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Abstract— Objective: Quantitative Susceptibility
Mapping (QSM) measures magnetic susceptibility of
tissues, aiding in the detection of pathologies like
traumatic brain injury, cerebral microbleeds, Parkinson's
disease, and multiple sclerosis, through analysis of
variations in substances such as iron and calcium.
Despite its clinical value, using high-resolution QSM
(voxel sizes <1 mm3) reduces signal-to-noise ratio (SNR),
which compromises diagnostic quality. Methods:
Denoising of T2"-weighted (T2'w) data was implemented
using Marchenko-Pastur Principal Component Analysis
(MP-PCA), allowing to enhance the quality of Rz, T2", and
QSM maps. Proof of concept of the denoising technique
was demonstrated on a numerical phantom, healthy
subjects, and patients with brain metastases and sickle
cell anemia. Results: Effective and robust denoising was
observed across different scan settings, offering higher
SNR and improved accuracy. Noise propagation was
analyzed between T2'w, R2’, and T2" values, revealing
augmentation of noise in T2'w compared to R2" values.
Conclusions: The use of MP-PCA denoising allows the
collection of high resolution (0.5 mm?®) QSM data at
clinical scan times, without compromising SNR.
Significance: The presented pipeline could enhance the
diagnosis of various neurological diseases by providing
higher-definition mapping of small vessels and of
variations in iron or calcium.

Code available at:
[https://github.com/NoamBenEliezer/T2-w-MP-PCA].

Index Terms— Denoising, magnetic susceptibility,
principal component analysis, quantitative susceptibility
mapping, QSM, signal to noise ratio, T2", R2".
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Fig. 1. Original and denoised T3 images along with their corresponding
quantitative susceptibility maps (0.5% isotropic millimeter resolution). (a)
shows the original magnitude image, (b) presents the denoised image, and
(c-d) displays their respective QSM maps. A zoomed-in region of each image
is shown at the bottom left corner.

|. INTRODUCTION

A. Motivation for high-resolution QSM

Quantitative susceptibility mapping (QSM) [1]-[4] is a
common MRI technique for measuring the magnetic
susceptibility of tissues (). QSM is mainly utilized for
detecting pathologies that involve dysregulations in iron,
calcium, and myelin content, and has been utilized as a
biomarker for microbleeds in traumatic brain injury, sickle
cell anemia, brain metastases, glioma, multiple sclerosis, and
Parkinson's disease [2], [S]-[11]. Several studies have shown
that increasing the spatial resolution of clinical data lowers
partial volume effects and offers more faithful mapping of
QSM values, particularly in small structures [2], [11]-[13].
Specifically, high-resolution susceptibility maps are
important for separating subthalamic nuclei, and
characterization of the internal structure of the substantia
nigra, which plays a central role in Parkinson's disease and in

planning deep brain stimulation surgeries [14]-[16].
Additionally, QSM is useful for detecting increased
susceptibility in the basal ganglia [17] as well as

paramagnetic rims of iron-laden active microglia and
macrophages in multiple sclerosis (MS) lesions, correlating
with cognitive function and with the expanded disability
status scale (EDSS) [18], [19]. Collecting high resolution
data, however, comes with a tradeoff of lower SNR, and
reduced diagnostic quality [12], [13].

Typically, QSM values are reconstructed from complex
T;-weighted (T3w) images, acquired using a 3D multi
gradient echo (GRE) protocol. As QSM involves solving the
field-to-source inverse problem, noise amplification is a
major issue and can lead to streaking artifacts and
quantification errors [20]. Further, due to the intricate QSM
reconstruction pipeline [21] and the use of complex data,
noise propagation affects QSM values beyond simple
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reduction in SNR [22], [23] and may lead to artifacts relating
to inaccurate phase unwrapping [2], [11]. Solutions to these
problems are typically based on adding regularizations or
adjusting hyperparameters and weighting terms in the QSM
processing pipeline [24], [25]. Other applications that could
benefit from denoising QSM data are quantifying
microvascular oxygen extraction fraction (OEF) based on the
QSM-OEF technique [26], and fast QSM acquisition methods
such as echo planer imaging (EPI) based QSM [27], [28].

B. Denoising QSM - Previous work

An effective approach to avoid noise-related artifacts and
produce high-resolution QSM maps is to denoise the raw
complex T;w data that are used as input to the QSM pipeline.
Bazin et al. [29], for example, introduced a technique that
employs Principal Component Analysis (PCA) to denoise
magnetization-prepared gradient echo (MPRAGE) data, for
QSM processing at 7T. Zhang et al. [30] utilized a self-
supervised deep neural network for denoising EPI data from
multiple slices and echo-times. This model, however, is
designed to denoise only the magnitude, rather than complex
images, and may therefore produce less optimal results for
QSM which relies heavily on the phase information.

Some QSM reconstruction approaches use supervised and
unsupervised deep learning which simplify the QSM pipeline
and introduce some level of denoising , e.g., Plug-and-Play
QSM [31], DeepQSM [32], QSMnet [33], MoDIP [34], or
AFTER [35]. These methods, however, still operate on the
main field inhomogeneity map generated from noisy data,
potentially affecting the QSM results, and may thus also
benefit from a priori denoising of the raw T;w data.
Notwithstanding promising results of recent techniques [31],
[35], deep learning approaches may encounter limitations in
terms of generalization, seeing as supervised networks
require large and diverse training sets, including variations in
susceptibility values and, ideally, varied resolutions, in order
to function effectively, while a lack of such diverse data can
lead to suboptimal results [33], [36]—[38].

C. Existing applications of MP-PCA denoising

Recent studies have demonstrated the utility of
Marchenko-Pastur (MP) criteria in PCA for effective noise
reduction. This method relies on the fact that, for MRI
signals, the eigenvalues of noise obey the universal MP law
of random matrix theory [39]. Its applications have been
explored in several MRI modalities, including Diffusion-
weighted MRI [40], enhancement of parameter estimation in
multiexponential relaxometry [41], production of more
precise T, maps [42], multi-parametric quantitative MRI of
the spinal cord [43], language mapping in functional MRI for
patients with brain tumors [44], and diffusion-weighted
spectroscopy [45].

In this work, MP-PCA was employed for denoising multi-
GRE data, which is both commonly utilized and the
recommended approach for accurate QSM [21], [23]. MP-
PCA was integrated as an initial step in processing complex
T;w brain images within the QSM pipeline [46] (Fig. 1).
Denoising efficiency was also evaluated on T, w magnitude
images, and on R, T, , and QSM maps. Successful proof of
concept is shown on a numerical phantom and in vivo brain

data in healthy individuals as well as patients with sickle cell
anemia, brain metastases, and Parkinson’s disease. These
applications were conducted across a range of scan settings
and spatial resolutions, highlighting the method's robustness.

Il. THEORY

A. Theory of MP-PCA denoising

This Section contains a concise overview of MP-PCA
denoising theory applied to T,w imaging. More
comprehensive descriptions can be found in [40]-[42]. Multi-
echo T;w magnitude and phase data were acquired using a
3D GRE sequence. We denote the acquired 4D complex data
matrix as D € CWV»NyNzNel = \where three dimensions
represent the spatial domain, and the fourth denotes the
number of echoes Ng. A sliding 4D window denoted as W €
ClenynzNEl g yged to traverse the entire dataset D, while
denoising is applied within that window. A natural choice for
a dataset with isotropic resolution is a 3D isotropic window
size of Ny X Ny X Ny,. The matrix W surrounding each
voxel is vectorized to N, = N3, resulting in a 2D matrix A €
CNv*NE_ A is then normalized to A by subtracting the mean
signal within each 3D spatial window A € C**NE for each
echo time (TE) according to:

A =A@ —AQ) -1y, Vi€EL..Ng (@
A is then decomposed into its linearly independent sources,
or principal components (PCs), using singular value
decomposition (SVD) [47]
SVD(A) =uavT @

The M = min(Ny, N;) diagonal elements of A represent
the singular values of A, and A? is an M x M diagonal matrix
containing the eigenvalues A, ... 1j;. Assuming that noise has
a Marchenko-Pastur distribution, the first P eigenvalues of A
can be associated with the signal, whereas the remaining
(M — P) elements represent noise [39]-[41]. The value of P
is determined by the minimum value that obeys the following
inequality [40]:
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Consequently, noise is removed by truncating the last
Apyq - Ay cigenvalues and transforming back to the spatial
domain using:

A =unavT @

Finally, the mean value at each time point A is added back
to A'. This process iterates across the entire spatial domain,
moving W one voxel at a time. The denoised signal at each
voxel is then given by the average value from all windows
that include that voxel [48].

B. Quantitative mapping of magnetic susceptibility
QSMs were computed from magnitude and phase images.
Phase images reflect the magnetic field inhomogeneities,
ABy () which, in turn, represent a convolution of the tissue
susceptibility y(#) with the dipole field distribution d (¥) [2]:

AB,(#) = By - {x(#) * d(¥)} ®)



This equation is known as the forward model, where B, is
the static homogeneous magnetic field in the z-direction, and
the unit dipole d () is defined as:

L. 3cosp—1 ©)
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where ¢ is the angle between the position vector 7 and the
main magnetic field (B,) direction (2).

Several pipelines exist for reconstructing QSMs. Here, we
used the pipeline described by Karsa et al. [46] which
conforms to the recent consensus recommendations [21]. The
process begins with non-linear fitting of the complex data
over echo times [49]-[52] to calculate the total field map
AB,(7) and a noise weighting matrix Wy. This is followed by
Laplacian phase unwrapping [52], [53]. Subsequently
background field is removed by generating a brain mask
using FSL’s Brain Extraction Tool (BET) [54], combined
with a mask based on thresholding W), at its mean. Projection
onto Dipole Fields (PDF) [55] is then used to remove
background fields.

Dipole inversion is implemented using iterative least-
squares fitting in the image domain with Tikhonov
regularization [3], [50], [56]:

argmin”M . WN(BL — By - (d=* )())”2 + allxll3 )
X

where B; represents the local magnetic field, and a denotes
Tikhonov regularization weight. The QSM pipeline is
available upon a request from [46].

I1l. METHODS

A. Validations on a numerical phantom

To assess the efficiency of MP-PCA denoising we
generated a numerical phantom using MATLAB software
(R2021a, The MathWorks, Natick, MA) which was also used
to implement the denoising algorithm.

Phantom was designed as a cylinder aligned along the z-
axis (the direction of By) filled with four smaller cylindrical
tubes with varying magnetic susceptibilities. Each tube's
proton density was set to 1 [a.u.]. In order to assess the
denoising performance under realistic conditions, simulation
parameters were matched to typical experimental parameters
using an isotropic resolution of 0.75 mm?3 and B, = 3 T.
AB,y(#) was calculated using the forward model in (5) and
depended only on differences in magnetic susceptibility,
meaning that phase variations at TE = 0, assocaited with RF
coils or sample electrical conductivity, were omitted from the
simulation. The phase within each voxel was then derived
based on:

0(F) =2m-y-(By+4By(#)) - TE ®

Here y is the hydrogen nucleus gyromagnetic ratio and TE
is the echo time.

Next, AB, and transverse relaxation time constant (T,)
were set for each voxel based on the magnetic susceptibility
and relaxivity R [s'-mM] of Gd-DTPA [57], [58], a
common contrast agent used in clinical imaging. T,, which
corresponds to microscopic field inhomogeneities caused by
the susceptibility variations, was calculated as [59]:

Ty = (2m -y - ABy (@) ®

The T, value in each voxel was then calculated according
to: 1/T; =1/T, + 1/T;,.

Lastly, a series of complex T, w images was generated for
Ng = 8 echo times using standard exponential decay model,
with the following TEs: TE; =3 ms; ATE = 4 ms.
Complex white Gaussian noise was added to the series of T -
weighted images using MATLAB’s wgn function at SNRs of
10 and 20 with respect to the highest magnitude of the T, w
image. This process was repeated 16 times for each SNR
level, with different randomized noise patterns to allow gold
standard calculation of SNR. Denoising was applied using the
MP-PCA pipeline described in Section II above, and a
2 X 2 X 2 X Ng window.

In order to estimate the R} relaxation rate of the tissue and
its inverse, the T,, we performed an exponential fit of the
magnitude signal within each voxel [59]. QSM values were
calculated using the QSM pipeline pre- and post-denoising
(Tikhonov regularization weight was set to & = 0.05). After
MP-PCA denoising, the coefficient of determination (R?)
was calculated for each voxel as an estimate of the goodness-
of-fit of the R; exponential decay model. To prevent bias
caused by outliers voxels with R? < 0.8 were excluded from
further calculations of the mean and standard deviation (SD)
of R;, and T, (TABLE II). For fair comparison, the same
voxels were also excluded from the mean and SD, calculated
for the original R, and T, maps.

SNR maps were calculated for the first echo of T, w, and
for quantitative R;, T, maps, and QSM from the 16
repetitions, according to:

)
SNRyqp (7)) = ﬁ a0

where I and ¢ are the mean and SD of the signal in each
voxel across all 16 repetitions. The average SNR for each
tube for all the maps was estimated based on the mean SNR
across all voxels in the tube.

B. Application on healthy volunteers and patients with
brain metastases and sickle cell anemia

1) MRI Scans

Four healthy volunteers and four patients were scanned
using 3D multi-GRE protocols (see TABLE I for detailed
scan parameters). The volunteers and two patients with brain
metastases were scanned on a 3T Siemens Prisma scanner. A
third patient with sickle cell anemia was scanned on a 1.5T
Philips Achieva scanner, and a patient with Parkinson’s
disease was scanned on a 7T Siemens Magnetom scanner.
Informed written and verbal consent were obtained for all
participants. Healthy volunteers’ scans were approved by the
local institutional review board (IRB) committee (approval
numbers 3933-17-SMC). Scans of two volunteers with brain
metastases were approved by the local ethics committee (IRB
approvals TLV-0038-08 and TLV-0200-10), scans of a
volunteer with sickle cell anemia were approved by IRB
MUHAS-IRB Ref.2014-11-03/EC/Vol.IX/32 and scan of the
volunteer with Parkinson’s disease was approved by the
Queen Square ethics committee, reference 15/L0O/00476 .



TABLE I
SCAN PARAMETERS, MULTI-ECHO 3D-GRE ACQUISITIONS.
Voxel
can . TR TE ATE No. FA §can
State o size m m of & Acc. time
oy (7S] el Is] oy ko] [ms]
Scanl 06 748
Healthy 1~ 399 524 8 15 -
Scan2 0.75 6:14
Scan 3 - 14:09
Healthy 2 ----------- 0.5 68 800 8.00 8 15 e
can 4 2 7:34
Scan5 0.75 6:14
Healthy 3 ——————— 37 299 425 8 2 2
n6 1 357
Scan7 0.6 6:23
Healthy 4 s 299 425 8 12 2 e
Scan8 0.75 6:14
i Pt. 1
Brain Ll o7 45 39 524 8 15 2 408
Metastasis  pt. 2
Sicklecell o 5 15 274 428 4 5 15 2 au
disease
Parkinson's FI’;Dz\llv 22 6
L s 06 195 - 238 6 2 9:10
disease  Pt.4-
2.3 24
Tlw

Healthy volunteers were also scanned using an

MP2RAGE protocol for brain segmentation, with the
following parameters: slice thickness = 1 mm, matrix size =
192 x 156, field of view = 192 X 156 mm?, TE/TR =
3.52/ 4000 ms, Ngjjces = 192, GRAPPA acceleration factor
=2, total scan time = 6:00 min.
For the patient with Parkinson’s disease another QSM
pipeline was used. PDw and T1w images underwent identical
QSM processing. 3D complex phase data (adaptive
combined) were separated into odd and even echo trains
before complex (non-linear) echo fitting [49] and phase
unwrapping using ROMEO [60]. Two-pass masking was
applied [61] The pass 1 mask was generated by thresholding
the ROMEO phase-quality map, and this was combined with
a BET [54] brain mask of the last echo magnitude to produce
the pass 2 mask. Background field removal was completed
using projection to dipole fields [55] images were rotated to
align with By [62], and dipole inversion used Star-QSM [24]
PDw and Tlw susceptibility maps were coregsitered and
averaged to give the final susceptibility maps [63].

2) Data processing

MP-PCA denoising was applied on T, w complex DICOM
images from all scans using a window size of W =
2 X 2 X 2 X Ng, followed by generating quantitative R;, T,
and QSM maps (a = 0.05). For a 256 x 208 x 80 matrix
with 8 echoes the denoising step took 242.4 seconds and the
QSM processing took 710.1 seconds on a single core Intel
Xeon Gold 6150 CPU. MP2RAGE images were segmented
and then registered to the multi-echo 3D-GRE image space

using Freesurfer software [64]. Denoising was assessed in
three 2D regions of interest (ROIs): the globus pallidus,
caudate nucleus, and putamen (contralateral regions were
analyzed separately). The same R? criterion for goodness-of-
fit was used here. An single voxel erosion was applied to all
ROIs to avoid partial volume effects.

The mean and SD of the T,w images' magnitude, T,
values, R; values, and QSM values were estimated in each
2D ROI for a single representative slice. The SNR of the first
echo T, w magnitude images was assessed by dividing the
mean signal in each ROI by the SD of the signal across four
background rectangles similar to [42], [65]. Noise in
magnitude images obeys the Rayleigh distribution [66],
whereas the denoising process was applied on complex data,
where noise is characterized by the Gaussian distribution. To
correct for this difference, SD values of background ROIs
were divided by the factor /2 — /2 according to [65].

The proposed denoising technique was compared with two
other denoising methods, performed as a preprocessing step
for the QSM pipeline. The first method was Gaussian filtering
as described in [67], and the second was BM4D denoising,
which is based on grouping, transforming, and thresholding
of similar 3D patches [68].

T,"w images
SNR =10 SNR =20

asv
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Fig. 2. MP-PCA denoising of a numerical phantom. (a-d) T;w images
(4™ echo) pre- and post-denoising. (e-h) QSM maps pre- and post-denoising.
Simulations were done at SNRs of 10 & 20. Tube numbers are shown in (c).

TABLE II
MEAN, SD, AND SNR OF T5w, R, T3, AND QSM VALUES, CALCULATED FOR THE NUMERICAL PHANTOM. SNR VALUES WERE CALCULATED FROM 16
REPETITIONS.
T, wvalues (1°' echo) R," map T,” map QsM
S Mean [a.u] SD [au] SNR Mean [sec?] SD [sec?] SNR Mean [ms] SD [ms] SNR Mean [ppb] SD [ms] SNR
=z
% Org. \M Den. \M Den. Wi Den. |Org. W/ Den. W/ Den. W/ Den.|f Org. W/ Den. Vw Den. W/ Den. || Org. WI Den. W/ Den. W/ Den.
= noise noise noise noise noise noise noise noise noise noise noise noise
#1 | 098 098 098 | 010 002|105 445( 74 77 74| 38 10| 19 76 (1355 2472 137.3|7920 188 | 12 7.4 | 1483 1485 1485( 291 1843| 67 27.2
#2 [l 097 097 097 | 010 002| 104 443[112 112 112| 44 11| 26 108[ 891 1179 898 |1286 86 | 18 10.7[ 2086 209.1 209.2(3287 2271 9.0 366
#3 | 096 096 096 | 010 002|103 438|151 148 151| 48 11| 32 136|664 782 667 |57.2 51 | 25 135(2624 2632 2632(36.69 26.33| 106 427
#4 | 094 095 095|010 002) 102 431189 186 189| 51 12| 37 159|529 585 531|209 35 | 32 158(307.9 3095 309 [40.81 29.47| 114 456

No.=number, T,'w=T," weighted, Org.=original, w/=with, Den.=denoised,

R,"W=R," weighted, ppb=parts per billion.



IV. RESULTS

T;w images and QSM maps of the numerical phantom are
illustrated in Fig. 2 for SNRs of 10 and 20 pre- and post-
denoising. Fig. 3 shows the corresponding R;, and T, maps.
The denoising procedure enhanced the quality of all images
and maps, producing more homogeneous structures, which
had T;w, T, and R; values closer to ground truth.
Quantitative values, corresponding to each tube are detailed
in TABLE II. As the simulated noise was generated with zero
mean, its addition and removal by denoising did not change
the baseline values of the real and imaginary channels of the
T;w complex dataset, indicating that no bias was introduced
by the denoising process. The SD of the T,w signal
magnitude decreased by 76.6 + 0.0 % post-denoising
(averaged across four tubes), associated with an increase of
324.2 + 1.0 % in SNR. Fitting of R} values produced an error
of 0.2 £ 2.4 % pre-denoising, (averaged across four tubes),
which decreased to 0.0 + 0.1 % post-denoising. Similar
findings were observed in the SD of R; values, which
exhibited an average decrease of 75.4 + 0.9 % post-denoising,
associated with an increase of 321.0 = 7.0 % in SNR.
Quantitative T, values were overestimated by 35.8 + 28.0 %
pre-denoising, which was resolved post-denoising, where a
negligible deviation of 0.8 &+ 0.4 % was observed vs. true T,
values. SD of T, values decreased by 91.3 + 5.2 % post-
denoising, associated with an increase of 459.2 + 51.6 % in
SNR.

Notably, although T, is the inverse of R;, a drastically
different bias emerged between the two types of values. This
was reflected in the coefficient of variation (CV) which
increased by 72.2 % when moving from R; to T, . This can be
attributed to noise propagation during the conversion of R; to
T, values, which involves a division operation (T, = 1/R3).
This changes the noise distribution, leading to a strong
overestimation of T, values. This effect was more
pronounced for higher T, values, as they correspond to R;
values that are closer to zero.

QSM maps demonstrated no bias in mean values both pre-
and post-denoising. We ascribe this stability to the QSM
pipeline's reliance on a spatial magnitude weighting matrix
Wy, as reported in [20]. As expected, the SD in QSM values
was smaller by 30.9 + 3.5 % post-denoising, corresponding
to an increase of 304 + 3.8 % in SNR. An example of the
effect of denoising on the raw signal decay curves is shown
in Fig. 4, juxtaposing the original (noisy) and denoised T, w
signal values. Denoised signals (red ‘*”) exhibit significantly
reduced variability compared to the noisy signals (blue ‘m’),
closely following the original decay curves (green ‘+7).
Efficient denoising was achieved for all three data types and
two SNRs without visible loss of information.

T;w images, T, maps, and QSM maps for a healthy
volunteer (scan 8 in TABLE I) are shown in Fig. 5 pre- and
post-denoising. The denoising process (~3.66 sec per slice
256 x 208) did not introduce any visible blurring, preserving
the fine anatomical details as

R,"map T,"map
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Fig. 3. R; (a-d) and T3 (e-h) maps pre- and post- MP-PCA denoising of
the numerical phantom at SNRs of 10 & 20.

exemplified by the zoomed-in insets (middle and bottom
rows). Quantitative R;, T,, and QSM values are given in
TABLE III for each ROI. An average increase of 1.1 £ 0.6 %
in the R} values was observed post-denoising across all ROIs,
with a corresponding decrease of 20.3 + 7.0 % in SD. An
average decrease of 2.9 + 0.9 % in T, values was observed
post-denoising, with a corresponding decrease of 23.9 + 10.2
% in SD. The denoising pipeline did not induce any consistent
trend in the QSM values, producing an average change of 0.5
+ 2.5 % in mean values and an average decrease of 10.8 + 5.1
% in SD post-denoising. SNR in all assayed ROIs was
estimated for T, w images, using four regions in the image
background to represent the noise magnitude (see Section
IIT). A consistent increase in the T;w images' SNR was
observed for all ROIs with an average improvement of 74.2
+ 0.2 % post-denoising. SNR values were also calculated for
five more scans acquired with different scan parameters. For
scan no. 3, an improvement of 139.2 + 0.4 % post-denoising
was observed. For scan no. 4, which had the same acquisition
parameters except acceleration factor of factor 2, the
denoising process produced a similar improvement of 139.3
+ 1.3 %. For scans
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Fig. 4. T5 decay curves for all four tubes in the numerical phantom. The
green line (‘“+’ marker) denotes the original decay curve, the blue (‘m’
marker) denotes the original decay curve with added noise, and the red line
(“+’ marker) denotes the denoised signal.



5, 6, and 7 improvements of 179.9 £ 0.8 %, 28.8 + 0.3 %,
and 252.8 + 2.2 % were seen respectively. These results
demonstrate the robustness of MP-PCA denoising across
different scan parameters.

Fig. 6 depicts QSM maps for two subjects with brain
metastases pre- and post-denoising. Zoomed-in views of the
tumors areas demonstrate the preservation of anatomical
details of the tissue post-denoising while enhancing the maps'
SNR. As described in Section II, the inverse problem in QSM
mapping is ill-posed, leading to potential streaking artifacts,
an issue highlighted in various previous studies [20], [69].
Fig. 7 demonstrates the utility of MP-PCA denoising for
decreasing QSM map artifacts in a patient with sickle cell
anemia. The vertical (and horizontal) lines of alternating
bright and dark voxels may be caused by pulsatile blood flow.
This is significantly reduced by the denoising process,
demonstrating its utility in alleviating this type of QSM
artifacts.

Fig. 8 present the effect of the denoising algorithm on a
volunteer with Parkinson’s disease. The scan protocols and
the QSM pipeline were different compared to other scans
presented in the paper.

Fig. S3-6 presents the effect of different denoising
techniques on the T, w images and R;, T;, and QSM maps
from Scan 1. As can be seen, the suggested MP-PCA
denoising technique and the BM4D technique reduces noise
while maintaining fine details, whereas the Gaussian
denoising produced smoothing and blurring effects.

V. DISCUSSION

This study evaluated MP-PCA denoising of T, w images and

P
T, w images

Original Denoised Original

A.U. 300

T," map

derived R3, T, and QSM maps. Successful application of the
technique was demonstrated in a numerical phantom where
both the accuracy and precision of all measured values were
increased post-denoising. In vivo validations were also
performed in both healthy brains and in the presence of
pathologies, demonstrating a proof-of-concept of effective
denoising across a range of acquisition parameters, field
strengths, acceleration factors, echo times, acquisition
bandwidths, and resolutions up to 8 times higher than ones
commonly used for QSM. Anatomical details were
consistently preserved for all assayed settings with no visible
loss of information.

In terms of generalizability, a notable advantage of MP-
PCA denoising is that it requires no preliminary assumptions
or adjustments of the hardware or scan parameters. In contrast
to previous reports [40]-[42], this study showed that effective
denoising can be achieved using a relatively small number of
echoes. Overall, this allowed acquisitions at sub-millimeter
resolutions of up to 0.5 mm? and low flip angles whilst
producing clinically acceptable SNR. MP-PCA denoising
was also compared to other commonly-used denoising
methods, and produced susceptibility maps preserving far
more fine structure. Note that drastically longer processing
times were observed for the BM4D method compared to the
others, especially for high resolution data.

A. Considerations of MP-PCA denoising

Several factors influence the denoising procedure, ultimately
determining the final SNR levels and quantitative values.

Qsm

Denoised Original Denoised

(d)

+0.2

Fig. 5. MP-PCA denoising of brain anatomy of a healthy subject #4 pre- and post-denoising. (a-b) T;w images (first echo), (c-d) T, maps, (e-f) QSM
maps pre- and post- denoising. Zoomed regions of interest are shown below each type of image/map (marked by an orange dashed rectangles). Efficient

denoising is achieved for all data types without visible loss of information.



TABLE III
SNR VALUES FOR T, WEIGHTED IMAGES, ALONGSIDE QUANTITATIVE R5, T;, AND QSM VALUES PRE- AND POST-DENOISING FOR SiX ROIS,
SEGMENTED USING FREESURFER FOR A HEALTHY VOLUNTEER.

R," map T,  map QSM SNR T, 'w

Mean [sec’] SD [sec’] Mean [ms] SD [ms] Mean [ppb] SD [ppb] Diff.

Org. Den. ]?;:] Org. Den. I:‘l;:] Org. Den. I:;;:] Org. Den. I:;g] Org. Den. ]?‘l;:] Org. Den. I:‘l;:] Org. Den. [%]

L. G. Pallidus| 35.7 36.2 15| 83 6.5 -21.6/30.0 289 -3.7| 94 7.4 -20.4|107.8 107.2 -0.5|785 73.6 -6.3(10.3 18.0 73.9
R. G. Pallidus| 37.2 37.7 15| 80 6.6 -17.5/283 275 -28| 7.3 6.2 -14.0(143.7 1424 -0.9 |58.3 54.2 -7.1(10.2 17.7 741
L. C. Nucleus | 20.6 20.7 0.5 | 46 3.5 -24.7|51.1 496 -29|11.7 7.7 -34.3|53.0 543 24 |40.1 36.0 -10.3(10.3 17.9 74.3
R. C. Nucleus| 21.2 21.3 0.1 55 51 -75]50.6 50.0 -1.2|14.8 13.4 -10.0{ 53.1 51.0 -4.0|27.0 24.3 -10.0( 9.7 16.9 74.1
L. Putamen 234 238 17| 46 32 -30.5|444 4277 -38| 93 57 -38.0|449 46.1 28 (286 224 -21.6/10.8 18.8 74.4
R. Putamen 225 228 15| 45 3.6 -20.0(46.2 448 -3.1]| 93 6.8 -27.1(479 464 -3.0344 311 -95]101 17.7 744

ROIl=region of interest, L.=left, R.=Right, G.
Diff.=Difference, SD=standard deviation

Pallidus=Globus Pallidus,

First, scanning parameters, mainly spatial-resolution and
acquisition bandwidth, will affect SNR. Here, we
demonstrated how MP-PCA denoising successfully
improved the SNR across various scan parameters and
acceleration factors, allowing higher resolutions or
bandwidths to be used while still achieving acceptable
diagnostic quality.

Since all data were acquired using a 3D multi-GRE
protocol, a 3D isotropic moving window was used for all
datasets with the number of echoes determining the fourth
dimension (see Section II). A minimal window size of
2 X 2 X 2 pixels was found to be optimal for denoising,
resulting in a 4D window of 2 X 2 X 2 X N, vectorized to
[N, X Ng] =8 X Ng. Since the number of eigenvalues of
PCA decomposition is determined by the smallest dimension
(minimum of Ny and Ng) [47], and given that multi-GRE
protocols are limited to typically 5-10 echoes, choosing a
larger window would not have changed the number of PCs
and hence might cause a smoothing effect as can be seen in
online Figure Sup. 3 [21]. This is similar to Does ef al. [41]
where a 2D window of Ny, X Ny, was used (for a 2D

acquisition), where Ny, = /N, corresponding to our use of
w E

a 3D window size of Ny, = i/N_E

Parallel imaging, such as GRAPPA, is generally
recommended for QSM [21], yet can lead to variable noise
pattern across the imaged FOV, which may affect the
performance of the denoising algorithm. Our findings reveal
that despite this potential challenge the MP-PCA denoising
performance was not impaired when using moderate R = 2
acceleration. This is described in Section IV, where the
relative increase in SNR was similar between accelerated and
non-accelerated data (scans 3 and 4).

B. Propagation of noise between R, and T," maps

The addition of noise in the numerical simulation led to an
artificial overestimation of T3 values compared to ground
truth. This was caused due to the non-linear combination of
real and imaginary images, altering the noise distribution, a
process extensively elaborated in [66]. As reported, for SNR
values >3, the noise patterns closely resemble a Gaussian
distribution, retaining the original variance (%) but with a
mean value adjusted to sqrt(I 24 02), where I, is the

C. Nucleus=Caudate Nucleus, Org.=original, Den.=denoised,

original magnitude of the signal. As SNR decreases below 3,
e.g., at later echo times, the noise distribution shifts to Rician,
leading to an even more pronounced elevation of the signal
magnitude, as demonstrated by Stern et al. [42]. These effects
were mitigated post-denoising, allowing the use of later time-
points which were previously below the noise level. It is
important to emphasize that similar to [36], [37], [40],
denoising was applied to complex T5w data (magnitude and
phase) to maintain the Marchenko-Pastur noise distribution
and minimize Rician noise at later echo times. The
propagation of noise was further investigated when
transitioning from Tow images to R5 and T3 maps. Analysis
showed that pre-denoising, R values exhibited a small and
non-systematic deviation from the original values, unlike the
corresponding T3 values which demonstrated a significant
overestimation. This is likely due to the proximity of R
values to zero, leading to the amplification of noise during the
division operation used for calculating T3 values. This
particularly affected high T3 values corresponding to low R
values (see TABLE 11). We therefore recommend relying on
R; values where possible to minimize augmentation of
postprocessing noise.

C. Denoising of QSM data

The variations in the main magnetic field AB, (#) are at the
core of QSM and are derived from phase images. Previous
studies report that the noise at each voxel in the phase image
has a Gaussian distribution, while its SD is inversely
proportional to the corresponding voxel's magnitude, which,
in turn, depends on the local proton density, and B;"/B;~
profiles [50], [51]. Throughout the QSM pipeline, this noise
propagates through several non-linear operations, which alter
its original Gaussian distribution and introduce higher
variability among voxels with the same susceptibility (this
can be seen in Fig. 2 and TABLE II). MP-PCA denoising
reduces the phase noise, thereby mitigating some of the noise
amplification induced by the QSM pipeline without loss of
information, as demonstrated in Fig. 1 and in TABLE II. The
QSM reconstruction implemented in our study followed the
pipeline and regularization scheme outlined in [46]. The
integration of MP-PCA denoising into
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Fig. 6. MP-PCA denoising of QSM maps for two patients with brain
metastases located next to the postcentral gyrus (a-b), and next to the
precentral gyrus (c-d). Zoomed regions of interest are shown below each map
(marked in orange dashed rectangles).
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Fig. 7. Utility of MP-PCA denoising for decreasing QSM map artifacts in
a patient with sickle cell anemia. The vertical (and horizontal) lines of
alternating bright and dark voxels may be caused by pulsatile blood flow. (a)
Artifacts in the pre-denoised map, marked with orange arrows. (b)
Attenuation of streaking artifact post-denoising around this high-
susceptibility region which may contain a blood vessel. The denoising
process has also reduced the intensity of repeated edge artifacts which may
be due to patient motion, aliasing that was incompletely resolved by parallel
imaging, or Gibbs artifacts (orange circle).
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Original
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Fig. 8. Axial QSM maps pre- and post-denoising for a patient with
Parkinson’s disease, showing midbrain structures. Top row presents the full
brain slices, with regions of interest highlighted in yellow boxes. The bottom
row shows magnified views of these regions. Blue arrows mark the Globus
Pallidus, yellow arrows point to the Substantia Nigra, and red arrows mark
the Red Nuclei.

other QSM pipelines with different regularization parameters
is expected to be similarly effective and remains a prospect
for future research. One example is truncated K-space
division (TKD) [1], a common method for rapidly obtaining
a solution to the inverse problem. The TKD technique is
highly sensitive to noise [20] leading to potentially significant
artifacts in the susceptibility map, making it an ideal
candidate for denoising algorithms. Another example is
supervised and unsupervised QSM deep learning
reconstruction methods. Many of these methods use the
ABy(#), which already suffers from propagated noise. The
presented technique will allow to reduce the noise effect at
this stage for a better input for QSM pipelines. Moreover, as
the suggested denoising pipeline is applied prior to QSM, one
may assume that other deep learning methods that use the
complex image as an input such as [70], can also benefit from
better precision and SNR-improved images. The Appendix
exemplifies a possible implementation of the denoising
process at even earlier stage, i.e., on the images from each
coil channel, before coil combination is performed.

QSM is valuable for differentiating intratumoral
hemorrhages and calcifications that may result from
therapeutic response of metastatic brain tumors. Fig. 6, shows
differences between two patients with brain metastases,
where the first patient's QSM map contains a lesion with
pronounced calcification (potentially indicative of treatment
efficacy [71]), while the second exhibits a lesion with a much
thicker rim associated with prominent hemorrhagic pathology
[72]. This proof-of-concept application provides another
example for the ability of MP-PCA denoising to improve the
diagnostic quality of QSM in the clinic, allowing more
precise comparison between metastases with different origins
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Fig. 9. QSM maps of an In vivo scan 1, and voxel size of an isotropic 0.6 mm?®. (a) QSM based on the original data. (b) QSM that was derived from the
denoising of the complex T5w coil combined data. (¢) QSM was derived by denoising each channel of the complex T5w data and then coil combined.

or treatments, and for comparing different time points in
longitudinal studies [73].

VI. CONCLUSIONS

The current study highlights the utility of MP-PCA
denoising for enhancing the diagnostic quality of QSM maps
by improving their SNR and alleviating QSM-specific
artifacts, thereby enabling the acquisition of higher resolution
data. Recognizing the need for a larger test cohort, these
initial results nevertheless provide a sound proof-of-concept
for the effectiveness of MP-PCA denoising of T, -weighted
images and their quantitative T, R; and QSM derivatives.

VII. APPENDIX

To assess the impact of different coil combination
schemes, MP-PCA denoising was applied on data acquired
without acceleration for one healthy volunteer using three
different coil combination procedures: adaptive combination
done directly on the scanner; adaptive combination done
during post-processing based on the method described by
Bernstein et al. [74]; similar adaptive combination done post-
denoising, which was implemented for each of the 16
channels separately.

T; and QSM maps were compared for each of the three coil
combination schemes and shown in Fig. 9. The denoising
procedure improved the image quality and QSM quality in all
three cases. However, denoising of uncombined complex
images from each channel separately yielded the most
significant visual enhancements in the QSM maps. A
drawback of working with uncombined complex images,
however, is the increased processing time due to the need to
denoise each channel individually. Another limitation is that
uncombined complex images from each coil are typically not
available, particularly for retrospective studies. Given these
limitations, and following the recommendations in the QSM
Consensus paper [21], our study used magnitude and phase
DICOM images as inputs.
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