doi.org/10.48550/arXiv.2409.17595.

https://doi.org/https://doi.org/10.1103/PhysRevB.79.161408
https://doi.org/https://doi.org/10.1103/PhysRevB.79.161408
https://doi.org/10.1038/nature12541
https://doi.org/https://doi.org/10.7551/mitpress/4347.001.0001
https://doi.org/https://doi.org/10.7551/mitpress/4347.001.0001
https://direct.mit.edu/books/monograph/3867/Low-Density-Parity-Check-Codes
https://direct.mit.edu/books/monograph/3867/Low-Density-Parity-Check-Codes
https://doi.org/https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/2312.08813
https://arxiv.org/abs/2312.08813
https://arxiv.org/abs/2312.08813
https://doi.org/10.22331/q-2022-09-21-813
https://doi.org/10.22331/q-2022-09-21-813
https://doi.org/10.22331/q-2022-09-21-813
https://doi.org/https://doi.org/10.48550/arXiv.2409.17595


BIBLIOGRAPHY 195

[Gok+19] Pranav Gokhale et al. “Asymptotic improvements to quantum circuits via qutrits”.

In: Proceedings of the 46th International Symposium on Computer Architecture

(June 2019). doi: 10.1145/3307650.3322253. url: http://dx.doi.org/10.

1145/3307650.3322253.

[GD14] N. Goldman and J. Dalibard. “Periodically Driven Quantum Systems: Effective

Hamiltonians and Engineered Gauge Fields”. In: Physical Review X 4.3 (Aug.

2014), p. 031027. issn: 2160-3308. doi: 10.1103/PhysRevX.4.031027. (Visited

on 05/08/2023).

[Got96] Daniel Gottesman. “Class of quantum error-correcting codes saturating the quan-

tum Hamming bound”. In: Physical Review A 54.3 (1996), p. 1862. doi: https:

//doi.org/10.1103/PhysRevA.54.1862.

[Got97] Daniel Gottesman. “Stabilizer Codes and Quantum Error Correction”. PhD the-

sis. California Institute of Technology, 1997.

[Got98a] Daniel Gottesman. “The Heisenberg representation of quantum computers”. In:

arXiv preprint quant-ph/9807006 (1998).

[Got98b] Daniel Gottesman. “Theory of fault-tolerant quantum computation”. In: Physical

Review A 57.1 (Jan. 1998), pp. 127–137. doi: 10.1103/physreva.57.127. url:

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.57.127.

[Got13] Daniel Gottesman. “Fault-tolerant quantum computation with constant over-

head”. In: arXiv preprint arXiv:1310.2984 (2013). doi: https://doi.org/10.

48550/arXiv.1310.2984.

[GC99] Daniel Gottesman and Isaac L. Chuang. “Demonstrating the viability of uni-

versal quantum computation using teleportation and single-qubit operations”.

In: 402.6760 (Nov. 1999), pp. 390–393. doi: 10.1038/46503. arXiv: quant-

ph/9908010 [quant-ph].

https://doi.org/10.1145/3307650.3322253
http://dx.doi.org/10.1145/3307650.3322253
http://dx.doi.org/10.1145/3307650.3322253
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/physreva.57.127
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.57.127
https://doi.org/https://doi.org/10.48550/arXiv.1310.2984
https://doi.org/https://doi.org/10.48550/arXiv.1310.2984
https://doi.org/10.1038/46503
https://arxiv.org/abs/quant-ph/9908010
https://arxiv.org/abs/quant-ph/9908010


BIBLIOGRAPHY 196

[Gre+21] Philip D. Gregory et al. “Robust storage qubits in ultracold polar molecules”.

In: Nature Physics 17.10 (Sept. 2021), pp. 1149–1153. issn: 1745-2481. doi: 10.

1038/s41567-021-01328-7. url: http://dx.doi.org/10.1038/s41567-021-

01328-7.

[GB23] Sam J. Griffiths and Dan E. Browne. “Union-find quantum decoding without

union-find”. In: arXiv:2306.09767 (2023). doi: https://doi.org/10.48550/

arXiv.2306.09767.

[GB21] Christian Gross and Waseem S. Bakr. “Quantum Gas Microscopy for Single

Atom and Spin Detection”. In: Nature Physics 17.12 (Dec. 2021), pp. 1316–

1323. issn: 1745-2473, 1745-2481. doi: 10.1038/s41567-021-01370-5. (Visited

on 05/07/2023).

[GB17a] Christian Gross and Immanuel Bloch. “Quantum Simulations with Ultracold

Atoms in Optical Lattices”. In: Science 357.6355 (Sept. 2017), pp. 995–1001.

doi: 10.1126/science.aal3837. (Visited on 05/07/2023).

[GB17b] Christian Gross and Immanuel Bloch. “Quantum simulations with ultracold

atoms in optical lattices”. In: Science 357.6355 (2017), pp. 995–1001. doi: https:

//doi.org/10.1126/science.aal3837.

[Gro96] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In:

Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-

ing. 1996, pp. 212–219. doi: https://doi.org/10.48550/arXiv.quant-

ph/9605043.

[GMW98] Thomas Guhr, Axel Müller–Groeling, and Hans A. Weidenmüller. “Random-

Matrix Theories in Quantum Physics: Common Concepts”. In: Physics Reports

299.4 (June 1998), pp. 189–425. issn: 0370-1573. doi: 10.1016/S0370-1573(97)

00088-4. url: https://www.sciencedirect.com/science/article/pii/

S0370157397000884.

https://doi.org/10.1038/s41567-021-01328-7
https://doi.org/10.1038/s41567-021-01328-7
http://dx.doi.org/10.1038/s41567-021-01328-7
http://dx.doi.org/10.1038/s41567-021-01328-7
https://doi.org/https://doi.org/10.48550/arXiv.2306.09767
https://doi.org/https://doi.org/10.48550/arXiv.2306.09767
https://doi.org/10.1038/s41567-021-01370-5
https://doi.org/10.1126/science.aal3837
https://doi.org/https://doi.org/10.1126/science.aal3837
https://doi.org/https://doi.org/10.1126/science.aal3837
https://doi.org/https://doi.org/10.48550/arXiv.quant-ph/9605043
https://doi.org/https://doi.org/10.48550/arXiv.quant-ph/9605043
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://www.sciencedirect.com/science/article/pii/S0370157397000884
https://www.sciencedirect.com/science/article/pii/S0370157397000884


BIBLIOGRAPHY 197

[Gup+23] Riddhi S. Gupta et al. “Encoding a magic state with beyond break-even fidelity”.

In: arXiv:2305.13581 (2023). doi: https://doi.org/10.1038/s41586-023-

06846-3.

[HH22] Jeongwan Haah and Matthew B. Hastings. “Boundaries for the Honeycomb

Code”. In: Quantum 6 (Apr. 2022), p. 693. issn: 2521-327X. doi: 10.22331/q-

2022-04-21-693. url: https://doi.org/10.22331/q-2022-04-21-693.

[Ham50] Richard W. Hamming. “Error Detecting and Error Correcting Codes”. In: The

Bell System Technical Journal 29.2 (1950), pp. 147–160. doi: DOI:10.1002/j.

1538-7305.1950.tb00463.x.

[Han+24] Connor T Hann et al. “Hybrid cat-transmon architecture for scalable, hardware-

efficient quantum error correction”. In: arXiv preprint arXiv:2410.23363 (2024).

doi: https://doi.org/10.48550/arXiv.2410.23363.

[HK10] M Zahid Hasan and Charles L Kane. “Colloquium: topological insulators”. In:

Reviews of modern physics 82.4 (2010), pp. 3045–3067. doi: https://doi.org/

10.1103/RevModPhys.82.3045.

[Has+21] Tomohiro Hashizume et al. “Deterministic fast scrambling with neutral atom

arrays”. In: Physical Review Letters 126.20 (2021), p. 200603. doi: https://

doi.org/10.1103/PhysRevLett.126.200603.

[Haw74] S. W. Hawking. “Black Hole Explosions?” In: Nature 248.5443 (Mar. 1974),

pp. 30–31. issn: 0028-0836, 1476-4687.

[Haw80] S. W. Hawking. THE PATH INTEGRAL APPROACH TO QUANTUM GRAV-

ITY. Cambridge University Press, 1980, pp. 746–789.

[Haw71] Stephen W Hawking. “Gravitational radiation from colliding black holes”. In:

Physical Review Letters 26.21 (1971), p. 1344. doi: https://doi.org/10.1103/

PhysRevLett.26.1344.

https://doi.org/https://doi.org/10.1038/s41586-023-06846-3
https://doi.org/https://doi.org/10.1038/s41586-023-06846-3
https://doi.org/10.22331/q-2022-04-21-693
https://doi.org/10.22331/q-2022-04-21-693
https://doi.org/10.22331/q-2022-04-21-693
https://doi.org/DOI: 10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/DOI: 10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/https://doi.org/10.48550/arXiv.2410.23363
https://doi.org/https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/https://doi.org/10.1103/PhysRevLett.126.200603
https://doi.org/https://doi.org/10.1103/PhysRevLett.126.200603
https://doi.org/https://doi.org/10.1103/PhysRevLett.26.1344
https://doi.org/https://doi.org/10.1103/PhysRevLett.26.1344


BIBLIOGRAPHY 198

[Haw75] Stephen W Hawking. “Particle creation by black holes”. In: Communications in

mathematical physics 43.3 (1975), pp. 199–220. doi: https://doi.org/10.

1007/BF02345020.

[Haw76a] Stephen W Hawking. “Black holes and thermodynamics”. In: Physical Review D

13.2 (1976), p. 191. doi: https://doi.org/10.1103/PhysRevD.13.191.

[Haw76b] Stephen W Hawking. “Breakdown of predictability in gravitational collapse”.

In: Physical Review D 14.10 (1976), p. 2460. doi: https://doi.org/10.1103/

PhysRevD.14.2460.

[Haw15] Stephen W Hawking. “The information paradox for black holes”. In: arXiv

preprint arXiv:1509.01147 (2015). doi: https://doi.org/10.48550/arXiv.

1509.01147.

[HP07] Patrick Hayden and John Preskill. “Black holes as mirrors: quantum information

in random subsystems”. In: Journal of high energy physics 2007.09 (2007), p. 120.

doi: https://doi.org/10.1088/1126-6708/2007/09/120.

[HB21] Oscar Higgott and Nikolas P. Breuckmann. “Subsystem Codes with High Thresh-

olds by Gauge Fixing and Reduced Qubit Overhead”. In: Phys. Rev. X 11 (3

Aug. 2021), p. 031039. doi: 10.1103/PhysRevX.11.031039. url: https://

link.aps.org/doi/10.1103/PhysRevX.11.031039.

[HG23] Oscar Higgott and Craig Gidney. “Sparse blossom: correcting a million errors per

core second with minimum-weight matching”. In: arXiv preprint arXiv:2303.15933

(2023). doi: https://doi.org/10.48550/arXiv.2303.15933.

[Hig+23] Oscar Higgott et al. “Improved decoding of circuit noise and fragile boundaries

of tailored surface codes”. In: Physical Review X 13.3 (2023), p. 031007. doi:

https://doi.org/10.48550/arXiv.2203.04948.

[HPP01] Andreas Honecker, Marco Picco, and Pierre Pujol. “Universality class of the

Nishimori point in the 2D±J random-bond Ising model”. In: Physical review

https://doi.org/https://doi.org/10.1007/BF02345020
https://doi.org/https://doi.org/10.1007/BF02345020
https://doi.org/https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/https://doi.org/10.48550/arXiv.1509.01147
https://doi.org/https://doi.org/10.48550/arXiv.1509.01147
https://doi.org/https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1103/PhysRevX.11.031039
https://link.aps.org/doi/10.1103/PhysRevX.11.031039
https://link.aps.org/doi/10.1103/PhysRevX.11.031039
https://doi.org/https://doi.org/10.48550/arXiv.2303.15933
https://doi.org/https://doi.org/10.48550/arXiv.2203.04948


BIBLIOGRAPHY 199

letters 87.4 (2001), p. 047201. doi: https://doi.org/10.1103/PhysRevLett.

87.047201.

[Hor+07] Layla Hormozi et al. “Topological quantum compiling”. In: Physical Review

B—Condensed Matter and Materials Physics 75.16 (2007), p. 165310. doi: https:

//doi.org/10.1103/PhysRevB.75.165310.

[Hor22] Matthew D Horner. “Emergent Spacetime in Quantum Lattice Models”. In:

arXiv preprint arXiv:2212.12548 (2022).

[HHP23] Matthew D Horner, Andrew Hallam, and Jiannis K Pachos. “Chiral Spin-Chain

Interfaces Exhibiting Event-Horizon Physics”. In: Physical Review Letters 130.1

(2023), p. 016701. doi: https://doi.org/10.1103/PhysRevLett.130.016701.

[HFP20] Matthew D. Horner, Ashk Farjami, and Jiannis K. Pachos. “Equivalence between

vortices, twists, and chiral gauge fields in the Kitaev honeycomb lattice model”.

In: Phys. Rev. B 102 (12 Sept. 2020), p. 125152. doi: 10.1103/PhysRevB.102.

125152. url: https://link.aps.org/doi/10.1103/PhysRevB.102.125152.
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für Physik 47 (1928), pp. 631–651. doi: https://doi.org/10.1007/BF01331938.

[Jor+24] Stephen P Jordan et al. “Optimization by decoded quantum interferometry”. In:

arXiv preprint arXiv:2408.08292 (2024). doi: https://doi.org/10.48550/

arXiv.2408.08292.

https://doi.org/https://doi.org/10.1140/epjd/s10053-022-00477-5
https://doi.org/https://doi.org/10.1098/rsta.2019.0239
https://doi.org/https://doi.org/10.1098/rsta.2019.0239
https://doi.org/https://doi.org/10.1098/rsta.2019.0225
https://doi.org/https://doi.org/10.1038/s41586-022-05424-3
https://doi.org/https://doi.org/10.1038/s41586-022-05424-3
https://doi.org/10.1103/physreva.102.042409
https://doi.org/10.1103/physreva.102.042409
http://dx.doi.org/10.1103/PhysRevA.102.042409
https://doi.org/https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/https://doi.org/10.1007/BF01331938
https://doi.org/https://doi.org/10.48550/arXiv.2408.08292
https://doi.org/https://doi.org/10.48550/arXiv.2408.08292


BIBLIOGRAPHY 202

[KML23] Marcin Kalinowski, Nishad Maskara, and Mikhail D Lukin. “Non-Abelian Flo-

quet spin liquids in a digital Rydberg simulator”. In: Physical Review X 13.3

(2023), p. 031008. doi: https://doi.org/10.1103/PhysRevX.13.031008.

[Kar+24] Amir H. Karamlou et al. “Probing entanglement in a 2D hard-core Bose–Hubbard

lattice”. In: Nature 2024 629:8012 629 (8012 Apr. 2024), pp. 561–566. issn: 1476-

4687. doi: 10.1038/s41586-024-07325-z. url: https://www.nature.com/

articles/s41586-024-07325-z.

[KNG06] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. “Chiral tunneling and the

Klein paradox in graphene”. In: Nature Physics 2 (2006), pp. 620–625. doi:

https://doi.org/10.1038/nphys384.
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