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Abstract— This study focuses on the development of 

artificial intelligence models to enhance telerehabilitation 

practices. We utilized diverse datasets to create clinically 

relevant models for predicting two critical outcomes: fall risk 

and treatment effectiveness. By applying various machine 

learning techniques, including K-Nearest Neighbors (KNN), 

Random Forest, Decision Tree, Support Vector Machine 

(SVM), and XGBoost, our models demonstrated high accuracy, 

sensitivity, and specificity. Notably, the Random Forest model 

achieved an accuracy of 0.97 in predicting fall risk and 0.96 in 

assessing treatment effectiveness. These models equip clinicians 

with powerful tools for data-driven decision-making, ultimately 

improving patient outcomes in rehabilitation settings. 

Keywords—AI prognostic analytics, Fall Risk, Treatment 

Effectiveness, Rehabilitation 

I. INTRODUCTION  

Balance, which is the ability to maintain the body's center of 

mass within its stability boundaries, is essential for 

movement and overall functional independence [1]. Balance 

disorders, often characterized by sensations of unsteadiness 

or vertigo, can result from a variety of causes, including 

specific medical conditions, certain medications, or 

dysfunctions within the inner ear or brain. These impairments 

can severely disrupt daily activities, leading to significant 

psychological and emotional challenges. There are over 

twelve recognized types of balance disorders, with some of 

the most common being positional vertigo, labyrinthitis, 

migrainous vertigo, vestibular neuritis, Ménière's disease, 

and Mal de Debarquement syndrome (MdDS) [2]. 

It is important to note that balance disorders and 

subsequent falls are also linked. Falls represent a major public 

health concern. Falls are the primary cause of both fatal and 

nonfatal injuries in older persons and are significant factors 

in illness and death, primarily resulting from decreased 

balance control. According to a survey conducted by the 

World Health Organization (WHO) [3], approximately 28-

35% of those aged 65 and above experience falls annually, 

while the percentage increases to 32-42% for those aged 70 

and above. Advancements in artificial intelligence (AI) offer 

novel approaches to balance assessment. These 

advancements have led to more precise diagnoses, 

personalized treatment methods, and improved monitoring 

and support systems. 

This paper aims to advance the understanding and 

application of predictive modeling in tele-rehabilitation, 

specifically focusing on balance disorders. By applying state-

of-the-art machine learning techniques and combining them 

with clinical data, the study presents a novel approach to 

assessing fall risk and evaluating treatment efficacy. The 

research contributes to the field by not only developing robust 

predictive models but also by validating these models in a 

real-world clinical context, thus bridging the gap between 

theoretical advancements and practical implementation. The 

findings presented in this paper hold significant implications 

for enhancing patient outcomes through personalized 

rehabilitation strategies and reducing healthcare costs 

associated with balance disorder management. 

II. STATE OF THE ART 

Balance disorders pose a significant challenge in 

healthcare, particularly among elderly patients, where 

maintaining balance is crucial for daily activities and fall 

prevention. Recent technological advancements have 

introduced innovative approaches to assessing and managing 

balance disorders, shifting the focus from traditional methods 

to modern tools like wearable sensors and smartphone-based 

systems. These technologies offer new opportunities for more 

convenient and potentially more effective diagnosis and 

rehabilitation. However, it is essential to validate their 

reliability and effectiveness compared to established 

traditional methods before they can be widely adopted in 

clinical practice [4]. 

Recent advancements in the assessment of balance 

disorders have focused on integrating novel technologies and 

refining existing diagnostic methods. While traditional 

clinical assessments remain foundational, there has been a 

significant shift toward utilizing data-driven approaches, 

including artificial intelligence (AI) and machine learning, to 

enhance the accuracy and efficiency of balance evaluations. 

Despite these innovations, challenges such as data 

standardization, reliability of new tools compared to 

established methods, and the integration of multi-modal data 

remain prevalent. These hurdles must be addressed to fully 



realize the potential of these technologies in clinical practice, 

particularly for populations with diverse neurological 

conditions [5].  

A. Balance Assessment 

Advancements in artificial intelligence (AI) offer novel 

approaches to balance assessment. Artificially intelligent 

methods are based on the evaluation of various balance 

control subsystems. One study has shown that AI can 

significantly improve the evaluation in balance performance 

but pointed out that further studies are needed to enhance the 

accuracy of assessment and find more applications, 

concluding that AI-based balance assessment systems have a 

potentially huge impact on clinical practice, rehabilitation 

and fall risk monitoring. [6]. 

Understanding the relationship between strength, balance, 

and functional recovery after a stroke is crucial for effective 

rehabilitation. In a recent study, the Five Times Sit-to-Stand 

(FTSTS) test, a key measure of functional ability post-stroke, 

was used to evaluate the influence of lower-limb strength and 

balance. The findings revealed that both knee extensor 

strength and balance metrics independently predicted FTSTS 

performance, highlighting the importance of addressing both 

factors in post-stroke rehabilitation programs.[7]. 

The use of valid and reliable measures is essential for 

assessing balance in the elderly, and the modified Clinical 

Test of Sensory Interaction in Balance (mCTSIB) provides 

valuable insights in this regard. Despite moderate reliability, 

the mCTSIB demonstrates significant potential as a quick and 

independent tool for initial postural evaluation. It offers 

practical advantages over traditional clinical tests, making it 

a promising option for assessing balance in older adults.[1]. 

Other researchers have also proposed new frameworks 

combining IoT, AI algorithms, and big data analytics in an 

effort to guarantee the safety and wellbeing of elderly 

individuals, including fall monitoring and emotion 

recognition [8]. 

Technological advancements have expanded into home-

based rehabilitation, offering systems that integrate sensors 

and deep learning to provide objective and convenient 

methods for balance evaluation. These systems utilize deep 

learning models to accurately estimate a subject's Center of 

Mass (CoM) position using data from depth cameras. 

Portable and cost-effective, these technologies enable on-

demand balance assessments both at home and in clinical 

settings. This approach has the potential to significantly 

reduce the frequency of in-person visits, thereby lowering 

costs for patients and healthcare providers [9]. 

Moreover, the accuracy of the machine learning 

algorithms to detect a fall is impressive, addressing concerns 

about false alarms. Chelli and Pätzold [10] achieved a perfect 

accuracy of 100% with zero false alarms using quadratic 

Support Vector Machine (SVM) and ensemble bagged tree 

(EBT) on acceleration and angular velocity data from two 

publicly available datasets. 

The timely identification of fall events is crucial for the 

effectiveness and safety of fall prevention systems, as it 

allows the control device to promptly respond and prevent the 

occurrence of falls. Neural network predictive models 

provide insights into falls due to unexpected perturbations 

during regular walking [11]. The study simulates falls, 

recording 3D skeletal data and calculating the average time 

from a disturbance to the initiation of a fall. This is very 

relevant for earlier intervention strategies in falling 

prevention efforts among elderly individuals with 

neurological disorders. 

B. Rehabilitation 

Rehabilitation aims to optimize functional capacity and 

minimize disability for individuals with health conditions, 

considering their unique circumstances and environment. The 

integration of remote monitoring through wearable 

multimodal devices and machine learning enables objective 

tracking of clinical progress, enhancing the precision and 

personalization of rehabilitation interventions [12]. The 

emphasis on explainable and interpretable AI further supports 

clinical decision-making by providing insights into the 

factors driving functional recovery predictions, particularly 

in areas like upper limb recovery post-stroke. The COVID-

19 pandemic has underscored the importance of unsupervised 

home-based rehabilitation, driving the development of 

innovative systems that prioritize individualization, patient 

engagement, and adherence to ethical guidelines [13]. 

Rehabilitation programs are fundamental for the 

enhancement of quality in life of individuals with balance 

disorders. The major two reasons, such as limited resources 

for clinical setup and social isolation, have made 

rehabilitation mainly carried out at residences, which have 

often led to poor execution and dropping out of exercises 

without proper motivation and direction. There were seven 

categories of balance rehabilitation interventions described 

by Saraiva et al. [14]: conventional balance exercises, gym-

based interventions, vibration therapy, rhythmic auditory 

stimulation training, boxing therapy, dual-task training, and 

technology-based interventions. Since all these approaches 

often work in their individual way, the recovery of balance in 

stroke survivors can be greatly affected, thus also enhancing 

their general wellbeing and functional capacity. 

Examining the efficacy of home-based exercise programs 

(HEPs) incorporating augmented reality (AR), it was found 

[15] that stroke patients receiving this program showed 

significantly higher improvements in balance and reduction 

in fear of falling compared to controls. A virtual coaching 

system [16] devised to manage balance disorders integrates 

sensing devices and augmented reality technologies that 

deliver automated personal feedback during exercises. Being 

able to achieve high accuracy in the assessment of posture 

and gait metrics, this could possibly revolutionize home 

rehabilitation of balance disorders. Furthermore, a data-

driven scoring methodology, based on machine-learning 

techniques, designed to increase the accuracy in exercise 

assessment, using lessons learned from expert-monitored 

sessions, enhances the consequent reliability of the scoring 

module of the HOLOBALANCE system [17]. 

The assessment and rehabilitation of balance disorders are 

evolving through the integration of advanced technologies 

and human-centered personalized practices. Wearable 

sensors, artificial intelligence, and virtual coaching are 

paving the way for innovative, individualized interventions 

aimed at improving balance, and ultimately, enhancing 

wellbeing and quality of life. Although significant progress 



has been made, ongoing research and validation are essential 

to ensure the effectiveness and safety of these interventions, 

particularly in more diverse populations. 

III. MATERIALS  

A. Datasets 

Four datasets were collected from participants 

experiencing balance disorders, with two of these datasets 

generated by the National and Kapodistrian University of 

Athens (NKUA). The primary objective of the NKUA 

datasets is to examine factors that may influence rehabilitation 

outcomes, as measured by changes in the Functional Gait 

Assessment (FGA) and Dizziness Handicap Inventory (DHI) 

scores over an 8-week period. While previous research has not 

explicitly identified these factors, our hypothesis suggests that 

they may impact fall risk and treatment effectiveness. 

Specifically, these datasets evaluate two independent 

populations undergoing individualized 8-week vestibular 

rehabilitation programs, with each dataset offering insights 

into the relationship between fall risk and various health 

characteristics in individuals with Mild Cognitive Impairment 

(MCI) and other vestibular disorders, as detailed in the 

following subsection.  

The third dataset was collected by University College 

London (UCL), providing demographic and clinical 

information along with pre- and post-physiotherapy scores for 

the Dizziness Handicap Inventory (DHI), Visual Analog Scale 

(VAS), and Functional Gait Assessment (FGA). Finally, the 

fourth dataset was generated as part of the HOLOBALANCE 

project [MISSING REFERENCE], which aimed to develop 

and validate an augmented-reality virtual coaching platform 

for personalized rehabilitation monitoring in the aging 

population with balance disorders. Overall, these datasets 

cover a wide range of approaches, strengthening the validity 

of the prediction models created to evaluate the likelihood of 

treatment efficacy and fall risk. This multicentre collaboration 

underscores the significance of interdisciplinary research in 

enhancing telerehabilitation practices and improving patient 

outcomes. 

B. Population 

NKUA provided datasets comprising 248 subjects. This 

dataset includes detailed demographic information, symptom 

severity, clinical signs, balance and fall assessments, as well 

as associated co-morbidities. 

The first dataset (NKUA V1), comprising 104 subjects, 

includes patients suffering from various vestibular disorders. 

This includes 44 patients with Persistent Postural-Perceptual 

Dizziness (PPPD), 20 with Vestibular Migraine (VM), 19 

with Meniere’s disease, 3 with Acoustic Neuroma (AN), 7 

with Benign Paroxysmal Positional Vertigo (BPPV), 5 with 

Bilateral Vestibular Weakness (BVW), 2 with Central 

Vestibular Disorder (CVD), 1 with Mal de Debarquement 

syndrome (MDDS), 1 with Multiple Sclerosis (MS), and 2 

with Mild Traumatic Brain Injury (MTBI). 

The second dataset (NKUA V2) comprises 144 subjects, 

with 74 diagnosed with PPPD, 26 with VM, 20 with BPPV, 

8 with Meniere’s disease, 7 with Neuritis, 4 with BBPV, 3 

classified as Fallers, 1 with CVD, and 1 with AN. These data 

are crucial for our study in order to define associations 

between fall risk and various factors within the context of 

MCI and vestibular disturbances. 

The dataset provided by UCL consists of a total of 93 

subjects with VM, with or without Traumatic Brain Injury 

(TBI).  

The HOLOBALANCE dataset includes data from 129 

subjects at total: 65 for the intervention group and 64 for the 

control group. All participants are over 40 years old. This 

dataset contains comprehensive clinical evaluation data and 

sensor data, demographic information as well as a variety of 

clinical exams and questionnaires: EQ-5D5L for measuring 

health-related quality of life, MoCA for assessing cognitive 

function, SUS for evaluating system usability, FGA for 

analyzing gait, ABC for measuring balance confidence, 

RAPA for assessing physical activity, and Mini-Best for 

evaluating balance. 

Table I provides population demographics, mentioning 

the total number of individuals and their respective age 

groups.  Collectively, these datasets establish a strong 

foundation, facilitating a thorough examination of the factors 

that influence the efficacy of treatment and the risk of falling 

in patients with balance disorders. 

Table I. Population Statistics. 

 NKUA V1 NKUA V2 UCL HOLOB 

Number of 

patients 
104  144 93 129 

Mean Age 50 years 58 years 49 years 69 years 

Min Age 20 years 20 years 16 years 43 years 

Max Age 83 years 88 years 89 years 43years 

IV. METHODOLOGY 

A. Machine Learning Pipeline 

The main structure of our study’s artificial intelligence 
system consists of the following components: (i) data loading 
and pre-processing, (ii) building of classifiers (model 
training), (iii) performance evaluation, and (v) explainable AI 
using SHapley Additive exPlanations (SHAP) values. The 
machine learning pipeline is also illustrated in Fig. 1.  

This machine learning pipeline is initiated by loading and 
preprocessing the dataset, which includes encoding 
categorical features, detecting feature types, conducting 
statistical tests for feature selection, handling missing values, 
and scaling numerical features. The 10-fold cross-validation 
process was implemented by partitioning the dataset, 
allocating 70% of the data for training and 30% for testing. 
This methodology guarantees that the model's effectiveness is 
assessed on a substantial and varied dataset. This approach 
ensured a thorough evaluation of the model's performance 
across all classes, with statistical certainty.  

 The pipeline deals with imbalance issues by utilizing the 
Synthetic Minority Oversampling Technique (SMOTE). This 
approach ensures a more balanced representation of the data, 



enhancing the reliability of the analysis and the accuracy of 
the results. 

Αfter the data preparation phase is completed, the pipeline 
proceeds to the training of numerous classifiers. The 
classifiers include Logistic Regression, Support Vector 
Machines, K-Nearest Neighbors (KNN), Decision Tree, 
Random Forest, Naïve Bayes, Gradient Boosting, XG Boost 
and Neural Networks. GridSearchCV is utilized for each 
model to find the best parameter setting of the model through 
hyperparameter optimization. Afterward, evaluation of the 
models took place to get significant parameters such as 
specificity, sensitivity, and accuracy. The models with 
outstanding results are preserved and retained for future use. 

Finally, the pipeline is implementing SHAP to explain the 
model predictions. SHAP method is a widely used tool 
nowadays for most researchers to provide a measure of the 
contribution of each feature towards a classification outcome. 
This step enables us to understand the model's behavior at a 
deeper level, making the model more interpretable. 

 

Fig. 1. Machine Learning Pipeline. 

B. Clinical Endpoints 

We utilized the datasets to construct predictive models 

targeting two main endpoints: the probability of treatment 

effectiveness and the probability of risk of falls.  

Initially, our main objective was to predict the variation of 

the FGA scale between the pre-intervention and post-

intervention stages to evaluate the likelihood of falls. This 

entailed examining the FGA scores before and after the 

intervention to ascertain the effect of the interventions on 

patients' gait and balance, thereby approximating their 

susceptibility to falling. 

Our objective was to predict the efficacy of treatment by 

utilizing the MoCA questionnaire. Through the assessment of 

cognitive function at the beginning of the rehabilitation 

program, our objective was to determine the impact of initial 

cognitive abilities on the total effectiveness of the treatment. 

Moreover, we constructed models to predict the difference 

in the DHI scale before and after the intervention, with the 

specific aim of assessing treatment efficacy. This method 

enabled us to assess enhancements in patients' subjective 

impairment caused by dizziness, offering a quantifiable 

indication of the intervention's influence on their day-to-day 

activities and overall well-being. 

Finally, our objective was to forecast the disparity in the 

EQ-5D scale between the pre and post-intervention stages at 

the baseline, in order to assess the efficacy of the treatment. 

The EQ-5D scale quantifies the health-related quality of life, 

allowing us to evaluate the impact of interventions on patients' 

overall well-being and health status by analysing deviations 

from the initial state. 

Table II presents an overview of these endpoints, 

including the specific models used, the datasets employed, and 

the attained metrics.  

Table II. Overall clinical endpoints. 

Group Category Clinical Tools (Target) Justification 

Risk of Fall 

DIF_FGA 
(Difference-change of 

FGA scale before and 

after intervention) 

These tools assess 

balance, gait 
functionality, mobility, 

and confidence, which 

are crucial in evaluating 

the risk of falls. 

Treatment 

Effectiveness 

MoCA 

(MoCA scale at the 

baseline), 

 
DIF_DHI  

(Difference-change of 

DHI scale before and 

after intervention) 

 
DIF_5Q5D 

These measures provide 

insights into cognitive 

function, disability level, 

self-care capability, 
motivational factors, 

Pain and anxiety levels 

and dizziness level 

which are key indicators 

of overall treatment 
effectiveness. 

   

 

V. RESULTS 

This section provides a comprehensive summary of the 

predictive models developed and reported in the previous 

sections. More specifically, Table III presents an outline of 

the models, along with the relative information about the 

utilized dataset and relative metrics. Certain models are 

identified as being particularly pertinent for clinical 

relevance. 

The generated models were highly effective in predicting 

the probability of falls. The application of Gradient Boosting 

on the NKUA V2 dataset yielded solid results, with an 

accuracy of 0.97 ± 0.03, sensitivity of 0.95 ± 0.05, and 

specificity of 0.95 ± 0.04. In this regard, a very important 

feature was identified: Functional Gait Assessment at 

baseline. Additionally, the K-Nearest Neighbors (KNN) 

classifier employing the NKUA V1 dataset, attained an 

accuracy of 0.85 ± 0.12, a sensitivity of 0.82 ± 0.18, and a 

specificity of 0.79 ± 0.22, highlighting the Comorbidities and 

the FGA at the baseline as key features.  

For the assessment of treatment effectiveness, multiple 

models were trained to assess cognitive and physical health 

metrics. A Random Forest classifier using the NKUA V2 

dataset derived for DIF_DHI scores gave an accuracy of 0.96 

± 0.04 with a sensitivity of 0.95 ± 0.05 and specificity of 0.90 

± 0.10. Similarly, this model highlighted education and 

Dizziness Handicap Inventory as key predictors. The 

Random Forest model for the NKUA V1 dataset reached an 

accuracy of 0.96 ± 0.04, a sensitivity of 0.92 ± 0.08, and a 

specificity of 0.88 ± 0.12, where the most important features 

were Comorbidities and DHI. 

The overall accuracy of the models developed in this 

project are very high for different endpoints. Models to be 

highlighted for use in clinical practice will be very important 

in enhancing clinical decision-making and improvement of 

patient outcomes in rehabilitation settings. Thus, these 

models will prove to be useful in providing personalized 

patient care, allowing therapies to be customized based on 



individual risk profiling. Incorporating these models into 

clinical processes has the potential to enhance therapies and 

improve the management of balance problems. 

Table III.Summary of the best classifiers and their important features. 

E
n

d
p

o
i

n
t 

Sourc

e 

Tar

get 

Clas

sifie

r 

Accur

acy 

Sensit

ivity 

Specif

icity 

Featu

re 

(Basel

ine) 

R
is

k
 o

f 
fa

ll
 NKU

A 

(V1) 

DIF

_FG

A 

KN
N 

0.85 ± 
0.12 

0.82 ± 
0.18 

0.79±  
0.22 

Comor

biditie
s & 

FGA 

NKU

A 

(V2) 

DIF

_FG

A 

GB 
0.97 ± 

0.03 

0.95 ± 

0.05 

0.95 ± 

0.04 
FGA 

T
re

a
tm

en
t 

E
ff

ec
ti

v
en

es
s 

HOLO

BALA

NCE 

DIF

_Mo

CA 

KN

N 

0.71 ± 

0.13 

0.78 ± 

0.16 

0.62 ± 

0.20 
MoCA 

NKU

A 
(V1) 

DIF

_DH
I 

RF 
0.96 ± 

0.04 

0.92 ± 

0.08 

0.88 ± 

0.12 

Comor

biditie
s, DHI 

NKU

A 

(V2) 

DIF

_D

HI 

RF 
0.96 ± 

0.04 

0.95 ± 

0.05 

0.90 ± 

0.10 

Educa

tion & 

DHI 

HOLO
BALA

NCE 

DIF
_5Q

5D 

GB 
0.76 ± 

0.18 

0.82 ± 

0.15 

0.71 ± 

0.29 

Falls 
past 

year 

UCL 

(VM) 

DIF

_DH

I 

DT 
0.93 ± 

0.07 

0.91± 

0.04 

0.95± 

0.05 
Fall 

 

A. Risk of Fall 

The SHAP values for each feature in the NKUA V1 and 

V2 datasets provide a thorough comprehension of the overall 
influence of input variables on the model's predictions. By 

combining SHAP values for each feature, we obtain insights 

into the comparative significance of various qualities in 

impacting the decision-making process of the model. This 

thorough examination reveals the characteristics that have the 

most significant impact on the model's outputs and provides 

valuable insights between the input features and the 

prediction. For the NKUA V1, the Comorbidities and FGA 

at baseline are the most significant features. Whereas, the 

FGA at baseline feature is the most significant aspect in 

NKUA V2, as seen by the SHAP values displayed in Fig. 2 

and Fig. 3.  

 
Fig. 2. Risk of fall endpoint: SHAP value of features in the NKUA(V1) 

dataset. 

 
Fig. 3.Risk of fall endpoint: SHAP value of features in the NKUA(V2) 

dataset. 

Table IV summarizes the important features identified 

from each model, outlining both the distinct features from 

each version of the dataset and the common features that 

emerge as critical across both models. The identification of 

common important features is key, for they can afford a 

robust base with which to understand what factors influence 

risk of falls. 

Table IV. The most important features of the Risk of Fall endpoint. 

NKUA (V1)- DIF_FGA NKUA(V2) – DIF_FGA 

Comorbidities FGA 

FGA  DHI 

DHI Age  

Age  Duration 

Diagnosis MOCA 

Duration Education 

Vertigo ABC 

Motion Discomfort Diagnosis 

Unsteadiness_Falls Tendency  

Dizziness  

 

Both models identify the FGA and DHI at baseline as 

critical features, emphasizing their significance in predicting 

the risk of fall endpoint. This association highlights the need 

of incorporating these assessments into practice and falling 

prevention programs. More specifically, the NKUA V1 

model emphasizes a wider range of clinical and symptomatic 

data, including comorbidities, diagnosis, vertigo, movement 

discomfort, instability, tendency to fall and dizziness. This 

model’s comprehensive approach suggests a detailed 

consideration of various clinical signs and symptoms to 

assess fall risk accurately. Conversely, the NKUA V2 model 

incorporates age, duration of symptoms, the Montreal 

Cognitive Assessment (MOCA), education, and the 

Activities-specific Balance Confidence (ABC) scale as 

significant predictors. These factors suggest that cognitive 

function, educational background, and perceived balance 

confidence play a very important role in the risk of falling for 

each individual. Moreover, age and duration of symptoms 

support demographic and clinical characteristics in assessing 

fall risk. 

This comparison and the identification of common 

important features for a future overall model is what 

highlights the various elements that contribute to and/or 

influence the risk of fall. By combining clinical and cognitive 

testing, predictive models become more powerful, providing 



physicians with vital tools for preventing and managing falls 

in rehabilitation. 

B. Treatment Effectiveness 

Correspondingly SHAP values for all features in the 

treatment effectiveness endpoint datasets provide a 

comprehensive understanding of the overall impact of the 

input variables on the predictions of this model. This detailed 

insight allows us to quantify the contribution of each 

attribute, thereby enhancing the interpretability and 

transparency of the model's decision-making process. 

The most crucial factors in the NKUA V1 scenario are 

the comorbidities and DHI at baseline characteristics. The 

Education and DHI at baseline feature are the most 

prominent aspect in NKUA V2, as indicated by the SHAP 

values presented in Fig. 4 and Fig. 5.  

 
Fig. 4.Treatment effectiveness endpoint: SHAP value of features in the 

NKUA(V1) dataset. 

 
Fig. 5.Treatment effectiveness endpoint: SHAP value of features in the 

NKUA(V2) dataset. 

In relation to the UCL (VM) dataset, the Fall feature holds 

the utmost importance in this scenario as illustrated in Fig. 6. 

This underscores the critical role that this feature plays in 

accurately predicting and understanding the risk of falls 

within this dataset. 

 
Fig. 6.Treatment effectiveness endpoint: SHAP value of features in the 

UCL (VM) dataset. 

The HOLOBALANCE dataset produced two different 

targets in the treatment efficacy endpoint: the difference in 

MoCA scores and the difference in 5Q5D scores. Regarding 

the first analysis according to the results seen in Fig. 7a the 

most relevant feature is MoCA total. Specifically, this refers 

to the total MoCA scale score at baseline. On the other hand, 

Fig. 7b, which reflects on DIF_5Q5D, it demonstrates that the 

number of falls that occurred in the past year is the most 

important characteristic. 

 

 
Fig. 7. Treatment effectiveness endpoint: SHAP value of features in the 

HΟΛΟΒΑΛΑΝΨΕ dataset (a.DIF_MoCA, b.DIF_5Q5D). 

The most important features of the treatment 

effectiveness endpoint were analyzed and compared. This 

comparison reveals important derived from the models 

developed using the NKUA V1, NKUA V2, UCL (VM), and 

HOLOBALANCE datasets.  In fact, Table V outlines the key 

features identified from each model.  

Table V.Most important features of Treatment effectiveness endpoint. 

NKUA(V1)- 

DIF_DHI 

NKUA 

(V2)- 

DIF_DHI 

UCL (VM) - 

DIF_DHI 

HOLOB.- 

DIF_MoCA 

HOLOB.- 

DIF_5Q5D 

Comorbiditi

es 

Education FALL MoCA_Tota

l 

No. of falls 

past year 

DHI DHI Gender ABC_14 Minibest_9 

FGA Age DHI ABC_8 FGA_7 

Duration ABC FGA ABC_11 Whodas_10 

Age FGA Age ABC_1 Minibest_12 

Diagnosis Diagnosis 
 

UEQ_06 EAMQ_31 

Vertigo Duration 
 

ABC_7 Minibest_10 

Unsteadiness

, Falls 

Tendency 

MOCA 
 

Whodas_1 EAMQ 29 

Motion 

Discomfort 

  
SUS_03_I 

thought the 
system was 

easy to use 

FGA 5 

Dizziness 
  

UEQ_17 Ancestry 

The FGA feature is present in almost all the models, 

pointing to their importance in relation to the treatment 

effectiveness endpoint. Moreover, another very important 

feature in this endpoint is the DHI, since this feature is 



identified as critical by the NKUA V1, NKUA V2, and UCL 

VM models. 

In particular, the NKUA V1 model emphasizes a wide 

range of demographic and clinical signs, including 

comorbidities, duration of symptoms, age, diagnosis, vertigo, 

tendency to fall, discomfort from movement, and dizziness. 

While the NKUA model V2 is on the same wavelength. 

Specifically, it also incorporates demographic and clinical 

factors such as education, age, ABC, diagnosis, duration and 

MoCA. These models incorporating each participant's 

demographic and clinical cues suggest a more holistic 

approach to evaluating treatment outcomes in this scenario. 

The UCL (VM) model uniquely outlines fall risk, gender and 

age, alongside standard clinical assessments like DHI and 

FGA as important features that play a key role in treatment 

effectiveness.  

The HOLOBALANCE - DIF_MoCA model integrates 

cognitive, balance, and user experience metrics, including 

MoCA_Total, various ABC measures, the User Experience 

Questionnaire (UEQ), and system usability. The focus of this 

model on the cognitive and user experience elements 

provides a comprehensive view of the effectiveness of the 

treatment. The HOLOBALANCE – DIF_5Q5D model, on 

the other hand, points out such factors as the number of falls 

the last year, various items of MiniBest and FGA scales, 

WHO Disability Assessment Schedule, Whodas, EuroQoL, 

EAMQ, and ancestry. This model’s comprehensive approach 

to evaluating treatment outcomes underscores the importance 

of integrating multiple dimensions of patient data, including 

physical, cognitive, and demographic information. 

Comparative observations highlight treatment efficacy 

factors and suggest tailored interventions. Clinical and 

cognitive assessments combine with user experience for 

robust prediction models, optimizing rehabilitation 

procedures for optimal patient outcomes. 

VI. CONCLUSIONS 

The developed models specifically target important 

clinical outcomes, such as the risk of falls and treatment 

effectiveness. Moreover, they have the potential to improve 

the clinical decision-making process and patient 

rehabilitation outcomes.  

For each endpoint, we have developed clinically relevant 

models that predict future outcomes using baseline features. 

For instance, within the NKUA dataset, DIF_FGA and 

DIF_DHI assessed the difference-change of each scale at the 

beginning and end of the 8-weeks. The UCL dataset used 

DIF_DHI to measure changes at the beginning and after an 

average of 33 weeks. The HOLOBALANCE dataset 

employed DIF_MoCA and DIF_5Q5D to assess scales at 

baseline (week 3) and at the end of the period (week 9).  

For risk of falls, the developed models demonstrate strong 

robustness in terms of high accuracy, sensitivity, and 

specificity. The model that utilized the Random Forest 

technique, attained an accuracy of 0.97 ± 0.03 from the 

NKUA V2 dataset. These models leverage important 

variables such as FGA and DHI scales for predicting and 

mitigating fall risks in patients undergoing rehabilitation. 

Additionally, our models demonstrate high accuracy and 

reliability for the treatment effectiveness endpoints. In 

particular, the Random Forest model targeting DIF_DHI 

from the datasets achieved impressive results with an 

accuracy of 0.96 ± 0.04, highlighting the importance of 

features such as comorbidities, DHI and education. Indeed, 

the most important features for the treatment effectiveness 

endpoint highlighted by the model set were the FGA and DHI 

scales.  

In conclusion, our work has made substantial progress in 

detecting the key features that influence clinical outcomes 

through comprehensive model comparisons. The models 

developed in this study offer practical and effective tools for 

rehabilitation, enhancing clinical decision-making and 

ultimately improving patient outcomes. 

VII. DISCUSSION 

SHAP values and their clinical relevance 

The use of SHAP values across our models has provided 

crucial insights into the influence of specific features on 

model predictions.  

For the risk of fall endpoint, the SHAP values highlight 

the Functional Gait Assessment (FGA) and the Dizziness 

Handicap Inventory (DHI) as the most significant features 

across the NKUA V1 and V2 datasets. The FGA at baseline 

consistently emerged as a crucial predictor in both models, 

underscoring its importance in assessing balance and gait 

functionality. Additionally, comorbidities, diagnosis, and 

symptom duration were significant in the NKUA V1 dataset, 

suggesting a comprehensive evaluation of a patient's medical 

background is vital for accurate fall risk prediction. The 

NKUA V2 dataset emphasized cognitive assessments such as 

the Montreal Cognitive Assessment (MOCA) and the 

Activities-specific Balance Confidence (ABC) scale, 

indicating that cognitive factors also play a significant role in 

fall risk. 

For the treatment effectiveness endpoint, the SHAP 

analysis identified comorbidities, education level, and 

baseline DHI scores as pivotal in predicting outcomes. The 

consistent significance of the DHI across different datasets 

(NKUA V1, V2, and UCL) highlights its reliability in 

evaluating the impact of dizziness on daily activities and its 

utility in tracking treatment progress. The inclusion of 

educational background as a significant feature in the NKUA 

V2 dataset suggests that socioeconomic factors might 

influence treatment adherence and effectiveness. The 

Holobalance datasets added another layer by incorporating 

user experience metrics such as system usability (SUS) and 

user experience (UEQ), which are critical in tailoring and 

optimizing tele-rehabilitation programs. 

Similarities Among Datasets and Endpoints 

Analyzing the similarities among the datasets and 

endpoints reveals several key insights: 

1. Consistency of Critical Features: The FGA and 

DHI were recurrently significant across different 

datasets for both endpoints. This consistency 

reinforces their reliability and importance in clinical 

assessments related to balance disorders. 



2. Integration of Cognitive and Physical 

Assessments: The inclusion of cognitive measures 

(e.g., MOCA) and balance confidence (e.g., ABC) 

across multiple models indicates the intertwined 

nature of cognitive and physical health in 

rehabilitation outcomes. This integration is essential 

for comprehensive patient evaluations and 

personalized rehabilitation strategies. 

3. Holistic Patient Profiles: Both endpoints benefited 

from a holistic approach that considered 

demographic, clinical, and cognitive factors. This 

comprehensive profiling ensures that predictive 

models are robust and applicable to diverse patient 

populations, enhancing their generalizability and 

clinical utility. 

Clinical Relevance 

The SHAP values provide clinically relevant information 

that can directly impact patient care: 

• Personalized Treatment Plans: By understanding 

which features most significantly influence 

outcomes, clinicians can tailor rehabilitation 

programs to address specific patient needs, 

improving adherence and effectiveness. 

• Risk Stratification: Identifying high-risk patients 

through significant predictors like FGA and DHI 

allows for early interventions, potentially 

preventing falls and associated complications. 

• Enhanced Monitoring: Continuous assessment 

using validated scales like FGA and DHI, coupled 
with cognitive and user experience evaluations, 

provides a multidimensional view of patient 

progress, enabling timely adjustments to treatment 

plans. 

• Data-Driven Decision Making: The insights 

gained from SHAP values enhance the transparency 

and interpretability of AI models, fostering greater 

trust among clinicians in utilizing these tools for 

decision-making. 

VIII. FUTURE WORK 

Future work will include incorporating additional 

retrospective datasets to improve and validate the current 

models. These datasets will be essential to improve the 

complexity and accuracy of our predictive models, 

guaranteeing their power and practicality in clinical settings. 

In essence, our goal is to improve the predictive capabilities 

of our existing models. This approach will significantly 

improve the efficiency of our project and therefore the patient 

outcomes, giving more reliable tools to the clinicians. 
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