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Abstract—Functional near-infrared spectroscopy (fNIRS) 

can be used to measure cortical hemodynamics, with advantages 

such as non-invasiveness, high spatial resolution, wearability, 

ease of use and relatively low cost. These features make it 

potentially suitable for translational applications such as brain-

computer interface (BCI), neurofeedback, and personalized 

healthcare. However, fNIRS signals are susceptible to motion 

artifacts (MAs), which can obscure physiological information. 

Herein, we propose to deploy a denoising autoencoder (DAE) 

network on an STM32 microcontroller for real-time 

multichannel MA removal at the edge. The DAE model was 

trained on fNIRS data augmented with simulated MAs. It was 

deployed on the edge device without any performance 

degradation, outperforming the conventional wavelet-based 

methods. With an inference time of 38 ms, this implementation 

is well-suited for real-time processing of multi-channel fNIRS 

data. Additionally, the low memory usage and CPU workload of 

the model make it ideal for deployment on diverse 

microcontroller platforms. This work holds the potential to 

enable the wider applications of wearable fNIRS in practice. 

Keywords—fNIRS, motion artifact, DAE, edge processing, 

real-time, multichannel 

I. INTRODUCTION 

Brain-computer interfaces (BCIs) offer a valuable tool for 
patients with disabilities, enabling them to control external 
devices and communicate with their environments [1].  
Among various modalities used in BCI, functional near-
infrared spectroscopy (fNIRS) has become a widely adopted 
method for measuring brain activities [1, 2]. fNIRS offers 
several advantages, including non-invasiveness, high spatial 
resolution, wearability, ease of use and relatively low cost [3, 
4]. This technique leverages the distinct absorption spectra of 
oxy-hemoglobin and deoxy-hemoglobin, two important 
molecules for oxygen transport, within the near-infrared range 
[5]. By measuring changes in near-infrared light intensity as it 
passes through the brain and scalps, fNIRS can provide insight 
into relative hemoglobin concentration change, which further 
indicates change in brain activities [6]. However, fNIRS is 
susceptible to motion artifacts (MAs), which result from 
subject movements during data collection, and cause 
unexpected fluctuations optical coupling, leading to spurious 
peaks or drifts in time-series data, thereby affecting the quality 
and accuracy of the measurements [7, 8].   

 Traditional time-series MA removal techniques, such as 
wavelet filtering, often require manual parameter tuning and 
are associated with long processing time [9]. In contrast, 

learning-based strategies, such as denoising autoencoders 
(DAEs), eliminate the need for parameter fine-tuning [10], 
and have shown promising results in MA removals with 
higher accuracy and reduced processing time [7]. However, 
most of deep learning-based MA removal algorithms are still 
performed offline and rely on benchtop computers, limiting 
the efficiency and wearability of fNIRS systems [11, 12]. For 
patients with disabilities to use BCI to control the external 
devices, the fNIRS output must be both fast and accurate. 
Noises such as MAs can be misinterpreted as brain activities, 
compromising the accuracy of BCI, especially in 
environments with significant movements.  

 To implement deep learning models for real-time MA 
removal without compromising the wearability of fNIRS 
technologies, accelerating the deep learning model is essential. 
One approach is cloud-based processing, where the 
computational power of the cloud is leveraged for acceleration, 
and the processed data was then transmitted back to the fNIRS 
device [13]. An alternative approach is edge processing [5], 
allowing for the optimization and acceleration of deep 
learning models on local  (edge) devices  [14]. Given that the 
deep learning models used for real-time MA removal in 
fNIRS are relatively straightforward, the computational power 
of cloud processing could be optional. By eliminating the need 
for data transmission, edge processing not only offers 
improved real-time performance, but also ensures data privacy, 
as all information remains on the local devices. Therefore, 
edge processing can potentially be a more suitable solution for 
implementing real-time MA removal in fNIRS. 

 Herein, we propose a DAE network, trained on data 
augmented with simulated MAs, and deployed on an STM32 
microcontroller for real-time multichannel MA removal in 
fNIRS.  

II. METHOD 

The methodological framework of this study, illustrated 

in Fig. 1, outlines the key steps involved in training, 

optimizing, and deploying the deep learning model for MA 

removal on an STM32 microcontroller. First, during the 

model training phase, multichannel fNIRS data was collected 

and constructed into a dataset for training the DAE model. 

Once trained, the model was converted to a format 

compatible with edge devices, enabling deployment on the 
edge microcontroller. In the end, after the hardware 

deployment of the model, its capability for multichannel real-

time processing was evaluated using testing dataset.



 

Fig. 1. Workflow of the proposed DAE model for STM32 microcontroller implementation: training, optimization, and on-board deployment.

A.  Data Collection and Dataset Construction 

The dataset was collected from 9 participants using a high-
density fNIRS device (LUMO—Gowerlabs Ltd., UK) with  
approximately 3000 high quality channels at two wavelengths 
(735 and 850 nm) and a sampling rate of 6.67 Hz [15]. Each 
participant contributed approximately 40 minutes of data, 
during which they were instructed to remain still to minimize 
the MAs. Ethical approval for all experimental procedures 
was granted by the Committee for Research Ethics at UCL, 
London, under Application No 6860.017, 6860.018, and 
17599.002. 

In the preprocessing phase, several steps were taken to 
prepare the data. First, the raw intensity data collected from 
subjects was converted to optical density (OD) using the 
equation: 

   𝑂𝐷 =  −𝑙𝑛 (
𝐼(𝑡)

𝐼̅
)          () 

where I(t) is the raw light intensity at time t, 𝐼 ̅is the average 
intensity across the channel during the entire experiment.  

Next, to ensure data quality, channels were pruned using 
the enPruneChannel function from HomER2 [16], which 
filters out channels based on their power range and signal-to-
noise ratio. Channels were identified as active if their signal-
to-noise ratio was above 12.5 [17].  

Following channel pruning, each channel was normalized 
using z-score normalization [18], which accounts for both the 
mean and standard deviation, improving robustness against 
the large variability often observed in fNIRS data: 

 𝑂𝐷𝑛𝑜𝑟𝑚 =
𝑂𝐷−𝑚ⅇ𝑎𝑛(𝑂𝐷)

𝑠𝑡𝑑(𝑂𝐷)
       () 

where ODnorm represents normalized OD, mean(OD) and 
std(OD) stand for the mean and standard deviation value of 
the OD, respectively.  

After preprocessing, data from 7 participants were used to 
construct the window-based dataset, while data from the 
remaining 2 participants were used to create the continuous 
dataset. Since the DAE model in this study is designed to 
process real-time signals using a window-based strategy, the 
window-based dataset was used to train the model, whereas 
the continuous dataset was used to simulate real time data 
transfer. 

To generate the window-based dataset, the signals were 
then segmented into 15-second windows (100 data points) 
with 50% overlap. One or two simulated MAs were randomly 
introduced as spikes in each window. This process resulted in 
paired segments of MA-contaminated and clean data, yielding 
a total of 2,133,664 segment pairs. The dataset was 
subsequently divided into a training set (80%), validation set 
(20%). For the continuous dataset, no segmentation was 
applied, and randomly generated MAs were introduced into 
each channel. This dataset was used to further evaluate the 
model’s performance in processing continuous fNIRS signals. 

 

Fig. 2. Proposed DAE architecture for real-time MA removal in fNIRS. 

B. DAE Architecture & Training 

The architecture of the proposed DAE moder is depicted 
in Fig. 2. Previous work with similar architectures have been 
successfully applied for tasks such as image denoising and 
speech signal enhancement [19]. In our design, the encoder  
compresses the input data points into a low-dimensional latent 
space, while the decoder reconstructs the signal, attenuating 

artifact-related components. The input size is 1  100, and 
both the encoder and decoder consist of three convolutional 
layers with ReLU activations, except that the final 
convolutional layer does not have an activation layer. Due to 
the reduction in spatial dimensions during convolutional 
operations, rounding can lead to dimensional mismatches 
between the encoder's output and the decoder's input. To 
address this, a reshape layer is introduced after the final 
convolutional layer, ensuring that the output matches the 
original input size.  



The loss function was set as the mean squared error (MSE) 
between the reconstructed fNIRS, y, and clean fNIRS, 𝑥 ,  
using (3) where N represents the segment length in samples 
and i indexes the data points in the window. The DAE was 
trained to minimize the loss function, mapping the MA-
contaminated signal to the clean ones. 

   𝑀𝑆𝐸 =
1

𝑁
𝛴𝑖=1

𝑁 (𝑥𝑖̃ − 𝑦𝑖)
2         () 

The DAE network was developed using the TensorFlow 
Machine Learning library in Python 3.9 [20]. It was trained 
for 10 epochs with a learning rate at 0.001 with an Adam 
optimizer. The trained DAE model was tested offline for 
performance validation and then deployed on the STM32 
microcontroller for multichannel real-time processing. 

C. TF-Lite Deployment 

After training, the DAE model was converted and 
compressed into a TF-Lite file, a commonly used format for 
deploying AI models on edge devices. The model was then 
imported into STM32CubeIDE [21] with X-Cube-AI 
extension [22], a toolbox developed by ST Microelectronics 
to facilitate the deployment of neural networks onto the 
STM32 microcontrollers. As shown in Fig. 1, the TF-Lite file 
was imported and translated into a platform-independent 
neural network representation (PINNR), which serve as an 
intermediate representation that standardize the uploaded deep 
learning model, making it potentially suitable to be further 
applied across different hardware platforms in the future. 
Using PINNR, the C-code generator produced an optimized 
STM32 project for deployment on the STM32 micro-
controller (NUCLEO F401RE, ARM 32-bit Cortex-M4 CPU).  

Following the successful deployment, the computational 
performance metrics, including CPU usage, memory usage 
and inference time, were measured using the default testing 
program generated by X-Cube-AI. Based on the measured 
inference time, the theoretical maximum number of channels 
that can be processed in real-time was determined. This was 
calculated by taking the ratio of available processing time to 
the inference time per channel. 

D. Peformance Evaluation of MA Removal  

The performance of the model was compared to a wavelet-
based algorithm, with the wavelet implementation sourced 
from HomER2. Additionally, the performance of the model 
on both the benchtop computer (Intel Core i9, 32GB RAM) 
and STM32 microcontroller were evaluated to compare if 
there was any degradation in performance after deployment 
on the edge microcontroller. An UART protocol was utilised 
to facilitate data transfer between the computer and the edge 
microcontroller. The testing dataset was transmitted to the 
microcontroller using a 15-seconds of sliding window with 50% 
overlap. Normalization was applied using the mean and 
standard deviation from the previously processed window. 
The quality of the processed signals was then assessed using 
MSE and Correlation Coefficient (CC).  

 

III. RESULTS & DISCUSSION 

A. TF-Lite deployment 

The computational performance of the trained DAE model 
on the STM32 microcontroller (NUCLEO F401RE, ARM 32-
bit Cortex-M4 CPU) is shown in the Table I. The model 
requires an average of 3195675 CPU cycles per inference, 

with a low CPU workload of 3%. Regarding to complexity, 
the model performs a total of 371,329 multiply-accumulate 
operations. In terms of memory usage, the model occupies 536 
bytes of stack memory and does not utilize any heap memory. 
The minimal CPU and memory usages of the model 
demonstrate that the STM32 microcontroller still holds 
sufficient capacity for any extra tasks or increased model 
complexity when needed.  

The average inference time is 38.043 ms, with the 
inference time in the kernel taking 38.003 ms, this is sufficient 
to support real-time MA removal in fNIRS. For an fNIRS 
device with sampling frequency of 6.67 Hz, the available 
processing time is 0.15 s, allowing the model to process up to 
3 channels simultaneously. By decreasing the overlap, the 
number of the parallel-processed fNIRS channels 
correspondingly increases, thought with a slight trade-off in 
processing delay. For example, for 15-seconds processing 
window with 50% overlapping, the available processing time 
extends to 7.5 s, enabling the deployed model to 
simultaneously process up to 197 fNIRS channels in parallel. 
However, this study does not assess the theoretical maximum 
number of channels constrained by RAM and flash memory. 
If memory limitations impact processing efficiency, 
deploying the platform on a microcontroller with larger 
memory capacity could effectively mitigate this issue. 

TABLE I.  COMPUTATIONAL PERFORMANCE OF DAE ON THE STM32 

MICROCONTROLLER 

Metric Value 

Average CPU Cycles 3,195,675 

Multiply-Accumulate Operations 371,329 

CPU Workload 3 % 

RAM (KB) 10.25 

Flash (KB) 61.07 

Used Stack (bytes) 536 

Used Heap (bytes) 0 

Average Inference Time (ms) 38.043 

Inference Time in Kernel (ms) 38.003 

Inference Time in User (ms) 0.025 

B. Peformance Evaluation of MA Removal 

The performance of MA removal between wavelet-based 
method and the proposed DAE model, that evaluated on both 
the benchtop computer and STM32 microcontroller, is 
presented in Table II.  Fig. 3, a visual representation of the 
data from Table II, illustrates that the proposed DAE model 
achieved significantly lower MSE and higher CC compared to 
the wavelet method. In particular, the lower standard deviation 
of the MSE and CC indicates that the proposed DAE model 
can offer more accurate and stable performance than the 
wavelet-based approach. Furthermore, the nearly identical 
MSE and CC values between the benchtop computer and 
STM32 microcontroller for DAE model indicate that the DAE 
has been smoothly deployed on the microcontroller without 
any degradation in performance. 

The comparison of MA removal algorithms applied to a 
sample from the testing dataset is shown in Fig. 4. The MA-
contaminated signal contains multiple MA spikes, 
respectively denoised by the DAE and wavelet methods. 



However, the signal reconstructed by the DAE is notably more 
similar to the ground truth clean signal. Importantly, in periods 
unaffected by MA, the model did not introduce any distortion, 
and preserved the physiological signal such as heart rate and 
respiratory rate. Previous DAE models often inadvertently 
filtered out both MAs and physiological signals [7, [19]. 
However, in certain applications, such as systemic physiology 
augmented functional near-infrared spectroscopy [22] and 
multimodal BCIs [6], the preserving physiological signals is 
essential for capturing comprehensive and complementary 
brain-physiological activities, widening the practical 
applications of fNIRS.  

 

Fig. 3. Comparisions of average MSE and CC of MA removal using both 

wavelet and DAE, on the benchtop conputer and STM32 microcontroller 

respectively. 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT APPROACHES 

OF MA REMOVAL  

 MSE CC 

STM DAE 0.0001 ± 0.0001 0.9402 ± 0.0349 

PC DAE 0.0001 ± 0.0001 0.9402 ± 0.0349 

Wavelet 0.0008 ± 0.0008 0.7015 ± 0.0562 

In this study, only simulated MAs used because the 
training approach and evaluation metrics relied on the 

availability of clean signals as ground truth. Incorporating real 
MAs during data collection would make it challenging to 
obtain corresponding clean signals for training and 
performance evaluation. Therefore, future work will focus on 
developing appropriate methodologies for assessing the 
denoising performance of the proposed platform on signals 
with real-world MAs. Upon validation, the proposed 
processing platform will be integrated into an fNIRS device 
and evaluated in real-world settings to verify its performance 
in practical applications. 

IV. CONCLUSION 

In this work, the proposed DAE model has been deployed 
on an STM32 microcontroller with encouraging performance 
for multichannel real-time MA removal of fNIRS signals at 
the edge. The approach outperformed traditional wavelet-
based methods. The proposed model required minimal 
computational resource, making it suitable for deployment 
across various edge platforms when needed. With an inference 
time short enough to simultaneously process up to 197 
channels of fNIRS data, the model proved its parallel real-time 
processing capability for fNIRS systems with a relatively 
large channel counts. Additionally, the successful deployment 
of the model on an edge microcontroller without performance 
degradation underscores its potential for edge processing in 
fNIRS systems with a wearable form factor.  In particular, the 
results of this study demonstrate that deep learning models, 
such as the DAE utilized here, can be deployed on edge 
devices without performance degradation while achieving 
promising efficacy in multichannel real-time MA removal of 
fNIRS. This DAE-enabled edge device is expected to be 
integrated into existing fNIRS systems in the future as a self-
contained processing unit for an initial attempt of the 
development of a new-generation of AI-empowered wearable 
high-density fNIRS technology. In short, this work enables 
more accurate and efficient real-time processing at the edge, 
thereby enhancing the usability of wearable multichannel 
fNIRS technologies in diverse, real-world applications in 
wider environments, such as real-time BCI, online 
neurofeedback, personalized healthcare, and beyond.  

 

Fig. 4.    Comparison of typical MA removal algorithms over a sample from the testing dataset.
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