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Summary eClinicalMedicine
Background The aim of this review was to evaluate evidence on the use of Artificial Intelligence (Al) to support 2025;83: 103228

diagnostics in radiology, including implementation, experiences, perceptions, quantitative, and cost outcomes. E“b"s'*/e/i O”“"e/"xx
ttps://doi.org/10.

1016/j.eclinm.2025.

Methods We conducted a systematic scoping review (PROSPERO registration: CRD42024537518) and discussed 103228

emerging findings with relevant stakeholders (radiology staff, public members) using workshops. We searched four
databases and the grey literature for articles published between 1st January 2020 and 31st January 2025. Articles were
screened for eligibility (N = 8013), resulting in 140 included studies. Studies evaluated implementation (N = 7),
perceptions (N = 74), experiences (N = 14), effectiveness (N = 53), and cost (N = 6).

Findings Factors influencing AI adoption were identified, including the high technical demand, lack of guidance,
training/knowledge, transparency, and expert engagement. Evidence demonstrated improvements in diagnostic ac-
curacy and reductions in interpretation time. However, evidence was mixed regarding experiences of using Al, the
risk of increasing false positives, and the wider impact of AI on workflow efficiency and cost-effectiveness.

Interpretation The potential benefits of Al are evident, but there is a paucity of evidence in real-world settings,
supporting cautiousness in how Al is perceived (e.g., as a complementary tool, not a solution). We outline wider
implications for policy and practice and summarise evidence gaps.

Funding This project is funded by the National Institute for Health and Care Research, Health and Social Care Delivery
Research programme (Ref: NIHR156380). NJF and AIGR are supported by the National Institute for Health Research
(NIHR) Central London Patient Safety Research Collaboration and NJF is an NIHR Senior Investigator. The views
expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Copyright © 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction However, evidence of these potential impacts is
The use of Artificial Intelligence (Al) in healthcare is ~ inconsistent, making it challenging to draw conclu-
increasing globally due to its potential to address sions.® While there is excitement and optimism about
workforce shortages and rising healthcare demands.*  the use of Al there is limited research evaluating the
In radiology imaging, Al is being applied to assist  effectiveness of Al in real-world healthcare settings,
with detecting abnormalities, enhance accuracy, reduce ~ Which goes beyond testing how Al could theoretically
routine task time, and support clinical diagnoses.** work.**”

*Corresponding author.
E-mail address: rachel.lawrence@ucl.ac.uk (R. Lawrence).
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Articles

Research in context

Evidence before this study

There is limited existing knowledge about how Artificial
Intelligence (Al) is being implemented in radiology settings
and the clinical implications of using these technologies.
Existing reviews on the use of Al for diagnostics in radiology
have not yet evaluated literature which integrates findings on:
implementation; perceptions of staff, patients and the public;
staff experiences; and impact, including effectiveness and
cost.

Added value of this study

This review summarises current evidence on how Al is being
implemented in diagnostic imaging, what staff, trainees,
patients, and members of the public think about Al,
experiences of using Al in practice, the quantitative impact,
and cost. Furthermore, we build on existing work by

Recent guidelines for clinical implementation high-
light the importance of addressing evidence gaps,
emphasising that a strong evidence base is essential for
the continued use of Al in radiology.® With interest in
Al on the rise, it is crucial to understand how Al is being
adopted globally for diagnostic purposes, evaluate the
overarching effectiveness and costs of these technolo-
gies, and consider the experiences and perceptions of
relevant stakeholders. Existing reviews have not yet
evaluated literature integrating all of these topics. To
address this gap, we conducted a rapid systematic
scoping review and stakeholder workshops. Our review
addresses the following research questions:

1. How have Al tools been implemented to support
diagnostics in radiology?

2. How have AI tools supporting diagnostics in radi-
ology been experienced and perceived?

3. What evidence exists on effectiveness and cost of Al
tools to support diagnostics in radiology?

4. How has evidence on implementation, experiences,
perceptions, quantitative outcomes, and cost of Al
been measured, collected, and analysed?

5. What do stakeholders (staff and the public) think
about the review findings?

Methods
Registration

This review was registered on PROSPERO
(CRD42024537518).
Design

As part of a wider rapid evaluation of Al deployment for
chest diagnostics in the English National Health Service
(NHS) (part of the AI diagnostic fund, AIDF),” we con-
ducted a rapid systematic scoping review.'* We used the

discussing review findings with staff in radiology and
members of the public who may experience Al-based care
using workshops.

Implications of all the available evidence

Research suggests that current Al implementation is based on
experimental learning rather than being informed by rigorous
evidence. To understand how to best use Al in the
complexities of radiology practice, we highlight the
importance of evaluating how Al is implemented and used as
a complementary tool in real-world settings. Future research
should focus on key evidence gaps, including the process of
implementation (including procurement), experiences of
using Al in practice, long term cost-effectiveness, the risk of
increasing false positives, and the impact on wider patient
pathways and hospital systems.

Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) statement," supplemented by
two stakeholder workshops (one with radiology staff and
one with members of the public) to discuss review
findings. Scoping review methodology was chosen to
address the varied review topics in a field of emerging
evidence'” and involves bringing together evidence and
summarising the findings.” In rapid scoping reviews,
the scope/focus and processes are streamlined to enable
a quicker evidence synthesis."”

Search strategy and selection criteria
Studies eligible for inclusion:

+ Focused on Al being used to support diagnostics in
radiology (algorithmic use for image interpretation
and decision-making, not image generation).
Empirical studies (covering implementation, experi-
ences, perceptions, quantitative or cost outcomes).
Quantitative studies needed to evaluate Al as a sup-
port tool for human decision-making, rather than
being used in isolation; in line with current guidance
that Al should be used with human supervision.'***
Published between 1st January 2020 and 31st January
2025, due to the rapid advancements of technology
within healthcare during this period, and the publi-
cation of policy documents on the use of ALY

+ Covered United Kingdom (UK)-based and interna-

tional evidence.
+ Written in English.

See Appendix S1 for detailed inclusion and exclusion
criteria.

Four databases were searched: Medline-Ovid
[PubMed], PsycInfo, CINAHL Plus, and Web of Sci-
ence Core Collection. Grey literature was identified
through policy websites, topic-specific websites, and
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grey literature databases (e.g., Royal College of Radiologists,
The Health Foundation, and Google Scholar). We also
searched reference lists of review articles*'*'” and discussed
identification of further papers with external stakeholders
and clinical experts (TOR, FG). One researcher (RL) con-
ducted the search and inputted records onto EndNote,"
followed by Rayyan,' to remove duplicates.

The search strategy was developed iteratively using
Ovid-Medline, with assistance from a UCL librarian (DM).
Search terms were informed by previous research' and
guidance from clinical experts (TOR, FG). These terms
covered areas such as Al, radiology imaging, clinical
practice implementation, experiences and/or perceptions
and quantitative and cost outcomes (Appendix S2).

Screening and study selection

Studies were screened in three phases: i) title, ii) ab-
stracts/study summaries, and iii) full texts. One
researcher (RL) screened all titles and abstracts. 10% of
excluded papers were reviewed by one of three re-
searchers (ED, EM, CSJ). Full texts were screened by one
of four researchers (RL, ED, EM, CS]), depending on the
methodology of the paper. Disagreements were discussed
within the team until a consensus was reached.

Data extraction and charting

A data extraction tool was developed. This included
study characteristics, setting, implementation context,
methods and design, and study findings pertaining to 1)
implementation, 2) experiences, 3) perceptions, and 4)
quantitative and cost outcomes (Appendix S3). One of
four researchers (RL, ED, EM, CS]J) piloted the tool on
one study relating to each of the different topics
explored in the review. The data extraction tool was used
to extract findings from all studies. Disagreements
when developing and editing the tool were discussed
within the team until a consensus was reached.

Synthesis of results

Narrative synthesis was used to analyse review find-
ings.”” We extracted all data relating to implementation,
experiences, and perceptions, including illustrative
quotes from qualitative studies. Data were coded line-by-
line and findings grouped thematically. Quantitative
evidence on effectiveness was synthesised by organising
results by diagnostic accuracy, time and workflow, and
change in clinical decision making. The narrative syn-
thesis for cost outcomes was supported by abridged data
extraction tables, including incremental costs, incre-
mental cost-effectiveness ratio, cost savings, net present
value, and quality-adjusted life years (QALYs). Due to
the heterogeneity of the studies, a quantitative synthesis
was not feasible.

Critical appraisal

The Mixed Methods Appraisal Tool*' was used to eval-
uate study quality. The tool was applied to quantitative
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effectiveness studies by two researchers (ED, CSJ),
qualitative studies, mixed-methods, and quantitative
survey studies by one researcher (RL). The quality of
cost studies was evaluated (EM) using the Drummond
checklist” and the rating scale developed by Doran.*

Stakeholder workshops

Two online stakeholder workshops were conducted.
Workshops were held with members of the public and
radiology staff working in an English healthcare setting
(Appendix S4). Participants were recruited via public
involvement in research channels, or via AIDF col-
leagues and clinical expert co-authors sharing the advert
with radiology staff via email. Participants were selected
based upon their experience in radiology and/or their
experiences of diagnostic care, to ensure that a range of
perspectives were included (Appendix S4). All partici-
pants were sent an information sheet and consent form
ahead of the workshop. Preliminary findings were sent
to participants ahead of the workshop and presented
during the workshop (Appendix S5). Participants then
discussed the findings. Workshops were audio-recorded
and transcribed. Findings were analysed using thematic
analysis* structured around review findings.

Ethics

Ethical approval for the workshops was obtained from
the University College London Ethics Committee
(27037/001). Written informed consent was obtained
from all participants before taking part in the work-
shops. Ethical approval was not required for the review.

Role of funding source

The funders did not have a role in study design, data
collection and analysis, writing of the manuscript or the
decision to publish. The views and opinions expressed
are those of the authors and do not necessarily reflect
those of the NIHR or the Department of Health and
Social Care.

PPIE co-authors (RM, JL, AH) were involved in study
conceptualisation and design. They also co-designed study
materials for the workshops, including the summary
document sent to participants and presentation slides.

Results

Study selection and characteristics

8013 studies were identified, and 140 studies included
(see Fig. 1), of which 7 studied implementation, 14 ex-
periences, 74 perceptions, 53 quantitative impact and
effectiveness, and 6 cost-effectiveness. Forty of the
included studies were published in 2024-January 2025,
indicating rapid growth in the Al research field (N =13
published in 2020, N = 27 in 2021, N = 25 in 2022,
N =35 in 2023, N = 38 in 2024, and N = 2 in January
2025). Some studies covered multiple topics and have
been included more than once in Table 1. Included
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Fig. 1: Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.

studies were conducted in varied countries, covered
different imaging modalities, and applied Al to varied
patient pathways (Table 1).

Methods used for data collection and analysis

All implementation studies (N = 7) used qualitative
methods (see Appendix S6). Experiences (N = 14) and
perceptions (N = 74) were evaluated using quantitative,
qualitative, and mixed methods. Of the quantitative
studies that measured effectiveness of Al (N = 53), only
23 studies”* evaluated Al in a live pathway, of which 7
measured diagnostic accuracy. The remaining studies
simulated typical workflow, often using a bespoke tool
developed and validated as part of the study or a com-
panion study. The effect of reader experience was the
most common influencing factor measured to assess
effect on findings (25/53).

The cost-related studies (N = 6) used Markov based
models*”***° and Monte Carlo forecasting methods®' to
demonstrate the costs and health outcomes of Al-aided
and non-Al strategies. Analyses were conducted from a
societal perspective in the context of the origin country,
using observational data and assumptions as well as
parameters from randomised trials. Costs were esti-
mated using the origin country’s public and private
reference costs.

The AI tools used in quantitative studies of effec-
tiveness were either a pre-existing commercially avail-
able tool or a bespoke tool designed as part of the study
or companion study (Appendix S6 and Supplementary
File S1).

Measuring effectiveness and cost effectiveness

Quantitative measures used to evaluate effectiveness
covered three categories: (1) Diagnostic accuracy, (2)
effect on time and workflow, and (3) effect on clinical
decision-making. General measures of diagnostic accu-
racy included sensitivity, specificity, area under the
curve (AUC), positive predictive value (PPV), negative
predictive value (NPV), and accuracy (proportion of
correct results). Cost-effectiveness studies measured
health outcomes including tooth retention time (in
years) until carries detection for recipients of oral health
care and quality-adjusted life years (QALYs). Other
outcomes measured included incidence, mortality, scan
time, and withdrawal time (Supplementary File S1).

Implementation

Out of the seven implementation studies, four explored
the process of implementation, including the integration
of Al into clinical practice and associated barriers and
facilitators.”** Three studies®*** explored experiences of
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Study characteristics Overall (N = 140)
Study focus®

Implementation 7

Experience 14

Perceptions 74

Effectiveness (quantitative studies) 53

Cost 6

Focus across multiple topics”
Implementation, experiences, and perceptions
Experiences and perceptions
Implementation and perceptions
Effectiveness and cost effectiveness

N N R W W

Effectiveness and experiences

Study characteristics Overall Study focus®
(N = 140)

Implementation  Experiences  Perceptions  Effectiveness Cost
(N=7) (N =14) (N =74) (quantitative) (N =6)
(N =53)

Location
United Kingdom (UK)
China
United States of America (USA)
Korea

[
~
=
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—
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iy

Germany

Saudi Arabia

Italy

The Netherlands
Australia

India

Japan

Spain

World-wide

Africa

Europe-wide

France

Nordic countries
Singapore
Switzerland

United Arab Emirates
Argentina

Australia & New Zealand
Austria

Canada

China and Germany
Egypt

Finland

Ghana

Ireland

Jordan

Malaysia

Malta

Middle East and India
Nigeria

Taiwan

Thailand

Unclear

Vietnam
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Western Europe

(Table 1 continues on next page)
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Study characteristics Overall Study focus®
(N = 140) Implementation  Experiences  Perceptions  Effectiveness Cost
N=7) (N = 14) (N =74) (quantitative) (N =6)
(N =53)
(Continued from previous page)

Imaging modalities
Any (not specified—focused on Al more broadly) 67 3 3 65 0 0
X-ray 19 1 2 1 16 1
Computed tomography (CT) 18 1 2 2 16 0
Magnetic resonance Imaging (MRI) 10 1 1 2 7 1
Colonoscopy 7 0 1 1 5 2
Ultrasound 7 0 0 0 7 0
Radiographs 5 0 5 1 0 0
Mammography 2 0 0 0 2 0
MRI/MRI fusion biopsy 1 0 0 1 0 0
Computed tomography (CT) or magnetic resonance 1 0 0 1 0 0
imaging (MRI)
Computed tomography angiography (CTA) 1 0 0 0 0 1
Images acquired during endoscopic procedures 1 0 0 0
X-ray, CT, DXA (bone density scan), and MRI 1 1 0 0 0 0

Patient pathways (including condition/s)
Any (not specified—focused on Al more broadly) 66 3 3 63 0 1
Chest/thoracic/lung 23 1 5 3 17 0
Colorectal 7 0 1 1 5 2
Prostate 7 1 1 3 4 0
Fractures 5 0 2 0 4 0
Stroke 5 0 0 0 4 1
Breast 4 0 0 0 4 0
Coronary artery disease 3 0 0 0 3 0
Pulmonary embolism 3 0 0 0 3 0
Thyroid 3 (0] 0 0 3 (0]
Dentistry 2 0 0 1 1 1
Ligament ruptures 1 0 0 0 1 0
Anaesthesia 1 0 0 0 1 0
Bone maturity 1 1 0 0 0 0
Covid-19 1 0 0 0 1 0
Lumbar spinal stenosis 1 0 0 0 1 0
Musculoskeletal 1 0 0 1 0 0
Pneumonia 1 0 1 0 0 0
Possible gastric neoplasm 1 0 0 0 0 1
Skin 1 0 0 1 0 0
Varying: Pulmonary embolism, intercranial haemorrhage, 1 0 1 1 0 0
and acute cervical spine fractures
Varying: Cardiac, pulmonary, and musculoskeletal 1 0 0 0 1
Varying: chest/lung nodules, Covid, fractures, scoliosis, 1 1 0 0
prostate, neuro/dementia

Participant group
Radiology staff 5 6 34 0 0
Wider clinical staff 1 4 4 0 0
Residents/students/trainees 0 2 10 0 0
Patients 0 0 11 0 0
Members of the public 0 0 2 0 0
Radiology staff, wider clinical staff, stakeholders, and 1 1 1 0 0
patients
Radiology and wider clinical staff 0 1 0 0
Radiology staff and radiology students 0 0 7 0
Radiologists and computer scientists/industry and IT staff 0 0 3 0

(Table 1 continues on next page)
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Study characteristics Overall Study focus®
(N = 140) ) - - -
Implementation  Experiences  Perceptions  Effectiveness Cost
(N=7) (N =14) (N =74) (quantitative) (N =6)
(N = 53)
(Continued from previous page)
Staff (radiology and wider) and members of the public 0 1 0 0
Staff (radiology and wider), patients, and members of the 0 1 0 0
public (including some carers)
Diagnostic images and readers 0 0 53 0
Diagnostic images 0 0 0 6

“The total will not always add up to 140 as some papers had multiple areas of focus (as shown above), were conducted across countries, covered different imaging

modalities and patient pathways and recruited multiple stakeholder groups.

Table 1: Summary of study characteristics.

implementing Al in practice, with two identifying the
main barriers and facilitators.”* One study referenced
procurement when discussing the high cost of imple-
menting AL but no papers explored key processes pre-
ceding implementation (e.g., procurement).

Function of Al tools

Al was used as a tool to assist with diagnosis.”*** One
study reported 15 different applications being used in
clinical practice (8 fully integrated and 7 in exploration
or implementation phases) at one medical centre,
including lung nodule detection, fracture assessment,
measurement, and quantification.*

The process of implementation

The process of implementation involved integrating Al
into existing radiology systems used to store and trans-
mit images and reports.”>***> This enabled Al to run
automatically in the background.’ One study described
a holistic approach to implementing Al, where integra-
tion aligned social and technological aspects of clinical
practice.”* In this study, multiple AI algorithms were
working in clinical workflows across one medical
centre,” achieved by having one central workflow en-
gine where data analysed by Al was sent to relevant data
repositories.” Reasons for integrating Al into existing
systems were centred around minimising workflow
disruption, although some discussed teething problems
(e.g., Al causing interruptions as staff adapted to
viewing Al outputs).”**

Experiences of using Al

Fourteen studies explored staff and trainees’ experi-
ences of using Al (Table 1). In most studies, Al was
viewed positively as a reliable and useable tool.*****-¢> Al
was mainly used as a second reader (a support tool/
second pair of eyes for clinicians).*>**¢¢>¢* However,
there were mixed findings about using Al in practice. In
some studies, staff felt Al helped to reduce reading
times,*>*** improve accuracy,’***** and efficiency.”**
Despite this, studies reported concerns about limited
evidence,*>° the risk of false positives,’>*> and reduced
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efficiency.” In the quantitative studies evaluating effec-
tiveness, three studies measured reader confidence level
in diagnostic decisions. Findings from these studies
were mixed, some found improved self-reported confi-
dence with the use of AI* but others found Al did not
impact confidence.** ¢

Perceptions about using Al

Seventy-four studies explored perceptions (Table 1). Al
was viewed favourably in radiology™>***>** as a diag-
nostic support tool.”7®737677795-95 However, one paper
highlighted the importance of balancing positivity to-
wards Al in radiology with an element of scepticism.”
Research indicated a consistent view that Al should
not replace humansy5),35,{\0,63,70,80,83,84,86,8‘),‘)0,‘)7 108 demon_
strating the perceived importance of continued human
input. For patients, members of the public and staff,
trusting AI was often reliant on human oversight,’>%-**
transparency, and explainability.”®’*'"*"'* Some radi-
ology staff felt their profession is safeguarded by their
autonomy,”” as the use of Al alone is not viewed
favourably” or legally."* Although it was clear that AI
should not replace the human element of diagnostics,
studies reported that Al will likely change the radiology
profession™7*7+£0959%102117 gnd there were some concerns
about job security and reduced demand,"®'" despite
increased need for medical imaging."” Regarding how
Al may change radiology, studies suggested that Al may
upskill and enhance roles’* but reported a risk of
reduced autonomy.*®

Factors influencing Al adoption

Table 2 provides an overview of influencing factors.
Barriers included the high technical demand of AI
(N'=06), lack of knowledge and training (N = 20), absence
of evidence-based guidance (N = 5), complex governance
processes (N = 2), and how AI lacks empathy and
human connection (N = 8). Facilitators included inte-
grating Al into existing systems (N = 4), transparency
(N = 13), willingness to learn (N = 21), and having
Al champions/experts (N = 8). The associated risks
were staff becoming over-reliant (due to developing


http://www.thelancet.com

Articles

Experienced/actual (either during implementation or clinical use)

Perceived (what people think when asked about Al)

Barriers « High technical demand and integrating Al into existing .

infrastructures®*>>>%

Absence of evidenced guidance
Differing expectations and knowledge®***
Uncertain and limited funding®*°°
Complex governance processes®®>®

53,54,56-58

Facilitators Establishing Al champions/experts who can foster a sense of

leadership and openness®®>+>657

Integrating into existing systems/workflows (e.g., as staff are
familiar with the systems)®”54°

Imaging and clinical implementation groups
Prioritising training and familiarisation®>°
Openness among leaders®>*”

Importance of transparency
Willingness to learn about A

53,54

55,57

|80,104

Risks « Staff relying on Al (as a result of staff developing algorithmic bias
and/or blindness)®*>°

Al being inaccurate/making errors'**

Al causing disruption to workflow'**

High costs of AI*

Ethical implications (e.g., uncertainties about who is responsible for
Al, data privacy, safety etc.)>

Benefits 52,65

« Improve accuracy
Improve reporting times®”

Reduce likelihood of follow-ups
Helping with routine tasks®*>%1%4
Identifying missed diagnoses
Using Al for knowledge generation'®*

52,58

58,104

Lack of knowledge and training about how Al can be used in radiology

Speciﬁca||y/17/3,/8,/9,8z,8578/,91—94,99,116,110—125

Lk Bl . . 81,88,89,101
ck of organisational readiness and infrastructure to support Al

Al lacks human connection and empathy®*9%126-131

Importance of transparency—achieved by prioritising staff training®’3”

explaining the use of A|P109114-116:127,129
Expert leadership and support®
Willingness to learn about Al’

and facilitating trust by

8,96,121,132

71,73.77.79,80,83,85,90,95,99-102,104,105,116,120,125,133,134

Staff relying on Al (as a result of staff developing algorithmic bias and/or blindness)>*>>%7:9%93

Al being inaccurate/making errors®> 607290
De-skilling of staff>>7>7%128:135
High costs of A|58,/z,/9.8/,93,95,99,118,110,155

Ethical implications (e.g., uncertainties about who is responsible for Al, data privacy, safety
etc )87,88,93,103,107,108

Improve accuracy®”607%7>8487,90,91,136

Improve reporting times
Improving workflow efficiency
Helping with routine tasks®"/>7%5%87.96:128

70,90,126-128,132
84,91,99,128,132

Note: Where factors are experienced, we are referring to actual experiences of implementing or using Al in practice. Where factors are perceived, we are referring to what people think are the key

influencing factors. Al - Artificial Intelligence.

Table 2: Overview of factors influencing Al adoption.

algorithmic bias and/or blindness) (N = 5), Al being
inaccurate/making errors (N = 6), deskilling staff
(N = 5), the cost of Al (N = 11), and the ethical impli-
cations (N = 7). The benefits were improving reporting
times (N = 7), improving diagnostic accuracy/identi-
fying missed diagnoses (N = 12), improving workflow
efficiency (N = 5), and helping with routine tasks
(N = 10).

Quantitative evidence on impact and effectiveness
Of the 53 quantitative studies, 33 measured diagnostic
accuracy of AlL2e23134s7d04067.157-100- Across these studies,
there was consistent evidence that AI reduces the num-
ber of incorrect positive or negative results, although
some found improvements were more pronounced
among less experienced staff, and any reported im-
provements were likely to be highly dependent on study
design, implementation setting, and imaging modality.
Of the 25 studies that measured sensitivity, 19 re-
ported improvements, 5 reported no change, and one
study reported a reduction when AI was used as a diag-
nostic tool to assist readers (Table 3). However, some of
the findings were specific to less experienced staff.
Sixteen studies assessed sensitivity by reader experience
level and nine reported improvements among less expe-
rienced staff only (Table 3). Of the 23 studies measuring

specificity, findings were varied, with a smaller propor-
tion reporting improvements: 13 studies reported im-
provements, 7 reported no change, and 3 a reduction in
specificity. Ten of the 16 studies that measured the effect
of reader experience on specificity reported improve-
ments with Al assistance (Table 3).

Evidence of improvement in time and workflow was
variable, with improvements primarily seen in both
reducing image interpretation time and time to report.
Few studies reported on workflow impacts further along
the pathway (Table 4). Although there were minor var-
iations in definitions for interpretation time and time to
report due to different study designs, interpretation time
referred to time taken for a reader to interpret a single
image, and time to report referred to time between image
acquisition and documentation of the report. Of the 18
studies that measured image interpretation time, 13
found a reduction, while 5 reported an increase. There
was also a lack of consistently observed benefits across
different levels of reader experience (seniority or number
of years in post) and suspicion of images (Table 4).
Findings on time to report were more variable. Of the 10
studies that measured this outcome, 5 reported a reduc-
tion in reporting time, either for all images,”***’ for crit-
ical and urgent cases,'” or less experienced readers.”””
However, this study' also found an increase in
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Improved No change Reduction Total
Sensitivity
Total papers that measured sensitivity 1G26:31,37.137-139,141-145,149,150,152,153,155,156,158,159 528,35,147,148,157 167 25
Papers that assessed effect of reader experience”
For all levels of experience 531138,141,150,156 147,157 0 7
For less experienced readers only RS 0 0 9
Specificity
Total papers that meaSUI’Ed Speciﬁcity 1431,67,137*1}9,141,144,14‘),151,153,15(),158 713,55,145,150,155,157,15‘) 316,142,148 24
Papers that assessed effect of reader experience®
For all levels of experience 431138151156 5145,150,155,157,159 126 10
For less experienced readers only 6130/141,143,144,149,158 0 0 6
We have included three studies that measured the effect of clinical specialism and reader self-efficacy here as proxies for reader experience. *One paper found
improvements for less experienced staff doing more difficult tasks.
Table 3: Number of studies that measured diagnostic accuracy and influence of reader experience.

reporting time for non-urgent/normal images, as these
images were deprioritised despite having shorter inter-
pretation times with the aid of Al. Four studies found no
change when using Al for all images or less experienced
readers (Table 4).

Six studies focused specifically on the effectiveness
of Al in emergency departments (ED).22804142158
Readers in these studies were emergency department
physicians and non-specialists in radiology. Two***
found no difference in the length of stay, the rate of
revisiting the ED within 30 days, nor communication
times. However, one study” found shortened ED
lengths of stay for patients with a confirmed diagnosis,
whilst another found a small increase in median wait
time to discharge.” Two studies assessing the effect of
Al on clinical decision-making found that changes to the

recommendations were more likely for more critical
images, regardless of reader experience.”” One study'*
found that incorrect Al results can influence a radiolo-
gist to make wrong decisions (Table 4).

Evidence on cost-effectiveness

Findings from cost-effectiveness studies (N = 6) were
mixed. One study demonstrated that although accuracy
using Al was improved, the cost-effectiveness was not, as
more invasive treatment approaches generated costs over
the patient’s lifetime and diminished possible effectiveness
advantages.” Five papers demonstrated monetary benefits
and cost-effectiveness of the Al-aided pathways.”* !

Feedback from stakeholder workshops
Both groups discussed how review findings reflected the

final report, patient management, and image  NHS being in the early stages of using Al and learning
Reduction No change Increase Total
Interpretation time
Total papers that measured interpretation time TR RS BB SRR P iet 5a39.47,142,147,161 - 182
Papers that assessed effect of reader experience
For all levels of experience (RS EHED e F1iSs 6
For more experienced staff only 0 i 1
Papers that assessed effect of urgency of image findings
For non-urgent/normal images e il 0 2
For critical/urgent/more suspicious images 5 0 PR 3
Reporting time
Total papers that measured reporting time 5C27/46,47,142,155 4777836150 H6142 10°
Papers that assessed effect of reader experience/priority of images
For all levels of experience 0 1% 1
For less experienced readers only 1% 0 0 1
Papers that assessed effect of urgency of image findings
For non-urgent/normal images 0 0 194 1
For critical/urgent/more suspicious images 194 0 0 1

“Two papers reported both a reduction and an increase in interpretation time depending on selected confounders, hence the reported total does not equal the sum of
studies. "One paper reported both a reduction and no change in interpretation time depending on selected confounders. “One paper reported both a reduction and an
increase in reporting time depending on selected confounders, hence the reported total does not equal the sum of studies.

Table 4: Number of studies by workflow outcome measures and findings.
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through ongoing implementation. The complexity and
varied implementation of Al were described as the ‘wild
west” by staff, with a lack of guidance and structure.
However, when it comes to implementing Al in real-
world settings, staff’ spoke on the importance of inte-
grating Al into existing systems effectively, which cau-
ses minimal disruptions to workflow. Discussions
suggested that AI would be challenging in clinical
practice unless the existing context is considered. Thus,
the integration of Al needs to be managed within the
infrastructure of existing radiology systems.

Both groups were unsurprised about the mixed re-
view findings in terms of experiences (e.g., some
reporting Al had benefits and others reduced efficiency).
The complexity of how Al is being used was noted (e.g.,
in different ways to achieve a range of objectives),
making it difficult to provide a single answer about
whether Al is beneficial. Therefore, the importance of
returning to the purpose of using Al and how these
technologies can help, was emphasised.

Both groups felt the review was relevant because it
highlighted current evidence limitations, especially as Al
is often viewed as a transformative solution. Stakeholders
noted the importance of addressing evidence gaps (e.g.,
patient, carer and public experiences, health inequalities),
and among public members, including patient voices as
AT advances (example quotes in Appendix S7).

Quality appraisal of included studies

Qualitative (N = 15), quantitative survey, and mixed-
methods studies (N = 68) met most of the criteria but
there were some reports of sampling bias and limited
description of qualitative analysis in mixed-methods
studies (Supplementary File S2). The quantitative
studies (N = 53) met most of the criteria for randomised
or non-randomised studies, but many did not address
potential confounders such as patient characteristics
and co-morbidities. Since the findings depended on the
interpretation of individual readers, the sample of
readers in many studies was low, leading to risk of in-
dividual bias. Cost studies rated good (N = 6)
(Supplementary File S3) but acknowledged factors that
might impact the reliability of conclusions, including
the identified range of the relevant costs, consequences
for each alternative, the earliness in costs, country and
facility-specific considerations and consequences iden-
tification and measurement.

Discussion

Our review highlights the paucity of research conducted
in real-world settings. From the current evidence, we
conclude that AI can have positive outcomes in relation
to improving diagnostic accuracy and reducing inter-
pretation times, which aligns with some early staff ex-
periences and perceived benefits of using Al. Factors
influencing implementation (e.g., high technical

demand, lack of guidance, training and knowledge,
transparency, and expert engagement) were also iden-
tified. However, we do not know enough about the
system-wide impact of Al, the process of procurement
to implementation, experiences of using AI and/or
receiving Al-based care. Current and future imple-
mentation should consider if and how Al can address
the needs of healthcare systems, the implementation
context and educational training needs.

The limited number of studies conducted in real-
world settings aligns with research gaps highlighted in
evidence generation plans.® Existing research® and
findings from stakeholder workshops suggest this is
because services are in the early stages of implementing
AL with further work emerging.® The positive out-
comes in relation to improving diagnostic accuracy and
reducing interpretation times resonate with previous
literature.>'**'** However, findings illustrated that im-
provements in diagnostic accuracy were more likely
among less experienced staff* and there was evidence of
AT overcalling negative findings; a risk reported in pre-
vious studies.'® Furthermore, there was inconsistent
evidence regarding experiences, how Al can improve
workflow efficiency and whether these technologies are
cost-effective, with few papers studying cost specifically.
Variation in the quantitative findings were also likely to
be dependent on study design, the imaging modality,
and clinical application. From the current evidence, we
cannot draw conclusions on how the potential benefits
of Al may impact longer-term patient outcomes and the
wider healthcare system (e.g., changes in volumes of
patients for diagnostic/treatment services). Findings
support previous research which shows AI has the po-
tential to positively impact diagnostics in radiology.’ In
parallel, the evidence highlights caution in how Al is
perceived (e.g., as a complementary tool which can help
to navigate current demand, rather than a solution).'*

We extend previous work by reviewing literature on
real-world implementation, demonstrating AI has been
used to support diagnostics in a complementary role
and not a replacement. This aligns with previous
research,'*'*® user guidance,' and stakeholder views,'"
which highlight the central role of clinicians in main-
taining human continuity (ensuring that humans have
oversight and Al is not used with complete autonomy).
Although AI has the potential to positively impact
radiology, the synthesised literature shows that
continued human oversight and transparency about
how AI makes decisions, are needed to foster a sense of
trust when using Al for diagnostic purposes. These
findings relate to ethical concerns often associated with
Al, with existing evidence recommending that Al
implementation should promote safety and trans-
parency whilst reducing risk of harm.'**

Furthermore, although few papers have evaluated
implementation, our findings highlight the complexity
of integrating Al into existing healthcare systems,
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especially when organisations may not be ready to
support such technical advancements,' with an
absence of clear guidance.”® Integrating AI will likely
cause initial disruptions; our findings suggest that it is
essential to evaluate the implementation context and
ensure there is capacity to support the integration pro-
cess.'* Otherwise, as highlighted in our workshops, at-
tempts to improve workflow efficiency by using AI may
have the opposite effect. Variation in how AI is being
used, complexity surrounding the ethical landscape and
how Al can be used effectively alongside clinicians,
emphasises a need for further evidence that can
continue to inform clear implementation guidance and/
or practice frameworks,”*'* such as the recently devel-
oped European Union AI Act.'®

We advance previous research by synthesising staff
experiences of using Al. Importantly, staff and trainees
had limited experience using AlI; consistent with sur-
vey papers where only a small proportion of partici-
pants had used AI in a clinical setting® and likely
reflected limited clinical implementation. No studies
explored patient, carer, or public experiences of Al-
based care, although workshop discussions and cur-
rent policy guidance® highlight the importance of pa-
tient voice/engagement. Therefore, the evidence needs
to include the experiences of groups whose acceptance
and trust are important for the ongoing use of these
technologies.'”'”

Although evidence shows potential value in using AlI,
our findings suggest that implementation and use are
happening ahead of developing a robust evidence base.®
This was reflected further in stakeholder workshops,
where implementation was described as a continuous
learning process rather than being evidence informed.
However, Al needs to be implemented to build an evi-
dence base that explores real-world implementation.
Therefore, to ensure future use can be evidence
informed, there needs to be a careful balance between
implementing Al safely and conducting robust evalua-
tions, to enable learning from important technological
advancements. For evidence users, our review high-
lights what is already known and what needs to
considered moving forward, when interest continues to
grow'® and Al is used in other clinical areas.”””

For example, it is essential to be clear on the specific
needs of healthcare systems (e.g., improving clinical
outcomes and administrative efficiency), whether Al can
effectively meet these needs over other solutions, and
that these needs are communicated to Al developers, so
that implementation is problem-driven rather than
product-driven."”" Additionally, considerations including
the healthcare pathway, country, and clinical conditions
are needed, as there might be differences from setting-
to-setting. Another factor is the population size as Al
tools seem more effective in high-prevalence pop-
ulations.” Furthermore, we highlight the need for
tailored educational programmes with input from
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experts, that acknowledge current knowledge and the
complexity of wusing AI across different clinical
contexts.”'””

Future research should evaluate the process of
implementing Al into live clinical pathways or in
shadow/testing mode,* including pre-implementation
processes and patient, carer and public experiences of
Al-based care (e.g., experiences of the diagnostic
pathway featuring demonstrations,”"”” ethical factors
like consent and transparency, patient safety, trust in Al
and the impact of Al on empathy and human connec-
tion/relationships”). Such research may also evaluate
how unsupervised Al (used without human supervision)
is implemented, used, perceived, and experienced by
different stakeholders. Although we did not include
these papers, this could be an emerging focus as Al
continues to be implemented globally and may be used
with greater autonomy. Secondly, further research is
needed on the effect of Al on patient outcomes, wider
hospital systems (e.g., time to treatment, changes in
volumes for other diagnostic or treatment services),
diagnostic outcomes, and inequalities.® Future research
on cost-effectiveness of Al solutions in radiology is also
needed.®” Finally, understanding the long-term impact
and sustainability of Al in clinical settings is essential.”

The review had a broad and inclusive focus, sup-
ported by guidance from clinical experts (FG, TOR).
Findings present a summary about how AI is imple-
mented, used, and experienced globally, as well as cur-
rent evidence on effectiveness and cost, which may be
relevant for healthcare systems worldwide. However, it
may be difficult to generalise findings across different
health systems and only papers in English were
included. As Al is a rapidly evolving field, we may not
have captured all evidence and papers where AI was
used autonomously were out of scope. Although we
searched four databases and the grey literature, not all
databases were used. There is also a risk of publication
bias in Al research, as in other fields. Lastly, stakeholder
workshops strengthened findings by illustrating impli-
cations, but only in the context of the English NHS.

To conclude, our review suggests potential value in
using Al for diagnostics in radiology, mirrored in the
ongoing interest in AI. However, to assist with safe and
effective procurement, implementation, validation, and
evaluation, research must be planned, commissioned,
and used to address the current gaps in the evidence
base. This will help to draw conclusions about how best
to use Al as a complementary tool in the complexities of
radiology practice.
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