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Abstract21

Chronic pain presents a widespread and complex clinical puzzle, necessitating novel theoretical ap-22

proaches. This study expands upon our evolving comprehension of the brain’s top-down information23

processing, encompassing functions such as prediction, expectation, and attention, These processes are24

believed to play a substantial role in shaping both chronic pain and placebo responses. To examine25

hierarchical cortical processing in pain, we define a minimal cortical pain network comprising the lateral26

frontal pole, the primary somatosensory cortex, and the posterior insula. Using spectral dynamic causal27

modeling on resting-state fMRI data we compare effective connectivity among these regions in chronic28

osteoarthritic patients (n=54, 29F: 25M) and healthy controls (n=18, 10F: 8M) and further analyse dif-29

ferences between placebo responders and non-responders within the patient group. Our findings reveal30

distinct patterns of altered top-down, bottom-up, and recurrent (i.e., intrinsic) effective connectivity31

within the network in chronic pain and placebo response. Specifically, recurrent effective connectivity32

within the lateral frontal pole becomes more inhibitory, while backward effective connectivity (higher-33

to-lower cortical regions) decreases in both pain perceivers and placebo responders. Conversely, forward34

connections exhibit opposite patterns: nociception is associated with more excitatory (disinhibited) con-35

nections, whereas placebo responses correspond to more inhibitory forward connections. The associated36

effect sizes were sufficiently large to survive a leave-one-out cross-validation analysis of predictive validity.37

The observed patterns of alteration are consistent with predictive processing accounts of placebo effects38

and chronic pain. Overall, effective extrinsic and intrinsic connectivity among cortical regions involved39

in pain processing emerge as potentially valuable and quantifiable candidate markers of pain perception40

and placebo response.41
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SIGNIFICANCE STATEMENT42

Chronic pain is a widespread and complex healthcare challenge. Cognitive functions such as prediction,43

expectation, and attention are believed to influence pain perception and placebo responses through top-44

down information processing in the brain. However, empirical evidence supporting this hypothesis at the45

brain network level has been lacking. Our study addresses this gap by examining top-down, bottom-up, and46

recurrent effective connectivity within the brain’s pain processing pathways using resting-state fMRI. We47

discovered consistent and significant alterations in effective connectivity patterns in chronic pain patients48

and placebo responders, with the potential to predict individual pain experiences and placebo responses.49

These findings open new research avenues into the neural mechanisms underlying chronic pain and placebo50

effects.51
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INTRODUCTION52

Pain remains a predominant reason for medical consultations, not only in most developed nations but also53

in developing countries (Mills et al., 2019). It has a profound effect on quality of life, mental health, and54

overall functionality. Despite its ubiquity, pain particularly in the form of chronic pain, remains enigmatic55

and often impervious to effective treatment (Bonica, 1991). To devise more efficacious pain management56

strategies, it is imperative to gain a mechanistic understanding of its functional anatomy. In this study,57

we draw inspiration from contemporary paradigms in brain function based on hierarchical predictive coding58

(Mumford, 1992; Rao & Ballard, 1999; K. Friston & Kiebel, 2009). Employing dynamic causal modeling59

(DCM), (K. J. Friston et al., 2003, 2014) we compared patients with chronic osteoarthritic pain and control60

participants to characterize the central (predictive) processing that underwrites nociception and the placebo61

response.62

Neurobiological perspectives on pain have seen significant changes over the years. Traditional studies in63

the field adhered to the Cartesian viewpoint (pain as a bottom-up, direct-line sensory system, through which64

nociceptive inputs would travel to the brain, much like ringing a bell by pulling a rope) (A. V. Apkarian &65

Reckziegel, 2019). This perspective constituted the majority of animal model studies, focusing on peripheral66

afferents, spinal cord circuitry, their reorganization, and the molecular targets underlying chronic pain in67

rodent models. However, research has gradually expanded to include cerebral cortical regions (Treede et al.,68

1999; Tracey & Mantyh, 2007), thanks to advances in neuroimaging techniques. Notably, functional magnetic69

resonance imaging (fMRI) has played a pivotal role in shedding light on the cortical areas associated with70

pain perception (V. A. Apkarian, 1995), including the somatosensory cortex, insula, anterior cingulate cortex,71

and prefrontal cortex.72

Initially, neuroimaging research on pain perception focused on functional localization, associating specific73

brain regions with discrete functions related to pain processing (Ingvar, 1999). However, this view has evolved74

towards a more comprehensive perspective that emphasizes distributed and synthetic processing (Damascelli75

et al., 2022). This shift recognizes that pain perception does not exclusively rely on distinct regions but76

instead involves hierarchical interactions among various brain regions and networks.77

Furthermore, the conventional notion of the brain as a passive receiver of incoming stimuli has been78

challenged by emerging theories like hierarchical predictive coding (Mumford, 1992; Rao & Ballard, 1999; K.79

Friston & Kiebel, 2009). These theories underscore the pivotal role of top-down cortical processing in shaping80

our perception of pain. Pain is a highly subjective experience, as elucidated by the definition provided by81

the International Association for the Study of Pain (Merksey & Bogduk, 1994): “an unpleasant sensory and82

emotional ordeal linked to real or potential tissue damage, or described in the context of such harm.” Pain83

perception is influenced by memories, emotions, cognitive factors, and other variables, and the resulting pain84

experience does not necessarily correspond to linear nociceptive drive. Recent data even suggest that painful85

experiences can occur without a primary nociceptive input (Eisenberger et al., 2003; Derbyshire et al., 2004;86

Singer et al., 2004; Raij et al., 2005). Thus, understanding the interaction between top-down processing87
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and bottom-up sensory inputs is crucial, not only in the context of chronic pain but also in understanding88

its response to placebo treatment, where top-down cortical processing undoubtedly assumes a foundational89

role.90

Motivated by the growing appreciation of the current processing in hierarchical predictive processing91

accounts of perceptual and active inference, our study analyses the effective connectivity - among hierar-92

chically organized sensorimotor regions - and its characteristics in patients with chronic knee osteoarthritic93

pain, and their response to placebo treatment. Here, effective connectivity refers to the (directed) influence94

that one neural system exerts over another, either at a synaptic or population level (K. J. Friston, 2011).95

In contrast to data-driven approaches, such as whole-brain functional connectivity analyses, we committed96

to a model-based approach that allows one to test hypotheses about the functional organization of the pain97

network, via Bayesian model comparison.98

Our aim was to identify the distinct patterns of top-down and bottom-up effective connectivity within99

the pain processing pathway in individuals with chronic pain, and those who respond to placebos. Hence,100

we chose two primary sensory cortices - and a high level (deep or terminal) node in the nociceptive pathway101

- as regions of interest in a minimal pain hierarchy. These regions were the primary somatosensory cortex102

(SSC), the posterior insula (PI) (also known as the primary interoceptive cortex), and the lateral frontal103

pole (FP1), respectively. The lateral frontal cortex serves as the terminal relay station for several sensory104

processing pathways (for details, see discussion), including somatosensory pathways. Thus, our objective was105

to analyze alterations in overall top-down and bottom-up causal influence within the cortical pain processing106

pathway. A similar approach has recently provided fruitful results in clinical conditions like depression (Ray107

et al., 2021) and anxiety (Bouziane et al., 2022). Our connectivity analysis used spectral dynamic causal108

modeling (DCM) of resting-state fMRI data collected from chronic osteoarthritic knee pain patients and109

a control group. We identified connections that exhibit significant alterations in osteoarthritic patients.110

Additionally, in a subset of patients receiving placebo therapy, we identify distinct connections significantly111

associated with the placebo response. We estimated effect sizes for both analyses through leave-one-out112

cross-validation using parametric empirical Bayesian methods.113
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MATERIALS AND METHODS114

The primary aim of this research was to identify changes in extrinsic (i.e., between regions) top-down,115

bottom-up, and intrinsic (i.e., within region) recurrent connectivity within cortical regions that process116

nociceptive information in subjects suffering from chronic osteoarthritic pain, relative to a control cohort.117

Furthermore, we aimed to identify differences in connectivity between chronic pain patients who respond to118

placebo treatments from those who do not. We collected data from two independent studies, which were119

subject to spectral DCM. The procedural framework for our analysis is depicted in Figure 1.120

Structural and Functional MRI
from Individuals with and without Pain

Standard Preprocessing including
Friston 24-parameters
Model Regression

Extraction of
First Principal Component Time Series

FP1

PI

SSC

FP1

PI

SSC

Spectral DCM, BMA, PEB
Pain vs NO Pain

Leave-one-out Cross Validation

FP1

PI

SSC

FP1

PI

SSC

Spectral DCM, BMA, PEB
Placebo Responders vs Non Responders

Leave-one-out Cross Validation

Figure 1: Pipeline of analysis

Study Participant121

The participants in this study were drawn from two separate research projects conducted at Northwestern122

University, USA. The first study involved a two-week placebo-only treatment, while in the second study,123

patients received either three months of placebo or three months of duloxetine treatment. A number of124

patients either did not complete the studies they were enrolled in, or their brain scans did not meet the125

quality assessment standards. As a result, the present analysis included 16 patients from study 1 and 38126

patients from study 2. Additionally, 20 age-matched healthy control subjects were recruited, although data127
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Table 1: Demographics and clinical data

Groups Analysis 1 Analysis 2

Patients Controls Responders Non-responders

Age 57.40 ± 6.55 58.16 ± 6.87 55.87 ± 4.05 56.25 ± 5.57

Gender 29F 25M 10F 8M 5F 3M 3F 5M

Dominant Injury Side 51 Right 5 Both NA 8 Right 8 Right

Baseline VAS 6.77 ± 1.41 NA 7.37 ± 1.35 6.68 ± 0.75

Baseline WOMAC 45.96 ± 15.27 NA 45.50 ± 18.60 36.25 ± 14.49

% Analgesia VAS 18.84 ± 33.35 NA 54.34 ± 29.45 -7.12 ± 18.58

% Analgesia WOMAC 19.63 ± 30.85 NA 38.61 ± 24.60 7.34 ± 20.97

from 2 of these subjects had to be discarded due to quality concerns, leaving a final subset of 72 participants.128

The patients were recruited through public advertisements and Northwestern University-affiliated clinics.129

All patients underwent brain scans before the commencement of their respective treatments or placebos.130

Each participant provided written informed consent to participate in procedures that were approved by the131

Northwestern University Institutional Review Board committee (STU00039556).132

All osteoarthritis (OA) participants met the criteria established by the American College of Rheumatology133

for OA and experienced pain for at least one year. Specific inclusion and exclusion criteria were applied,134

including the presence of other chronic pain conditions and major depression. Participants were required to135

have knee pain intensity rated at least 4 out of 10 on an 11-point numerical rating scale (NRS) within 48136

hours of the screening visit. Patients were asked to discontinue all analgesic medications two weeks before137

the trial and were provided with acetaminophen as a rescue medication.A detailed list of all inclusion and138

exclusion criteria can be found in Table S1, with participant demographics provided in table 1.139

It should be noted that in Table 1, % analgesia is reported for both the placebo and duloxetine groups in140

Analysis 1, as this analysis included OA patients from both treatment arms along with controls. For Analysis141

2, % analgesia is reported only for the placebo group, as this analysis focused solely on distinguishing placebo142

responders from non-responders.143

Study Design144

In the current study, we analyzed a subset of data from two studies. Our primary goal was to compare resting-145

state effective connectivity patterns among patients from both studies and control participants. Additionally,146

we conducted comparisons of effective connectivity between placebo responders and non-responders in Study147

1. It is important to note that we refrained from merging the two studies in the later analysis due to variations148

in the duration of placebo use (two weeks versus three months).149

To clarify, the first analysis included OA patients from both studies—those who received placebo (Study150
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1 and Study 2) and those who received duloxetine (Study 2)—along with separately recruited individuals151

without pain. The goal of this analysis was to compare individuals with pain to those without pain. The type152

of intervention (placebo vs. duloxetine) was not a factor here. The second analysis focused exclusively on OA153

patients from Study 1 who received placebo and were subsequently classified as responders or non-responders154

based on their outcomes assessed two weeks after the fMRI scans (also see Figure S1).155

For brevity, we have omitted specific details about the two studies in this paper. Readers interested in156

obtaining further information can refer to (Tétreault et al., 2016; Schnitzer et al., 2018) for details.157

Behavioral and Clinical Measures158

Participants from both studies completed a general health questionnaire and a Visual Analog Scale (VAS)159

rating of their knee OA pain, on a scale of 0 to 10. Additionally, participants completed the Western Ontario160

and McMaster Universities Osteoarthritis Index (WOMAC), the Beck Depression Inventory (BDI), and161

the Pain Catastrophizing Scale (PCS). All questionnaires were administered on the day of brain scanning.162

Response categorization was determined initially using only the VAS measure and then validated using163

WOMAC scores. Analgesic and placebo responses were pre-defined individually as a minimum of a 20%164

reduction in VAS pain from baseline to the end of the treatment period; otherwise, subjects were classified165

as non-responders. This threshold was chosen based on prior research findings (Baliki et al., 2012) and166

a recent meta-analysis estimating the magnitude of placebo analgesia (Vase et al., 2015). In Study 2, to167

partially account for regression to the mean effects, VAS pain was measured three times over a two-week168

period before treatment initiation and after discontinuation of medication use, with the average score used169

as the indicator of pain at study entry.170

Neuroimaging Data171

Figure 1 offers a schematic outlining the steps involved in the acquisition and analysis of neuroimaging data.172

The neuroimaging data from a subset of participants in the current study has been previously reported173

in another publication (Tétreault et al., 2016). However, that earlier study primarily used a data-driven174

approach based on correlation-based (undirected) functional connectivity analysis of whole-brain data. In175

contrast, the current study addresses specific hypotheses by evaluating the evidence for network models of176

(directed) effective connectivity among functionally characterized brain regions.177

Functional MRI Data Acquisition178

Imaging data were acquired using a 3T Siemens Trio scanner equipped with a standard radio-frequency head179

coil. The structural and functional images were acquired with the following parameters:180

Structural MRI: Sequence: MPRAGE (T1-anatomical brain images), Field of View: 256× 256× 256181

mm, TR/TE: 2500/3.36 ms, Flip Angle: 9°, Voxel Size: 1× 1× 1 mm, Slices: 160182
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Functional MRI: Sequence: Multi-slice T2*-weighted echo-planar images,TR/TE: 2500/30 ms, Flip183

Angle: 90°, Slice Thickness: 3 mm, In-plane Resolution: 64× 64, Number of Slices: 40184

Pre-processing185

The fMRI data underwent preprocessing and analytical procedures using the SPM12 v7771 toolbox (Sta-186

tistical Parametric Mapping, available at http://www.fil.ion.ucl.ac.uk/spm). To ensure equilibrium in mag-187

netization, the initial five scans were excluded. The preprocessing pipeline included slice timing cor-188

rection, alignment to the mean image, motion correction, and coregistration with the participant’s T1-189

weighted scans. Subsequently, the images were normalized to the standard Montreal Neurological Institute190

(https://www.mcgill.ca) template, and resampled to 4 × 4 × 5 mm³ resolution. Motion correction involved191

second-degree B-Spline interpolation for estimation and fourth-degree for reslicing, while coregistration lever-192

aged an objective function based on mutual information, and spatial normalization used fourth-degree B-193

Spline interpolation. Spatial smoothing was applied with a Gaussian kernel at full-width half-maximum194

dimensions of 4 × 4 × 10 mm³. Additional noise reduction was performed by regressing out extraneous195

variables, including Friston-24 head motion parameters and signals from the cerebrospinal fluid and white196

matter. To mitigate low-frequency drifts in the data-stemming from physiological activities and scanner-197

related factors-temporal filtering with a high-pass threshold of 1/128 Hz was applied.198

Selection of ROIs and extraction of time series199

The areas we focused on in our study included the lateral frontal pole (FP1), the primary somatosensory200

cortex (SSC), and the posterior insula (PI), as shown in Figure 2.. We defined these regions of interest by201

using predefined masks from the SPM Anatomy toolbox, as cited in reference (Eickhoff et al., 2005). To pre-202

pare the data for dynamic causal modeling (DCM), we took the first principal components of the voxel time203

series within these masks. We then adjusted the time series for “effects of interest” (i.e., mean-correcting204

the time series).205

206

Dynamic Causal Modelling and Parametric Empirical Bayes207

We used spectral DCM implemented in SPM12 v7771 (http://www.fil.ion.ucl.ac.uk/spm) to estimate effec-208

tive connectivity within and between brain regions in the above (minimal) pain hierarchy. Spectral DCM209

offers computational efficiency, when estimating effective connectivity from resting state timeseries, which210

are summarized in terms of their cross spectral density. Dynamic Causal Modeling (K. J. Friston et al., 2003)211

represents a well-established technique for estimating the causal architecture (i.e., directed effective connec-212

tivity) generating distributed neuronal responses using observed BOLD (Blood-Oxygen-Level-Dependent)213

signals recorded from fMRI. This approach relies primarily on two equations. First, the neuronal state214

equation models the change in a neuronal activity over time, considering directed connectivity within a215
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Figure 2: Regions of interest: FPL: lateral frontal pole, S1: primary somatosensory cortex, PI: posterior insula. The

images were created using MRIcroGL (https://www.nitrc.org/projects/mricrogl/).

distributed set of regions. In the context of DCM for cross spectral density7, these regions are subject216

to endogenous fluctuations, where the requisite spectrum is estimated. Second, an empirically validated217

hemodynamic model describes the transformation of the neuronal state into a BOLD response.218

The neural state equation can be expressed as follows:219

220

ẋ(t) = f
(
x(t), θn

)
+ v(t) (1)

The function f represents the neural model in terms of neuronal dynamics, ẋ represents the rate of change221

of neuronal states x, θn signifies the unknown connectivity parameters, reflecting effective connectivity and222

v(t) accounts for a stochastic process that models endogenous neuronal fluctuations, driving the resting223

state. The hemodynamic model equation converts the ensuing neuronal state into a BOLD measurement:224

225
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y(t) = k
(
x(t), θh

)
+ ϵ(t) (2)

Here, the function k defines the biophysical mechanisms responsible for translating neuronal activity into226

the BOLD response, characterized by parameters θh, and also accounts for measurement noise denoted as ϵ.227

Spectral DCM (K. J. Friston et al., 2014) provides a computationally efficient approach to invert models228

for resting state fMRI. It simplifies the generative model estimation process by transforming data features229

into the frequency domain using Fourier transforms, as opposed to using the original BOLD time series230

employed in DCM for evoked induced responses. By utilizing second-order statistics, specifically complex231

cross-spectra, spectral DCM overcomes the challenge of estimating time-varying fluctuations in neuronal232

states. Instead, it estimates their spectra, which remain time-invariant. In essence, this approach replaces233

the complex task of estimating hidden neuronal states with the more manageable problem of estimating their234

correlation functions of time or spectral densities across frequencies, including observation noise. To achieve235

this, a scale-free (power-law) formulation is utilized for both endogenous and error fluctuations, as outlined236

in (Bullmore et al., 2001), expressed as follows:237

238

gv

(
ω, θ

)
= αvω

−βv

ge

(
ω, θ

)
= αeω

−βe

(3)

Here, the parameters α, β ⊂ θ determine the amplitudes and exponents that control the spectral density239

of these random effects. We employ a standard Bayesian model inversion, specifically the Variational Laplace240

method, to estimate the model parameters based on the observed signal, encompassing both the parameters241

related to the fluctuations and the effective connectivity. For a comprehensive mathematical explanation of242

spectral DCM, please refer to (K. J. Friston et al., 2014) and (Razi et al., 2015).243

In our first-level (i.e., within subject) analysis, we estimated fully connected models for each subject244

within the nociceptive network in both hemispheres (right and left). Each network comprised three nodes,245

and we estimated both between-node (extrinsic) and within-node (intrinsic) effective connectivity. To assess246

the accuracy of model inversion, we examined the average percentage of variance explained by the DCM247

model when applied to the observed (cross-spectral) data.248

For our second-level (i.e., between subject) analysis, we employed Parametric Empirical Bayes (PEB);249

namely, a hierarchical Bayesian model with a general linear model (GLM) of subject-specific parameters.250

The purpose of this PEB analysis is to estimate the effects of pain or placebo responses on effective con-251

nectivity, with subject-specific connections as random effects (K. Friston et al., 2015; K. J. Friston, Litvak,252

Oswal, Razi, Stephan, Van Wijk, et al., 2016a). PEB offers advantages over classical tests based upon253

summary statistics as it incorporates the full posterior density over parameters from each subject’s DCM,254

including their posterior expectations and associated uncertainties (Zeidman, Jafarian, Corbin, et al., 2019).255

By default, the group mean serves as the first regressor in the GLM. Additionally, our analysis included256
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three more regressors: group membership (patient vs control or placebo responders vs non responders), age,257

and sex. We employed Bayesian model reduction (BMR) to explore the range of potential models capable of258

explaining the resting state data across all subjects. BMR assesses candidate models by iteratively removing259

one or more connections from a full or parent model, as outlined in (K. J. Friston, Litvak, Oswal, Razi,260

Stephan, Van Wijk, et al., 2016a). This process involves pruning connection parameters from the full model261

and evaluating the change in log model-evidence. The pruning continues until no further improvement in262

model evidence is observed. Finally, we addressed uncertainty over the remaining models using Bayesian263

Model Averaging (BMA), as described in (Penny et al., 2010). BMA combines the parameters of selected264

models and averages them proportionally, based on their model evidence.265

266

Leave-one-out Cross-validation Analysis267

In the concluding part of our analysis, we asked whether the individual variations in effective connectivity268

could serve as predictors for pain perception and placebo response (in those who perceive pain). Essentially,269

we sought to determine if the effect size was sufficiently large to have predictive validity for a new subject.270

Selection criteria for connections included those that met a 95% posterior probability threshold (i.e., strong271

evidence) from Bayesian model reduction above. Employing a leave-one-out cross-validation method, as272

detailed in reference (K. J. Friston, Litvak, Oswal, Razi, Stephan, Van Wijk, et al., 2016b), we excluded273

one subject at a time. The predictive model, based on a parametric empirical Bayesian framework, was274

then applied to estimate the probability of the excluded participant’s classification ((i) experiencing pain or275

not, and (ii) responding to placebo or not), using the previously selected connections. The accuracy of the276

model’s predictions was quantified by computing the Pearson’s correlation between the actual and predicted277

classifications of group membership.278
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RESULTS279

Accuracy of DCM model estimation280

The inversion of DCM models for individual participants produced excellent results in terms of accuracy (see281

Figure 3). Across participants, the mean variance-explained by DCM − when fitted to observed (cross spec-282

tra) data − were 80.36% (median 85.27 %) and 77.16% (median 83.68 %) for right and the left hemisphere,283

respectively.284

Figure 3: Accuracy of DCM model estimation: Average-percentage explained by our DCM models for the target

networks in both hemispheres.

Group-Level Model Comparisons Using Parametric Empirical Bayes (PEB)285

Table 2 reports the differences in log evidence when comparing second (i.e., group) level models using PEB.286

A difference in log evidence is equivalent to the log of the Bayes factor; namely, the log odds ratio comparing287

the marginal likelihood of two models. Analysis 1 corresponds to a test for the evidence of an effect of288

patient versus control, while Analysis 2 pertains to a comparison of responders versus non-responders. The289

distribution of differences in log evidence (i.e., log Bayes factors) is over different models with different290
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combinations of free connectivity parameters. Figure S2 reports the differences in log evidence for each of291

the (256) models considered for both analyses in the right and left hemispheres.292

Generally, a difference in log evidence (or variational free energy) of three or more is considered strong293

evidence in favour of one model over another. This follows because the implicit likelihood ratio is about294

exp(3) = 20:1 (c.f., a nominal P value of 0.05 in classical inference). Clearly, there was very strong evidence295

for an effect of group under the best model (i.e., the maximum difference in log evidence was greater than296

five in all four comparisons).297

Table 2: Differences in log evidence

Mean Max Mean

Analysis 1 right 11.0892 13.3977 8.8128

Analysis 1 left 7.1287 9.6005 4.6181

Analysis 2 right 8.7683 13.8461 3.6880

Analysis 2 left -0.5837 8.2122 -7.0525

Effective connectivity298

The quantitative estimates of effective connectivity for both studies are summarized in Figure 4.B and 5.B.299

These estimates of directed coupling are in units of hertz (per second) for extrinsic (between region or off-300

diagonal entries). In other words, they score the rate at which one region responds to the neuronal activity in301

another. The intrinsic (within region or diagonal entries) are log scaling estimates of recurrent self inhibition;302

such that a positive value denotes an increase in inhibitory intrinsic connectivity.303

The mean connectivity (left panels) over all subjects was remarkably consistent over both studies and304

hemispheres. The regions have been arranged so that the lower diagonal entries reflect forward or bottom-up305

extrinsic connections; while the upper diagonal entries report backward or top-down extrinsic connections.306

These zero entries correspond to connections that have were considered redundant, following Bayesian model307

reduction. One can see that in every instance, top-down connections are either weak or excitatory, reflecting a308

positive modulatory influence on hierarchically lower regions. In accord with the no-strong-loops hypothesis309

(Crick & Koch, 1998; Lisman, 2012) - and the recurrent message passing implied by hierarchical predictive310

coding schemes (Bastos et al., 2012; Shipp, 2016)- the corresponding forward connections are universally311

weak or inhibitory. The interpretation of these estimates of directed or effective connectivity should be312

in the context of the neuronal activity measured by fMRI, which can be thought of as a lumped metric313

of macroscopic neuronal population activity, and its excursions from steady-state dynamics. Here, these314

excursions can be attributed to interoceptive inference, and introspective (endogenous) activity associated315

with the resting state.316
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Modulation of effective connectivity by chronic pain317

The pattern of modulation of effective connectivity in chronic pain patients, in relation to controls, is318

illustrated schematically in Figure 4.A, based on the quantitative estimates (in hertz) provided in Figure319

4.B. When comparing osteoarthritic patients to the control group, our analysis revealed a marked increase in320

forward connections from the left primary somatosensory cortex (SSC) towards the left frontal pole (FPL), as321

well as from the left posterior insula (PI) towards the left FPL. These differences constitute a 50% decrease322

in inhibitory influences; namely, a selective disinhibition of forward connectivity.323

Conversely, the backward connections originating from the left FPL to the left SSC exhibited a decrease324

in weak backward excitatory influences, while self-connections within the left FPL became increasingly325

inhibitory (by about 9%). Notably, no discernible changes in effective connectivity were among or within326

regions in the right hemisphere. In summary, there was a left lateralized increase in forward connectivity best327

characterized as a disinhibitory effect in the pain group, with weaker decreases in backward connectivity.328

Modulation of effective connectivity in placebo responders vs non-responders329

Figure 5.A presents a schematic reporting the relative changes in effective connectivity among individuals who330

exhibited a significant response to the placebo intervention. In this comparison, the findings were remarkably331

consistent across both hemispheres with, universally, a decrease in extrinsic connectivity, predominantly in332

forward connections. Specifically, in our comparison of placebo responders and non-responders, responders333

exhibited a shift towards an increased inhibitory influence in several key connections, including forward334

connections from the bilateral primary somatosensory cortex (SSC) to the posterior insula (PI), left SSC335

to frontal pole (FPL), left PI to FPL. This was complemented by a decrease in inhibitory self-connections336

within the bilateral PI. Furthermore, our analysis revealed that in responders, backward connections from337
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Figure 4: A) Modulation of effective connectivity in patient population compared to the control (left and right

hemispheres) Arrow colours code direction of connectivity changes relative to the group mean: red, increased; blue,

decreased. For all subfigures line thickness is kept constant and does not code for the effect size. Nodes are placed

in different planes to denote relative position of different nodes in cortical hierarchy. FP1: lateral frontal pole, PI:

posterior insula, SSC: primary somatosensory cortex B) Estimated connectivity parameters in study 1.
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Figure 5: A) Modulation of effective connectivity in placebo responders vs non-responders (left and right hemispheres)

Arrow colours code direction of connectivity changes relative to the group mean: red, increased; blue, decreased. For

all subfigures line thickness is kept constant and does not code for the effect size. Nodes are placed in different planes

to denote relative position of different nodes in cortical hierarchy. FP1: lateral frontal pole, PI: posterior insula, SSC:

primary somatosensory cortex B) Estimated connectivity parameters in study 2.
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the right FPL to SSC exhibited increased inhibitory effects, while self-connections within the right FPL338

became more inhibitory. In short, people who respond to placebo have a relative reduction in forward339

connectivity and increased intrinsic excitability (i.e., disinhibition) of the bilateral insular.340

Cross validation341

In a leave-one-out cross-validation - among all connections showing significant association with chronic pain342

perception - directed connectivity between left FP1 to left SSC was found to predict group membership343

(osteoarthritis patient or control) at a significant level of α = 0.05 (see Table 3). Similarly, in another344

leave-one-out cross validation analysis, intrinsic connectivity within right Posterior Insula (rPIns) was found345

to predict placebo response among pain perceivers at the same significant level (see Table 4). This suggests346

a nontrivial out-of-sample effect size that is conserved over subjects.347

Table 3: Pain Perception: Leave-one-out cross validation

Connections Correlation p-value

lSSC→ FP1 0.15 0.097

lPIns → lFP1 -0.18 0.93

lFP1→ lSSC 0.29 0.006

lFP1 → lFP1 0.14 0.11

Table 4: Placebo Response: Leave-one-out cross validation

Connections Correlation p-value

lSSC→ lPIns -0.57 0.98

lSSC → lFP1 -0.21 0.78

lPIns → lPIns 0.37 0.078

rSSC → rPIns -0.55 0.98

rPIns → rPIns 0.44 0.044

rPIns → rFP1 -0.51 0.97

rFP1 → rFP1 0.38 0.073
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DISCUSSION348

The most striking result of our study includes the following findings: recurrent effective connectivity within349

the lateral frontal pole becomes more inhibitory, while backward effective connectivity (from higher to lower350

cortical regions) decreases in both pain perceivers (as opposed to non-perceivers) and placebo responders351

(compared to non-responders). However, opposite changes are observed in forward connections, where352

nociception is associated with more excitatory (disinhibited) connections, while placebo responses evince353

more inhibitory forward connections. The changes in effective connectivity among pain perceivers were only354

observed in the left hemisphere. In leave-one-out cross-validation analyses, we found that the top-down355

connection from the left FP1 to the left SSC exhibited a sufficiently large (out-of-sample) effect size to356

predict whether an individual is experiencing knee pain or not. In a similar analysis of placebo response, we357

observed that the self-connection of the right insular demonstrated a sufficiently large effect size to predict358

placebo responses.359

There are a few neuroimaging studies that have explored changes in functional and effective connectivity360

within nociceptive brain regions as potential biomarkers for chronic pain and placebo response(Cui et al.,361

2016; Lee et al., 2020; Li et al., 2019; Liu et al., 2015; Liao et al., 2010; Tadayonnejad et al., 2016).362

However, our research takes a unique approach, driven by a novel perspective on the neural mechanisms363

underlying sensory perception. There is a growing consensus that perception is not simply a passive process364

of progressively abstracting sensory input in a “bottom-up” manner. Instead, it involves both forward and365

backward information flow between brain regions organized in a hierarchical fashion, which plays a pivotal366

role in shaping perception. This concept forms the foundation of much of the current thinking about the367

functional architecture of the brain. One prominent theory in this realm is predictive coding (Mumford,368

1992; Rao & Ballard, 1999; K. Friston & Kiebel, 2009), which has also been extended to the domain of369

motor function (K. Friston et al., 2011; Adams et al., 2013). The implicit exchange of neuronal messages370

within cortical hierarchies motivated are characterization of effective connectivity among pain processing371

regions organized hierarchically, and its potential relationship with pain perception and placebo response.372

The modulation of effective connectivity in osteoarthritic patients and in placebo responders have some373

commonalities (for example similar changes in backward and recurrent connections in the highest node, i.e.,374

lateral pole) and some divergence (for example, opposite changes in forward connections). These changes375

are consistent with predictive coding accounts of pain perception and placebo response. For example, our376

study found that, in patients with osteoarthritic pain, top-down connections become more inhibitory and377

bottom-up connections more excitatory in the network involving interoceptive and somatosensory regions.378

These differences are consistent with the role of top-down predictions explaining away prediction errors at379

lower levels, as proposed by the predictive coding framework (K. Friston & Kiebel, 2009; K. Friston, 2012).380

In particular, they are what would be predicted in terms of hierarchical predictive coding in which381

precision weighted prediction errors are passed forward to deeper levels of the interoceptive hierarchy to382

update or revise representations at higher levels.(Clark, 2013; X. Gu et al., 2015; Seymour & Mancini, 2020;383
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K. Friston, 2023) An increase in forward connectivity can be read as an increase in the sensitivity of higher384

levels to ascending prediction errors. This corresponds to an increase in the precision of ascending prediction385

errors in people who experience pain or, conversely, an effective decrease in the precision of nociceptive386

prediction errors in people who show a placebo response. We will return to the important notion of precision387

and its neurophysiological correlates below.388

Although long-range connections in the brain are excitatory (i.e., glutamatergic), predictive coding pro-389

poses that backward connections may preferentially target inhibitory interneurons in superficial and deep390

layers to evince an overall decrease in neuronal message passing (K. Friston & Kiebel, 2009; K. Friston,391

2012; Aitchison & Lengyel, 2017). In predictive coding, this is often read as ‘explaining away’ prediction392

errors at lower levels in sensory cortical hierarchies so that only those incoming stimuli that deviate from393

prediction (i.e., prediction errors) ascend the hierarchy to revise presentations at higher levels (K. Friston,394

2012; Aitchison & Lengyel, 2017; Ray et al., 2020). However, top-down predictions also predict the reliability395

or precision of prediction errors at lower levels, leading to a disinhibitory modulation of lower-level activity396

in populations encoding prediction errors: sometimes discussed in terms of attention (Kok et al., 2012) or397

retrieval (Barron et al., 2020). One can associate this effect of top-down modulation with the group mean398

positive modulatory effects reported above. Thus, effective connectivity in chronic pain patients appear to399

reflect an enhanced pain processing within the nociceptive pathway with an increase in forward connectivity400

corresponding to an increase in the effects of ascending or bottom-up prediction error signaling.401

An intriguing finding in connectivity changes in chronic pain patients - that warrants further comment402

- is that differences in connectivity are restricted within the left hemisphere, without any notable changes403

observed in the right hemisphere. However, note that in nearly all of the patients analyzed in the present404

study, osteoarthritis was localized to the right knee, with only a handful experiencing bilateral knee involve-405

ment. The observation aligns with the anatomy of second-order pain neurons crossing over to the opposite406

side of the spinal cord and thus affording a potential explanation for left lateralized changes in connectivity.407

However, given prior evidence of lateralized pain processing in the brain (Coghill et al., 2001; Lu et al., 2004;408

Symonds et al., 2006), further research is needed to determine whether this effect is purely somatotopic or409

indicative of broader lateralization in pain modulation.410

Current formulations of nociception - and in particular, the placebo effect-rest upon predictive coding411

and active inference accounts of hierarchical processing within the somatosensory and interoceptive hierarchy412

(Seymour & Mancini, 2020; Kube et al., 2020; L. Gu et al., 2015) In particular, there is a focus on nuancing413

the perception of pain by adjusting the confidence or precision associated with the implicit (Bayesian) belief414

updating (Kube et al., 2020; Arandia & Di Paolo, 2021; Hoskin et al., 2019; Milde et al., 2023; Pagnini et al.,415

2023).416

In brief, it may be the case that placebo effects can be attributed to a decrease in sensory precision417

of the kind associated with sensory attenuation (Kube et al., 2020; Limanowski, 2017; Wiese, 2017). Or,418

equivalently, an increase in the (subpersonal) confidence or precision afforded prior beliefs induced by the419
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administration of placebos. Both or either of these changes in precision will move posterior beliefs towards a420

prior expectation that “I am not in pain because I have taken an analgesic”. In terms of predictive coding,421

this would correspond to an increased gain or precision weighting of ascending somatosensory and nociceptive422

prediction errors, relative to the precision of prior beliefs deeper in the interoceptive hierarchy (e.g., anterior423

insular and other prefrontal regions). From a psychological perspective, increases and decreases in the424

likelihood or sensory precision can be associated with selective attention or sensory attenuation, respectively.425

Physiologically, this kind of top-down precision weighting is thought to be mediated by selective changes426

in the postsynaptic sensitivity of certain neuronal populations: e.g., superficial pyramidal cells encoding427

prediction errors (Bastos et al., 2012; K. Friston, 2023). It is precisely (sic) this modulation of synaptic428

excitability that is measured by effective connectivity and evident in our DCM results.429

In short, the changes in effective connectivity are consistent with a predictive coding formulation, in the430

following sense. Increased bottom-up prediction error corresponds to heightened pain perception, simply431

because the ascending prediction errors have been afforded more precision and therefore have more influence432

on belief updating processes at higher levels of the hierarchy. Similarly, reduced bottom-up prediction error433

signaling - combined with increased top-down predictions are characteristic of placebo responders - suggesting434

that an increase in the precision or synaptic gain at higher hierarchical levels mitigates the accumulation of435

weak evidence (i.e., imprecise nociceptive prediction errors) for the high level belief: “I am in pain”.436

It is important to qualify the interpretation of the DCM results in terms of predictive coding and predic-437

tions of precision. To draw definitive conclusions — about differences in the precision of ascending predic-438

tion errors — would require a DCM whose functional form was isomorphic with predictive coding schemes;439

namely, neuronal architectures equipped with precision or gain control of the sort used in computational440

neuroscience; e.g.,(Adams et al., 2015; Brown & Friston, 2012; Feldman & Friston, 2010; FitzGerald et al.,441

2015; Moran et al., 2013; Parr et al., 2018; Pinotsis et al., 2014). However, the requisite models would be442

too expressive to be identified or inverted using fMRI data. This means that dynamic causal models — with443

the requisite detail — are generally limited to informative EEG or MEG data. These (neural mass) models444

can support fine-grained inferences about changes in the excitability of superficial pyramidal cells, which are445

thought to encode uncertainty or precision. Please see (Pinotsis et al., 2014; Auksztulewicz & Friston, 2015)446

for a discussion and empirical examples.447

In dynamic causal models of fMRI, one often restricts the interpretation — in terms of precision or448

attentional gain — to intrinsic connections that determine the postsynaptic gain or excitability of neuronal449

populations. The synaptic mechanisms usually invoked rest upon fast-spiking inhibitory interneurons and450

modulatory neurotransmission; e.g., (Shipp, 2016; Barron et al., 2020). When applying DCM to fMRI data,451

this places emphasis on the (inhibitory) self or recurrent connections that model the excitability of neuronal452

populations at each hierarchical level (via disinhibition). However, this coarse-grained modelling precludes453

any assertions about the neuronal populations involved or the synaptic mechanisms mediating the encoding454

of precision.455
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We would also like to offer a few further clarifications in response to a reviewer’s comment. Firstly,456

our analyses focus on the modulation of effective connectivity associated with pain perception and placebo457

response, rather than mean resting-state connectivity, which is influenced by processes unrelated to pain458

and further confounded by averaging across heterogeneous groups. Secondly, in our findings, top-down459

connections became more negative with both pain perception and placebo response, a pattern consistent with460

increased prediction and/or reduced precision. While this may appear paradoxical, it can be understood in461

terms of the predictive content: chronic pain patients may rigidly apply strong pain predictions (‘I am in462

pain’) even when sensory evidence contradicts them, due to low precision-weighting, thereby sustaining pain463

perception. Conversely, placebo responders may hold strong predictions of relief (‘This pill will help’) that464

override pain signals, also facilitated by reduced precision. Both scenarios thus reflect hyperpredictive states465

shaped by low precision, differing primarily in the content of the prediction. That said, we do not claim466

that these findings provide definitive evidence for a predictive coding framework, but rather that they are467

consistent with such an account while remaining interpretable independently of it.468

The model comparison discussed above furnishes clear evidence for changes in a number of connections469

that underwrite nociception and placebo response. One might ask whether these changes can be used470

diagnostically in individual patients. In other words, are the underlying effect sizes sufficiently large to471

predict whether somebody is a patient or a control? Or anticipate the placebo response among patients? This472

question goes beyond whether there is evidence for an association and addresses the utility of connectivity473

phenotyping for precision medicine. One can estimate out of sample effect sizes using cross validation under474

parametric empirical Bayesian schemes (K. J. Friston, Litvak, Oswal, Razi, Stephan, Van Wijk, et al., 2016a).475

In this analysis, we withheld a particular participant and asked whether one could have predicted the group476

membership, given the effective connectivity estimates from that subject. In the current analysis, every477

connection showed a significant out-of-sample correlation with group membership for patient vs control and478

placebo responders vs non responders analysis. This suggests that a nontrivial amount of variance in the479

group membership could be explained by effective connectivity.480

Details of the leave - one - out cross validation procedure can be found in the following tutorial papers481

(Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, et al., 2019).482

As noted by one of our reviewers, the model comparison — using Bayesian model reduction and averaging483

— and cross validation — using a leave one-out procedure — highlighted differences in effective connectivity484

that were consistent but not identical. More specifically, the cross-validation analysis demonstrated that (i)485

what is predictive of pain experience is the strength of the backward connection from FPL to SSC, and (ii)486

what is predictive of placebo response is the self-inhibitory connection from PI to itself — as identified with487

Bayesian model comparison. However, Bayesian model comparison also provided evidence for differences in488

forward connectivity, which do not appear to have predictive validity.489

This apparent discrepancy reflects the use of Bayesian model to identify changes in effective connectivity490

— in terms of the evidence for those changes — while the cross validation was used to address predictive491
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validity. In more detail, hypothetical changes were evaluated in terms of their evidence; namely, a variational492

bound on the (log) probability of the group data under each hypothesis or model. This is distinct from the493

cross validation analyses, which provide an out-of-sample estimate of the effect sizes. In other words, the494

cross validation analyses ask a different question; namely, given a new subject, could estimates of their495

effective connectivity predict whether they were experiencing pain — or whether they would respond to496

placebo? Usually, only differences in connectivity that have a large effect size feature this kind of predictive497

validity.498

A note on our choice of network nodes: as we were primarily interested in quantifying top-down or499

backward and bottom-up or forward connectivity in the cortical hierarchy, we selected two primary sensory500

cortices from brain regions sensitive to pain perception and one of the highest regions in pain pathway. Thus,501

bilateral primary somatosensory cortices and posterior insula were selected as lower nodes. It should be502

pointed out here that posterior insula is widely considered as the primary interoceptive cortex (Nieuwenhuys503

& Oudejans, 2012; Barrett & Simmons, 2015; Wilson-Mendenhall et al., 2019). As higher regions we chose504

the right and left lateral frontal pole. Several tracing, lesion, and physiological studies suggest that visual,505

auditory, and somatosensory processing pathways converge at different regions of VLPFC (Romanski, 2012;506

Spitzer et al., 2014) and DLPFC (Meienbrock et al., 2007; Zhao & Ku, 2018). We therefore chose the lateral507

frontal pole as representative of a higher node. Empirical studies (Badre, 2008; Dumontheil, 2014) support a508

posterior to anterior sensory representational hierarchy in the prefrontal cortex and place the lateral frontal509

pole one level higher than both DL and VL PFC in the cortical hierarchy. Involvement of lateral frontal510

pole in pain perception is well established in several neuroimaging and magnetic stimulation studies (Smith511

et al., 2021; Ushio et al., 2020; Feitosa et al., 2020). Thus, we examined changes in the overall top-down and512

bottom-up effective connectivity - with pain perception and placebo response - by selecting nodes at both513

the highest and lowest levels of the cortical hierarchy in the pain processing pathway.514

The findings from the current study should be interpreted in light of certain limitations. Firstly, our515

study focused on patients with knee osteoarthritis, a well-known cause of chronic pain. To ascertain whether516

the observed changes in connectivity represents a general pattern associated with chronic pain or a specific517

pattern linked to knee osteoarthritis pain, it is essential to replicate this analysis in other chronic pain518

conditions. Secondly, when considering our connectivity analysis, it is crucial to acknowledge the potential519

presence of confounding factors beyond the age and sex of the participants. For instance, depression and520

anxiety frequently co-occur with chronic pain and may influence top-down effective connectivity in the brain.521

While none of our participants reported a diagnosis of major psychiatric conditions, we did not specifically522

rule out, or control for, the presence of subclinical depression or anxiety.523

The findings from this study hold considerable promise for practical applications. Future research could be524

aimed at assessing the efficacy of therapeutic interventions, encompassing various pharmacological and non-525

pharmacological treatments, in reversing the alterations in cortical effective connectivity and pain perception.526

An intriguing avenue to explore involves the use of emerging noninvasive brain stimulation techniques, such527
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as Transcranial Magnetic Stimulation (TMS). Recent studies have demonstrated the ability of TMS to528

modulate cortico-cortical connectivity within specific neural circuits(Fox et al., 2012; Groppa et al., 2013;529

Giambattistelli et al., 2014). By applying these techniques to target specific brain regions within the pain530

processing pathway, we can investigate their impact on nociception using state-of-the-art methodologies that531

are currently available.532

Conclusion533

In conclusion, our findings advance our mechanistic understanding of the development and persistence of534

chronic pain and the placebo response. Building upon emerging theoretical frameworks of brain function535

such as predictive coding, our current study highlights changes in top-down, bottom-up, and intrinsic ef-536

fective connectivity in pain processing pathway as potential neural markers of nociception and the placebo537

response. Furthermore, it confirms the generalizability and predictive reliability of this novel marker, po-538

tentially opening up new avenues for research into the neural foundations of pain and potential therapeutic539

interventions.540

DATA AND CODE AVAILABILITY541

Our analysis code is available on GitHub (https://github.com/dipanjan-neuroscience/pain placebo). Imag-542

ing data are available on OpenNeuro platform (https://openneuro.org/datasets/ds000208/versions/1.0.1)543
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FIGURE LEGENDS766

• Figure 1. Pipeline of analysis.767

• Figure 2. Regions of interest: FPL: lateral frontal pole, S1: primary somatosensory cortex, PI: posterior768

insula. The images were created using MRIcroGL (https://www.nitrc.org/projects/mricrogl/).769

• Figure 3. Accuracy of DCM model estimation: Average-percentage explained by our DCM models for770

the target networks in both hemispheres.771

• Figure 4. A)Modulation of effective connectivity in patient population compared to the control (left772

and right hemispheres) Arrow colours code direction of connectivity changes relative to the group773

mean: red, increased; blue, decreased. For all subfigures line thickness is kept constant and does not774

code for the effect size. Nodes are placed in different planes to denote relative position of different775

nodes in cortical hierarchy. FP1: lateral frontal pole, PI: posterior insula, SSC: primary somatosensory776

cortex B): Estimated connectivity parameters in study 1.777

• Figure 5. A)Modulation of effective connectivity in placebo responders vs non-responders (left and778

right hemispheres) Arrow colours code direction of connectivity changes relative to the group mean:779

red, increased; blue, decreased. For all subfigures line thickness is kept constant and does not code780

for the effect size. Nodes are placed in different planes to denote relative position of different nodes in781

cortical hierarchy. FP1: lateral frontal pole, PI: posterior insula, SSC: primary somatosensory cortex782

B): Estimated connectivity parameters in study 2.783
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TABLE TITLES798

• Table 1. Demographics and clinical data799

• Table 2. Differences in log evidence800

• Table 3: Pain Perception: Leave-one-out cross validation801

• Table 4: Placebo Response: Leave-one-out cross validation802
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