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This study investigates the subjective perception of active noise control (ANC) performance, focusing on how 
individuals evaluate the noise reduction provided by different ANC algorithms. While the performance of the 
ANC algorithms has already been evaluated using objective metrics, this study aims to assess their effectiveness 
from a subjective perspective. In a simulated vehicle interior created using a noise box, two ANC algorithms 
were tested: the normalized least-mean-square (NLMS) algorithm and the hybrid selective fixedfilter active noise 
control normalized least-mean-square (SFANC-NLMS) algorithm. Participants were exposed to 27 stimuli, which 
combined three types of noise (motorcycle, street, and train), three sound pressure levels (55, 65, and 72 dB(A)), 
and three ANC conditions (no control, NLMS, and SFANC-NLMS). Subjective evaluations were collected using 
three indicators: perceived annoyance (PAY), perceived affective quality (PAQ), and perceived loudness (PLN). 
These metrics captured participants’ impressions of the noise environment and the impact of noise control. The 
study is structured around three research questions (RQ1, RQ2, and RQ3), each addressing different aspects of 
ANC performance evaluation. In response to RQ1, the results demonstrated that the SFANC-NLMS algorithm 
outperformed NLMS in reducing perceived annoyance and loudness. Regarding RQ2, higher sound levels (72 
dB) led to greater perceived annoyance, but sound level did not significantly alter the relationship between ANC 
algorithm type and perceived annoyance. Finally, in addressing RQ3, noise type influenced ANC effectiveness, 
with SFANC-NLMS showing more significant reductions in perceived annoyance compared to NLMS. Overall, the 
findings confirm that the SFANC-NLMS algorithm provides better noise reduction in encapsulated structures.

1. Introduction

Active noise control (ANC) is an effective technique for reducing 
unwanted sound or vibrations by applying the principle of sound wave 
superposition. The idea concept is generating a secondary signal, known 
as ``anti-noise,'' which has the same amplitude as the unwanted noise 
but is phase-inverted, resulting in significant noise cancellation [1,2]. 
For this cancellation to occur, ANC systems must accurately predict the 
noise signal’s amplitude and phase at a specific spatial point. While the 
amplitude may remain steady, the phase changes dynamically over time 
due to the physical behavior of sound waves in space [3,4]. ANC has 
found applications in numerous fields, such as personal audio devices, 
vehicles, aircraft, building acoustics, home appliances, industrial equip
ment, medical devices, and maritime environments. These technologies 
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are particularly valuable in enclosed spaces like car interiors, airplane 
cabins, and train compartments [5,6], where passive noise reduction 
methods such as sound-absorbing materials—are traditionally employed 
[7]. However, at low frequencies, passive approaches require substan
tial material mass and volume to achieve significant noise reduction, 
which can be impractical [8,9]. In contrast, ANC systems are well
suited to addressing low-frequency noise challenges in such settings. 
Low-frequency noise in vehicles primarily originates from structural vi
brations caused by the engine and tires [10,11]. Engine noise is typically 
concentrated below 500 Hz, while vibrations from tires often result in 
structure-borne noise below 1 kHz. Additionally, cabin resonances tend 
to amplify these low-frequency sounds, further contributing to the noise 
level. Road noise, generated by the interaction between vehicle tires and 
the road surface, represents another major source of noise in automo
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biles [12]. By addressing these challenges, ANC systems play a critical 
role in improving acoustic comfort and reducing noise pollution.

Traditional ANC systems typically rely on adaptive algorithms, such 
as the Filtered-X least-mean-square (FxLMS), to reduce noise due to 
their simplicity and robustness under standard conditions. However, 
these LMS-based algorithms exhibit slow convergence and limited track
ing capability, making them less effective in handling dynamic or 
non-stationary noises commonly encountered in encapsulated structure 
where noise variability is high and user perception of noise reduction 
quality is critical [13,14]. Although other adaptive algorithms such as 
the Filtered-X A˙ine Projection (FxAP) and the Filtered-X Recursive 
Least Squares (FxRLS) offer improved convergence rates [15,16], their 
computational cost and sensitivity to modeling errors limit their appli
cability in real-time systems. Deep learning brings significant advance
ments to ANC by enabling models to adapt dynamically to complex, 
non-stationary noise patterns. Convolutional neural networks (CNNs) 
are effective in extracting robust features, eliminating the need for man
ually defined features that traditional algorithms rely on [17,18]. This 
automated feature extraction allows deep learning-based ANC systems 
to identify nuanced noise characteristics, offering better generalization 
across varying environments and noise types [19,20]. Building on these 
strengths, hybrid approaches like the selective fixedfilter active noise 
control (SFANC) combined with FxNLMS algorithm effectively combine 
deep learning with traditional adaptive control methods to overcome 
the limitations of each. In this setup, the CNN component dynamically 
selects the optimal pre-trained filter based on the noise type, while the 
FxNLMS algorithm adaptively fine-tunes the filter coefficients for real
time noise reduction. This synergy of SFANC-FxNLMS combines flexible 
filter selection with stable adaptive control, achieving faster response, 
enhanced noise reduction, and robustness in non-stationary environ
ments such as vehicles and industrial settings [21].

Sound quality assessment has become a very active area of research, 
focusing on the subjective response that sounds (especially noise) evoke 
in humans, with the aim of achieving better sound design and noise en
hancement techniques [22,23]. In particular, many studies have focused 
on the evaluation of sound quality in car interiors, examining different 
sound sources such as road noise, wind noise, and engine noise [24,25]. 
These studies highlight the complexity of the evaluation process, as each 
noise type has distinct characteristics, making it challenging to address 
all features simultaneously. Consequently, sound quality studies often 
focus on specific features, such as residual engine noise, which has been 
studied with active control. Results indicate that ANC is an effective tool 
for reducing low-frequency noise levels and improving acoustic comfort 
[26,27]. Studies have explored the perception of roughness in car engine 
noises using complex cepstrum analysis, underlining the importance of 
psychoacoustic parameters in designing sound profiles that align with 
user expectations [28]. While some experiments have been conducted in 
laboratory settings, further investigation is needed to fully understand 
ANC’s impact on acoustic comfort inside vehicles. For instance, [29] de
signed an active tuning system to meet different engine sound quality 
requirements, and other methods have been explored for sound qual
ity improvements with effectiveness demonstrated near virtual micro
phones [30,31] or error microphones [32,33]. Applied psychoacoustics 
is typically the foundation of sound quality evaluation [34,24], includ
ing in the automotive industry [35,36]. Psychoacoustic studies are often 
complemented by jury tests and mathematical models to estimate sound 
quality. Examples of sound quality studies on engine noise inside vehi
cles can be found in [37,38].

To address the research gap regarding the perception of active noise 
cancellation algorithms and their effects on noise perception in encap
sulated structures, this study investigates the perceptual effects of active 
noise cancellation applied in a noise box simulating a vehicle interior. 
Specifically, this study compares a conventional NLMS algorithm with a 
modified version of SFANC-FxNLMS, called SFANC-NLMS, to investigate 
their influence on noise perception. The following research questions 
(RQ) are addressed:

-- RQ1. To what extent do different ANC algorithms (NLMS and 
SFANC-NLMS) influence perceived annoyance across various noise 
types in a simulated vehicle environment?

-- RQ2. Does sound level (55, 65, and 72 dB(A)) moderate the relation
ship between ANC algorithm type and perceived annoyance, altering 
the strength or direction of this association?

-- RQ3. How do different noise sources (e.g., motorcycle, street, and 
train noises) interact with ANC algorithms and sound levels to shape 
perceived annoyance and overall acoustic comfort?

The paper is organized into five sections. Section 2 presents the con
text of this study by describing the environment of the control system 
and the algorithm used. Section 3 outlines the methodology employed 
to set up the experiment. Section 4 presents the results of the experi
ment. Section 5 provides a discussion of these results and answers the 
research questions. Finally, Section 6 concludes the paper.

2. Context of the study

2.1. Environment of control: noise box

The encapsulated structure, known as a noise box, is designed as a 
test platform for benchmarking vehicle interior noise. It is going to be 
a simplified interior noise investigation system coupled by a plate and 
a cavity. For example, this setup allows for the evaluation of materi
als, structures, and control strategies aimed at reducing noise inside a 
vehicle. The system must fulfill the following requirements:

-- The system must be representative, providing access to panel, cavity, 
structure-borne noise, airborne noise, and noise control measures.

-- The system should be straightforward to model and analyze, with a 
simple geometry and clearly defined boundary conditions.

-- All geometric, material, and physical parameters must be specified.

A simplified plate-cavity system, modeled as a rigid box with one 
flexible panel, is selected to design a Noise-Box for testing vehicle in
terior noise control, based on key criteria for representativeness, ease 
of modeling, and defined parameters. Using a passenger car as a ref
erence, the Noise-Box geometry reflects the relationship between the 
plate-cavity system and a vehicle cabin. Interior noise, which includes 
sounds from the engine, tires, intake, exhaust, wind, and other sources, 
enters through either structure-borne or airborne paths, as shown in 
Fig. 1. In this model, the cavity simulates the cabin, and the panel rep
resents the vibrating car body: structure-borne noise arises when the 
panel is mechanically excited, and airborne noise occurs when external 
sounds pass through the panel, illustrating the coupled dynamics of the 
structure and enclosed acoustic field.

All control paths are calculated in this environment. The primary 
path refers to the path of the unwanted noise from the source to the error 
microphone. The secondary path is the path between the actuator, in this 
case, a loudspeaker, and the error microphone where the control signal 
is sent to cancel the primary noise. The reference path is the path from 
the noise source to the reference sensor, in this case, an accelerometer, 
which detects the primary noise characteristics and provides input to 
the control system for noise cancellation. The reference accelerometer 
is positioned at the top-left corner of the aluminum panel to avoid nodal 
points. The loudspeaker used as the actuator is fixed inside the cavity, 
facing the plate. The error microphone is located at the inside of the 
cavity. All of these control paths are computed through an experiment 
outlined in Section 3.2.1.

2.2. Traditional algorithm: NLMS algorithm

The NLMS algorithm is an adaptive active noise control (ANC) algo
rithm. Due to the non-minimum phase nature of our experimental en
vironment, the FxNLMS algorithm, which typically relies on secondary 
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Fig. 1. The principle of noise in vehicle interiors and the panel-cavity system (a) and schematic diagram of the Noise Box for noise mitigation measures (b) [39]. 

path estimation, was found to be unsuitable for this study. A system is 
said to be non-minimum phase when it presents unstable zeros, i.e., ze
ros located outside the unit circle in the z-domain. These zeros result 
in an initial system response that moves in the opposite direction of 
the steady-state behavior, making control more challenging and often 
introducing phase-related delays. Non-minimum phase systems often 
lead to instability or reduced performance in ANC applications [40,41]. 
In practice, secondary path estimation is subject to modeling errors, 
which degrade control performance, particularly in experimental envi
ronments. Based on these considerations and the results from the NLMS 
algorithm, the FxNLMS algorithm was forgone in favor of the simpler 
NLMS algorithm, avoiding the complexities of secondary path estima
tion.

The control system is based on a feedforward architecture, with the 
input signal vector 𝑥(𝑛) = [𝑥(𝑛), 𝑥(𝑛−1),… , 𝑥(𝑛−𝑁 +1)] and the signal 
after the reference path 𝑟(𝑛) drive the NLMS control output 𝑦(𝑛):

𝑦(𝑛) =𝑤𝑇 (𝑛)𝑟(𝑛) (1)

where 𝑤(𝑛) represents the adaptive filter coefficient vector. The residual 
error signal, 𝑒(𝑛), defined as:

𝑒(𝑛) = 𝑑(𝑛) − 𝑠(𝑛) ∗ (𝑤𝑇 (𝑛)𝑟(𝑛)) (2)

This error is minimized using the gradient descent method with step 
size 𝜇. The NLMS update rule is:

𝑤(𝑛+ 1) =𝑤(𝑛) + 𝜇𝑒(𝑛) 𝑟(𝑛) 
𝑟𝑇 (𝑛)𝑟(𝑛) + 𝜖

(3)

where 𝑇 denotes the transpose operation, and 𝜖 is a small constant (set 
to 2.2204 × 10−16) to avoid numerical instability during weight updates 
[42].

2.3. Novative algorithm: SFANC-NLMS algorithm

The hybrid SFANC-NLMS algorithm combines adaptive filtering with 
a dynamic filter selection mechanism that adjusts the control filter based 
on the type of noise. The algorithm operates with a set of pre-trained 
control filters, each optimized for different noise profiles. A 1D convo
lutional neural network (CNN) processes the incoming noise and selects 
the most appropriate control filter by outputting the index of the fil
ter best suited to the current noise conditions. Once the optimal filter 
is chosen, the NLMS algorithm continuously updates its coefficients to 
minimize the error signal further. This adaptive adjustment occurs at the 
sampling rate, allowing the control filter to be fine-tuned in real time. 
By integrating the filter selection capabilities of the CNN with the adapt
ability of the NLMS algorithm, the system efficiently adapts to varying 
noise conditions. This approach is presented in more detail in [43].

The simulation parameters are as follows: The ANC system operates 
in a single-channel configuration with a sampling rate of 16 kHz, and 

the control filter length is set to 4096 taps. The system utilizes state
space coefficients for the reference, primary, and secondary paths. Seven 
pre-trained control filters were used, corresponding to seven different 
white noise signals with the following frequency ranges: 20--2000 Hz, 
20--1000 Hz, 1000--2000 Hz, 20--500 Hz, 500--1000 Hz, 1000--1500 Hz, 
and 1500--2000 Hz. The NLMS algorithm was employed to derive the 
optimal control filters for these noises, with a stepsize of 0.0001.

3. Methodology

3.1. Study site, participants and administration

The experiment was conducted in a study room at Central House, 
chosen for its quiet environment, where participants used paper and 
pencil to complete the tasks as presented in Fig. 2. Formal ethical ap
proval was approved by BSEER Local Research Ethics Committee at 
University College London prior to participant recruitment and the com
mencement of the experiment. Each participant was informed about 
the study context through a Participant Information Sheet before tak
ing part, and consent was obtained via a form at the beginning of the 
experiment.

A total of 35 participants, including 16 men and 19 women, aged 
23 to 62 (mean age around 31), were recruited. Two participants were 
deemed unreliable due to a Spearman coefficient of 0.8 and a p-value 
over 20%.

3.2. Stimuli

3.2.1. Experimental setup for stimuli design in the noise box

The stimuli design for the jury test relies on the experimental setup 
of the noise box, as introduced in Section 2.1. This setup includes a 
sealed cavity, where the opening is closed with an aluminum plate to 
isolate and focus acoustic interactions. The noise box is equipped with 
components to extract the frequency response functions (FRFs) of the 
reference, primary, and secondary paths, to characterize the acoustic 
behavior of the system. Fig. 3 illustrates this configuration, showcasing 
the internal and external arrangement.

Two speakers are utilized in this setup. An external speaker simu
lates disturbances outside the cavity, while an internal speaker generates 
the ``anti-noise'' signal, it is called a canceling loudspeaker. Both speak
ers are driven by random noise signals generated by a computer and 
transmitted through the data acquisition system. Inside the cavity, four 
microphones are placed to capture acoustic responses, though only one 
microphone is employed for this single-channel control algorithm exper
iment. An accelerometer, positioned at the top left corner of the panel 
to avoid nodal points, acts as the reference sensor by capturing noise 
vibrations before they enter the cavity.

The measurement equipment includes a PCB 130E20 microphone 
with a sensitivity of 37.37 mV/Pa, calibrated using a Bruel & Kjaer 4231 
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Fig. 2. Illustration of Participant Participation. (a) shows how the participant filled out the questionnaire, and (b) depicts the room where the experiment took place.

Fig. 3. Images of the experimental set-up from inside (a) and outside (b). 

calibrator providing a reference frequency of 1 kHz and a sound pressure 
level of 94 dB. An accelerometer, the PCB 333B30 model with a sensi
tivity of 99.6 mV/g (10.16 mV/m/s2), is connected to a PCB Piezotronics 
model 483C series signal conditioner, interfacing with a National In
struments NI cDAQ-9178 data acquisition system. These devices ensure 
accurate measurements of both acoustic and vibratory signals.

The FRFs were derived in two phases. First, the external speaker 
was activated to measure the reference path, with the input being the 
voltage signal to the speaker and the output being the accelerometer 
signal (m/s2), resulting in an FRF magnitude in m ⋅ V/s2. Next, the in
ternal speaker was used to compute both the primary and secondary 
path FRFs. The primary path was calculated using the external speak
er’s input voltage and the cavity microphone signal as output (Pa/V), 
while the secondary path was derived similarly but with the internal 
speaker as the input source. All FRFs were computed over a frequency 

range of 100 Hz to 2000 Hz, with a sampling rate of 16,000 Hz. Ad
ditionally, the acoustic characteristics of the laboratory, influenced by 
surrounding materials, shaped the behavior of the sound field. These 
factors were accounted for when analyzing the experimental data.

To replicate real-world scenarios, three types of noise, motorbike, 
train, and street sounds, were selected from a publicly available dataset 
[44]. These noises were filtered through the state-space model derived 
from the FRFs of the noise box, ensuring realistic acoustic behavior. The 
FRFs also enabled the derivation of the state-space coefficients needed 
to model the acoustic dynamics of the noise box, a critical step for im
plementing active noise control. In the experimental design, three ANC 
conditions (off, NLMS, and SFANC-NLMS) were tested with the three 
noise types at three sound pressure levels (55 dB(A), 65 dB(A), and 72 
dB(A)), resulting in 3 × 3 × 3 = 27 stimulus combinations. Additionally, 
a train noise condition at 65 dB(A) was included as a control to as
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Table 1
Mean and standard deviation of the measured LAeq levels for each noise type and control condition. The first line is the level on the 
left side of the HATS and the second one is the right sides.

Noise Type Control: OFF Control: NLMS Control: SFANC-NLMS 
72 dB(A) 65 dB(A) 55 dB(A) 72 dB(A) 65 dB(A) 55 dB(A) 72 dB(A) 65 dB(A) 55 dB(A) 

Train
73.4 ± 0.3 67.1 ± 0.5 56.4 ± 0.6 73.0 ± 0.3 67.3 ± 0.4 56.2 ± 0.1 68.3 ± 0.4 63.1 ± 0.3 50.2 ± 0.2 
73.0 ± 0.3 67.0 ± 0.4 55.4 ± 0.6 73.4 ± 0.6 67.9 ± 0.6 56.4 ± 0.1 69.2 ± 0.5 63.1 ± 0.4 50.0 ± 0.2

Moto
70.3 ± 0.3 66.3 ± 0.2 56.4 ± 0.3 69.3 ± 0.1 63.9 ± 0.1 54.8 ± 0.3 62.8 ± 0.3 58.1 ± 0.3 48.8 ± 0.4 
70.2 ± 0.2 66.3 ± 0.3 56.5 ± 0.3 68.9 ± 0.3 63.4 ± 0.3 54.7 ± 0.3 62.7 ± 0.3 58.5 ± 0.4 48.5 ± 0.3

Street
72.0 ± 0.7 64.3 ± 0.4 57.3 ± 0.4 72.2 ± 0.3 64.1 ± 0.4 56.9 ± 0.3 67.3 ± 0.4 61.8 ± 0.3 54.6 ± 0.3 
71.4 ± 0.6 64.3 ± 0.3 57.5 ± 0.4 72.1 ± 0.3 64.2 ± 0.3 57.4 ± 0.3 67.4 ± 0.4 61.8 ± 0.4 54.6 ± 0.3 

Fig. 4. Interior view of the Audio Lab with the HATS setup (a), and the HATS setup during the calibration (b). 

sess test–retest reliability, bringing the total to 28 unique stimuli for the 
study.

3.2.2. Calibration

The calibration was conducted in an Audio Lab, using a Head 
and Torso Simulator (HATS) HEAD acoustics HMS II.3 LN HEC with 
Sennheiser HD 650 headphones. Before calibrating the stimuli, the 
HATS was initially calibrated with a Larson Davis CAL250 sound level 
calibrator, emitting a 251.2 Hz tone at 114 dB. Each stimulus, played 
through a computer, was calibrated individually. Volume settings were 
adjusted to achieve the desired noise levels of 55 dB(A), 65 dB(A), and 
72 dB(A). These levels were calibrated without the application of active 
noise control. For stimuli with control applied, the volume parame
ters were adjusted according to the corresponding noise level. ArtemiS 
SUITE 12 software was used for the calibration, along with the labO2
V1 playback equalizer and the HDA IV headphone amplifier. To account 
for variability in noise levels due to headphone positioning, each stimu
lus was calibrated three times with the headphones repositioned on the 
HATS between each measurement to capture uncertainty. The results of 
the measured noise levels after calibration are shown in Table 1, and 
photographs of the experiment setup are provided in Fig. 4.

3.3. Experiment design

The participants were first required to provide basic information: 
gender and age, along with a pre-test assessment of (1) individual noise 
sensitivity (INS) via the Weinstein Sensitivity to Sound Scale, 5-item 
version (WSSN-5) [45]; (2) a baseline noise annoyance (BNA) based on 

ISO/TS 15666 [46] using the version of the questionnaire presented in 
[47]; and (3) the Perceived Stress Scale (PSS-4) [48]. The pre-test ques
tionnaires were selected to assess potential confounding factors such as 
stress and mood on soundscape perception [49,50]. The pre-test assess
ment questionnaire is presented in Table A.1 in Appendix A.

After completing the basic data and pre-test assessment, a brief train
ing session was conducted to familiarize participants with the stimuli 
and questionnaire. During training, the participants were first exposed 
to the loudest stimulus, followed by the quietest stimulus, and then 
a training noise (a train noise at 65 dB(A)). After hearing the train
ing noise, participants were required to answer questions. Stimuli were 
played through a sound sequence design using the software FL Studio.

For test–retest reliability, an unfiltered 65 dB(A) train noise was used 
as the first and last stimulus for each participant, without replicating the 
noise box behavior. The other 27 stimulus combinations were presented 
in random order to all participants. Participants were allowed to listen to 
each stimulus as much as they wanted, with an experimenter available 
to replay stimuli if needed. All stimuli presented to the participants were 
recorded and played back.

Each stimulus was evaluated based on (1) perceived annoyance 
(PAY), (2) perceived affective quality (PAQ), and (3) perceived loudness 
(PLN). In contrast to the pre-test assessment of annoyance in the ab
sence of acoustic stimuli, the assessment of PAY referred specifically to 
the noise in the presented stimulus. The question asked: Thinking about 
the noise you just heard, how much does the noise bother, disturb, or annoy 
you? Responses were divided into 5 items, ranging from ``Not at all'' to 
“Extremely'' [46].
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The PAQ (Perceived Affective Quality) attributes proposed in ISO/TS 
12913-2 were adopted to structure the evaluation of affective responses 
to the indoor soundscape as modified by the stimuli. The PAQ con
sists of 8 attributes (i.e., eventful, vibrant, pleasant, calm, uneventful, 
monotonous, annoying, chaotic), forming an octant circumplex model 
(International Organization for Standardization, 2019 [51]). Partici
pants were asked to visually position a mark on a 2D map representing 
these attributes. The question asked: Thinking about the sound you just 
heard, where would you place the surrounding sound environment on this 
scale? This method allows participants to express their affective response 
to the sound environment, accounting for both its emotional tone and 
complexity.

To assess loudness (PLN), a relative magnitude estimation method 
was adopted. Participants were instructed to estimate the loudness of 
the stimulus under test (SUT). A numerical score was assigned to each 
stimulus based on its perceived loudness. The question asked: How loud 
would you say the sound environment is? The scale ranged from 0 to 100, 
allowing for a nuanced assessment of loudness perceived by the partici
pant [52]. The noise evaluation questionnaire is presented in Table A.2
in Appendix A.

3.4. Data analysis

The data were processed to obtain the mean scores and standard 
deviations for each indicator: INS, PSS-4, and BNA. For the INS and 
PSS-4 indicators, each participant’s score was calculated by summing 
the scores for all responses given to the questions and dividing this 
sum by the total number of questions in the respective questionnaire. 
Specifically, the INS questionnaire consists of 5 questions, and the PSS
4 questionnaire consists of 4 questions. The global mean score for each 
indicator was then calculated by averaging the individual participant 
scores. Standard deviations were computed to assess the variability of 
participants’ scores around the mean.

For the BNA indicator, the data were organized by noise type (e.g., 
traffic, airplane, train, etc.). Each participant’s score for each noise type 
was calculated in the same manner, by summing the responses to the 
relevant questions and dividing by the number of questions for that noise 
type. The mean and standard deviation were then calculated for each 
noise type based on the participants’ scores. These means and standard 
deviations provide an overview of participants’ perceptions regarding 
different noise types and indicators.

A three-way repeated measures ANOVA (3WR-ANOVA), followed by 
a post-hoc Tukey HSD test, was conducted to evaluate perceived annoy
ance (PAY), with the numerical scale of annoyance as the dependent 
variable and three independent variables (i.e., noise type, noise levels, 
and ANC condition). Prior to conducting the analysis, we verified that 
the assumptions of normality, homogeneity of variances, and sphericity 
were met. The normality of residuals was assessed using the Shapiro
Wilk test [53], homogeneity of variances was tested with Levene’s test 
[54], and sphericity was tested using Mauchly’s test [55]. All assump
tions were satisfied, allowing us to proceed with the 3WR-ANOVA. The 
circumplexity of the PAQ attributes was examined to assess the general
izability of the PAQ model. Furthermore, a three-way repeated measures 
permutational multivariate analysis of variance (3WR-PERMANOVA) 
was conducted using a distance matrix as input. This method was cho
sen because the PAQ data did not follow a normal distribution, as 
indicated by Mardia’s multivariate normality tests [56]. The analysis 
considered ISOPL, the x-coordinate of the participant’s mark on the 2D 
PAQ map, and ISOEV, the y-coordinate, as the dependent variables. 
The independent variables included noise levels, control conditions, 
and noise types. Post-hoc pairwise comparisons were performed using 
the pairwise.adonis() function, based on the ADONIS (permutational 
multivariate analysis of variance) method, to examine the differences 
between factor levels across all combinations of noise types, control 
conditions, and noise levels. This procedure was employed to identify 

significant pairwise differences between the groups following the main 
analysis.

For perceived loudness (PLN), a three-way repeated measures 
ANOVA (3WR-ANOVA), followed by a post-hoc Tukey HSD test, was 
conducted to evaluate perceived loudness, with the numerical scale of 
loudness as the dependent variable and three independent variables 
(i.e., noise type, noise levels, and ANC condition). Similar to the PAY 
analysis, various tests were performed on the data to check if all as
sumptions were satisfied in order to use the 3WR-ANOVA.

4. Results

4.1. Pre-test assessment

The mean value for the INS indicator is 6.49 with a standard devia
tion of 2.20, which indicates that the participants on average experience 
a medium to high level of noise pollution in their environment. As the 
INS scale ranges from 1 to 10, this value is in the upper mid-range of 
the scale and indicates a medium to high sensitivity to noise among 
the participants. In contrast, the mean value for PSS-4, which measures 
perceived stress, is 3.12 with a standard deviation of 0.75. As the scale 
for this indicator ranges from 0 to 4, this value indicates that the par
ticipants experience a medium level of stress on average, with some 
variability in the responses, but without reaching an extreme level of 
stress.

The mean scores for each type of noise, as measured by the BNA, vary 
slightly. The highest mean score was recorded for road traffic noise with 
a value of 2.37, suggesting that, on average, this noise type is perceived 
as somewhat disturbing. The lowest mean score was recorded for ani
mals noise with a value of 1.51, indicating that participants generally 
find animal-related noises less disturbing. The other noise types, includ
ing airplane, train, children, and other people have mean scores ranging 
from 1.86 to 2.09, reflecting a moderate level of disturbance for these 
sounds. In terms of standard deviations, road traffic and airplane have 
the highest variability, with standard deviations of 1.14 and 1.19, re
spectively, indicating that responses to these noises are more diverse. 
The animals and other people categories show the lowest variability, 
with standard deviations of 0.95, suggesting more consistent percep
tions of these noise types across participants. Overall, these results show 
moderate variability in how different noise types are perceived by par
ticipants.

4.2. Perceived annoyance

The results of the three-way repeated ANOVA (3WR-ANOVA) in
dicate that the control condition, noise type, and noise level all have 
significant effects on the perceived annoyance of participants, with 
some interactions between these factors revealing more complex re
lationships. In this analysis, the F-value reflects the ratio of variance 
explained by each factor to the unexplained variance (residual error). A 
higher F-value indicates a greater influence of the corresponding factor 
on perceived annoyance. The p-value represents the probability that the 
observed effect occurred by chance, with values below the significance 
threshold (typically 0.05) indicating a statistically significant effect. In 
this study, all p-values have been adjusted using the False Discovery 
Rate (FDR) correction to account for multiple comparisons. The con
trol condition shows a particularly strong effect (𝐹 = 44.48, 𝑝 < .0001), 
suggesting that different noise control strategies significantly influence 
how participants perceive noise. Similarly, noise level has a major 
impact (𝐹 = 161.4, 𝑝 < .0001), with higher levels of noise leading to 
greater perceived annoyance. Noise type also contributes significantly 
(𝐹 = 5.336, 𝑝 = .007), indicating that different types of sounds (e.g., 
street, train, or motorbike noise) have varying impacts on participants’ 
experiences. When examining interactions, the combination of control 
condition and noise type is significant (𝐹 = 4.859, 𝑝 = .0015), suggest
ing that the effectiveness of noise control methods differs depending on 
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Table 2
Results of the three-way repeated measures ANOVA (3WR-ANOVA) for 
PAY.

Comparison F p-value (FDR) 
Noise Types 5.33 0.007 * 
ANC 44.48 < 0.0001 **** 
Noise Levels 161.4 < 0.0001 **** 
Noise Types × Control Conditions 4.86 0.0015 ** 
Noise Types × Noise Levels 7.93 < 0.00001 **** 
Control Conditions × Noise Levels 1.83 0.126 
Noise Types × Control Conditions × Noise Levels 3.47 0.0008 *** 

Note: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001, **** 𝑝 < 0.0001.

the type of noise present. This highlights that noise control strategies 
may need to be tailored to specific noise sources to achieve optimal re
sults. Additionally, the interaction between noise type and noise level 
is significant (𝐹 = 7.926, 𝑝 < .0001), implying that the combined char
acteristics of the noise (both type and intensity) play an important role 
in the perceived annoyance of the participant. However, the interaction 
between control condition and noise level (𝐹 = 1.831, 𝑝 = .126) does 
not show significant effects, meaning that noise control effectiveness 
is relatively consistent across different noise levels. Finally, the three
way interaction between control condition, noise type, and noise level 
is significant (𝐹 = 3.47, 𝑝 = .0008), indicating that these factors do not 
operate independently but interact in ways that can influence noise 
perception in more complex ways. These findings underscore the im
portance of considering multiple factors together when designing noise 
control strategies, as their combined effects can vary depending on the 
specific noise characteristics. Results of the 3WR-ANOVA are findable 
in Table 2.

Following results obtained with the post hoc Tukey HSD, significant 
differences in the perceived noise annoyance were observed across dif
ferent noise types, control conditions, and sound levels. The effect size 
𝑑 complements the p-value by quantifying the magnitude of the dif
ference between two conditions. This allows a better understanding of 
the practical significance of observed differences beyond mere statistical 
significance. Regarding noise types, the comparison between motorbike 
and street shows a highly significant difference with a moderate effect 
size noted 𝑑 (𝑝 = .005, 𝑑 = −0.27), indicating that motorbike noise is 
perceived differently from street noise. However, the comparisons be
tween motorbike and train (𝑝 = .370, 𝑑 = −0.11) and street and train 
(𝑝 = .147, 𝑑 = .15) show no significant differences, suggesting relative 
similarity between these noise types in terms of perceived annoyance. 
For the control conditions, all comparisons are extremely significant 
(𝑝 < .0001 or 𝑝 < .001), with effects ranging from moderate to strong. 
SFANC-NLMS provides a notable improvement compared to No Control 
(𝑑 = −0.53) and NLMS (𝑑 = −0.31), confirming the superior effective
ness of this new algorithm. The No Control condition differs significantly 
from NLMS (𝑑 = 0.22), although the effect size is smaller, highlighting 
some improvement with NLMS. The interactions between noise types 
and control conditions reveal marked differences. For instance motor
bike with SFANC-NLMS significantly differs from street with No Control 
(𝑝 < .0001, 𝑑 = −0.98), while moderate to strong effects are observed 
for other combinations. These results underscore the importance of in
teractions between noise type and algorithm effectiveness. Finally, the 
three-way interactions between noise levels, noise types, and control 
conditions reveal interesting patterns. For example, for motorbike noise 
at 55 dB, SFANC-NLMS is perceived as substantially more effective than 
No Control at 72 dB (𝑑 = 2.20), indicating that the improvement pro
vided by the algorithm can offset a higher noise level. These interactions 
demonstrate that the perceived effectiveness of the algorithms varies 
depending on the specific combination of noise type, sound level, and 
control condition, highlighting the need to tailor noise reduction strate
gies to these factors. Results of the post hoc Tukey HSD are findable in 
Table 3.

Table 3
Post hoc Tukey HSD results for significant comparisons in the PAY study.

Comparison p-value Effect 
Moto vs. Street 0.005 -0.27 
Moto vs. Train 0.37 -0.1111 
Street vs. Train 0.15 0.16

SFANC-NLMS vs. No Control < 0.0001 **** -0.53 
SFANC-NLMS vs. NLMS < 0.0001 **** -0.31 
No Control vs. NLMS 0.0006 *** 0.22

55 dB vs. 65 dB < 0.0001 **** -0.75 
55 dB vs. 72 dB < 0.0001 **** -1.43 
65 dB vs. 72 dB < 0.0001 **** -0.69

Moto (SFANC-NLMS) vs. Street (No Control) < 0.0001 **** -0.98 
Street (No Control) vs. Train (SFANC-NLMS) < 0.0001 **** +0.77 
Moto (SFANC-NLMS) vs. Moto (No Control) < 0.0001 **** -0.60

Moto (55 dB) vs. Moto (72 dB) < 0.0001 **** -1.54 
Moto (55 dB) vs. Street (72 dB) < 0.0001 **** -1.75 
Moto (55 dB) vs. Train (72 dB) < 0.0001 **** -1.71 
Train (55 dB) vs. Street (72 dB) < 0.0001 **** -1.65 
Train (55 dB) vs. Train (72 dB) < 0.0001 **** -1.61

SFANC-NLMS (55 dB) vs. SFANC-NLMS (72 dB) < 0.0001 **** -1.51 
SFANC-NLMS (55 dB) vs. No Control (72 dB) < 0.0001 **** -1.88 
SFANC-NLMS (55 dB) vs. NLMS (72 dB) < 0.0001 **** -1.79 
NLMS (55 dB) vs. No Control (72 dB) < 0.0001 **** -1.62 
NLMS (55 dB) vs. NLMS (72 dB) < 0.0001 **** -1.53

SFANC-NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) < 0.0001 **** 2.20 
SFANC-NLMS (Moto, 55 dB) vs. NLMS (Train, 72 dB) < 0.0001 **** 2.03 
NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) < 0.0001 **** 2.11 
SFANC-NLMS (Train, 55 dB) vs. No Control (Street, 72 dB) < 0.0001 **** 2.23 

Note: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001, **** 𝑝 < 0.0001.

4.3. Perceived affective quality

4.3.1. Circumplex circles
Regarding the distribution of points on the circumplex circles, we 

decided to merge results obtained with different types of noise to high
light the influence of the control condition. Fig. 5 displays plots of 
circumplex circles at various noise levels (55, 65, 72 dB(A)). Noises are 
generally perceived as chaotic, especially at higher sound levels. This 
perception can be attributed to two main factors. First, filtering each 
noise to replicate the behavior of the noise box amplifies the aluminum 
plate’s acoustic response, adding a distinctive resonant character to the 
stimuli. Second, the original noises themselves are inherently eventful, 
characterized by dynamic and varied sound patterns. These two aspects 
contribute to an increased perception of eventfulness and a reduced 
sense of pleasantness, particularly at higher intensities.

As sound levels increase, the distribution of responses shifts toward 
the upper-left quadrant of the circumplex space—indicative of a more 
chaotic and unpleasant perceptual evaluation. Naturally, stimuli with 
lower sound levels are generally perceived as more pleasant, aligning 
with the typical relationship between sound intensity and subjective an
noyance.

Regarding the control condition, the shape and position of the den
sity clouds visible through the kernel density estimates on the x (pleas
antness) and y (eventfulness) axes indicate that applying SFANC-NLMS 
makes the noise perceived as more pleasant and less eventful across all 
noise levels. This pattern suggests that the algorithm improves the affec
tive quality of the soundscape, shifting it toward the bottom-right quad
rant, which corresponds to calmer and more pleasant environments.

4.3.2. Three way repeated PERMANOVA

The results of the three-way repeated-measures PERMANOVA re
vealed several significant effects concerning the influence of the factors 
noise type, control condition, and noise level on the dependent vari
ables ISOPL and ISOEV, as well as their interactions. The effect of noise 
type was highly significant (𝐹 = 11.17, 𝑝 = .001), indicating that the 
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Fig. 5. Density plots of eventfulness (ISOEV) as a function of pleasantness (ISOPL). Plots are shown separately for (a) 55 dB(A) (b) 65 dB(A) and (c) 72 dB(A). 

type of noise strongly influences the dependent variables, independent 
of the other factors. This confirms that different noise types lead to dis
tinct perceptual differences. Similarly, the effect of control condition 
was significant (𝐹 = 9.35, 𝑝 = .001), suggesting that different control 
strategies influence participants’ perceived affective quality. While this 
effect is notable, it is slightly lower than that of noise type. The noise 
level effect was also highly significant (𝐹 = 13.50, 𝑝 = .001), demonstrat
ing that increasing noise intensity (55, 65, 72 dB) significantly impacts 
participants’ perception. This confirms that noise level is a key deter
minant of perceived affective quality. Unlike the initial analysis, the 
interactions between the factors also reached significance. The inter
action between noise type and control condition (𝐹 = 10.01, 𝑝 = .001) 
suggests that the effect of noise type varies depending on the applied 
control strategy. The interaction between noise type and noise level 
(𝐹 = 14.00, 𝑝 = .001) reveals that the impact of noise type is modulated 
by its intensity. Additionally, the interaction between control condition 
and noise level (𝐹 = 12.07, 𝑝 = .001) suggests that the effectiveness of 
control strategies depends on noise intensity. Finally, the three-way in
teraction between noise type, control condition, and noise level was also 
significant (𝐹 = 10.43, 𝑝 = .001). This indicates that the combined ef
fect of all three factors significantly influences participants’ perception, 
meaning that noise type, control conditions, and noise level interact in 
a complex way to shape perceived affective quality. Results of the three
way repeated PERMANOVA are presented in Table 4.

Table 4
Results of the three-way repeated measures PERMANOVA (3WR
PERMANOVA) for PAQ.

Comparison F p-value 
Noise Types 11.17 0.001 ** 
ANC 9.35 0.001 ** 
Noise Levels 13.50 0.001 ** 
Noise Types × Control Conditions 10.01 0.001 ** 
Noise Types × Noise Levels 14.00 0.001 ** 
Control Conditions × Noise Levels 12.07 0.001 ** 
Noise Types × Control Conditions × Noise Levels 10.43 0.001 ** 

Note: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001, **** 𝑝 < 0.0001.

The results of the post hoc pairwise revealed significant percep
tual differences across several conditions. Specifically, the comparison 
between the motorbike and street noise types showed a substantial 
difference in affective quality (𝑝 = .003, 𝑑 = −0.120), indicating that 
participants found the motorbike noise to be perceived as more un
pleasant or intrusive compared to the street noise. Similarly, the com
parison between street and train also revealed a significant difference 
(𝑝 = .003, 𝑑 = .090), suggesting that the street noise was perceived more 
positively compared to the train noise, with an increased sense of un
pleasantness for the train noise. In contrast, the comparison between 
motorbike and train noise types (𝑝 = .021, 𝑑 = −0.030) did not reveal a 
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Table 5
Post-hoc pairwise comparisons results using the ADONIS method 
for significant comparisons in the PAQ study.

Comparison p-value Effect 
Moto vs. Street 0.003 ** -0.12 
Moto vs. Train 0.021 * -0.03 
Street vs. Train 0.003 ** 0.09

NLMS vs. No Control 1.000 -0.03 
NLMS vs. SFANC-NLMS 0.056 0.168 
No Control vs. SFANC-NLMS 0.011 * 0.03

55 dB vs. 65 dB 0.003 ** -0.09 
55 dB vs. 72 dB 0.003 ** -0.24 
65 dB vs. 72 dB 0.003 ** -0.153

Moto (NLMS) vs. Street (No Control) 0.036 * -0.2 
Street (No Control) vs. Train (No Control) 0.036 * 0.19 
Street (No Control) vs. Moto (SFANC-NLMS) 0.036 * 0.23 
Street (No Control) vs. Train (SFANC-NLMS) 0.04 * 0.172

Moto (55 dB) vs. Street (72 dB) 0.036 * -0.36 
Street (72 dB) vs. Train (55 dB) 0.036 * 0.37

NLMS (55 dB) vs. No Control (72 dB) 0.036 * -0.26 
NLMS (55 dB) vs. NLMS (72 dB) 0.036 * -0.25 
No Control (72 dB) vs. SFANC-NLMS (55 dB) 0.036 * 0.26 
SFANC-NLMS (55 dB) vs. NLMS (72 dB) 0.036 * -0.26 

Note: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001, **** 𝑝 < 0.0001.

significant perceptual difference after correction, suggesting that these 
two noise types were perceived similarly in terms of affective quality 
by the participants. Regarding control conditions, a significant differ
ence was observed between the No Control and SFANC-NLMS conditions 
(𝑝 = .011, 𝑑 = .033). This indicates that the SFANC-NLMS algorithm pro
vided some improvement in the perceived affective quality of the noise 
environment, although the effect size was relatively small. In terms of 
noise levels, several significant differences were found. The compari
son between 55 dB and 65 dB (𝑝 = 0.003, 𝑑 = −0.090), 55 dB and 72 
dB (𝑝 = .003, 𝑑 = −0.240), and 65 dB and 72 dB (𝑝 = .003, 𝑑 = −0.153) 
all revealed a significant impact on the perceived affective quality. The 
higher the noise level, the more negative the affective perception be
came, with 72 dB generally being perceived as the most unpleasant or 
disturbing, followed by 65 dB and 55 dB. Several other comparisons, 
such as those involving noise types (Moto vs. Street, Street vs. Train) 
and noise levels (55 dB vs. 72 dB, 65 dB vs. 72 dB), also showed sta
tistically significant differences. These results indicate that participants 
were able to detect clear and meaningful differences in how different 
types of noise and noise levels affected their emotional response, provid
ing valuable insights into the subjective affective perception of different 
acoustic environments. The detailed results of the post hoc comparisons 
are presented in Table 5.

4.4. Perceived loudness

The results of the three-way repeated measures ANOVA revealed that 
the control condition, noise type, and noise level all have significant 
effects on the perceived loudness of participants. A highly significant 
effect was found for noise types (𝐹 = 9.739, 𝑝 = .00019), suggesting 
that the different categories of noise (e.g., motorcycle, street, train) 
have a substantial impact on the perceived loudness. This indicates 
that perceived loudness varies depending on the type of noise, with 
some types being perceived as more intense or disturbing than others. 
The main effect of noise control conditions was extremely significant 
(𝐹 = 41.29, 𝑝 < .0001), highlighting the strong influence of noise con
trol algorithms on the perceived loudness. The results indicate that these 
algorithms significantly reduce the perceived loudness of the noise, re
gardless of its type, showing their effectiveness in mitigating noise. 
Similarly, noise level has a major impact (𝐹 = 63.1, 𝑝 < .0001), confirm
ing that higher noise levels (55 dB, 65 dB, 75 dB, etc.) lead to stronger 

Table 6
Three-way repeated ANOVA results showing 𝐹 -values, 𝑝-values, and sig
nificance levels for main effects and interactions for the PLN.

Comparison F p-value 
Noise Types 9.74 < 0.001 *** 
ANC 41.29 < 0.0001 **** 
Noise Levels 63.1 < 0.0001 **** 
Noise Types × Control Conditions 5.171 0.0007 *** 
Noise Types × Noise Levels 7.93 < 0.0001 **** 
Control Conditions × Noise Levels 1.11 0.36 
Control Conditions × Noise Types × Noise Levels 2.65 0.008 ** 

Note: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001, **** 𝑝 < 0.0001.

perceptions of loudness, with louder sounds being perceived as more dis
turbing. In terms of interactions, a significant interaction between noise 
types and control conditions was observed (𝐹 = 5.171, 𝑝 = .000658), in
dicating that the effect of noise types on perceived loudness depends 
on the control algorithm used. A significant interaction between noise 
types and noise levels was also found (𝐹 = 7.934, 𝑝 < .0001), showing 
that the effect of noise levels on perceived loudness differs according to 
the type of noise. On the other hand, the interaction between control 
conditions and noise levels was not significant (𝐹 = 1.107, 𝑝 = .356), 
suggesting that noise levels did not significantly affect the effectiveness 
of the control algorithms in terms of perceived loudness. Lastly, a signifi
cant three-way interaction was found (𝐹 = 2.649, 𝑝 = .00821), indicating 
that the combined effect of noise types, noise levels, and control condi
tions on perceived loudness is complex, with each factor influencing the 
others in a nonlinear way. Overall, the analysis revealed that all three 
factors—noise types, noise control conditions, and noise levels—have 
significant effects on perceived loudness, with complex interactions be
tween them. The results emphasize the importance of considering these 
factors together when studying noise perception and developing noise 
control strategies. Results of the 3WR-ANOVA are findable in Table 6.

The post hoc analysis using the Tukey HSD method reveals sig
nificant differences in the study of perceived loudness (PLN) between 
groups based on noise level, noise type, and control conditions. Re
garding noise type comparisons, a significant difference was observed 
between motorbike and street (𝑝 = .021, 𝑑 = −2.917), suggesting distinct 
PLN levels between these two types. A highly significant difference was 
also found between motorbike and train (𝑝 = .00012, 𝑑 = −4.6603), indi
cating a pronounced distinction in perception. However, no significant 
difference was detected between street and train (𝑝 = 0.24, 𝑑 = −1.743), 
reflecting a relative similarity in the perceived loudness. For noise con
trol conditions, the SFANC-NLMS algorithm demonstrated a highly sig
nificant reduction in PLN compared to No Control (𝑝 < 0.0001, 𝑑 =
−8.473), showcasing its strong efficacy. Additionally, SFANC-NLMS out
performed NLMS with a significant improvement (𝑝 = 2.37 × 10−6, 𝑑 =
−5.1047). While NLMS also showed a significant reduction in PLN com
pared to No Control (𝑝 = 0.00179, 𝑑 = −3.3682), it remains less effective 
than SFANC-NLMS. Significant differences were also observed across all 
pairwise comparisons of noise levels (55 dB, 65 dB, and 72 dB), with 
𝑝 < 0.0001. The effect sizes were −11.968 for 55 dB vs. 65 dB, −22.419
for 55 dB vs. 72 dB, and −10.451 for 65 dB vs. 72 dB. These findings 
confirm that PLN increases systematically with rising noise levels. When 
considering interactions between noise type, level, and control condi
tions, highly significant differences were observed (𝑝 < 0.0001) with 
effect sizes reaching up to −35.086. This demonstrates the cumulative 
influence of these factors on PLN. In extreme conditions, such as com
paring SFANC-NLMS (Moto, 55 dB) to No Control (Train, 72 dB), the 
differences were strikingly significant (𝑝 = 1.77 ⋅ 10−11, 𝑑 = −35.086), 
emphasizing the substantial impact of the SFANC-NLMS algorithm, par
ticularly when noise type and level disparities are most pronounced. 
Overall, the results highlight the superior performance of the SFANC
NLMS algorithm compared to NLMS and No control conditions, espe
cially under challenging high-noise scenarios. The findings also under
score the critical role of noise level and type in shaping PLN, further 
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Table 7
Post hoc Tukey HSD results for significant comparisons in the PLN study.

Comparison p-value Effect 
Moto vs. Street 0.021 * -2.92 
Moto vs. Train 0.00012 *** -4.66 
Street vs. Train 0.24 -1.74285

SFANC-NLMS vs. No Control < 0.0001 **** -8.47 
SFANC-NLMS vs. NLMS < 0.0001 **** -5.11 
No Control vs. NLMS 0.002 ** 3.37

55 dB vs. 65 dB < 0.0001 **** -11.97 
55 dB vs. 72 dB < 0.0001 **** -22.42 
65 dB vs. 72 dB < 0.0001 **** -10.45

Moto (55 dB) vs. Moto (72 dB) < 0.0001 **** -22.66 
Moto (55 dB) vs. Street (72 dB) < 0.0001 **** -24.11 
Moto (55 dB) vs. Train (72 dB) < 0.0001 **** -29.54 
Street (55 dB) vs. Train (72 dB) < 0.0001 **** -22.77 
Train (55 dB) vs. Moto (72 dB) < 0.0001 **** -20.37 
Train (55 dB) vs. Street (72 dB) < 0.0001 **** -21.83 
Train (55 dB) vs. Train (72 dB) < 0.0001 **** -27.26

SFANC-NLMS (55 dB) vs. SFANC-NLMS (72 dB) < 0.0001 **** -20.88 
SFANC-NLMS (55 dB) vs. No Control (72 dB) < 0.0001 **** -30.77 
SFANC-NLMS (55 dB) vs. NLMS (72 dB) < 0.0001 **** -25.92 
No Control (55 dB) vs. No Control (72 dB) < 0.0001 **** -24.08 
NLMS (55 dB) vs. No Control (72 dB) < 0.0001 **** -27.15 
NLMS (55 dB) vs. NLMS (72 dB) < 0.0001 **** -22.31 
SFANC-NLMS (55 dB) vs. No Control (72 dB) < 0.0001 **** -20.52

SFANC-NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) < 0.0001 **** -32.89 
SFANC-NLMS (Moto, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 **** -35.09 
SFANC-NLMS (Moto, 55 dB) vs. NLMS (Train, 72 dB) < 0.0001 **** -33.91 
No Control (Moto, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 **** -30.43 
NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) < 0.0001 **** -30.86 
NLMS (Moto, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 **** -33.06 
NLMS (Moto, 55 dB) vs. NLMS (Train, 72 dB) < 0.0001 **** -31.89 
SFANC-NLMS (Street, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 **** -32.66 
SFANC-NLMS (Street, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 **** -29.66 

Note: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001, **** 𝑝 < 0.0001.

validating the effectiveness of advanced noise control techniques. Re
sults of the post hoc are findable in Table 7.

5. Discussion

The following discussion seeks to address the research questions 
established in Section 1. Section 5.1 examines the impact of ANC on 
perceived annoyance under different conditions (RQ1). Section 5.2 eval
uates the influence of noise level on perceived annoyance under differ
ent ANC conditions (RQ2). Finally, Section 5.3 explores the interaction 
between noise type, ANC condition, and noise level (RQ3).

5.1. Effect of ANC algorithms on perceived annoyance

The results of this study provide insights into how different ANC al
gorithms (NLMS and SFANC-NLMS) influence perceived annoyance in 
a simulated vehicle environment, addressing RQ1. Overall, the SFANC
NLMS algorithm was more effective in reducing perceived annoyance 
compared to the traditional NLMS algorithm, across almost all noise 
types and levels. This was particularly evident for train and motorbike 
noises, where SFANC-NLMS significantly reduced perceived annoyance. 
For motorbike noise, SFANC-NLMS also outperformed NLMS, highlight
ing its ability to manage more complex noise characteristics. While both 
algorithms showed similar performance in some cases, SFANC-NLMS 
consistently resulted in lower annoyance scores, suggesting that it is 
better suited for handling various noise types. Noise level also played a 
crucial role, with higher levels (72 dB) leading to greater perceived an
noyance, regardless of the ANC condition. Interestingly, the interaction 
between noise type and ANC algorithm was not significant, indicating 
that the effects of the algorithms and noise types were more influen
tial individually. As shown in Fig. 6, stimuli controlled by SFANC-NLMS 

generally resulted in the lowest perceived annoyance scores (PAY), con
firming its superior effectiveness.

5.2. Effect of sound level on perceived annoyance under different ANC 
conditions

The results regarding perceived annoyance also reveal that sound 
level (55, 65, and 72 dB(A)) moderates the relationship between ANC 
algorithm type and perceived annoyance, addressing RQ2. In general, 
higher sound levels were associated with higher perceived annoyance 
scores, even with the application of ANC. This emphasizes the impor
tance of controlling sound intensity to reduce annoyance. The moderat
ing effect of sound level seemed most pronounced at 72 dB, where the 
differences between algorithms were most evident. However, the inter
action between ANC algorithm and sound level did not significantly alter 
the direction of the relationship between these variables and perceived 
annoyance. In summary, sound level affects annoyance, but its impact 
remains consistent across different ANC algorithms.

5.3. Interaction between noise sources, ANC condition, and sound levels

Regarding the interaction between noise sources, ANC algorithms, 
and sound levels, the results show that different noise sources (e.g., mo
torcycle, street, train noises) interact with ANC algorithms and sound 
levels to shape perceived annoyance, addressing RQ3. In particular, 
street and train noises showed a stronger interaction with ANC algo
rithms, with SFANC-NLMS significantly reducing perceived annoyance 
compared to NLMS. For motorcycle noise, while SFANC-NLMS also 
showed greater reductions in annoyance, the interaction between noise 
type and ANC algorithm was not significant in all cases. This suggests 
that, while ANC algorithms play a key role in managing different noise 
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Fig. 6. Means and standard deviations of the PAY score obtained for different noise levels for (a) Motorbike noise, (b) Street noise, and (c) Train noise. 

Fig. 7. Means and standard deviations of the PLN score obtained for different noise levels for (a) Motorbike noise, (b) Street noise, and (c) Train noise. 

sources, the spectral characteristics of the noise have a stronger influ
ence on the algorithm’s effect on perceived annoyance. Sound level also 
had a significant impact, with higher noise levels leading to greater 
perceived annoyance, regardless of the ANC algorithm or noise type. Ad
ditionally, Fig. 7 provides a visualization of the variation in perceived 
loudness (PLN) scores across different noise types and sound levels, com
plementing our findings on annoyance perception. As shown in the fig
ure, stimuli controlled by SFANC-NLMS generally resulted in the lowest 
PLN mean scores, further supporting the conclusion that SFANC-NLMS 
provides a more comfortable acoustic environment by reducing both an
noyance and loudness.

6. Conclusion

This study assessed the impact of different ANC algorithms on per
ceived annoyance, loudness, and affective quality.

RQ1: To what extent do different ANC algorithms influence perceived 
annoyance? The results show that the SFANC-NLMS algorithm is more 
effective than the traditional NLMS algorithm in reducing perceived an
noyance, particularly for complex noise sources such as motorbike and 
train noises.

RQ2: Does sound level moderate the relationship between ANC algorithm 
and perceived annoyance? Sound level significantly influences perceived 
annoyance, with higher noise levels (72 dB) leading to greater annoy
ance, regardless of the ANC condition. However, the effect of sound 
level did not alter the relationship between ANC algorithm type and 
perceived annoyance.

RQ3: How do different noise sources interact with ANC algorithms and 
sound levels to shape perceived annoyance? Different noise sources inter
acted with ANC algorithms and sound levels, with SFANC-NLMS consis
tently reducing perceived annoyance more effectively than NLMS across 
all noise types. Street and train noises showed stronger interactions with 
ANC algorithms, while the motorbike noise exhibited more complexity.

In conclusion, while objective metrics have already demonstrated 
the superior performance of the SFANC-NLMS algorithm, this study con
firms its effectiveness from a subjective perspective, showing its ability 

to reduce perceived annoyance and loudness and enhance acoustic com
fort. However, noise level remains a key factor influencing subjective 
experience, emphasizing the need for sound intensity control. Further 
research is required to optimize SFANC-NLMS for more complex noise 
profiles and assess its applicability in real-world conditions.
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Appendix A. Questionnaires

Table A.1

Pre-test assessment participant information questionnaire.

Question Category Specific Questions Rating Scale

Individual Noise Sensitivity (INS) I am sensitive to noise. 
I find it difficult to relax in a place that’s noisy. 
I get mad at people who make noise that keeps me from falling asleep or getting work done. 
I get annoyed when my neighbors are noisy. 
I get used to most noises without much difficulty.

Totally Disagree–Totally Agree 
(10-point categorical)

Baseline Noise Annoyance (BNA) When you are at home, how much does noise from road traffic bother, disturb or annoy you? 
When you are at home, how much does noise from aircraft bother, disturb or annoy you? 
When you are at home, how much does noise from train bother, disturb or annoy you? 
When you are at home, how much does noise from children bother, disturb or annoy you? 
When you are at home, how much does noise from other people bother, disturb or annoy you? 
When you are at home, how much does noise from animals bother, disturb or annoy you?

Not at all–Extremely (5-point 
categorical)

Perceived Stress Scale (PSS-4) How often have you felt that you were unable to control the important things in your life? 
How often have you felt confident about your ability to handle your personal problems? 
How often have you felt that things were going your way? 
How often have you felt difficulties were piling up so high that you could not overcome them?

Never–Very often (5-point 
categorical)

Table A.2

Noise Evaluation Questionnaire: PAY, PAQ, and PLN.

Question Category Specific Questions Rating Scale

Perceived Annoyance (PAY) Thinking about the noise you just heard, how much does the noise bother, disturb, or annoy you? Not at all–Extremely (5-point 
categorical)

Perceived Affective Quality (PAQ) Thinking about the sound you just heard, where would you place the surrounding sound environment on this scale? 

Perceived Loudness (PLN) How loud would you say the sound environment is? Scale between 0--100

Data availability

Data will be made available on request.
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