Simplifying Medicine Dosing for Children by

Harmonizing Weight Bands Across

Therapeutic Areas

- 5 (PhD) Hylke Waalewijn¹, (MSc) Mounier Almett¹, (PhD) Roeland E. Wasmann¹, (PhD) Tim R. Cressey²,
- 6 (Prof. MPH) Philippa Easterbrook^{3,*}, (MD) Peter Ehizibue Olumese^{4,*}, (Prof. PhD.) Anneke C. Hesseling⁵,
- 7 (PhD.) Anthony J. Garcia- Prats^{5,6}, (Prof. PhD) Joel Tarning^{7,8}, (MRCPCH) Anna Turkova⁹, (PhD) Kerri
- 8 Viney^{10,*}, (PhD) Elin M. Svensson^{11,12}, (PhD) Angela Colbers¹², (MMed) Wilson M. Were^{13,*}, (Prof. PhD)
- 9 Paolo Denti^{1,¶}, (PhD) Martina Penazzato^{14,*,¶} and the members of the expert panels.**
- 1. Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape
- 11 Town, South Africa.

- 12 2. AMS-PHPT Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai
- 13 University, Chiang Mai, Thailand.
- 3. Faculty of Medicine, Imperial College, London
- 4. Global Malaria Programme, World Health Organization, Geneva, Switzerland.
- 16 5. Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and
- 17 Health Sciences, Stellenbosch University, Cape Town, South Africa.
- 18 6. Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-
- 19 Madison, Madison, Wisconsin, USA.

20	7.	Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol
21		University, Bangkok, Thailand.
22	8.	Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of
23		Oxford, Oxford, UK.
24	9.	Medical Research Council Clinical Trials Unit at University College London, UK.
25	10.	Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland.
26	11.	Department of Pharmacy, Uppsala University, Uppsala, Sweden.
27	12.	Department of Pharmacy, Radboudumc Research Institute for Medical Innovation (RIMI),
28		Nijmegen, the Netherlands.
29	13.	Department of Maternal, Newborn, Child and Adolescent Health and Ageing, World Health
30		Organization, Geneva, Switzerland.
31	14.	Department of Research for Health, Science Division, World Health Organization, Geneva,
32		Switzerland.
33		
34	*The a	uthor is a staff member of the World Health Organization. The author alone is responsible for the
35	views 6	expressed in this publication and they do not necessarily represent the decisions or policies of the
36	World	Health Organization.
37	**An o	verview of the consulted expert panelists can be found in the Supplementary Material, pages 2 -
38	4.	
39	¶Shari	ng last authorship
40		
41		
41		
42		

43	
44	
45	Corresponding author: Paolo Denti, Prof, Dr
46	University of Cape Town, Department of Medicine, Division of Clinical Pharmacology
47	K45 Old Main Building, Groote Schuur Hospital Observatory, Cape Town, 7925, South Africa
48	E-mail: paolo.denti@uct.ac.za
	Tel: +27 (0)21 404 7719

Summary

Generally, dose recommendations for children are expressed as fixed dosing increments related to body weight known as weight bands. The weight bands recommended by WHO vary between therapeutic areas, leading to complexity and potential dosing errors when treating children for multiple diseases simultaneously. The introduction of a harmonized weight banding approach for drugs administered orally across therapeutic areas may streamline dosing for young children, but implementing such an approach would require some changes in current dosing recommendations. In this work, we describe the process we undertook to (i) identify therapeutic areas for harmonization, (ii) propose a harmonized weight-banding system to align with current use of weight bands in antibiotics, and (iii) simulate the expected impact of dose-adjustments due to harmonization. Each step of this process, along with the impact and feasibility of weight band harmonization was discussed with clinical and pharmacology experts representing four therapeutic areas: tuberculosis, HIV, malaria and hepatitis. Updated dosing recommendations in harmonized weight bands could simplify treatment for children across disease areas and are being considered for therapeutic areas that currently are not dosing based on weight bands.

Key messages

Key messages

WHO guideline documents providing treatment recommendations for children currently do
not use the same dosing principles which creates potential confusion and dosing errors
when used together.

- In this work, we investigate the feasibility of a harmonized weight banding system for pediatric TB, HIV, HCV, and malaria, that requires minimal changes from the current guidelines which would clarify and simplify dosing for children
 - Six WHO policy documents support dosing in weight bands were investigated. Simulations
 for 102 medicines were performed and discussed with a panel of clinical and pharmacology
 experts.
 - 4. These discussions indicate that harmonized weight bands can be implemented, that use 5 kg increments above 10 kg and narrower bands for lower weights to accommodate non-linear scaling of body size. Investigating dosing based on weight and age is recommended or weights below 10 kg.
 - 5. Positive feedback from expert panels and simulations suggests harmonized weight bands simplify treatment protocols, improving clarity and efficiency, particularly in LMICs where multiple medications may be combined to treat complex diseases, ultimately contributing to better health outcomes for children.
 - Support from WHO, pharmaceutical companies, and regulators is crucial for implementation, particularly for future medicines.

Background

Administering the appropriate dose to achieve optimal drug concentrations is critical to ensure safe and efficacious medicine-based treatment and prevention. This is particularly relevant in children, where body weight and age have a major impact on a drug's pharmacokinetics (the relationship between dose and achieved concentrations) and need to be carefully considered to ensure optimal drug exposures. The effect of age on pharmacokinetics is generally limited to the first 2 years of life, during which drug clearing organs and metabolic pathways mature, while after 2 years of age, drug exposure is primarily

determined by body size. Thus, weight-based dosing has become the norm in the treatment of most pediatric diseases, often with separate age dependent dosing for neonates and young infants. Although no randomized study is available, evidence from several smaller explorative studies suggests that dosing tables with predefined weight- or age-groups effectively reduce dosing errors and simplify the dosing process compared to strategies that require calculations such as mg/kg body weight, or dosing based on mg/m² body surface area.²⁻⁸ In one study among 450 medication orders written by doctors in a pediatric accident and emergency department in the United Kingdom, the prescription dose-error rate for medications prescribed according to dosing tables by weight or age (n = 194) were all prescribed correctly while the dose error rate was 9.4% (n = 256) for medicines prescribed without dosing tables. Moreover, dosing flexibility is often limited by the available formulations, usually tablets, so even doses calculated based on mg/kg ultimately result in dose bands due to the necessary rounding. The World Health Organization (WHO) guidance documents for dosing in children, which are used to shape national treatment practices, especially in low- and middle-income countries, often follow fixed cut-off points that divide dosing into weight intervals called weight bands. WHO provides dosing recommendations for many therapeutic areas (i.e. distinct fields of medical treatment focused on specific diseases or conditions) including human immunodeficiency virus (HIV) tuberculosis (TB), malaria, and hepatitis-C (HCV). Each of these employs different weight banding strategies for pediatric dosing (i.e., different cut-offs between weight bands), leading to complexity and potential confusion when treating multiple diseases (Figure 1). For example, when a child receives treatment for both HIV and tuberculosis TB, which often occur together, dose changes happen at nine different weight intervals between 3 to 25 kg. 10,11 This is because the WHO guidelines for TB and HIV use different weight bands, so dose changes are required at different weights (Figure 1). Similarly, TB-preventive treatment is recommended for children with HIV, and the same children are also at risk of acquiring malaria, bacterial infections, or HCV. 12-14 These additional treatments follow, yet again, different weight banding strategies

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

and when combined, subsequent dose changes are introduced, further complicating the dosing process. Given that dosing errors can and do occur, ^{15,16} it is reasonable to expect that harmonization of weight bands would result in improved and more practical care for children.

The weight bands that are used for the different therapeutic areas mostly have their origin from mg/kg or mg/m² (body surface area) dosing adapted to pragmatic doses achievable with the available formulations. This raises a crucial question: Are the differences in cut-off points and the related dose changes strictly necessary to deliver optimal dosing of children, or would it be possible to harmonize the weight band cut-off points across therapeutic areas and still achieve similarly safe and efficacious treatment in all children?

To answer this question and with the aim to assess the feasibility of implementing a harmonized weight banding approach, the WHO Global Accelerator for Pediatric Formulations (GAP-f, https://www.who.int/initiatives/gap-f) convened a core team and engaged several stakeholders, including clinical and pharmacology experts and multiple WHO technical departments representing different therapeutic areas. In this contribution, we summarize and report the outcome of this process.

Description of the weight band harmonization project

Project Overview and Phases

This project was structured in two phases. In the first phase, the project team mapped out the current use of weight bands in WHO-recommended drug dosing across key therapeutic areas, i.e. bacterial infections, HIV, TB, malaria, hepatitis. Based on this overview, we propose a harmonized weight band framework for possible implementation. In the second phase, the team convened panels of clinical and pharmacokinetic experts from each therapeutic area to consult them on the feasibility of weight band harmonization. To facilitate the discussion, the core project team summarized the necessary information around pediatric drug dosing for each drug considered for harmonization. Whenever no

direct clinical experience was available for the proposed dosing of a drug, modeling and simulation was used to examine the expected impact on exposure that switching to harmonized weight bands would have. The results of the simulations were reviewed, discussed, and refined with the expert panels who evaluated any concerns regarding drug safety and efficacy arising from the expected changes in exposure.

We identified and reviewed three documents that guide global drug-based treatment for children: the

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

140

141

142

143

144

Mapping Current use of Weight Bands in Pediatric WHO Guidance Documents

Essential medicines list for children, ¹⁷ the pocketbook for hospital care in children (hereafter referred to as 'the pocket book'), ¹⁸ and the handbook for integrated management of childhood illness (IMCI). ¹⁹ This review led to the identification of six priority areas, or policy documents, that recommend dosing in weight bands for drugs mostly taken orally and in an outpatient setting. These policy documents are: the weight banding tables of the pocket book, the WHO AWaRe (Access, Watch, Reserve) Antibiotic Book, (hereafter referred to as 'the antibiotic book'), and WHO policy documents on HIV, TB, malaria, and hepatitis C (HCV). 10,11,20-24 Combined, these documents recommend dosing for children in weight bands for 102 drugs, while other therapeutic areas currently do not use weight bands in their dosing recommendations. An overview of the current recommendations using weight bands is provided in Figure 1. The pocket book, the antibiotic book, and the guidelines for pediatric HIV each use their own distinct weight banding system, which is consistently applied to all recommended drugs within the area. The guidance documents for Drug-susceptible tuberculosis (DS-TB) and rifampicin-/multidrug-resistant tuberculosis (RR-/MDR-TB) recommend weight bands that are uniform within each document but differ between the two indications. Separate weight bands are also applied specifically to levofloxacin monotherapy and

weekly isoniazid with rifapentine, both used as preventive treatment. On the other hand, dosing guidance for malaria and HCV have drug-specific weight bands. 10,11,20-24

Besides weight, additional age-based rules for infants are included in most of the reviewed therapeutic areas, with separate dosing for children below 2 months of age in the pocket book for hospital care in children, below 4 weeks of age for infants with HIV, and below 3 to 6 months of age for specific medicines used for the treatment of MDR/RR-TB. The WHO treatment guideline for HCV does not recommend HCV treatment for children younger than 3 years. 21

Proposed Harmonized Framework

Based on the review of the current guidelines, we proposed a harmonized weight band strategy that would be easy to adopt, because it aligns with the antibiotic book and the pocket book, and it is very similar to the weight bands used in malaria, HIV, and HCV. The weight bands are 3 to <6 kg, 6 to <10 kg, and subsequent weight band cut-off points every 5 kg thereafter (15, 20, 25 kg, and so on), with an upper weight limit of <45 kg, after which the adults' guidelines can be used. Within the framework, additional age-based dosing advice is recommended for young children in accordance with existing guidance in the therapeutic areas. The proposed harmonized weight bands start from 3 kg, which is the lowest weight used in the WHO policy documents, and it is also a weight cut-off at children (mostly neonates) will require specialized care, for which a harmonized approach may not be appropriate.

Feasibility of the harmonization - Methods

We examined the impact of dosing harmonization on the dosing recommendations from the 6 policy documents that were reviewed. We prioritized for inclusion in the harmonized framework medicines taken orally and given in an outpatient setting, where simplifying dosing may be more useful. This is

because harmonizing dosing of medicines with formulations that enable precise dosing (such as injectable medications administered by trained personnel in specialized settings), is expected to yield less benefit because dosing for these formulations can be titrated to an optimized dose for weight. 27 To assess the impact of harmonization on drug dosing and evaluate the methods used for this analysis, unbiased expert panels were convened, including pharmacology and clinical experts for each therapeutic area. The experts were identified based on recommendations from the WHO technical departments and by reviewing recent literature for additional experts (the project team and expert panels are defined in the Supplementary Material, pages 2 - 4). Following the panel discussions, the WHO technical departments reviewed and provided feedback on the findings. For all the drugs for prospective inclusion in the harmonized weight bands, we collected or generated information to support the discussion with the expert panels. As a first step, we identified medicines for which the dosing in the proposed harmonized weight bands is already in line with current dosing recommendations (by WHO or the United States Food and Drug Administration [FDA] drug labels) or has been previously investigated in a clinical trial. For the other medicines where no alternative guidelines or direct clinical experience available, we employed population PK modeling and simulation to assess the changes in drug exposure related to the dose harmonization and allow the expert panel to consider safety and efficacy. For each medicine under investigation, we followed the assessment process as described in Figure 2. 1) We examined essential information to assess the feasibility of harmonization: identification of pharmacokinetic parameters (e.g. C_{max}, AUC) associated with drug efficacy and toxicity and population pharmacokinetic models capable of accurately predicting these parameters. ^{25–49} 2) We implemented the identified models (R software version 4.2.2 and the package Mrgsolve version 1.0.6) and used a representative virtual pediatric population⁵⁰ to simulate the drug exposures in 1-kg intervals using both the current dosing recommendations and alternative approaches using the harmonized weight bands. 3a) The doses for

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

the harmonized weight bands were defined assuming the use of current preferred-use formulations, aiming to match the drug concentration levels reached with current dosing recommendations. 3b) We also compared the simulated exposures with predefined reference values for safety and efficacy when these were clearly defined in the literature. 51 4) We then consulted the expert panels for potential safety and efficacy concerns of the predicted drug exposures. More details about the process and simulated exposures for each drug, can be found in the report added in the Supplementary Material, pages 5 - 115.

Feasibility of the harmonization - Results

For 68 of the 102 investigated medicines, current dosing recommendations are already aligned with the proposed harmonized weight bands. For 5 medicines used for the treatment of HIV, the chosen harmonized weight band approach is in line with the FDA drug label, e.g. abacavir, ⁵² or has been previously investigated in a clinical trial, e.g., efavirenz, ⁵³ so no additional simulations were required. (Figure 3). For the remaining 29 medicines, we simulated the changes in exposures and discussed with expert panels whether efficacy or safety could be affected. Table 1 shows an overview of the evidence supporting harmonization for the 34 medicines for which weight band harmonization would require dose changes. Some of these 29 drugs (e.g. isoniazid) required dosing simulations for multiple indications. The expert panels observed that for all but 2 of these medicines (piperaquine and dihydroartemisinin) the dose changes gave no cause for concern when dosed in proposed harmonized weight bands in combination with age-based dosing for young children. The expert panels agreed that harmonization towards the proposed weight banding system was feasible for the majority of the investigated medicines. The only exceptions were two medicines used in malaria treatment, for the malaria expert panel recommended that additional safety and efficacy data should be obtained, due to concerns regarding decreased exposure to dihydroartemisinin in the context of emerging drug

resistance, and increased exposure to piperaquine due to concerns about toxicity. A summary of panel discussions is available in the Supplementary Material, pages 7 -115.

Discussion

In this work, we have reviewed the use of pediatric weight band-based dosing in WHO guidance documents and mapped the differences between the recommendations for pediatric treatment with antibiotics, and for HIV, TB, HCV, and malaria. Based on this analysis, we proposed a harmonized weight banding system, simulated the impact of dose changes resulting from harmonization, and discussed its implications with expert panels representing each therapeutic area. The feasibility of harmonization was subsequently presented to WHO technical departments from each therapeutic area.

The proposed weight bands are 3 to <6 kg, 6 to <10 kg, and subsequent weight band cut-off points in 5-kg increments thereafter (e.g. 15, 20, 25 kg), with an upper weight limit of <45 kg. This weight banding system aligns with weight bands already used in the pocket book and the antibiotic book, which are widely implemented in healthcare facilities worldwide, ⁵⁴ particularly for the most commonly prescribed drugs, such as antibiotics. ⁵⁵ Minimal adjustments would be required for weight bands used in pediatric HIV, HCV, and malaria, while exposure simulations suggest that adequate drug exposures can be achieved for the changes needed in TB. The weight bands are narrower for the lower weight ranges to allow for more precise dosing, and from 10 kg of body weight it uses 5-kg increments which are easy to remember and may facilitate its implementation in clinical practice.

Our simulations showed that above 10 kg, dosing can easily be adapted to harmonized weight bands and is expected to cause only minimal changes in drug exposure. This result is consistent with

developmental pharmacokinetics.⁵⁶ Pediatric dosing needs to consider the relationship between an individual's characteristics such as body size and age, and the pharmacokinetic parameters which determine the exposure.⁵⁷ Most children weighing more than 10 kg have reached an age where drug elimination pathways have mostly matured, so the main effect that needs to be adjusted for is that of body size, which affects most drugs in a consistent and predictable manner.⁵⁶ On the contrary, harmonizing dosing in younger children is more challenging, because unique drug elimination processes mature at varying rates in early infancy. In addition, at the lowest weights, relative weight differences within a weight band are larger, inevitably making differences in drug exposure within a weight band greater. For instance, a child weighing 6 kg might get the same dose as a child half its size with a weight of 3 kg. The proposed weight banding system uses two weight bands below 10 kg: 3 to <6 kg and 6 to <10 kg. Alternative weight banding systems were explored that have more weight bands below 10 kg, for instance, the 3 to <5 kg, 5 to <7 kg, and 7 to <10 kg weight bands as are used in MDR/RR-TB.²³ However, this would unnecessarily add complexity by adding a weight band and changing all doses of therapeutic areas that have so far only employed only two weight bands below 10 kg. In contrast, the currently suggested harmonized weight bands align with weight banding systems of the investigated therapeutic areas, requiring minimal adjustments for adaptation. In any case, because of the high variability in young children weighing below 10 kg, using weight bands alone may not provide enough granularity for medicines with a narrow therapeutic range that require precise dosing. A solution that is already in use in some guidelines to guarantee accurate dosing for these youngest children is to dose based on both weight and age. Given that drug elimination in young infants is mostly affected by age rather than weight because of immature drug elimination pathways such as liver enzymes, the current guidance documents provide additional dosing instructions for children below a certain age, for example below 4 weeks old in HIV guideline documents, 11 or below 3 or 6 months for dosing of specific MDR-TB medicines. ¹⁰ Harmonizing the weight bands and retaining or

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

even extending dosing recommendations based on age for the youngest children aligns with pharmacological principles and provides sufficient flexibility to dose children safely and effectively.

251110 Neonates and even pre-term children are beyond the scope of this project, however, we recommend further standardization of general dosing principles should be explored for newborns.

Limitations and considerations

In our study we did not generate any clinical evidence on the adequacy of the dosing guidelines based on the new harmonized weight bands, but we rather relied on clinical evidence obtained from previous studies and used modelling and simulation to fill any gaps and support the expert panels with their recommendations.

It is important to note that simulations are inherently predictions and not direct clinical observations. However, population PK modelling is a well-established and US FDA-recommended method to inform drug dosing strategies, with a history of effectively predicting drug effects, and founded on knowledge of physiology, pharmacology, and evidence-based assumptions. The accuracy of the predictions is determined by the reliability of the models used for simulation, so selecting the right models is pivotal in this process. For our project, we chose pooled analyses of robust clinical data including children with weights and ages spanning the whole weight range of the dosing tables, thereby minimizing extrapolations. For some medicines with only limited data available on the pharmacokinetics in young children, we used models with the same assumptions about the maturation profile of the drug that were used to establish the current doses in young children. The fact that our goal was to compare exposures between the harmonized and current weight bands using the same model (as opposed to comparing exposures to therapeutic targets), puts less importance on the specific model selected, and

made the results of the comparison more robust. This is because, in a within-model comparison, the focus shifts on how the effects of body size and age (i.e. allometry and maturation) are accounted for within the model, which is an aspect that has extensively been studied and for which there is ample consensus. ^{56,59} For instance, if a model were to overestimate the exposure in a specific age/weight range of children, it would do so consistently on both sides of the comparison (original vs harmonized weight bands). In any case, the assumptions underlying the predictions were extensively discussed with each expert panel.

A possible approach would have been to compare the simulated exposures in each weight band to therapeutic targets for efficacy and toxicity, thus investigating if any values in any of the weight bands were of concern. However, such targets are often poorly defined, with no clear consensus available for most of the drugs in the investigation. The uncertainty regarding the therapeutic targets for each drug would have made the interpretation of the simulation results challenging, even more so because some of the current dosing recommendations are not necessarily consistent with these targets. Redefining optimal doses was beyond the scope of the current investigation, so we pragmatically chose to rather use the simulations to evaluate whether the drug exposures with the harmonized weight bands are comparable to those with the current recommendations.

One possible critique of using harmonized weight bands is that this might restrict the flexibility in dosing for future medications, as guidelines for new drugs will be constrained to fir into the harmonized weight bands. However, this has already been the case for pediatric HIV, TB, and HCV, where the dosing guidelines of any new agent has had to conform to existing weight banding systems of each therapeutic area, which are largely a legacy of those originally created for earlier treatments. For these therapeutic

areas, adopting the harmonized weight banding system is not expected to complicate future dosing more than adhering to currently used weight bands. On the other hand, for novel medicines that may have a narrow therapeutic window and for which the maturation pathways are still unknown, we acknowledge that it may be challenging to directly fit the pediatric dosing within the harmonized weight bands. Careful exploration of maturation pathways might be necessary in clinical trials before recommending dosing.

Any dosing system, including the use of weight bands, is a trade-off between achieving precise dosing, and what is practically feasible in the field. The ultimate objective of harmonization is to improve treatment and care for children. On a public health level, harmonization may provide benefits through greater clarity and simplification especially when multiple medicines need to be combined to treat a disease, such as is the case within each of the investigated therapeutic areas. On the other hand, there are situations where precision dosing is required and feasible, such as neonates, premature babies, and other scenarios where intensive or in-hospital care is delivered (e.g. children with TB meningitis). In these situations, precision dosing might be preferred over a harmonized dosing strategy. For this reason, dosing below 3 kg is not included in the harmonized weight bands. Similarly, dosing based on pharmacogenetic factors, malnutrition, or other specific circumstances should remain in the dosing recommendations, if it is required for effective treatment. The reviewed guideline documents and harmonized weight banding system that we propose are meant to provide a framework for situations that may benefit from it, they are not intended to prevent precise dosing where this is deemed necessary.

The positive feedback from the expert panels suggests a significant opportunity to streamline drug dosing practices by adopting harmonized weight bands for currently used medicines, and when

exploring new doses. In addition, harmonized weight bands are an opportunity for those areas that do not currently provide dosing in weight bands for children to explore dosing based the harmonized framework we propose. Even with our simulations restricted to current preferred-use formulations and doses, the simulations and discussions with expert panels revealed that, for all but two medicines, these changes are not expected to decrease safety or efficacy. Going forward, the implementation is expected to become even easier, if formulations and dosing strategies are designed directly to fit the proposed harmonized weight bands.

In addition, even though weight bands are used in international policies and in clinical practice, pediatric registration trials rarely implement weight bands when developing pediatric dosing. ^{60,61} Harmonized

weight bands used across therapeutic areas and endorsed by regulatory agencies could encourage the

pharmaceutical industry to adopt weight bands in drug development.

Conclusions

Our work demonstrates that a harmonized pediatric weight banding strategy across therapeutic areas is possible and provides sufficient flexibility for safe and effective pediatric dosing for treatment and prevention across therapeutic areas. The results have been shared with WHO and their technical advisory bodies for consideration. Further harmonization in the context of future therapeutic options in the pipeline will require a shift in the clinical development programs. Endorsement and support by pharmaceutical companies and regulators would allow the global community to implement the proposed harmonized weight bands and simplify pediatric care on the ground. This work represents a step towards a more integrated approach in pediatric clinical management in LMIC contributing to our shared global goal of better health outcomes for children in need.

Contributors 375 376 HW, RW, and PD developed the initial outline of the manuscript. HW coordinated coauthors inputs and developed the final version of the manuscript based on coauthor feedback. MP and WW initiated the 377 project. All authors critically reviewed, revised, and approved the final draft of the manuscript. HW 378 379 finalized the draft and coordinated the submission process. 380 Role of the funding source 381 382 The project was funded by the WHO's Global Accelerator for Pediatric Formulations (GAP-f). Study 383 design, project management and the final report were all prepared in collaboration with GAP-f members 384 and separate WHO technical departments. 385 **Declaration of Interests** 386

387

We declare no competing interests.

Tables and figures

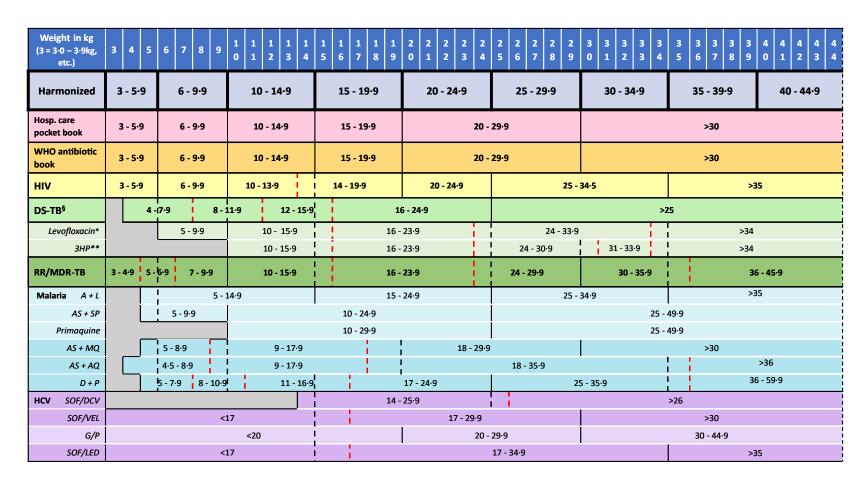


Figure 1. Differences between the proposed harmonized weight bands and weight bands within the Pocket Book for Hospital Care in Children, the WHO antibiotic book, and WHO dosing guidance for HIV, tuberculosis (TB), malaria, and hepatitis C (HCV). Red dashed vertical lines represent weight bands that would be affected by harmonization and blue dashed vertical lines show where the weight band cut-off points would go to. If the dose over two weight bands is the same, no cut-off point is shown. §treatment and

prevention of drug susceptible tuberculosis (DS-TB);*levofloxacin for prevention of multidrug resistant tuberculosis (MDR-TB); **: three months of weekly rifapentine and isoniazid treatment for prevention of drug-susceptible tuberculosis (DS-TB). RR-TB: rifampicin resistant tuberculosis; A + L: artemeter + lumefantrine; AS + SP: artesunate + sulfadoxine/pyrimethamine; AS + MQ: artesunate + mefloquine; AS + AQ: artesunate + amodiaquine; D + P: dihydroartemisinin + piperaquine; SOF/DCV: sofosbuvir/daclatasvir; SOF/VEL: sofosbuvir/velpatasvir; G/P: glecaprevir/piprentasvir; SOF/LED: sofosbuvir/ledipasvir.

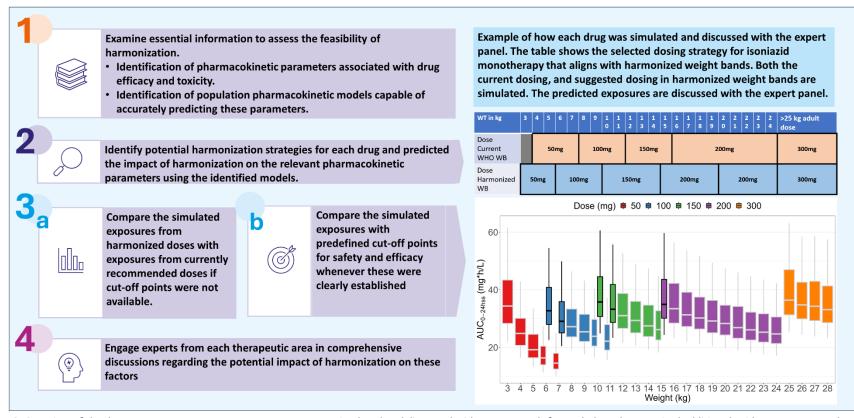


Figure 2. Overview of the drug assessment process. Drug exposures were simulated and discussed with expert panels for each drug that required additional evidence to support the discussion on the feasibility of dosing harmonization. The image and table used here are for illustrative purposes only, details on the methods and results can be found in the project report (Supplementary Material, pages 22 - 24).

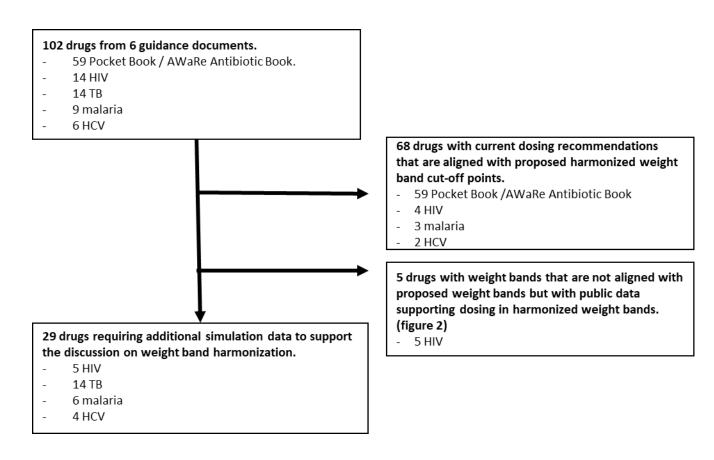


Figure 3. Flowchart showing different levels of evidence required for harmonization.

Table 1. Evidence required to support dosing in harmonized weight bands for medicines with current dosing in weight bands that are not aligned with proposed harmonized weight bands.

Therapeutic Area	Stage of Disease	Medicine	Assessment Method	Exposure Target	Reference(s)	Feedback Category
нсч	No difference between disease stages	Sofosbuvir/velpatasvir, Ledipasvir, Daclatasvir	Exposure simulations comparing current and harmonized doses	AUC, Cmax	33–35	No concerns for loss of efficacy or toxicity
	No difference between disease stages	Glecaprevir/pibrentasvir	Proposed harmonization does not change dosing recommendations	-	-	No dose change required
HIV	No difference between disease stages	Tenofovir alafenamide fumarate/tenofovir	Exposure simulations with minimum/maximum AUC targets	AUC	62,63	No concerns for loss of efficacy or toxicity
	No difference between disease stages	Tenofovir disoproxil fumarate, Atazanavir/ritonavir, Darunavir/ritonavir, Bictegravir	Proposed harmonization does not change dosing recommendations	-	-	No dose change required
	No difference between disease stages	Abacavir, Lamivudine, Emtricitabine, Zidovudine	Harmonized dose aligns with FDA recommendations	-	-	No concerns for loss of efficacy or toxicity
	No difference between disease stages	Efavirenz, Nevirapine	Published trial data or exposure target	AUC, Ctrough	42,64	No concerns for loss of efficacy or toxicity
	No difference between disease stages	Lopinavir/ritonavir, Dolutegravir, Raltegravir	Based on Ctrough target	Ctrough	43,44,65,66	No concerns for loss of efficacy or toxicity
Malaria	Malaria treatment	Amodiaquine, desethylamodiaquine, Artesunate, Mefloquine	Exposure simulations comparing current and harmonized doses	AUC, Cmax, Cday7	25,67	No concerns for loss of efficacy or toxicity
	Malaria treatment	Dihydroartemisinin	Exposure simulations comparing current and harmonized doses	AUC	Unpublished model, ⁶⁷	Additional safety data recommended especially for children below 10 kg
	Malaria treatment	Piperaquine	Exposure simulations with QT- prolongation parameter	AUC, Cmax, Cday7, QT	26,27,68	Additional safety data recommended especially for children below 10 kg
	Malaria treatment	Artemether, Lumefantrine, Primaquine, Sulfadoxine/pyrimethamine	Proposed harmonization does not change dosing recommendations	-	-	No dose change required
	SMC	Amodiaquine,	Exposure simulations comparing current and harmonized doses	AUC	25	No concerns for loss of efficacy or toxicity
	SMC	Sulfadoxine/pyrimethamine	Proposed harmonization does not change current dosing recommendations	-	-	No dose change required
Tuberculosis	DS-TB	Isoniazid, Rifampicin, Pyrazinamide, Ethambutol	Exposure simulations comparing current and harmonized doses	AUC	49,69,70	No concerns for loss of efficacy or toxicity
	TB-prevention	Rifapentine, Levofloxacin	Exposure simulations comparing current and harmonized doses	AUC	40,71	No concerns for loss of efficacy or toxicity
	MDR-TB/RR-TB	Clofazimine, Delamanid, Bedaquiline, Cycloserine, Ethionamide, Moxifloxacin, PAS	Exposure simulations comparing current and harmonized doses	AUC	28–30,36,40,41,45,49,69– 72	No concerns for loss of efficacy or toxicity when combined with age-based dosing for children below 10 kg

Feedback Categories: No concerns for loss of efficacy or toxicity: Harmonized dosing achieves similar safety and efficacy as current dosing; No dose change required: Harmonization does not require changes to current recommendations; Additional safety data recommended: Further data is needed to confirm safety or efficacy in children.

Abbreviations: HCV: Hepatitis C Virus; HIV: Human Immunodeficiency Virus; SMC: Seasonal Malaria Chemoprevention; DS-TB: Drug-Sensitive Tuberculosis; MDR-TB: Multidrug-Resistant Tuberculosis; RR-TB: Rifampicin-Resistant Tuberculosis; AUC: Area Under the Curve (pharmacokinetic parameter); Cmax: Maximum Concentration of the drug in plasma; Cday7: Drug Concentration on Day 7; Ctrough: Trough Concentration (lowest concentration of drug before the next dose); QT: QT interval on an electrocardiogram (used to assess heart rhythm); FDA: Food and Drug Administration (United States)

37363862,6364454647,6566732867672930,6828705270697043717070697148393332447231

References

- Anderson BJ, Holford NHG. Mechanistic basis of using body size and maturation to predict clearance in humans. *Drug Metab Pharmacokinet* 2009; **24**: 25–36.
- Ponnet M, Frederix K, Petdachai W, Wilson D, Eksaengsri A, Zachariah R. A drug dosage table is a useful tool to facilitate prescriptions of antiretroviral drugs for children in Thailand. *Int J STD AIDS* 2005; **16**: 420–6.
- 3 Karande IS, Goff Z, Kewley J, Mehta S, Snelling T. Dose-Banding of Intravenous Piperacillin-Tazobactam in Pediatric Surgical Inpatients. *J Pediatr Pharmacol Ther* 2017; **22**: 364–8.
- 4 Larson CP, Sauvé L, Senkungu JK, Arifeen SE, Brant R. Development and validation of weight, height and age bands to guide the prescription of fixed-dose dispersible tablet formulations. *J Pediatr Pharmacol Ther* 2015; **20**: 24–32.
- Bury D, Wolfs TFW, ter Heine R, Muilwijk EW, Tissing WJE, Brüggemann RJ. Pharmacokinetic evaluation of twice-a-week micafungin for prophylaxis of invasive fungal disease in children with acute lymphoblastic leukaemia: a prospective observational cohort study. *Journal of Antimicrobial Chemotherapy* 2021. DOI:10.1093/jac/dkab467.
- Hendriksen IC, Mtove G, Kent A, *et al.* Population pharmacokinetics of intramuscular artesunate in African children with severe malaria: implications for a practical dosing regimen. *Clin Pharmacol Ther* 2013; **93**: 443–50.
- Balis FM, Womer RB, Berg S, Winick N, Adamson PC, Fox E. Dosing anticancer drugs in infants:

 Current approach and recommendations from the Children's Oncology Group's Chemotherapy

 Standardization Task Force. *Pediatr Blood Cancer* 2017; **64**. DOI:10.1002/pbc.26636.

- 8 Al-Turkait A, Khan F. Can dose-banding help to reduce prescribing errors in a paediatric accident accident and emergency (A&E) department? *Arch Dis Child* 2015; **100**: e1–e1.
- 9 World Health Organization. WHO Handbook for Guideline Development 2nd edition. 2014 https://iris.who.int/bitstream/handle/10665/145714/9789241548960_eng.pdf?sequence=1.
- World Health Organization (WHO). WHO: operational handbook on tuberculosis. 2022 https://apps.who.int/iris/bitstream/handle/10665/340256/9789240022614-eng.pdf.
- 11 World Health Organization. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. 2021;: 548.
- Organizat WH. WHO consolidated guidelines on tuberculosis. Module 1: Prevention. Tuberculosis preventive treatment. *Tuberculosis, Lung Diseases, HIV Infection* 2021; : 86–92.
- 13 M.Bijker E, Deshpande S, Song PSR. Malaria and tuberculosis co-infection-A review. *Oxf Open Immunol* 2023; **4**. DOI:10.1093/oxfimm/igad008.
- 14 World Health Organization (WHO). Global tuberculosis report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO. 2023.
- D'Errico S, Zanon M, Radaelli D, *et al.* Medication Errors in Pediatrics: Proposals to Improve the Quality and Safety of Care Through Clinical Risk Management. *Front Med (Lausanne)* 2021; **8**: 814100.
- Ghaleb MA, Barber N, Franklin BD, Wong ICK. The incidence and nature of prescribing and medication administration errors in paediatric inpatients. *Arch Dis Child* 2010; **95**: 113–8.
- 17 World Health Organization. Model List of Essential Medicines for Children 8th List. 2021; : 48.
- 18 World Health Organization. Pocket Book of Hospital Care for Children. 2013.
- 19 World Health Organization, UNICEF. IMCI handbook for integrated childhood illnesses in the first line . 2005.

- World Health Organization. The WHO AWaRe (Access Access, Watch Watch, Reserve Reserve) antibiotic book. Geneva https://www.who.int/publications/i/item/9789240062382 (accessed June 22, 2023).
- World Health Organization (WHO). Updated recommendations on treatment of adolescents and children with chronic HCV infection: policy brief. *World Health Organization 2022* 2022. https://www.who.int/publications/i/item/9789240052710.
- World Health Organization. WHO operational handbook on tuberculosis. Module 1: prevention tuberculosis preventive treatment. 2020.
 https://www.who.int/publications/i/item/9789240001503.
- World Health Organization. WHO operational handbook on tuberculosis. Module 4: treatment drug-resistant tuberculosis treatment. . 2020.

 https://www.who.int/publications/i/item/9789240006997.
- 24 World Health Organization. WHO Guidelines for malaria. 2021. https://www.who.int/publications/i/item/guidelines-for-malaria.
- Ding J, Coldiron ME, Assao B, et al. Adherence and Population Pharmacokinetic Properties of Amodiaquine When Used for Seasonal Malaria Chemoprevention in African Children. *Clin Pharmacol Ther* 2020; **107**: 1179–88.
- Wattanakul T, Ogutu B, Kabanywanyi AM, *et al.* Pooled Multicenter Analysis of Cardiovascular Safety and Population Pharmacokinetic Properties of Piperaquine in African Patients with Uncomplicated Falciparum Malaria. *Antimicrob Agents Chemother* 2020; **64**.

 DOI:10.1128/AAC.01848-19.
- 27 Chotsiri P, Zongo I, Milligan P, et al. Optimal dosing of dihydroartemisinin-piperaquine for seasonal malaria chemoprevention in young children. *Nat Commun* 2019; **10**: 480.

- van der Laan LE, Garcia-Prats AJ, Schaaf HS, *et al.* Pharmacokinetics and Dose Optimization
 Strategies of Para-Aminosalicylic Acid in Children with Rifampicin-Resistant Tuberculosis. *Antimicrob Agents Chemother* 2022; **66**: e0226421.
- 29 Radtke KK, Hesseling AC, Winckler JL, *et al.* Moxifloxacin Pharmacokinetics, Cardiac Safety, and Dosing for the Treatment of Rifampicin-Resistant Tuberculosis in Children. *Clinical Infectious Diseases* 2022; **74**: 1372–81.
- Nyberg HB, Draper HR, Garcia-Prats AJ, et al. Population pharmacokinetics and dosing of ethionamide in children with tuberculosis. *Antimicrob Agents Chemother* 2020; **64**.

 DOI:10.1128/AAC.01984-19.
- 31 US FDA. Mavyret Clinical Pharmacology Review. 2016.
 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209394Orig1s000ClinPharmR.pdf
 (accessed Aug 15, 2023).
- Ali AM, Penny MA, Smith TA, *et al.* Population Pharmacokinetics of the Antimalarial

 Amodiaquine: a Pooled Analysis To Optimize Dosing. *Antimicrob Agents Chemother* 2018; **62**.

 DOI:10.1128/AAC.02193-17.
- US FDA. HARVONI, 205834, Review Clinical Pharmacology Biopharmaceutics Reviews (Orange Book Oct. 10, 2014). 2014.
 http://ocr.docketalarm.com/FDA/Orange_Book/205834/HARVONI/ORIG-1/14-
 - Review_Clinical_Pharmacology_Biopharmaceutics_Reviews/ (accessed Aug 15, 2023).
- 34 US FDA. Epclusa, Clinical Pharmacology Review. https://www.fda.gov/media/151046/download (accessed March 8, 2023).
- Cressey TR, Abbassi M, Lallemant M, *et al.* Effective and Safe Daclatasvir Drug Exposures

 Predicted in Children Using Adult Formulations. *Pediatric Infectious Disease Journal* 2021; **40**: 1081–6.

- Chirehwa MT, Court R, de Kock M, *et al.* Population Pharmacokinetics of Cycloserine and Pharmacokinetic/Pharmacodynamic Target Attainment in Multidrug-Resistant Tuberculosis Patients Dosed with Terizidone. *Antimicrob Agents Chemother* 2020; **64**: 1–10.
- 37 Svensson EM, Dosne AG, Karlsson MO. Population Pharmacokinetics of Bedaquiline and Metabolite M2 in Patients with Drug-Resistant Tuberculosis: The Effect of Time-Varying Weight and Albumin. *CPT Pharmacometrics Syst Pharmacol* 2016; **5**: 682–91.
- Tikiso T, McIlleron H, Abdelwahab MT, *et al.* Population pharmacokinetics of ethambutol in African children: A pooled analysis. *Journal of Antimicrobial Chemotherapy* 2022; **77**: 1949–59.
- Denti P, Garcia-Prats AJ, Draper HR, et al. Levofloxacin population pharmacokinetics in south african children treated for multidrug-resistant tuberculosis. *Antimicrob Agents Chemother* 2018; **62**. DOI:10.1128/AAC.01521-17.
- Weiner M, Savic RM, Kenzie WR Mac, et al. Rifapentine Pharmacokinetics and Tolerability in Children and Adults Treated Once Weekly With Rifapentine and Isoniazid for Latent Tuberculosis Infection. Original Article Journal of the Pediatric Infectious Diseases Society 2014; 3: 132–77.
- Sasaki T, Svensson EM, Wang X, et al. Population Pharmacokinetic and Concentration-QTc

 Analysis of Delamanid in Pediatric Participants with Multidrug-Resistant Tuberculosis. 2022.
- Nikanjam M, Kabamba D, Cressey TR, *et al.* Nevirapine exposure with WHO pediatric weight band dosing: enhanced therapeutic concentrations predicted based on extensive international pharmacokinetic experience. *Antimicrob Agents Chemother* 2012; **56**: 5374–80.
- 43 Urien S, Firtion G, Anderson ST, et al. Lopinavir/ritonavir population pharmacokinetics in neonates and infants. *Br J Clin Pharmacol* 2011; **71**: 956–60.
- FDA. Tivicay PD, Clinical Pharmacology and Biopharmaceutics Review(s).

 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/213983Orig1s000ClinPharmR.pdf.

- Abdelwahab MT, Wasserman S, Brust JCM, *et al.* Clofazimine pharmacokinetics in patients with TB: dosing implications. *Journal of Antimicrobial Chemotherapy* 2020; **75**: 3269–77.
- Guidi M, Mercier T, Aouri M, et al. Population pharmacokinetics and pharmacodynamics of the artesunate-mefloquine fixed dose combination for the treatment of uncomplicated falciparum malaria in African children. *Malar J* 2019; **18**: 139.
- Denti P, Wasmann RE, van Rie A, et al. Optimizing Dosing and Fixed-Dose Combinations of Rifampicin, Isoniazid, and Pyrazinamide in Pediatric Patients With Tuberculosis: A Prospective Population Pharmacokinetic Study. *Clinical Infectious Diseases* 2022; **75**: 141–51.
- Rizk ML, Du L, Bennetto-Hood C, et al. Population pharmacokinetic analysis of raltegravir pediatric formulations in HIV-infected children 4 weeks to 18 years of age. *J Clin Pharmacol* 2015; **55**: 748–56.
- 49 Galileya LT, Wasmann RE, Chabala C, et al. Evaluating pediatric tuberculosis dosing guidelines: A model-based individual data pooled analysis. *PLoS Med* 2023; **20**: 1–21.
- Wasmann RE, Svensson EM, Walker AS, Clements MN, Denti P. Constructing a representative insilico population for paediatric simulations: Application to HIV-positive African children. *Br J Clin Pharmacol* 2021; **87**: 2847–54.
- Waalewijn H, Turkova A, Rakhmanina N, et al. Optimizing Pediatric Dosing Recommendations and Treatment Management of Antiretroviral Drugs Using Therapeutic Drug Monitoring Data in Children Living With HIV. Ther Drug Monit 2019; **41**: 431–43.
- 52 ZIAGEN (abacavir) [package insert]. U.S. Food and Drug Administration website. url: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/020977s014,020978s016lbl.pdf. Revised: March 2006. .
- Fillekes Q, Natukunda E, Balungi J, et al. Pediatric underdosing of efavirenz: a pharmacokinetic study in Uganda. *J Acquir Immune Defic Syndr* 2011; **58**: 392–8.

- Li MY, Kelly J, Subhi R, Were W, Duke T. Global use of the WHO pocket book of hospital care for children. *Paediatr Int Child Health* 2013; **33**: 4–17.
- Li G, Jackson C, Bielicki J, Ellis S, Hsia Y, Sharland M. Global sales of oral antibiotics formulated for children. *Bull World Health Organ* 2020; **98**: 458–66.
- Denti P, Wasmann RE, Francis J, et al. One dose does not fit all: revising the WHO paediatric dosing tool to include the non-linear effect of body size and maturation. *Lancet Child Adolesc Health* 2021. DOI:10.1016/s2352-4642(21)00302-3.
- Vinks AA, Emoto C, Fukuda T. Modeling and simulation in pediatric drug therapy: Application of pharmacometrics to define the right dose for children. *Clin Pharmacol Ther* 2015; **98**: 298–308.
- Population Pharmacokinetics | FDA Guidance for industry. 2022 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/population-pharmacokinetics (accessed Dec 6, 2023).
- Holford N, Heo YA, Anderson B. A pharmacokinetic standard for babies and adults. J Pharm Sci. 2013; **102**: 2941–52.
- Jacobs TG, Waalewijn H, Colbers A. Use of WHO paediatric weight-band dosing in drug labels.

 Lancet HIV 2022; 9: e3–4.
- WHO and Unitaid in collaboration with IMPAACT (International Maternal Pediatric Adolescent AIDS Clinical Trials) network P (Paediatric EN for T of A foundation and experts from the PAWG.

 Toolkit for research and development of paediatric antiretroviral drugs and formulations. 2018;

 2018. https://www.who.int/publications/i/item/9789241514361.
- Waalewijn H, Szubert AJ, Wasmann RE, et al. First pharmacokinetic data of tenofovir alafenamide fumarate and tenofovir with dolutegravir or boosted protease inhibitors in African children: a substudy of the CHAPAS-4 trial. *Clinical Infectious Diseases* DOI:10.1093/CID/CIAD267.

- Wasmann RE, Waalewijn H, Burger D, et al. A semi-mechanistic population pharmacokinetic model of tenofovir alafenamide fumarate and tenofovir in children living with HIV Background and Objectives. Ljubljana, 2022. https://www.page-meeting.org/default.asp?abstract=10153 (accessed Sept 3, 2024).
- Fillekes Q, Natukunda E, Balungi J, et al. Pediatric underdosing of efavirenz: A pharmacokinetic study in Uganda. *J Acquir Immune Defic Syndr (1988)* 2011; **58**: 392–8.
- Chandasana H, Thapar M, Hayes S, *et al.* Population Pharmacokinetic Modeling of Dolutegravir to
 Optimize Pediatric Dosing in HIV-1-Infected Infants, Children, and Adolescents. *Clin*Pharmacokinet 2023; **62**: 1445–59.
- Rizk ML, Du L, Bennetto-Hood C, et al. Population pharmacokinetic analysis of raltegravir pediatric formulations in HIV-infected children 4 weeks to 18 years of age. *J Clin Pharmacol* 2015; 55: 748–56.
- Guidi M, Mercier T, Aouri M, et al. Population pharmacokinetics and pharmacodynamics of the artesunate-mefloquine fixed dose combination for the treatment of uncomplicated falciparum malaria in African children. *Malar J* 2019; **18**: 1–14.
- Chotsiri P, Wattanakul T, Hoglund RM, *et al.* Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin–piperaquine in healthy volunteers. *Br J Clin Pharmacol* 2017; **83**: 2752–66.
- Tikiso T, McIlleron H, Abdelwahab MT, *et al.* Population pharmacokinetics of ethambutol in African children: A pooled analysis. *Journal of Antimicrobial Chemotherapy* 2022; **77**: 1949–59.
- Denti P, Wasmann RE, Van Rie A, *et al.* Optimizing Dosing and Fixed-Dose Combinations of Rifampicin, Isoniazid, and Pyrazinamide in Pediatric Patients with Tuberculosis: A Prospective Population Pharmacokinetic Study. *Clinical Infectious Diseases* 2022; **75**: 141–51.

- Denti P, Garcia-Prats AJ, Draper HR, *et al.* Levofloxacin population pharmacokinetics in south african children treated for multidrug-resistant tuberculosis. *Antimicrob Agents Chemother* 2018; **62**. DOI:10.1128/AAC.01521-17.
- Svensson EM, Dosne AG, Karlsson MO. Population Pharmacokinetics of Bedaquiline and Metabolite M2 in Patients with Drug-Resistant Tuberculosis: The Effect of Time-Varying Weight and Albumin. *CPT Pharmacometrics Syst Pharmacol* 2016; **5**: 682–91.