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KEY POINTS 

Question: Can single-lead electrocardiograms (ECG) predict heart failure (HF) risk? 

Findings: We evaluated a noise-adapted artificial intelligence (AI) algorithm for 

single-lead ECGs across multinational cohorts, spanning a diverse US health system 

and community-based cohorts in the UK and Brazil. A positive AI-ECG screen was 

associated with 3- to 7-fold higher HF risk, independent of age, sex, and 

comorbidities. The AI model demonstrated similar or improved performance, 

compared with two established clinical risk scores for HF prediction.  

Meaning: A noise-adapted AI model for single-lead ECG predicted new-onset HF 

risk, representing a scalable HF risk-stratification strategy for portable and wearable 

devices.  
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ABSTRACT 

Importance: Despite the availability of disease-modifying therapies, scalable 

strategies for heart failure (HF) risk stratification remain elusive. Portable devices 

capable of recording single-lead electrocardiograms (ECGs) can enable large-scale 

community-based risk assessment. 

Objective: To evaluate an artificial intelligence (AI) algorithm to predict HF risk from 

noisy single-lead ECGs. 

Design: Multicohort study. 

Setting: Retrospective cohort of individuals with outpatient ECGs in the integrated 

Yale New Haven Health System (YNHHS) and prospective population-based cohorts 

of UK Biobank (UKB) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). 

Participants: Individuals without HF at baseline. 

Exposures: AI-ECG-defined risk of left ventricular systolic dysfunction (LVSD). 

Main Outcomes and Measures: Among individuals with ECGs, we isolated lead I 

ECGs and deployed a noise-adapted AI-ECG model trained to identify LVSD. We 

evaluated the association of the model probability with new-onset HF, defined as the 

first HF hospitalization. We compared the discrimination of AI-ECG against two risk 

scores for new-onset HF (PCP-HF and PREVENT equations) using Harrel’s C-

statistic, integrated discrimination improvement (IDI), and net reclassification 

improvement (NRI).  

Results: There were 192,667 YNHHS patients (age 56 years [IQR, 41-69], 112,082 

women [58%]), 42,141 UKB participants (65 years [59-71], 21,795 women [52%]), 

and 13,454 ELSA-Brasil participants (56 years [41-69], 7,348 women [55%]) with 

baseline ECGs. A total of 3,697 developed HF in YNHHS over 4.6 years (2.8-6.6), 

46 in UKB over 3.1 years (2.1-4.5), and 31 in ELSA-Brasil over 4.2 years (3.7-4.5). A 
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positive AI-ECG screen was associated with a 3- to 7-fold higher risk for HF, and 

each 0.1 increment in the model probability portended a 27-65% higher hazard 

across cohorts, independent of age, sex, comorbidities, and competing risk of death. 

AI-ECG’s discrimination for new-onset HF was 0.723 in YNHHS, 0.736 in UKB, and 

0.828 in ELSA-Brasil. Across cohorts, incorporating AI-ECG predictions alongside 

PCP-HF and PREVENT equations was associated with a higher Harrel’s C-statistic 

(ΔPCP-HF=0.080-0.107; ΔPREVENT=0.069-0.094). AI-ECG had IDI of 0.091-0.205 and 

0.068-0.192, and NRI of 18.2%-47.2% and 11.8%-47.5%, vs. PCP-HF and 

PREVENT, respectively. 

Conclusions and Relevance: Across multinational cohorts, a noise-adapted AI 

model defined HF risk using lead I ECGs, suggesting a potential portable and 

wearable device-based HF risk-stratification strategy.  
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BACKGROUND 

Accessible strategies for heart failure (HF) risk stratification remain elusive despite 

the availability of evidence-based therapies that can effectively modify the disease 

trajectory.1,2 Clinical scores to predict HF risk, such as the pooled cohort equations 

to prevent HF (PCP-HF), the predicting risk of cardiovascular disease events 

(PREVENT) equations, and the Health ABC score,3–5 require clinical evaluation, 

including a detailed history, physical exam, electrocardiogram (ECG), and laboratory 

testing.3–9 These complex inputs limit their use, systematically excluding those 

without healthcare access.8–10 Similarly, serum-based biomarkers such as N-terminal 

pro–B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin, 

which portend a higher HF risk when elevated, are limited by the need for blood 

draws and sample storage, and frequent inaccessibility at the point-of-contact.11–16 

Thus, there is an unmet need for a simple and efficient strategy for HF risk 

stratification in the community. 

Given their increasing utility and ubiquity, portable devices capable of 

recording single-lead ECG have been proposed as a platform for cardiovascular 

monitoring and screening.17–20 Further, artificial intelligence (AI)-enhanced 

interpretation of ECGs (AI-ECG) has been shown to detect hidden cardiovascular 

disease signatures from single-lead ECGs.21–26 However, these portable ECGs are 

prone to noise introduction during acquisition, which can limit the AI model 

performance unless specialized measures are taken to ensure they are resilient to 

such noise.21,27 Recently, we reported a novel approach for single-lead ECGs that 

incorporates random noising during model development, enabling consistent 

diagnostic performance across varying levels of real-world noises.21 Our initial model 

development focused on detecting reduced left ventricular ejection fraction (LVEF) 
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on single-lead ECG based on information from a concurrent echocardiogram, with 

the potential application of identifying subclinical left ventricular systolic dysfunction 

(LVSD). Recent studies also suggest that the AI-ECG signature for LVSD identifies 

other subtle markers of LV dysfunction, including abnormal LV strain and diastolic 

function, especially among those with a positive screen but preserved LVEF.28–30  

Given the increasing accessibility of single-lead ECGs, we hypothesized that 

an AI model developed to detect the cross-sectional signature of LVSD from single-

lead ECGs can predict future HF risk. We evaluated our approach in individuals 

undergoing outpatient ECGs within a diverse US health system and two large 

population-based cohorts in the UK and Brazil.  

 

METHODS 

Data Sources 

We included three large cohorts spanning different countries and settings who had 

undergone an ECG: (i) individuals seeking outpatient care in the Yale New Haven 

Health System (YNHHS), a large healthcare system in the Northeastern US, 

including 5 independent hospitals and an outpatient network, (ii) participants in the 

UK Biobank, a nationwide UK-based cohort study, and (iii) participants in the 

Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), the largest community-

based cohort study from Brazil. While YNHHS included testing and follow-up as a 

part of routine clinical care in an integrated health system, participants in UKB and 

ELSA-Brasil had protocolized evaluation at baseline and comprehensive longitudinal 

follow-up (eMethods).  

 

Study Population 
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In YNHHS, to approximate a screening setting, we identified patients undergoing an 

outpatient 12-lead ECG during 2014-2023 without HF before the ECG. To account 

for the ECGs potentially being obtained as a part of HF workup, we included a 1-year 

blanking period from the first recorded encounter in the electronic health records 

(EHR) to identify those with prevalent HF (eMethods; eFigure 1). A total 255,604 

individuals had at least one outpatient ECG after the blanking period. We excluded 

47,720 patients in the model development population and 11,954 with prevalent HF. 

Additionally, we excluded 1,590 patients with LV dysfunction (LVEF under 50% or 

moderate/severe LV diastolic dysfunction) and 1,673 patients with an NT-proBNP of 

>300 pg/mL before the index ECG (eFigure 2). 

To avoid selection bias in UKB and ELSA-Brasil, we identified all participants 

who received an ECG. In UKB, 42,366 participants underwent a 12-lead ECG during 

imaging visits (2014-2020). We used the linkage with the UK National Health Service 

EHR to exclude 225 participants who had been hospitalized with a principal or 

secondary discharge diagnosis of HF before the ECG. In ELSA-Brasil, we included 

13,739 participants who had undergone a 12-lead ECG during 2008-2010, excluding 

those with HF (N=227) or an LVEF under 50% (N=58) on their baseline 

echocardiogram (eFigure 2).  

 

Study Outcomes  

We defined the outcome as new-onset HF, characterized by HF hospitalizations. In 

YNHHS, this was defined as a hospitalization with an International Classification of 

Disease Tenth Revision – Clinical Modification (ICD-10-CM) code for HF as the 

principal discharge diagnosis (eTable 1). This approach was guided by the over 95% 

specificity of diagnosis codes, especially as the principal discharge diagnosis, for HF 
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diagnosis.31 Similarly, in UKB, we used the linked EHR to identify hospitalizations 

with HF as the principal diagnosis code. In ELSA-Brasil, HF was identified by in-

person interview or telephonic surveillance for all hospitalizations, followed by 

independent medical record review and adjudication of HF hospitalizations by two 

cardiologists (eMethods).32 

We further evaluated the association of AI-ECG probabilities with alternate 

definitions of HF, and composite outcomes, including (i) any hospitalization with a 

principal or secondary HF diagnosis code, (ii) a subsequent echocardiogram with 

LVEF under 50%, and (iii) a composite outcome of HF or all-cause death 

(eMethods). To evaluate the specificity of AI-ECG-defined HF risk, we examined the 

risk of other cardiovascular conditions, including acute myocardial infarction (AMI), 

stroke hospitalizations, and all-cause mortality (eTable 1). A composite outcome of 

major adverse cardiovascular events (MACE) was defined as HF, AMI, stroke, or 

death.  

 

Study Exposure 

We defined the exposure as the output of an AI-ECG model trained to detect 

concurrent LVSD on lead I of a 12-lead ECG, representing the lead commonly 

captured by portable ECG devices.21 This was developed at the Yale New Haven 

Hospital (YNHH) using a novel approach of augmenting training data with random 

Gaussian noise (eMethods). The model achieved excellent discrimination (area 

under the receiver operating characteristic curve of 0.899 [95% CI, 0.889-0.909]) for 

detecting concurrent LVSD in the YNHH held-out test set and performed consistently 

across clinical and population-based external validation cohorts (eTable 2; eFigure 

3).  
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We deployed this established model without further development to lead I 

ECG signals to obtain the LVSD probability, representing a continuous HF risk score. 

We defined a positive AI-ECG screen as an output probability greater than 0.08, 

representing the model threshold for 90% sensitivity for detecting LVSD during 

internal validation.21  

 

Study Comparator 

We compared the performance of the AI-ECG algorithm with two established risk 

scores for predicting HF risk, the PCP-HF and PREVENT equations. The PCP-HF 

score was developed and validated in 7 community-based cohorts.4 It uses 12 input 

features, including demographics (age, sex, race), physical exam-based features 

(smoking status, BMI, systolic blood pressure), laboratory measurements (total 

cholesterol, high-density lipoprotein cholesterol, fasting blood glucose), medication 

history (use of antihypertensive and antihyperglycemic medications), and 

electrocardiographically-defined QRS duration. The PREVENT equations were 

recently developed using data from over 3.2 million individuals and were validated in 

21 datasets.5,33 The PREVENT equations for HF risk prediction employ 8 inputs, 

entailing demographics (age, sex), medical history (type 2 diabetes mellitus), 

physical exam-based features (smoking status, BMI, systolic blood pressure), 

laboratory measurements (estimated glomerular filtration rate), and medication 

history (antihypertensive medication use). Across cohorts, these features were 

determined using the EHR and/or study visits (eMethods).34–37 

 

Statistical Analysis 
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We used age-, sex-, and comorbidity-adjusted Cox proportional hazard models with 

time-to-first HF event as the dependent variable and the AI-ECG-based screen 

results (positive/negative) or continuous model probability as the independent 

variable to evaluate the association of the model output with HF risk. Multi-outcome 

Fine-Gray subdistribution hazard models were used to account for the competing 

risk of death.38  

The incremental discrimination of AI-ECG over PCP-HF and PREVENT for 

predicting time-to-HF hospitalization was reported as the difference in Harrel's C-

statistics using a one-shot nonparametric approach.39 We calculated integrated 

discrimination improvement (IDI), and categorical and continuous time-to-event net 

reclassification improvement (NRI).40 We further compared the net benefit of the AI-

ECG model with PCP-HF and PREVENT across probability thresholds 

(eMethods).41 Our study follows the TRIPOD + AI reporting guidelines (eTable 3).42 

The code for statistical analyses is publicly available at https://github.com/CarDS-

Yale/AI-ECG-HF-Pred. 

 

RESULTS  

Study Population 

From YNHHS, we included 192,667 individuals with a median age of 56 years (IQR, 

41-69), comprising 111,181 (57.7%) women, 117,857 (61.2%) non-Hispanic White, 

30,623 (15.9%) non-Hispanic Black, and 33,256 (17.3%) Hispanic individuals. Over 

a median 4.6-year follow-up (IQR, 2.8-6.6), 3,697 (1.9%) had an HF hospitalization, 

7,514 (3.9%) had an HF hospitalization or an LVEF below 50% on subsequent 

echocardiogram, and 10,381 (5.4%) died (Table 1, eTable 4).  

https://github.com/CarDS-Yale/AI-ECG-HF-Pred
https://github.com/CarDS-Yale/AI-ECG-HF-Pred
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The 42,141 UKB participants had a median age of 65 years (IQR, 59-71), 

including 21,795 (51.7%) women, with 40,691 (96.6%) identifying as White and 304 

(0.7%) as Black. Over a median follow-up of 3.1 years (IQR, 2.1-4.5), 46 (0.1%) had 

an HF hospitalization, and 346 (0.8%) died (Table 1).  

From ELSA-Brasil, the 13,454 participants had a median age of 51 years 

(IQR, 45-58), comprising 7,348 (54.6%) women, 6,920 (51.4%) adults identifying as 

White, 2,130 (15.8%) as Black, and 3,767 (28.0%) as “Pardo”. Over a median of 4.2 

years (IQR, 3.7-4.5), 31 (0.2%) people developed HF, and 229 (1.7%) died. 

 

Risk Stratification for New-Onset HF 

In YNHHS, 42,775 (22.2%) patients screened positive on the AI model applied to the 

baseline single-lead ECG. A positive screen was associated with over 5-fold higher 

risk of developing HF (HR 5.05 [95% CI, 4.73-5.39]; Table 2). After accounting for 

differences in age and sex, a positive AI-ECG screen was associated with a 3.3-fold 

higher risk of HF compared with a negative screen (adjusted HR [aHR], 3.31 [95% 

CI, 3.10-3.54]). The association remained statistically significant after accounting for 

differences in HF risk factors of prior ischemic heart disease, hypertension, type 2 

diabetes, and obesity (aHR 2.81 [95% CI, 2.63-3.01]) and after additionally 

accounting for the competing risk of death (aHR of 2.73 [95% CI, 2.55-2.93]). The 

association of a positive screen with an elevated HF risk was noted across YNHHS 

sites (eTable 5), demographic subgroups (eTable 6), and different HF definitions 

(eTables 7-8).  

 In UKB, 5,513 (13.1%) participants screened positive with the AI-ECG model. 

A positive AI-ECG screen portended a 7.5-fold higher hazard for developing HF (HR 

7.52 [95% CI, 4.21-13.41]). After accounting for age, sex, HF risk factors, and the 
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competing risk of death, screen-positive participants had a 5-fold higher risk of HF 

(aHR 5.02 [95% CI, 2.77-9.09]; Table 2).  

 In the ELSA-Brasil cohort, 1,928 (14.3%) participants had a positive AI-ECG 

screen, with a 9-fold higher HF risk (age- and sex-adjusted HR 8.74 [95% CI, 4.13-

18.48]) compared with screen-negative participants. This association was consistent 

even after accounting for the comorbidities and the competing risk of death (aHR 

7.71 [95% CI, 3.62-16.46]).  

 

Risk Across Model Probability Increments  

Across the YNHHS network, each 0.1 increment in the model output probability 

portended a 28% higher hazard of developing HF, adjusted for age, sex, 

comorbidities, and accounting for the competing risk of death (aHR 1.28 [95% CI, 

1.26-1.30]; Table 2). Higher model probabilities were progressively associated with 

higher HF risk across probability bins, with consistent patterns across hospitals and 

the outpatient network (eFigure 4, eTables 5, 9-10).  

Across UKB and ELSA-Brasil cohorts, a 0.1 increment in model probability 

was associated with 51% and 66% higher adjusted HF risk (aHR 1.49 [95% CI, 1.36-

1.63] and aHR 1.65 [95% CI, 1.46-1.87], respectively, Table 2), respectively.  

 

Comparison with PCP-HF and PREVENT  

The AI-ECG model had a discrimination based on Harrel’s C-statistic of 0.723 (95% 

CI, 0.694-0.752) in YNHHS, compared with 0.640 (95% CI, 0.612-0.668) for PCP-HF 

(p<0.001), and 0.674 (95% CI, 0.645-0.703) for PREVENT (p< 0.001; Table 3). In 

UKB and ELSA-Brasil, the AI-ECG model’s discrimination for HF was 0.736 (95% CI, 

0.606-0.867) and 0.828 (95% CI, 0.692-0.964), respectively, which was not 



 

 13 

significantly different from the clinical risk scores (AI-ECG vs PCP-HF: pUKB=0.96; 

pELSA-Brasil=0.80; AI-ECG vs PREVENT: pUKB=0.86; pELSA-Brasil=0.52). Across cohorts, 

incorporating AI-ECG predictions in addition to PCP-HF and PREVENT resulted in 

improved Harrel’s C-statistic (ΔPCP-HF=0.080-0.107; ΔPREVENT=0.069-0.094), 

compared with the use of the clinical risk equations alone. However, this increase 

was not statistically significant in the UKB (Table 3). Further, in all cohorts, the AI-

ECG discrimination for new-onset HF was similar to the base input features for the 

clinical risk scores (eTable 11). Incorporating AI-ECG predictions with the base 

features resulted in significantly higher Harrel’s C-statistics for both PCP-HF and 

PREVENT input variables in YNHHS and for PREVENT variables in ELSA-Brasil. 

Compared with the PCP-HF and PREVENT, the AI-ECG algorithm had a 

positive IDI across study cohorts. The AI model was associated with a significant 

improvement in continuous NRI at YNHHS, but not in UKB and ELSA-Brasil (Table 

4). The AI-ECG model also significantly improved categorical NRI across cohorts, 

except for PCP-HF in UKB. This improvement in categorical NRI was driven by 

improved event NRI, while non-event NRI decreased (eTable 12). Despite the 

differential improvement in reclassifying cases and controls, the AI-ECG’s PPV was 

comparable with PCP-HF and PREVENT across sites (eTable 13). The AI-ECG 

model demonstrated consistent superior net benefit over PCP-HF across probability 

thresholds greater than 0.06 across data sources, where the AI-ECG threshold is 

0.08 (eFigure 5). A positive AI-ECG screen was an independent predictor of HF risk 

after accounting for the clinical risk scores, with consistent patterns across racial 

groups (eFigures 6-9).  

 

Non-HF Cardiovascular Outcome Prediction 
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In YNHHS, a positive AI-ECG screen was associated with a modestly elevated risk 

of stroke and MACE (age- and sex-adjusted HRs: stroke, 1.17; MACE, 1.77; 

eTables 14-15) compared with a 3-fold increase in HF risk. In UKB and ELSA-Brasil, 

a positive screen portended a 1.5- to 4-fold hazard of stroke, death, and MACE 

compared with a 6- to 9-fold increase in HF risk. 

 

DISCUSSION 

Across clinically and geographically distinct cohorts, a noise-adapted AI model, 

trained to detect cross-sectional LVSD from only a lead I ECG, predicted the risk of 

future HF among individuals seeking outpatient care and community-dwelling adults. 

Individuals with a positive AI-ECG screen had a 3- to 7-fold higher risk of developing 

HF compared with those with a negative screen, independent of demographic and 

clinical characteristics. Higher AI-ECG probabilities were progressively associated 

with a higher HF risk, with each 10% increment portending a 27-65% higher risk-

adjusted hazard for HF across cohorts. Further, the AI-ECG model demonstrated 

incremental discrimination, improved reclassification, and superior net benefit over 

PCP-HF and PREVENT. Therefore, our AI-based approach demonstrates promising 

characteristics for use as a non-invasive digital biomarker for elevated HF risk using 

a single-lead ECG.  

Applications of deep learning for ECGs have demonstrated the ability to 

identify subtle signatures of structural heart disorders previously considered 

electrically silent,29,43–52 with applications extending to detecting LVSD from single-

lead tracings.21,22,53–55 Further, the US Food and Drug Administration recently 

cleared an AI tool using electronic stethoscope-based single-lead ECGs for cross-

sectional LVSD detection.56 Our study demonstrates that a noise-adapted AI-ECG 
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model can predict new-onset HF risk using single-lead ECGs. Given the increasing 

accessibility of portable devices capable of acquiring ECG outside a clinical 

setting,20,57,58 this approach can potentially be applied widely to identify individuals at 

a high risk of HF.58 While the ECGs acquired with these devices are often distorted 

by electrode movements or artifacts due to skeletal muscle contraction during 

acquisition,27,59 our unique noise-adapted training approach can enable reliable 

inference from these noisy ECGs.21 

In this study, we opted for a definition of HF based on the principal discharge 

diagnosis code, a criterion with high specificity.31 Nonetheless, the association of a 

positive screen with elevated HF risk was consistent across several sensitivity 

analyses defining the condition differently in YNHHS and UKB, and in ELSA-Brasil 

where the outcomes were explicitly adjudicated. The robust performance across 

clinically and demographically distinct cohorts indicates that the model captures a 

predictive HF signature independent of site-specific coding practices.60–62 Moreover, 

the dose-dependent association of higher AI-ECG scores with progressively elevated 

HF risk enables graded risk stratification and risk-informed management. Notably, 

while a positive screen was also associated with a modestly elevated risk of other 

cardiovascular outcomes, including MACE, the predictive signature was more 

specific for HF. 

Our study has important implications for defining HF risk. While several 

clinical risk scores have been proposed to identify those at high risk, these strategies 

often require clinical evaluation and blood testing.8,9,16 This limits their scope to 

patients with established access to healthcare services.9,16,63–65 In contrast, our AI-

based approach using single-lead ECGs may offer a means for HF risk stratification 

outside clinical settings. Notably, the model demonstrated positive IDI, improved 
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reclassification, and greater net benefit compared with PCP-HF and PREVENT 

across sites. While the improvement of discrimination did not reach statistical 

significance in the UKB and ELSA-Brasil, consistent improvement in categorical 

NRI–relevant for clinical decision-making–indicates the clinical utility of the AI 

model.66 Furthermore, the model’s PPV was comparable to PCP-HF and PREVENT, 

suggesting that an AI-ECG-based strategy for screening will not lead to unnecessary 

additional testing. Despite these advancements, the AI-ECG model does not 

eliminate the need for clinical risk scores, but offers a robust and resource-efficient 

strategy for use in community settings. The risk scores might represent an adjunct in 

these settings where the focus may be more on the identification of modifiable risk 

factors. 

The ability to use a single portable device to record ECGs for multiple 

individuals could support the design of efficient community-based screening 

programs.67,68 Successful health promotion strategies, such as targeted hypertension 

management in barbershops and cancer screening in churches across the US,69,70 

can be adapted to promote HF screening, especially among those traditionally less 

likely to seek preventive care.63 The ease of use and the brief time for ECG 

acquisition with these devices can enable a non-laboratory-based strategy, 

potentially suitable for integration into national-level non-communicable disease 

screening programs globally, especially in low- and middle-income countries.67,68,71 

This scalability and potential community health benefits necessitate prospective 

clinical and cost-effectiveness assessments for AI-based HF risk stratification. 

Our study has certain limitations. First, waveforms extracted from lead I of 

clinical ECGs may not be identical to those from portable devices. While our noise-

augmentation approach previously demonstrated sustained performance on ECGs 
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with real-world noises,21 prospective validation of the model on portable-acquired 

ECGs is necessary before deployment for community HF screening. This includes 

evaluating device types, acquisition methods, and handling of ECG segments of 

longer durations. Second, despite YNHHS’s wide geographic coverage, out-of-

hospital clinical outcomes may not have been captured, thereby representing a lower 

HF risk compared with the protocolized follow-up in UKB and ELSA-Brasil. 

Moreover, while we included only ECGs performed in an outpatient setting, the 

patients underwent clinically-indicated ECGs, indicating an unmeasured potential 

risk profile of those who had a negative AI-ECG screen. However, the controls in this 

setting all underwent ECG screens as well. Third, the number of HF outcome events 

was low in the UKB and ELSA-Brasil. However, the HF hospitalization rates were 

comparable to other population-based cohorts,72,73 and the outcome capture and 

adjudication in UKB and ELSA-Brasil have been extensively validated.74–81 Further, 

in UKB, the smaller subset of participants who underwent an ECG, the shorter 

follow-up period after the ECGs were performed, and our approach of excluding 

those with prevalent HF contributed to the lower absolute number of incident HF in 

our study. Fourth, given the lack of NT-proBNP assessments in UKB and ELSA-

Brasil, we could not evaluate NT-proBNP as a comparator in this study. In YNHHS, 

the use of NT-proBNP could incorporate substantial selection bias, since it is 

typically ordered for evaluation of cardiopulmonary symptoms and rarely for primary 

prevention. Nevertheless, a future head-to-head assessment of AI-ECG and NT-

proBNP as predictors for HF is warranted. Further, while we performed an analysis 

that excluded individuals with elevated pre-ECG NT-proBNP levels in YNHHS, the 

lack of NT-proBNP testing precluded this analysis in UKB and ELSA-Brasil. Fifth, 

while PCP-HF and PREVENT are utilized to estimate the 10-year risk of HF, we 
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applied these risk scores to assess HF risk during the available follow-up period. 

Nevertheless, we factored in varying follow-up durations for each individual for our 

comparison between risk stratification strategies. Finally, while the AI-ECG approach 

identifies individuals at elevated HF risk, it is unclear if this risk is modifiable. 

Nonetheless, a robust screening strategy can enable targeted management of 

known HF risk factors. 

 

CONCLUSION 

Across clinically and geographically distinct cohorts, we used a noise-resilient AI 

model with a lead I ECG tracing as the sole input to define the risk of future HF, with 

value over conventional risk scores. With the increasing availability of single-lead 

ECGs on portable and wearable devices, this AI-ECG-based non-invasive digital 

biomarker can enable scalable stratification of HF risk across communities. 

 

ACKNOWLEDGMENTS 

Author Contributions 

Drs Dhingra, Aminorroaya, and Khera had full access to all of the data in the study 

and take responsibility for the integrity of the data and the accuracy of the data 

analysis. All authors approved the final version for submission. 

Study concept and design: Dhingra, Lovedeep S; Aminorroaya, Arya; Oikonomou, 

Evangelos K; Khera, Rohan. 

Acquisition, analysis, or interpretation of data: Dhingra, Lovedeep S; Aminorroaya, 

Arya; Pedroso Camargos, Aline; Khunte, Akshay; Sangha, Veer; McIntyre, Daniel; 

Chow, Clara K; Asselbergs, Folkert W; Brant, Luisa CC; M Barreto, Sandhi; Ribeiro, 

Antonio Luiz P; Krumholz, Harlan M; Oikonomou, Evangelos K; Khera, Rohan 



 

 19 

Drafting of the manuscript: Dhingra, Lovedeep S; Aminorroaya, Arya; Pedroso 

Camargos, Aline. 

Critical revision of the manuscript for important intellectual content: Khunte, Akshay; 

Sangha, Veer; McIntyre, Daniel; Chow, Clara K; Asselbergs, Folkert W; Brant, Luisa 

CC; M Barreto, Sandhi; Ribeiro, Antonio Luiz P; Krumholz, Harlan M; Oikonomou, 

Evangelos K; Khera, Rohan. 

Statistical analysis: Dhingra, Lovedeep S; Aminorroaya, Arya. 

Obtained funding: Khera, Rohan. 

Administrative, technical, or material support: Aminorroaya, Arya; Dhingra, Lovedeep 

S; Pedroso Camargos, Aline; Khera, Rohan. 

Study supervision: Khera, Rohan. 

 

Conflict of Interest Disclosures 

Dr. Khera is an Associate Editor of JAMA. Dr. Khera and Mr. Sangha are the 

coinventors of U.S. Provisional Patent Application No. 63/346,610, “Articles and 

methods for format-independent detection of hidden cardiovascular disease from 

printed electrocardiographic images using deep learning” and are co-founders of 

Ensight-AI. Dr. Khera receives support the National Institutes of Health (under 

awards R01AG089981, R01HL167858, and K23HL153775) and the Doris Duke 

Charitable Foundation (under award 2022060). He receives support from the 

Blavatnik Foundation through the Blavatnik Fund for Innovation at Yale. He also 

receives research support, through Yale, from Bristol-Myers Squibb, BridgeBio, and 

Novo Nordisk. In addition to 63/346,610, Dr. Khera is a coinventor of U.S. Pending 

Patent Applications WO2023230345A1, US20220336048A1, 63/484,426, 

63/508,315, 63/580,137, 63/606,203, 63/619,241, and 63/562,335. Dr. Khera and 



 20 

Dr. Oikonomou are co-founders of Evidence2Health, a precision health platform to 

improve evidence-based cardiovascular care. Dr. Oikonomou is a co-inventor of the 

U.S. Patent Applications 63/508,315 & 63/177,117 and has been a consultant to 

Caristo Diagnostics Ltd (all outside the current work). Dr. Krumholz works under 

contract with the Centers for Medicare & Medicaid Services to support quality 

measurement programs. He is associated with research contracts through Yale 

University from Janssen, Kenvue, and Pfizer. In the past three years, Dr. Krumholz 

received options for Element Science and Identifeye and payments from F-Prime for 

advisory roles. He is a co-founder of and holds equity in Hugo Health, Refactor 

Health, and Ensight-AI. Dr. Ribeiro is supported in part by the National Council for 

Scientific and Technological Development - CNPq (grants 465518/2014-1, 

310790/2021-2, 409604/2022-4 e 445011/2023-8). Dr. Brant is supported in part by 

CNPq (307329/2022-4). Dr. Asselbergs is supported by Heart4Data, which received 

funding from the Dutch Heart Foundation and ZonMw (2021-B015), and UCL 

Hospitals NIHR Biomedical Research Centre. 

 

Funding/Support 

Dr. Khera was supported by the National Institutes of Health (under awards 

R01AG089981, R01HL167858, and K23HL153775) and the Doris Duke Charitable 

Foundation (under award 2022060). Dr. Oikonomou was supported by the National 

Heart, Lung, and Blood Institute of the National Institutes of Health (under award 

F32HL170592).  

 

Role of the Funder/Sponsor 



 

 21 

The funders had no role in the design and conduct of the study; collection, 

management, analysis, and interpretation of the data; preparation, review, or 

approval of the manuscript; and decision to submit the manuscript for publication. 

 

Disclaimer 

The views expressed in this article are those of the authors and not necessarily any 

funders. 

 

Data Sharing Statement 

The data from the Yale New Haven Health System represent protected health 

information. To protect patient privacy, the Yale Institutional Review Board does not 

allow the sharing of these data. Data from the UK Biobank and the Brazilian 

Longitudinal Study of Adult Health are available for research to licensed users. The 

code for cohort creation and statistical analyses is publicly available at 

https://github.com/CarDS-Yale/AI-ECG-HF-Pred.  

https://github.com/CarDS-Yale/AI-ECG-HF-Pred


 22 

REFERENCES 

1. Shahim B, Kapelios CJ, Savarese G, Lund LH. Global public health burden of 
heart failure: An updated review. Card Fail Rev. 2023;9. 
doi:10.15420/cfr.2023.05 

2. Bozkurt B, Ahmad T, Alexander KM, et al. Heart failure epidemiology and 
outcomes statistics: A report of the heart failure society of America. J Card Fail. 
2023;29(10):1412-1451. 

3. Butler J, Kalogeropoulos A, Georgiopoulou V, et al. Incident Heart Failure 
Prediction in the Elderly. Circ Heart Fail. 2008;1(2):125-133. 

4. Khan SS, Ning H, Shah SJ, et al. 10-Year Risk Equations for Incident Heart 
Failure in the General Population. J Am Coll Cardiol. 2019;73(19):2388-2397. 

5. Khan SS, Matsushita K, Sang Y, et al. Development and validation of the 
American heart association’s PREVENT equations. Circulation. 
2024;149(6):430-449. 

6. Pandey A, Khan MS, Patel KV, Bhatt DL, Verma S. Predicting and preventing 
heart failure in type 2 diabetes. Lancet Diabetes Endocrinol. 2023;11(8):607-
624. 

7. Kalogeropoulos A, Psaty BM, Vasan RS, et al. Validation of the Health ABC 
Heart Failure Model for Incident Heart Failure Risk Prediction. Circ Heart Fail. 
2010;3(4):495-502. 

8. Echouffo-Tcheugui JB, Greene SJ, Papadimitriou L, et al. Population Risk 
Prediction Models for Incident Heart Failure. Circ Heart Fail. 2015;8(3):438-447. 

9. Nadarajah R, Younsi T, Romer E, et al. Prediction models for heart failure in the 
community: A systematic review and meta-analysis. Eur J Heart Fail. 
2023;25(10):1724-1738. 

10. Agarwal SK, Chambless LE, Ballantyne CM, et al. Prediction of Incident Heart 
Failure in General Practice. Circ Heart Fail. 2012;5(4):422-429. 

11. Grewal J, McKelvie R, Lonn E, et al. BNP and NT‐proBNP predict 
echocardiographic severity of diastolic dysfunction. Eur J Heart Fail. 
2008;10(3):252-259. 

12. Campbell DJ, Gong FF, Jelinek MV, et al. Prediction of incident heart failure by 
serum amino‐terminal pro‐B‐type natriuretic peptide level in a community‐based 
cohort. Eur J Heart Fail. 2019;21(4):449-459. 

13. Yan I, Börschel CS, Neumann JT, et al. High-sensitivity cardiac troponin I levels 
and prediction of heart failure: Results from the BiomarCaRE consortium. JACC 
Heart Fail. 2020;8(5):401-411. 



 

 23 

14. Kelder JC, Cowie MR, McDonagh TA, et al. Quantifying the added value of BNP 
in suspected heart failure in general practice: an individual patient data meta-
analysis. Heart. 2011;97(12):959-963. 

15. Jia X, Al Rifai M, Hoogeveen R, et al. Association of Long-term Change in N-
Terminal Pro-B-Type Natriuretic Peptide With Incident Heart Failure and Death. 
JAMA Cardiol. 2023;8(3):222-230. 

16. Watson CJ, Gallagher J, Wilkinson M, et al. Biomarker profiling for risk of future 
heart failure (HFpEF) development. J Transl Med. 2021;19(1):61. 

17. Al-Alusi MA, Khurshid S, Wang X, et al. Trends in Consumer Wearable Devices 
With Cardiac Sensors in a Primary Care Cohort. Circ Cardiovasc Qual 
Outcomes. 2022;15(7):e008833. 

18. Gehr S, Russmann C. Shaping the future of cardiovascular medicine in the new 
era of wearable devices. Nat Rev Cardiol. 2022;19(8):501-502. 

19. Aminorroaya Arya, Dhingra Lovedeep S., Nargesi Arash A., Oikonomou 
Evangelos K., Krumholz Harlan M., Khera Rohan. Use of Smart Devices to 
Track Cardiovascular Health Goals in the United States. JACC: Advances. 
2023;2(7):100544. 

20. Dhingra LS, Aminorroaya A, Oikonomou EK, et al. Use of Wearable Devices in 
Individuals With or at Risk for Cardiovascular Disease in the US, 2019 to 2020. 
JAMA Netw Open. 2023;6(6):e2316634. 

21. Khunte A, Sangha V, Oikonomou EK, et al. Detection of left ventricular systolic 
dysfunction from single-lead electrocardiography adapted for portable and 
wearable devices. NPJ Digit Med. 2023;6(1):124. 

22. Aminorroaya A, Dhingra LS, Pedroso Camargos A, et al. Development and 
multinational validation of an ensemble deep learning algorithm for detecting 
and predicting structural heart disease using noisy single-lead 
electrocardiograms. medRxiv. Published online October 8, 
2024:2024.10.07.24314974. 

23. Shankar SV, Oikonomou EK, Khera R. CarDS-Plus ECG Platform: Development 
and Feasibility Evaluation of a Multiplatform Artificial Intelligence Toolkit for 
Portable and Wearable Device Electrocardiograms. medRxiv. Published online 
October 3, 2023. doi:10.1101/2023.10.02.23296404 

24. Mathews SM, Kambhamettu C, Barner KE. A novel application of deep learning 
for single-lead ECG classification. Comput Biol Med. 2018;99:53-62. 

25. Dupulthys S, Dujardin K, Anné W, et al. Single-lead electrocardiogram Artificial 
Intelligence model with risk factors detects atrial fibrillation during sinus rhythm. 
Europace. 2024;26(2):euad354. 

26. Gibson CM, Mehta S, Ceschim MRS, et al. Evolution of single-lead ECG for 
STEMI detection using a deep learning approach. Int J Cardiol. 2022;346:47-52. 



 24 

27. Bläsing D, Buder A, Reiser JE, Nisser M, Derlien S, Vollmer M. ECG 
performance in simultaneous recordings of five wearable devices using a new 
morphological noise-to-signal index and Smith-Waterman-based RR interval 
comparisons. PLoS One. 2022;17(10):e0274994. 

28. Oikonomou EK, Sangha V, Dhingra LS, et al. Artificial intelligence-enhanced risk 
stratification of cancer therapeutics-related cardiac dysfunction using 
electrocardiographic images. Circ Cardiovasc Qual Outcomes. Published online 
September 2, 2024. doi:10.1161/CIRCOUTCOMES.124.011504 

29. Dhingra LS, Aminorroaya A, Sangha V, et al. Heart failure risk stratification 
using artificial intelligence applied to electrocardiogram images: a multinational 
study. Eur Heart J. Published online January 13, 2025. 
doi:10.1093/eurheartj/ehae914 

30. Haji K, Huynh Q, Wong C, Stewart S, Carrington M, Marwick TH. Improving the 
characterization of stage A and B heart failure by adding global longitudinal 
strain. JACC Cardiovasc Imaging. 2022;15(8):1380-1387. 

31. McCormick N, Lacaille D, Bhole V, Avina-Zubieta JA. Validity of heart failure 
diagnoses in administrative databases: A systematic review and meta-analysis. 
PLoS One. 2014;9(8):e104519. 

32. Dicionários de variáveis e Data Books. Elsa. October 26, 2021. Accessed March 
6, 2024. http://elsabrasil.org/pesquisadores/dicionarios-de-variaveis-e-data-
books/ 

33. Khan SS, Coresh J, Pencina MJ, et al. Novel prediction equations for absolute 
risk assessment of total cardiovascular disease incorporating cardiovascular-
kidney-metabolic health: A scientific statement from the American Heart 
Association. Circulation. 2023;148(24):1982-2004. 

34. Littlejohns TJ, Sudlow C, Allen NE, Collins R. UK Biobank: opportunities for 
cardiovascular research. Eur Heart J. 2019;40(14):1158-1166. 

35. Elliott P, Peakman TC, UK Biobank. The UK Biobank sample handling and 
storage protocol for the collection, processing and archiving of human blood and 
urine. Int J Epidemiol. 2008;37(2):234-244. 

36. Mill JG, Pinto K, Griep RH, et al. Medical assessments and measurements in 
ELSA-Brasil. Rev Saude Publica. 2013;47 Suppl 2:54-62. 

37. Bensenor IM, Griep RH, Pinto KA, et al. Routines of organization of clinical tests 
and interviews in the ELSA-Brasil investigation center. Rev Saude Publica. 
2013;47 Suppl 2:37-47. 

38. Austin PC, Fine JP. Practical recommendations for reporting Fine‐Gray model 
analyses for competing risk data. Stat Med. 2017;36(27):4391-4400. 

39. Kang L, Chen W, Petrick NA, Gallas BD. Comparing two correlated C indices 
with right-censored survival outcome: a one-shot nonparametric approach. Stat 
Med. 2015;34(4):685-703. 



 

 25 

40. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net 
reclassification improvement calculations to measure usefulness of new 
biomarkers. Stat Med. 2011;30(1):11-21. 

41. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the 
evaluation of prediction models, molecular markers, and diagnostic tests. BMJ. 
2016;352:i6. 

42. TRIPOD+AI statement: updated guidance for reporting clinical prediction models 
that use regression or machine learning methods. BMJ. 2024;385:q902. 

43. Sangha V, Nargesi AA, Dhingra LS, et al. Detection of Left Ventricular Systolic 
Dysfunction From Electrocardiographic Images. Circulation. Published online 
July 25, 2023. doi:10.1161/CIRCULATIONAHA.122.062646 

44. Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile 
dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 
2019;25(1):70-74. 

45. Bjerkén LV, Rønborg SN, Jensen MT, Ørting SN, Nielsen OW. Artificial 
intelligence enabled ECG screening for left ventricular systolic dysfunction: a 
systematic review. Heart Fail Rev. 2023;28(2):419-430. 

46. Dhingra LS, Sangha V, Aminorroaya A, et al. A multicenter evaluation of the 
impact of therapies on deep learning-based electrocardiographic hypertrophic 
cardiomyopathy markers. Am J Cardiol. 2024;237:35-40. 

47. König S, Hohenstein S, Nitsche A, et al. Artificial intelligence-based identification 
of left ventricular systolic dysfunction from 12-lead electrocardiograms: External 
validation and advanced application of an existing model. Eur Heart J Digit 
Health. doi:10.1093/ehjdh/ztad081 

48. Acharya UR, Fujita H, Oh SL, et al. Deep convolutional neural network for the 
automated diagnosis of congestive heart failure using ECG signals. Applied 
Intelligence. 2019;49(1):16-27. 

49. Sudarshan VK, Acharya UR, Oh SL, et al. Automated diagnosis of congestive 
heart failure using dual tree complex wavelet transform and statistical features 
extracted from 2s of ECG signals. Comput Biol Med. 2017;83:48-58. 

50. Sangha V, Dhingra LS, Oikonomou EK, et al. Identification of hypertrophic 
cardiomyopathy on electrocardiographic images with deep learning. medRxiv. 
Published online December 28, 2023:2023.12.23.23300490. 
doi:10.1101/2023.12.23.23300490 

51. Aminorroaya A, Dhingra LS, Sangha V, et al. Deep learning-enabled detection 
of aortic stenosis from noisy single lead electrocardiograms. medRxiv. 
Published online 2023. doi:10.1101/2023.09.29.23296310 

52. Dhingra LS, Aminorroaya A, Sangha V, et al. An ensemble deep learning 
algorithm for structural heart disease screening using electrocardiographic 



 26 

images: PRESENT SHD. medRxiv. Published online October 7, 2024. 
doi:10.1101/2024.10.06.24314939 

53. Attia ZI, Harmon DM, Dugan J, et al. Prospective evaluation of smartwatch-
enabled detection of left ventricular dysfunction. Nat Med. 2022;28(12):2497-
2503. 

54. Attia ZI, Dugan J, Rideout A, et al. Automated detection of low ejection fraction 
from a one-lead electrocardiogram: application of an AI algorithm to an 
electrocardiogram-enabled Digital Stethoscope. Eur Heart J Digit Health. 
2022;3(3):373-379. 

55. Bachtiger P, Petri CF, Scott FE, et al. Point-of-care screening for heart failure 
with reduced ejection fraction using artificial intelligence during ECG-enabled 
stethoscope examination in London, UK: a prospective, observational, 
multicentre study. Lancet Digit Health. 2022;4(2):e117-e125. 

56. U.S. Food & Drug Administration. 21 CFR 870.2380 Eko Low Ejection Fraction 
Tool (ELEFT). Published online March 28, 2024. 
https://www.accessdata.fda.gov/cdrh_docs/pdf23/K233409.pdf 

57. Kumar S, Victoria-Castro AM, Melchinger H, et al. Wearables in cardiovascular 
disease. J Cardiovasc Transl Res. Published online September 9, 2022. 
doi:10.1007/s12265-022-10314-0 

58. Singhal A, Cowie MR. The role of wearables in heart failure. Curr Heart Fail 
Rep. 2020;17(4):125-132. 

59. Lacirignola F, Pasero E. Hardware design of a wearable ECG-sensor: 
Strategies implementation for improving CMRR and reducing noise. In: 2017 
European Conference on Circuit Theory and Design (ECCTD). IEEE; 2017. 
doi:10.1109/ecctd.2017.8093244 

60. Dhingra LS, Shen M, Mangla A, Khera R. Cardiovascular Care Innovation 
through Data-Driven Discoveries in the Electronic Health Record. Am J Cardiol. 
2023;203:136-148. 

61. Nargesi AA, Adejumo P, Dhingra LS, et al. Automated identification of heart 
failure with reduced ejection fraction using deep learning-based natural 
language processing. JACC Heart Fail. Published online October 9, 2024. 
doi:10.1016/j.jchf.2024.08.012 

62. Adejumo P, Thangaraj PM, Dhingra LS, et al. Natural language processing of 
clinical documentation to assess functional status in patients with heart failure. 
JAMA Netw Open. 2024;7(11):e2443925. 

63. Sandhu AT, Tisdale RL, Rodriguez F, et al. Disparity in the setting of incident 
heart failure diagnosis. Circ Heart Fail. 2021;14(8). 
doi:10.1161/circheartfailure.121.008538 

64. Lee WC, Serag H, Ohsfeldt RL, et al. Racial disparities in type of heart failure 
and hospitalization. J Immigr Minor Health. 2019;21(1):98-104. 



 

 27 

65. Aminorroaya A, Dhingra LS, Oikonomou EK, et al. Development and 
multinational validation of an algorithmic strategy for high Lp(a) screening. Nat 
Cardiovasc Res. 2024;3(5):558-566. 

66. Cook NR. Clinically relevant measures of fit? A note of caution. Am J Epidemiol. 
2012;176(6):488-491. 

67. Shah K, Pandya A, Kotwani P, et al. Cost-effectiveness of portable 
electrocardiogram for screening cardiovascular diseases at a primary health 
center in Ahmedabad district, India. Front Public Health. 2021;9. 
doi:10.3389/fpubh.2021.753443 

68. Chen W, Khurshid S, Singer DE, et al. Cost-effectiveness of Screening for Atrial 
Fibrillation Using Wearable Devices. JAMA Health Forum. 2022;3(8):e222419-
e222419. 

69. Victor RG, Lynch K, Li N, et al. A cluster-randomized trial of blood-pressure 
reduction in black barbershops. N Engl J Med. 2018;378(14):1291-1301. 

70. McNeill LH, Reitzel LR, Escoto KH, et al. Engaging black churches to address 
cancer health disparities: Project CHURCH. Front Public Health. 2018;6. 
doi:10.3389/fpubh.2018.00191 

71. Proietti M, Farcomeni A, Goethals P, et al. Cost-effectiveness and screening 
performance of ECG handheld machine in a population screening programme: 
The Belgian Heart Rhythm Week screening programme. Eur J Prev Cardiol. 
2019;26(9):964-972. 

72. Ciapponi A, Alcaraz A, Calderón M, et al. Burden of heart failure in Latin 
America: A systematic review and meta-analysis. Rev Esp Cardiol (Engl Ed). 
2016;69(11):1051-1060. 

73. Conrad N, Judge A, Tran J, et al. Temporal trends and patterns in heart failure 
incidence: a population-based study of 4 million individuals. Lancet. 
2018;391(10120):572-580. 

74. Banerjee A, Dashtban A, Chen S, et al. Identifying subtypes of heart failure from 
three electronic health record sources with machine learning: an external, 
prognostic, and genetic validation study. Lancet Digit Health. 2023;5(6):e370-
e379. 

75. Oguntade AS, Taylor H, Lacey B, Lewington S. Adiposity, fat-free mass and 
incident heart failure in 500 000 individuals. Open Heart. 2024;11(2):e002711. 

76. Ho FK, Zhou Z, Petermann-Rocha F, et al. Association between device-
measured physical activity and incident heart failure: A prospective cohort study 
of 94 739 UK Biobank participants. Circulation. 2022;146(12):883-891. 

77. Aragam KG, Chaffin M, Levinson RT, et al. Phenotypic refinement of heart 
failure in a national biobank facilitates genetic discovery. Circulation. 
2019;139(4):489-501. 



 28 

78. Rastogi T, Ho FK, Rossignol P, et al. Comparing and contrasting risk factors for 
heart failure in patients with and without history of myocardial infarction: data 
from HOMAGE and the UK Biobank. Eur J Heart Fail. 2022;24(6):976-984. 

79. Pedroso Camargos A, Barreto S, Brant L, et al. Performance of contemporary 
cardiovascular risk stratification scores in Brazil: an evaluation in the ELSA-
Brasil study. Open Heart. 2024;11(1):e002762. 

80. Schmidt MI, Duncan BB, Mill JG, et al. Cohort profile: Longitudinal study of adult 
health (ELSA-brasil). Int J Epidemiol. 2015;44(1):68-75. 

81. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of sociodemographic and 
health-related characteristics of UK Biobank participants with those of the 
general population. Am J Epidemiol. 2017;186(9):1026-1034.  



 

 29 

FIGURES 

Figure 1. Study Overview. Abbreviations: BMI, Body Mass Index; BP; Blood 
Pressure; CNN, Convolutional Neural Network; ECG, Electrocardiogram; EF, 
Ejection Fraction; EHR, Electronic Health Record; ELSA-Brasil, Brazilian 
Longitudinal Study of Adult Health; HDL, High-density Lipoprotein Cholesterol; HF, 
Heart Failure; LV, Left Ventricle; YNH, Yale New Haven Hospital; YNHHS, Yale New 
Haven Health System. 
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TABLES 
 
Table 1. Population Characteristics of the Study Cohorts. Abbreviations: AMI, 
acute myocardial infarction; ECG, Electrocardiogram; ELSA-Brasil, Brazilian 
Longitudinal Study of Adult Health; HF, heart failure; IQR, Interquartile Range; LVEF, 
Left Ventricular Ejection Fraction; UKB, UK Biobank; YNHHS, Yale New Haven 
Health System. 

a ‘Other’ races included Native Americans, Pacific Islanders, and mixed races.  
b ECG-level information about rhythm and conduction disorders not available in the 
ELSA-Brasil cohort 
c Follow-up echocardiogram data not available in UKB or ELSA-Brasil. 

Characteristic YNHHS UKB ELSA-Brasil 

Number 192667 42141 13454 

Age at ECG, Median [IQR] 56.1 [41.1,68.7] 65 [59,71] 51 [45,58] 

Female Sex, N (%) 111181 (57.7) 21795 (51.7) 7348 (54.6) 

Race/Ethnicity, 
N (%) 

Asian 3553 (1.8) 600 (1.4) 0 (0.0) 

Black 30623 (15.9) 304 (0.7) 2130 (15.8) 

Hispanic 33256 (17.3) 0 (0.0) 0 (0.0) 

Brazilian “Pardo” 0 (0.0) 0 (0.0) 3767 (28.0) 

Missing 5219 (2.7) 0 (0.0) 0 (0.0) 

Othera 2159 (1.1) 546 (1.3) 637 (4.7) 

White  117857 (61.2) 40691 (96.6) 6920 (51.4) 

Death, N (%) 10381 (5.4) 346 (0.8) 229 (1.7) 

Follow-up Time, Years; Median [IQR] 4.6 [2.8,6.6] 3.1 [2.1,4.5] 4.2 [3.7, 4.5] 

Positive Screens, N (%) 42775 (22.2) 5513 (13.1) 1928 (14.3) 

Hypertension at baseline, N (%) 88215 (45.8) 6126 (14.5) 4739 (35.3) 

Type-2 diabetes mellitus at baseline, N (%) 35522 (18.4) 1258 (3.0) 2105 (15.6) 

Obesity at baseline, N (%) 30493 (15.8) 7535 (17.9) 3045 (22.6) 

Atrial fibrillation at baseline, N (%) 4746 (2.5) 637 (1.5) - b 

Left bundle branch block at baseline, N (%) 2397 (1.2) 383 (0.9) - b 

Use of antihypertensive drugs at baseline, N (%) 47611 (24.7) 9936 (23.9) 3640 (27.1) 

Use of antihyperglycemic drugs at baseline, N (%) 30520 (15.8) 321 (0.8) 1072 (8.0) 

End-stage renal disease, N (%) 547 (0.3) 0 (0.0) 10 (0.1) 

Primary HF hospitalization during follow-up, N (%) 3697 (1.9) 46 (0.1) 31 (0.2) 

Primary HF hospitalization or an echocardiogram 
with LVEF < 50% during follow-up, N (%) 

7514 (3.9) - c - c 

Any HF hospitalization during follow-up, N (%) 13705 (7.1) 231 (0.5) - c 

Any HF hospitalization or an echocardiogram with 
LVEF < 50% during follow-up, N (%) 

15705 (8.2) - c - c 

Primary AMI hospitalization during follow-up, N (%) 366 (0.2) 208 (0.5) 60 (0.4) 

Primary Stroke hospitalization during follow-up, N 
(%) 

3281 (1.7) 210 (0.5) 59 (0.4) 

Major Adverse Cardiovascular Events during follow-
up, N (%) 

16039 (8.3) 768 (1.8) 338 (2.5) 
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Table 2. Model Performance for Predicting Heart Failure Risk Based on AI-ECG Probability. Abbreviations: ELSA-Brasil, 
Brazilian Longitudinal Study of Adult Health; IHD, Ischemic Heart Disease; HTN, hypertension; T2DM, type-2 diabetes mellitus; 
UKB, UK Biobank; YNHHS, Yale New Haven Health System. 
 

Model Type Predictive Model Inputs 

YNHHS UKB ELSA-Brasil 

Positive 
Screen 

Per 0.1 
Increment 

Positive 
Screen 

Per 0.1 
Increment 

Positive 
Screen 

Per 0.1 
Increment 

Cox Proportional Hazard 
Model 

AI-ECG Probability 5.05 (4.73-5.39) 1.45 (1.44-1.47) 
7.52 (4.21-

13.41) 
1.55 (1.40-1.71) 

11.11 (5.32-
23.19) 

1.83 (1.64-2.05) 

Cox Proportional Hazard 
Model 

AI-ECG Probability + Age 
+ Sex 

3.31 (3.10-3.54) 1.32 (1.30-1.34) 
5.96 (3.32-

10.68) 
1.52 (1.37-1.68) 

8.74 (4.13-
18.48) 

1.75 (1.56-1.97) 

Cox Proportional Hazard 
Model 

AI-ECG Probability + Age 
+ Sex + IHD + HTN + 

T2DM + Obesity 
2.81 (2.63-3.01) 1.28 (1.26-1.30) 5.02 (2.77-9.09) 1.49 (1.33-1.66) 

7.71 (3.62-
16.46) 

1.72 (1.52-1.93) 

Fine-Gray 
Subdistribution Hazard 
Model 

AI-ECG Probability + Age 
+ Sex and accounting for 
competing risk of death 

3.22 (3.01-3.45) 1.30 (1.29-1.32) 
5.91 (3.33-

10.50) 
1.51 (1.38-1.66) 

8.67 (4.02-
18.70) 

1.74 (1.55-1.96) 

Fine-Gray 
Subdistribution Hazard 
Model 

AI-ECG Probability + Age 
+ Sex + IHD + HTN + 
T2DM + Obesity and 

accounting for competing 
risk of death 

2.73 (2.55-2.93) 1.27 (1.25-1.28) 4.99 (2.81-8.87) 1.49 (1.36-1.63) 
6.53 (2.91-

14.67) 
1.65 (1.46-1.87) 
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Table 3. Comparison of Discrimination for AI-ECG Model Output Probability with Pooled Cohort Equations to Prevent 
Heart Failure and Predicting Risk of Cardiovascular Disease Events Equations for Predicting Incident Heart Failure. 
Abbreviations: ELSA-Brasil, Brazilian Longitudinal Study of Adult Health; PCP-HF, Pooled Cohort Equations to Prevent Heart 
Failure; PREVENT, Predicting Risk of Cardiovascular Disease Events; UKB, UK Biobank; YNHHS, Yale New Haven Health 
System. 
 

Clinical Risk 
Score 

Covariates 

YNHHS UKB ELSA-Brasil 

Harrel’s C-
statistic 

Marginal 
difference over 

Harrel’s C-
statistic for 
clinical risk 

score 

P-value 
Harrel’s C-

statistic 

Marginal 
difference over 

Harrel’s C-
statistic for 
clinical risk 

score 

P-value 
Harrel’s C-

statistic 

Marginal 
difference over 

Harrel’s C-
statistic for 
clinical risk 

score 

P-value 

PCP-HF 

PCP-HF 
0.640 

(0.612 - 0.668) 
- - 

0.732 
(0.620 - 0.844) 

- - 
0.850 

(0.789 - 0.912) 
- - 

AI-ECG Model Output 
Probability 

0.723 
(0.694 - 0.752) 

0.083 
(0.044 - 0.122) 

< 0.001 
0.736 

(0.606 - 0.867) 
0.004 

(-0.165 - 0.173) 
0.96 

0.828 
(0.692 - 0.964) 

-0.023 
(-0.194 - 0.149) 

0.80 

AI-ECG Model Output 
Probability + Age + Sex 

0.720 
(0.692 - 0.748) 

0.081 
(0.049 - 0.112) 

< 0.001 
0.800 

(0.707 - 0.894) 
0.068 

(-0.060 - 0.196) 
0.30 

0.897 
(0.820 - 0.975) 

0.047 
(-0.064 - 0.157) 

0.41 

AI-ECG Model Output 
Probability + PCP-HF 

0.747 
(0.721 - 0.773) 

0.107 
(0.078 - 0.136) 

< 0.001 
0.812 

(0.722 - 0.902) 
0.080 

(-0.013 - 0.172) 
0.09 

0.935 
(0.898 - 0.971) 

0.084 
(0.010 - 0.160) 

0.03 

PREVENT 

PREVENT 
0.674 

(0.645 - 0.703) 
- - 

0.753 
(0.635 - 0.871) 

- - 
0.882 

(0.762 - 0.906) 
- - 

AI-ECG Model Output 
Probability 

0.723 
(0.694 - 0.752) 

0.049 
(0.009 - 0.088) 

0.02 
0.736 

(0.606 - 0.867)  
-0.017 

(-0.197 - 0.164) 
0.86 

0.828 
(0.692 - 0.964) 

-0.054 
(-0.218 - 0.111) 

0.52 

AI-ECG Model Output 
Probability + Age + Sex 

0.720 
(0.692 - 0.748) 

0.046 
(0.012 - 0.080) 

0.007 
0.800 

(0.707 - 0.894) 
0.047 

(-0.088 - 0.182) 
0.49 

0.897 
(0.820 - 0.975) 

0.016 
(-0.088 - 0.119) 

0.77 

AI-ECG Model Output 
Probability + PREVENT 

0.768 
(0.742 - 0.793) 

0.094 
(0.068 - 0.120) 

< 0.001 
0.822 

(0.730 - 0.913) 
0.069 

(-0.019 - 0.157) 
0.12 

0.950 
(0.927 - 0.974) 

0.069 
(0.011 - 0.127) 

0.02 
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Table 4. Integrated Discrimination Improvement and Categorical and Continuous Time-to-Event Net Reclassification Index 
of AI-ECG Model Output Probability over Pooled Cohort Equations to Prevent Heart Failure and Predicting Risk of 
Cardiovascular Disease Events Equations for Heart Failure. Abbreviations: ELSA-Brasil, Brazilian Longitudinal Study of Adult 
Health; IDI, Integrated Discrimination Improvement; NRI, Net Reclassification Index; PCP-HF, Pooled Cohort Equations to Prevent 
Heart Failure; PREVENT, Predicting Risk of Cardiovascular Disease Events; UKB, UK Biobank; YNHHS, Yale New Haven Health 
System. 
 

Metric 

YNHHS UKB ELSA-Brasil 

PCP-HF PREVENT PCP-HF PREVENT PCP-HF PREVENT 

IDI 
0.091 (0.068 to 

0.118) 
0.068 (0.044 

to 0.098) 
0.103 (0.011 to 

0.214) 
0.113 (0.024 

to 0.211) 
0.205 (0.075 to 

0.347) 
0.192 (0.064 

to 0.339) 

Categorical NRI 
0.182 (0.100 to 

0.263) 
0.118 (0.034 

to 0.199) 
0.198 (-0.076 to 

0.465) 
0.289 (0.017 

to 0.537) 
0.472 (0.131 to 

0.749) 
0.475 (0.173 

to 0.809) 

Continuous NRI 
0.210 (0.094 to 

0.325) 
0.207 (0.094 

to 0.323) 
0.096 (-0.347 to 

0.506) 
0.309 (-0.140 

to 0.724) 
0.095 (-0.242 to 

0.324) 
0.188 (-0.268 

to 0.531) 

 


