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Abstract— Objective: Quantitative Susceptibility 

Mapping (QSM) measures magnetic susceptibility of 

tissues, aiding in the detection of pathologies like 

traumatic brain injury, cerebral microbleeds, Parkinson's 

disease, and multiple sclerosis, through analysis of 

variations in substances such as iron and calcium. 

Despite its clinical value, using high-resolution QSM 

(voxel sizes < 1 mm3) reduces signal-to-noise ratio (SNR), 

which compromises diagnostic quality. Methods: 

Denoising of T2
*-weighted (T2

*w) data was implemented 

using Marchenko-Pastur Principal Component Analysis 

(MP-PCA), allowing to enhance the quality of R2
*, T2

*, and 

QSM maps. Proof of concept of the denoising technique 

was demonstrated on a numerical phantom, healthy 

subjects, and patients with brain metastases and sickle 

cell anemia. Results: Effective and robust denoising was 

observed across different scan settings, offering higher 

SNR and improved accuracy. Noise propagation was 

analyzed between T2
*w, R2

*, and T2
* values, revealing 

augmentation of noise in T2
*w compared to R2

* values. 

Conclusions: The use of MP-PCA denoising allows the 

collection of high resolution (~0.5 mm3) QSM data at 

clinical scan times, without compromising SNR. 

Significance: The presented pipeline could enhance the 

diagnosis of various neurological diseases by providing 

higher-definition mapping of small vessels and of 

variations in iron or calcium. 

Code available at: 

[https://github.com/NoamBenEliezer/T2-w-MP-PCA]. 

 

Index Terms— Denoising, magnetic susceptibility, 
principal component analysis, quantitative susceptibility 
mapping, QSM, signal to noise ratio, T2

*, R2
*. 
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Fig. 1. Original and denoised 𝑻𝟐

∗  images along with their corresponding 

quantitative susceptibility maps (0.53 isotropic millimeter resolution). (a) 

shows the original magnitude image, (b) presents the denoised image, and 

(c-d) displays their respective QSM maps. A zoomed-in region of each image 

is shown at the bottom left corner. 

I. INTRODUCTION 

A. Motivation for high-resolution QSM 

Quantitative susceptibility mapping (QSM) [1]–[4] is a 

common MRI technique for measuring the magnetic 

susceptibility of tissues (𝜒). QSM is mainly utilized for 

detecting pathologies that involve dysregulations in iron, 

calcium, and myelin content, and has been utilized as a 

biomarker for microbleeds in traumatic brain injury, sickle 

cell anemia, brain metastases, glioma, multiple sclerosis, and 

Parkinson's disease [2], [5]–[11]. Several studies have shown 

that increasing the spatial resolution of clinical data lowers 

partial volume effects and offers more faithful mapping of 

QSM values, particularly in small structures [2], [11]–[13]. 

Specifically, high-resolution susceptibility maps are 

important for separating subthalamic nuclei, and 

characterization of the internal structure of the substantia 

nigra, which plays a central role in Parkinson's disease and in 

planning deep brain stimulation surgeries [14]–[16]. 

Additionally, QSM is useful for detecting increased 

susceptibility in the basal ganglia [17] as well as 

paramagnetic rims of iron-laden active microglia and 

macrophages in multiple sclerosis (MS) lesions, correlating 

with cognitive function and with the expanded disability 

status scale (EDSS) [18], [19]. Collecting high resolution 

data, however, comes with a tradeoff of lower SNR, and 

reduced diagnostic quality [12], [13]. 

Typically, QSM values are reconstructed from complex 

𝑇2
∗-weighted (𝑻𝟐

∗ 𝒘) images, acquired using a 3D multi 

gradient echo (GRE) protocol. As QSM involves solving the 

field-to-source inverse problem, noise amplification is a 

major issue and can lead to streaking artifacts and 

quantification errors [20]. Further, due to the intricate QSM 

reconstruction pipeline [21] and the use of complex data, 

noise propagation affects QSM values beyond simple 
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reduction in SNR [22], [23] and may lead to artifacts relating 

to inaccurate phase unwrapping [2], [11]. Solutions to these 

problems are typically based on adding regularizations or 

adjusting hyperparameters and weighting terms in the QSM 

processing pipeline [24], [25]. Other applications that could 

benefit from denoising QSM data are quantifying 

microvascular oxygen extraction fraction (OEF) based on the 

QSM-OEF technique [26], and fast QSM acquisition methods 

such as echo planer imaging (EPI) based QSM [27], [28]. 

 

B. Denoising QSM - Previous work 

An effective approach to avoid noise-related artifacts and 

produce high-resolution QSM maps is to denoise the raw 

complex 𝑇2
∗𝑤 data that are used as input to the QSM pipeline. 

Bazin et al. [29], for example, introduced a technique that 

employs Principal Component Analysis (PCA) to denoise 

magnetization-prepared gradient echo (MPRAGE) data, for 

QSM processing at 7T. Zhang et al. [30] utilized a self-

supervised deep neural network for denoising EPI data from 

multiple slices and echo-times. This model, however, is 

designed to denoise only the magnitude, rather than complex 

images, and may therefore produce less optimal results for 

QSM which relies heavily on the phase information. 

Some QSM reconstruction approaches use supervised and 

unsupervised deep learning which simplify the QSM pipeline 

and introduce some level of  denoising , e.g., Plug-and-Play 

QSM [31], DeepQSM [32], QSMnet [33], MoDIP [34], or 

AFTER [35]. These methods, however, still operate on the 

main field inhomogeneity map generated from noisy data, 

potentially affecting the QSM results, and may thus also 

benefit from a priori denoising of the raw 𝑇2
∗𝑤 data. 

Notwithstanding promising results of recent techniques [31], 

[35], deep learning approaches may encounter limitations in 

terms of generalization, seeing as supervised networks 

require large and diverse training sets, including variations in 

susceptibility values and, ideally, varied resolutions, in order 

to function effectively, while a lack of such diverse data can 

lead to suboptimal results [33], [36]–[38]. 

C. Existing applications of MP-PCA denoising 

Recent studies have demonstrated the utility of 

Marchenko-Pastur (MP) criteria in PCA for effective noise 

reduction. This method relies on the fact that, for MRI 

signals, the eigenvalues of noise obey the universal MP law 

of random matrix theory [39]. Its applications have been 

explored in several MRI modalities, including Diffusion-

weighted MRI [40], enhancement of parameter estimation in 

multiexponential relaxometry [41], production of more 

precise 𝑇2 maps [42], multi-parametric quantitative MRI of 

the spinal cord [43], language mapping in functional MRI for 

patients with brain tumors [44], and diffusion-weighted 

spectroscopy [45]. 

In this work, MP-PCA was employed for denoising multi-

GRE data, which is both commonly utilized and the 

recommended approach for accurate QSM [21], [23]. MP-

PCA was integrated as an initial step in processing complex 

𝑇2
∗𝑤 brain images within the QSM pipeline [46] (Fig. 1). 

Denoising efficiency was also evaluated on 𝑇2
∗𝑤 magnitude 

images, and on 𝑅2
∗, 𝑇2

∗, and QSM maps. Successful proof of 

concept is shown on a numerical phantom and in vivo brain 

data in healthy individuals as well as patients with sickle cell 

anemia, brain metastases, and Parkinson’s disease. These 

applications were conducted across a range of scan settings 

and spatial resolutions, highlighting the method's robustness. 

II. THEORY 

A. Theory of MP-PCA denoising 

This Section contains a concise overview of MP-PCA 

denoising theory applied to 𝑇2
∗𝑤 imaging. More 

comprehensive descriptions can be found in [40]–[42]. Multi-

echo 𝑇2
∗𝑤 magnitude and phase data were acquired using a 

3D GRE sequence. We denote the acquired 4D complex data 

matrix as 𝐷 ∈ ℂ[𝑁𝑥,𝑁𝑦,𝑁𝑧,𝑁𝐸] , where three dimensions 

represent the spatial domain, and the fourth denotes the 

number of echoes NE. A sliding 4D window denoted as 𝑊 ∈

ℂ[𝑛𝑥,𝑛𝑦,𝑛𝑧,𝑁𝐸]  is used to traverse the entire dataset D, while 

denoising is applied within that window. A natural choice for 

a dataset with isotropic resolution is a 3D isotropic window 

size of 𝑁𝑊 × 𝑁𝑊 × 𝑁𝑊. The matrix 𝑊 surrounding each 

voxel is vectorized to 𝑁𝑉 = 𝑁𝑊
3 , resulting in a 2D matrix 𝐴 ∈

ℂ𝑁𝑉×𝑁𝐸. 𝐴 is then normalized to 𝐴̂ by subtracting the mean 

signal within each 3D spatial window 𝐴̅ ∈ ℂ1×𝑁𝐸  for each 

echo time (TE) according to:  

𝐴̂(𝑖) = 𝐴(𝑖) − 𝐴̅(𝑖) · 1𝑁𝑉×1     ∀𝑖 ∈ 1 … 𝑁𝐸  (1) 

𝐴̂ is then decomposed into its linearly independent sources, 

or principal components (PCs), using singular value 

decomposition (SVD) [47]  

𝑆𝑉𝐷(𝐴̂) = 𝑈𝛬𝑉𝑇 (2) 

The 𝑀 = min(𝑁𝑉 , 𝑁𝐸) diagonal elements of Λ represent 

the singular values of 𝐴̂, and Λ2 is an 𝑀 × M diagonal matrix 

containing the eigenvalues 𝜆1 … 𝜆𝑀. Assuming that noise has 

a Marchenko-Pastur distribution, the first 𝑃 eigenvalues of 𝐴̂ 

can be associated with the signal, whereas the remaining 

(𝑀 − 𝑃) elements represent noise [39]–[41]. The value of 𝑃 

is determined by the minimum value that obeys the following 

inequality [40]: 

∑ 𝜆𝑖
𝑀
𝑖=𝑃+1

𝑀 − 𝑃
>

𝜆𝑃+1 − 𝜆𝑀

4√
𝑀 − 𝑃

𝑁𝑉

 
(3) 

Consequently, noise is removed by truncating the last 

𝜆𝑃+1 … 𝜆𝑀 eigenvalues and transforming back to the spatial 

domain using: 

𝐴̂′ = 𝑈𝛬′𝑉𝑇 (4) 

Finally, the mean value at each time point 𝐴̅ is added back 

to 𝐴̂′. This process iterates across the entire spatial domain, 

moving 𝑊 one voxel at a time. The denoised signal at each 

voxel is then given by the average value from all windows 

that include that voxel [48]. 

B. Quantitative mapping of magnetic susceptibility  

QSMs were computed from magnitude and phase images. 

Phase images reflect the magnetic field inhomogeneities, 

∆𝐵0(𝑟) which, in turn, represent a convolution of the tissue 

susceptibility 𝜒(𝑟) with the dipole field distribution 𝑑(𝑟) [2]: 

∆𝐵0(𝑟) = 𝐵0 · {𝜒(𝑟) ∗ 𝑑(𝑟)} (5) 



This equation is known as the forward model, where 𝐵0 is 

the static homogeneous magnetic field in the z-direction, and 

the unit dipole 𝑑(𝑟) is defined as: 

𝑑(𝑟) =
3 𝑐𝑜𝑠2 𝜑 − 1

4𝜋𝑟3
 (6) 

where 𝜑 is the angle between the position vector 𝑟 and the 

main magnetic field (𝐵0) direction (𝑧̂). 

Several pipelines exist for reconstructing QSMs. Here, we 

used the pipeline described by Karsa et al. [46] which 

conforms to the recent consensus recommendations [21]. The 

process begins with non-linear fitting of the complex data 

over echo times [49]–[52] to calculate the total field map 

∆𝐵0(𝑟) and a noise weighting matrix 𝑊𝑁. This is followed by 

Laplacian phase unwrapping [52], [53]. Subsequently 

background field is removed by generating a brain mask 

using FSL’s Brain Extraction Tool (BET) [54], combined 

with a mask based on thresholding 𝑊𝑁 at its mean. Projection 

onto Dipole Fields (PDF) [55] is then used to remove 

background fields. 

Dipole inversion is implemented using iterative least-

squares fitting in the image domain with Tikhonov 

regularization [3], [50], [56]: 

argmin
𝜒

‖𝑀 · 𝑊𝑁(𝐵𝐿 − 𝐵0 · (𝑑 ∗ 𝜒))‖
2

2
+ 𝛼‖𝜒‖2

2 (7) 

where 𝐵𝐿  represents the local magnetic field, and 𝛼 denotes 

Tikhonov regularization weight. The QSM pipeline is 

available upon a request from [46]. 

III. METHODS 

A. Validations on a numerical phantom 

To assess the efficiency of MP-PCA denoising we 

generated a numerical phantom using MATLAB software 

(R2021a, The MathWorks, Natick, MA) which was also used 

to implement the denoising algorithm. 

Phantom was designed as a cylinder aligned along the z-

axis (the direction of 𝐵0) filled with four smaller cylindrical 

tubes with varying magnetic susceptibilities. Each tube's 

proton density was set to 1  [𝑎. 𝑢. ]. In order to assess the 

denoising performance under realistic conditions, simulation 

parameters were matched to typical experimental parameters 

using an isotropic resolution of 0.75 𝑚𝑚3 and 𝐵0 = 3 𝑇. 

∆𝐵0(𝑟) was calculated using the forward model in (5) and 

depended only on differences in magnetic susceptibility, 

meaning that phase variations at 𝑇𝐸 = 0, assocaited with RF 

coils or sample electrical conductivity, were omitted from the 

simulation. The phase within each voxel was then derived 

based on: 

𝜃(𝑟) = 2𝜋 · 𝛾 · (𝐵0 + 𝛥𝐵0(𝑟)) · 𝑇𝐸 (8) 

Here  𝛾 is the hydrogen nucleus gyromagnetic ratio and 𝑇𝐸 

is the echo time. 

Next, ∆B0 and transverse relaxation time constant (𝑇2) 

were set for each voxel based on the magnetic susceptibility 

and relaxivity ℛ [s-1·mM-1] of Gd-DTPA [57], [58], a 

common contrast agent used in clinical imaging. 𝑇2
′, which 

corresponds to microscopic field inhomogeneities caused by 

the susceptibility variations, was calculated as [59]: 

𝑇2
′ = (2𝜋 · 𝛾 · ∆𝐵0(𝑟))

−1
 (9) 

The 𝑇2
∗ value in each voxel was then calculated according 

to: 1/𝑇2
∗ = 1/𝑇2 + 1/𝑇2

′.  

Lastly, a series of complex 𝑇2
∗𝑤 images was generated for 

NE = 8 echo times using standard exponential decay model, 

with the following TEs: 𝑇𝐸1 = 3 𝑚𝑠; ∆𝑇𝐸 = 4 𝑚𝑠. 

Complex white Gaussian noise was added to the series of 𝑇2
∗-

weighted images using MATLAB’s wgn function at SNRs of 

10 and 20 with respect to the highest magnitude of the 𝑇2
∗𝑤 

image. This process was repeated 16 times for each SNR 

level, with different randomized noise patterns to allow gold 

standard calculation of SNR. Denoising was applied using the 

MP-PCA pipeline described in Section II above, and a 

2 × 2 × 2 × NE window. 

In order to estimate the 𝑅2
∗ relaxation rate of the tissue and 

its inverse, the 𝑇2
∗, we performed an exponential fit of the 

magnitude signal within each voxel [59]. QSM values were 

calculated using the QSM pipeline pre- and post-denoising 

(Tikhonov regularization weight was set to 𝛼 = 0.05). After 

MP-PCA denoising, the coefficient of determination (𝑅2) 

was calculated for each voxel as an estimate of the goodness-

of-fit of the 𝑅2
∗ exponential decay model. To prevent bias 

caused by outliers voxels with 𝑅2 < 0.8 were excluded from 

further calculations of  the mean and standard deviation (SD) 

of 𝑅2
∗, and 𝑇2

∗ (TABLE II). For fair comparison, the same 

voxels were also excluded from the mean and SD, calculated 

for the original 𝑅2
∗, and 𝑇2

∗ maps. 

SNR maps were calculated for  the first echo of 𝑇2
∗𝑤, and 

for quantitative 𝑅2
∗, 𝑇2

∗ maps, and QSM from the 16 

repetitions, according to: 

𝑆𝑁𝑅𝑚𝑎𝑝(𝑟) =
𝐼(̅𝑟)

𝜎(𝑟)
 (10) 

where 𝐼 ̅and 𝜎 are the mean and SD of the signal in each 

voxel across all 16 repetitions. The average SNR for each  

tube for all the maps was estimated based on the mean SNR 

across all voxels in the tube. 

B. Application on healthy volunteers and patients with 
brain metastases and sickle cell anemia 

1) MRI Scans 

Four healthy volunteers and four patients were scanned 

using 3D multi-GRE protocols (see TABLE I for detailed 

scan parameters). The volunteers and two patients with brain 

metastases were scanned on a 3T Siemens Prisma scanner. A 

third patient with sickle cell anemia was scanned on a 1.5T 

Philips Achieva scanner, and a patient with Parkinson’s 

disease was scanned on a 7T Siemens Magnetom scanner. 

Informed written and verbal consent were obtained for all 

participants. Healthy volunteers’ scans were approved by the 

local institutional review board (IRB) committee (approval 

numbers 3933-17-SMC). Scans of two volunteers with brain 

metastases were approved by the local ethics committee (IRB 

approvals TLV-0038-08 and TLV-0200-10), scans of a 

volunteer with sickle cell anemia were approved by IRB 

MUHAS-IRB Ref.2014-11-03/EC/Vol.IX/32 and scan of the 

volunteer with Parkinson’s disease was approved by the 

Queen Square ethics committee, reference 15/LO/00476 .



TABLE I 

SCAN PARAMETERS, MULTI-ECHO 3D-GRE ACQUISITIONS. 

 
 

Healthy volunteers were also scanned using an 

MP2RAGE protocol for brain segmentation, with the 

following parameters: slice thickness = 1 𝑚𝑚, matrix size = 

192 × 156, field of view = 192 × 156 𝑚𝑚2, TE/TR = 

3.52/ 4000 𝑚𝑠, 𝑁𝑠𝑙𝑖𝑐𝑒𝑠 = 192, GRAPPA acceleration factor 

= 2, total scan time = 6:00 min. 

For the patient with Parkinson’s disease another QSM 

pipeline was used. PDw and T1w images underwent identical 

QSM processing. 3D complex phase data (adaptive 

combined) were separated into odd and even echo trains 

before complex (non-linear) echo fitting [49] and phase 

unwrapping using ROMEO [60]. Two-pass masking was 

applied [61] The pass 1 mask was generated by thresholding 

the ROMEO phase-quality map, and this was combined with 

a BET [54] brain mask of the last echo magnitude to produce 

the pass 2 mask. Background field removal was completed 

using projection to dipole fields [55] images were rotated to 

align with B0 [62], and dipole inversion used Star-QSM [24] 

PDw and T1w susceptibility maps were coregsitered and 

averaged to give the final susceptibility maps [63]. 

 

2) Data processing 

MP-PCA denoising was applied on 𝑇2
∗𝑤 complex DICOM 

images from all scans using a window size of 𝑊 =
2 × 2 × 2 × NE, followed by generating quantitative 𝑅2

∗, 𝑇2
∗ 

and QSM maps (𝛼 = 0.05). For a 256 × 208 × 80 matrix 

with 8 echoes the denoising step took 242.4 seconds and the 

QSM processing took 710.1 seconds on a single core Intel 

Xeon Gold 6150 CPU. MP2RAGE images were segmented 

and then registered to the multi-echo 3D-GRE image space 

using Freesurfer software [64]. Denoising was assessed in 

three 2D regions of interest (ROIs): the globus pallidus, 

caudate nucleus, and putamen (contralateral regions were 

analyzed separately). The same 𝑅2 criterion for goodness-of-

fit was used here. An single voxel erosion was applied to all 

ROIs to avoid partial volume effects. 

The mean and SD of the 𝑇2
∗𝑤 images' magnitude, 𝑇2

∗ 

values, 𝑅2
∗ values, and QSM values were estimated in each 

2D ROI for a single representative slice. The SNR of the first 

echo 𝑇2
∗𝑤 magnitude images was assessed by dividing the 

mean signal in each ROI by the SD of the signal across four 

background rectangles similar to [42], [65]. Noise in 

magnitude images obeys the Rayleigh distribution [66], 

whereas the denoising process was applied on complex data, 

where noise is characterized by the Gaussian distribution. To 

correct for this difference, SD values of background ROIs 

were divided by the factor √2 − 𝜋/2 according to [65]. 

The proposed denoising technique was compared with two 

other denoising methods, performed as a preprocessing step 

for the QSM pipeline. The first method was Gaussian filtering 

as described in [67], and the second was BM4D denoising, 

which is based on grouping, transforming, and thresholding 

of similar 3D patches [68].   

 
Fig. 2. MP-PCA denoising of a numerical phantom. (a-d) 𝑻𝟐

∗ 𝒘 images 

(4th echo) pre- and post-denoising. (e-h) QSM maps pre- and post-denoising. 

Simulations were done at SNRs of 10 & 20. Tube numbers are shown in (c).  

 

 

 

 

 

 

 

 

 

 

TABLE II 

MEAN, SD, AND SNR OF 𝑻𝟐
∗ 𝒘, 𝑹𝟐

∗ , 𝑻𝟐
∗ , AND QSM VALUES, CALCULATED FOR THE NUMERICAL PHANTOM. SNR VALUES WERE CALCULATED FROM 16 

REPETITIONS. 

State
Scan 

No.

Voxel 

size 

[mm
3
]

TR 

[ms]

TE1 

[ms]

ΔTE 

[ms]

No. 

of 

Echoes

FA 

[deg]
Acc.

Scan 

time 

[m:s]

Scan 1 0.6 7:48

Scan 2 0.75 6:14

Scan 3 - 14:09

Scan 4 2 7:34

Scan 5 0.75 6:14

Scan 6 1 3:57

Scan 7 0.6 6:23

Scan 8 0.75 6:14

Pt. 1

Pt. 2

Sickle cell 

disease
Pt. 3 1.5 27.4 4.28 4.94 5 15 2 4:44

Pt. 4 -

PDw
2.2 6

Pt. 4 - 

T1w
2.3 24

4:082

6

2

2

9:102

45 3.99 5.24 8 15

-Healthy 1

Healthy 2

Healthy 3

Healthy 4

Parkinson's 

disease

0.75

0.6

Brain 

Metastasis

19.5 2.38

37 2.99 4.25 8 12

15

37 2.99 4.25 8 12

0.5 68 8.00 8.00 8

45 3.99 5.24 8 15

0 A.U. 1 ppm -0.2 +0.4

T2
*w images QSM 

SNR = 10 

(a)

W
it

h
 N

o
is

e 

SNR = 20  

(b)

D
e

n
o

is
e

d
 

(c) (d) (g)

SNR = 10 

(h)

SNR = 20  

(e) (f)

1 

2 

3 

4 

Org.
w/ 

noise
Den.

w/ 

noise
Den.

w/ 

noise
Den. Org.

w/

noise
Den.

w/ 

noise
Den.

w/ 

noise
Den. Org.

w/

noise
Den.

w/ 

noise
Den.

w/ 

noise
Den. Org.

w/ 

noise
Den.

w/ 

noise
Den.

w/ 

noise
Den.

#1 0.98 0.98 0.98 0.10 0.02 10.5 44.5 7.4 7.7 7.4 3.8 1.0 1.9 7.6 135.5 247.2 137.3 792.0 18.8 1.2 7.4 148.3 148.5 148.5 29.1 18.43 6.7 27.2

#2 0.97 0.97 0.97 0.10 0.02 10.4 44.3 11.2 11.2 11.2 4.4 1.1 2.6 10.8 89.1 117.9 89.8 128.6 8.6 1.8 10.7 208.6 209.1 209.2 32.87 22.71 9.0 36.6

#3 0.96 0.96 0.96 0.10 0.02 10.3 43.8 15.1 14.8 15.1 4.8 1.1 3.2 13.6 66.4 78.2 66.7 57.2 5.1 2.5 13.5 262.4 263.2 263.2 36.69 26.33 10.6 42.7

#4 0.94 0.95 0.95 0.10 0.02 10.2 43.1 18.9 18.6 18.9 5.1 1.2 3.7 15.9 52.9 58.5 53.1 20.9 3.5 3.2 15.8 307.9 309.5 309 40.81 29.47 11.4 45.6

No.=number,  T2
∗
w=T2

∗
 weighted,  Org.=original,  w/=with,  Den.=denoised,  R2
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IV. RESULTS 

𝑇2
∗𝑤 images and QSM maps of the numerical phantom are 

illustrated in Fig. 2 for SNRs of 10 and 20 pre- and post-

denoising. Fig. 3 shows the corresponding 𝑅2
∗, and 𝑇2

∗ maps. 

The denoising procedure enhanced the quality of all images 

and maps, producing more homogeneous structures, which 

had 𝑇2
∗𝑤, 𝑇2

∗ and 𝑅2
∗ values closer to ground truth. 

Quantitative values, corresponding to each tube are detailed 

in TABLE II. As the simulated noise was generated with zero 

mean, its addition and removal by denoising did not change 

the baseline values of the real and imaginary channels of the 

𝑇2
∗𝑤 complex dataset, indicating that no bias was introduced 

by the denoising process. The SD of the 𝑇2
∗𝑤 signal 

magnitude decreased by 76.6 ± 0.0 % post-denoising 

(averaged across four tubes), associated with an increase of 

324.2 ± 1.0 % in SNR. Fitting of 𝑅2
∗ values produced an error 

of 0.2 ± 2.4 % pre-denoising, (averaged across four tubes), 

which decreased to 0.0 ± 0.1 % post-denoising. Similar 

findings were observed in the SD of 𝑅2
∗ values, which 

exhibited an average decrease of 75.4 ± 0.9 % post-denoising, 

associated with an increase of 321.0 ± 7.0 % in SNR. 

Quantitative 𝑇2
∗ values were overestimated by 35.8 ± 28.0 % 

pre-denoising, which was resolved post-denoising, where a 

negligible deviation of 0.8 ± 0.4 % was observed vs. true 𝑇2
∗ 

values. SD of 𝑇2
∗ values decreased by 91.3 ± 5.2 % post-

denoising, associated with an increase of 459.2 ± 51.6 % in 

SNR. 

Notably, although 𝑇2
∗ is the inverse of 𝑅2

∗, a drastically 

different bias emerged between the two types of values. This 

was reflected in the coefficient of variation (CV) which 

increased by 72.2 % when moving from 𝑅2
∗ to 𝑇2

∗. This can be 

attributed to noise propagation during the conversion of 𝑅2
∗ to 

𝑇2
∗ values, which involves a division operation (𝑇2

∗ = 1/𝑅2
∗). 

This changes the noise distribution, leading to a strong 

overestimation of 𝑇2
∗ values. This effect was more 

pronounced for higher 𝑇2
∗ values, as they correspond to 𝑅2

∗ 

values that are closer to zero. 

QSM maps demonstrated no bias in mean values both pre- 

and post-denoising. We ascribe this stability to the QSM 

pipeline's reliance on a spatial magnitude weighting matrix 

𝑊𝑁, as reported in [20]. As expected, the SD in QSM values 

was smaller by 30.9 ± 3.5 % post-denoising, corresponding 

to an increase of 304 ± 3.8 % in SNR. An example of the 

effect of denoising on the raw signal decay curves is shown 

in Fig. 4, juxtaposing the original (noisy) and denoised 𝑇2
∗𝑤 

signal values. Denoised signals (red ‘∗’) exhibit significantly 

reduced variability compared to the noisy signals (blue ‘∎’), 

closely following the original decay curves (green ‘+’). 

Efficient denoising was achieved for all three data types and 

two SNRs without visible loss of information.   

𝑇2
∗𝑤 images, 𝑇2

∗ maps, and QSM maps for a healthy 

volunteer (scan 8 in TABLE I) are shown in Fig. 5 pre- and 

post-denoising. The denoising process (~3.66 sec per slice 

256 × 208) did not introduce any visible blurring, preserving 

the fine anatomical details as  

 
Fig. 3. 𝑹𝟐

∗  (a-d) and 𝑻𝟐
∗  (e-h) maps pre- and post- MP-PCA denoising of 

the numerical phantom at SNRs of 10 & 20.  

exemplified by the zoomed-in insets (middle and bottom 

rows). Quantitative 𝑅2
∗, 𝑇2

∗, and QSM values are given in 

TABLE III for each ROI. An average increase of 1.1 ± 0.6 % 

in the 𝑅2
∗ values was observed post-denoising across all ROIs, 

with a corresponding decrease of 20.3 ± 7.0 % in SD.  An 

average decrease of 2.9 ± 0.9 % in 𝑇2
∗ values was observed 

post-denoising, with a corresponding decrease of 23.9 ± 10.2 

% in SD. The denoising pipeline did not induce any consistent 

trend in the QSM values, producing an average change of 0.5 

± 2.5 % in mean values and an average decrease of 10.8 ± 5.1 

% in SD post-denoising. SNR in all assayed ROIs was 

estimated for 𝑇2
∗𝑤 images, using four regions in the image 

background to represent the noise magnitude (see Section 

III). A consistent increase in the 𝑇2
∗𝑤 images' SNR was 

observed for all ROIs with an average improvement of 74.2 

± 0.2 % post-denoising. SNR values were also calculated for 

five more scans acquired with different scan parameters. For 

scan no. 3, an improvement of 139.2 ± 0.4 % post-denoising 

was observed. For scan no. 4, which had the same acquisition 

parameters except acceleration factor of factor 2, the 

denoising process produced a similar improvement of 139.3 

± 1.3 %. For scans 

 

 
Fig. 4. 𝑻𝟐

∗  decay curves for all four tubes in the numerical phantom. The 

green line (‘+’ marker) denotes the original decay curve, the blue (‘∎’ 

marker) denotes the original decay curve with added noise, and the red line 

(‘∗’ marker) denotes the denoised signal. 
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5, 6, and 7 improvements of  179.9 ± 0.8 %, 28.8 ± 0.3 %, 

and 252.8 ± 2.2 % were seen respectively. These results 

demonstrate the robustness of MP-PCA denoising across 

different scan parameters. 

Fig. 6 depicts QSM maps for two subjects with brain 

metastases pre- and post-denoising. Zoomed-in views of the 

tumors areas demonstrate the preservation of anatomical 

details of the tissue post-denoising while enhancing the maps' 

SNR. As described in Section II, the inverse problem in QSM 

mapping is ill-posed, leading to potential streaking artifacts, 

an issue highlighted in various previous studies [20], [69]. 

Fig. 7 demonstrates the utility of MP-PCA denoising for 

decreasing QSM map artifacts in a patient with sickle cell 

anemia. The vertical (and horizontal) lines of alternating 

bright and dark voxels may be caused by pulsatile blood flow. 

This is significantly reduced by the denoising process, 

demonstrating its utility in alleviating this type of QSM 

artifacts. 

Fig. 8 present the effect of the denoising algorithm on a 

volunteer with Parkinson’s disease. The scan protocols and 

the QSM pipeline were different compared to other scans 

presented in the paper. 

Fig. S3-6 presents the effect of different denoising 

techniques on the 𝑇2
∗𝑤 images and 𝑅2

∗, 𝑇2
∗, and QSM maps 

from Scan 1. As can be seen, the suggested MP-PCA 

denoising technique and the BM4D technique reduces noise 

while maintaining fine details, whereas the Gaussian 

denoising produced smoothing and blurring effects.  

V. DISCUSSION 

This study evaluated MP-PCA denoising of 𝑇2
∗𝑤 images and  

derived 𝑅2
∗, 𝑇2

∗ and QSM maps. Successful application of the 

technique was demonstrated in a numerical phantom where 

both the accuracy and precision of all measured values were 

increased post-denoising. In vivo validations were also 

performed in both healthy brains and  in the presence of 

pathologies, demonstrating a proof-of-concept of effective 

denoising across a range of acquisition parameters, field 

strengths, acceleration factors, echo times, acquisition 

bandwidths, and resolutions up to 8 times higher than ones 

commonly used for QSM. Anatomical details were 

consistently preserved for all assayed settings with no visible 

loss of information. 

In terms of generalizability, a notable advantage of MP-

PCA denoising is that it requires no preliminary assumptions 

or adjustments of the hardware or scan parameters. In contrast 

to previous reports [40]–[42], this study showed that effective 

denoising can be achieved using a relatively small number of 

echoes. Overall, this allowed acquisitions at sub-millimeter 

resolutions of up to 0.5 mm3 and low flip angles whilst 

producing clinically acceptable SNR. MP-PCA denoising 

was also compared to other commonly-used denoising 

methods, and produced susceptibility maps preserving far 

more fine structure. Note that drastically longer processing 

times were observed for the BM4D method compared to the 

others, especially for high resolution data. 

A. Considerations of MP-PCA denoising 

Several factors influence the denoising procedure, ultimately 

determining the final SNR levels and quantitative values. 

  

 

 

 
Fig. 5. MP-PCA denoising of brain anatomy of a healthy subject #4 pre- and post-denoising. (a-b) 𝑇2

∗𝑤  images (first echo), (c-d) 𝑇2
∗ maps, (e-f) QSM 

maps pre- and post- denoising. Zoomed regions of interest are shown below each type of image/map (marked by an orange dashed rectangles). Efficient 

denoising is achieved for all data types without visible loss of information. 



TABLE III 

SNR VALUES FOR 𝑇2
∗ WEIGHTED IMAGES, ALONGSIDE QUANTITATIVE 𝑅2

∗, 𝑇2
∗, AND QSM VALUES PRE- AND POST-DENOISING FOR SIX ROIS, 

SEGMENTED USING FREESURFER FOR A HEALTHY VOLUNTEER. 

First, scanning parameters, mainly spatial-resolution and 

acquisition bandwidth, will affect SNR. Here, we 

demonstrated how MP-PCA denoising successfully 

improved the SNR across various scan parameters and 

acceleration factors, allowing higher resolutions or 

bandwidths to be used while still achieving acceptable 

diagnostic quality. 

Since all data were acquired using a 3D multi-GRE 

protocol, a 3D isotropic moving window was used for all 

datasets with the number of echoes determining the fourth 

dimension (see Section II). A minimal window size of 

2 × 2 × 2 pixels was found to be optimal for denoising, 

resulting in a 4D window of 2 × 2 × 2 × 𝑁𝐸, vectorized to 

[𝑁𝑉  × 𝑁𝐸] = 8 × 𝑁𝐸. Since the number of eigenvalues of 

PCA decomposition is determined by the smallest dimension 

(minimum of 𝑁𝑉 and 𝑁𝐸) [47], and given that multi-GRE 

protocols are limited to typically 5-10 echoes, choosing a 

larger window would not have changed the number of PCs 

and hence might cause a smoothing effect as can be seen in 

online Figure Sup. 3 [21]. This is similar to Does et al. [41] 

where a 2D window of 𝑁𝑊 × 𝑁𝑊 was used (for a 2D 

acquisition), where 𝑁𝑊 ≈ √𝑁𝐸
2

, corresponding to our use of 

a 3D window size of 𝑁𝑊 ≈ √𝑁𝐸
3

. 

Parallel imaging, such as GRAPPA, is generally 

recommended for QSM [21], yet can lead to variable noise 

pattern across the imaged FOV, which may affect the 

performance of the denoising algorithm. Our findings reveal 

that despite this potential challenge the MP-PCA denoising 

performance was not impaired when using moderate R = 2 

acceleration. This is described in Section IV, where the 

relative increase in SNR was similar between accelerated and 

non-accelerated data (scans 3 and 4). 

B. Propagation of noise between R2
* and T2

* maps 

The addition of noise in the numerical simulation led to an 

artificial overestimation of 𝑻𝟐
∗  values compared to ground 

truth. This was caused due to the non-linear combination of 

real and imaginary images, altering the noise distribution, a 

process extensively elaborated in [66]. As reported, for SNR 

values >3, the noise patterns closely resemble a Gaussian 

distribution, retaining the original variance (𝝈𝟐) but with a 

mean value adjusted to 𝒔𝒒𝒓𝒕(𝑰𝟎
𝟐 + 𝝈𝟐), where 𝑰𝟎 is the 

original magnitude of the signal. As SNR decreases below 3, 

e.g., at later echo times, the noise distribution shifts to Rician, 

leading to an even more pronounced elevation of the signal 

magnitude, as demonstrated by Stern et al. [42]. These effects 

were mitigated post-denoising, allowing the use of later time-

points which were previously below the noise level. It is 

important to emphasize that similar to [36], [37], [40], 

denoising was applied to complex 𝑻𝟐
∗ 𝒘 data (magnitude and 

phase) to maintain the Marchenko-Pastur noise distribution 

and minimize Rician noise at later echo times. The 

propagation of noise was further investigated when 

transitioning from 𝑻𝟐
∗ 𝒘 images to 𝑹𝟐

∗  and 𝑻𝟐
∗  maps. Analysis 

showed that pre-denoising, 𝑹𝟐
∗  values exhibited a small and 

non-systematic deviation from the original values, unlike the 

corresponding 𝑻𝟐
∗  values which demonstrated a significant 

overestimation. This is likely due to the proximity of 𝑹𝟐
∗  

values to zero, leading to the amplification of noise during the 

division operation used for calculating 𝑻𝟐
∗  values. This 

particularly affected high 𝑻𝟐
∗  values corresponding to low 𝑹𝟐

∗  

values (see TABLE II). We therefore recommend relying on 

𝑹𝟐
∗  values where possible to minimize augmentation of 

postprocessing noise. 

C. Denoising of QSM data 

The variations in the main magnetic field ∆𝐵0(𝑟) are at the 

core of QSM and are derived from phase images. Previous 

studies report that the noise at each voxel in the phase image 

has a Gaussian distribution, while its SD is inversely 

proportional to the corresponding voxel's magnitude, which, 

in turn, depends on the local proton density, and B1
+/B1

– 

profiles [50], [51]. Throughout the QSM pipeline, this noise 

propagates through several non-linear operations, which alter 

its original Gaussian distribution and introduce higher 

variability among voxels with the same susceptibility (this 

can be seen in Fig. 2 and TABLE II). MP-PCA denoising 

reduces the phase noise, thereby mitigating some of the noise 

amplification induced by the QSM pipeline without loss of 

information, as demonstrated in Fig. 1 and in TABLE II. The 

QSM reconstruction implemented in our study followed the 

pipeline and regularization scheme outlined in [46]. The 

integration of MP-PCA denoising into  
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Fig. 6. MP-PCA denoising of QSM maps for two patients with brain 

metastases located next to the postcentral gyrus (a-b), and next to the 

precentral gyrus (c-d). Zoomed regions of interest are shown below each map 

(marked in orange dashed rectangles). 

 
Fig. 7. Utility of MP-PCA denoising for decreasing QSM map artifacts in 

a patient with sickle cell anemia. The vertical (and horizontal) lines of 

alternating bright and dark voxels may be caused by pulsatile blood flow. (a) 

Artifacts in the pre-denoised map, marked with orange arrows. (b) 

Attenuation of streaking artifact post-denoising around this high-

susceptibility region which may contain a blood vessel. The denoising 

process has also reduced the intensity of repeated edge artifacts which may 

be due to patient motion, aliasing that was incompletely resolved by parallel 

imaging, or Gibbs artifacts (orange circle). 

 
Fig. 8. Axial QSM maps pre- and post-denoising for a patient with 

Parkinson’s disease, showing midbrain structures. Top row presents the full 

brain slices, with regions of interest highlighted in yellow boxes. The bottom 

row shows magnified views of these regions. Blue arrows mark the Globus 

Pallidus, yellow arrows point to the Substantia Nigra, and red arrows mark 

the Red Nuclei. 

other QSM pipelines with different regularization parameters 

is expected to be similarly effective and remains a prospect 

for future research. One example is  truncated K-space 

division (TKD) [1], a common method for rapidly obtaining 

a solution to the inverse problem. The TKD technique is 

highly sensitive to noise [20] leading to potentially significant 

artifacts in the susceptibility map, making it an ideal 

candidate for denoising algorithms.  Another example is 

supervised and unsupervised QSM deep learning 

reconstruction methods. Many of these methods use the 

∆𝐵0(𝑟), which already suffers from propagated noise. The 

presented technique will allow to reduce the noise effect at 

this stage for a better input for QSM pipelines. Moreover, as 

the suggested denoising pipeline is applied prior to QSM, one 

may assume that other deep learning methods that use the 

complex image as an input such as [70], can also benefit from 

better precision and SNR-improved images. The Appendix 

exemplifies a possible implementation of the denoising 

process at even earlier stage, i.e., on the images from each 

coil channel, before coil combination is performed.  

QSM is valuable for differentiating intratumoral 

hemorrhages and calcifications that may result from 

therapeutic response of metastatic brain tumors. Fig. 6, shows 

differences between two patients with brain metastases, 

where the first patient's QSM map contains a lesion with 

pronounced calcification (potentially indicative of treatment 

efficacy [71]), while the second exhibits a lesion with a much 

thicker rim associated with prominent hemorrhagic pathology 

[72]. This proof-of-concept application provides another 

example for the ability of MP-PCA denoising to improve the 

diagnostic quality of QSM in the clinic, allowing more 

precise comparison between metastases with different origins  
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Fig. 9. QSM maps of an In vivo scan 1, and voxel size of an isotropic 0.6 mm3. (a) QSM based on the original data. (b) QSM that was derived from the 

denoising of the complex 𝑻𝟐
∗ 𝒘 coil combined data. (c) QSM was derived by denoising each channel of the complex 𝑻𝟐

∗ 𝒘 data and then coil combined. 

 

or treatments, and for comparing different time points in 

longitudinal studies [73]. 

VI. CONCLUSIONS 

The current study highlights the utility of MP-PCA 

denoising for enhancing the diagnostic quality of QSM maps 

by improving their SNR and alleviating QSM-specific 

artifacts, thereby enabling the acquisition of higher resolution 

data. Recognizing the need for a larger test cohort, these 

initial results nevertheless provide a sound proof-of-concept 

for the effectiveness of MP-PCA denoising of 𝑇2
∗-weighted 

images and their quantitative 𝑇2
∗, 𝑅2

∗ and QSM derivatives. 

VII. APPENDIX  

To assess the impact of different coil combination 

schemes, MP-PCA denoising was applied on data acquired 

without acceleration for one healthy volunteer using three 

different coil combination procedures: adaptive combination 

done directly on the scanner; adaptive combination done 

during post-processing based on the method described by 

Bernstein et al. [74]; similar adaptive combination done post-

denoising, which was implemented for each of the 16 

channels separately. 

𝑇2
∗ and QSM maps were compared for each of the three coil 

combination schemes and shown in Fig. 9. The denoising 

procedure improved the image quality and QSM quality in all 

three cases. However, denoising of uncombined complex 

images from each channel separately yielded the most 

significant visual enhancements in the QSM maps. A 

drawback of working with uncombined complex images, 

however, is the increased processing time due to the need to 

denoise each channel individually. Another limitation is that 

uncombined complex images from each coil are typically not 

available, particularly for retrospective studies. Given these 

limitations, and following the recommendations in the QSM 

Consensus paper [21], our study used magnitude and phase 

DICOM images as inputs. 

VIII. ACKNOWLEDGMENTS 

We would like to express our sincere gratitude to Patrick 

Fuchs for his help with the QSM pipeline. RSW is supported 

by a Wellcome Career Development Award 

(2025263/Z/22/Z) and has received support from the National 

Institute of Health Research UCLH Biomedical Research 

Centre. 

IX. REFERENCES  

[1] K. Shmueli, J. A. De Zwart, P. Van Gelderen, T.-Q. Li, S. J. Dodd, 
and J. H. Duyn, “Magnetic susceptibility mapping of brain tissue in 

vivo using MRI phase data,” Magn. Reson. Med., vol. 62, no. 6, pp. 

1510–1522, Dec. 2009. 
[2] E. M. Haacke, S. Liu, S. Buch, W. Zheng, D. Wu, and Y. Ye, 

“Quantitative susceptibility mapping: current status and future 

directions,” Magnetic Resonance Imaging, vol. 33, no. 1, pp. 1–25, 

Jan. 2015. 

[3] Y. Wang and T. Liu, “Quantitative susceptibility mapping (QSM): 

Decoding MRI data for a tissue magnetic biomarker,” Magn. Reson. 
Med., vol. 73, no. 1, pp. 82–101, Jan. 2015. 

[4] K. Shmueli, “Quantitative Susceptibility Mapping,” in Advances in 

Magnetic Resonance Technology and Applications, vol. 1, Elsevier, 
2020, pp. 819–838. 

[5] S. Eskreis‐Winkler, Y. Zhang, J. Zhang, Z. Liu, A. Dimov, A. Gupta, 

and Y. Wang, “The clinical utility of QSM: disease diagnosis, 
medical management, and surgical planning,” NMR in Biomedicine, 

vol. 30, no. 4, p. e3668, Apr. 2017. 

[6] X. Miao, S. Choi, B. Tamrazi, Y. Chai, C. Vu, T. D. Coates, and J. 
C. Wood, “Increased brain iron deposition in patients with sickle cell 

disease: an MRI quantitative susceptibility mapping study,” Blood, 

vol. 132, no. 15, pp. 1618–1621, Oct. 2018. 
[7] S. Straub, T. M. Schneider, J. Emmerich, M. T. Freitag, C. H. Ziener, 

H. Schlemmer, M. E. Ladd, and F. B. Laun, “Suitable reference 

tissues for quantitative susceptibility mapping of the brain,” 
Magnetic Resonance in Med, vol. 78, no. 1, pp. 204–214, Jul. 2017. 

[8] S. Straub, F. B. Laun, M. T. Freitag, C. Kölsche, A. Von Deimling, 

M. Denoix, M. Bendszus, H.-P. Schlemmer, M. E. Ladd, and T. M. 
Schneider, “Assessment of Melanin Content and its Influence on 

Susceptibility Contrast in Melanoma Metastases,” Clin Neuroradiol, 

vol. 30, no. 3, pp. 607–614, Sep. 2020. 
[9] S. Zeng, H. Ma, D. Xie, Y. Huang, M. Wang, W. Zeng, N. Zhu, Z. 

Ma, Z. Yang, J. Chu, and J. Zhao, “Quantitative susceptibility 

mapping evaluation of glioma,” Eur Radiol, vol. 33, no. 10, pp. 
6636–6647, Apr. 2023. 

[10] P. Ravanfar, S. M. Loi, W. T. Syeda, T. E. Van Rheenen, A. I. Bush, 
P. Desmond, V. L. Cropley, D. J. R. Lane, C. M. Opazo, B. A. 

Moffat, D. Velakoulis, and C. Pantelis, “Systematic Review: 

Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in 
Neurodegenerative Diseases,” Front. Neurosci., vol. 15, p. 618435, 

Feb. 2021. 

[11] A. Deistung, F. Schweser, and J. R. Reichenbach, “Overview of 
quantitative susceptibility mapping,” NMR in Biomedicine, vol. 30, 

no. 4, p. e3569, Apr. 2017. 

[12] D. Zhou, J. Cho, J. Zhang, P. Spincemaille, and Y. Wang, 
“Susceptibility underestimation in a high‐susceptibility phantom: 

Dependence on imaging resolution, magnitude contrast, and other 

parameters,” Magnetic Resonance in Med, vol. 78, no. 3, pp. 1080–
1086, Sep. 2017. 

[13] A. Karsa, S. Punwani, and K. Shmueli, “The effect of low resolution 

and coverage on the accuracy of susceptibility mapping,” Magnetic 
Resonance in Med, vol. 81, no. 3, pp. 1833–1848, Mar. 2019. 



[14] A. K. Lotfipour, S. Wharton, S. T. Schwarz, V. Gontu, A. Schäfer, 

A. M. Peters, R. W. Bowtell, D. P. Auer, P. A. Gowland, and N. P. 

S. Bajaj, “High resolution magnetic susceptibility mapping of the 

substantia nigra in Parkinson’s disease,” Magnetic Resonance 

Imaging, vol. 35, no. 1, pp. 48–55, Jan. 2012. 
[15] E. Y. Kim, Y. H. Sung, H.-G. Shin, Y. Noh, Y. Nam, and J. Lee, 

“Diagnosis of Early-Stage Idiopathic Parkinson’s Disease Using 

High-Resolution Quantitative Susceptibility Mapping Combined 
with Histogram Analysis in the Substantia Nigra at 3 T,” J Clin 

Neurol, vol. 14, no. 1, p. 90, 2018. 

[16] A. V. Dimov, A. Gupta, B. H. Kopell, and Y. Wang, “High-
resolution QSM for functional and structural depiction of 

subthalamic nuclei in DBS presurgical mapping,” Journal of 

Neurosurgery, vol. 131, no. 2, pp. 360–367, Aug. 2019. 
[17] C. C. Voon, T. Wiltgen, B. Wiestler, S. Schlaeger, and M. Mühlau, 

“Quantitative susceptibility mapping in multiple sclerosis: A 

systematic review and meta-analysis,” NeuroImage: Clinical, vol. 
42, p. 103598, 2024. 

[18] M. J. Cronin, S. Wharton, A. Al-Radaideh, C. Constantinescu, N. 

Evangelou, R. Bowtell, and P. A. Gowland, “A comparison of phase 
imaging and quantitative susceptibility mapping in the imaging of 

multiple sclerosis lesions at ultrahigh field,” Magn Reson Mater Phy, 

vol. 29, no. 3, pp. 543–557, Jun. 2016. 
[19] M. Marcille, S. Hurtado Rúa, C. Tyshkov, A. Jaywant, J. Comunale, 

U. W. Kaunzner, N. Nealon, J. S. Perumal, L. Zexter, N. Zinger, O. 

Bruvik, Y. Wang, E. Sweeney, A. Kuceyeski, T. D. Nguyen, and S. 
A. Gauthier, “Disease correlates of rim lesions on quantitative 

susceptibility mapping in multiple sclerosis,” Sci Rep, vol. 12, no. 1, 

p. 4411, Mar. 2022. 
[20] S. Wang, T. Liu, W. Chen, P. Spincemaille, C. Wisnieff, A. J. 

Tsiouris, W. Zhu, C. Pan, L. Zhao, and Y. Wang, “Noise Effects in 

Various Quantitative Susceptibility Mapping Methods,” IEEE Trans. 
Biomed. Eng., vol. 60, no. 12, pp. 3441–3448, Dec. 2013. 

[21] B. Bilgic, M. Costagli, K.-S. Chan, J. Duyn, C. Langkammer, J. Lee, 

X. Li, C. Liu, J. P. Marques, C. Milovic, S. D. Robinson, F. 

Schweser, K. Shmueli, P. Spincemaille, S. Straub, P. van Zijl, Y. 

Wang, and I. E.-M. T. P. S. Group, “Recommended Implementation 

of Quantitative Susceptibility Mapping for Clinical Research in The 
Brain: A Consensus of the ISMRM Electro-Magnetic Tissue 

Properties Study Group,” 2023. 
[22] E. Biondetti, A. Karsa, F. Grussu, M. Battiston, M. C. Yiannakas, D. 

L. Thomas, and K. Shmueli, “Multi‐echo quantitative susceptibility 

mapping: how to combine echoes for accuracy and precision at 3 
Tesla,” Magnetic Resonance in Med, vol. 88, no. 5, pp. 2101–2116, 

Nov. 2022. 

[23] E. Biondetti, A. Karsa, D. L. Thomas, and K. Shmueli, “Investigating 
the accuracy and precision of TE‐dependent versus multi‐echo QSM 

using Laplacian‐based methods at 3 T,” Magnetic Resonance in Med, 

vol. 84, no. 6, pp. 3040–3053, Dec. 2020. 
[24] H. Wei, R. Dibb, Y. Zhou, Y. Sun, J. Xu, N. Wang, and C. Liu, 

“Streaking artifact reduction for quantitative susceptibility mapping 

of sources with large dynamic range: Streaking Artifact Reduction 
for QSM,” NMR Biomed., vol. 28, no. 10, pp. 1294–1303, Oct. 2015. 

[25] S. D. Robinson, K. Bredies, D. Khabipova, B. Dymerska, J. P. 

Marques, and F. Schweser, “An illustrated comparison of processing 
methods for MR phase imaging and QSM: combining array coil 

signals and phase unwrapping,” NMR in Biomedicine, vol. 30, no. 4, 

p. e3601, Apr. 2017. 
[26] Y. Ma, E. L. Mazerolle, J. Cho, H. Sun, Y. Wang, and G. B. Pike, 

“Quantification of brain oxygen extraction fraction using QSM and 

a hyperoxic challenge,” Magnetic Resonance in Med, vol. 84, no. 6, 
pp. 3271–3285, Dec. 2020. 

[27] H. Sun and A. H. Wilman, “Quantitative susceptibility mapping 

using single-shot echo-planar imaging: Echo-Planar Quantitative 
Susceptibility Mapping,” Magn. Reson. Med., vol. 73, no. 5, pp. 

1932–1938, May 2015. 

[28] A. De, H. Sun, D. J. Emery, K. S. Butcher, and A. H. Wilman, “Rapid 
quantitative susceptibility mapping of intracerebral hemorrhage,” 

Magnetic Resonance Imaging, vol. 51, no. 3, pp. 712–718, Mar. 

2020. 
[29] P.-L. Bazin, A. Alkemade, W. Van Der Zwaag, M. Caan, M. Mulder, 

and B. U. Forstmann, “Denoising High-Field Multi-Dimensional 

MRI With Local Complex PCA,” Front. Neurosci., vol. 13, p. 1066, 
Oct. 2019. 

[30] Z. Zhang, J. Cho, L. Wang, C. Liao, H. Shin, X. Cao, J. Lee, J. Xu, 

T. Zhang, H. Ye, K. Setsompop, H. Liu, and B. Bilgic, “Blip up‐
down acquisition for spin‐ and gradient‐echo imaging ( BUDA‐

SAGE ) with self‐supervised denoising enables efficient  T 2  ,  T 2  *, 

para‐ and dia‐magnetic susceptibility mapping,” Magnetic 
Resonance in Med, vol. 88, no. 2, pp. 633–650, Aug. 2022. 

[31] Y. Gao, Z. Xiong, S. Shan, Y. Liu, P. Rong, M. Li, A. H. Wilman, 

G. B. Pike, F. Liu, and H. Sun, “Plug-and-Play latent feature editing 

for orientation-adaptive quantitative susceptibility mapping neural 

networks,” Medical Image Analysis, vol. 94, p. 103160, May 2024. 

[32] S. Bollmann, K. G. B. Rasmussen, M. Kristensen, R. G. Blendal, L. 
R. Østergaard, M. Plocharski, K. O’Brien, C. Langkammer, A. 

Janke, and M. Barth, “DeepQSM - using deep learning to solve the 

dipole inversion for quantitative susceptibility mapping,” 
NeuroImage, vol. 195, pp. 373–383, Jul. 2019. 

[33] J. Yoon, E. Gong, I. Chatnuntawech, B. Bilgic, J. Lee, W. Jung, J. 

Ko, H. Jung, K. Setsompop, G. Zaharchuk, E. Y. Kim, J. Pauly, and 
J. Lee, “Quantitative susceptibility mapping using deep neural 

network: QSMnet,” NeuroImage, vol. 179, pp. 199–206, Oct. 2018. 

[34] Z. Xiong, Y. Gao, Y. Liu, A. Fazlollahi, P. Nestor, F. Liu, and H. 
Sun, “Quantitative susceptibility mapping through model-based deep 

image prior (MoDIP),” NeuroImage, vol. 291, p. 120583, May 2024. 

[35] Z. Xiong, Y. Gao, F. Liu, and H. Sun, “Affine transformation edited 
and refined deep neural network for quantitative susceptibility 

mapping,” NeuroImage, vol. 267, p. 119842, Feb. 2023. 

[36] Y. C. Eldar, A. O. Hero Iii, L. Deng, J. Fessler, J. Kovacevic, H. V. 
Poor, and S. Young, “Challenges and Open Problems in Signal 

Processing: Panel Discussion Summary from ICASSP 2017 [Panel 

and Forum],” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 8–23, 
Nov. 2017. 

[37] F. Knoll, K. Hammernik, E. Kobler, T. Pock, M. P. Recht, and D. K. 

Sodickson, “Assessment of the generalization of learned image 
reconstruction and the potential for transfer learning,” Magnetic 

Resonance in Med, vol. 81, no. 1, pp. 116–128, Jan. 2019. 

[38] QSM Challenge 2.0 Organization Committee, B. Bilgic, C. 
Langkammer, J. P. Marques, J. Meineke, C. Milovic, and F. 

Schweser, “QSM reconstruction challenge 2.0: Design and report of 

results,” Magnetic Resonance in Med, vol. 86, no. 3, pp. 1241–1255, 
Sep. 2021. 

[39] V. A. Marčenko and L. A. Pastur, “DISTRIBUTION OF 

EIGENVALUES FOR SOME SETS OF RANDOM MATRICES,” 

Math. USSR Sb., vol. 1, no. 4, pp. 457–483, Apr. 1967. 

[40] J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, 

and E. Fieremans, “Denoising of diffusion MRI using random matrix 
theory,” NeuroImage, vol. 142, pp. 394–406, Nov. 2016. 

[41] M. D. Does, J. L. Olesen, K. D. Harkins, T. Serradas‐Duarte, D. F. 
Gochberg, S. N. Jespersen, and N. Shemesh, “Evaluation of principal 

component analysis image denoising on multi‐exponential MRI 

relaxometry,” Magnetic Resonance in Med, vol. 81, no. 6, pp. 3503–
3514, Jun. 2019. 

[42] N. Stern, D. Radunsky, T. Blumenfeld‐Katzir, Y. Chechik, C. 

Solomon, and N. Ben‐Eliezer, “Mapping of magnetic resonance 
imaging’s transverse relaxation time at low signal‐to‐noise ratio 

using Bloch simulations and principal component analysis image 

denoising,” NMR in Biomedicine, vol. 35, no. 12, p. e4807, Dec. 
2022. 

[43] F. Grussu, M. Battiston, J. Veraart, T. Schneider, J. Cohen-Adad, T. 

M. Shepherd, D. C. Alexander, E. Fieremans, D. S. Novikov, and C. 
A. M. Gandini Wheeler-Kingshott, “Multi-parametric quantitative in 

vivo spinal cord MRI with unified signal readout and image 

denoising,” NeuroImage, vol. 217, p. 116884, Aug. 2020. 
[44] B. Ades-Aron, G. Lemberskiy, J. Veraart, J. Golfinos, E. Fieremans, 

D. S. Novikov, and T. Shepherd, “Improved Task-based Functional 

MRI Language Mapping in Patients with Brain Tumors through 
Marchenko-Pastur Principal Component Analysis Denoising,” 

Radiology, vol. 298, no. 2, pp. 365–373, Feb. 2021. 

[45] J. Mosso, D. Simicic, K. Şimşek, R. Kreis, C. Cudalbu, and I. O. 
Jelescu, “MP-PCA denoising for diffusion MRS data: promises and 

pitfalls,” NeuroImage, vol. 263, p. 119634, Nov. 2022. 

[46] A. Karsa, S. Punwani, and K. Shmueli, “An optimized and highly 
repeatable MRI acquisition and processing pipeline for quantitative 

susceptibility mapping in the head‐and‐neck region,” Magnetic 

Resonance in Med, vol. 84, no. 6, pp. 3206–3222, Dec. 2020. 
[47] E. R. Henry and J. Hofrichter, “[8] Singular value decomposition: 

Application to analysis of experimental data,” in Methods in 

Enzymology, vol. 210, Elsevier, 1992, pp. 129–192. 
[48] J. V. Manjón, P. Coupé, L. Concha, A. Buades, D. L. Collins, and M. 

Robles, “Diffusion Weighted Image Denoising Using Overcomplete 

Local PCA,” PLoS ONE, vol. 8, no. 9, p. e73021, Sep. 2013. 
[49] T. Liu, C. Wisnieff, M. Lou, W. Chen, P. Spincemaille, and Y. 

Wang, “Nonlinear formulation of the magnetic field to source 

relationship for robust quantitative susceptibility mapping: Robust 
QSM With Nonlinear Data Fidelity Constraint,” Magn Reson Med, 

vol. 69, no. 2, pp. 467–476, Feb. 2013. 

[50] B. Kressler, L. De Rochefort, Tian Liu, P. Spincemaille, Quan Jiang, 
and Yi Wang, “Nonlinear Regularization for Per Voxel Estimation 



of Magnetic Susceptibility Distributions From MRI Field Maps,” 

IEEE Trans. Med. Imaging, vol. 29, no. 2, pp. 273–281, Feb. 2010. 

[51] L. De Rochefort, R. Brown, M. R. Prince, and Y. Wang, 

“Quantitative MR susceptibility mapping using piece-wise constant 

regularized inversion of the magnetic field,” Magn. Reson. Med., vol. 
60, no. 4, pp. 1003–1009, Oct. 2008. 

[52] C. U. MRI Research Lab, “Cornell MRI Research Lab Research 

Interests.” [Online]. Available: 
https://pre.weill.cornell.edu/mri/pages/qsm.html. [Accessed: 23-Jan-

2024]. 

[53] F. Schweser, A. Deistung, K. Sommer, and J. R. Reichenbach, 
“Toward online reconstruction of quantitative susceptibility maps: 

Superfast dipole inversion,” Magnetic Resonance in Med, vol. 69, 

no. 6, pp. 1581–1593, Jun. 2013. 
[54] S. M. Smith, “Fast robust automated brain extraction,” Human Brain 

Mapping, vol. 17, no. 3, pp. 143–155, Nov. 2002. 

[55] T. Liu, I. Khalidov, L. De Rochefort, P. Spincemaille, J. Liu, A. J. 
Tsiouris, and Y. Wang, “A novel background field removal method 

for MRI using projection onto dipole fields (PDF),” NMR in 

Biomedicine, vol. 24, no. 9, pp. 1129–1136, Nov. 2011. 
[56] “MRI susceptibility calculation methods, 

https://xip.uclb.com/product/mri_qsm_tkd.” . 

[57] Y. Shen, F. L. Goerner, J. T. Heverhagen, C. Snyder, D. Hu, X. Li, 
and V. M. Runge, “In vitro T2 relaxivities of the Gd-based contrast 

agents (GBCAs) in human blood at 1.5 and 3 T,” Acta Radiol, vol. 

60, no. 6, pp. 694–701, Jun. 2019. 
[58] N. M. Hijnen, A. Elevelt, J. Pikkemaat, C. Bos, L. W. Bartels, and 

H. Grüll, “The magnetic susceptibility effect of gadolinium-based 

contrast agents on PRFS-based MR thermometry during thermal 
interventions,” J Ther Ultrasound, vol. 1, no. 1, p. 8, Dec. 2013. 

[59] G. B. Chavhan, P. S. Babyn, B. Thomas, M. M. Shroff, and E. M. 

Haacke, “Principles, Techniques, and Applications of T2*-based MR 
Imaging and Its Special Applications,” RadioGraphics, vol. 29, no. 

5, pp. 1433–1449, Sep. 2009. 

[60] B. Dymerska, K. Eckstein, B. Bachrata, B. Siow, S. Trattnig, K. 

Shmueli, and S. D. Robinson, “Phase unwrapping with a rapid 

opensource minimum spanning tree algorithm (ROMEO),” 

Magnetic Resonance in Med, vol. 85, no. 4, pp. 2294–2308, Apr. 
2021. 

[61] A. Karsa and K. Shmueli, “A New, Simple Two-Pass Masking 
Approach for Streaking Artifact Removal in Any QSM Pipeline,” 

presented at the ISMRM, 2022. 

[62] O. C. Kiersnowski, A. Karsa, S. J. Wastling, J. S. Thornton, and K. 
Shmueli, “Investigating the effect of oblique image acquisition on 

the accuracy of QSM and a robust tilt correction method,” Magnetic 

Resonance in Med, vol. 89, no. 5, pp. 1791–1808, May 2023. 
[63] R. Murdoch, Kawadler, Carmichael, Kirkham, and Shmueli, “Can 

Multi-Parametric Mapping Sequences Be Used for Accurate 

Quantitative Susceptibility Mapping?,” presented at the ISMRM, 
2020. 

[64] B. Fischl, “FreeSurfer,” NeuroImage, vol. 62, no. 2, pp. 774–781, 

Aug. 2012. 
[65] F. L. Goerner and G. D. Clarke, “Measuring signal‐to‐noise ratio in 

partially parallel imaging MRI,” Medical Physics, vol. 38, no. 9, pp. 

5049–5057, Sep. 2011. 
[66] H. Gudbjartsson and S. Patz, “The rician distribution of noisy mri 

data,” Magn. Reson. Med., vol. 34, no. 6, pp. 910–914, Dec. 1995. 

[67] J. Chen, B. Ades-Aron, H.-H. Lee, S. Mehrin, M. Pang, D. S. 
Novikov, J. Veraart, and E. Fieremans, “Optimization and validation 

of the DESIGNER preprocessing pipeline for clinical diffusion MRI 

in white matter aging,” Imaging Neuroscience, vol. 2, pp. 1–17, Apr. 
2024. 

[68] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlocal 

Transform-Domain Filter for Volumetric Data Denoising and 
Reconstruction,” IEEE Trans. on Image Process., vol. 22, no. 1, pp. 

119–133, Jan. 2013. 

[69] F. Schweser, K. Sommer, A. Deistung, and J. R. Reichenbach, 
“Quantitative susceptibility mapping for investigating subtle 

susceptibility variations in the human brain,” NeuroImage, vol. 62, 

no. 3, pp. 2083–2100, Sep. 2012. 
[70] Y. Gao, Z. Xiong, A. Fazlollahi, P. J. Nestor, V. Vegh, F. Nasrallah, 

C. Winter, G. B. Pike, S. Crozier, F. Liu, and H. Sun, “Instant tissue 

field and magnetic susceptibility mapping from MRI raw phase using 
Laplacian enhanced deep neural networks,” NeuroImage, vol. 259, 

p. 119410, Oct. 2022. 

[71] T. Harada, K. Kudo, N. Fujima, M. Yoshikawa, Y. Ikebe, R. Sato, T. 
Shirai, Y. Bito, I. Uwano, and M. Miyata, “Quantitative 

Susceptibility Mapping: Basic Methods and Clinical Applications,” 

RadioGraphics, vol. 42, no. 4, pp. 1161–1176, Jul. 2022. 

[72] W. Chen, W. Zhu, Ii. Kovanlikaya, A. Kovanlikaya, T. Liu, S. Wang, 

C. Salustri, and Y. Wang, “Intracranial Calcifications and 

Hemorrhages: Characterization with Quantitative Susceptibility 

Mapping,” Radiology, vol. 270, no. 2, pp. 496–505, Feb. 2014. 

[73] H. Jiang, Z. Li, Y. Sun, J. Ren, F. Yan, Q. Sun, H. Wei, and L. Bian, 
“Irreversible Alterations of Susceptibility in Cushing’s Disease: A 

Longitudinal QSM Study,” The Journal of Clinical Endocrinology 

& Metabolism, vol. 108, no. 8, pp. 2007–2015, Jul. 2023. 
[74] M. A. Bernstein, M. Grgic, T. J. Brosnan, and N. J. Pelc, 

“Reconstructions of phase contrast, phased array multicoil data,” 

Magnetic Resonance in Med, vol. 32, no. 3, pp. 330–334, Sep. 1994. 

 


