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Acute myocardial infarction (MI) remains a major cause of death and disability worldwide. No adjuvant treatment has yet been fully validated
in patients to limit the progression from the initial tissue damage due to acute MI, to the development of heart failure. However, mitochondria
have long been demonstrated to be a key target for cardioprotective strategies to reduce cell death that leads to left ventricular dysfunction
and ultimately heart failure. While pre-clinical studies have investigated several mitoprotective strategies targeting different mitochondrial
functions, such as oxidative stress or permeability transition pore opening, none have shown successful clinical translation so far. In this
European Society of Cardiology scientific statement, we present recent research advances in the understanding of the mitochondrial
alterations occurring in MI and in the discovery of key components of mitochondrial structure and function in order to improve drug
development. We discuss the reasons for the failure of clinical translation and the remaining obstacles that need to be addressed, including
timing of drug administration, tissue bioavailability and efficient mitochondrial targeting, together with the mitochondrial impact derived
from risk factors, comorbidities and comedications. Taken together, this scientific statement aims to provides a consensus opinion from
clinicians and basic scientists to translate some of the most promising mitoprotective targets into the clinical setting to protect against MI
and heart failure.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Graphical Abstract

Improving clinical translation of mitoprotective therapies. 31P MRI, phosphorus-31 magnetic resonance imaging; hiPSC-CM, human-induced
pluripotent stem cell-derived cardiomyocyte; IHD, ischaemic heart disease.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Keywords Ischaemia–reperfusion injury • Heart failure • Mitochondria-targeted drug therapy •
Cardioprotection
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Mitochondrial targets in heart disease 3

Introduction
Myocardial infarction (MI) remains one of the leading causes of
death and disability worldwide. Following the acute phase of
myocardial ischemia–reperfusion (I/R) which occurs during MI,
patients often develop adverse myocardial remodelling, ischaemic
cardiomyopathy and heart failure (HF). Although post-MI mortal-
ity has reduced over the last decades, there is still no treatment
for preventing the deleterious progression of MI.1 Both pre-clinical
and clinical studies have shown the crucial role of mitochondria
as a target for cardioprotection. Through their various functions,
mitochondria represent a key regulator of cell fate. Importantly,
the MI-associated mitochondrial dysfunction changes with the pro-
gression of the disease (Figure 1). For example, mitochondrial
Ca2+ overload occurs during the acute phase of cardiac I/R2 while
a lower mitochondrial Ca2+ content is measured in the failing
heart.3 Similarly, oxidative stress with mitochondrial reactive oxy-
gen species (ROS) being excessively produced during I/R is detri-
mental but has also been shown to exert critical protective roles
in the subsequent remodelling process. Therefore, deciphering the
chronology of mitochondrial dysfunction in the progression of
MI to HF is crucial to adapt treatments targeting mitochondrial
function.

In the present scientific statement, we aim to highlight the
importance of targeting specific mitochondrial functions at defined
times to ameliorate ischaemic heart disease (IHD), from I/R injury
to HF. We explain how the improvements in the understanding
of the mitochondrial alterations that occur during MI have led
to the development of new, more promising treatments. We will
also discuss the challenges in translating these strategies from
experimental models to patients, taking into consideration sex, age,
comorbidities, concurrent medications, and other potential cellular
targets.

This scientific statement will focus on the cardiomyocyte and
treatments targeted at its survival. It should however be highlighted
that many other cardiac cell types and structures are involved in the
discussed process during I/R injury, e.g. coronary vascular injury,
which is reviewed elsewhere.4,5

Mitochondria as a therapeutic
target in myocardial infarction
and heart failure: pre-clinical
and clinical evidence
During I/R, disruption of mitochondrial function leads to increased
ROS formation and impaired Ca2+ homeostasis. Consequently, the
apoptosis and necrosis cell death pathways are initiated with the
opening of the mitochondrial permeability transition pore (PTP).
The initial development of mitochondrially targeted therapeutic
strategies against MI have therefore mainly focused on limiting
mitochondrial ROS production and PTP activation. However, while
Phase 2 clinical trials were encouraging, all larger clinical trials
targeting this avenue failed to show cardioprotective benefits ..
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.. (Table 1),6–25 calling for additional mitochondrial targets, and more
refined and novel approaches as discussed below.

Oxidative stress
Increased ROS due to redox imbalance has been widely evidenced
in diverse ischaemic cardiac pathologies using various model sys-
tems.26–29 Despite the intensive research in the field, so far, no drug
targeting mitochondrial ROS or mitochondrial antioxidant systems
during I/R has been shown to be clinically effective. Therefore,

Figure 1 Legend on next page

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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4 M. Paillard et al.

there is an evident need to develop novel efficacious and safe medi-
cations to alleviate mitochondrial oxidative stress in IHD (Figure 1).

Inhibiting reactive oxygen species production

Mitochondria are the leading source of ROS during I/R. It is now
well-established that during ischaemia, the tricarboxylic acid cycle
metabolite succinate accumulates and on reperfusion, this drives a
highly specific mechanism of reverse electron transport (RET) at
complex I.30 The succinate which is responsible for the RET-ROS
mechanism is oxidized by succinate dehydrogenase (SDH), and
recent evidence has shown that short-term SDH inhibition is
highly protective against I/R injury and HF.31,32 Furthermore, the
most-suitable SDH inhibitor, malonate, is preferably taken up by
ischaemic tissue due to the low pH and lactate exchange via the
monocarbocylate transporter system, making it a highly-promising
approach for translation.33,34 Blocking the initial steps of excessive
ROS production, rather than trying to offset the entire ROS effects
further downstream with antioxidants, could be a much more
effective approach taking the dual effects of ROS into account. In a
similar way, targeting complex I, using the mitochondrial-targeted
S-nitrosothiol MitoSNO, which S-nitrosates a particular cysteine
residue of complex I, prevents RET and reduces I/R injury.35 The
fact that complex I can be inhibited by metformin can also explain
at least part of the protective action of this biguanide.36

Monoamine oxidases A and B

The monoamine oxidase A (MAO-A) and B (MAO-B) flavoenzymes
catalyze the degradation of catecholamines and other biogenic
amines to produce hydrogen peroxide and are largely consid-
ered to be major producers of mitochondrial ROS. Increased

Figure 1 Evolution of mitochondrial dysfunction during the
progression of ischaemic heart disease. Hypothetical sequence
of mitochondrial events during ischaemia/reperfusion and sub-
sequent development of heart failure. ADP, adenosine diphos-
phate; ANT, adenine nucleotide translocator; ATP, adeno-
sine triphosphate; Casp3, caspase-3; Casp9, caspase-9; CoA,
coenzyme A; Cyt-c, cytochrome C; DRP1, dynamin-related
protein 1; F1S1, mitochondrial fission protein 1; FUNDC1,
FUN14 domain-containing protein 1; IL, interleukin; LC3,
microtubule-associated protein-1 light chain-3; MCU, mito-
chondrial calcium uniporter; MFF, mitochondrial fission fac-
tor; MFN1, mitofusin 1; MFN2, mitofusin 2; MID49/51, mito-
chondrial dynamics proteins of 49/51 kDa; MLKL, mixed-lineage
kinase domain-like pseudokinase; mPTP, mitochondrial perme-
ability transition pore; mtROS, mitochondrial reactive oxygen
species; NCLX, Na+/Ca2+ exchanger; Nrlp3, nucleotide-binding
oligomerization domain-like receptor family, pyrin domain con-
taining protein 3; OMM, outer mitochondrial membrane;
OPA1, optic atrophy 1; RET, reverse electron transport; RIP1/3,
receptor-interacting protein 1/3; SDH, succinate dehydroge-
nase; TCA, tricarboxylic acid; TNF, tumour necrosis factor; UPR,
unfolded protein response; VDAC, voltage-gated anion channel.
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.. MAO activity is associated with high hydrogen peroxide pro-

duction alongside highly reactive aldehydes and ammonia which
act in synergy to impair mitochondrial function in cardiomy-
ocytes.37,38 The beneficial effects of MAO-A and MAO-B genetic
or pharmacological inhibition as potential drug targets have been
extensively studied in various pre-clinical models of acute and
chronic heart diseases including IHD,39 diabetic cardiomyopathy,
or anthracycline-induced cardiotoxicity.37 However, despite the
fact that specific and non-specific inhibitors of both MAO-A and
MAO-B isotypes have been available in the clinical practice for
decades, human data are scarce on their benefit in IHD, reveal-
ing mostly mechanistic information,37 but not yet the feasibility
to treat or to prevent human IHD. Since the expression level of
MAO isoforms varies between species and changes with ageing
and dietary status,37 the assessment of the clinical benefit of their
inhibition is complicated in most animal models and may warrant
novel test systems better resembling the humans. Notably, MAO
inhibitors display side effects such as hypertensive crises thereby
limiting their potential use as cardioprotective drugs.40 However,
additional MAO inhibitory compounds41 such as moclobemide and
safinamide that are commonly used for the treatment of depres-
sion and neurodegenerative disorders, are devoid of classical side
effects of MAO inhibition and therefore may have potential thera-
peutic application in MI.

Iron

Mitochondrial iron also contributes to oxidative stress in the
heart.42 Iron-dependent ROS production is involved in I/R
injury43 and its reduction alleviates ischaemic cardiomyopathy.44

Reducing mitochondrial iron genetically through cardiac-specific
overexpression of a mitochondrial iron export protein or pharma-
cologically using a mitochondria-permeable iron chelator, protects
mice against I/R injury.44 Nevertheless, these data are yet to be
reproduced in large animals or in clinical scenarios.

Reactive oxygen species scavengers and antioxidant
enzyme systems

Numerous compounds have been developed that target mitochon-
dria and have direct ROS scavenger activity or activate antioxidant
enzymes such as superoxide dismutase-2 (SOD2). These agents
have been tested in model systems involving ischaemia with vary-
ing success.45–47 However, in cardiac pathologies, clinical success
still has not been achieved. Mitoquinone (MitoQ) is being investi-
gated in a Phase 2 study to improve myocardial function in dilated
cardiomyopathy (NCT05410873), but since concerns have been
voiced regarding toxicity issues for several mitochondria-targeted
compounds,47 and facing the high number of failed antioxidant can-
didates in IHD, this field may lose momentum.

In summary, despite being an attractive target, alleviating
the damage caused by mitochondrial ROS formation in IHD
has not been translated into a clinically applicable treatment
strategy, therefore, continued research effort is warranted. The
ischaemia-selective approach of SDH inhibition with malonate is
certainly a promising target.

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Mitochondrial targets in heart disease 7

Permeability transition pore and cell
death
The classical cardioprotective strategies involving ischaemic condi-
tioning, including both preconditioning and postconditioning, exert
their protective effects, at least in part, by preventing PTP open-
ing.48–52 Similarly, several drugs, such as generic antioxidants, have
demonstrated cardioprotective effects by protecting against PTP
opening.53

The mitochondrial PTP is a non-selective protein channel
located in the inner mitochondrial membrane. During myocardial
ischaemia, PTP remains closed due to the low pH. However, when
reperfusion occurs and the pH rapidly corrects, PTP opens, allow-
ing the entry of molecules that induce mitochondrial swelling and
ultimately lead to cell death. Targeting PTP has been considered as
an ideal strategy for drugs aiming to mitigate the negative effects of
reperfusion injury and limit the size of infarction. However, this has
proven to be challenging in both experimental and clinical settings,
as so far, available drugs target proteins that modulate PTP opening
and not the pore itself. For example, the prototypical PTP inhibitor,
cyclosporin A (CsA), binds and inhibits the regulatory component
cyclophilin D (CypD).54

Although Phase 2 clinical trials indicated that CsA was cardiopro-
tective in ST-elevation MI (STEMI) patients,18,19 two larger clinical
trials failed to show any protective effect of CsA on either infarct
size or clinical outcome21,22 (Table 1). The failure to clinically trans-
late CsA protection may relate on the different solvants used,55 but
also to the fact that CsA does not target directly the PTP. The speci-
ficity of CsA for PTP is also questioned, as numerous experimen-
tal studies have demonstrated its cardioprotective effects through
mechanisms independent of PTP.56 Interestingly, multivariate anal-
ysis further revealed that patient outcome depends not only on
infarct size but also on gender and the presence of comorbidities,
suggesting that the design of pre-clinical cardioprotective strate-
gies should be re-evaluated, considering other clinical parameters
as outcomes rather than solely focusing on infarct size.57 The fail-
ure of the MITOCARE clinical trial,23 assessing the cardioprotective
effect of TRO40303 shown to have in vitro PTP inhibition effects,
further reinforces the need of more specific PTP inhibitors.

Recent studies reported on the PTP structure: a conformational
change of F-ATP synthase and a re-evaluation of adenine nucleotide
translocator.58 Consequently, more specific PTP inhibitors have
been designed that inhibit PTP opening with cardioprotective
effects, independently of CyPD and without affecting F-ATPase
activity.59 Importantly, these are cardioprotective in in vitro and ex
vivo mouse models of MI.59 Further research is needed to screen
more specific PTP inhibitors with improved in vivo use.

Mitochondrial bioenergetics/metabolism
An alternative treatment for HF could be metabolic interven-
tions that re-establish metabolic flexibility, for example the use
of alternative substrates such as ketone bodies to modify fatty
acid and glucose metabolism.60,61 In agreement, ketone esters
have been shown to protect patients with cardiogenic shock.62

Several clinical trials are ongoing to investigate the benefit of ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.. targeting mitochondrial metabolism in IHD. For example, the

HF-AF ENERGY trial aims to increase levels of nicotinamide ade-
nine dinucleotide (NAD+), an important coenzyme of electron
transport chain which decreases in response to I/R injury, partic-
ipating in mitochondrial dysfunction.63 This trial investigates the
cardioprotective effects of nicotinamide riboside, a precursor of
NAD+, in IHD patients diagnosed with atrial fibrillation (AF).64

Mitochondria, via the enzymes and the intermediates of their
energy production machinery, contribute to epigenetic program-
ming. The foundation of this concept has emerged from studies
reporting that Kreb’s cycle intermediates such as 2-oxoglutarate
(also known as α-ketoglutarate), succinate and fumarate, can mod-
ulate cellular epigenetics by regulating the activity of enzymes
involved in DNA (e.g. TET DNA demethylases) or histone lysine
methylation (e.g. KDM) with consequences on senescence.65,66

Acetyl-CoA, a central product of the mitochondrial energy pro-
duction cascade, is also epigenetically active, functioning as one
of the main acetyl groups donors for genome-wide histone acety-
lation by the histone acetyl transferases.67 The relevance of the
metabolism-dependent epigenetic programming in cardiac pathol-
ogy is evidenced by inhibitors of various classes of histone deacety-
lates or DNA methylation which exert cardioprotective actions
against acute ischaemia and HF.68 Intriguingly, cardioprotective
effects were also observed in response to acetyl group donors in
vivo, which caused a genome-wide increase in histone acetylation.69

Mitochondrial Ca2+ handling
Mitochondrial Ca2+ overload is one of the main mechanisms for
irreversible mitochondrial dysfunction and subsequent death of
cardiomyocytes during I/R injury.70,71 In contrast, in the failing
heart, reduced Ca2+ release from the sarcoplasmic reticulum and
increased cytosolic Na+ impede mitochondrial Ca2+ accumula-
tion, leading to oxidative stress.72,73 Mitochondrial Ca2+ handling
is mainly determined by the function of mitochondrial Ca2+ trans-
porters, of which the mitochondrial calcium uniporter (MCU) reg-
ulates mitochondrial Ca2+ uptake, while Ca2+ efflux is controlled by
the mitochondrial Na+/Ca2+ exchanger (NCLX) as primary path-
way under physiological conditions. However, during ischaemia and
the early phase of reperfusion, the NCLX operates in reverse
mode74 and thus it is still debated whether mitochondrial Ca2+

overload is mediated by the MCU, the NCLX or both during these
conditions. In this way, a recent study reported that loss of MCU
reduces but does not eliminate the increase in mitochondrial Ca2+

during ischaemia.75

Dysregulation or dysfunction of the MCU,76 the porin VDAC2
or NCLX has been associated with various pathological conditions
including IHD and HF. Overexpression of the dominant-negative
MCU pore subunit, MCUb, reduces mitochondrial Ca2+ uptake
and protects against pathological remodelling in a mouse model
of I/R.77 miR-181c, on the other hand, has been shown to activate
mitochondrial calcium uptake in the ischaemic heart, by regulating
MICU1.78 However, while a smaller infarct size following I/R was
measured in mice with conditional, cardiomyocyte-specific dele-
tion of MCU,79 whole-body MCU knockout mice were not pro-
tected against cardiac I/R.80 Further study revealed a compensatory

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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8 M. Paillard et al.

adaptation in MCU knockout heart, with increased CypD phos-
phorylation leading to increased PTP opening.81 This highlights the
potential for misleading conclusions from whole-body transgenic
models. In the context of HF, altered expression and composition
of MCU subunits or NCLX have been demonstrated in different
pathologies including end-stage HF,82 Barth syndrome,83,84 cardiac
hypertrophy,85 and AF associated with metabolic syndrome.86

Due to the dysfunctional mitochondrial Ca2+ transporters, sev-
eral therapeutic strategies have been developed to reduce I/R
damage or HF, but tested only in pre-clinical studies so far.
In principle, interventions that reduce the rise in mitochondrial
Ca2+ during I/R also reduce the amount of myocardial injury.
Cardiomyocyte-specific knockout of the MCU or pharmacological
inhibition with Ru360 improved post-ischaemic cardiac function in
mice and rats.79,80,87 Since Ru360 has limited membrane permeabil-
ity, new small molecule inhibitors of MCU activity have been devel-
oped,88 but their effectiveness in the context of post-ischaemic
cardiac function still needs to be tested in detail. However, when
NCLX was overexpressed in a heart-specific manner, the mice
were protected from I/R injury.89 Recently, TMEM65 was identified
as a novel regulator of NCLX-dependent mitochondrial calcium
efflux. A knockdown of Tmem65 expression in mice promotes
mitochondrial Ca2+ overload in the heart and impairs cardiac
function.90 These data support the concept that acute increased
NCLX-dependent Ca2+ efflux during I/R reduces mitochondrial
Ca2+ and may be a viable therapeutic strategy in disease, while
long-term inhibition is detrimental.

In HF, drugs augmenting mitochondrial Ca2+ uptake via the MCU
or VDAC2, or preventing Ca2+ extrusion via the NCLX might
improve cardiac function and protect from arrhythmias. In a trans-
lational study, the flavonoid kaempferol has been shown to increase
mitochondrial Ca2+ uptake and reduce AF in a metabolic syn-
drome mouse model.86 On the other hand, inhibiting mitochondrial
NCLX with CGP-37157 increases mitochondrial matrix Ca2+ in
a guinea pig model of HF, and prevents left ventricular dysfunc-
tion and arrhythmias in vivo.91 Although both compounds increase
steady-state mitochondrial Ca2+ concentrations, they have not
been tested in humans thus far due to the high active concentra-
tions and the risk of side effects.

Thanks to the recently identified structure of NCLX and MCU,
several drug screens have been performed,92,93 notably on Food
and Drug Administration (FDA)-approved drugs94 in order to
improve the potential for clinical translation. Nevertheless, deci-
phering the alterations of VDAC, NCLX and MCU during the
progression of IHD and HF will be required for mitochondrial Ca2+

regulation to be considered as a therapeutic option.

Mitochondrial dynamics
Mitochondrial dynamics refer to the continual processes of fusion,
fission, biogenesis, and mitophagy that mitochondria undergo, and
which maintains optimal mitochondrial health and function. Dur-
ing ischaemia or exposure to oxidative stress, the balance is
tipped toward mitochondrial fission, resulting in more fragmented
mitochondria, decreased mitochondrial respiration and sensitizing
the heart to injury.95 Thus, inhibiting mitochondrial fission is an ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.. attractive target to protect the ischaemic and reperfused heart.
Nevertheless, evidence suggests that over a long time-scale, both
mitochondrial fusion and fission are required to maintain mito-
chondrial quality and cardiac health.96

Mitochondrial fragmentation and dysfunction have been
observed in human myocardium from patients with pressure
overload or IHD with preserved or reduced ejection fraction.97

Both mitophagy and mitochondrial biogenesis occur during cardiac
surgery involving cardiopulmonary bypass, and are believed to
mitigate mitochondrial DNA damage.98

Pharmacological compounds developed to specifically target
mitochondrial fission proteins have proven effective in reduc-
ing infarct size in experimental mouse models of myocardial
injury. Mitochondrial division inhibitor 1 (Mdivi-1), a putative
dynamin-related protein 1 (Drp1) inhibitor was the first compound
found to limit acute myocardial I/R injury.95,99 However, it is a
drug with low potency in mammalian cells (IC50 10–50 μM).100,101

In-silico screening was used to identify Drpitor1a, which inhibits
Drp1 GTPase activity more potently and reduces myocardial injury
(IC50 0.06 μM).102,103 A concern with compounds targeting the
GTPase activity of Drp1 is their potential off-target effects on the
GTPase domain of other enzymes such as dynamin. The synthetic
peptide P110 inhibits Drp1 function via an alternative mechanism
and is cardioprotective in rats.104 Despite the promising experi-
mental results in small animal models, a pilot study using Mdivi-1
in a closed-chest pig acute MI model provided no significant effects
of the treatment on infarct size or cardiac function.105 However,
the results may be explained by inadequate drug dose or delivery.
Nanoparticles have been successfully used to improve delivery of
Mdivi-1 to the heart and reduce I/R injury.106

Targeting mitochondrial fusion proteins has proven to be more
challenging. However, a cell-permeant minipeptide inhibiting mito-
fusin 2 (MFN2) was found to increase mitochondrial fusion in
cultured fibroblasts,107 and several small-molecule MFN activators
have been identified that work in a similar manner. However, to
date, these have mainly been tested in the nervous system, and
not in the heart.

It should be noted that most drugs or interventions that increase
mitochondrial respiration will also result indirectly in increased
mitochondrial biogenesis and fusion.108 For example, known ther-
apeutic compounds with cardioprotective properties, such as the
sodium–glucose cotransporter 2 inhibitors empagliflozin109 and
dapaglifozin110 also increase mitochondrial fusion.

As yet there are no drugs to specifically stimulate mitochondrial
biogenesis, though some activate pathways such as AMP-activated
protein kinase (AMPK) and peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α), which are involved
in mitochondrial biogenesis. For example, metformin improves left
ventricular function and survival in HF via AMPK.111 Metformin,
resveratrol and acetylcholine protect the heart from I/R injury via
AMPK or PGC-1α.112–115

Mitophagy and heterophagy
Damaged mitochondria undergo a precise selective elimina-
tion through autophagy-driven lysosomal degradation. This

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Mitochondrial targets in heart disease 9

process—termed mitophagy—is essential for cardiomyocyte
homeostasis and when perturbed, is broadly associated with
cardiovascular disease including IHD and HF.116

The two major routes of mitophagy are either ubiquitin-
dependent or receptor-mediated (ubiquitin-independent),117

while both are mediated through light chain 3 (LC3)-decorated
autophagosomes. When they fail or are inhibited, cells can
employ several alternative mitophagy mechanisms. These include
LC3-independent autophagosomes that originate from the
trans-Golgi network, endosome-mediated degradation, or lysoso-
mal elimination of damaged mitochondria. The latter is also known
as micromitophagy and may also play a role in the oxidative stress
response upon cardiac I/R.118 Damaged mitochondria are either
taken up by lysosomes directly and deposited into multi-organellar
lysosomal-like structures for elimination, or vesicles with dam-
aged content bud off from mitochondria and form multivesicular
bodies which are then taken up by lysosomes. Finally, heterophagy
describes the heart-specific mechanism of secreting damaged
mitochondria from cardiomyocytes within large membranous
vesicles, which are subsequently phagocytosed and degraded by
cardiac resident macrophages.119

Particularly in the context of cardiac I/R, there is ample
pre-clinical evidence (mainly studies in rodents) for a cardiopro-
tective role of mitophagy.120 Therefore, enhancing mitophagy in a
preventative manner by food supplements121 or therapeutically by
the delivery of tissue-protective factors, present exciting opportu-
nities.122 Compounds of interest include NAD+ precursors such
as nicotinamide, nicotinamide riboside, nicotinamide mononu-
cleotide,63 urolithin A123 and spermidine.121 Nevertheless, target-
ing mitophagy is at an early stage of development, and it can
be difficult to disentangle the effect of drugs affecting mitophagy
from other effects they may have on mitochondrial metabolism.
Furthermore, caution is warranted as there is also evidence
that over-activated mitophagy can exacerbate myocardial dam-
age.124 In addition, the different types of conventional and alter-
native mitophagy along with the distinct cardiac stresses (I/R,
pressure overload, chronic HF, pathogenic gene variant, etc.)
highlight that potential mitophagy-promoting therapies are highly
context-dependent and more translational research is needed.

Improving the clinical translation
of mitochondria-targeted
treatment: main road blocks
and opportunities
While our understanding of mitochondrial alterations during
IHD and our knowledge on the structure and regulation of
key mitochondrial targets have greatly improved over the last
decade, no mitochondria-targeted treatment has shown a car-
dioprotective benefit for the patients so far. Numerous chal-
lenges need to be overcome: timing of drug administration, tissue
bioavailability and specificity of mitochondrial targeting, together
with the mitochondrial impact of risk factors, comorbidities and
co-medications. ..
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.. Challenge in translation: testing the
therapy in clinically relevant models
Impact of comorbidities, risk factors and co-medications

Patients with IHD often suffer from comorbidities (diabetes, hyper-
tension, obesity, cancer, etc.), are on co-medications (anti-diabetic
drugs, anti-hypertensives, cancer treatment, etc.) and are elderly.
Each of these factors can affect mitochondrial functions and
may abrogate mitoprotection.25,125,126 Alterations in mitochondrial
function are recognized as significant contributors to cardiac senes-
cence during ageing. Aged cardiomyocytes exhibit abnormalities
in mitochondrial structure and together with increased ROS gen-
eration, contributing to left ventricular dysfunction and adverse
remodelling.127,128

Type 2 diabetes (T2D) and obesity are key comorbidities fre-
quently encountered in IHD patients. Most cardiac mitochondrial
functions are impaired in T2D and thus may counteract any mito-
protective strategies.129 Similarly, several co-medications such as
anti-diabetic and lipid-lowering drugs alter mitochondrial functions,
as well as the cardiotoxicity induced by chemotherapeutic agents.

Interestingly, a sexual dimorphism has been reported for several
mitochondrial functions (PTP, oxidative stress and respiratory
functions),130 accounting for sex differences in the response to
I/R injury, exemplified by a greater myocardial salvage in STEMI
women.131

In sum, more research is needed to clearly define the interplay
between pre-existing conditions affecting mitochondria, and mito-
protective treatments in order to proceed towards a personalized
medicine in cardiovascular disease.

Improving the design of pre-clinical and clinical studies
of mitoprotection

Since comorbidities and medications may counteract or even
abrogate mitoprotection, pre-clinical models should be revisited by
conducting studies with aged animals and with the comorbidities
that are most prevalent in IHD patients (see IMPACT criteria132).
Pre-clinical experimental models of cardioprotection have also
been developed to better reflect clinically relevant background
therapies of STEMI patients.133 Moreover, as in clinical trials, final
endpoints should not only focus on infarct size but on long-term
effect, such as improvement of cardiac function and remodelling,
and development of HF. Use of large animals, such as pigs,134 should
also be preferred as there are strong species differences (e.g. heart
rate between rodents and humans) and drug bioavailability may
differ between pre-clinical models and clinical settings.

An intermediary step towards investigating the effectiveness of
new mitochondrial-targeted treatments in humans, should include
testing the drugs in in vitro and ex vivo human model systems
including patient-induced pluripotent stem cell-derived models
(e.g. cardiac organoids or engineered heart muscle),135 explanted
human atrial muscle subjected to hypoxia and reoxygenation,136,137

or primary ventricular human heart tissue that can be kept in
culture in form of living myocardial slices.138 Notably, in addition to
the advantage of being human, explanted myocardium also reflects
the age, sex, and possibly comorbidities of genuine patients.139

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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10 M. Paillard et al.

Regarding the design of clinical trials, important considerations
include the timing of treatment administration and the patient
selection – for example whether to include patients with cardio-
genic shock or in Killip class III–IV. In order to determine when a
patient should be treated with a mitochondrial therapy and if the
treatment effectively acts on mitochondria, assessing mitochondrial
function in patients will be an invaluable asset, either through car-
diac biopsies, measurement of cellular energy status using 31P mag-
netic resonance imaging or circulating biomarkers (lactate/pyruvate
ratio, fibroblast growth factor 21).140

Challenge in drug delivery: recent
advancements in mitochondrial
targeting of drug
Enhancing the ability of drugs to target mitochondria is essential to
improve potency, avoid side effects and accelerate the delivery.140

Transporters and nanocarriers

In order to efficiently deliver biologically relevant cargo molecules
to mitochondria, different strategies for achieving mitochondrial
accumulation have been developed.53 One strategy has taken
advantage of the substantial electrochemical potential maintained
across the inner mitochondrial membrane and led to the develop-
ment of a class of molecules, named delocalized lipophilic cations
(DLCs). DLCs are particularly effective at crossing the hydropho-
bic membranes and, being positively charged, preferentially accu-
mulate in mitochondria.141 A series of antioxidants have been
conjugated to the DLC: triphenylphosphonium (TPP) and deriva-
tives (MTP-131 [Bendavia, elamipretide]) are such nanocarriers,
designed to selectively accumulate in the (negatively charged) inner
mitochondrial membrane.35,142–152 Of these, the TPP-ubiquinone
conjugate, MitoQ, has gained considerable attention as an antiox-
idant compound, and pre-clinical studies have demonstrated that
ROS scavenging properties with MitoQ have cardioprotective
effects in animal models of pressure overload-induced HF and
I/R injury.153 However, as described above these effects were not
translated to the clinic.

Polyethylene glycol (PEG) conjugated poly(lactic-co-glycolic) acid
(PLGA) nanoparticles, a U.S. FDA-approved copolymer, targets
mitochondria through the enhanced permeability and retention
effect that is characteristic of injured myocardial tissue.154–158

The addition of mitochondriotropic compounds such as SS31 and
arginyl-glycyl-aspartic acid to the nitric oxide formulation further
improves organelle- and cell-specific uptake, respectively.53 Combi-
nations of polymeric and lipidic nanoparticles have been developed
for the mitochondria to internalize bioactive compounds through
endocytosis.159,160 Finally, liposome-based nanocarriers, e.g. the
Mito-porter, have been designed for mitochondrial uptake via
macropinocytosis.161–165 These nanocarrier-based delivery strate-
gies were formulated to selectively deliver mitochondria-targeted
cardioprotective molecules notably antioxidants (e.g. coenzyme
Q10, MitoQ, 10-[6’-plastoquinonyl]-decyltriphenylphosphonium
[SkQ1], Mito-Tempo).6,8,142,144,166–171 Nanoformulations allow-
ing for simultaneous drug delivery, as shown by the PLGA ..
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.. nanoparticles combining CsA with pitavastatin to reduce myocar-
dial I/R injury, present exciting novel therapeutic avenues.155,172

Despite promising results derived from animal studies, clinical
studies will be needed to demonstrate the mitoprotective effect
of these agents in the setting of IHD.

Mitochondrial peptides

Peptide-based delivery to mitochondria presents various advan-
tages, including ease and versatility of synthesis, water solubil-
ity, biocompatibility, and wide applicability. A major drawback is
represented by enzymatic hydrolysis, that can be offset, at least
in part, by high concentrations, special modifications, or formu-
lations, potentially causing side effects.173 They also tend to be
more expensive than small molecules. A group of cell-permeable
small peptides (Szeto–Schiller peptides) that selectively partition
to the inner mitochondrial membrane, have been shown to scav-
enge ROS, reduce mitochondrial ROS production, inhibit mito-
chondrial PTP opening, reducing apoptosis and necrosis induced by
ROS or mitochondrial dysfunction.174 Among these, the tetrapep-
tide elamipretide (MTP-131) has been shown to interact with
cardiolipin and accumulate at the inner mitochondrial membrane,
wherein it reduces proton leaks, improves ATP production and
ultimately restores mitochondrial function.175 In animal models
of MI, MTP-131 improved cardiomyocyte survival during reperfu-
sion, reduced infarct size and the extent of no-reflow.176 However,
in subjects with first-time anterior STEMI undergoing successful
percutaneous coronary intervention, MTP-131 administration did
not significantly reduce myocardial infarct size.6 In animals with
angiotensin II-mediated cardiomyopathy, MTP-131 ameliorated
cardiac hypertrophy, diastolic dysfunction and fibrosis, despite the
absence of blood pressure-lowering effects.177 Recently, in septal
myectomy tissues from patients with hypertrophic cardiomyopathy,
MTP-131 improved NADH-driven mitochondrial respiration.178

MTP-131 also ameliorated left ventricular systolic dysfunction in a
pre-clinical model of advanced HF.179 However, although MTP-131

administration was safe and well tolerated in patients with stable
HF with reduced ejection fraction,9 it did not improve left ven-
tricular end-systolic volume or ejection fraction after 4 weeks of
treatment.10

Mitochondria-derived peptides (MDPs) are a new class of pep-
tides, which are encoded by small open reading frames within
other known genes of the mitochondrial DNA.180 MDPs have been
shown to play a protective role in myocardial I/R injury. Admin-
istration of [Gly14]-humanin (HNG) 1 h before or at the time
of reperfusion reduced infarct size and improved left ventricular
function in a mouse model of I/R through AMPK-endothelial nitric
oxide synthase-mediated signalling and regulating apoptotic fac-
tors.181 Similarly, other studies showed that high doses of HNG
could reduce arrhythmias, myocardial damage area, and mitochon-
drial dysfunction.182 HNG improved mitochondrial damage, by
decreasing mitochondrial ROS levels, and was more effective than
CsA in alleviating mitochondrial ROS and increasing ATP produc-
tion.183 Modern research techniques, applying nanotechnologies
and in vitro peptide synthesis, allow greatly increased biologic activ-
ity and delivery of MDPs directly to the place of action, thus further

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Mitochondrial targets in heart disease 11

expanding their therapeutic application on the cardiovascular sys-
tem.184 Although MDPs might be a new target to treat cardiovascu-
lar disease, their effects have been investigated only in experimental
systems and further studies are needed to reveal their protec-
tive role.

Challenge in translation: novel strategies
A higher level of complexity: mitochondria subtypes
in different cell types

The clinical translation of current mitochondria-targeted strategies
is challenged by the existence of specific mitochondrial subtypes in
cardiomyocytes.185 None of the novel mitochondria-targeted drugs
are studied in relation to the interfibrillar, subsarcolemmal versus
perinuclear mitochondria, despite the fact that all subtypes have
different morphology, function and response to cardiac patholo-
gies.51,186,187

Moreover, mitochondria-targeted strategies do not consider
the differences in mitochondria of different cell types, such
as cardiomyocytes, fibroblasts, endothelial cells, leucocytes
or platelets. In this context, it has been demonstrated that
mitochondrial-targeted drugs have opposite effects on different
cells under the same pathological stimuli.188 For example, target-
ing sirtuin 3 (SIRT3) efficiently increases mitochondrial function
and decreases apoptosis in cardiomyocytes,189 while it increases
mitophagy in cardiac fibroblasts.190 Resveratrol, known as a broad
SIRT agonist, failed to improve exercise capacity in adults with
mitochondrial myopathies,191 but exerted cardioprotective effects
in experimental animal studies by improving mitochondrial activity
in cardiomyocytes.192

Mitochondrial-targeted drugs may also exert protective effects
in different cell types. For example, nicotinamide riboside, an
NAD precursor in NAD+/SIRT1 signalling, prevents blockage of
autophagic flux, accumulation of autolysosomes, and oxidative
stress in cardiomyocytes,193 but also enhances mitochondrial res-
piration in peripheral blood mononuclear cells of patients with
HF, attenuating thereby their proinflammatory activation.194 MitoQ
improves endothelial function and exercise tolerance in patients
with peripheral artery disease,195 while also protecting against
cardiac hypertrophy in patients with hypertension.195 While the
studied effects of MitoQ are focused on endothelial mitochon-
dria, the exact mechanisms on other cell types are still unclear.
This also accounts for prostaglandin E2 receptor-4 agonists, such
as ONO-0260164, which efficiently reduce fibrosis in cardiovascu-
lar pathologies by acting on cardiac fibroblast’s mitochondria, but
their effect in cardiomyocytes is still unknown.196

Platelet mitochondrial function is also understudied, despite the
fact that these are ideal bioenergetic indicators in patients with
HF.197

Mitochondrial transplantation, a controversial
mitoprotective strategy

Naked mitochondrial transplantation results in the replacement
of injured mitochondria through the exogenous transplantation
of isolated intact and functional mitochondria from healthy cells ..
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.. or tissues. In an in vivo swine model, temporary coronary occlu-
sion followed by intracoronary mitochondrial transplantation at
reperfusion increased coronary blood flow in a mitochondrial
concentration-dependent manner.198 Mitochondrial transplanta-
tion has been also investigated in HF models, showing that
it prevents myocardial apoptosis and boosts myocardial con-
traction, although the improvement in contraction depends on
the metabolic compatibility between transplanted mitochondria
and the recipient’s cardiomyopathic cardiomyocytes.199 Interest-
ingly, mitochondrial transplantation isolated from diabetic cells
(donors) shows attenuated cardioprotective effects compared with
non-diabetic mitochondria.200,201 To our knowledge, there is only
one pilot ‘in-human protocol’202 performed in children (n= 5),
in which autologous mitochondrial transplantation seemed to
improve ventricular function.203

The concept of mitochondrial transplantation has been chal-
lenged based on a number of claims that are not sufficiently sup-
ported by the existing experimental evidence.204 First, it is unclear
how mitochondria can survive micromolar concentrations of Ca2+

when being injected into the coronary blood stream or the heart
directly. When simulating these conditions by exposing skeletal
muscle mitochondria to micromolar Ca2+ concentrations, their
membrane potential (ΔΨm) immediately dissipates, and they can no
longer respire and do not recover from this Ca2+ ‘shock’.205 Even
if mitochondria survived the Ca2+ shock, it is unclear how they can
produce ATP when still outside of a cell (as it was proposed), and
how this ATP would reach the sites where it is required inside of
cells.204 Finally, it remains unclear how enough mitochondria can
pass the membrane of cells to integrate into the mitochondrial
network to eventually contribute to any meaningful additional ATP
production inside of cells. Further research is clearly required to
resolve these many open questions.204,206,207

Final statement with translational
perspectives
Targeting mitochondria in the context of IHD remains a power-
ful therapeutic strategy to be employed as a combination ther-
apy, as currently envisioned in cardioprotection.208,209 The recent
technical developments in mitochondrial targeting of drugs, from
nanoparticles to peptides via selective activation inside mitochon-
dria, are key opportunities to achieve a better tissue selectivity,
through enhanced cardiac and above all, mitochondria targeting, in
order to reduce off-target effects. Mitoprotective strategies could
also benefit from current research on mitochondria-targeted treat-
ment for cancer therapy where hundreds of strategies have been
developed. Notably, mitochondria-targeted free-drug approach
consists in a mitochondria targeting unit coupled to a unit respon-
sible for either aggregation, self-assembly or polymerization inside
the injured mitochondria (based on specific characteristics such as
loss of mitochondrial membrane potential).210 In order to reach a
more personalized medicine for IHD patients, improving our sci-
entific knowledge on the progression of mitochondrial alterations
during IHD would be a crucial step to adapt the treatment for
each patient. In parallel, all the recent discoveries of structure and

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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12 M. Paillard et al.

regulation of key mitochondrial players during IHD will help to pro-
pose specific modulators of these mitochondrial functions, in part
thanks to high-throughput screening of FDA-approved libraries.
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