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Abstract

Chronic pain presents a widespread and complex clinical puzzle, necessitating novel theoretical ap-
proaches. This study expands upon our evolving comprehension of the brain’s top-down information
processing, encompassing functions such as prediction, expectation, and attention, These processes are
believed to play a substantial role in shaping both chronic pain and placebo responses. To examine
hierarchical cortical processing in pain, we define a minimal cortical pain network comprising the lateral
frontal pole, the primary somatosensory cortex, and the posterior insula. Using spectral dynamic causal
modeling on resting-state fMRI data we compare effective connectivity among these regions in chronic
osteoarthritic patients (n=54, 29F: 25M) and healthy controls (n=18, 10F: 8M) and further analyse dif-
ferences between placebo responders and non-responders within the patient group. Our findings reveal
distinct patterns of altered top-down, bottom-up, and recurrent (i.e., intrinsic) effective connectivity
within the network in chronic pain and placebo response. Specifically, recurrent effective connectivity
within the lateral frontal pole becomes more inhibitory, while backward effective connectivity (higher-
to-lower cortical regions) decreases in both pain perceivers and placebo responders. Conversely, forward
connections exhibit opposite patterns: nociception is associated with more excitatory (disinhibited) con-
nections, whereas placebo responses correspond to more inhibitory forward connections. The associated
effect sizes were sufficiently large to survive a leave-one-out cross-validation analysis of predictive validity.
The observed patterns of alteration are consistent, with predictive processing accounts of placebo effects
and chronic pain. Overall, effective extrinsic and intrinsic connectivity among cortical regions involved
in pain processing emerge as potentially valuable and quantifiable candidate markers of pain perception

and placebo response.
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SIGNIFICANCE STATEMENT

Chronic pain is a widespread and complex healthcare challenge. Cognitive functions such as prediction,
expectation, and attention are believed to influence pain perception and placebo responses through top-
down information processing in the brain. However, empirical evidence supporting this hypothesis at the
brain network level has been lacking. Our study addresses this gap by examining top-down, bottom-up, and
recurrent effective connectivity within the brain’s pain processing pathways using resting-state fMRI. We
discovered consistent and significant alterations in effective connectivity patterns in chronic pain patients
and placebo responders, with the potential to predict individual pain experiences and placebo responses.
These findings open new research avenues into the neural mechanisms underlying chronic pain and placebo

effects.
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INTRODUCTION

Pain remains a predominant reason for medical consultations, not only in most developed nations but also
in developing countries (Mills et al., 2019). It has a profound effect on quality of life, mental health, and
overall functionality. Despite its ubiquity, pain particularly in the form of chronic pain, remains enigmatic
and often impervious to effective treatment (Bonica, 1991). To devise more efficacious pain management
strategies, it is imperative to gain a mechanistic understanding of its functional anatomy. In this study,
we draw inspiration from contemporary paradigms in brain function based on hierarchical predictive coding
(Mumford, 1992; Rao & Ballard, 1999; K. Friston & Kiebel, 2009). Employing dynamic causal modeling
(DCM), (K. J. Friston et al., 2003, 2014) we compared patients with chronic osteoarthritic pain and control
participants to characterize the central (predictive) processing that underwrites nociception and the placebo
response.

Neurobiological perspectives on pain have seen significant changes over the years. Traditional studies in
the field adhered to the Cartesian viewpoint (pain as a bottom-up, direct-line sensory system, through which
nociceptive inputs would travel to the brain, much like ringing a bell by pulling a rope) (A. V. Apkarian &
Reckziegel, 2019). This perspective constituted the majority of animal model studies, focusing on peripheral
afferents, spinal cord circuitry, their reorganization, and the molecular targets underlying chronic pain in
rodent models. However, research has gradually expanded to include cerebral cortical regions (Treede et al.,
1999; Tracey & Mantyh, 2007), thanks to advances in neuroimaging techniques. Notably, functional magnetic
resonance imaging (fMRI) has played a pivotal role in shedding light on the cortical areas associated with
pain perception (V. A. Apkarian, 1995), including the somatosensory cortex, insula, anterior cingulate cortex,
and prefrontal cortex.

Initially, neuroimaging research on pain perception focused on functional localization, associating specific
brain regions with discrete functions related to pain processing (Ingvar, 1999). However, this view has evolved
towards a more comprehensive perspective that emphasizes distributed and synthetic processing (Damascelli
et al., 2022). This shift recognizes that pain perception does not exclusively rely on distinct regions but
instead involves hierarchical interactions among various brain regions and networks.

Furthermore, the conventional notion of the brain as a passive receiver of incoming stimuli has been
challenged by emerging theories like hierarchical predictive coding (Mumford, 1992; Rao & Ballard, 1999; K.
Friston & Kiebel, 2009). These theories underscore the pivotal role of top-down cortical processing in shaping
our perception of pain. Pain is a highly subjective experience, as elucidated by the definition provided by
the International Association for the Study of Pain (Merksey & Bogduk, 1994): “an unpleasant sensory and
emotional ordeal linked to real or potential tissue damage, or described in the context of such harm.” Pain
perception is influenced by memories, emotions, cognitive factors, and other variables, and the resulting pain
experience does not necessarily correspond to linear nociceptive drive. Recent data even suggest that painful
experiences can occur without a primary nociceptive input (Eisenberger et al., 2003; Derbyshire et al., 2004;

Singer et al., 2004; Raij et al., 2005). Thus, understanding the interaction between top-down processing
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and bottom-up sensory inputs is crucial, not only in the context of chronic pain but also in understanding
its response to placebo treatment, where top-down cortical processing undoubtedly assumes a foundational
role.

Motivated by the growing appreciation of the current processing in hierarchical predictive processing
accounts of perceptual and active inference, our study analyses the effective connectivity - among hierar-
chically organized sensorimotor regions - and its characteristics in patients with chronic knee osteoarthritic
pain, and their response to placebo treatment. Here, effective connectivity refers to the (directed) influence
that one neural system exerts over another, either at a synaptic or population level (K. J. Friston, 2011).
In contrast to data-driven approaches, such as whole-brain functional connectivity analyses, we committed
to a model-based approach that allows one to test hypotheses about the functional organization of the pain
network, via Bayesian model comparison.

Our aim was to identify the distinct patterns of top-down and bottom-up effective connectivity within
the pain processing pathway in individuals with chronic pain, and those who respond to placebos. Hence,
we chose two primary sensory cortices - and a high level (deep or terminal) node in the nociceptive pathway
- as regions of interest in a minimal pain hierarchy. These regions were the primary somatosensory cortex
(SSC), the posterior insula (PI) (also known as the primary interoceptive cortex), and the lateral frontal
pole (FP1), respectively. The lateral frontal cortex serves as the terminal relay station for several sensory
processing pathways (for details, see discussion), including somatosensory pathways. Thus, our objective was
to analyze alterations in overall top-down and bottom-up causal influence within the cortical pain processing
pathway. A similar approach has recently provided fruitful results in clinical conditions like depression (Ray
et al., 2021) and anxiety (Bouziane et al.; 2022). Our connectivity analysis used spectral dynamic causal
modeling (DCM) of resting-state fMRI data collected from chronic osteoarthritic knee pain patients and
a control group. We identified connections that exhibit significant alterations in osteoarthritic patients.
Additionally, in a subset of patients receiving placebo therapy, we identify distinct connections significantly
associated with the placebo response. We estimated effect sizes for both analyses through leave-one-out

cross-validation using parametric empirical Bayesian methods.
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MATERIALS AND METHODS

The primary aim of this research was to identify changes in extrinsic (i.e., between regions) top-down,
bottom-up, and intrinsic (i.e., within region) recurrent connectivity within cortical regions that process
nociceptive information in subjects suffering from chronic osteoarthritic pain, relative to a control cohort.
Furthermore, we aimed to identify differences in connectivity between chronic pain patients who respond to
placebo treatments from those who do not. We collected data from two independent studies, which were

subject to spectral DCM. The procedural framework for our analysis is depicted in Figure 1.
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Figure 1: Pipeline of analysis

Study Participant

The participants in this study were drawn from two separate research projects conducted at Northwestern
University, USA. The first study involved a two-week placebo-only treatment, while in the second study,
patients received either three months of placebo or three months of duloxetine treatment. A number of
patients either did not complete the studies they were enrolled in, or their brain scans did not meet the
quality assessment standards. As a result, the present analysis included 16 patients from study 1 and 38

patients from study 2. Additionally, 20 age-matched healthy control subjects were recruited, although data
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Table 1: Demographics and clinical data

Groups Analysis 1 Analysis 2

Patients Controls Responders Non-responders
Age 57.40 £ 6.55 58.16 £+ 6.87 55.87 £ 4.05 56.25 £ 5.57
Gender 29F 25M 10F 8M 5F 3M 3F 5M
Dominant Injury Side 51 Right 5 Both NA 8 Right 8 Right
Baseline VAS 6.77 £ 1.41 NA 737 £ 1.35 6.68 £ 0.75
Baseline WOMAC 45.96 £ 15.27 NA 45.50 £ 18.60 36.25 £+ 14.49
% Analgesia VAS 18.84 + 33.35 NA 54.34 £+ 29.45 -7.12 £+ 18.58
% Analgesia WOMAC  19.63 £+ 30.85 NA 38.61 £ 24.60 7.34 + 20.97

from 2 of these subjects had to be discarded due to quality concerns, leaving a final subset of 72 participants.

The patients were recruited through public advertisements and Northwestern University-affiliated clinics.
All patients underwent brain scans before the commencement of their respective treatments or placebos.
Each participant provided written informed consent to participate in procedures that were approved by the
Northwestern University Institutional Review Board committee (STU00039556).

All osteoarthritis (OA) participants met the criteria established by the American College of Rheumatology
for OA and experienced pain for at least one year. Specific inclusion and exclusion criteria were applied,
including the presence of other chronic pain conditions and major depression. Participants were required to
have knee pain intensity rated at least 4 out of 10 on an 11-point numerical rating scale (NRS) within 48
hours of the screening visit. Patients were asked to discontinue all analgesic medications two weeks before
the trial and were provided with acetaminophen as a rescue medication.A detailed list of all inclusion and
exclusion criteria can be found in Table S1, with participant demographics provided in table 1.

It should be noted that in Table 1, % analgesia is reported for both the placebo and duloxetine groups in
Analysis 1, as this analysis included OA patients from both treatment arms along with controls. For Analysis
2, % analgesia is reported only for the placebo group, as this analysis focused solely on distinguishing placebo

responders from non-responders.

Study Design

In the current study, we analyzed a subset of data from two studies. Our primary goal was to compare resting-
state effective connectivity patterns among patients from both studies and control participants. Additionally,
we conducted comparisons of effective connectivity between placebo responders and non-responders in Study
1. It is important to note that we refrained from merging the two studies in the later analysis due to variations
in the duration of placebo use (two weeks versus three months).

To clarify, the first analysis included OA patients from both studies—those who received placebo (Study
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1 and Study 2) and those who received duloxetine (Study 2)—along with separately recruited individuals
without pain. The goal of this analysis was to compare individuals with pain to those without pain. The type
of intervention (placebo vs. duloxetine) was not a factor here. The second analysis focused exclusively on OA
patients from Study 1 who received placebo and were subsequently classified as responders or non-responders
based on their outcomes assessed two weeks after the fMRI scans (also see Figure S1).

For brevity, we have omitted specific details about the two studies in this paper. Readers interested in

obtaining further information can refer to (Tétreault et al., 2016; Schnitzer et al., 2018) for details.

Behavioral and Clinical Measures

Participants from both studies completed a general health questionnaire and a Visual Analog Scale (VAS)
rating of their knee OA pain, on a scale of 0 to 10. Additionally, participants completed the Western Ontario
and McMaster Universities Osteoarthritis Index (WOMAC), the Beck Depression Inventory (BDI), and
the Pain Catastrophizing Scale (PCS). All questionnaires were administered on the day of brain scanning.
Response categorization was determined initially using only the VAS measure and then validated using
WOMAC scores. Analgesic and placebo responses were pre-defined individually as a minimum of a 20%
reduction in VAS pain from baseline to the end of the treatment period; otherwise, subjects were classified
as non-responders. This threshold was chosen based on prior research findings (Baliki et al., 2012) and
a recent meta-analysis estimating the magnitude of placebo analgesia (Vase et al., 2015). In Study 2, to
partially account for regression to the mean effects, VAS pain was measured three times over a two-week
period before treatment initiation and after discontinuation of medication use, with the average score used

as the indicator of pain at study entry.

Neuroimaging Data

Figure 1 offers a schematic outlining the steps involved in the acquisition and analysis of neuroimaging data.
The neuroimaging data from a subset of participants in the current study has been previously reported
in another publication (Tétreault et al., 2016). However, that earlier study primarily used a data-driven
approach based on correlation-based (undirected) functional connectivity analysis of whole-brain data. In
contrast, the current study addresses specific hypotheses by evaluating the evidence for network models of

(directed) effective connectivity among functionally characterized brain regions.

Functional MRI Data Acquisition

Imaging data were acquired using a 3T Siemens Trio scanner equipped with a standard radio-frequency head
coil. The structural and functional images were acquired with the following parameters:

Structural MRI: Sequence: MPRAGE (T1l-anatomical brain images), Field of View: 256 x 256 x 256
mm, TR/TE: 2500/3.36 ms, Flip Angle: 9°, Voxel Size: 1 x 1 x 1 mm, Slices: 160
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Functional MRI: Sequence: Multi-slice T2*-weighted echo-planar images, TR/TE: 2500/30 ms, Flip
Angle: 90°, Slice Thickness: 3 mm, In-plane Resolution: 64 x 64, Number of Slices: 40

Pre-processing

The fMRI data underwent preprocessing and analytical procedures using the SPM12 v7771 toolbox (Sta-
tistical Parametric Mapping, available at http://www.fil.ion.ucl.ac.uk/spm). To ensure equilibrium in mag-
netization, the initial five scans were excluded. The preprocessing pipeline included slice timing cor-
rection, alignment to the mean image, motion correction, and coregistration with the participant’s T1-
weighted scans. Subsequently, the images were normalized to the standard Montreal Neurological Institute
(https://www.mcgill.ca) template, and resampled to 4 x 4 x 5 mm? resolution. Motion correction involved
second-degree B-Spline interpolation for estimation and fourth-degree for reslicing, while coregistration lever-
aged an objective function based on mutual information, and spatial normalization used fourth-degree B-
Spline interpolation. Spatial smoothing was applied with a Gaussian kernel at full-width half-maximum

dimensions of 4 x 4 x 10 mm?

. Additional noise reduction was performed by regressing out extraneous
variables, including Friston-24 head motion parameters and signals from the cerebrospinal fluid and white
matter. To mitigate low-frequency drifts in the data-stemming from physiological activities and scanner-

related factors-temporal filtering with a high-pass threshold of 1/128 Hz was applied.

Selection of ROIs and extraction of time series

The areas we focused on in our study included the lateral frontal pole (FP1), the primary somatosensory
cortex (SSC), and the posterior insula (PI), as shown in Figure 2.. We defined these regions of interest by
using predefined masks from the SPM Anatomy toolbox, as cited in reference (Eickhoff et al., 2005). To pre-
pare the data for dynamic causal modeling (DCM), we took the first principal components of the voxel time
series within these masks. We then adjusted the time series for “effects of interest” (i.e., mean-correcting

the time series).

Dynamic Causal Modelling and Parametric Empirical Bayes

We used spectral DCM implemented in SPM12 v7771 (http://www.fil.ion.ucl.ac.uk/spm) to estimate effec-
tive connectivity within and between brain regions in the above (minimal) pain hierarchy. Spectral DCM
offers computational efficiency, when estimating effective connectivity from resting state timeseries, which
are summarized in terms of their cross spectral density. Dynamic Causal Modeling (K. J. Friston et al., 2003)
represents a well-established technique for estimating the causal architecture (i.e., directed effective connec-
tivity) generating distributed neuronal responses using observed BOLD (Blood-Oxygen-Level-Dependent)
signals recorded from fMRI. This approach relies primarily on two equations. First, the neuronal state

equation models the change in a neuronal activity over time, considering directed connectivity within a
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Figure 2: Regions of interest: FPL: lateral frontal pole, S1: primary somatosensory cortex, PI: posterior insula. The

images were created using MRIcroGL (https://www.nitrc.org/projects/mricrogl/).

distributed set of regions. In the context of DCM for cross spectral density7, these regions are subject
to endogenous fluctuations, where the requisite spectrum is estimated. Second, an empirically validated
hemodynamic model describes the transformation of the neuronal state into a BOLD response.

The neural state equation can be expressed as follows:

i(t) = f(z(t),0n) + v(t) (1)

The function f represents the neural model in terms of neuronal dynamics, & represents the rate of change
of neuronal states x, 8" signifies the unknown connectivity parameters, reflecting effective connectivity and
v(t) accounts for a stochastic process that models endogenous neuronal fluctuations, driving the resting

state. The hemodynamic model equation converts the ensuing neuronal state into a BOLD measurement:

10
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y(t) = k(x(t),0n) + €(t) (2)

Here, the function k defines the biophysical mechanisms responsible for translating neuronal activity into
the BOLD response, characterized by parameters 65, and also accounts for measurement noise denoted as €.

Spectral DCM (K. J. Friston et al., 2014) provides a computationally efficient approach to invert models
for resting state fMRI. It simplifies the generative model estimation process by transforming data features
into the frequency domain using Fourier transforms, as opposed to using the original BOLD time series
employed in DCM for evoked induced responses. By utilizing second-order statistics, specifically complex
cross-spectra, spectral DCM overcomes the challenge of estimating time-varying fluctuations in neuronal
states. Instead, it estimates their spectra, which remain time-invariant. In essence, this approach replaces
the complex task of estimating hidden neuronal states with the more manageable problem of estimating their
correlation functions of time or spectral densities across frequencies, including observation noise. To achieve
this, a scale-free (power-law) formulation is utilized for both endogenous and error fluctuations, as outlined

in (Bullmore et al., 2001), expressed as follows:

o (w, 9) = Ayw P

Je (w, 9) = qew P

Here, the parameters «, 8 C 6 determine the amplitudes and exponents that control the spectral density

3)

of these random effects. We employ a standard Bayesian model inversion, specifically the Variational Laplace
method, to estimate the model parameters based on the observed signal, encompassing both the parameters
related to the fluctuations and the effective connectivity. For a comprehensive mathematical explanation of
spectral DCM, please refer to (K. J. Friston et al., 2014) and (Razi et al., 2015).

In our first-level (i.e., within subject) analysis, we estimated fully connected models for each subject
within the nociceptive network in both hemispheres (right and left). Each network comprised three nodes,
and we estimated both between-node (extrinsic) and within-node (intrinsic) effective connectivity. To assess
the accuracy of model inversion, we examined the average percentage of variance explained by the DCM
model when applied to the observed (cross-spectral) data.

For our second-level (i.e., between subject) analysis, we employed Parametric Empirical Bayes (PEB);
namely, a hierarchical Bayesian model with a general linear model (GLM) of subject-specific parameters.
The purpose of this PEB analysis is to estimate the effects of pain or placebo responses on effective con-
nectivity, with subject-specific connections as random effects (K. Friston et al., 2015; K. J. Friston, Litvak,
Oswal, Razi, Stephan, Van Wijk, et al., 2016a). PEB offers advantages over classical tests based upon
summary statistics as it incorporates the full posterior density over parameters from each subject’s DCM,
including their posterior expectations and associated uncertainties (Zeidman, Jafarian, Corbin, et al., 2019).

By default, the group mean serves as the first regressor in the GLM. Additionally, our analysis included

11
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three more regressors: group membership (patient vs control or placebo responders vs non responders), age,
and sex. We employed Bayesian model reduction (BMR) to explore the range of potential models capable of
explaining the resting state data across all subjects. BMR assesses candidate models by iteratively removing
one or more connections from a full or parent model, as outlined in (K. J. Friston, Litvak, Oswal, Razi,
Stephan, Van Wijk, et al., 2016a). This process involves pruning connection parameters from the full model
and evaluating the change in log model-evidence. The pruning continues until no further improvement in
model evidence is observed. Finally, we addressed uncertainty over the remaining models using Bayesian
Model Averaging (BMA), as described in (Penny et al., 2010). BMA combines the parameters of selected

models and averages them proportionally, based on their model evidence.

Leave-one-out Cross-validation Analysis

In the concluding part of our analysis, we asked whether the individual variations in effective connectivity
could serve as predictors for pain perception and placebo response (in those who perceive pain). Essentially,
we sought to determine if the effect size was sufficiently large to have predictive validity for a new subject.
Selection criteria for connections included those that meta 95% posterior probability threshold (i.e., strong
evidence) from Bayesian model reduction above. Employing a leave-one-out cross-validation method, as
detailed in reference (K. J. Friston, Litvak, Oswal, Razi, Stephan, Van Wijk, et al., 2016b), we excluded
one subject at a time. The predictive model, based on a parametric empirical Bayesian framework, was
then applied to estimate the probability of the excluded participant’s classification ((i) experiencing pain or
not, and (ii) responding to placebo or not), using the previously selected connections. The accuracy of the
model’s predictions was quantified by computing the Pearson’s correlation between the actual and predicted

classifications of group membership.
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RESULTS

Accuracy of DCM model estimation

The inversion of DCM models for individual participants produced excellent results in terms of accuracy (see
Figure 3). Across participants, the mean variance-explained by DCM — when fitted to observed (cross spec-
tra) data — were 80.36% (median 85.27 %) and 77.16% (median 83.68 %) for right and the left hemisphere,

respectively.

Variance Explained by DCM models
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Figure 3: Accuracy of DCM model estimation: Average-percentage explained by our DCM models for the target

networks in both hemispheres.

Group-Level Model Comparisons Using Parametric Empirical Bayes (PEB)

Table 2 reports the differences in log evidence when comparing second (i.e., group) level models using PEB.
A difference in log evidence is equivalent to the log of the Bayes factor; namely, the log odds ratio comparing
the marginal likelihood of two models. Analysis 1 corresponds to a test for the evidence of an effect of
patient versus control, while Analysis 2 pertains to a comparison of responders versus non-responders. The

distribution of differences in log evidence (i.e., log Bayes factors) is over different models with different

13
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combinations of free connectivity parameters. Figure S2 reports the differences in log evidence for each of
the (256) models considered for both analyses in the right and left hemispheres.

Generally, a difference in log evidence (or variational free energy) of three or more is considered strong
evidence in favour of one model over another. This follows because the implicit likelihood ratio is about
exp(3) = 20:1 (c.f., a nominal P value of 0.05 in classical inference). Clearly, there was very strong evidence
for an effect of group under the best model (i.e., the maximum difference in log evidence was greater than

five in all four comparisons).

Table 2: Differences in log evidence

Mean Max Mean
Analysis 1 right 11.0892 13.3977 8.8128
Analysis 1 left 7.1287 9.6005 4.6181
Analysis 2 right 8.7683 13.8461 3.6880
Analysis 2 left -0.5837 8.2122 -7.0525

Effective connectivity

The quantitative estimates of effective connectivity for both studies are summarized in Figure 4.B and 5.B.
These estimates of directed coupling are in units of hertz (per second) for extrinsic (between region or off-
diagonal entries). In other words, they score the rate at which one region responds to the neuronal activity in
another. The intrinsic (within region or diagonal entries) are log scaling estimates of recurrent self inhibition;
such that a positive value denotes an increase in inhibitory intrinsic connectivity.

The mean connectivity (left panels) over all subjects was remarkably consistent over both studies and
hemispheres. The regions have been arranged so that the lower diagonal entries reflect forward or bottom-up
extrinsic connections; while the upper diagonal entries report backward or top-down extrinsic connections.
These zero entries correspond to connections that have were considered redundant, following Bayesian model
reduction. One can see that in every instance, top-down connections are either weak or excitatory, reflecting a
positive modulatory influence on hierarchically lower regions. In accord with the no-strong-loops hypothesis
(Crick & Koch, 1998; Lisman, 2012) - and the recurrent message passing implied by hierarchical predictive
coding schemes (Bastos et al., 2012; Shipp, 2016)- the corresponding forward connections are universally
weak or inhibitory. The interpretation of these estimates of directed or effective connectivity should be
in the context of the neuronal activity measured by fMRI, which can be thought of as a lumped metric
of macroscopic neuronal population activity, and its excursions from steady-state dynamics. Here, these
excursions can be attributed to interoceptive inference, and introspective (endogenous) activity associated

with the resting state.
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Modulation of effective connectivity by chronic pain

The pattern of modulation of effective connectivity in chronic pain patients, in relation to controls, is
illustrated schematically in Figure 4.A, based on the quantitative estimates (in hertz) provided in Figure
4.B. When comparing osteoarthritic patients to the control group, our analysis revealed a marked increase in
forward connections from the left primary somatosensory cortex (SSC) towards the left frontal pole (FPL), as
well as from the left posterior insula (PI) towards the left FPL. These differences constitute a 50% decrease
in inhibitory influences; namely, a selective disinhibition of forward connectivity.

Conversely, the backward connections originating from the left FPL to the left SSC exhibited a decrease
in weak backward excitatory influences, while self-connections within the left FPL became increasingly
inhibitory (by about 9%). Notably, no discernible changes in effective connectivity were among or within
regions in the right hemisphere. In summary, there was a left lateralized increase in forward connectivity best

characterized as a disinhibitory effect in the pain group, with weaker decreases in backward connectivity.

Modulation of effective connectivity in placebo responders vs non-responders

Figure 5.A presents a schematic reporting the relative changes in effective connectivity among individuals who
exhibited a significant response to the placebo intervention. In this comparison, the findings were remarkably
consistent across both hemispheres with, universally, a decrease in extrinsic connectivity, predominantly in
forward connections. Specifically, in our comparison of placebo responders and non-responders, responders
exhibited a shift towards an increased inhibitory influence in several key connections, including forward
connections from the bilateral primary somatosensory cortex (SSC) to the posterior insula (PI), left SSC
to frontal pole (FPL), left PI to FPL. This was complemented by a decrease in inhibitory self-connections

within the bilateral PI. Furthermore, our analysis revealed that in responders, backward connections from
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Figure 4: A) Modulation of effective connectivity in patient population compared to the control (left and right
hemispheres) Arrow colours code direction of connectivity changes relative to the group mean: red, increased; blue,
decreased. For all subfigures line thickness is kept constant and does not code for the effect size. Nodes are placed
in different planes to denote relative position of different nodes in cortical hierarchy. FP1: lateral frontal pole, PI:

posterior insula, SSC: primary somatosensory cortex B) Estimated connectivity parameters in study 1.
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Figure 5: A) Modulation of effective connectivity in placebo responders vs non-responders (left and right hemispheres)
Arrow colours code direction of connectivity changes relative to the group mean: red, increased; blue, decreased. For
all subfigures line thickness is kept constant and does not code for the effect size. Nodes are placed in different planes
to denote relative position of different nodes in cortical hierarchy. FP1: lateral frontal pole, PI: posterior insula, SSC:

primary somatosensory cortex B) Estimated connectivity parameters in study 2.
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the right FPL to SSC exhibited increased inhibitory effects, while self-connections within the right FPL
became more inhibitory. In short, people who respond to placebo have a relative reduction in forward

connectivity and increased intrinsic excitability (i.e., disinhibition) of the bilateral insular.

Cross validation

In a leave-one-out cross-validation - among all connections showing significant association with chronic pain
perception - directed connectivity between left FP1 to left SSC was found to predict group membership
(osteoarthritis patient or control) at a significant level of o = 0.05 (see Table 3). Similarly, in another
leave-one-out cross validation analysis, intrinsic connectivity within right Posterior Insula (rPIns) was found
to predict placebo response among pain perceivers at the same significant level (see Table 4). This suggests

a nontrivial out-of-sample effect size that is conserved over subjects.

Table 3: Pain Perception: Leave-one-out cross validation

Connections Correlation p-value
ISSC— FP1 0.15 0.097
IPIns — 1FP1 -0.18 0.93
IFP1— 1SSC 0.29 0.006
IFP1 — IFP1 0.14 0.11

Table 4: Placebo Response: Leave-one-out cross validation

Connections Correlation p-value
ISSC— 1PIns -0.57 0.98
ISSC — 1IFP1 -0.21 0.78
IPIns — 1PIns 0.37 0.078
rSSC — rPlIns -0.55 0.98
rPIns — rPIns 0.44 0.044
rPIns — rFP1 -0.51 0.97
rFP1 — rFP1 0.38 0.073
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DISCUSSION

The most striking result of our study includes the following findings: recurrent effective connectivity within
the lateral frontal pole becomes more inhibitory, while backward effective connectivity (from higher to lower
cortical regions) decreases in both pain perceivers (as opposed to non-perceivers) and placebo responders
(compared to non-responders). However, opposite changes are observed in forward connections, where
nociception is associated with more excitatory (disinhibited) connections, while placebo responses evince
more inhibitory forward connections. The changes in effective connectivity among pain perceivers were only
observed in the left hemisphere. In leave-one-out cross-validation analyses, we found that the top-down
connection from the left FP1 to the left SSC exhibited a sufficiently large (out-of-sample) effect size to
predict whether an individual is experiencing knee pain or not. In a similar analysis of placebo response, we
observed that the self-connection of the right insular demonstrated a sufficiently large effect size to predict
placebo responses.

There are a few neuroimaging studies that have explored changes in functional and effective connectivity
within nociceptive brain regions as potential biomarkers for chronic pain and placebo response(Cui et al.,
2016; Lee et al., 2020; Li et al., 2019; Liu et al., 2015; Liao et al., 2010; Tadayonnejad et al., 2016).
However, our research takes a unique approach, driven by a novel perspective on the neural mechanisms
underlying sensory perception. There is a growing consensus that perception is not simply a passive process
of progressively abstracting sensory input in a “bottom-up” manner. Instead, it involves both forward and
backward information flow between brain regions organized in a hierarchical fashion, which plays a pivotal
role in shaping perception. This concept forms the foundation of much of the current thinking about the
functional architecture of the brain. One prominent theory in this realm is predictive coding (Mumford,
1992; Rao & Ballard, 1999; K. Friston & Kiebel, 2009), which has also been extended to the domain of
motor function (K. Friston et al., 2011; Adams et al., 2013). The implicit exchange of neuronal messages
within cortical hierarchies motivated are characterization of effective connectivity among pain processing
regions organized hierarchically, and its potential relationship with pain perception and placebo response.

The modulation of effective connectivity in osteoarthritic patients and in placebo responders have some
commonalities (for example similar changes in backward and recurrent connections in the highest node, i.e.,
lateral pole) and some divergence (for example, opposite changes in forward connections). These changes
are consistent with predictive coding accounts of pain perception and placebo response. For example, our
study found that, in patients with osteoarthritic pain, top-down connections become more inhibitory and
bottom-up connections more excitatory in the network involving interoceptive and somatosensory regions.
These differences are consistent with the role of top-down predictions explaining away prediction errors at
lower levels, as proposed by the predictive coding framework (K. Friston & Kiebel, 2009; K. Friston, 2012).

In particular, they are what would be predicted in terms of hierarchical predictive coding in which
precision weighted prediction errors are passed forward to deeper levels of the interoceptive hierarchy to

update or revise representations at higher levels.(Clark, 2013; X. Gu et al., 2015; Seymour & Mancini, 2020;

19



384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

K. Friston, 2023) An increase in forward connectivity can be read as an increase in the sensitivity of higher
levels to ascending prediction errors. This corresponds to an increase in the precision of ascending prediction
errors in people who experience pain or, conversely, an effective decrease in the precision of nociceptive
prediction errors in people who show a placebo response. We will return to the important notion of precision
and its neurophysiological correlates below.

Although long-range connections in the brain are excitatory (i.e., glutamatergic), predictive coding pro-
poses that backward connections may preferentially target inhibitory interneurons in superficial and deep
layers to evince an overall decrease in neuronal message passing (K. Friston & Kiebel, 2009; K. Friston,
2012; Aitchison & Lengyel, 2017). In predictive coding, this is often read as ‘explaining away’ prediction
errors at lower levels in sensory cortical hierarchies so that only those incoming stimuli that deviate from
prediction (i.e., prediction errors) ascend the hierarchy to revise presentations at higher levels (K. Friston,
2012; Aitchison & Lengyel, 2017; Ray et al., 2020). However, top-down predictions also predict the reliability
or precision of prediction errors at lower levels, leading to a disinhibitory modulation of lower-level activity
in populations encoding prediction errors: sometimes discussed in terms of attention (Kok et al., 2012) or
retrieval (Barron et al., 2020). One can associate this effect of top-down modulation with the group mean
positive modulatory effects reported above. Thus, effective connectivity in chronic pain patients appear to
reflect an enhanced pain processing within the nociceptive pathway with an increase in forward connectivity
corresponding to an increase in the effects of ascending or bottom-up prediction error signaling.

An intriguing finding in connectivity changes in chronic pain patients - that warrants further comment
- is that differences in connectivity are restricted within the left hemisphere, without any notable changes
observed in the right hemisphere. However, note that in nearly all of the patients analyzed in the present
study, osteoarthritis was localized to the right knee, with only a handful experiencing bilateral knee involve-
ment. The observation aligns with the anatomy of second-order pain neurons crossing over to the opposite
side of the spinal cord and thus affording a potential explanation for left lateralized changes in connectivity.
However, given prior evidence of lateralized pain processing in the brain (Coghill et al., 2001; Lu et al., 2004;
Symonds et al., 2006), further research is needed to determine whether this effect is purely somatotopic or
indicative of broader lateralization in pain modulation.

Current formulations of nociception - and in particular, the placebo effect-rest upon predictive coding
and active inference accounts of hierarchical processing within the somatosensory and interoceptive hierarchy
(Seymour & Mancini, 2020; Kube et al., 2020; L. Gu et al., 2015) In particular, there is a focus on nuancing
the perception of pain by adjusting the confidence or precision associated with the implicit (Bayesian) belief
updating (Kube et al., 2020; Arandia & Di Paolo, 2021; Hoskin et al., 2019; Milde et al., 2023; Pagnini et al.,
2023).

In brief, it may be the case that placebo effects can be attributed to a decrease in sensory precision
of the kind associated with sensory attenuation (Kube et al., 2020; Limanowski, 2017; Wiese, 2017). Or,

equivalently, an increase in the (subpersonal) confidence or precision afforded prior beliefs induced by the
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administration of placebos. Both or either of these changes in precision will move posterior beliefs towards a
prior expectation that “I am not in pain because I have taken an analgesic”. In terms of predictive coding,
this would correspond to an increased gain or precision weighting of ascending somatosensory and nociceptive
prediction errors, relative to the precision of prior beliefs deeper in the interoceptive hierarchy (e.g., anterior
insular and other prefrontal regions). From a psychological perspective, increases and decreases in the
likelihood or sensory precision can be associated with selective attention or sensory attenuation, respectively.
Physiologically, this kind of top-down precision weighting is thought to be mediated by selective changes
in the postsynaptic sensitivity of certain neuronal populations: e.g., superficial pyramidal cells encoding
prediction errors (Bastos et al., 2012; K. Friston, 2023). It is precisely (sic) this modulation of synaptic
excitability that is measured by effective connectivity and evident in our DCM results.

In short, the changes in effective connectivity are consistent with a predictive coding formulation, in the
following sense. Increased bottom-up prediction error corresponds to heightened pain perception, simply
because the ascending prediction errors have been afforded more precision and therefore have more influence
on belief updating processes at higher levels of the hierarchy. Similarly, reduced bottom-up prediction error
signaling - combined with increased top-down predictions are characteristic of placebo responders - suggesting
that an increase in the precision or synaptic gain at higher hierarchical levels mitigates the accumulation of
weak evidence (i.e., imprecise nociceptive prediction errors) for the high level belief: “I am in pain”.

It is important to qualify the interpretation of the DCM results in terms of predictive coding and predic-
tions of precision. To draw definitive conclusions — about differences in the precision of ascending predic-
tion errors — would require a DCM whose functional form was isomorphic with predictive coding schemes;
namely, neuronal architectures equipped with precision or gain control of the sort used in computational
neuroscience; e.g.,(Adams et al., 2015; Brown & Friston, 2012; Feldman & Friston, 2010; FitzGerald et al.,
2015; Moran et al., 2013; Parr et al., 2018; Pinotsis et al., 2014). However, the requisite models would be
too expressive to be identified or inverted using fMRI data. This means that dynamic causal models — with
the requisite detail — are generally limited to informative EEG or MEG data. These (neural mass) models
can support fine-grained inferences about changes in the excitability of superficial pyramidal cells, which are
thought to encode uncertainty or precision. Please see (Pinotsis et al., 2014; Auksztulewicz & Friston, 2015)
for a discussion and empirical examples.

In dynamic causal models of fMRI, one often restricts the interpretation — in terms of precision or
attentional gain — to intrinsic connections that determine the postsynaptic gain or excitability of neuronal
populations. The synaptic mechanisms usually invoked rest upon fast-spiking inhibitory interneurons and
modulatory neurotransmission; e.g., (Shipp, 2016; Barron et al., 2020). When applying DCM to {MRI data,
this places emphasis on the (inhibitory) self or recurrent connections that model the excitability of neuronal
populations at each hierarchical level (via disinhibition). However, this coarse-grained modelling precludes
any assertions about the neuronal populations involved or the synaptic mechanisms mediating the encoding

of precision.
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We would also like to offer a few further clarifications in response to a reviewer’s comment. Firstly,
our analyses focus on the modulation of effective connectivity associated with pain perception and placebo
response, rather than mean resting-state connectivity, which is influenced by processes unrelated to pain
and further confounded by averaging across heterogeneous groups. Secondly, in our findings, top-down
connections became more negative with both pain perception and placebo response, a pattern consistent with
increased prediction and/or reduced precision. While this may appear paradoxical, it can be understood in
terms of the predictive content: chronic pain patients may rigidly apply strong pain predictions (‘I am in
pain’) even when sensory evidence contradicts them, due to low precision-weighting, thereby sustaining pain
perception. Conversely, placebo responders may hold strong predictions of relief (‘This pill will help’) that
override pain signals, also facilitated by reduced precision. Both scenarios thus reflect hyperpredictive states
shaped by low precision, differing primarily in the content of the prediction. That said, we do not claim
that these findings provide definitive evidence for a predictive coding framework, but rather that they are
consistent with such an account while remaining interpretable independently of it.

The model comparison discussed above furnishes clear evidence for changes in a number of connections
that underwrite nociception and placebo response. Omne might ask whether these changes can be used
diagnostically in individual patients. In other words, are the underlying effect sizes sufficiently large to
predict whether somebody is a patient or a control? Or anticipate the placebo response among patients? This
question goes beyond whether there is evidence for an association and addresses the utility of connectivity
phenotyping for precision medicine. One can estimate out of sample effect sizes using cross validation under
parametric empirical Bayesian schemes (K. J. Friston, Litvak, Oswal, Razi, Stephan, Van Wijk, et al., 2016a).
In this analysis, we withheld a particular participant and asked whether one could have predicted the group
membership, given the effective connectivity estimates from that subject. In the current analysis, every
connection showed a significant out-of-sample correlation with group membership for patient vs control and
placebo responders vs non responders analysis. This suggests that a nontrivial amount of variance in the
group membership could be explained by effective connectivity.

Details of the leave - one - out cross validation procedure can be found in the following tutorial papers
(Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, et al., 2019).

As noted by one of our reviewers, the model comparison — using Bayesian model reduction and averaging
— and cross validation — using a leave one-out procedure — highlighted differences in effective connectivity
that were consistent but not identical. More specifically, the cross-validation analysis demonstrated that (i)
what is predictive of pain experience is the strength of the backward connection from FPL to SSC, and (ii)
what is predictive of placebo response is the self-inhibitory connection from PI to itself — as identified with
Bayesian model comparison. However, Bayesian model comparison also provided evidence for differences in
forward connectivity, which do not appear to have predictive validity.

This apparent discrepancy reflects the use of Bayesian model to identify changes in effective connectivity

— in terms of the evidence for those changes — while the cross validation was used to address predictive
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validity. In more detail, hypothetical changes were evaluated in terms of their evidence; namely, a variational
bound on the (log) probability of the group data under each hypothesis or model. This is distinct from the
cross validation analyses, which provide an out-of-sample estimate of the effect sizes. In other words, the
cross validation analyses ask a different question; namely, given a new subject, could estimates of their
effective connectivity predict whether they were experiencing pain — or whether they would respond to
placebo? Usually, only differences in connectivity that have a large effect size feature this kind of predictive
validity.

A note on our choice of network nodes: as we were primarily interested in quantifying top-down or
backward and bottom-up or forward connectivity in the cortical hierarchy, we selected two primary sensory
cortices from brain regions sensitive to pain perception and one of the highest regions in pain pathway. Thus,
bilateral primary somatosensory cortices and posterior insula were selected as lower nodes. It should be
pointed out here that posterior insula is widely considered as the primary interoceptive cortex (Nieuwenhuys
& Oudejans, 2012; Barrett & Simmons, 2015; Wilson-Mendenhall et al., 2019). As higher regions we chose
the right and left lateral frontal pole. Several tracing, lesion, and physiological studies suggest that visual,
auditory, and somatosensory processing pathways converge at different regions of VLPFC (Romanski, 2012;
Spitzer et al., 2014) and DLPFC (Meienbrock et al., 2007; Zhao & Ku, 2018). We therefore chose the lateral
frontal pole as representative of a higher node. Empirical studies (Badre, 2008; Dumontheil, 2014) support a
posterior to anterior sensory representational hierarchy in the prefrontal cortex and place the lateral frontal
pole one level higher than both DL and VL PFC in the cortical hierarchy. Involvement of lateral frontal
pole in pain perception is well established in several neuroimaging and magnetic stimulation studies (Smith
et al., 2021; Ushio et al., 2020; Feitosa et al., 2020). Thus, we examined changes in the overall top-down and
bottom-up effective connectivity - with pain perception and placebo response - by selecting nodes at both
the highest and lowest levels of the cortical hierarchy in the pain processing pathway.

The findings from the current study should be interpreted in light of certain limitations. Firstly, our
study focused on patients with knee osteoarthritis, a well-known cause of chronic pain. To ascertain whether
the observed changes in connectivity represents a general pattern associated with chronic pain or a specific
pattern linked to knee osteoarthritis pain, it is essential to replicate this analysis in other chronic pain
conditions. Secondly, when considering our connectivity analysis, it is crucial to acknowledge the potential
presence of confounding factors beyond the age and sex of the participants. For instance, depression and
anxiety frequently co-occur with chronic pain and may influence top-down effective connectivity in the brain.
While none of our participants reported a diagnosis of major psychiatric conditions, we did not specifically
rule out, or control for, the presence of subclinical depression or anxiety.

The findings from this study hold considerable promise for practical applications. Future research could be
aimed at assessing the efficacy of therapeutic interventions, encompassing various pharmacological and non-
pharmacological treatments, in reversing the alterations in cortical effective connectivity and pain perception.

An intriguing avenue to explore involves the use of emerging noninvasive brain stimulation techniques, such
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as Transcranial Magnetic Stimulation (TMS). Recent studies have demonstrated the ability of TMS to
modulate cortico-cortical connectivity within specific neural circuits(Fox et al., 2012; Groppa et al., 2013;
Giambattistelli et al., 2014). By applying these techniques to target specific brain regions within the pain
processing pathway, we can investigate their impact on nociception using state-of-the-art methodologies that

are currently available.

Conclusion

In conclusion, our findings advance our mechanistic understanding of the development and persistence of
chronic pain and the placebo response. Building upon emerging theoretical frameworks of brain function
such as predictive coding, our current study highlights changes in top-down, bottom-up, and intrinsic ef-
fective connectivity in pain processing pathway as potential neural markers of nociception and the placebo
response. Furthermore, it confirms the generalizability and predictive reliability of this novel marker, po-
tentially opening up new avenues for research into the neural foundations of pain and potential therapeutic

interventions.

DATA AND CODE AVAILABILITY

Our analysis code is available on GitHub (https://github.com/dipanjan-neuroscience/pain_placebo). Imag-

ing data are available on OpenNeuro platform (https://openneuro.org/datasets/ds000208 /versions/1.0.1)


https://github.com/dipanjan-neuroscience/pain_placebo
https://openneuro.org/datasets/ds000208/versions/1.0.1
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FIGURE LEGENDS

e Figure 1. Pipeline of analysis.

e Figure 2. Regions of interest: FPL: lateral frontal pole, S1: primary somatosensory cortex, PI: posterior

insula. The images were created using MRIcroGL (https://www.nitrc.org/projects/mricrogl/).

Figure 3. Accuracy of DCM model estimation: Average-percentage explained by our DCM models for

the target networks in both hemispheres.

Figure 4. A)Modulation of effective connectivity in patient population compared to the control (left
and right hemispheres) Arrow colours code direction of connectivity changes relative to the group
mean: red, increased; blue, decreased. For all subfigures line thickness is kept constant and does not
code for the effect size. Nodes are placed in different planes to denote relative position of different
nodes in cortical hierarchy. FP1: lateral frontal pole, PI: posterior insula, SSC: primary somatosensory

cortex B): Estimated connectivity parameters in study 1.

Figure 5. A)Modulation of effective connectivity in placebo responders vs non-responders (left and
right hemispheres) Arrow colours code direction of connectivity changes relative to the group mean:
red, increased; blue, decreased. For all subfigures line thickness is kept constant and does not code
for the effect size. Nodes are placed in different planes to denote relative position of different nodes in
cortical hierarchy. FP1: lateral frontal pole, PI: posterior insula, SSC: primary somatosensory cortex

B): Estimated connectivity parameters in study 2.
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