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Abstract—Blockchain-based federated learning (BFL) has
gained attention for its potential to establish decentralized
trust. While existing research primarily focuses on personalized
frameworks for various applications, essential aspects including
incentive mechanisms—critical for ensuring stable system oper-
ation—remain under-explored. To bridge this gap, we propose
a game-theoretic incentive mechanism designed to foster active
participation in BFL tasks. Specifically, we model a BFL system
comprising a model owner (MO), i.e., task publisher, multi-
ple miners, and training terminals, framing their interactions
through two-tier Stackelberg games. In the first-tier game, the
MO designs reward strategies to incentivize training terminals
to contribute more data, enhancing model accuracy. The second-
tier game introduces a multi-leader multi-follower Stackelberg
game, enabling miners to set model packaging prices based on
competitors’ strategies and anticipated user behavior. By deriving
the Stackelberg equilibrium, we identify optimal strategies for
all participants, leading to an incentive mechanism balancing
individual interests with overall performance. Compared to its
benchmarks, our incentive mechanism offers 5.8% and 53.4%
higher utilities in the two games compared to its alternatives,
accelerating convergence and improving accuracy.

Index Terms—Federated learning, blockchain, Stackelberg
game, incentive mechanism, multi-leader multi-follower game.

I. INTRODUCTION

THE Internet of Things (IoT) not only generates immense
volumes of data but also offers substantial distributed

computing and storage resources [1]. Federated Learning (FL),
a technology for distributed training, has emerged to enable
devices (e.g., mobile phones or vehicles) to collaboratively
train a model with their data remaining local [2], [3], thus
offering privacy protection for the participating devices. FL
typically allows the participation of many users with diverse
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identity backgrounds and complex behavioral patterns, posing
challenges in establishing trust among participants. Dishonest
participants and vulnerable central servers may affect the
security of the global model [4], [5]. Participants may also be
malicious or vulnerable, leading to the leakage or tampering
of transmitted information [6]–[8].

Researchers have resorted to blockchain technology to en-
hance FL, with blockchains commonly functioning as de-
centralized platforms for offering incentives and verifying
data [9]–[13]. The combination of blockchain and FL is called
blockchain-based FL (BFL) [14], [15]. In BFL, miners validate
the model updates submitted by training terminals, prior to
executing global aggregation algorithms. After obtaining the
global model, it is uploaded to the main chain, which is
accessible to all eligible participants [16]. Although BFL can
tackle some of the challenges faced by traditional FL, there
are still issues that require attention [17]–[19].

A. Challenges

One critical issue in BFL is the incentive mechanisms [5],
[6], [9]. BFL encompasses multiple participants, including
model owner (MO), miners, and training terminals, whose
interests are intricately intertwined. Designing an incentive
mechanism that balances the interests of all participants and
encourages their participation is a challenging problem. BFL
often operates in a dynamic environment where the behavior
and strategies of participants change over time. Fluctuating
market conditions and varying contributions of the participants
can render static incentives ineffective, leading to underpartic-
ipation or overrewarding. The incentive mechanisms must pos-
sess flexibility, guaranteeing the sustained and stable operation
of the system over the long term.

There has been few studies on the incentive mechanisms
for BFL [9], [20], [21], most of which were based on two
unrealistic assumptions: (a) the data volume and training costs
of all terminals are the same, and (b) the incentive mechanism
is static, without considering the potential impact of market
conditions on the participants’ behavior and strategies. In
practice, the participants often flexibly adjust their behaviors
based on various factors, e.g., market supply and demand,
and competitive situation. There is a need for an incentive
mechanism that can dynamically adapt to market changes.

B. Contribution

In this paper, we design an incentive mechanism for BFL
to achieve long-term system stability. In BFL systems with
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TABLE I
NOTATION AND DEFINITION

Notation Definition
ω The system parameter of MO

ai, b The parameters of the linear-quadratic function
ci The computation cost for each data sample unit
cj The unit packaging cost
di The training data size of terminal i
I The set of training terminals
I The number of training terminals
N The set of miners
N The number of miners
pj The price set by miner j for packaging models
r The total reward given by MO
xij The number of packaged models from terminal i to

miner j

heterogeneous terminals, an MO delegates tasks to terminals
and miners, who receive rewards based on their contributions.
We model the reward allocation problem as two-tier Stackel-
berg games, and derive a unique equilibrium rigorously under
complete information conditions. Among them, the second-tier
Stackelberg game model specifically considers the multi-leader
multi-follower (MLMF) relationship between terminals and
miners, aiming to capture the intricate interactions between
these two entities. Hence, our incentive mechanism effectively
promotes the long-term stability and efficiency of BFL.

The contributions of this paper are summarized as follows:
• We formulate a Stackelberg game between an MO and

terminals to help the MO determine how many rewards
to allocate to each terminal for model training, and assist
terminals in deciding the appropriate amount of data to
allocate to each subtask, thereby optimizing their utility.

• We model the relationships between miners and terminals
as an MLMF Stackelberg game. In this game, the miners
act as the leaders, and the terminals act as the followers,
jointly achieving the profit maximization of the miners
and utility maximization of the terminals.

• We provide numerical results to analyze the complex
strategic interactions among participants in the BFL sys-
tem, and validate the effectiveness and reliability of the
proposed algorithm. Compared to several baselines, our
incentive mechanism offers 5.8% and 53.4% higher utili-
ties in two games. It also accelerates model convergence
and improves accuracy.

The rest of this paper is structured as follows. Section II
presents an overview of the related literature. Section III
describes the system model and formulates the problem as
a two-tier Stackelberg game framework. Sections V and VI
detail the models and solutions for the two-tier Stackelberg
games, respectively. Section VII presents the experimental
evaluations. Finally, we conclude the paper in Section VIII.
The key notation is provided in Table I.

II. RELATED WORK

A. Research on BFL

Although BFL technology is still in its early stages of
development with limited literature research, the BFL archi-
tecture is receiving increasing attention and is in a state of

continuous development. For instance, the authors in [22]
discussed how blockchain technology can effectively address
the issues present in FL, and explores the feasibility and
potential advantages of integrating blockchain technology into
FL. The authors in [20] demonstrated the enormous potential
of integrating blockchain technology with FL by proposing
the BLADE-FL framework and showcasing its performance
advantages. The analysis and optimization methods presented
in the article provide valuable references and insights for other
researchers exploring the integration of BFL systems.

The types and platforms of blockchain used in some
existing BFL research work, as well as a comparison of
BFL frameworks, are introduced in [23], [24]. The authors
in [25], [26] offered an overview of BFL, highlighted the
limitations of FL, and investigated it from perspectives such as
architectural features and resource allocation. It also outlined
the future potential of BFL in AI. Likewise, The authors
in [27] addressed the issues and deficiencies in current FL
mechanisms and elaborated on the potential enhancements
through the integration of blockchain technology with FL.

These works have primarily focused on BFL frameworks
and their application prospects in the field of AI, yet they
have not provided a comprehensive examination of the core
challenges tackled by BFL.

B. Incentive Mechanism for BFL

Some research on BFL centers on designing incentive
mechanisms to regulate client behavior, thereby motivating
them to act honestly and efficiently in accordance with es-
tablished rules. The incentive mechanisms proposed in [18],
[28], include two aspects: data rewards and mining rewards.
The data rewards of training terminals are received from
their corresponding miners, and the amount of the rewards
is proportional to the size of their data samples. After the
miners complete model aggregation and generate blocks, they
can receive mining rewards from the blockchain network. The
mining rewards are proportional to the number of aggregated
data samples contributed by the training terminals to which
the miners are assigned.

In [29], the Federated Reputation Evaluation Blockchain
(FREB) framework was proposed for participant selection
in FL. It integrates reputation evaluation with blockchain
technology to ensure secure and reliable participant selection
based on factors such as model contribution, activity, data
quality, and stability. The authors in [5] proposed an incentive
mechanism for cross-silo FL that addresses the free-rider
attack and ensures social efficiency, individual rationality,
and budget balance without relying on private information
of organizations. The authors in [30] developed an incentive
mechanism utilizing smart contracts based on the volume and
centroid distance of customer data during local model training.
The authors in [9] presented BIT-FL, a blockchain-enabled
incentivized and secure FL framework. BIT-FL leverages a
loop-based sharded consensus algorithm to accelerate model
validation, and integrates a randomized incentive mechanism
to attract participants while preserving cost privacy. Moreover,
the authors in [31] introduced a decentralized and incentivized
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FL framework enabled by blockchain technology. The frame-
work utilizes compressed soft-labels and Peer Truth Serum for
Federated Distillation (PTSFD) to incentivize honest partici-
pation and evaluate contributions.

In [21] and [32], incentive mechanisms were designed under
a fully coupled BFL system model in which the FL clients
simultaneously serve as a blockchain node, participating in
training and mining. The authors in [21] solved for the op-
timal strategies in both complete and incomplete information
scenarios, and implemented them by solving two optimization
problems. The authors in [32] proposed a Long-Term Proof-of-
Contribution (LPoC) algorithm for BFL, which selects block
producers and allocates rewards by considering the long-term
contributions of clients in both model training and blockchain
consensus processes. Unfortunately, fully coupled BFL system
models may adapt to different FL scenarios or blockchain
platforms, limiting their practical applicability and scalability.

Most existing research either assumes unrealistically that
all terminals have the same data volume and training costs,
or treats the incentive mechanism as static, disregarding the
impact of market dynamics on participant behavior. To tackle
this issue, we design an incentive mechanism for the BFL
system, which can fairly distribute rewards and dynamically
adapt to market changes.

III. SYSTEM MODEL

A. System Overview

Fig. 1 depicts the considered BFL framework, where there
are three types of participants: An MO, a set of training
terminals, and a set of miners [14].

The MO publishes FL tasks to obtain well-trained final
global models from the BFL system. The training terminals
participate in the FL tasks in an attempt to receive rewards
from the MO. The set of training terminals is denoted as
I = {1, . . . , I} with I being the total number of training
terminals in the considered BFL system.

Assume that these I terminals each maintain a local dataset,
denoted by Di. Define di ≜ |Di|, where |·| denotes cardinality
of the set Di. Each terminal downloads the global model,
denoted as θ, and proceeds to train it locally. The terminals
employ their local data to train their local models and then
forward the local model updates to the miners responsible for
maintaining the blockchain. The loss function of terminal i
with the dataset is

Fi(θ) =
1

di

∑
k∈Di

fk(θ), (1)

where fk(θ) is the loss function on the k-th data sample of Di.
The goal of the BFL system is to optimize the global loss

function F (θ) by aggregating the local models, e.g., using
FedAvg [33], as given by

F (θ) =
∑
i∈I

diFi(θ)∑
i∈I

di
, (2)

with the optimal model θ∗ = argminF (θ) obtained upon the
convergence of BFL training.

Fig. 1. The architecture of the considered BFL system, which has three
participants: an MO, training terminals, and miners. Once receiving the FL
task, each terminal trains the local model and then broadcasts the model
updates to the miners. Miners validate these models and execute on-chain
operations through consensus mechanisms. Once all selected miners finalize
their on-chain models, the system aggregates them into a new model.

There are N miners in the blockchain networks. Unlike
traditional blockchain miners who primarily validate transac-
tions and maintain the ledger, the miners in the BFL system
also validate and encapsulate the local models uploaded by
the training terminals into blocks in pursuit of rewards. The
miners perform cross-validation and model aggregation, and
generate a consistent global model based on a given consensus
mechanism. The global model is stored and propagated in the
blockchain, allowing the training terminals to download the
consistent global model from the blockchain for the next round
of training. The set of miners is denoted as N = {1, . . . , N}.

It is noted that the considered BFL system and the proposed
incentive mechanism are flexible and can be adapted to various
consensus mechanisms, such as Proof-of-Stake (PoS), Dele-
gated Proof-of-Stake (DPoS), or Byzantine Fault Tolerance
(BFT), as they focus primarily on the interactions between
the MO, miners, and training terminals, rather than being tied
to a specific consensus protocol.

We outline the workflow of the considered BFL system as
follows: a) Upon receiving the FL task, each training terminal
trains its local model and then broadcasts the model updates to
the miners; b) The miners validate the received local models
and perform on-chain operations on the validated local models
through consensus mechanisms; c) When all selected miners
have completed the model on the chain, the system aggregates
these local models to update the global model.

This BFL system is compatible with typical blockchains,
including public blockchain (e.g., Ethereum) and private
blockchains. In each training cycle of the BFL system, the
terminals send their updated models to their pre-assigned
miners. These miners only validate models submitted by the
terminals that explicitly entrust them, avoiding the situation
where multiple miners in the transaction pool repeatedly
validate the same model.

In this system, incentive mechanisms are crucial as they
motivate the miners and the training terminals to actively
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Fig. 2. The timeline of the considered BFL system

participate. By introducing an incentive mechanism, the train-
ing terminals can be incentivized to contribute more data
and actively participate in training. Moreover, the miners are
responsible for validating the legitimacy of the model in
the system and packaging it into blocks, which requires a
significant amount of computing resources and time. Incentive
mechanisms can compensate the miners for their costs and
motivate them to continue and actively participate in the
validation and packaging of local models.

We design a game-theoretic incentive mechanism for the
BFL system, which is structured into two tiers. In the first
tier, a game is conducted between the MO and the training
terminals, where the MO determines the pricing and the
training terminals earn rewards through training. In the second
tier, we design an MLMF game model to assist the miners
in earning rewards through model validation and packaging,
while helping the training terminals select suitable miners
to upload their local models to the blockchain. After the
two-tier game, each participant starts its training as agreed
until the task is completed. The timeline of the considered
BFL system is illustrated in Fig. 2. Some participants may
deviate from the agreement for various reasons, impacting the
system’s performance and stability. (For further discussion on
potential deviations and their implications, see [34].) The rest
of this section defines the utility functions of the MO, training
terminals, and miners.

B. Utility Model between MO and Terminals

In this tier of the proposed game-theoretic incentive mech-
anism, the MO serves as the leader of the game, and all
training terminals serve as the followers. The MO encourages
the terminals to contribute more data to the model training and
hence obtain a more accurate global model.

1) Utility of Training Terminals: The utility of a training
terminal consists of revenue and cost. A training terminal
receives rewards from the MO by participating in model

training. The training terminal also incurs the training cost
arising from model training, which is directly proportional to
the amount of data used for training. Let U1

i denote the utility
of training terminal i ∈ I = {1, . . . , I}. It can be defined as

U1
i (di) =

di∑
k∈I

dk
r − cidi, (3)

where di is the data size provided by user i; r is the overall
incentive provided by the MO to all participating training
terminals; ci is the computation cost for training a data sample.

2) Utility of MO: Let UMO denote the utility of the MO,
which is the gain of global model accuracy subtracted by the
total reward paid to the training terminals. The model of utility
maximization was first introduced in microeconomics [35] for
price policy. Since then, the idea of using concave utility has
been considered extensively in the literature [36]–[40].

According to [40], the test accuracy of a training model can
be regarded as a concave function with respect to the quantity
of training data. The accuracy of the model, as a concave
function of the training data volume, reflects the diminishing
marginal benefits of model performance improvement as the
training data size increases. This is a critical factor in the MO’s
utility function, as it influences the MO’s ability to strike a
balance between enhancing accuracy and managing costs. To
this end, we specify the utility of the MO as

UMO(r) = ωG(
∑
k∈I

dk)− r, (4)

where ω > 0 is a configurable system parameter, and G(·) is a
concave function indicating the test accuracy. When ω is large,
the MO prioritizes test accuracy and is willing to incur higher
costs. When ω is small, the MO prioritizes cost reduction over
accuracy gains by increasing the relative weight of cost in (4).

C. Utility Model between Training Terminals and Miners

After completing local training, the training terminals sub-
mit their local model updates to the miners to start the second
tier of the proposed game-theoretic incentive mechanism for
BFL. The miners are responsible for validating and packaging
these models before uploading them to the blockchain. This
validation and packaging process incurs costs for the miners.
To compensate for these costs, the training terminals pay fees
for utilizing the miners’ resources. These fees are the primary
source of income for the miners.

1) Utility of Miners: The miners who win the consensus
mechanism gain the privilege of recording these models onto
the blockchain and are authorized to charge a fee for each local
model they package. However, the miners must also account
for operational and maintenance costs, such as computational
costs. Consequently, the profit for each miner can be formu-
lated as

Un
j (pj) =

∑
i∈I

pjxij − cj
∑
i∈I

xij , (5)

where xij is the number of local models that training terminal
i opts to have packaged by miner j. pj is the price set by each
miner j for the packaging of local models, and cj indicates
the unit packaging cost incurred by miner j.
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2) Utility of Training Terminals: The training terminals can
reward the miners based on their performance in packaging
and uploading local models to the blockchain, thereby incen-
tivizing their participation in completing the tasks of BFL.
Typically, the contribution of training terminals is determined
by the number of local models successfully packaged into
blocks and uploaded onto the blockchain. Consequently, the
profit for each training terminal can be formulated as

U2
i (xij) =

∑
j∈N

(aixij − bix
2
ij)−

∑
j∈N

pjxij . (6)

The first term on the right-hand side (RHS) of (6) represents
the internal benefits that training terminal i gains from partici-
pating in FL tasks. These benefits can be modeled as a concave
linear-quadratic function,

∑
j∈N

(aixij − bix
2
ij). This modeling

captures the increase in benefits from participation while
accounting for diminishing marginal returns, as described
in [41]. The choice of a linear-quadratic function not only
facilitates analysis but also serves as a close second-order
approximation for a wide range of concave utility functions,
effectively reflecting the diminishing marginal returns com-
monly observed in such settings.

IV. INCENTIVE MECHANISM VIA TWO-TIER
STACKELBERG GAME: OVERVIEW

In this paper, we design a new incentive mechanism for
BFL as a two-tier Stackelberg game [42], [43] to align the
interests of the MO, training terminals, and miners. The two-
tier Stackelberg game framework is chosen for its ability
to model the hierarchical leader-follower dynamics in BFL
systems. This framework inherently captures the asymmetric
decision-making structure and supports dynamic adjustments.

The proposed incentive mechanism addresses interest distri-
bution at different levels through two interconnected Stackel-
berg games. Within each tier of the interconnected Stackelberg
games, there are two distinct stages: The first stage where the
leader sets the price, and the second stage where the followers
respond with their decisions.

• In the first-tier game, the MO, as the leader, incentivizes
training terminals by setting a unit price for data. This
motivates the terminals to use high-quality and abundant
data for model training, while ensuring sufficient returns
for their efforts (Section V).

• In the second-tier game, the training terminals, using the
earnings from the MO, compensate the miners for ser-
vices, i.e., computational resources and model validation.
This encourages the miners’ participation (Section VI).

The profits earned by the training terminals in the first-tier
game form the financial foundation for their participation in
the second-tier game, creating a feedback loop that promotes
a virtuous cycle within the BFL system. The synergy between
these two-tier games effectively aligns the interests of the MO,
training terminals, and miners.

While the training terminals contribute vast amounts of data,
it is essential to ensure the authenticity and integrity of the data
provided by these terminals. Some existing studies, e.g., [44],
[45], have proposed various methods to address this. In BFL

system, we can leverage the core characteristics of blockchain,
including its distributed ledger and immutability, to effectively
resolve issues of participant trust.

V. GAME BETWEEN MO AND TERMINALS

This section focuses on the first-tier game between the MO
and the training terminals. As the leader, the MO sets a unit
price for the data, representing the fee it is willing to pay per
unit. This price directly impacts the terminals’ willingness to
provide data. The MO anticipates the response of the training
terminals to different price points, predicting how much data
they are likely to supply based on the offered incentives.

The training terminals, acting as the followers, decide the
amount of data to provide based on the cost of data preparation
and the benefits offered by the MO. This direct incentive
mechanism encourages the training terminals to actively par-
ticipate in data provision while ensuring that the MO secures
the required high-quality data at a reasonable cost.

The Stackelberg game model offers a strategic framework
for coordinating the interactions between the MO and training
terminals. The MO optimizes the unit price strategy by con-
sidering the terminals’ responses, while the terminals adjust
their decisions to maximize their benefits under the given
prices. The model is adaptable to dynamic market conditions
[46], [47]. For example, when new training terminals enter the
market or task publishers revise their strategies, the optimal
solution can be quickly recalculated using backward induction.
This adaptability ensures the incentive mechanism remains
effective and responsive to changing conditions.

A. Game Formulation

In the first stage, the MO aims to acquire a global model
that delivers exceptional performance while minimizing both
the time and cost invested in generating rewards. To this end,
its main goal is to optimize the utility function UMO. The
associated optimization problem can be framed as

P1 : max
r≥0

UMO(r) = ωG(
∑
k∈I

dk)− r (7a)

s.t. r ≥ 0, (7b)
r ≤ rmax, (7c)

where (7b) and (7c) specify the pricing lower and upper
bounds of the MO, respectively.

In the second stage, with the reward r in place, the training
terminals decide on their best training approaches to maximiz-
ing their benefits. Consequently, an optimal training strategy
can be derived by addressing the following issue:

P2 : max
di≥0

U1
i (di) =

di∑
k∈I

dk
r − cidi (8a)

s.t. di ≥ 0. (8b)

The second stage can be viewed as a competitive game
where each training terminal strives to optimize its own profit.
With a given reward r and the training strategies d−i of other
terminals, training terminal i decides on the best strategy di
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to maximize its benefit by weighing the income and expenses
associated with model training.

Consequently, a stable state known as a Nash equilibrium
arises, at which each player’s strategy is optimal given the
strategies of the other players, meaning no player has the
incentive to deviate from their chosen strategy. The formal
definition of the Nash equilibrium for the second-stage game
is provided in Definition 1.

Definition 1 (Nash Equilibrium [48]). A Nash equilibrium
in a game is a state where players have no motivation to
individually alter their strategies in order to achieve higher
utility. A set of strategies d∗ = (d∗1, d

∗
2, . . . , d

∗
I) constitutes a

Nash equilibrium, for every terminal i, it holds true that

U1
i (d

∗
i , d

∗
−i, r) ≥ U1

i (di, d
∗
−i, r) (9)

where r is known a-priori.

The above-mentioned two stages form a two-stage Stack-
elberg game involving the MO and the terminals. When
the followers adopt their optimal reactions (i.e., the Nash
equilibrium), the leader can achieve maximum utility. The
solution to the game will be presented in the following section.

B. Analysis of MO-Terminal Game

We analyze the Stackelberg game between MO and the
terminal and derived their optimal strategy. Specifically, we
focus on the existence of a Nash equilibrium for the game.

Theorem 1. For a specific r set by the MO, a Nash equilib-
rium exists, along with an optimal training strategy for each
training terminal i ∈ I = {1, . . . , I} is given by

d∗i =
(I − 1)r∑
k∈I

ck

(
1− (I − 1)ci∑

k∈I
ck

)
. (10)

Proof: To demonstrate the presence of a Nash equilib-
rium, we start with the following lemma from [48].

Lemma 1. A Nash equilibrium exists in a game when the
following conditions are satisfied:

1) The number of players is finite.
2) The sets of strategies are compact, confined, and convex.
3) The utility functions are continuous and exhibit quasi-

concavity within the strategy space.

According to Lemma 1, we first verify that the first-order
derivative of U1

i (di) with respect to di is positive, and the
second-order derivative is persistently negative. Specifically,
the first-order derivative of U1

i (di) is given by

∂U1
i (di)

∂di
=

∑
k∈I−

dk

(
∑
k∈I

dk)2
r − ci, (11)

and the second-order derivative of Ui(di) is given by

∂2U1
i (di)

∂d2i
= −2

∑
k∈I−

dk

(
∑
k∈I

dk)3
r < 0, (12)

where i ∈ I− = {1, . . . , i− 1, i+ 1, . . . , I}.

According to (12) and the finite set of training terminals, we
can confirm the existence of a Nash equilibrium in the second
stage based on Lemma 1. By setting the first-order derivative
to zero, it follows that

d∗i =

√
r

ci

∑
k∈I−

dk −
∑
k∈I−

dk. (13)

According to the translation of (13), we can obtain∑
k∈I

d∗k =

√
r

ci

∑
k∈I−

dk. (14)

By setting
∑
k∈I

d∗k = ζ, it readily follows that

d∗1 = ζ − ζ2c1
r , . . . , d∗I = ζ − ζ2cI

r . (15)

Based on (15), we can obtain

ζ = ζI − ζ2

r

∑
k∈I

ck ⇒ ζ =
(I − 1)r∑
k∈I

ck
. (16)

By applying (16) into (14), eventually (10) follows.
Given the existence of Nash equilibrium, we further prove

that for a unique Nash equilibrium, the MO possesses a unique
optimal payment strategy, denoted as r∗.

Theorem 2. The MO’s optimal payment strategy r∗ > 0 is
unique if a Nash equilibrium exists and is unique among the
training terminals for any given r.

Proof: By substituting (10) into (4), we can derive the
first-order derivative of UMO(r) as follows:

∂UMO(r)

∂r
= ωG′(

∑
k∈I

dk)(

∂(
∑
k∈I

d∗k)

∂r
)− 1

= ωG′(
∑
k∈I

dk)(
∂(d∗1)

∂r
+ · · ·+ ∂(d∗I)

∂r
)− 1.

(17)

Hence, the second-order derivative of UMO(r) is given by

∂2UMO(r)

∂r2
= ωG′′(

∑
k∈I

dk)(
∂(d∗1)

∂r
+ · · ·+ ∂(d∗I)

∂r
)2

+ ωG′(
∑
k∈I

dk)(
∂2(d∗1)

∂r2
+ · · ·+ ∂2(d∗I)

∂r2
)

= ωG′′(
∑
k∈I

dk)(
∂(d∗1)

∂r
+ · · ·+ ∂(d∗I)

∂r
)2.

(18)

Since G(·) is a concave function, we have ∂2UMO(r)
∂r2 < 0.

Therefore, the utility of the MO, UMO(r), is a strictly concave
function of r. Since UMO(r) = 0 for r = 0 and UMO(r) →
−∞ as r → ∞, it has a unique maximizer r∗. To this end,
there exists a unique optimal payment strategy r∗ for the MO
to achieve a unique Stackelberg equilibrium.

Algorithm 1 outlines the incentive mechanism between
the MO and the terminals. The process begins with the MO
determining the pricing for terminal participation in training
and calculating its utility based on these prices. Using the
optimal utility UMO, the MO derives its optimal decision
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Algorithm 1 Incentive mechanism b/w MO and terminals.

Input ω,G(X), ci
Output d∗i , r∗

The MO calculates r̂ by setting (17) to 0;
The MO calculates UMO based on r̂ using (4);
if UMO(r̂) ≥ UMO(r) then
r∗ ← r̂;

end if
The MO sends r∗ to the terminals;
for i ∈ I do

Terminal i calculates d̂i using (10);
if U1

i (d̂i) ≥ U1
i (di) then

d∗i ← d̂i;
Terminal i updates its local model using d∗i ;

end if
end for
return d∗i , r

∗

strategy and communicates the pricing to the training termi-
nals. Each terminal then calculates the appropriate data size
for training. When a terminal’s utility is maximized, it makes
optimal decisions and initiates training.

The computational complexity of Algorithm 1 primarily
depends on the number of training terminals, with a com-
plexity of O(I) [21]. Since the uniqueness of the Stackelberg
equilibrium is ensured, the best response strategy described in
Algorithm 1 is guaranteed to converge.

VI. GAME BETWEEN TERMINALS AND MINERS

This section introduces the second-tier game within the
considered BFL system. To address the complex interactions
between many training terminals and miners, we adopt the
MLMF game model. The MLMF game model is chosen
over traditional game-theoretic approaches because it better
captures the intricate and dynamic interactions among multiple
miners and training terminals in the considered BFL system.
Unlike conventional games, which often assume a single
leader or simplified interactions, the MLMF framework allows
for a more realistic representation of the competitive and
cooperative behaviors among miners, as well as the strategic
decisions of terminals in selecting miners for model validation
and packaging.

In this model, the miners act as leaders, competing by
offering essential computational resources and validation ser-
vices while setting their service prices to attract terminals.
The training terminals act as followers, aiming to submit their
local model updates to the miners for validation, packaging,
and eventual uploading to the blockchain. Their decisions are
guided by their individual requirements and the service prices
set by the miners.

A. MLMF Game

In this Stackelberg game, the miners are leaders and the
terminals are followers. The game has two stages. In the first
stage, each miner formulates its pricing strategy pj with the

objective of optimizing its earnings, while considering the
pricing approaches of fellow miners and the resource needs of
the terminals. Consequently, the miner’s profit maximization
problem can be represented as follows:

P3 : max
xij

Un
j (pj) =

∑
i∈I

pjxij − cj
∑
i∈I

xij (19a)

s.t. pj > 0, (19b)
pj ≤ pmax

j , (19c)∑
i∈I

xij ≤ Bmax, (19d)

where pmax
j is the maximum pricing of miner j, and Bmax is

the maximum capacity of miner j. Constraints (19b) and (19c)
specify the pricing lower and upper bounds of the miners,
respectively. These bounds are determined by factors, such as
the miner’s operational costs cj , market competition, and the
budget constraints of the training terminals. Given the limited
package resources available at the terminals, constraint (19d)
outlines the maximum package resource limit for the miners.
Bmax is defined by the computational resources and opera-
tional constraints of the system, ensuring that local models
are processed and validated without exceeding capacity.

Suppose that every training terminal has access to the re-
source prices of all miners. A training terminal can determine
its packaging strategy by solving the following problem:

P4 : max
xij

U2
i (xij) =

∑
j∈N

(aixij − bix
2
ij)−

∑
j∈N

pjxij ,

(20a)

s.t.
∑
j∈N

xij ≤ K, (20b)∑
j∈N

pjxij ≤ U1
i , (20c)

xij ≥ 0, (20d)
xij ≤ Gij , (20e)

where (20b) presents the constraint on the number of rounds
that a terminal participates in the training task; i.e., K is the
total number of rounds required for the task. (20c) sets the
upper limit on the budget for a terminal; i.e., U1

i is the profit
obtained by the terminal from the MO in the game between
the MO and terminals. (20d) ensures that the resource acquired
by a training terminal is non-negative.

Constraint (20e) outlines the maximum resource allocation
that the training terminal can obtain, contingent on the miners’
trustworthiness. The terminals take into account the trust
level of the miners when acquiring packaging resources and
determine the quantity of resources to purchase to safeguard
data security. On the other hand, under a given consensus
mechanism (e.g., PoW), variations in the miners’ computing
powers lead to differences in chain speeds (i.e., the rate at
which transactions are processed and blocks are packaged).
As a result, each training terminal faces an upper limit when
selecting miners for packaging services.

Next, we proceed to analyze the Stackelberg equilibrium
(SE) of the MLMF game.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3567355

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on May 19,2025 at 17:20:47 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Definition 2 (Stackelberg Equilibrium [42]). The SE rep-
resents the Nash equilibrium between the leaders and the
followers in the game. It is presumed that the Nash equilibrium
(p∗j , x

∗
ij) and the accompanying conditions hold true:

• For miner j,

Un
j (p

∗
j , p

∗
−j , x

∗
ij) ≥ Un

j (pj , p
∗
−j , x

∗
ij), j ∈ N . (21)

• For terminal i during the second stage,

U2
i (p

∗
j , x

∗
−ij , x

∗
ij) ≥ U2

i (p
∗
j , x

∗
−ij , xij), i ∈ I, (22)

where (21) corresponds to the Nash equilibrium condition for
the leaders, and (22) corresponds to the Nash equilibrium
condition for the followers.

In what follows, we first find the optimal resource demands
of the terminals by analyzing their reactions to the pricing
strategies adopted by the miners. Once the terminals’ strategies
are identified, we use them to solve the Nash equilibrium
solutions of the miners’ game by substituting these strate-
gies into the miners’ optimization problems. The Stackelberg
equilibrium ensures that the leaders’ strategies are optimal
given the followers’ reactions, and the followers’ strategies
are optimal given the leaders’ actions, resulting in a stable
and efficient outcome for all participants.

B. Analysis of MLMF Game

We start by analyzing the optimal resource demands of the
training terminals and establishing the following theorem.

Theorem 3. Taking into account the resource prices set by the
miners, the maximum budget constraint of each terminal, and
the level of trust the terminals have in the miners, the solution
to Problem P4 yields the optimal quantity of resources that
terminal i should purchase:

x∗
ij = min

{
Gi,j ,

(1−N)pj + 2Kbi +
∑

j′∈N−
pj′

2Nbi

}
. (23)

where N− = {1, . . . , j − 1, j + 1, . . . , N}.

Proof: We can readily verify that the second-order
derivative of U2

i (xij) with respect to xij is persistently nega-
tive. The second-order derivative of U2

i (xij) is given by

∂2U2
i (xij)

∂x2
ij

= −2bi < 0, (24)

According to (24), we can confirm the existence of a Nash
equilibrium in the second stage. The Karush-Kuhn-Tucker
(KKT) optimality conditions can be employed to obtain the
optimal solution for Problem P4, which can be recast as

P5 : max
xij

∑
j∈N

(aixij − bix
2
ij)−

∑
j∈N

pjxij+

λ1

(
K−

∑
j∈N

xij

)
+λ2

(
U1
i −

∑
j∈N

pjxij

)
, (25a)

s.t.
∑
j∈N

xij ≤ K, (25b)∑
j∈N

pjxij ≤ U1
i , (25c)

λ1

(
K −

∑
j∈N

xij

)
= 0, (25d)

λ2

(
U1
i −

∑
j∈N

pjxij

)
= 0, (25e)

λ1 ≥ 0, (25f)
λ2 ≥ 0, (25g)

K −
∑
j∈N

xij ≥ 0, (25h)

U1
i −

∑
j∈N

pjxij ≥ 0, (25i)

where λ1 and λ2 are the Lagrangian multipliers. Then, the
optimal solution is Problem P5 is given by

x∗
ij =

ai − pj − λ1 − λ2pj
2bi

, ∀i, j. (26)

Note that the terminals are self-interested in their own profit;
in other words, the terminals demand the profit obtained from
the MO in the first tier of the two-tier Stackelberg game to be
greater than the rewards offered to the miners in the second
tier. As a result, U1

i −
∑

j∈N pjxij > 0, i.e., λ2 = 0. Suppose
that terminal i participates in all training rounds, i.e. K −∑

j∈N xij = 0. Hence, λ2 > 0. Then, we have

K =
∑
j∈N

ai − pj − λ1

2bi
. (27)

By substituting (26) into (27), it follows that

λ1 = ai −
2Kbi+

∑
j∈N

pj

N . (28)

Further substituting (28) into (26), we obtain

x∗
ij =

1

2Nbi

(1−N)pj + 2Kbi +
∑

j′∈N−

pj′

 . (29)

Considering the range of xij , (29) leads to (23).
Operating independently, each miner can predict the actions

of its competitors and devise an optimal strategy based on
the predicted behavior of the terminals. We convert problem
P3 by first considering the utility of the miners based on the
packaging resource demand of the terminals. Specifically, by
substituting (29) into (5), it follows that

Un
j (pj , p−j , xij) =

∑
i∈I

pj

[
(1−N)pj

2Nbi
+

2Kbi+
∑

j∈N−
pj

2Nbi

]
−

∑
i∈I

cj

[
(1−N)pj

2Nbi
+

2Kbi+
∑

j∈N−
pj

2Nbi

]
.

(30)

For illustration convenience, we define

S =
∑
i∈I

1−N

2Nbi
; (31a)

T (p−j) =
∑
i∈I

2Kbi +
∑

j∈N−
pj

2Nbi
. (31b)

Then, (30) can be rewritten as

Un
j (pj , p−j , xij)=Sp

2
j+T (p−j)pj−Scjpj−T (p−j)cj , (32)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3567355

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on May 19,2025 at 17:20:47 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

where T (p−j) reflects the influence of the strategies p−j

adopted by other miners on the utility of miner j, i.e., how the
pricing choices of other miners affect the utility of miner j.

The second-order derivative of Un
j (pj) is given by

∂2Un
j (pj)

∂x2
ij

= 2S =
∑
i∈I

1−N

Nbi
, (33)

When the number of miners satisfies N > 1, the negativity
of

∂2Un
j (pj)

∂x2
ij

is satisfied, from which the concavity of Un
j (pj)

follows. Then, our model can converge to the optimum results.
By substituting (29), we rewrite (19d) as

∑
i∈I

[ (1−N)pj
2Nbi

+

2Kbi +
∑

j∈N−
pj

2Nbi

]
≤ Bmax (34a)

⇒ Spj + T (p−j) ≤ Bmax. (34b)

Considering the pricing decisions p−j made by the other
miners, the miners’ pricing frame is framed as

P6 : max
pj

Sp2j + T (pj)pj − Scjpj − T (p−j)cj (35a)

s.t. pj > 0, (35b)
pj ≤ pmax, (35c)
Spj + T (p−j) ≤ Bmax. (35d)

The optimal solution to Problem P6 represents the best pricing
approach for miner j, as established in the following theorem.

Theorem 4. Taking into account unit packaging cost of miner
j, the prices p−j of resources packaged by other miners,
and the demand for resources from the terminals, the optimal
pricing strategy for miner j can be determined by solving
Problem P6 under the two cases.

Case 1: Miner j has not yet been at its packaging capacity
ceiling, and the optimal pricing strategy is provided by

p∗j =
cjS − T (p−j)

2S
. (36)

Case 2: Miner j has reached its maximum packaging limit,
and the optimal pricing strategy is given by

p∗j =
Bmax − T (p−j)

S
. (37)

Proof: The KKT optimality conditions can be used to
obtain the optimal solution for Problem P6. Alternatively,
Problem P6 can be reformulated as follows:

P7 : max
pj

Sp2j + T (p− j)pj − Scjpj − T (p−j)cj

+ λ3[Bmax − Spj − T (p−j)] (38a)
s.t. λ3[Bmax − Spj − T (p−j)] ≥ 0, (38b)

λ3 ≥ 0, (38c)
Bmax − Spj − T (p−j) ≥ 0, (38d)

where λ3 is the Lagrange multiplier. By addressing Problem
P7, we arrive at the following optimal pricing strategy p∗j :

p∗j =
cjS − T (p−j) + λ3S

2S
. (39)

According to the complementary slackness condition, we
have two scenarios: either the equality constraint of (34a) is
satisfied, or it is not, as discussed below.

Case 1: When miner j has not reached its maximum pack-
aging limit, (34a) does not satisfy the equation,i.e., λ3 = 0.
Consequently, the ultimate pricing strategy can be derived as
follows

p∗j =
cjS − T (p−j)

2S
. (40)

Case 2: When miner j has reached its maximum packaging
limit, (34a) satisfies

Bmax − Spj − T (p−j) = 0. (41)

By substituting (39) into (41), it readily follows that

λ3 =
2Bmax − T (p−j)− cjS

S
. (42)

We substitute (42) into (39), and obtain p∗j as

p∗j =
Bmax − T (p−j)

S
. (43)

In summary, when miner j satisfies (34a), it reaches its
maximum packaging limit to maximize its profit.

Algorithm 2 outlines the incentive mechanism between the
training terminals and miners. Each miner begins by setting
an initial price p0, observes the prices set by other miners,
calculates a new price, and repeats this process until the
change in the pricing strategy is smaller than a predetermined
precision ξ. The final price is then communicated to the
terminals, which calculate the number of local models to
allocate to each miner for packaging. Terminal i makes optimal
decisions when its utility is maximized.

The computational complexity of Algorithm 2 can be
analyzed as follows: For a convergence accuracy of ξ, the com-
plexity of the pricing adjustment process among the miners is
O
(
1
ξ

)
. With N miners, the total complexity becomes O

(
N
ξ

)
.

With I terminals, determining the pricing strategy for each
terminal has a complexity of O(NI). Therefore, the total com-
putational complexity of the algorithm is O

(
N
ξ +NI

)
[21].

VII. EXPERIMENTAL STUDY

This section presents the numerical results to evaluate the
complex strategic dynamics among the BFL participants. We
also conduct a detailed comparison between our proposed
incentive mechanism and the existing benchmark framework to
verify the effectiveness and reliability of our incentive mecha-
nism. Our simulations were conducted using Python 3.8 on a
system configured with an AMD Ryzen 7 5800H CPU, GTX
3060 GPU, and 16 GB RAM. We can integrate our incentive
mechanism into the smart contracts of simulated blockchain
platforms, e.g., BlockEmulator and Ganache [49], to validate
optimal pricing and packaging strategies in a blockchain envi-
ronment through simulated transaction processing, consensus
mechanisms, and reward distribution processes.
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Algorithm 2 Incentive mechanism b/w terminals and miners

Input N,K, bi, ai, cj , Bmax, Gi,j

Output x∗
i,j , p

∗
j

Set t = 0 and define the precision as ξ;
Every miner configures an initial price pj = pj(0);
Repeat

Miners monitor p−j of other miners;
for j ∈ N do

if the equality condition of (34a) holds then
Miner j calculates p̂j using (37);

else then
Miner j calculates p̂j using (36);

end if
end for
t← t+ 1;

until ∥ptj − pt−1
j ∥ ≤ ξ

p∗j ← ptj ;
The miners send p∗j , ∀j to the terminals;
for i ∈ I do

Terminal i calculates x̂i,j using (26);
if U2

i (x̂i,j) ≥ U2
i (xi,j) then

x∗
i,j ← x̂i,j ;

Terminal i selects miner j to package x∗
i,j models;

end if
end for
return x∗

i,j , p
∗
j

Fig. 3. Utility model of the MO and terminal vs. training reward

A. Numerical Results

Numerical results are presented to illustrate the interplay
among the entities within the BFL system as the system
parameters vary. Fig. 3 plots the utilities of the MO and the
terminals with the increasing reward of the MO r, where the
number of terminals is set to I = 20. It is observed that the
terminals’ utility increases almost linearly as r increases. The
reason is that as the rewards increase, so does the anticipated
profit for each terminal. On the other hand, the MO’s utility
initially rises and then declines as r increases. This is because
when r is small, increasing r may incentivize the terminals
and boost their demand. As r continues to rise, the terminals’
demands gradually saturate, causing the MO’s revenue to
decline. In this sense, there is an optimal strategy r∗ for the
MO to reach its maximum utility.

Fig. 4 plots the impact of the training data size di on

Fig. 4. Terminal utility U1
i (di) under different training costs ci and different

data size di

Fig. 5. Terminal’s optimal data size d∗i vs. number of terminals

the utility of the terminal, where U1
i represents the utility of

terminal i under different training costs. As di increases, the
utility of U1

i first increases and then decreases. The reason
for this is that when di exceeds the optimal data size d∗i , the
terminal i must consider the fast-growing training cost. The
utility of the terminals U1

i is also affected by their costs ci,
and high costs can lead to a decrease in utility.

Fig. 5 plots the optimal data sizes d∗i , ∀i of the terminals
under the variation of the number of terminals. As the number
I of terminals increases, the optimal data size d∗i decreases
consistently. This is because as I increases, the competition
between the terminals becomes more intense, resulting in a
reduction in their rewards. Consequently, each terminal needs
to conserve its costs to maximize its utility. In addition,
a higher unit cost leads to a smaller d∗i , since a terminal
decreases its data size to cut cost when ci is large.

Fig. 6 shows the stabilization of prices as the number of
iterations increases, where each terminal is set to participate in
100 rounds of training, meaning each terminal must purchase
100 packaged resources. A price precision is set to 0.0001.
It is observed that the prices of the miners tend to converge,
indicating the convergence of the proposed algorithm. This
convergence is evident after five iterations, when the prices
reach the set precision requirement. The reason for this con-
vergence is the fast convergence rate of the algorithm. It is
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Fig. 6. Convergence behavior of the miner’s prices pj over iterations

Fig. 7. Convergence behavior of the miner’s utility Un
j over iterations

noticed that when a miner observes the pricing of the other
miners, it adjusts its own pricing strategy accordingly.

Fig. 7 illustrates the variation of the miners’ revenue with
pricing, where the miners exercise control over their revenue
by adjusting the price. As the price stabilizes, the revenue
of the miners converges accordingly. Notably, when miners
set a high price, terminals reduce the amount of packaged
resources they purchase, subsequently leading to a decrease
in the miners’ revenue. Nonetheless, a miner can increase
its revenue by observing and adjusting their pricing strategies
based on those of other miners.

For analysis convenience, we choose five terminals that
generate income by completing BFL tasks, as depicted in
Fig. 8. The income earned by these terminals fluctuates based
on the pricing strategy adopted by the miners. It is worth
noting that as the number of packaged resources attains a
specific threshold, the growth rate of the users’ revenue tends
to decline. The pricing strategy employed by the miners also
has a direct impact on the quantity of packaged resources,
as demonstrated in Fig. 9. When the miners set a high
resource price, the terminals are inclined to decrease their
purchase quantities accordingly. As the miners lower their
resource prices, the terminals respond by increasing resources
requested, allowing them to generate higher revenues. As the
prices set by the miners gradually align, the demand for
resources from the terminals also converges.

Fig. 8. Convergence behavior of the terminal’s utility U2
i over iterations

Fig. 9. Convergence of the number of package resources xij over iterations

B. Performance Comparison with Benchmarks

In Figs. 10 and 11, we conduct a comparison study between
our proposed incentive mechanism (PIM) and benchmarks,
which are classified into rational and irrational categories. The
rational benchmarks include Dynamic-Select, Max-Contribute,
and Fixed-Pool [50]. These mechanisms differ from the PIM
solely in user selection strategies. Dynamic-Select introduces
randomness by selecting a subset of terminals to contribute
data, promoting diversity and unpredictability. Max-Contribute
maximizes data contributions by involving all available ter-
minals, overlooking their individual constraints or rational
behavior. Fixed-Pool adopts a structured and consistent ap-
proach, selecting a predetermined set of terminals for data
contribution. In contrast, the irrational benchmarks – Blind-
Select, Overload, and Partial-Pool [50], [51] – disregard the
rationality and selfishness of terminals. Blind-Select blindly
requests data from randomly chosen terminals. Overload de-
mands full data contributions from all terminals, ignoring
their capacity or willingness. Partial-Pool takes a balanced yet
arbitrary approach, requesting partial data contributions (half)
from a subset (half) of the terminals.

To further validate the effectiveness of our mechanism,
we expand the contrastive framework established in [50].
Specifically, we first vary the number of participating terminals
(followers) and the amount of data contributed by each, and
evaluate the utility outcomes for both terminals and the MO
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Fig. 10. Comparison of the proposed mechanism and the benchmarks: (a)
MO’s utility, and (b) terminals’ average utility

Fig. 11. Comparison of the proposed mechanism and the benchmarks: (a)
terminal’s utility, and (b) miners’ average utility

under different data contributions. This approach provides
insights into the robustness of our mechanism against fluctu-
ations in terminal behavior and data volume. An interesting
observation from Fig. 10 is that although the individual
utilities of the MO and the terminals under the PIM may
occasionally fall below those achieved by some rational or
irrational benchmarks, the combined utility of the MO and
terminals consistently surpasses those of all benchmarks.

Next, we examine the impacts of different packaging quan-
tities, once again using the number of terminals as the pri-
mary variable. As illustrated in Fig. 11, by comparing the
utilities of the terminals and miners across various packaging
strategies, we observe that the aggregate utility of the miners
and terminals under the PIM consistently outperforms that
of both rational and irrational benchmarks. This superior
performance can be attributed to the balanced approach of
PIM, which adheres to the principles of individual rationality
and optimized terminal selection.

C. FL Convergence

We further test the impact of PIM on the learning per-
formance of the FedAvg algorithm [52]. Our experiments
utilize the CIFAR-10 dataset [53] to generate local datasets
for the terminals, with a Convolutional Neural Network (CNN)
selected as the neural network model. The non-IID degree of
the terminals’ datasets is adjusted as outlined in [54], where
s% of the data is allocated to each terminal in an IID manner to

TABLE II
COMPARISON OF DIFFERENT INCENTIVE MECHANISMS IN DATA SIZE,

DATA CONTRIBUTION, AND ACCURACY.

Incentive Mechanisms Data Size Data Contribution Accuracy
PIM 43415 86.8% 58.1%
URA 37553 75.1% 56.1%
RRA 35127 70.3% 55.9%

Fig. 12. Training loss of different incentive mechanisms

ensure similarity, while the remaining (100−s)% is distributed
based on label sorting to introduce non-IID characteristics. As
a result, different data distributions are experienced across the
terminals. A higher non-IID ratio reflects greater dissimilarity
in data distributions across terminals from different groups.

We consider two widely recognized incentive schemes:
• Uniform Reward Allocation (URA) [51], [55]: The total

reward r provided by the MO for FL tasks is evenly
distributed among all terminals. Each terminal receives
an identical reward, regardless of data contribution.

• Random Reward Allocation (RRA) [55], [56]: The total
reward r is distributed randomly among the terminals.
While the overall payout remains fixed, the reward allo-
cated to each terminal varies randomly.

For a fair comparison, we maintain a constant total reward
r paid by the MO across all mechanisms. Additionally, the
terminal’s utility U1

i (di)—calculated as the reward received
minus the associated cost—is standardized across mechanisms.
This allows for a consistent evaluation of the data contribution
made by terminals under different incentive schemes. Vari-
ations in data contribution are driven by differences in the
underlying incentive structures. We investigate the influence of
these incentive mechanisms on FL convergence by selecting 20
terminals for training. The model’s training loss and accuracy
are evaluated after 100 communication rounds.

Figs. 12 and 13 illustrate the convergence performance of
PIM. During the initial 100 training rounds, the PIM exhibits
faster loss reduction compared to URA and RRA. By the 100th
round, the model trained under PIM achieves higher accuracy
than both baselines. Table II evaluates the data contribution
of the users under different incentive mechanisms. Our study
utilizes the CIFAR-10 dataset, comprising 60,000 images,
with 50,000 for training and 10,000 for testing. Compared
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Fig. 13. Model accuracy of different incentive mechanisms

to the other benchmarks, the PIM incentivizes the terminals
to contribute more data and, thus, the MO can obtain a model
with finer accuracy. This demonstrates the PIM effectively
optimizes the participants’ utilities at the Stackelberg equilib-
rium. This finding highlights the robustness of PIM in aligning
individual contributions with system-wide objectives.

VIII. CONCLUSION

This paper has presented a novel game-theoretic incentive
mechanism for BFL, addressing the challenges of user par-
ticipation and system stability. By modeling the interactions
within BFL through two subsequent Stackelberg games, we
have analyzed how MO, miners, and training terminals can
align their strategies to optimize both individual utilities and
overall performance. Our mechanism motivates participants
to actively engage in BFL, enhancing model accuracy and
fostering the stability and efficiency of BFL. Our experiments
validated this mechanism, demonstrating its ability to offer
5.8% and 53.4% higher utilities in the two game than those
of the alternatives. Future work will integrate reinforcement
learning to further refine and adapt the incentive mechanism
in dynamic BFL environments. By leveraging reinforcement
learning, the system can better handle the non-stationary
behaviors of the participants, optimize reward allocation in
real time, and enhance adaptability and efficiency in complex
scenarios.

REFERENCES

[1] K. Li, B. P. L. Lau, et al., “Toward ubiquitous semantic metaverse:
Challenges, approaches, and opportunities,” IEEE Internet of Things
Journal, vol. 10, no. 24, pp. 21855–21872, 2023.

[2] Y. Zuo, L. Gui, K. Cui, et al., “Mobile blockchain-enabled secure and
efficient information management for indoor positioning with federated
learning,” IEEE Transactions on Mobile Computing, vol. 23, no. 12,
pp. 12176–12194, 2024.

[3] T. Xiang, Y. Bi, X. Chen, et al., “Federated learning with dynamic epoch
adjustment and collaborative training in mobile edge computing,” IEEE
Trans. Mobile Comput., vol. 23, no. 5, pp. 4092–4106, 2024.

[4] S. Hu, X. Chen, W. Ni, et al., “Distributed machine learning for wireless
communication networks: Techniques, architectures, and applications,”
IEEE Commun. Surveys Tutorials, vol. 23, no. 3, pp. 1458–1493, 2021.

[5] M. Tang, F. Peng, and V. W. Wong, “A blockchain-empowered incen-
tive mechanism for cross-silo federated learning,” IEEE Trans. Mobile
Comput., vol. 23, no. 10, pp. 9240–9253, 2024.

[6] Y. Li, F. Li, S. Yang, et al., “A cooperative analysis to incentivize
communication-efficient federated learning,” IEEE Trans. Mobile Com-
put., vol. 23, no. 10, pp. 10175–10190, 2024.

[7] Y. Wang, T. Sun, S. Li, et al., “Adversarial attacks and defenses in
machine learning-empowered communication systems and networks: A
contemporary survey,” IEEE Commun. Surveys Tutorials, vol. 25, no. 4,
pp. 2245–2298, 2023.

[8] X. Yuan, W. Ni, M. Ding, et al., “Amplitude-varying perturbation for
balancing privacy and utility in federated learning,” IEEE Trans. Info.
Forensics Security, vol. 18, pp. 1884–1897, 2023.

[9] C. Ying, F. Xia, D. S. L. Wei, et al., “BIT-FL: Blockchain-enabled
incentivized and secure federated learning framework,” IEEE Trans.
Mobile Comput., vol. 1, no. 1, pp. 1–18, 2024.

[10] Y. Gong, H. Yao, Z. Xiong, et al., “Blockchain-aided digital twin of-
floading mechanism in space-air-ground networks,” IEEE Trans. Mobile
Comput., vol. 24, no. 1, pp. 183–197, 2025.

[11] I. Makhdoom, M. Abolhasan, H. Abbas, et al., “Blockchain’s adoption
in IoT: The challenges, and a way forward,” Journal of Network and
Computer Applications, vol. 125, pp. 251–279, 2019.

[12] G. Yu, X. Wang, K. Yu, et al., “Survey: Sharding in blockchains,” IEEE
Access, vol. 8, pp. 14155–14181, 2020.

[13] Y. Qu, S. Yu, L. Gao, et al., “Blockchained dual-asynchronous federated
learning services for digital twin empowered edge-cloud continuum,”
IEEE Trans. Services Comput., vol. 17, no. 3, pp. 836–849, 2024.

[14] Y. Wang, J. Zhou, G. Feng, et al., “Blockchain assisted federated
learning for enabling network edge intelligence,” IEEE Netw., vol. 37,
no. 1, pp. 96–102, 2023.

[15] H. Chen, R. Zhou, Y.-H. Chan, et al., “LiteChain: A lightweight
blockchain for verifiable and scalable federated learning in massive edge
networks,” IEEE Trans. Mobile Comput., pp. 1–17, 2024.

[16] A. P. Kalapaaking, I. Khalil, M. S. Rahman, et al., “Blockchain-
based federated learning with secure aggregation in trusted execution
environment for Internet-of-Things,” IEEE Trans. Industrial Informatics,
vol. 19, no. 2, pp. 1703–1714, 2023.

[17] N. Agrawal, D. Mishra, and S. Agrawal, “A comprehensive survey on
blockchained federated learning system and challenges,” in Proc. IEEE
ICTBIG, pp. 1–4, 2023.

[18] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device
federated learning,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1279–1283,
2020.

[19] C. Huang, E. Liu, R. Wang, et al., “Personalized federated learning via
directed acyclic graph based blockchain,” IET Blockchain, vol. 5, no. 1,
pp. 73–82, 2024.

[20] J. Li, Y. Shao, K. Wei, et al., “Blockchain assisted decentralized
federated learning (BLADE-FL): Performance analysis and resource
allocation,” IEEE Trans. Parallel Distributed Syst., vol. 33, no. 10,
pp. 2401–2415, 2022.

[21] Z. Wang, Q. Hu, and X. Z. Xiong, “Incentive mechanism design for
joint resource allocation in blockchain-based federated learning,” IEEE
Trans. Parallel Distributed Syst., vol. 34, no. 5, pp. 1536–1547, 2023.

[22] Y. Wang, J. Zhou, G. Feng, et al., “Blockchain assisted federated
learning for enabling network edge intelligence,” IEEE Netw., vol. 37,
no. 1, pp. 96–102, 2023.

[23] K. Toyoda and A. N. Zhang, “Mechanism design for an incentive-aware
blockchain-enabled federated learning platform,” in 2019 IEEE Int’l
Conf. Big Data (Big Data), pp. 395–403, 2019.

[24] E. Bandara, X. Liang, S. Shetty, et al., “Skunk — a blockchain and zero
trust security enabled federated learning platform for 5G/6G network
slicing,” in Proc. SECON, pp. 109–117, 2022.

[25] Y. Jiang, B. Ma, X. Wang, et al., “Blockchained federated learning for
Internet of Things: A comprehensive survey,” ACM Computing Survey,
vol. 56, no. 10, p. 258, 2024.

[26] J. Huang, L. Kong, G. Chen, et al., “Blockchain-based federated
learning: A systematic survey,” IEEE Netw., vol. 37, no. 6, pp. 150–
157, 2023.

[27] L. Bhatia and S. Samet, “Decentralized federated learning: A compre-
hensive survey and a new blockchain-based data evaluation scheme,” in
Int’l Conf. Blockchain Comput. Appl. (BCCA), pp. 289–296, 2022.

[28] S. R. Pokhrel and J. Choi, “Federated learning with blockchain for
autonomous vehicles: Analysis and design,” IEEE Trans. Commun.,
vol. 68, no. 8, pp. 4734 – 4746, 2020.

[29] J. An, S. Tang, X. Sun, et al., “FREB: Participant selection in feder-
ated learning with reputation evaluation and blockchain,” IEEE Trans.
Services Comput., vol. 17, no. 6, pp. 3685–3698, 2024.

[30] W. Zhang, Q. Lu, Q. Yu, et al., “Blockchain-based federated learning
for device failure detection in industrial IoT,” IEEE Internet Things J.,
vol. 8, no. 7, pp. 5926–5937, 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3567355

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on May 19,2025 at 17:20:47 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[31] L. Witt, U. Zafar, K. Shen, et al., “Decentralized and incentivized fed-
erated learning: A blockchain-enabled framework utilising compressed
soft-labels and peer consistency,” IEEE Trans. Services Comput., vol. 17,
no. 4, pp. 1449–1464, 2024.

[32] Y. Zhao, Y. Qu, Y. Xiang, et al., “Long-term proof-of-contribution:
An incentivized consensus algorithm for blockchain-enabled federated
learning,” IEEE Trans. Services Comput., vol. 17, no. 5, pp. 2558–2570,
2024.

[33] P. Sun, E. Liu, W. Ni, et al., “Reconfigurable intelligent surface-
assisted wireless federated learning with imperfect aggregation,” IEEE
Transactions on Communications, pp. 1–13, 2024. Early access.

[34] Z. Chen, F. Zhou, Y. Tian, et al., “A blockchain-based dynamic incentive
model in mobile edge computing,” in 2024 Int’l Conf. Networking and
Network Applications (NaNA), pp. 54–59, 2024.

[35] H. R. Varian, Microeconomic Analysis, Third Edition. Microeconomic
analysis, third edition., 1992.

[36] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, pp. 33–37, Feb 1997.

[37] E. Liu and K. K. Leung, “Fair resource allocation under Rayleigh and/or
Rician fading environments,” in 2008 IEEE 19th PRIMC, pp. 1–5, 2008.

[38] E. Liu, Q. Zhang, and K. K. Leung, “Clique-based utility maximization
in wireless mesh networks,” IEEE Trans. Wirel. Commun., vol. 10, no. 3,
pp. 948–957, 2011.

[39] E. Liu, Q. Zhang, and K. K. Leung, “Relay-assisted transmission with
fairness constraint for cellular networks,” IEEE Trans. Mobile Comput.,
vol. 11, no. 2, pp. 230–239, 2011.

[40] Y. Zhan, P. Li, K. Wang, S. Guo, and Y. Xia, “Big data analytics
by crowdlearning: Architecture and mechanism design,” IEEE Netw.,
vol. 34, no. 3, pp. 143–147, 2020.

[41] O. Candogan, K. Bimpikis, and A. Ozdaglar, “Optimal pricing in
networks with externalities,” Operations Research: The Journal of the
Operations Research Society of America, no. 4, p. 60, 2012.

[42] R. B. Myerson, Game Theory: Analysis of Conflict. Game Theory:
Analysis of Conflict, 1997.

[43] Y. Geng, E. Liu, W. Ni, et al., “Balancing performance and cost for
two-hop cooperative communications: Stackelberg game and distributed
multi-agent reinforcement learning,” IEEE Transactions on Cognitive
Communications and Networking, vol. 10, no. 6, pp. 2193–2208, 2024.

[44] Y. Tian, S. Wang, J. Xiong, et al., “Robust and privacy-preserving decen-
tralized deep federated learning training: Focusing on digital healthcare
applications,” IEEE/ACM Trans. Computational Biology Bioinformatics,
vol. 21, no. 4, pp. 890–901, 2024.

[45] J. Lu, H. Liu, Z. Zhang, et al., “Toward fairness-aware time-sensitive
asynchronous federated learning for critical energy infrastructure,” IEEE
Trans. Industrial Informatics, vol. 18, no. 5, pp. 3462–3472, 2022.

[46] L. Cheng and T. Yu, “Game-theoretic approaches applied to transactions
in the open and ever-growing electricity markets from the perspective of
power demand response: An overview,” IEEE Access, vol. 7, pp. 25727–
25762, 2019.

[47] B. Huang and A. Guo, “A dynamic hierarchical game approach for user
association and resource allocation in HetNets with wireless backhaul,”
IEEE Wirel. Commun. Lett., vol. 13, no. 1, pp. 59–63, 2024.

[48] R. B. Myerson, “On the value of game theory in social science,”
Rationality and Society, vol. 4, no. 1, pp. 62–73, 1992.

[49] K. Singla, J. Bose, and S. Katariya, “Machine learning for secure device
personalization using blockchain,” in 2018 ICACCI, pp. 67–73, 2018.

[50] X. Wang, Y. Zhao, C. Qiu, et al., “InFEDge: A blockchain-based
incentive mechanism in hierarchical federated learning for end-edge-
cloud communications,” IEEE J. Select. Areas Commun., vol. 40, no. 12,
pp. 3325–3342, 2022.

[51] Y. Zhan and J. Zhang, “An incentive mechanism design for efficient edge
learning by deep reinforcement learning approach,” in IEEE INFOCOM,
pp. 2489–2498, 2020.

[52] H. B. McMahan, E. Moore, D. Ramage, et al., “Communication-efficient
learning of deep networks from decentralized data,” in Proc. AISTATS,
2017.

[53] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Handbook of Systemic Autoimmune Diseases, vol. 1, no. 4,
2009.

[54] S. P. Karimireddy, S. Kale, M. Mohri, et al., “SCAFFOLD: Stochastic
controlled averaging for federated learning,” in Proc. the 37th Int’l Conf.
Machine Learning, vol. 476 of ICML’20, p. 12, 2020.

[55] X. Tang, Y. Wang, R. Huang, et al., “Stackelberg game based resource
allocation algorithm for federated learning in MEC systems,” in Proc.
WCCCT, pp. 7–12, 2023.

[56] S. Wang, B. Luo, and M. Tang, “Tackling system-induced bias in
federated learning: A pricing-based incentive mechanism,” in Pro. IEEE
ICDCS, pp. 902–912, 2024.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3567355

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on May 19,2025 at 17:20:47 UTC from IEEE Xplore.  Restrictions apply. 


