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ARTICLE INFO ABSTRACT

Keywords: This study investigates the subjective perception of active noise control (ANC) performance, focusing on how
Active noise control individuals evaluate the noise reduction provided by different ANC algorithms. While the performance of the
Encapsulated structure ANC algorithms has already been evaluated using objective metrics, this study aims to assess their effectiveness

Subjective listening

. . from a subjective perspective. In a simulated vehicle interior created using a noise box, two ANC algorithms
Deep learning algorithm

were tested: the normalized least-mean-square (NLMS) algorithm and the hybrid selective fixed-filter active noise
control normalized least-mean-square (SFANC-NLMS) algorithm. Participants were exposed to 27 stimuli, which
combined three types of noise (motorcycle, street, and train), three sound pressure levels (55, 65, and 72 dB(A)),
and three ANC conditions (no control, NLMS, and SFANC-NLMS). Subjective evaluations were collected using
three indicators: perceived annoyance (PAY), perceived affective quality (PAQ), and perceived loudness (PLN).
These metrics captured participants’ impressions of the noise environment and the impact of noise control. The
study is structured around three research questions (RQ1, RQ2, and RQ3), each addressing different aspects of
ANC performance evaluation. In response to RQ1, the results demonstrated that the SFANC-NLMS algorithm
outperformed NLMS in reducing perceived annoyance and loudness. Regarding RQ2, higher sound levels (72
dB) led to greater perceived annoyance, but sound level did not significantly alter the relationship between ANC
algorithm type and perceived annoyance. Finally, in addressing RQ3, noise type influenced ANC effectiveness,
with SFANC-NLMS showing more significant reductions in perceived annoyance compared to NLMS. Overall, the
findings confirm that the SFANC-NLMS algorithm provides better noise reduction in encapsulated structures.

1. Introduction are particularly valuable in enclosed spaces like car interiors, airplane
cabins, and train compartments [5,6], where passive noise reduction
methods such as sound-absorbing materials—are traditionally employed

Active noise control (ANC) is an effective technique for reducing ) . :
[7]. However, at low frequencies, passive approaches require substan-

unwanted sound or vibrations by applying the principle of sound wave
superposition. The idea concept is generating a secondary signal, known
as “anti-noise,” which has the same amplitude as the unwanted noise
but is phase-inverted, resulting in significant noise cancellation [1,2].

tial material mass and volume to achieve significant noise reduction,
which can be impractical [8,9]. In contrast, ANC systems are well-
suited to addressing low-frequency noise challenges in such settings.

For this cancellation to occur, ANC systems must accurately predict the Low-frequency noise in vehicles primarily originates from structural vi-
noise signal’s amplitude and phase at a specific spatial point. While the brations caused by the engine and tires [10,11]. Engine noise is typically
amplitude may remain steady, the phase changes dynamically over time concentrated below 500 Hz, while vibrations from tires often result in
due to the physical behavior of sound waves in space [3,4]. ANC has structure-borne noise below 1 kHz. Additionally, cabin resonances tend
found applications in numerous fields, such as personal audio devices, to amplify these low-frequency sounds, further contributing to the noise
vehicles, aircraft, building acoustics, home appliances, industrial equip- level. Road noise, generated by the interaction between vehicle tires and
ment, medical devices, and maritime environments. These technologies the road surface, represents another major source of noise in automo-
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biles [12]. By addressing these challenges, ANC systems play a critical
role in improving acoustic comfort and reducing noise pollution.

Traditional ANC systems typically rely on adaptive algorithms, such
as the Filtered-X least-mean-square (FXxLMS), to reduce noise due to
their simplicity and robustness under standard conditions. However,
these LMS-based algorithms exhibit slow convergence and limited track-
ing capability, making them less effective in handling dynamic or
non-stationary noises commonly encountered in encapsulated structure
where noise variability is high and user perception of noise reduction
quality is critical [13,14]. Although other adaptive algorithms such as
the Filtered-X Affine Projection (FXAP) and the Filtered-X Recursive
Least Squares (FxRLS) offer improved convergence rates [15,16], their
computational cost and sensitivity to modeling errors limit their appli-
cability in real-time systems. Deep learning brings significant advance-
ments to ANC by enabling models to adapt dynamically to complex,
non-stationary noise patterns. Convolutional neural networks (CNNs)
are effective in extracting robust features, eliminating the need for man-
ually defined features that traditional algorithms rely on [17,18]. This
automated feature extraction allows deep learning-based ANC systems
to identify nuanced noise characteristics, offering better generalization
across varying environments and noise types [19,20]. Building on these
strengths, hybrid approaches like the selective fixed-filter active noise
control (SFANC) combined with FXNLMS algorithm effectively combine
deep learning with traditional adaptive control methods to overcome
the limitations of each. In this setup, the CNN component dynamically
selects the optimal pre-trained filter based on the noise type, while the
FxNLMS algorithm adaptively fine-tunes the filter coefficients for real-
time noise reduction. This synergy of SFANC-FXNLMS combines flexible
filter selection with stable adaptive control, achieving faster response,
enhanced noise reduction, and robustness in non-stationary environ-
ments such as vehicles and industrial settings [21].

Sound quality assessment has become a very active area of research,
focusing on the subjective response that sounds (especially noise) evoke
in humans, with the aim of achieving better sound design and noise en-
hancement techniques [22,23]. In particular, many studies have focused
on the evaluation of sound quality in car interiors, examining different
sound sources such as road noise, wind noise, and engine noise [24,25].
These studies highlight the complexity of the evaluation process, as each
noise type has distinct characteristics, making it challenging to address
all features simultaneously. Consequently, sound quality studies often
focus on specific features, such as residual engine noise, which has been
studied with active control. Results indicate that ANC is an effective tool
for reducing low-frequency noise levels and improving acoustic comfort
[26,27]. Studies have explored the perception of roughness in car engine
noises using complex cepstrum analysis, underlining the importance of
psychoacoustic parameters in designing sound profiles that align with
user expectations [28]. While some experiments have been conducted in
laboratory settings, further investigation is needed to fully understand
ANC’s impact on acoustic comfort inside vehicles. For instance, [29] de-
signed an active tuning system to meet different engine sound quality
requirements, and other methods have been explored for sound qual-
ity improvements with effectiveness demonstrated near virtual micro-
phones [30,31] or error microphones [32,33]. Applied psychoacoustics
is typically the foundation of sound quality evaluation [34,24], includ-
ing in the automotive industry [35,36]. Psychoacoustic studies are often
complemented by jury tests and mathematical models to estimate sound
quality. Examples of sound quality studies on engine noise inside vehi-
cles can be found in [37,38].

To address the research gap regarding the perception of active noise
cancellation algorithms and their effects on noise perception in encap-
sulated structures, this study investigates the perceptual effects of active
noise cancellation applied in a noise box simulating a vehicle interior.
Specifically, this study compares a conventional NLMS algorithm with a
modified version of SFANC-FXNLMS, called SFANC-NLMS, to investigate
their influence on noise perception. The following research questions
(RQ) are addressed:
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- RQ1. To what extent do different ANC algorithms (NLMS and
SFANC-NLMS) influence perceived annoyance across various noise
types in a simulated vehicle environment?

— RQ2. Does sound level (55, 65, and 72 dB(A)) moderate the relation-
ship between ANC algorithm type and perceived annoyance, altering
the strength or direction of this association?

- RQ3. How do different noise sources (e.g., motorcycle, street, and
train noises) interact with ANC algorithms and sound levels to shape
perceived annoyance and overall acoustic comfort?

The paper is organized into five sections. Section 2 presents the con-
text of this study by describing the environment of the control system
and the algorithm used. Section 3 outlines the methodology employed
to set up the experiment. Section 4 presents the results of the experi-
ment. Section 5 provides a discussion of these results and answers the
research questions. Finally, Section 6 concludes the paper.

2. Context of the study
2.1. Environment of control: noise box

The encapsulated structure, known as a noise box, is designed as a
test platform for benchmarking vehicle interior noise. It is going to be
a simplified interior noise investigation system coupled by a plate and
a cavity. For example, this setup allows for the evaluation of materi-
als, structures, and control strategies aimed at reducing noise inside a
vehicle. The system must fulfill the following requirements:

— The system must be representative, providing access to panel, cavity,
structure-borne noise, airborne noise, and noise control measures.

— The system should be straightforward to model and analyze, with a
simple geometry and clearly defined boundary conditions.

— All geometric, material, and physical parameters must be specified.

A simplified plate-cavity system, modeled as a rigid box with one
flexible panel, is selected to design a Noise-Box for testing vehicle in-
terior noise control, based on key criteria for representativeness, ease
of modeling, and defined parameters. Using a passenger car as a ref-
erence, the Noise-Box geometry reflects the relationship between the
plate-cavity system and a vehicle cabin. Interior noise, which includes
sounds from the engine, tires, intake, exhaust, wind, and other sources,
enters through either structure-borne or airborne paths, as shown in
Fig. 1. In this model, the cavity simulates the cabin, and the panel rep-
resents the vibrating car body: structure-borne noise arises when the
panel is mechanically excited, and airborne noise occurs when external
sounds pass through the panel, illustrating the coupled dynamics of the
structure and enclosed acoustic field.

All control paths are calculated in this environment. The primary
path refers to the path of the unwanted noise from the source to the error
microphone. The secondary path is the path between the actuator, in this
case, a loudspeaker, and the error microphone where the control signal
is sent to cancel the primary noise. The reference path is the path from
the noise source to the reference sensor, in this case, an accelerometer,
which detects the primary noise characteristics and provides input to
the control system for noise cancellation. The reference accelerometer
is positioned at the top-left corner of the aluminum panel to avoid nodal
points. The loudspeaker used as the actuator is fixed inside the cavity,
facing the plate. The error microphone is located at the inside of the
cavity. All of these control paths are computed through an experiment
outlined in Section 3.2.1.

2.2. Traditional algorithm: NLMS algorithm
The NLMS algorithm is an adaptive active noise control (ANC) algo-

rithm. Due to the non-minimum phase nature of our experimental en-
vironment, the FXNLMS algorithm, which typically relies on secondary
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Fig. 1. The principle of noise in vehicle interiors and the panel-cavity system (a) and schematic diagram of the Noise Box for noise mitigation measures (b) [39].

path estimation, was found to be unsuitable for this study. A system is
said to be non-minimum phase when it presents unstable zeros, i.e., ze-
ros located outside the unit circle in the z-domain. These zeros result
in an initial system response that moves in the opposite direction of
the steady-state behavior, making control more challenging and often
introducing phase-related delays. Non-minimum phase systems often
lead to instability or reduced performance in ANC applications [40,41].
In practice, secondary path estimation is subject to modeling errors,
which degrade control performance, particularly in experimental envi-
ronments. Based on these considerations and the results from the NLMS
algorithm, the FXNLMS algorithm was forgone in favor of the simpler
NLMS algorithm, avoiding the complexities of secondary path estima-
tion.

The control system is based on a feedforward architecture, with the
input signal vector x(n) = [x(n),x(n—1),...,x(n— N + 1)] and the signal
after the reference path r(n) drive the NLMS control output y(n):

y(n) = w’ (mr(n) (€Y

where w(n) represents the adaptive filter coefficient vector. The residual
error signal, e(n), defined as:

e(n) =d(n) — s(n) x (w" (N)r(n)) (2)

This error is minimized using the gradient descent method with step
size y. The NLMS update rule is:
r(n)
w(n+ 1) =w(n) + ye(n) —— 3)
(1 1) = (o) + pe) s
where T denotes the transpose operation, and ¢ is a small constant (set
to 2.2204 x 10~19) to avoid numerical instability during weight updates
[42].

2.3. Novative algorithm: SFANC-NLMS algorithm

The hybrid SFANC-NLMS algorithm combines adaptive filtering with
a dynamic filter selection mechanism that adjusts the control filter based
on the type of noise. The algorithm operates with a set of pre-trained
control filters, each optimized for different noise profiles. A 1D convo-
lutional neural network (CNN) processes the incoming noise and selects
the most appropriate control filter by outputting the index of the fil-
ter best suited to the current noise conditions. Once the optimal filter
is chosen, the NLMS algorithm continuously updates its coefficients to
minimize the error signal further. This adaptive adjustment occurs at the
sampling rate, allowing the control filter to be fine-tuned in real time.
By integrating the filter selection capabilities of the CNN with the adapt-
ability of the NLMS algorithm, the system efficiently adapts to varying
noise conditions. This approach is presented in more detail in [43].

The simulation parameters are as follows: The ANC system operates
in a single-channel configuration with a sampling rate of 16 kHz, and

the control filter length is set to 4096 taps. The system utilizes state-
space coefficients for the reference, primary, and secondary paths. Seven
pre-trained control filters were used, corresponding to seven different
white noise signals with the following frequency ranges: 20-2000 Hz,
20-1000 Hz, 1000-2000 Hz, 20-500 Hz, 500-1000 Hz, 1000-1500 Hz,
and 1500-2000 Hz. The NLMS algorithm was employed to derive the
optimal control filters for these noises, with a stepsize of 0.0001.

3. Methodology
3.1. Study site, participants and administration

The experiment was conducted in a study room at Central House,
chosen for its quiet environment, where participants used paper and
pencil to complete the tasks as presented in Fig. 2. Formal ethical ap-
proval was approved by BSEER Local Research Ethics Committee at
University College London prior to participant recruitment and the com-
mencement of the experiment. Each participant was informed about
the study context through a Participant Information Sheet before tak-
ing part, and consent was obtained via a form at the beginning of the
experiment.

A total of 35 participants, including 16 men and 19 women, aged
23 to 62 (mean age around 31), were recruited. Two participants were
deemed unreliable due to a Spearman coefficient of 0.8 and a p-value
over 20%.

3.2. Stimuli

3.2.1. Experimental setup for stimuli design in the noise box

The stimuli design for the jury test relies on the experimental setup
of the noise box, as introduced in Section 2.1. This setup includes a
sealed cavity, where the opening is closed with an aluminum plate to
isolate and focus acoustic interactions. The noise box is equipped with
components to extract the frequency response functions (FRFs) of the
reference, primary, and secondary paths, to characterize the acoustic
behavior of the system. Fig. 3 illustrates this configuration, showcasing
the internal and external arrangement.

Two speakers are utilized in this setup. An external speaker simu-
lates disturbances outside the cavity, while an internal speaker generates
the “anti-noise” signal, it is called a canceling loudspeaker. Both speak-
ers are driven by random noise signals generated by a computer and
transmitted through the data acquisition system. Inside the cavity, four
microphones are placed to capture acoustic responses, though only one
microphone is employed for this single-channel control algorithm exper-
iment. An accelerometer, positioned at the top left corner of the panel
to avoid nodal points, acts as the reference sensor by capturing noise
vibrations before they enter the cavity.

The measurement equipment includes a PCB 130E20 microphone
with a sensitivity of 37.37 mV/Pa, calibrated using a Bruel & Kjaer 4231
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(a)

(b)

Fig. 2. Illustration of Participant Participation. (a) shows how the participant filled out the questionnaire, and (b) depicts the room where the experiment took place.

=R

Canceling
loudspeaker

(a)

Accelerometer

Fig. 3. Images of the experimental set-up from inside (a) and outside (b).

calibrator providing a reference frequency of 1 kHz and a sound pressure
level of 94 dB. An accelerometer, the PCB 333B30 model with a sensi-
tivity of 99.6mV/g (10.16 mV/m/s?), is connected to a PCB Piezotronics
model 483C series signal conditioner, interfacing with a National In-
struments NI cDAQ-9178 data acquisition system. These devices ensure
accurate measurements of both acoustic and vibratory signals.

The FRFs were derived in two phases. First, the external speaker
was activated to measure the reference path, with the input being the
voltage signal to the speaker and the output being the accelerometer
signal (m/s?), resulting in an FRF magnitude in m - V/s%. Next, the in-
ternal speaker was used to compute both the primary and secondary
path FRFs. The primary path was calculated using the external speak-
er’s input voltage and the cavity microphone signal as output (Pa/V),
while the secondary path was derived similarly but with the internal
speaker as the input source. All FRFs were computed over a frequency

range of 100 Hz to 2000 Hz, with a sampling rate of 16,000 Hz. Ad-
ditionally, the acoustic characteristics of the laboratory, influenced by
surrounding materials, shaped the behavior of the sound field. These
factors were accounted for when analyzing the experimental data.

To replicate real-world scenarios, three types of noise, motorbike,
train, and street sounds, were selected from a publicly available dataset
[44]. These noises were filtered through the state-space model derived
from the FRFs of the noise box, ensuring realistic acoustic behavior. The
FRFs also enabled the derivation of the state-space coefficients needed
to model the acoustic dynamics of the noise box, a critical step for im-
plementing active noise control. In the experimental design, three ANC
conditions (off, NLMS, and SFANC-NLMS) were tested with the three
noise types at three sound pressure levels (55 dB(A), 65 dB(A), and 72
dB(A)), resulting in 3 X 3 X 3 = 27 stimulus combinations. Additionally,
a train noise condition at 65 dB(A) was included as a control to as-
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Table 1
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Mean and standard deviation of the measured LAeq levels for each noise type and control condition. The first line is the level on the

left side of the HATS and the second one is the right sides.

Noise Type Control: OFF Control: NLMS Control: SFANC-NLMS
72 dB(A) 65 dB(A) 55 dB(A) 72 dB(A) 65 dB(A) 55 dB(A) 72 dB(A) 65 dB(A) 55 dB(A)
Train 73.4+0.3 67.1 £ 0.5 56.4 + 0.6 73.0 £ 0.3 67.3 £ 0.4 56.2 + 0.1 68.3 + 0.4 63.1 £0.3 50.2 + 0.2
73.0+03 67.0+04 554+06 734+06 679x+06 56.4+0.1 69.2+05 631+04 50.0+0.2
Moto 70.3+0.3 663+0.2 564+03 69.3+0.1 63.9 + 0.1 548 +03 628+0.3 581+03 488+0.4
702+02 663+03 565+03 689+03 634+03 547+03 627+03 585+04 485+0.3
Street 720+07 643+04 573+04 722+03 641+04 569+03 67.3+04 61.8+0.3 54.6+0.3
71.4 +£ 0.6 64.3 £ 0.3 57.5+0.4 72.1+0.3 64.2 + 0.3 57.4+0.3 67.4 + 0.4 61.8 + 0.4 54.6 + 0.3

Fig. 4. Interior view of the Audio Lab with the HATS setup (a), and the HATS setup during the calibration (b).

sess test—retest reliability, bringing the total to 28 unique stimuli for the
study.

3.2.2. Calibration

The calibration was conducted in an Audio Lab, using a Head
and Torso Simulator (HATS) HEAD acoustics HMS II.3 LN HEC with
Sennheiser HD 650 headphones. Before calibrating the stimuli, the
HATS was initially calibrated with a Larson Davis CAL250 sound level
calibrator, emitting a 251.2 Hz tone at 114 dB. Each stimulus, played
through a computer, was calibrated individually. Volume settings were
adjusted to achieve the desired noise levels of 55 dB(A), 65 dB(A), and
72 dB(A). These levels were calibrated without the application of active
noise control. For stimuli with control applied, the volume parame-
ters were adjusted according to the corresponding noise level. ArtemiS
SUITE 12 software was used for the calibration, along with the labO2-
V1 playback equalizer and the HDA IV headphone amplifier. To account
for variability in noise levels due to headphone positioning, each stimu-
lus was calibrated three times with the headphones repositioned on the
HATS between each measurement to capture uncertainty. The results of
the measured noise levels after calibration are shown in Table 1, and
photographs of the experiment setup are provided in Fig. 4.

3.3. Experiment design

The participants were first required to provide basic information:
gender and age, along with a pre-test assessment of (1) individual noise
sensitivity (INS) via the Weinstein Sensitivity to Sound Scale, 5-item
version (WSSN-5) [45]; (2) a baseline noise annoyance (BNA) based on

ISO/TS 15666 [46] using the version of the questionnaire presented in
[47]; and (3) the Perceived Stress Scale (PSS-4) [48]. The pre-test ques-
tionnaires were selected to assess potential confounding factors such as
stress and mood on soundscape perception [49,50]. The pre-test assess-
ment questionnaire is presented in Table A.1 in Appendix A.

After completing the basic data and pre-test assessment, a brief train-
ing session was conducted to familiarize participants with the stimuli
and questionnaire. During training, the participants were first exposed
to the loudest stimulus, followed by the quietest stimulus, and then
a training noise (a train noise at 65 dB(A)). After hearing the train-
ing noise, participants were required to answer questions. Stimuli were
played through a sound sequence design using the software FL Studio.

For test-retest reliability, an unfiltered 65 dB(A) train noise was used
as the first and last stimulus for each participant, without replicating the
noise box behavior. The other 27 stimulus combinations were presented
in random order to all participants. Participants were allowed to listen to
each stimulus as much as they wanted, with an experimenter available
to replay stimuli if needed. All stimuli presented to the participants were
recorded and played back.

Each stimulus was evaluated based on (1) perceived annoyance
(PAY), (2) perceived affective quality (PAQ), and (3) perceived loudness
(PLN). In contrast to the pre-test assessment of annoyance in the ab-
sence of acoustic stimuli, the assessment of PAY referred specifically to
the noise in the presented stimulus. The question asked: Thinking about
the noise you just heard, how much does the noise bother, disturb, or annoy
you? Responses were divided into 5 items, ranging from “Not at all” to
“Extremely” [46].
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The PAQ (Perceived Affective Quality) attributes proposed in ISO/TS
12913-2 were adopted to structure the evaluation of affective responses
to the indoor soundscape as modified by the stimuli. The PAQ con-
sists of 8 attributes (i.e., eventful, vibrant, pleasant, calm, uneventful,
monotonous, annoying, chaotic), forming an octant circumplex model
(International Organization for Standardization, 2019 [51]). Partici-
pants were asked to visually position a mark on a 2D map representing
these attributes. The question asked: Thinking about the sound you just
heard, where would you place the surrounding sound environment on this
scale? This method allows participants to express their affective response
to the sound environment, accounting for both its emotional tone and
complexity.

To assess loudness (PLN), a relative magnitude estimation method
was adopted. Participants were instructed to estimate the loudness of
the stimulus under test (SUT). A numerical score was assigned to each
stimulus based on its perceived loudness. The question asked: How loud
would you say the sound environment is? The scale ranged from O to 100,
allowing for a nuanced assessment of loudness perceived by the partici-
pant [52]. The noise evaluation questionnaire is presented in Table A.2
in Appendix A.

3.4. Data analysis

The data were processed to obtain the mean scores and standard
deviations for each indicator: INS, PSS-4, and BNA. For the INS and
PSS-4 indicators, each participant’s score was calculated by summing
the scores for all responses given to the questions and dividing this
sum by the total number of questions in the respective questionnaire.
Specifically, the INS questionnaire consists of 5 questions, and the PSS-
4 questionnaire consists of 4 questions. The global mean score for each
indicator was then calculated by averaging the individual participant
scores. Standard deviations were computed to assess the variability of
participants’ scores around the mean.

For the BNA indicator, the data were organized by noise type (e.g.,
traffic, airplane, train, etc.). Each participant’s score for each noise type
was calculated in the same manner, by summing the responses to the
relevant questions and dividing by the number of questions for that noise
type. The mean and standard deviation were then calculated for each
noise type based on the participants’ scores. These means and standard
deviations provide an overview of participants’ perceptions regarding
different noise types and indicators.

A three-way repeated measures ANOVA (3WR-ANOVA), followed by
a post-hoc Tukey HSD test, was conducted to evaluate perceived annoy-
ance (PAY), with the numerical scale of annoyance as the dependent
variable and three independent variables (i.e., noise type, noise levels,
and ANC condition). Prior to conducting the analysis, we verified that
the assumptions of normality, homogeneity of variances, and sphericity
were met. The normality of residuals was assessed using the Shapiro-
Wilk test [53], homogeneity of variances was tested with Levene’s test
[54]1, and sphericity was tested using Mauchly’s test [55]. All assump-
tions were satisfied, allowing us to proceed with the 3WR-ANOVA. The
circumplexity of the PAQ attributes was examined to assess the general-
izability of the PAQ model. Furthermore, a three-way repeated measures
permutational multivariate analysis of variance (3WR-PERMANOVA)
was conducted using a distance matrix as input. This method was cho-
sen because the PAQ data did not follow a normal distribution, as
indicated by Mardia’s multivariate normality tests [56]. The analysis
considered ISOPL, the x-coordinate of the participant’s mark on the 2D
PAQ map, and ISOEV, the y-coordinate, as the dependent variables.
The independent variables included noise levels, control conditions,
and noise types. Post-hoc pairwise comparisons were performed using
the pairwise.adonis() function, based on the ADONIS (permutational
multivariate analysis of variance) method, to examine the differences
between factor levels across all combinations of noise types, control
conditions, and noise levels. This procedure was employed to identify
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significant pairwise differences between the groups following the main
analysis.

For perceived loudness (PLN), a three-way repeated measures
ANOVA (3WR-ANOVA), followed by a post-hoc Tukey HSD test, was
conducted to evaluate perceived loudness, with the numerical scale of
loudness as the dependent variable and three independent variables
(i.e., noise type, noise levels, and ANC condition). Similar to the PAY
analysis, various tests were performed on the data to check if all as-
sumptions were satisfied in order to use the SWR-ANOVA.

4. Results
4.1. Pre-test assessment

The mean value for the INS indicator is 6.49 with a standard devia-
tion of 2.20, which indicates that the participants on average experience
a medium to high level of noise pollution in their environment. As the
INS scale ranges from 1 to 10, this value is in the upper mid-range of
the scale and indicates a medium to high sensitivity to noise among
the participants. In contrast, the mean value for PSS-4, which measures
perceived stress, is 3.12 with a standard deviation of 0.75. As the scale
for this indicator ranges from 0 to 4, this value indicates that the par-
ticipants experience a medium level of stress on average, with some
variability in the responses, but without reaching an extreme level of
stress.

The mean scores for each type of noise, as measured by the BNA, vary
slightly. The highest mean score was recorded for road traffic noise with
a value of 2.37, suggesting that, on average, this noise type is perceived
as somewhat disturbing. The lowest mean score was recorded for ani-
mals noise with a value of 1.51, indicating that participants generally
find animal-related noises less disturbing. The other noise types, includ-
ing airplane, train, children, and other people have mean scores ranging
from 1.86 to 2.09, reflecting a moderate level of disturbance for these
sounds. In terms of standard deviations, road traffic and airplane have
the highest variability, with standard deviations of 1.14 and 1.19, re-
spectively, indicating that responses to these noises are more diverse.
The animals and other people categories show the lowest variability,
with standard deviations of 0.95, suggesting more consistent percep-
tions of these noise types across participants. Overall, these results show
moderate variability in how different noise types are perceived by par-
ticipants.

4.2. Perceived annoyance

The results of the three-way repeated ANOVA (3WR-ANOVA) in-
dicate that the control condition, noise type, and noise level all have
significant effects on the perceived annoyance of participants, with
some interactions between these factors revealing more complex re-
lationships. In this analysis, the F-value reflects the ratio of variance
explained by each factor to the unexplained variance (residual error). A
higher F-value indicates a greater influence of the corresponding factor
on perceived annoyance. The p-value represents the probability that the
observed effect occurred by chance, with values below the significance
threshold (typically 0.05) indicating a statistically significant effect. In
this study, all p-values have been adjusted using the False Discovery
Rate (FDR) correction to account for multiple comparisons. The con-
trol condition shows a particularly strong effect (F = 44.48, p < .0001),
suggesting that different noise control strategies significantly influence
how participants perceive noise. Similarly, noise level has a major
impact (F = 161.4,p < .0001), with higher levels of noise leading to
greater perceived annoyance. Noise type also contributes significantly
(F =5.336,p = .007), indicating that different types of sounds (e.g.,
street, train, or motorbike noise) have varying impacts on participants’
experiences. When examining interactions, the combination of control
condition and noise type is significant (F = 4.859, p = .0015), suggest-
ing that the effectiveness of noise control methods differs depending on
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Table 2
Results of the three-way repeated measures ANOVA (3WR-ANOVA) for
PAY.

Comparison F p-value (FDR)

Noise Types 5.33 0.007 *

ANC 44.48 < 0.0007 ****

Noise Levels 161.4 < 0.0001 ****

Noise Types X Control Conditions 4.86 0.0015 **

Noise Types X Noise Levels 7.93 < 0.00001 ****

Control Conditions X Noise Levels 1.83 0.126

Noise Types X Control Conditions X Noise Levels ~ 3.47 0.0008 ***
Note: * p <0.05, ** p<0.01, *** p <0.001, **** p < 0.0001.

the type of noise present. This highlights that noise control strategies
may need to be tailored to specific noise sources to achieve optimal re-
sults. Additionally, the interaction between noise type and noise level
is significant (F = 7.926, p < .0001), implying that the combined char-
acteristics of the noise (both type and intensity) play an important role
in the perceived annoyance of the participant. However, the interaction
between control condition and noise level (F = 1.831,p = .126) does
not show significant effects, meaning that noise control effectiveness
is relatively consistent across different noise levels. Finally, the three-
way interaction between control condition, noise type, and noise level
is significant (F = 3.47, p = .0008), indicating that these factors do not
operate independently but interact in ways that can influence noise
perception in more complex ways. These findings underscore the im-
portance of considering multiple factors together when designing noise
control strategies, as their combined effects can vary depending on the
specific noise characteristics. Results of the 3WR-ANOVA are findable
in Table 2.

Following results obtained with the post hoc Tukey HSD, significant
differences in the perceived noise annoyance were observed across dif-
ferent noise types, control conditions, and sound levels. The effect size
d complements the p-value by quantifying the magnitude of the dif-
ference between two conditions. This allows a better understanding of
the practical significance of observed differences beyond mere statistical
significance. Regarding noise types, the comparison between motorbike
and street shows a highly significant difference with a moderate effect
size noted d (p = .005,d = —0.27), indicating that motorbike noise is
perceived differently from street noise. However, the comparisons be-
tween motorbike and train (p =.370,d = —0.11) and street and train
(p = .147,d = .15) show no significant differences, suggesting relative
similarity between these noise types in terms of perceived annoyance.
For the control conditions, all comparisons are extremely significant
(p <.0001 or p < .001), with effects ranging from moderate to strong.
SFANC-NLMS provides a notable improvement compared to No Control
(d = —0.53) and NLMS (d = —0.31), confirming the superior effective-
ness of this new algorithm. The No Control condition differs significantly
from NLMS (d = 0.22), although the effect size is smaller, highlighting
some improvement with NLMS. The interactions between noise types
and control conditions reveal marked differences. For instance motor-
bike with SFANC-NLMS significantly differs from street with No Control
(p <.0001,d = —0.98), while moderate to strong effects are observed
for other combinations. These results underscore the importance of in-
teractions between noise type and algorithm effectiveness. Finally, the
three-way interactions between noise levels, noise types, and control
conditions reveal interesting patterns. For example, for motorbike noise
at 55 dB, SFANC-NLMS is perceived as substantially more effective than
No Control at 72 dB (d = 2.20), indicating that the improvement pro-
vided by the algorithm can offset a higher noise level. These interactions
demonstrate that the perceived effectiveness of the algorithms varies
depending on the specific combination of noise type, sound level, and
control condition, highlighting the need to tailor noise reduction strate-
gies to these factors. Results of the post hoc Tukey HSD are findable in
Table 3.
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Table 3

Post hoc Tukey HSD results for significant comparisons in the PAY study.
Comparison p-value Effect
Moto vs. Street 0.005 -0.27
Moto vs. Train 0.37 -0.1111
Street vs. Train 0.15 0.16

SFANC-NLMS vs. No Control
SFANC-NLMS vs. NLMS
No Control vs. NLMS

< 0.0001 **** -0.53
< 0.0001 * -0.31
0.0006 ** 0.22

55 dB vs. 65 dB
55 dB vs. 72 dB
65 dB vs. 72 dB

< 0.0001 **** .0.75
< 0.0001
< 0.0001

Moto (SFANC-NLMS) vs. Street (No Control)
Street (No Control) vs. Train (SFANC-NLMS)
Moto (SFANC-NLMS) vs. Moto (No Control)

< 0.0001 **** -0.98
< 0.0001
< 0.0001 *+*

Moto (55 dB) vs. Moto (72 dB) < 0.0001 **** -1.54

Moto (55 dB) vs. Street (72 dB) < 0.0001

Moto (55 dB) vs. Train (72 dB) < 0.0001

Train (55 dB) vs. Street (72 dB) < 0.0001 **** -1.65
Train (55 dB) vs. Train (72 dB) < 0.0001 **** 1.

SFANC-NLMS (55 dB) vs. SFANC-NLMS (72 dB) < 0.0001 «
SFANC-NLMS (55 dB) vs. No Control (72 dB) < 0.0001 **** -1.88
SFANC-NLMS (55 dB) vs. NLMS (72 dB) < 0.0001

NLMS (55 dB) vs. No Control (72 dB)
NLMS (55 dB) vs. NLMS (72 dB)

< 0.0001
< 0.0001

SFANC-NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) < 0.0001 *
SFANC-NLMS (Moto, 55 dB) vs. NLMS (Train, 72 dB) < 0.0001
NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) < 0.0001
SFANC-NLMS (Train, 55 dB) vs. No Control (Street, 72 dB) < 0.0001 ***

Note: * p <0.05, ** p<0.01, *** p<0.001, **** p <0.0001.

4.3. Perceived affective quality

4.3.1. Circumplex circles

Regarding the distribution of points on the circumplex circles, we
decided to merge results obtained with different types of noise to high-
light the influence of the control condition. Fig. 5 displays plots of
circumplex circles at various noise levels (55, 65, 72 dB(A)). Noises are
generally perceived as chaotic, especially at higher sound levels. This
perception can be attributed to two main factors. First, filtering each
noise to replicate the behavior of the noise box amplifies the aluminum
plate’s acoustic response, adding a distinctive resonant character to the
stimuli. Second, the original noises themselves are inherently eventful,
characterized by dynamic and varied sound patterns. These two aspects
contribute to an increased perception of eventfulness and a reduced
sense of pleasantness, particularly at higher intensities.

As sound levels increase, the distribution of responses shifts toward
the upper-left quadrant of the circumplex space—indicative of a more
chaotic and unpleasant perceptual evaluation. Naturally, stimuli with
lower sound levels are generally perceived as more pleasant, aligning
with the typical relationship between sound intensity and subjective an-
noyance.

Regarding the control condition, the shape and position of the den-
sity clouds visible through the kernel density estimates on the x (pleas-
antness) and y (eventfulness) axes indicate that applying SFANC-NLMS
makes the noise perceived as more pleasant and less eventful across all
noise levels. This pattern suggests that the algorithm improves the affec-
tive quality of the soundscape, shifting it toward the bottom-right quad-
rant, which corresponds to calmer and more pleasant environments.

4.3.2. Three way repeated PERMANOVA

The results of the three-way repeated-measures PERMANOVA re-
vealed several significant effects concerning the influence of the factors
noise type, control condition, and noise level on the dependent vari-
ables ISOPL and ISOEV, as well as their interactions. The effect of noise
type was highly significant (F = 11.17,p = .001), indicating that the
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Fig. 5. Density plots of eventfulness (ISOEV) as a function of pleasantness (ISOPL). Plots are shown separately for (a) 55 dB(A) (b) 65 dB(A) and (c) 72 dB(A).

type of noise strongly influences the dependent variables, independent
of the other factors. This confirms that different noise types lead to dis-
tinct perceptual differences. Similarly, the effect of control condition
was significant (F = 9.35,p = .001), suggesting that different control
strategies influence participants’ perceived affective quality. While this
effect is notable, it is slightly lower than that of noise type. The noise
level effect was also highly significant (F = 13.50, p = .001), demonstrat-
ing that increasing noise intensity (55, 65, 72 dB) significantly impacts
participants’ perception. This confirms that noise level is a key deter-
minant of perceived affective quality. Unlike the initial analysis, the
interactions between the factors also reached significance. The inter-
action between noise type and control condition (F = 10.01,p =.001)
suggests that the effect of noise type varies depending on the applied
control strategy. The interaction between noise type and noise level
(F =14.00, p = .001) reveals that the impact of noise type is modulated
by its intensity. Additionally, the interaction between control condition
and noise level (F = 12.07, p = .001) suggests that the effectiveness of
control strategies depends on noise intensity. Finally, the three-way in-
teraction between noise type, control condition, and noise level was also
significant (F = 10.43,p = .001). This indicates that the combined ef-
fect of all three factors significantly influences participants’ perception,
meaning that noise type, control conditions, and noise level interact in
a complex way to shape perceived affective quality. Results of the three-
way repeated PERMANOVA are presented in Table 4.

Table 4
Results of the three-way repeated measures PERMANOVA (3WR-
PERMANOVA) for PAQ.

Comparison F p-value

Noise Types 1117 0.001 **
ANC 9.35  0.001 **
Noise Levels 13.50 0.001 **
Noise Types X Control Conditions 10.01 0.001 **
Noise Types X Noise Levels 14.00  0.001 **
Control Conditions X Noise Levels 12.07 0.001 **
Noise Types X Control Conditions X Noise Levels 10.43 0.001 **

Note: * p < 0.05, ** p<0.01, *** p<0.001, **** p < 0.0001.

The results of the post hoc pairwise revealed significant percep-
tual differences across several conditions. Specifically, the comparison
between the motorbike and street noise types showed a substantial
difference in affective quality (p = .003,d = —0.120), indicating that
participants found the motorbike noise to be perceived as more un-
pleasant or intrusive compared to the street noise. Similarly, the com-
parison between street and train also revealed a significant difference
(p=.003,d =.090), suggesting that the street noise was perceived more
positively compared to the train noise, with an increased sense of un-
pleasantness for the train noise. In contrast, the comparison between
motorbike and train noise types (p =.021,d = —0.030) did not reveal a
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Table 5
Post-hoc pairwise comparisons results using the ADONIS method
for significant comparisons in the PAQ study.

Comparison p-value Effect
Moto vs. Street 0.003 ** -0.12
Moto vs. Train 0.021 * -0.03
Street vs. Train 0.003 ** 0.09
NLMS vs. No Control 1.000 -0.03
NLMS vs. SFANC-NLMS 0.056 0.168
No Control vs. SFANC-NLMS 0.011 * 0.03
55 dB vs. 65 dB 0.003 ** -0.09
55 dB vs. 72 dB 0.003 ** -0.24
65 dB vs. 72 dB 0.003 ** -0.153
Moto (NLMS) vs. Street (No Control) 0.036 * -0.2
Street (No Control) vs. Train (No Control) 0.036 * 0.19
Street (No Control) vs. Moto (SFANC-NLMS) 0.036 * 0.23
Street (No Control) vs. Train (SFANC-NLMS) 0.04 * 0.172
Moto (55 dB) vs. Street (72 dB) 0.036 * -0.36
Street (72 dB) vs. Train (55 dB) 0.036 * 0.37
NLMS (55 dB) vs. No Control (72 dB) 0.036 * -0.26
NLMS (55 dB) vs. NLMS (72 dB) 0.036 * -0.25
No Control (72 dB) vs. SFANC-NLMS (55 dB) 0.036 * 0.26
SFANC-NLMS (55 dB) vs. NLMS (72 dB) 0.036 * -0.26

Note: * p<0.05, ** p<0.01, *** p < 0.001, **** p <0.0001.

significant perceptual difference after correction, suggesting that these
two noise types were perceived similarly in terms of affective quality
by the participants. Regarding control conditions, a significant differ-
ence was observed between the No Control and SFANC-NLMS conditions
(p=.011,d = .033). This indicates that the SFANC-NLMS algorithm pro-
vided some improvement in the perceived affective quality of the noise
environment, although the effect size was relatively small. In terms of
noise levels, several significant differences were found. The compari-
son between 55 dB and 65 dB (p = 0.003,d = —0.090), 55 dB and 72
dB (p =.003,d = —0.240), and 65 dB and 72 dB (p = .003,d = —0.153)
all revealed a significant impact on the perceived affective quality. The
higher the noise level, the more negative the affective perception be-
came, with 72 dB generally being perceived as the most unpleasant or
disturbing, followed by 65 dB and 55 dB. Several other comparisons,
such as those involving noise types (Moto vs. Street, Street vs. Train)
and noise levels (55 dB vs. 72 dB, 65 dB vs. 72 dB), also showed sta-
tistically significant differences. These results indicate that participants
were able to detect clear and meaningful differences in how different
types of noise and noise levels affected their emotional response, provid-
ing valuable insights into the subjective affective perception of different
acoustic environments. The detailed results of the post hoc comparisons
are presented in Table 5.

4.4. Perceived loudness

The results of the three-way repeated measures ANOVA revealed that
the control condition, noise type, and noise level all have significant
effects on the perceived loudness of participants. A highly significant
effect was found for noise types (F = 9.739,p = .00019), suggesting
that the different categories of noise (e.g., motorcycle, street, train)
have a substantial impact on the perceived loudness. This indicates
that perceived loudness varies depending on the type of noise, with
some types being perceived as more intense or disturbing than others.
The main effect of noise control conditions was extremely significant
(F =41.29,p < .0001), highlighting the strong influence of noise con-
trol algorithms on the perceived loudness. The results indicate that these
algorithms significantly reduce the perceived loudness of the noise, re-
gardless of its type, showing their effectiveness in mitigating noise.
Similarly, noise level has a major impact (F = 63.1, p <.0001), confirm-
ing that higher noise levels (55 dB, 65 dB, 75 dB, etc.) lead to stronger
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Table 6
Three-way repeated ANOVA results showing F-values, p-values, and sig-
nificance levels for main effects and interactions for the PLN.

Comparison F p-value

Noise Types 9.74 < 0.001

ANC 41.29 < 0.0001 *
Noise Levels 63.1 < 0.0001 ****
Noise Types X Control Conditions 5.171 0.0007 *
Noise Types X Noise Levels 7.93 < 0.0001 *
Control Conditions X Noise Levels 1.11 0.36

Control Conditions X Noise Types X Noise Levels  2.65 0.008 **

Note: * p <0.05, ** p<0.01, *** p<0.001, **** p <0.0001.

perceptions of loudness, with louder sounds being perceived as more dis-
turbing. In terms of interactions, a significant interaction between noise
types and control conditions was observed (F =5.171, p =.000658), in-
dicating that the effect of noise types on perceived loudness depends
on the control algorithm used. A significant interaction between noise
types and noise levels was also found (F = 7.934, p < .0001), showing
that the effect of noise levels on perceived loudness differs according to
the type of noise. On the other hand, the interaction between control
conditions and noise levels was not significant (F = 1.107, p = .356),
suggesting that noise levels did not significantly affect the effectiveness
of the control algorithms in terms of perceived loudness. Lastly, a signifi-
cant three-way interaction was found (F = 2.649, p = .00821), indicating
that the combined effect of noise types, noise levels, and control condi-
tions on perceived loudness is complex, with each factor influencing the
others in a nonlinear way. Overall, the analysis revealed that all three
factors—noise types, noise control conditions, and noise levels—have
significant effects on perceived loudness, with complex interactions be-
tween them. The results emphasize the importance of considering these
factors together when studying noise perception and developing noise
control strategies. Results of the 3WR-ANOVA are findable in Table 6.
The post hoc analysis using the Tukey HSD method reveals sig-
nificant differences in the study of perceived loudness (PLN) between
groups based on noise level, noise type, and control conditions. Re-
garding noise type comparisons, a significant difference was observed
between motorbike and street (p = .021,d = —2.917), suggesting distinct
PLN levels between these two types. A highly significant difference was
also found between motorbike and train (p = .00012, d = —4.6603), indi-
cating a pronounced distinction in perception. However, no significant
difference was detected between street and train (p = 0.24,d = —1.743),
reflecting a relative similarity in the perceived loudness. For noise con-
trol conditions, the SFANC-NLMS algorithm demonstrated a highly sig-
nificant reduction in PLN compared to No Control (p < 0.0001,d =
—8.473), showcasing its strong efficacy. Additionally, SFANC-NLMS out-
performed NLMS with a significant improvement (p =2.37 X 1076,d =
—5.1047). While NLMS also showed a significant reduction in PLN com-
pared to No Control (p =0.00179,d = —3.3682), it remains less effective
than SFANC-NLMS. Significant differences were also observed across all
pairwise comparisons of noise levels (55 dB, 65 dB, and 72 dB), with
p <0.0001. The effect sizes were —11.968 for 55 dB vs. 65 dB, —22.419
for 55 dB vs. 72 dB, and —10.451 for 65 dB vs. 72 dB. These findings
confirm that PLN increases systematically with rising noise levels. When
considering interactions between noise type, level, and control condi-
tions, highly significant differences were observed (p < 0.0001) with
effect sizes reaching up to —35.086. This demonstrates the cumulative
influence of these factors on PLN. In extreme conditions, such as com-
paring SFANC-NLMS (Moto, 55 dB) to No Control (Train, 72 dB), the
differences were strikingly significant (p = 1.77 - 10~!!,d = —35.086),
emphasizing the substantial impact of the SFANC-NLMS algorithm, par-
ticularly when noise type and level disparities are most pronounced.
Overall, the results highlight the superior performance of the SFANC-
NLMS algorithm compared to NLMS and No control conditions, espe-
cially under challenging high-noise scenarios. The findings also under-
score the critical role of noise level and type in shaping PLN, further
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Table 7
Post hoc Tukey HSD results for significant comparisons in the PLN study.

Comparison p-value Effect
Moto vs. Street 0.021 * -2.92
Moto vs. Train 0.00012 *** -4.66
Street vs. Train 0.24 -1.74285
SFANC-NLMS vs. No Control < 0.0001 *#*** -8.47
SFANC-NLMS vs. NLMS < 0.0001 #¥*x -5.11
No Control vs. NLMS 0.002 ** 3.37
55 dB vs. 65 dB < 0.0001 *#*** -11.97
55 dB vs. 72 dB -22.42
65 dB vs. 72 dB -10.45
Moto (55 dB) vs. Moto (72 dB) < 0.0001 *#*** -22.66
Moto (55 dB) vs. Street (72 dB) < 0.0001 #¥** -24.11
Moto (55 dB) vs. Train (72 dB) < 0.0001 *¥*x -29.54
Street (55 dB) vs. Train (72 dB) < 0.0001 *##*=* -22.77
Train (55 dB) vs. Moto (72 dB) < 0.0001 * -20.37
Train (55 dB) vs. Street (72 dB) < 0.0001 * -21.83
Train (55 dB) vs. Train (72 dB) < 0.0007 #*#*** -27.26
SFANC-NLMS (55 dB) vs. SFANC-NLMS (72 dB) < 0.0001 * -20.88
SFANC-NLMS (55 dB) vs. No Control (72 dB) < 0.0001 * -30.77
SFANC-NLMS (55 dB) vs. NLMS (72 dB) < 0.0001 *#*%** -25.92
No Control (55 dB) vs. No Control (72 dB) < 0.0001 *#** -24.08
NLMS (55 dB) vs. No Control (72 dB) -27.15
NLMS (55 dB) vs. NLMS (72 dB) -22.31
SFANC-NLMS (55 dB) vs. No Control (72 dB) -20.52
SFANC-NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) -32.89
SFANC-NLMS (Moto, 55 dB) vs. No Control (Train, 72 dB) -35.09
SFANC-NLMS (Moto, 55 dB) vs. NLMS (Train, 72 dB) -33.91
No Control (Moto, 55 dB) vs. No Control (Train, 72 dB) -30.43
NLMS (Moto, 55 dB) vs. No Control (Street, 72 dB) -30.86
NLMS (Moto, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 *##*=* -33.06
NLMS (Moto, 55 dB) vs. NLMS (Train, 72 dB) < 0.0001 * -31.89
SFANC-NLMS (Street, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 * -32.66
SFANC-NLMS (Street, 55 dB) vs. No Control (Train, 72 dB) < 0.0001 ***x -29.66

Note: * p <0.05, ** p<0.01, *** p <0.001,

validating the effectiveness of advanced noise control techniques. Re-
sults of the post hoc are findable in Table 7.

5. Discussion

The following discussion seeks to address the research questions
established in Section 1. Section 5.1 examines the impact of ANC on
perceived annoyance under different conditions (RQ1). Section 5.2 eval-
uates the influence of noise level on perceived annoyance under differ-
ent ANC conditions (RQ2). Finally, Section 5.3 explores the interaction
between noise type, ANC condition, and noise level (RQ3).

5.1. Effect of ANC algorithms on perceived annoyance

The results of this study provide insights into how different ANC al-
gorithms (NLMS and SFANC-NLMS) influence perceived annoyance in
a simulated vehicle environment, addressing RQ1. Overall, the SFANC-
NLMS algorithm was more effective in reducing perceived annoyance
compared to the traditional NLMS algorithm, across almost all noise
types and levels. This was particularly evident for train and motorbike
noises, where SFANC-NLMS significantly reduced perceived annoyance.
For motorbike noise, SFANC-NLMS also outperformed NLMS, highlight-
ing its ability to manage more complex noise characteristics. While both
algorithms showed similar performance in some cases, SFANC-NLMS
consistently resulted in lower annoyance scores, suggesting that it is
better suited for handling various noise types. Noise level also played a
crucial role, with higher levels (72 dB) leading to greater perceived an-
noyance, regardless of the ANC condition. Interestingly, the interaction
between noise type and ANC algorithm was not significant, indicating
that the effects of the algorithms and noise types were more influen-
tial individually. As shown in Fig. 6, stimuli controlled by SFANC-NLMS
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p <0.0001.

generally resulted in the lowest perceived annoyance scores (PAY), con-
firming its superior effectiveness.

5.2. Effect of sound level on perceived annoyance under different ANC
conditions

The results regarding perceived annoyance also reveal that sound
level (55, 65, and 72 dB(A)) moderates the relationship between ANC
algorithm type and perceived annoyance, addressing RQ2. In general,
higher sound levels were associated with higher perceived annoyance
scores, even with the application of ANC. This emphasizes the impor-
tance of controlling sound intensity to reduce annoyance. The moderat-
ing effect of sound level seemed most pronounced at 72 dB, where the
differences between algorithms were most evident. However, the inter-
action between ANC algorithm and sound level did not significantly alter
the direction of the relationship between these variables and perceived
annoyance. In summary, sound level affects annoyance, but its impact
remains consistent across different ANC algorithms.

5.3. Interaction between noise sources, ANC condition, and sound levels

Regarding the interaction between noise sources, ANC algorithms,
and sound levels, the results show that different noise sources (e.g., mo-
torcycle, street, train noises) interact with ANC algorithms and sound
levels to shape perceived annoyance, addressing RQ3. In particular,
street and train noises showed a stronger interaction with ANC algo-
rithms, with SFANC-NLMS significantly reducing perceived annoyance
compared to NLMS. For motorcycle noise, while SFANC-NLMS also
showed greater reductions in annoyance, the interaction between noise
type and ANC algorithm was not significant in all cases. This suggests
that, while ANC algorithms play a key role in managing different noise
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Fig. 6. Means and standard deviations of the PAY score obtained for different noise levels for (a) Motorbike noise, (b) Street noise, and (c) Train noise.
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Fig. 7. Means and standard deviations of the PLN score obtained for different noise levels for (a) Motorbike noise, (b) Street noise, and (c) Train noise.

sources, the spectral characteristics of the noise have a stronger influ-
ence on the algorithm’s effect on perceived annoyance. Sound level also
had a significant impact, with higher noise levels leading to greater
perceived annoyance, regardless of the ANC algorithm or noise type. Ad-
ditionally, Fig. 7 provides a visualization of the variation in perceived
loudness (PLN) scores across different noise types and sound levels, com-
plementing our findings on annoyance perception. As shown in the fig-
ure, stimuli controlled by SFANC-NLMS generally resulted in the lowest
PLN mean scores, further supporting the conclusion that SFANC-NLMS
provides a more comfortable acoustic environment by reducing both an-
noyance and loudness.

6. Conclusion

This study assessed the impact of different ANC algorithms on per-
ceived annoyance, loudness, and affective quality.

RQ1: To what extent do different ANC algorithms influence perceived
annoyance? The results show that the SFANC-NLMS algorithm is more
effective than the traditional NLMS algorithm in reducing perceived an-
noyance, particularly for complex noise sources such as motorbike and
train noises.

RQ2: Does sound level moderate the relationship between ANC algorithm
and perceived annoyance? Sound level significantly influences perceived
annoyance, with higher noise levels (72 dB) leading to greater annoy-
ance, regardless of the ANC condition. However, the effect of sound
level did not alter the relationship between ANC algorithm type and
perceived annoyance.

RQ3: How do different noise sources interact with ANC algorithms and
sound levels to shape perceived annoyance? Different noise sources inter-
acted with ANC algorithms and sound levels, with SFANC-NLMS consis-
tently reducing perceived annoyance more effectively than NLMS across
all noise types. Street and train noises showed stronger interactions with
ANC algorithms, while the motorbike noise exhibited more complexity.

In conclusion, while objective metrics have already demonstrated
the superior performance of the SFANC-NLMS algorithm, this study con-
firms its effectiveness from a subjective perspective, showing its ability
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to reduce perceived annoyance and loudness and enhance acoustic com-
fort. However, noise level remains a key factor influencing subjective
experience, emphasizing the need for sound intensity control. Further
research is required to optimize SFANC-NLMS for more complex noise
profiles and assess its applicability in real-world conditions.
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Appendix A. Questionnaires

Table A.1
Pre-test assessment participant information questionnaire.

Applied Acoustics 239 (2025) 110823

Question Category Specific Questions

Rating Scale

Individual Noise Sensitivity (INS) I am sensitive to noise.

I find it difficult to relax in a place that’s noisy.
I get mad at people who make noise that keeps me from falling asleep or getting work done.

I get annoyed when my neighbors are noisy.

I get used to most noises without much difficulty.

Baseline Noise Annoyance (BNA)

When you are at home, how much does noise from road traffic bother, disturb or annoy you?
When you are at home, how much does noise from aircraft bother, disturb or annoy you?

Totally Disagree-Totally Agree
(10-point categorical)

Not at all-Extremely (5-point
categorical)

When you are at home, how much does noise from train bother, disturb or annoy you?

When you are at home, how much does noise from children bother, disturb or annoy you?
When you are at home, how much does noise from other people bother, disturb or annoy you?
When you are at home, how much does noise from animals bother, disturb or annoy you?

Perceived Stress Scale (PSS-4)

How often have you felt that you were unable to control the important things in your life?
How often have you felt confident about your ability to handle your personal problems?

Never-Very often (5-point
categorical)

How often have you felt that things were going your way?
How often have you felt difficulties were piling up so high that you could not overcome them?

Table A.2
Noise Evaluation Questionnaire: PAY, PAQ, and PLN.

Question Category Specific Questions

Rating Scale

Perceived Annoyance (PAY)

Perceived Affective Quality (PAQ)

ISO
Eventful

Thinking about the noise you just heard, how much does the noise bother, disturb, or annoy you?

Not at all-Extremely (5-point
categorical)

Thinking about the sound you just heard, where would you place the surrounding sound environment on this scale?

1.00

0.75F

(chaotic)

0.50

0.25F

0.00

-0.25¢

-0.50F

-0.75F

|
|
|
|
|
|}
|
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|
]
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|
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!

(vibrant)

{caim)

ISO
Pleasant

Perceived Loudness (PLN)

.00 -0.75 -0.50 -0.25 0.00 0.2

5 050 0.75 1.00

How loud would you say the sound environment is?

Scale between 0-100

Data availability

Data will be made available on request.
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