

BRIEF DEFINITIVE REPORT

Estrogen influences class-switched memory B cell frequency only in humans with two X chromosomes

Hannah Peckham^{1,2,3}, Anna Radziszewska^{1,2}, Justyna Sikora⁷, Nina M. de Gruijter^{1,2}, Restuadi Restuadi^{1,3}, Melissa Kartawinata^{1,3}, Lucia Martin-Gutierrez^{1,2}, George A. Robinson^{1,2}, Claire T. Deakin^{1,3,5,6}, Lucy R. Wedderburn^{1,3,5}, Elizabeth C. Jury^{1,2}, Gary Butler^{3,4}, Emma S. Chambers⁷, Elizabeth C. Rosser^{1,2}, and Coziana Ciurtin^{1,2,4}

Sex differences in immunity are well-documented, though mechanisms underpinning these differences remain ill-defined. Here, in a human-only ex vivo study, we demonstrate that postpubertal cisgender females have higher levels of CD19+CD27+IgD- class-switched memory B cells compared with age-matched cisgender males. This increase is only observed after puberty and before menopause, suggesting a strong influence for sex hormones. Accordingly, B cells express high levels of estrogen receptor 2 (ESR2), and class-switch-regulating genes are enriched for ESR2-binding sites. In a gender-diverse cohort, blockade of natal estrogen in transgender males (XX karyotype) reduced class-switched memory B cell frequency, while gender-affirming estradiol treatment in transgender females (XY karyotype) did not increase these levels. In postmenopausal cis-females, class-switched memory B cells were increased in those taking hormone replacement therapy (HRT) compared with those who were not. These data demonstrate that sex hormones and chromosomes work in tandem to impact immune responses, with estrogen only influencing the frequency of class-switched memory B cells in individuals with an XX chromosomal background.

Introduction

The presence of a sex bias in the human immune system has been widely reported in recent decades. Studies from across the field of infection and immunity highlight the need to disaggregate research findings by sex and gender. Typically, cisgender males (cis-males) appear more at risk of severe outcomes from many infectious diseases, as evidenced by the recent coronavirus disease 2019 (COVID-19) pandemic (Peckham et al., 2020; Biswas et al., 2020; Klein et al., 2020; Scully et al., 2020; Takahashi and Iwasaki, 2021), while cisgender females (cis-females) are more likely to develop humoral autoimmune diseases such as systemic lupus erythematosus (SLE), Sjögren's disease, dermatomyositis, and systemic sclerosis (Brinks et al., 2016; Lim et al., 2014; Izmirly et al., 2017; Conrad et al., 2023; Beydon et al., 2024; Phillippi et al., 2017; Kronzer et al., 2023; Ciaffi et al., 2021; Hughes et al., 2020; Zhong et al., 2019). Very little is known regarding immune-mediated disease outcomes in transgender females and males (trans-females and -males) or nonbinary people (those identifying neither as exclusively male nor exclusively female) in the context of gender-affirming hormone therapy (GAHT) treatment (Peckham et al., 2022). There are also

relatively few studies investigating how hormonal changes over the full age spectrum influence sex differences in immune responses. Studies that aim to investigate the immunological underpinnings of sex and gender biases across life course in inflammatory disease remain of critical importance.

Socioeconomic determinants relating to differing gender roles are known to play a part in disease risk and outcomes (Bischof et al., 2020; Morgan and Klein, 2019; Bertrand et al., 2024). However, there is strong evidence that sex chromosomes (X and Y) and sex hormones are the primary driving force behind sex biases in immune-mediated conditions. The X chromosome, of which cis-females and trans-males have two copies, encodes the most immune-relevant genes from the human genome (Bianchi et al., 2012). X chromosome inactivation (XCI) silences the expression of one copy of each X gene (in people with two X chromosomes), but a subset of genes may exhibit variable tissue-specific differences in XCI. Key examples include immune-related genes such as TLR7, which is well-documented in its relevance for immune signalling and implications for autoimmunity (Qu et al., 2015; Wang et al., 2016; Tukiainen et al.,

¹Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK; ²Centre for Rheumatology, University College London, London, UK; ³Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK; ⁴University College London Hospital, London, UK; ⁵SIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK; ⁶School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; ⁷Centre for Immunobiology, Blizard Institute, Queen Mary University of London, UK.

*E.C. Rosser and C. Ciurtin are co-senior authors and contributed equally to this paper. Correspondence to Coziana Ciurtin: c.ciurtin@ucl.ac.uk; Elizabeth C. Rosser: e.rosser@ucl.ac.uk.

© 2025 Peckham et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

2017; Souyris et al., 2018; Oghumu et al., 2019); CD40 ligand (CD40-L), vital to T and B cell activation signalling that maintains immune tolerance (Pucino et al., 2020); NF-kB, which is involved in B cell fate decisions throughout the immune response (Guldenpfennig et al., 2023); the IL-2 receptor gamma chain (IL-2RG), mutations of which lead to X-linked severe combined immunodeficiency (SCID) (Tuovinen et al., 2020); and Bruton's tyrosine kinase (Hagen et al., 2020), which regulates B cell activation and differentiation. XCI is triggered on the future inactive X by the buildup of X-inactive specific transcript (XIST) long coding RNA (Loda et al., 2022), which recruits a program of gene silencing factors. By perturbing the expression of Xist in a mouse model, a recent study proposed a direct link between dysregulated XCI and the development of autoimmunity (Huret et al., 2024). Furthermore, males with Klinefelter syndrome, who have one or more additional X chromosomes, have an increased risk of developing autoimmune disorders such as SLE, systemic sclerosis, and Sjögren's disease (Dillon et al., 2011; Scofield et al., 2008; Rovenský et al., 2014; Harris et al., 2016), despite the presence of male sex hormones.

However, sex biases in immune-mediated diseases are not consistent throughout age. Disorders such as asthma and atopy, characterized by male preponderance before puberty, have increased female prevalence during reproductive years (Osman, 2003). In addition, the onset of various adolescent autoimmune conditions at the time of puberty (Massias et al., 2020; Whincup et al., 2001; Cattalini et al., 2019) suggests that increased endogenous exposure to sex hormones, as well as age, has a direct impact on immune system function (Nikolich-Žugich, 2017; Sadighi Akha, 2018). This is further supported by the changes in immune-mediated disease risk and severity following the decline of sex hormone levels associated with menopause (Gubbels Bupp, 2015; Desai and Brinton, 2019; Costeira et al., 2021) and the potential for hormone replacement therapy (HRT; sometimes referred to as menopausal hormone therapy) to improve COVID-19 outcomes in menopausal women (Seeland et al., 2020; Dambha-Miller et al., 2022). There is also a growing body of evidence to suggest that sex hormones influence the development of autoimmunity (McMurray and May, 2003; Petri, 2008; Kim et al., 2022), allergy, and asthma (McCleary et al., 2018; Han et al., 2020) and the effectiveness of pathogen clearance (Ruggieri et al., 2018; vom Steeg and Klein, 2019; Gupta et al., 2022). The principal sex hormones in humans are testosterone (an androgen), progesterone ("P4," a progestin), and the four major forms of estrogen (estrone/estradiol/estriol/estetrol, or E1/2/3/4). Intracellular receptors for these hormones are found on numerous cell types, including many immune cells (Uhlen et al., 2019). For estrogen, the main receptors in humans are estrogen receptor α (ER α /ESRI) and estrogen receptor β (ER β / ESR2), while the androgen receptor (AR) is the main receptor for testosterone. These receptors act as key transcriptional regulators throughout the body, with ligation by their cognate hormone impacting both physiological, metabolic, and immune system function (Hayakawa et al., 2022; Hoffmann et al., 2023; Lucas-Herald and Touyz, 2022; Gegenhuber et al., 2022).

Studies comparing the immune system between females and males have long established that there are sex-based differences

in B cell responses, with females displaying higher basal and postvaccination antibody titers than males (Flanagan et al., 2017). Studies in humans have suggested that this is due to the suppressive effect of testosterone (Furman et al., 2014). However, murine literature suggests that estrogen plays a dominant role in regulating B cell survival (Bynoe et al., 2000; Grimaldi et al., 2002) and class-switch recombination (CSR) (Mai et al., 2010; Pauklin et al., 2009; White et al., 2011; Jones et al., 2016, 2019), the process by which B cell receptors switch the constant region of their immunoglobulin from initial IgM and IgD isotypes to IgG, IgA, or IgE. IgG antibodies can pass from the blood into tissue sites, and thus have particular importance in viral clearance and immunization response. In the context of autoimmunity, IgG antibodies also make up the bulk of the pathogenic autoantibodies (Olsen and Karp, 2014; Lin and Li, 2009; Villalta et al., 2013; Jayakanthan et al., 2016), being found in the kidney biopsies of patients with SLE nephritis (Bijl et al., 2002; Kenderov et al., 2002) and demonstrated as damage-causing in mouse models (Madaio et al., 1987; Pankewycz et al., 1987). Thus, heightened IgG production may also contribute to the increased risk of autoimmune development in females. Conversely, autoantibodies of the IgG subclass IgG4 have been shown to have protective or anti-inflammatory effects (Jiang et al., 2022; Pan et al., 2020). The molecular mechanism, as well as the relative contribution of sex hormones and sex chromosomes, to differences in B cell class switching and class-switched memory B cell frequency in humans remains ill-defined.

Here, we have utilized a unique age- and gender-diverse cohort of prepubertal, postpubertal, and postmenopausal cisfemales, age-matched cis-males, and postpubertal transgender healthy young people to investigate the relative contribution of sex hormones and sex chromosomes in driving differences within the immune, and more specifically, humoral immune system across the life course. Collectively, our data demonstrate that female sex chromosomes and sex hormones work in tandem to influence the frequency of CD19+CD27+IgD- class-switched memory B cells in humans across the life course. Due to the important role that B cells have in controlling numerous immunemediated disease outcomes, these data provide significant insights into many clinically observed sex biases.

Results and discussion

Postpubertal cis-females have an increase in class-switched memory B cells within peripheral blood when compared with postpubertal cis-males

To interrogate which cell population(s) may be behind the observed sex differences in immunity, the proportion of 31 innate and adaptive immune cell types within peripheral blood samples was compared between 103 postpubertal healthy cis-females (POST CIS-F in figures) and cis-males (POST CIS-M in figures) using flow cytometry (Fig. 1 A and Table 1 for demographic information). Multiple immune cell frequencies were differentially expressed based on sex, including natural killer cells, CD4⁺ T regulatory cells, total CD8⁺ T cells, naïve CD8⁺ T cells, naïve (CD27-IgD⁺) B cells, and "double negative" (DN CD27-IgD⁻) B cells (Fig. 1, A-F). However, CD19⁺CD27⁺IgD⁻ class-switched

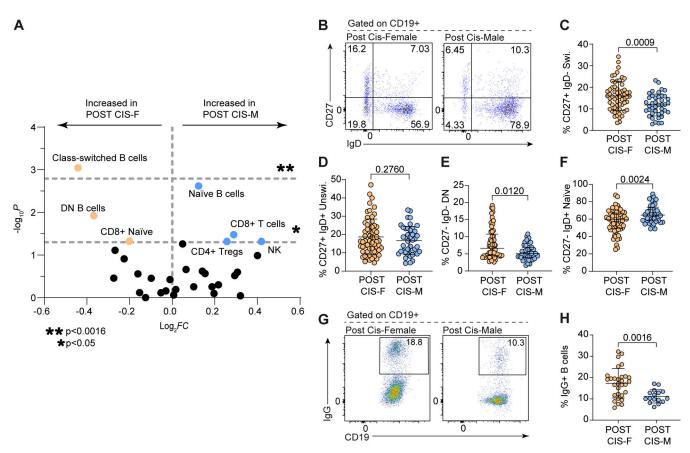


Figure 1. Healthy postpubertal cis-females have a higher percentage of class-switched memory B cells than age-matched healthy cis-males. (A) Volcano plot showing $-\log_{10} P$ values and \log_2 fold changes of flow cytometric relative percentages of peripheral blood immune cell subtypes between postpubertal cis-female (POST CIS-F) and postpubertal cis-male (POST CIS-M) healthy donors (horizontal dashed lines show P < 0.05; denoted by * and multiple testing adjusted significance level of P < 0.0016; denoted by **). (B-F) Representative flow cytometry plots and summary dot plots comparing postpubertal cis-female and postpubertal cis-male percentages of (C) class-switched memory (CD27+ IgD-; P = 0.0009), (D) unswitched (CD27+ IgD+; P = 0.2760), (E) DN (CD27- IgD-; P = 0.0120), and (F) naïve (CD27- IgD+; P = 0.0024) B cells (POST CIS-F n = 61; POST CIS-M n = 42). (G and H) Representative flow cytometry plots and summary dot plots comparing postpubertal cis-female and postpubertal cis-male percentages of IgG+ B cells (POST CIS-F n = 30; POST CIS-M n = 17; P = 0.0016). Note: Representative plots shown in G are duplicated in Fig. S2, B and D for clarity of comparison. Unpaired t test with mean + SD (C, D, and H) or Mann-Whitney U test with median + IQR (E and F) as appropriate to distribution of data. Swi., class-switched memory; Unswi., unswitched; and Tregs, T regulatory cells.

memory B cells displayed by far the most striking sex difference and were the only population to meet the significance threshold for multiple testing (Fig. 1, A-F). More specifically, cis-females had significantly elevated relative proportions of CD19+CD27+IgD-class-switched memory B cells compared with cis-males (Fig. 1 C). This increase in CD19+CD27+IgD-class-switched memory B cells was specifically associated with an increase in IgG+ B cells in cis-females compared with cis-males with no significant differences in the levels of IgA+ or IgE+ B cells between the sexes (Fig. 1, G and H; and Fig. S1, A-D), corroborating previous studies that have shown increased IgG titers in females following vaccination (Fink and Klein, 2018; Fink et al., 2018).

Sex differences in the B cell transcriptome between healthy, postpubertal cis-females and cis-males are driven by sex chromosome-encoded genes

To understand the potential mechanistic underpinnings of the expansion of CD19⁺CD27⁺IgD⁻ class-switched memory B cells in cis-females compared with cis-males, we next analyzed the

transcriptome of total CD19+ B cells from postpubertal cisfemales and postpubertal cis-males via RNA sequencing (RNAseq). The transcriptome of B cells was clearly segregated by sex (Fig. 2 A) with 64 differentially expressed genes (DEGs; full gene list with chromosome number/letter shown in Table S1) between these two groups, of which 28 were downregulated in cisfemales compared with cis-males, and 36 were upregulated. 40 (62.5%) of the identified DEGs were found to be encoded on either the X (22/40) or Y (18/40) chromosome (Fig. 2, B and C; and Table S1). As expected, this included genes such as XIST and TSIX, long noncoding RNA that control silencing of the X chromosomes. The level of expression of XIST and TSIX varied among cis-females, which could have implications regarding differences in the extent of XCI amongst individuals. In terms of B cell biology, dysregulation in XIST has been recently shown to lead to the expansion of the CD11c+ atypical B cells in female patients with SLE or COVID-19 (Yu et al., 2021). However, we did not find any correlation between the levels of class-switched memory B cells and XIST transcript levels in our cohort (data not shown).

Table 1. Demographic information for cisgender (prepubertal and postpubertal) and transgender healthy control sample donors used for the PBMC and whole blood immunophenotyping cohorts

PBMC cohort	Prepubertal cis HC	Postpubertal cis HC	Trans HC	P value; (a) prepubertal vs. postpubertal, (b) postpubertal vs. trans
Total, n	26	103	80	-
Gender identity, F:M	15:11	61:42	33:47	-
Mean age, years (range)	8.5 (6–11)	19.9 (14–32)	18.0 (15–19)	(a) N/A (b) 0.0587
Tanner stage 1 (prepuberty) (%)	26 (100)	0 (0)	0 (0)	-
Tanner stage 2-3 (in puberty) (%)	0 (0)	0 (0)	2 (2.5)	-
Tanner stage 4–5 (completing/completed puberty) (%)	0 (0)	103 (100)	78 (97.5)	-
Mean age of menarche, (years) in XX individuals (range)	N/A	12.5 (9–17) NB data on 58/61 donors	12.1 (9–14)	(a) N/A (b) 0.2275
Ethnicity (%)				
Asian (any)	2 (7.7)	27 (26.2)	1 (1.3)	(a) 0.0632 (b) <0.0001
Black (any)	0 (0)	9 (8.7)	1 (1.3)	(a) 0.2027 (b) 0.0445
Other/mixed	2 (7.7)	8 (7.8)	6 (7.5)	(a) >0.9999 (b) >0.9999
White (any)	22 (84.6)	59 (57.3)	72 (90)	(a) 0.0119 (b) <0.0001
Medications				
Oral contraceptive (%)	0 (0)	10 (9.7)	0 (0)	-
GnRHa "blockers" F:M (%)	N/A	N/A	33:40 (91.3)	-
Estradiol (trans-female; oral/patch) (%)	N/A	N/A	20 (25)	-
Testosterone (trans-male; IM) (%)	N/A	N/A	25 (31.3)	-
Mean months on estradiol (transfemale) (range)	N/A	N/A	13.3 (4.5–23)	-
Mean months on testosterone (transmale) (range)	N/A	N/A	14.6 (4–43)	
Whole blood cohort	20-40 years	40-60 years	60+ years	P value 20–40 vs. 60+
Total, n	30	19	25	-
Sex, F:M	19:11	19:0	15:10	>0.9999
Mean age, years (range)	29.4 (21–40)	50.6 (43–58)	68.6 (61–84)	-
Asian (%)	6 (20)	2 (10.5)	4 (16)	>0.9999
Black (%)	0 (0)	1 (5.3)	1 (4)	0.4545
Other/mixed (%)	2 (6.6)	0 (0)	0 (0)	0.4949
Unknown ethnicity (%)	3 (10)	0 (0)	0 (0)	0.2424
White (%)	19 (63.3)	16 (84.2)	20 (80)	0.1569
HRT usage (%)	0 (0)	7 (36.8)	0 (0)	-

HC, healthy control; IM, intramuscular. Fisher's exact test used to calculate differences between groups.

Of the DEGs that were not X or Y genes, few had clear known immune functions in B cells, with the exception of *HRK* and *CCL5*, which were downregulated in cis-females, and *IRAK3*, which was upregulated in cis-females. Importantly, *HRK* is in

the BCL2 family of proteins, which regulates cell death (Inohara et al., 1997; Spetz et al., 2019; Kaya-Aksoy et al., 2019); chemokine ligand 5 (*CCL5*) is a known chemoattractant (Gauthier et al., 2023; Aldinucci et al., 2020); and IL-1 receptor-associated kinase

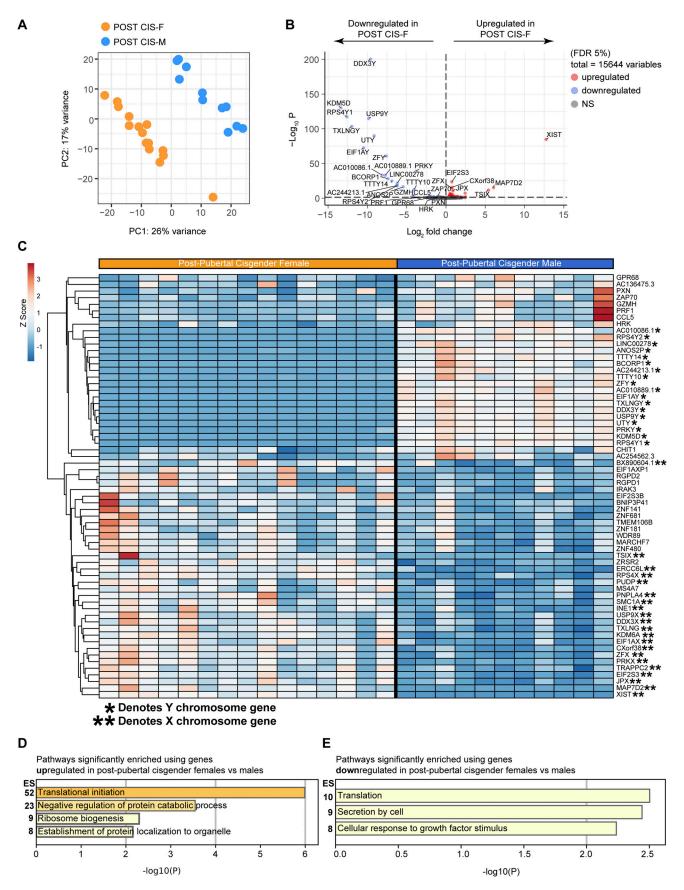


Figure 2. Sex chromosome genes dominate the differential gene expression between total CD19* B cell RNA from healthy, young cis-females and cis-males. (A) PC analysis plot showing clustering of postpubertal cis-female (POST CIS-F) versus postpubertal cis-male (POST CIS-M) CD19* B cell gene

expression. **(B)** Volcano plot shows DEGs that are up- (red) or down- (blue) regulated in postpubertal cis-females compared with postpubertal cis-males. Only those with a Padj <0.05 are labelled as significant. **(C)** Heatmap demonstrating clustering by DEG profiles of postpubertal cis-females versus postpubertal cismales. **(D and E)** Metascape pathway enrichment analysis shows pathways significantly enriched in analysis of (D) upregulated DEGs and (E) downregulated DEGs in postpubertal cis-females compared with postpubertal cis-males (n = 15 POST CIS-F, 11 POST CIS-M). ES, enrichment score (the ratio of the proportion of genes in the list that were associated with the enriched term to the proportion of genes in the genome that are associated with the enriched term). FDR, false discovery rate.

3 (IRAK3) is a negative regulator of TLR signalling (Pereira and Gazzinelli, 2023). Further studies are needed to interrogate the direct impact of these genes on B cell function and therefore any of our observed sex differences in the B cell compartment. Pathway analysis of DEGs upregulated in cis-females compared with cis-males revealed significant enrichment of gene ontology biological processes (GO BP) pathways entitled translational initiation, negative regulation of protein catabolic process, ribosome biogenesis, and establishment of protein localization to organelle, whilst pathway analysis of DEGs downregulated in cis-females compared with cis-males revealed significant enrichment of GO BP pathways entitled translation, secretion by cell, and cellular response to growth factor stimulation (Fig. 2, D and E). Changes in these pathways further support a role for sexually divergent B cell activation, differentiation, and potentially class-switching profiles, as B cell maturation is well-known to be associated with drastic alterations in cellular structure and translational machinery needed to produce vast amounts of protein in the form of immunoglobulin (Nutt et al., 2015).

Sex differences in class-switched memory B cell frequencies are not observed between prepubertal cis-females and cis-males

If the sex chromosomes are, indeed, solely responsible for the observed sex differences in the frequency of CD19+CD27+IgDclass-switched memory B cells, it may be expected that these differences would be observed across all age brackets despite changing levels of sex hormones. However, when comparing the frequency of class-switched memory B cells in healthy, prepubertal cis-females (referred to as PRE CIS-Fs in figures) and cismales (PRE CIS-Ms in figures) (where levels of endogenous sex hormones are very low), the proportions of CD19+CD27+IgDclass-switched memory B cells and of IgG+ class-switched memory B cells were not significantly different between prepubertal cis-females and prepubertal cis-males (Fig. 3, A and B; and Fig. S1, E-H). Furthermore, when each prepubertal sex was compared with their postpubertal sex-matched counterparts, significantly increased proportions of total class-switched memory B cells were observed in postpubertal versus prepubertal cisfemales (Fig. 3, C and D). Finally, using a smaller, independent validation cohort, which provided access to an older age range of individuals, we were able to recapitulate our findings that cisfemales have a higher frequency of class-switched memory B cells than cis-males in whole blood samples from individuals aged 20-40 years and also additionally identified that there is no sex difference in the frequency of CD19+CD27+IgD- class-switched memory B cells between older cis-males (60+ years) and agematched postmenopausal cis-females (Fig. 3, E-H). This is due to a decrease in the levels of CD19+CD27+IgD- class-switched

memory B cells in postmenopausal cis-females compared with younger 20–40-year-old cis-females (Fig. 3, I and J). Importantly, the percentage of CD19⁺CD27⁺IgD⁻ class-switched memory B cells did not correlate with the age of donors of either sex in both our initial analysis and our validation analysis, suggesting that the rise in hormone levels at puberty may be of greater significance than the age-related increase in the cumulative exposure to antigens (Fig. S1, I-L). Collectively, these results suggest that while sex chromosome-encoded genes play a potentially dominant role in the regulation of the B cell transcriptome, the presence of female sex hormones is regulating the frequency of CD19⁺CD27⁺IgD⁻ class-switched memory B cells.

Estrogen has the capacity to directly modulate the expression of key transcriptional regulators of CSR

To understand whether estrogen had the capacity to directly influence human B cell biology, we next assessed the expression of sex hormone receptors (ESR1, estrogen receptor α; ESR2, estrogen receptor β; and AR) in total B cells isolated from postpubertal healthy cis-females and cis-males (Fig. 3, K and L). In both sexes, both ESR1 and ESR2 were expressed in B cells (validating the findings of Phiel et al. [2005] that ERβ is the dominant sex hormone receptor on human B cells), with minimal expression of AR. To assess the potential ability of estrogen to directly regulate CSR, a set of genes known to regulate B cell class switching (Table S2) were assessed for putative transcriptional factor (TF)-binding sites by comparing this class-switching gene set to ChIP-X Enrichment Analysis 3 (ChEA3) libraries of TF target gene sets. Of the 1,632 TFs included, ESR2 was the second highest ranked TF (Fig. 3 M), demonstrating a direct ability for ESR2, but not ESR1, to regulate the expression of these genes. RNAseq gene counts of three class-switching genes (AICDA, HOXC4, and RNF8) also show a strong trend toward an increase in cis-female compared with cis-male B cells (Fig. 3, N-P; Table S2 lists P values for count comparisons of the other genes in this set, as well as their main function[s]). Interestingly, studies from murine B cells have also demonstrated that B cells express estrogen receptors and that estrogen can regulate expression of AICDA/Aicda via HOXC4/HoxC4 (Mai et al., 2010). Future mechanistic studies are needed to understand whether estrogen does indeed directly regulate class switching in humans similarly to mice or whether alternative mechanisms are at play.

The impact of endogenous estrogens on class-switched memory B cell frequency is dependent on sex chromosomal complement

Together, our data show that both sex hormones and sex chromosomes play a pivotal role in influencing the heightened frequency of CD19+CD27+IgD- class-switched memory B cells

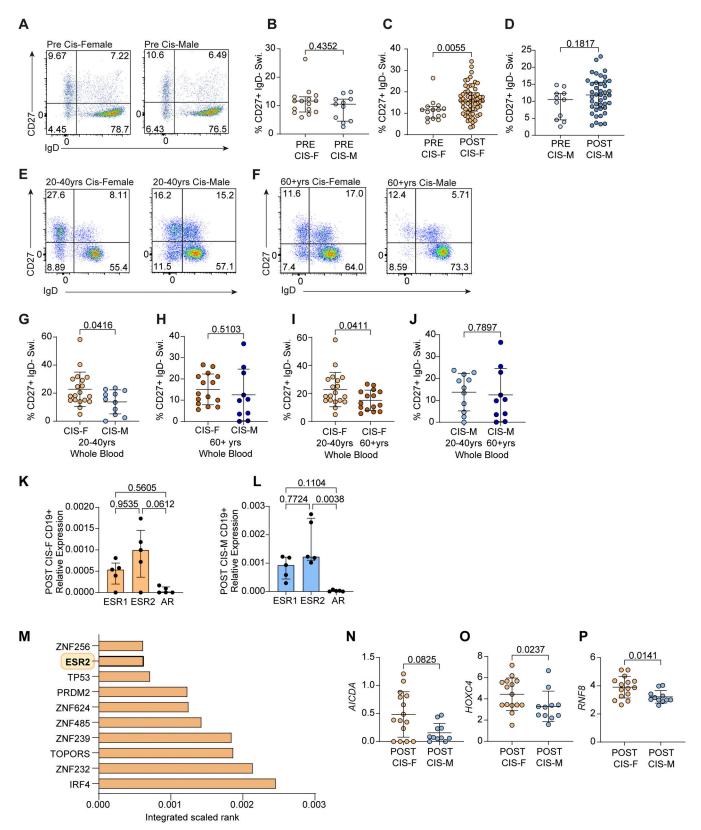


Figure 3. Estrogen levels across the lifespan are associated with differences in the frequency of class-switched memory B cells in healthy cisfemales compared with age-matched males. (A and B) Representative flow cytometry plots (A) and summary dot plot (B) comparing healthy, prepubertal cis-female (PRE CIS-F n = 15) and prepubertal cis-male (PRE CIS-M n = 11) relative percentages of class-switched memory (Swi.; CD27+ IgD-; P = 0.4352). (C and D) Comparison of class-switched memory B cell percentages in prepubertal versus postpubertal (C) cis-females (PRE CIS-F n = 15; POST CIS-F n = 61; P = 0.0055) and (D) cis-males (PRE CIS-M n = 11; POST CIS-M n = 42; P = 0.1817). (E and G) Representative flow cytometry plots (E) and summary dot plot (G) comparing healthy, pre-menopausal 20–40-year-old cis-female (CIS-F 20–40 years; n = 19) and age-matched male (CIS-M 20–40 years; n = 11) relative

percentages of class-switched memory (Swi.; CD27+ IgD⁻; P = 0.0416) B cells in whole blood. (**F and H**) Representative flow cytometry plots (F) and summary dot plot (H) comparing healthy, postmenopausal 60+-year-old cis-female (CIS-F 60+ years; n = 15) and age-matched male (CIS-M 60+ years; n = 10) relative percentages of class-switched memory (Swi.; CD27+ IgD⁻; P = 0.5103) B cells in whole blood. (**I and J**) Summary dot plots comparing relative proportions of class-switched memory B cells in whole blood between (I) cis-females, pre- versus postmenopause (P = 0.0411) and (J) 20-40-year old versus 60+-year-old cis-males (P = 0.7897). (**K and L**) Expression of hormone receptors in isolated CD19+ cells from postpubertal cis-female (POST CIS-F n = 5) and postpubertal cis-male (POST CIS-M n = 5) healthy donors, relative to expression of housekeeping gene *RPLP0*, measured by qPCR (ERQ, *ESR1*; ER β , *ESR2*; and *AR*. POST CIS-F: *ESR1* vs. *ESR2* P = 0.9535; *ESR1* vs. *AR* P = 0.5605; and *ESR2* vs. *AR* P = 0.0612; POST CIS-M: *ESR1* vs. *ESR2* P = 0.7724; *ESR1* vs. *AR* P = 0.1104; and *ESR2* vs. *AR* P = 0.0038). (**M**) Top 10 TFs whose putative transcriptional targets are most similar to identified class-switching gene set. Integrated score takes into account results from all ChEA3 TF target libraries, with lower scores indicating higher relevance to the TF. (N-P) Comparison of gene counts for key class-switching genes: *AICDA* (P = 0.0825), *HOXC4* (P = 0.0237), and *RNF8* (P = 0.0141) from healthy postpubertal cis-female versus postpubertal cis-male B cell RNAseq. Unpaired t test (G-J) with mean + SD shown or Mann-Whitney U test (B-G and M-O) or Kruskal-Wallis test with Dunn's test (K and L) with median + IQR shown.

observed in postpubertal and pre-menopausal cis-females compared with age-matched males but do not directly address the relative contributions of both. Thus, we next utilized a unique, gender-inclusive cohort that, due to modulation of sex hormone availability on both XX and XY chromosomal backgrounds, provides a novel opportunity to separate these contributing elements in vivo. Full explanations of the GAHT pathways are detailed in the Materials and methods section and Fig. S2 A. Briefly, both trans-males (XX karyotype, registered female at birth) and trans-females (XY karyotype, registered male at birth) were commenced on "puberty blocker" treatment, suppressing estrogen/P4 and testosterone production. Some trans-males then went on to take gender-affirming testosterone treatment, while some trans-females went on to take gender-affirming estradiol (no additional P4 or anti-androgen medication with progestogenic characteristics was administered).

We first compared the frequency of CD19+CD27+IgD- classswitched memory B cells and other B cell subsets between postpubertal cis-females and their karyotype counterparts, trans-males who had received either puberty blockers alone (which blocks the production of natal estrogen/P4; referred to as TRANS-M +BLK in figures) or puberty blockers with additional gender-affirming testosterone (referred to as TRANS-M +T in figures). This analysis demonstrated that trans-males have a reduced frequency of CD19+CD27+IgD- class-switched memory B cells and IgG+ B cells when compared with cis-females ex vivo (Fig. 4, A and B; and Fig. S2, B and C). Importantly, this decrease was observed following the blockade of estrogen/P4 using puberty blocker treatment, with gender-affirming testosterone treatment having no further effect on the frequency of CD19+CD27+IgDclass-switched memory B cells (Fig. 4, A and B). Assessment of the relative proportions of other B cell subsets demonstrated that unswitched and DN B cells did not differ with gender-affirming treatment, but proportions of naïve B cells were increased in both trans-males on puberty blockers alone and on additional testosterone compared with cis-females (Fig. 4, A and C-E). Conversely, when assessing the levels of class-switched memory B cells in trans-females in receipt of puberty blockers (which block production of natal testosterone; TRANS-F +BLK in figures) or additional gender-affirming estradiol treatment (referred to as TRANS-F +E in figures) compared with postpubertal cis-males, we found that there was no difference in both CD19+CD27+IgD-, IgG+ class-switched memory B cell populations or any other B cell subset when compared with their chromosomal counterparts,

cis-males (Fig. 4, F-J; and Fig. S2, D and E). Finally, to further interrogate whether this may represent a difference between endogenous versus exogenous estrogen and/or an effect that was specific to the XX chromosomal background, we examined the impact of HRT on B cell phenotype in cisgender women of menopausal age. Those taking HRT had significantly higher frequencies of CD19+CD27+IgD- class-switched memory B cells than those who were not (Fig. 4, K and L). Interestingly, while not impacting the levels of naïve or unswitched B cells, HRT was also associated with an increased frequency of DN B cells, albeit to a lesser extent than CD19+CD27+IgD- classswitched memory B cells (Fig. 4, K and M-O). Collectively, these results demonstrate that estrogen is associated with increased levels of CD19+CD27+IgD- class-switched memory B cells ex vivo exclusively in individuals with an XX chromosomal background. This finding is of pertinence as there is a paucity of good-quality literature on transgender health and long-term outcomes for transgender populations beyond a few notable recent papers (Lakshmikanth et al., 2024; Grünhagel et al., 2023) and demonstrates that hormonal transition may lead to distinct immunobiological gender phenotypes. It is also important as little is known regarding how hormone therapy impacts the immune system in postmenopausal cis-females and how this may influence disease outcomes. These observations may be of growing importance as we approach the era of precision medicine.

Our study represents the first in-depth study of B cell immunobiology in cisgender and transgender individuals, providing a unique human-only in vivo insight into the signals regulating the frequency of class-switched memory B cells. Due to the pathways by which these individuals are recruited, there are some limitations to our study. As postpubertal cisgender people were not recruited through a clinical pathway, we are unable to obtain total lymphocyte counts from these donors, meaning our data are based on cellular frequency rather than absolute numbers. Further, due to the length of time that would be required to obtain both pre and postpubertal matched samples from the same cisgender participants, these two cohorts do not represent a longitudinal analysis. B cell class switching is subjected to many in vivo and in vitro environmental factors, which are challenging to control for in this model. In addition, transfemales do not receive P4 or additional specific anti-androgen treatment as part of gender-affirming care (Milionis et al., 2022), and our study does not rule out a possible additional role for

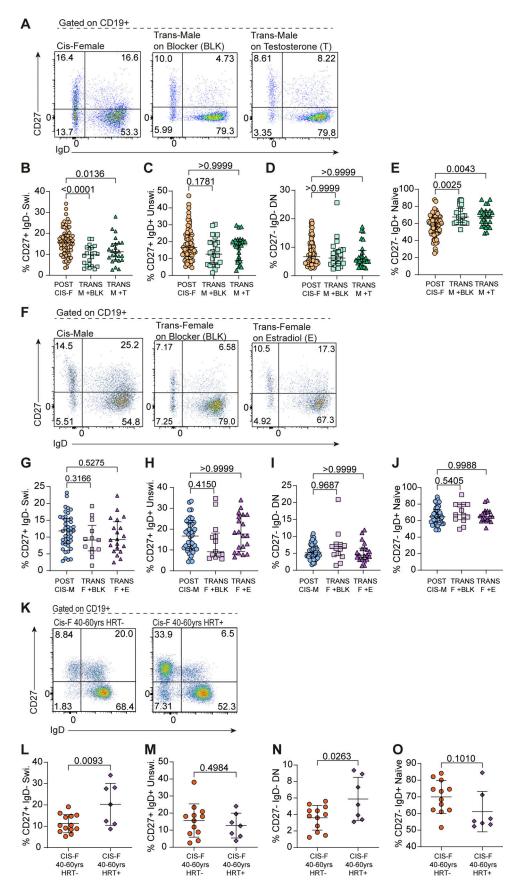


Figure 4. Differential impact of hormones on the frequency of class-switched memory B cells are dependent upon sex chromosomal complement. (A–E) Representative flow cytometry plots and scatter plots showing relative percentages of (B) class-switched memory B cells (Swi.; CD27+ IgD-), (C)

unswitched (Unswi.; CD27+ IgD+), (D) DN (CD27- IgD-), and (E) naïve (CD27- IgD+) B cells in postpuberal cis-females (POST CIS-F; n=61) compared with transmales on GnRHa puberty hormone blockers (TRANS-M +BLK; n=23; Swi. P=<0.0001; Unswi. P=0.1781; DN $P\ge0.9999$; and naïve P=0.0025) \pm genderaffirming testosterone treatment (TRANS-M +T; n=24; Swi. P=0.0136; Unswi. $P\ge0.9999$; DN $P\ge0.9999$; and naïve P=0.0043). **(F-J)** Representative flow cytometry plots and scatter plots showing relative percentages of (G) class-switched memory B cells (Swi., CD27+ IgD-), (H) unswitched (Unswi.; CD27+ IgD+), (I) DN (CD27- IgD-), and (J) naïve (CD27- IgD+) B cells in postpubertal cis-males (POST CIS-M; n=42) compared with trans-females on puberty hormone blockers (TRANS-F +BLK; n=15; Swi. P=0.3166; Unswi. P=0.4150; DN P=0.9687; Naïve P=0.5405) \pm gender-affirming estradiol treatment (TRANS-F +E; n=21; Swi. P=0.5275; Unswi. $P\ge0.9999$; DN $P\ge0.9999$; and naïve P=0.9988). **(K-O)** Representative flow cytometry plots and scatter plots showing relative proportions of (L) class-switched memory B cells (Swi., CD27+ IgD-; P=0.0093) (M) unswitched (CD27+ IgD+; P=0.4984), (N) DN (CD27- IgD-; P=0.0263), and (O) naïve (CD27- IgD+; P=0.1010) B cells in whole blood samples from cis-females aged 40-60 years (CIS-F 40-60 years) who were either not taking HRT (HRT-; P=0.1010) B cells in whole blood samples from cis-females aged 40-60 years (CIS-F 40-60 years) who were either not taking HRT (HRT-; P=0.1010) brown's post hoc test and median + IQR shown (C-E, H, and I), as appropriate to distribution. Following correction for multiple testing, adjusted significance determined as P<0.01.

physiological P4 in the regulation of B cell class switching, which has been suggested by limited murine literature (Pauklin and Petersen-Mahrt, 2009; Wong et al., 2015; Hughes and Choubey, 2014). However, the P4 receptor was ranked only 321st out of the 1,632 TFs assessed for CSR gene-binding sites, suggesting that estrogens may be the dominant hormones influencing this process specifically. In this paper, we do not show direct mechanistic evidence for estrogen's ability to regulate class switching, and it is important to consider alternative hypotheses. For example, it has been shown that IgG+ B cells are positively selected over IgM+ B cells in germinal centers (Sundling et al., 2021), which can lead to a higher proportion of IgG+ B cells amongst postgerminal center memory populations that is independent of the CSR process. In addition, differences in the expression of HRK (which encodes a pro-apoptotic protein) between cis-males and cis-females may lead to altered survival of different B cell subpopulations and therefore warrant further study. This said, in mice, estrogen has been demonstrated to upregulate HoxC4 (Mai et al., 2010; Pauklin et al., 2009), a TF that binds directly to the Aicda gene promoter, potentiating CSR. Estrogen-response elements have also been described within the immunoglobulin heavy chain locus (Jones et al., 2016), where estrogen: ERa binding facilitates CSR by preventing ERa from binding and blocking enhancers that support DNA looping/remodelling (Jones et al., 2019). Interestingly, DN B cells, which are also class-switched, did not exhibit the same strong gender differences as canonical CD19+CD27+IgD- classswitched memory B cells, suggesting that different B cell activation pathways may be differentially regulated by sex hormones and/or chromosomes. Although we did find a small difference in the levels of DN B cells in postpubertal cis-females compared with cis-males, the impact of estradiol on this population seemed to be more complex, as although HRT was associated with a higher level of DN B cell in postmenopausal women, neither blockade of estrogen in trans-males nor supplementation of estradiol in transfemales impacted this cell type when compared with karyotypematched cisgender people. Importantly, there is evidence that DN B cells, which are enriched for extrafollicularly or atypically differentiated B cells (ABCs), are influenced by the XCI escapee gene XIST (the long coding RNA that establishes XCI). XIST is dysregulated in SLE and severe COVID-19 (both conditions with a strong sex bias), which leads to an increase in ABCs (Yu et al., 2021; Dou et al., 2024), and perturbation of Xist in mice leads to reactivation of Tlr7, expansion of ABCs, and spontaneous development of lupus (Huret et al., 2024). In addition, DN B cells/

ABCs are well-known to be expanded in response to TLR7 activation, which is X chromosomally encoded (Brown et al., 2022). In our study of how sex determinants affect frequencies of class-switched memory B cells and DN B cells, we also cannot discount the possibility that estrogen influences the expression of XCI escapee genes, and that this impacts our observations. Future studies are warranted to explore the differential roles of sex hormones and sex chromosomes on different B cell activation pathways and the direct mechanisms underpinning the observed differences in the frequency of B cell subpopulations.

Despite these limitations, in this study we demonstrate an important complementary role for sex hormones and sex chromosomes in regulating the frequency of CD19+CD27+IgD- classswitched memory B cells. Our key observations include that only postpubertal, but not prepubertal or postmenopausal, cis-females have higher frequencies of class-switched memory B cells compared with cis-males. This shows that while sex chromosomes drive most of the sex differences in B cell transcriptomes, this is insufficient to alter the frequency of class-switched memory B cells. Further analysis demonstrates that estrogen may have a potentially direct role in regulating B cell class switching as B cells express high levels of ESR2, and genes regulating B cell class switched are enriched for ESR2-binding sites. Using a unique cohort of transgender individuals and postmenopausal cis-females receiving hormone therapy, we finally demonstrate that estrogen works in tandem with an XX chromosomal background to increase the frequency of CD19+CD27+IgD- class-switched memory B cells. Blockade of estrogen on an XX chromosomal background reduces the frequency of class-switched memory B cells, whilst addition of estrogen only impacted the levels of CD19+CD27+IgDclass-switched memory B cells in individuals with an XX chromosomal background. Thus, sex hormones differentially regulate the frequency of CD19+CD27+IgD- class-switched memory B cells in the presence of different sex chromosomes, suggesting that cisgender and transgender individuals and individuals receiving hormone therapy in general have distinct immune phenotypes. This study adds to the growing evidence that sex and gender are critical factors to be considered in immunological studies. It also demonstrates that improvements in diversity and inclusion practices within medical research will not only advance our scientific understanding of sex biases in disease outcomes but also potentially shed light on novel strategies for personally tailored healthcare.

Materials and methods

Human participants—Peripheral blood mononuclear cell (PBMC) cohort

Full demographic information for participants is shown in Table 1. Postpubertal cisgender healthy controls were recruited from the community, while prepubertal cisgender controls were recruited from otherwise healthy children undergoing elective corrective dental or urological surgeries at University College London Hospital (UCLH). "Postpuberty" was self-reported by participants using a visual questionnaire as "Tanner stage 4–5," and "prepuberty" was parentally reported as "Tanner stage 1." Participants were screened for any history of autoimmune disease, relevant endocrinological conditions, serious or current infections, and vaccination within the 3 wk prior to blood donation.

Trangender healthy controls were recruited from the young persons' Gender Identity Development Service (GIDS) at UCLH, between 2016 and 2020. Healthy, young transgender people were recruited to donate peripheral blood samples at determined intervals of GAHT regimens. Briefly, both trans-males (XX karyotype, registered female at birth) and trans-females (XY karyotype, registered male at birth) are commenced on gonadotrophinreleasing hormone analogues (GnRHa), commonly referred to as "puberty blockers." Overstimulation of the GnRH receptor leads to the eventual cessation of both estrogen and subsequently P4 and testosterone production. After a minimum of 12+ mo on GnRHa alone, those seeking further virilization or feminization and deemed Gillick competent (in the UK, persons under 16 years can consent to their own medical treatment if they are felt to have suitable intelligence, competence, and understanding to fully appreciate what is involved in the treatment [Griffith, 2016]) may receive additional testosterone (trans-males) or estradiol (trans-females), respectively, using gradually increasing dosages designed to mimic natal puberty. Samples are obtained when the young people have been on blockers (alone) for a minimum of 6 mo and then again when they have been on additional GAHT for a further minimum of 4 mo. Blocker treatment is maintained until natal estrogen/testosterone levels are sufficiently suppressed by GAHT (and/or later gonadectomy in adulthood). This treatment pathway is also outlined in Fig. S2 A.

Of the trans-female participants, all were in receipt of GnRHa "puberty blocker" treatment for at least 6 mo, and 20 had been additionally taking gender-affirming estradiol (oral tablet or transdermal patch) for a further 4.5 mo or more. Of the trans-male participants, all were also in receipt of at least 6 mo of GnRHa blocker treatment, with 25 on additional gender-affirming testosterone (intramuscular injection or transdermal gel) for a further 4 mo or more. Seven trans-males had acquired sufficient testosterone trough levels to dispense with GnRHa (required only until testosterone levels alone will sufficiently suppress natal estrogen). All individuals in receipt of GnRHa blocker ± gender-affirming hormones are encouraged to take calcium and vitamin D supplementation. 78/80 participants were deemed to have completed pubertal development as their birth-registered sex (Tanner stage 4-5; based on both self-reported and clinician-confirmed Tanner stage questionnaires) prior to the commencement of any

treatment, and 2/80 (both trans-females) were assessed as late Tanner stage 3.

Informed consent was taken from all volunteers aged 16 years or over. For those aged 6–15, or any person deemed not to have capacity; parental/guardian consent was taken (alongside assent from the volunteer themselves, where possible). This study received ethical approval from Health Research Authority, ethical approval reference: REC11/LO/0330 (London-Harrow Research Ethics Committee); samples and data were shared in accordance with the guidelines set by the Center for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, and GOSH. Basic health, demographic, and puberty Tanner staging questionnaires were completed by/for all participants, and anonymized data were stored in compliance with data protection laws.

Venous whole blood was collected in heparin-coated vacutainers. In those under 18 years, this was 2 ml of blood per kg of weight, not exceeding a total of 20 ml per sample. In those aged 18+, 20-60 ml was taken.

PBMC isolation and serum processing

Within 2 h of sample collection, blood was diluted 1:1 with Roswell Park Memorial Institute medium (RPMI)-1640 containing L-glutamine and sodium bicarbonate (Sigma-Aldrich) supplemented with 100 IU/ μ g/ml penicillin/streptomycin (Sigma-Aldrich) and 10% heat-inactivated FBS (Gibco). SepMate tubes (Stemcell) were layered with Ficoll-Paque Plus (GE Healthcare), followed by the diluted sample, and then centrifuged at 1,200 g for 10 min. After further centrifugation of the top layer, pelleted isolated PBMCs were resuspended and counted using a hemocytometer before being frozen in freezing media consisting of FBS with 10% DMSO (Sigma-Aldrich). Nalgene "Mr Frosty" containers were used for controlled freezing at -80° C, and samples were then transferred to liquid nitrogen storage.

Human subjects—Whole blood cohort

Ethics were approved by the Queen Mary Ethics of Research Committee reference number QMERC23.059. Individuals 18 years or older were recruited into the study, and full written informed consent was obtained from each donor, and up to 40 ml of peripheral blood was taken from each donor and processed as described below. Individuals were excluded from the study if they had a recent history (\leq 5 years) of neoplasia, immunosuppressive disorders that required immunosuppressive medication, were anemic, or had a current pregnancy.

Flow cytometry—PBMC cohort

PBMC samples were thawed and washed once in warm RPMI-1640 media with 10% FBS ("cRPMI"; complete RPMI). Cells were counted with a hemocytometer. Thawed cells were plated at either 250,000, 500,000, or 1 million cells per well (depending on the panel) in a 96-well plate and centrifuged at 500 g for 5 min to pellet. Following resuspension in PBS, they were stained with fixable blue dead cell stain (1:500) (L23105; Thermo Fisher Scientific) for 15 min at room temperature in foil. After washing, cells receiving the immunoglobulin panel stain (CD19-BV510 [HIB19], CD27-BV711 [O323], IgD-BV421 [IA6-2], IgM-FITC [MHM-88], IgA-APC [IS11 8E10], IgE-PE [IGE21], and IgG-BUV737

[G18-145]) were first resuspended in FACS buffer (1× Dulbecco's PBS [DPBS] without calcium or magnesium [SH30028.02; GE Healthcare Hyclone] + 5 ml FBS + 2 mM EDTA) with Human TruStain FcX Fc Receptor Blocking Solution (1:20; BioLegend) for 15 min at room temperature in foil. Without washing, cells were spun down to pellet. For the surface staining, cells were incubated in foil for 30 min at room temperature with the relevant antibody panel (Panel 1—B cells and monocytes: BADCA2-PE [201A], CD56-FITC [5.1H11], CD16-APC [3G8], CD123-PE/Cy7 [6H6], HLA-DR-PERCPCy5.5 [L243], CD24-APC/Cy7 [ML5], CD14-AF700 [63D3], IgD-BV421 [IA6-2], CD19-BV510 [HIB19], CD38-BV605 [HIT2], CD11c-BV785 [3.9], CD27-BV711 [0323], CD3-FITC [HIT3a], and CD66b-FITC [G10F5]; panel 2—T cells and natural killer cells: CCR7-PE [G043H7], TCRγδ-FITC [11F2], CD25-APC [BC96], CD56-PE/Cy7 [MEM-188], CD45RO-PERCPCy5.5 [UCHL1], CD4-APC/Cy7 [OKT4], CD8-AF700 [SK1], CXCR3-BV421 [G025H7], CCR6-BV510 [G034E3], CD3-BV605 [OKT3], CXCR5-BV785 [J252D4], CD127-BV711 [A019D5], and CD45RA-PEDAZZLE [HI100]), diluted in FACS buffer. After washing, surface stain-only panels were fixed with 2% paraformaldehyde fixative for 15 min in foil at room temperature before washing and resuspension in FACS buffer and storage at 4°C. Panels requiring intracellular staining were fixed using the eBioscience Foxp3 staining kit (00-5523-00) Fix/Perm for 15 min in the dark, before washing and staining with the relevant intracellular antibody mix(es) for 40 min in the dark, followed by washing with perm buffer and resuspension in FACS buffer for 4°C storage.

All samples were run the following day on a BD LSRII flow cytometer, with as many cellular events as possible recorded per sample. Data were analyzed using Flowjo v10, with a minimum of 100 events in the parent gate of any population used in analysis. Gating strategies were determined using Fluorescence Minus Ones.

Flow cytometry—Whole blood cohort

Whole blood was stained with the following cell surface antibodies: CD16-BV785 (3G8) and IgD-Pacific Blue (IA6-2) from BioLegend and CD27-BUV395 (L128), CD19-BUV496 (SJ25C1), and CD3-BUV805 (UCHT1) from BD Biosciences and Live/Dead Blue from Thermo Fisher Scientific. Cells were incubated with antibodies for 45 min at 4°C. After incubation red blood cells were removed using FACs Lysis Buffer (BD Biosciences). Samples were subsequently washed twice in PBS and then assessed by flow cytometric analysis on a Cytek Aurora. Data were analyzed using FlowJo Version X (BD Biosciences).

FACS

Samples were thawed and counted as above, before staining with Zombie NIR Fixable dye (BioLegend) in cold DPBS on ice for 20 min. After washing, samples were stained with the following antibody panel: CD4-BUV395 (SK3), CD8-BV785 (RPA-T8), CD19-AF488 (HIB19), and CD14-PE/Cy7 (M5E2), in cold FACS buffer, on ice for 20 min. They were then washed and filtered into filter-capped FACS tubes in cold FACS buffer and sorted into cold DPBS using a BD FACSAria flow cytometry cell sorter.

RNA extraction

RNA was extracted and isolated from sorted CD4/CD8/CD14/CD19+ cells and from MCF7 cells as a control, known to be positive for hormone receptors (Horwitz et al., 1975). The PicoPure RNA Isolation Kit (Thermo Fisher Scientific) was used, following the manufacturer's guidelines. The RNA columns were additionally incubated with RNase-free DNase (Qiagen) at room temperature for 15 min during this process. Eluted RNA was quantified using a NanoDrop spectrophotometer.

RT-PCR for cDNA synthesis

cDNA was synthesized from RNA following the manufacturer's instructions of the qScript cDNA SuperMix (Quantabio). The GeneAmp PCR System 9700 Thermocycler was used with the following settings: 5 min at 25°C, 30 min at 42°C, 5 min at 85°C, and hold at 4°C.

Quantitative PCR (qPCR)

Applied Biosystems TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific) was added to cDNA for fluorescence quantification on an AriaMx Real-time qPCR System (Agilent Technologies) using the following thermal profile: UDG (DNA) 2 min 50°C, polymerase activation hold 95°C 2 min, denature 95°C 1 s, anneal/extend 60°C 20 s.

TaqMan probes for AR (Hs00171172_m1, 4331182), ER α ("ESRI"—Hs00174860_ml, 4331182), ER β ("ESR2"—Hs00230957_ml, 4331182), AICDA ("AICDA"—Hs00757808_ml, 4331182), and house-keeping gene RPLPO (60S acidic ribosomal protein PO) (4333761T) were purchased from Thermo Fisher Scientific and used at the manufacturer's recommended concentrations for each reaction. Agilent Aria 1.7 software was used to prepare the data, and Microsoft Excel 2008 was used for analysis. Data were normalized to the reference gene RPLPO. The delta-Ct (Livak and Schmittgen, 2001) method of quantification was used to ascertain relative gene expression of the target genes.

RNAseq

RNAseq was performed by UCL Genomics. Briefly, libraries were prepped with either the KAPA mRNA HyperPrep Kit or the TruSeq Stranded mRNA Library prep. Paired-reads mapping was performed using STAR aligner (Dobin et al., 2013) (Ref genome: GRCh38), and aligned reads were summarized with featureCounts. Quality control was conducted on the bulk RNAseq reads count table obtained from featureCounts to ensure data quality. Samples with <5 million reads were excluded, as these were deemed insufficient for reliable analysis.

Principal component (PC) analysis was subsequently employed to identify outliers within each cell population. It was assumed that samples from the same cell population would cluster together. PC analysis was performed on the filtered count table, and the first two PCs (PC1 and PC2) were plotted to visualize sample clustering. For each cell population, the center and SDs of the clusters were calculated. Samples deviating >4 SDs from the cluster center were identified as outliers and removed. This process ensured that only high-quality, reliable samples were retained for downstream analysis. Detailed RNA-seq data analysis workflow describing quality control, alignment,

and generation of raw transcript counts can be found in the following GitHub repository: https://github.com/WedderburnLab/RNAseq-Pipeline. Read counts were kit corrected with CombatSeq (Zhang et al., 2020) prior to differential gene expression analysis.

Statistical analysis and visualization of transcriptional data were performed using R software and Bioconductor packages (Gentleman et al., 2004), including DESeq2 (Anders and Huber, 2010; Love et al., 2014) and EnhancedVolcano (Blighe et al., 2022).

Genes for which ≥50% of the control group had counts of 10 or less were excluded from the analysis. DESeq2 in R was used to carry out DEG analysis between two selected groups to calculate the fold changes and the adjusted P value (Padj) for significance of differences (adjusted for multiple testing using Benjamini–Hochberg's false discovery rate method). Both age of donor and batch that the sample was sent in were controlled for within the analysis model. A Padj cut-off of <0.05 was applied using Microsoft Excel to generate DEG lists for each comparison. Those with a positive fold change were considered to be upregulated, and those with a negative fold change to be downregulated. Detailed RNAseq data analysis workflow describing quality control, alignment, and generation of raw transcript counts can be found in the following GitHub repository: https://github.com/WedderburnLab/RNAseq-Pipeline.

Pathway enrichment analysis was conducted with separate lists of up- and downregulated genes for each comparison, using Metascape (Zhou et al., 2019) to reveal significantly up/ downregulated "GO: BP" pathways (Aleksander et al., 2023; Ashburner et al., 2000) within each comparison. Pathways were ranked by P value into bar charts, shown alongside the "enrichment score" (the ratio of the proportion of genes in the list that were associated with the enriched term to the proportion of genes in the genome that are associated with the enriched term). For reduction of redundancy, the program clusters similar enrichment terms, with the most significant term of each cluster represented on the bar chart. DEG lists were further summarized in heatmaps (created with Clustvis [Metsalu and Vilo, 2015], using Euclidean distance and the average method for clustering of rows) for each comparison, demonstrating the clustering of each group by expression of the listed genes. Targeted gene analysis using the gene set detailed in Table S2 was carried out using count data (transcripts per million) for each sample, and analyzed using GraphPad Prism. Briefly, the lists of genes from the "GO Biological Pathways" ontology pathway "GO:0045190- Isotype Switching," alongside the lists from "GO: 0045191- regulation of isotype switching" and "GO:0048291- regulation of isotype switching to IgG" pathways were cross-examined, and duplicates were removed. Also removed were any genes deemed not to be expressed on human B cells, according to The Human Protein Atlas (Uhlen et al., 2019), and the accompanying supporting literature from the GO website (Aleksander et al., 2023; Ashburner et al., 2000). Genes HOXC4 and BACH2 were included, given their prominence in the literature on sex differences in CSR to date. To assess enrichment of TF-binding sites in these genes, genes were inputted into the ChEA3 online tool (Keenan et al., 2019).

Statistical analysis

Statistical analysis was carried out using GraphPad Prism 10. Unpaired *t* tests, Mann–Whitney U tests, one-way ANOVA with

Tukey's test, or Kruskal-Wallis tests with Dunn's test (dependent upon normality of each dataset and number of groups being compared) were used to determine differences between groups. P values adjusted for multiple testing (in Fig. 1) were calculated by dividing 0.05 by the number of tests performed.

Figures

Figures and graphical abstract were created using Adobe Illustrator 2025. The graphical abstract used human figure outlines from Servier Medical Art (https://smart.servier.com), licensed under CC 4.0 https://creativecommons.org/licenses/by/4.0/, which were modified as required.

Online supplemental material

Fig. S1 shows the comparative levels of IgA+ and IgE+ B cells between postpubertal cis-females versus cis-males, as well as comparison of levels of IgG+ B cells between prepubertal cisfemales versus cis-males and between prepubertal cis-females and cis-males with their postpubertal gender counterparts. It also includes correlation analysis of age versus proportion of class-switched B cells in cis-females and cis-males. Fig. S2 delineates the treatment pathway for transgender young people in the UK at the time of recruitment to research (2016-2020). It also compares levels of IgG+ B cells between cis-females versus trans-males on puberty blocker ± gender-affirming testosterone treatment and between cis-males versus trans-females on puberty blocker ± gender-affirming estradiol treatment. Table S1 provides a list of all DEGs (up- or downregulated) between B cells from postpubertal cis-females versus cis-males. Table S2 describes the set of genes associated with CSR that were used in Fig. 3, L-O, with P values for the comparison of their gene counts in B cells from postpubertal cis-females versus cis-males.

Data availability

RNAseq data can be found at ArrayExpress repository (accession number: E-MTAB-14599). These data will be available from date of manuscript publication.

Acknowledgments

We thank all the participants and families who allowed us to use their data and donated samples, without whom this study would not have been possible, as well as the Center for Adolescent Rheumatology Versus Arthritis at UCL, ULCH, and GOSH for providing access to their Biobank samples and data. Many thanks to Mr. Jamie Evans of the UCL Flow Cytometry Core Facility in the Division of Medicine and to Dr. Diana Matei and Ms. Persephone Jenkins (UCL Division of Medicine) for proofreading. We thank members of the Rheum Shared Seg study group, including Beth Jebson, Kathryn O'Brien, Elizabeth Ralph, Vicky Alexiou, Lucy Marshall, Emma Welsh, and Meredyth G. Ll Wilkinson, who contributed to sample processing, metadata, data generation and curation, as well as analysis pipelines and data normalization. We thank the UCL Genomics Facility for sequencing, specifically Paola Niola and Tony Brooks, and UCL Flow Cytometry Facility for cell sorting, specifically Ayad Eddaoudi, Machaela Palor, and Panagiota Constandinou. We also

thank Dr. Wei-Yu Lin, Dr. Chris Wallace, Dr. George Hall, and Prof. Sergi Castellano for their support in establishing the RNAseq pipeline in UCL. We extend our thanks to the research study coordinators, hospital staff, and extended research staff for their invaluable support in recruiting participants and working with families.

This work was funded by a Versus Arthritis PhD studentship to C. Ciurtin (22203) for H. Peckham. It was further supported by and hosted by the Center for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, and GOSH, which is supported by Center of Excellence grants from Versus Arthritis (21593 and 20164) and Great Ormond Street Hospital Children's Charity awarded to L.R. Wedderburn. C. Ciurtin is supported by a grant from UCLH Biomedical Research Center (BRC4/III/CC). E.C. Rosser and N.M. de Gruijter were supported by a Medical Research Foundation "Lupus" Fellowship awarded to E.C. Rosser (MRF-057-0001-RG-ROSS-C0797). E.C. Rosser is also supported by a Senior Fellowship from the Kennedy Trust for Rheumatology Research (KENN 21 22 09) and a research prize from the Lister Institute for Preventive Medicine. E.S. Chambers and J. Sikora were supported by Barts Charity (G-002847). L.R. Wedderburn and M. Kartawinata are supported by grants to the CLUSTER consortium, from the Medical Research Council (MR/R013926/1), Versus Arthritis (Grant: 22084), Great Ormond Street Hospital Children's Charity (VS0518), and Olivia's Vision. L.R. Wedderburn and C.T. Deakin are also supported by the National Institute for Health and Care Research (NIHR) Great Ormond Street Hospital Biomedical Research Center. The views expressed are those of the author(s) and not necessarily those of the National Health Service, the NIHR, or the Department of Health. Open Access funding provided by University College London.

Author contributions: H. Peckham: conceptualization, data curation, formal analysis, investigation, methodology, project administration, validation, visualization, and writing—original draft, review, and editing. A. Radziszewska: data curation, investigation, software, and writing-review and editing. J. Sikora: resources and validation. N.M. de Gruijter: investigation and writing-review and editing. R. Restuadi: data curation, methodology, and writing-review and editing. M. Kartawinata: investigation and writing—review and editing. L. Martin-Gutierrez: investigation. G.A. Robinson: investigation, methodology, and writing—review and editing. C.T. Deakin: funding acquisition, software, and writing—review and editing. L.R. Wedderburn: funding acquisition, resources, and writing-review and editing. E.C. Jury: conceptualization, funding acquisition, supervision, and writing-review and editing. G. Butler: conceptualization, funding acquisition, investigation, supervision, validation, and writingreview and editing. E.S. Chambers: formal analysis, funding acquisition, investigation, supervision, visualization, and writing—review and editing. E.C. Rosser: conceptualization, funding acquisition, investigation, project administration, supervision, visualization, and writing—original draft, review, and editing. C. Ciurtin: conceptualization, funding acquisition, methodology, project administration, resources, supervision, and writing—review and editing.

Disclosures: L.R. Wedderburn reported grants from Versus Arthritis, National Institute of Health and Care Research, Great

Ormond Street Children's Charity, and Medical Research Council during the conduct of the study; and grants from Myositis UK, the Kennedy Research Trust, Fight for Sight, AbbVie, Sobi, Pfizer Inc, and Eli Lilly outside the submitted work. E.C. Rosser reported grants from Medical Research Foundation during the conduct of the study; and grants from Lister Institute for Preventive Medicine and the Kennedy Trust for Rheumatology Research outside the submitted work. No other disclosures were reported.

Submitted: 22 July 2024 Revised: 4 December 2024 Accepted: 17 January 2025

References

- Aldinucci, D., C. Borghese, and N. Casagrande. 2020. The ccl5/ccr5 axis in cancer progression. *Cancers* (Basel). 12:1765. https://doi.org/10.3390/cancers/207/765
- Aleksander, S.A., J. Balhoff, S. Carbon, J.M. Cherry, H.J. Drabkin, D. Ebert, M. Feuermann, P. Gaudet, N.L. Harris, D.P. Hill, et al. 2023. The gene ontology knowledgebase in 2023. *Genetics*. 224:iyad031. https://doi.org/10.1093/genetics/iyad031
- Alinikula, J., K.-P. Nera, S. Junttila, and O. Lassila. 2011. Alternate pathways for Bcl6-mediated regulation of B cell to plasma cell differentiation. *Eur. J. Immunol.* 41:2404–2413. https://doi.org/10.1002/eji.201141553
- Altmann, T., and A.R. Gennery. 2016. DNA ligase IV syndrome; a review. Orphanet J. Rare Dis. 11:137. https://doi.org/10.1186/s13023-016-0520-1
- Anders, S., and W. Huber. 2010. Differential expression analysis for sequence count data. *Genome Biol.* 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106
- Ashburner, M., C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, et al. 2000. Gene ontology: Tool for the unification of biology. Nat. Genet. 25:25–29. https://doi.org/10.1038/75556
- Audzevich, T., G. Pearce, M. Breucha, G. Günal, and R. Jessberger. 2013. Control of the STAT6-BCL6 antagonism by SWAP-70 determines IgE production. J. Immunol. 190:4946-4955. https://doi.org/10.4049/jimmunol 1203014
- Bardwell, P.D., C.J. Woo, K. Wei, Z. Li, A. Martin, S.Z. Sack, T. Parris, W. Edelmann, and M.D. Scharff. 2004. Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice. Nat. Immunol. 5:224–229. https://doi.org/10.1038/ni1031
- Basu, U., F.-L. Meng, C. Keim, V. Grinstein, E. Pefanis, J. Eccleston, T. Zhang, D. Myers, C.R. Wasserman, D.R. Wesemann, et al. 2011. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 144:353–363. https://doi.org/10.1016/j.cell.2011.01.001
- Bertrand, A., J. Sugrue, T. Lou, N.M. Bourke, L. Quintana-Murci, V. Saint-André, C. O'Farrelly, D. Duffy, and Milieu Intérieur Consortium. 2024. Impact of socioeconomic status on healthy immune responses in humans. *Immunol. Cell Biol.* 102:618–629. https://doi.org/10.1111/imcb.12789
- Beydon, M., S. McCoy, Y. Nguyen, T. Sumida, X. Mariette, and R. Seror. 2024. Epidemiology of Sjögren syndrome. Nat. Rev. Rheumatol. 20:158–169. https://doi.org/10.1038/s41584-023-01057-6
- Bianchi, I., A. Lleo, M.E. Gershwin, and P. Invernizzi. 2012. The X chromosome and immune associated genes. J. Autoimmun. 38:J187–J192. https://doi.org/10.1016/j.jaut.2011.11.012
- Bijl, M., H.M. Dijstelbloem, W.W. Oost, H. Bootsma, R.H. Derksen, J. Aten, P.C. Limburg, and C.G. Kallenberg. 2002. IgG subclass distribution of autoantibodies differs between renal and extra-renal relapses in patients with systemic lupus erythematosus. Rheumatology (Oxford). 41: 62–67. https://doi.org/10.1093/rheumatology/41.1.62
- Bischof, E., S. Oertelt-Prigione, R. Morgan, S.L. Klein, The Sex And Gender In Covid Clinical Trials Working Group Sgc, and Gender And Covid Working Group. 2020. Towards precision medicine: Inclusion of sex and gender aspects in COVID-19 clinical studies-acting now before it is too late-A joint call for action. Int. J. Environ. Res. Public Health. 17:3715. https://doi.org/10.3390/ijerph17103715

- Biswas, M., S. Rahaman, T.K. Biswas, Z. Haque, and B. Ibrahim. 2020. Association of sex, age, and comorbidities with mortality in COVID-19 patients: A systematic review and meta-analysis. *Intervirology*. 64:1–12. https://doi.org/10.1159/000512592
- Blighe, K., S. Rana, and M. Lewis. 2022. Publication-ready volcano plots with enhanced colouring and labeling. Bioconductor. https://bioconductor.org/packages/devel/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html (accessed January 15, 2023)
- Borggrefe, T., S. Keshavarzi, B. Gross, M. Wabl, and R. Jessberger. 2001. Impaired IgE response in SWAP-70-deficient mice. *Eur. J. Immunol.* 31: 2467–2475. https://doi.org/10.1002/1521-4141(200108)31:8<2467::aid-immu2467>3.0.co;2-p
- Brinks, R., A. Hoyer, S. Weber, R. Fischer-Betz, O. Sander, J.G. Richter, G. Chehab, and M. Schneider. 2016. Age-specific and sex-specific incidence of systemic lupus erythematosus: An estimate from cross-sectional claims data of 2.3 million people in the German statutory health insurance 2002. Lupus Sci. Med. 3:e000181. https://doi.org/10.1136/lupus-2016-000181
- Brown, G.J., P.F. Cañete, H. Wang, A. Medhavy, J. Bones, J.A. Roco, Y. He, Y. Qin, J. Cappello, J.I. Ellyard, et al. 2022. TLR7 gain-of-function genetic variation causes human lupus. *Nature*. 605:349–356. https://doi.org/10.1038/s41586-022-04642-z
- Bynoe, M.S., C.M. Grimaldi, and B. Diamond. 2000. Estrogen up-regulates Bcl-2 and blocks tolerance induction of naive B cells. *Proc. Natl. Acad. Sci. USA*. 97:2703–2708. https://doi.org/10.1073/pnas.040577497
- Cattalini, M., M. Soliani, M.C. Caparello, and R. Cimaz. 2019. Sex differences in pediatric Rheumatology. Clin. Rev. Allergy Immunol. 56:293–307. https://doi.org/10.1007/s12016-017-8642-3
- Ciaffi, J., M.F. Morabito, P. Ruscitti, S. D'Angelo, L. Mancarella, V. Brusi, G. Abignano, V. Pucino, R. Giacomelli, R. Meliconi, and F. Ursini. 2021. Incidence, prevalence and mortality of systemic sclerosis in Italy: A nationwide population-based study using administrative health data. Rheumatol. Int. 41:129–137. https://doi.org/10.1007/s00296-020-04720-3
- Conrad, N., S. Misra, J.Y. Verbakel, G. Verbeke, G. Molenberghs, P.N. Taylor, J. Mason, N. Sattar, J.J.V. McMurray, I.B. McInnes, et al. 2023. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet. 401:1878–1890. https://doi.org/10.1016/S0140-6736(23)00457-9
- Costeira, R., K.A. Lee, B. Murray, C. Christiansen, J. Castillo-Fernandez, M. Ni Lochlainn, J. Capdevila Pujol, H. Macfarlane, L.C. Kenny, I. Buchan, et al. 2021. Estrogen and COVID-19 symptoms: Associations in women from the COVID symptom study. PLoS One. 16:e0257051. https://doi .org/10.1371/journal.pone.0257051
- Dambha-Miller, H., W. Hinton, C.R. Wilcox, M. Joy, M. Feher, and S. de Lusignan. 2022. Mortality in COVID-19 among women on hormone replacement therapy: A retrospective cohort study. Fam. Pract. 39:1049–1055. https://doi.org/10.1093/fampra/cmac041
- Desai, M.K., and R.D. Brinton. 2019. Autoimmune disease in women: Endocrine transition and risk across the lifespan. Front. Endocrinol. (Lausanne). 10:265. https://doi.org/10.3389/fendo.2019.00265
- Dillon, S., R. Aggarwal, J.W. Harding, L.J. Li, M.H. Weissman, S. Li, J.W. Cavett, S.T. Sevier, J.W. Ojwang, A. D'Souza, et al. 2011. Klinefelter's syndrome (47,XXY) among men with systemic lupus erythematosus. Acta Paediatr. 100:819–823. https://doi.org/10.1111/j.1651-2227.2011.02185.x
- Dobin, A., C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, and T.R. Gingeras. 2013. STAR: Ultrafast universal RNAseq aligner. Bioinformatics. 29:15–21. https://doi.org/10.1093/bioinformatics/ bts635
- Dou, D.R., Y. Zhao, J.A. Belk, Y. Zhao, K.M. Casey, D.C. Chen, R. Li, B. Yu, S. Srinivasan, B.T. Abe, et al. 2024. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell. 187:733-749.e16. https://doi.org/10.1016/j.cell.2023.12.037
- Fink, A.L., K. Engle, R.L. Ursin, W.Y. Tang, and S.L. Klein. 2018. Biological sex affects vaccine efficacy and protection against influenza in mice. *Proc. Natl. Acad. Sci. USA*. 115:12477–12482. https://doi.org/10.1073/pnas.1805268115
- Eccleston, J., C. Yan, K. Yuan, F.W. Alt, and E. Selsing. 2011. Mismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack nonhomologous end joining. J. Immunol. 186:2336–2343. https://doi.org/10.4049/jimmunol.1003104
- Ehrenstein, M.R., and M.S. Neuberger. 1999. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. *EMBO J.* 18:3484–3490. https://doi.org/10.1093/emboj/18.12.3484

- Fink, A.L., and S.L. Klein. 2018. The evolution of greater humoral immunity in females than males: Implications for vaccine efficacy. *Curr. Opin. Physiol.* 6:16–20. https://doi.org/10.1016/j.cophys.2018.03.010
- Flanagan, K.L., A.L. Fink, M. Plebanski, and S.L. Klein. 2017. Sex and gender differences in the outcomes of vaccination over the life course. *Annu. Rev. Cell Dev. Biol.* 33:577–599. https://doi.org/10.1146/annurev-cellbio-100616-060718
- Furman, D., B.P. Hejblum, N. Simon, V. Jojic, C.L. Dekker, R. Thiébaut, R.J. Tibshirani, and M.M. Davis. 2014. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. *Proc. Natl. Acad. Sci. USA*. 111:869–874. https://doi.org/10.1073/pnas.1321060111
- Gauthier, M., S.L. Kale, T.B. Oriss, M. Gorry, R.P. Ramonell, K. Dalton, P. Ray, J.V. Fahy, M.A. Seibold, M. Castro, et al. 2023. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma. J. Allergy Clin. Immunol. 152:94–106.e12. https://doi.org/10.1016/j.jaci.2023.02.028
- Gegenhuber, B., M.V. Wu, R. Bronstein, and J. Tollkuhn. 2022. Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature. 606:153-159. https://doi.org/10.1038/s41586-022-04686-1
- Gentleman, R.C., V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al. 2004. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80
- Ghosh, D., and S.C. Raghavan. 2021. Nonhomologous end joining: New accessory factors fine tune the machinery. Trends Genet. 37:582–599. https://doi.org/10.1016/j.tig.2021.03.001
- Griffith, R. 2016. What is Gillick competence? Hum. Vaccin. Immunother. 12: 244–247. https://doi.org/10.1080/21645515.2015.1091548
- Grimaldi, C.M., J. Cleary, A.S. Dagtas, D. Moussai, and B. Diamond. 2002. Estrogen alters thresholds for B cell apoptosis and activation. J. Clin. Invest. 109:1625–1633. https://doi.org/10.1172/JCI0214873
- Grünhagel, B., M. Borggrewe, S.H. Hagen, S.M. Ziegler, F. Henseling, L. Glau, R.J. Thiele, M. Pujantell, V. Sivayoganathan, B. Padoan, et al. 2023. Reduction of IFN-I responses by plasmacytoid dendritic cells in a longitudinal trans men cohort. iScience. 26:108209. https://doi.org/10.1016/ j.isci.2023.108209
- Gubbels Bupp, M.R. 2015. Sex, the aging immune system, and chronic disease. Cell. Immunol. 294:102–110. https://doi.org/10.1016/j.cellimm.2015
- Guldenpfennig, C., E. Teixeiro, and M. Daniels. 2023. NF-kB's contribution to B cell fate decisions. Front. Immunol. 14:1214095. https://doi.org/10.3389/fimmu.2023.1214095
- Gupta, M., G. Srikrishna, S.L. Klein, and W.R. Bishai. 2022. Genetic and hormonal mechanisms underlying sex-specific immune responses in tuberculosis. *Trends Immunol.* 43:640-656. https://doi.org/10.1016/j.it .2022.06.004
- Haase, P., L. Mokada-Gopal, D. Radtke, and D. Voehringer. 2020. Modulation of the humoral immune response by constitutively active STAT6 expression in murine B cells. Eur. J. Immunol. 50:558–567. https://doi.org/ 10.1002/eji.201948313
- Hagen, S.H., F. Henseling, J. Hennesen, H. Savel, S. Delahaye, L. Richert, S.M. Ziegler, and M. Altfeld. 2020. Heterogeneous escape from X chromosome inactivation results in sex differences in type I IFN responses at the single human pDC level. Cell Rep. 33:108485. https://doi.org/10.1016/j.celrep.2020.108485
- Han, Y.Y., E. Forno, and J.C. Celedón. 2020. Sex steroid hormones and asthma in a nationwide study of U.S. adults. Am. J. Respir. Crit. Care Med. 201: 158–166. https://doi.org/10.1164/rccm.201905-0996OC
- Harris, M.B., C.C. Chang, M.T. Berton, N.N. Danial, J. Zhang, D. Kuehner, B.H. Ye, M. Kvatyuk, P.P. Pandolfi, G. Cattoretti, et al. 1999. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: Specific regulation of iepsilon transcription and immunoglobulin E switching. Mol. Cell. Biol. 19:7264–7275. https://doi.org/10.1128/MCB.19.10.7264
- Harris, V.M., R. Sharma, J. Cavett, B.T. Kurien, K. Liu, K.A. Koelsch, A. Rasmussen, L. Radfar, D. Lewis, D.U. Stone, et al. 2016. Klinefelter's syndrome (47,XXY) is in excess among men with Sjögren's syndrome. Clin. Immunol. 168:25–29. https://doi.org/10.1016/j.clim.2016.04.002
- Hayakawa, A., T. Kurokawa, Y. Kanemoto, T. Sawada, J. Mori, and S. Kato. 2022. Skeletal and gene-regulatory functions of nuclear sex steroid hormone receptors. J. Bone Miner. Metab. 40:361–374. https://doi.org/10 .1007/s00774-021-01306-2
- Hembree, W.C., P.T. Cohen-Kettenis, L. Gooren, S.E. Hannema, W.J. Meyer, M.H. Murad, S.M. Rosenthal, J.D. Safer, V. Tangpricha, and G.G. T'Sjoen. 2017. Endocrine treatment of gender-dysphoric/gender-incongruent

- persons: An endocrine society clinical practice guideline. *J. Clin. Endocrinol. Metab.* 102:3869–3903. https://doi.org/10.1210/jc.2017-01658
- Hoffmann, J.P., J.A. Liu, K. Seddu, and S.L. Klein. 2023. Sex hormone signaling and regulation of immune function. *Immunity*. 56:2472-2491. https://doi.org/10.1016/j.immuni.2023.10.008
- Horwitz, K.B., M.E. Costlow, and W.L. McGuire. 1975. MCF-7; a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors. *Steroids*. 26:785–795. https://doi.org/10.1016/0039-128x(75) 90110-5
- Hughes, G.C., and D. Choubey. 2014. Modulation of autoimmune rheumatic diseases by oestrogen and progesterone. Nat. Rev. Rheumatol. 10: 740-751. https://doi.org/10.1038/nrrheum.2014.144
- Hughes, M., J.D. Pauling, L. Armstrong-James, C.P. Denton, P. Galdas, and C. Flurey. 2020. Gender-related differences in systemic sclerosis. Autoimmun. Rev. 19:102494. https://doi.org/10.1016/j.autrev.2020.102494
- Huret, C., L. Ferrayé, A. David, M. Mohamed, N. Valentin, F. Charlotte, M. Savignac, M. Goodhardt, J.-C. Guéry, C. Rougeulle, and C. Morey. 2024. Altered X-chromosome inactivation predisposes to autoimmunity. Sci. Adv. 10:eadn6537. https://doi.org/10.1126/sciadv.adn6537
- Inohara, N., L. Ding, S. Chen, and G. Núñez. 1997. Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J. 16:1686-1694. https://doi.org/10.1093/emboj/16.7.1686
- Ise, W., M. Kohyama, B.U. Schraml, T. Zhang, B. Schwer, U. Basu, F.W. Alt, J. Tang, E.M. Oltz, T.L. Murphy, et al. 2011. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. *Nat. Immunol.* 12:536–543. https://doi.org/10.1038/ni.2037
- Izmirly, P.M., I. Wan, S. Sahl, J.P. Buyon, H.M. Belmont, J.E. Salmon, A. Askanase, J.M. Bathon, L. Geraldino-Pardilla, Y. Ali, et al. 2017. The incidence and prevalence of systemic lupus erythematosus in New York county (Manhattan), New York: the manhattan lupus surveillance program. Arthritis Rheumatol. 69:2006–2017. https://doi.org/10.1002/art.40192
- Jang, E., U.K. Kim, K. Jang, Y.S. Song, J.-Y. Cha, H. Yi, and J. Youn. 2019. Bach2 deficiency leads autoreactive B cells to produce IgG autoantibodies and induce lupus through a T cell-dependent extrafollicular pathway. Exp. Mol. Med. 51:1-13. https://doi.org/10.1038/s12276-019-0352-x
- Jayakanthan, K., J. Ramya, S.K. Mandal, P. Sandhya, M. Gowri, and D. Danda. 2016. Younger patients with primary Sjögren's syndrome are more likely to have salivary IgG anti-muscarinic acetylcholine receptor type 3 antibodies. Clin. Rheumatol. 35:657-662. https://doi.org/10.1007/s10067 -016-3186-0
- Jiang, X., L. Lan, Q. Zhou, H. Wang, H. Wang, J. Chen, and F. Han. 2022. Characteristics and renal survival of patients with lupus nephritis with glomerular immunoglobulin G₄ deposition: A single-centre retrospective analysis. *Lupus Sci. Med.* 9:e000690. https://doi.org/10.1136/lupus -2022-000690
- Jones, B.G., R.R. Penkert, B. Xu, Y. Fan, G. Neale, P.J. Gearhart, and J.L. Hurwitz. 2016. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression. Mol. Immunol. 77:97-102. https://doi.org/10.1016/j.molimm.2016.07.015
- Jones, B.G., R.E. Sealy, R.R. Penkert, S.L. Surman, R.W. Maul, G. Neale, B. Xu, P.J. Gearhart, and J.L. Hurwitz. 2019. Complex sex-biased antibody responses: Estrogen receptors bind estrogen response elements centered within immunoglobulin heavy chain gene enhancers. *Int. Immunol.* 31: 141–156. https://doi.org/10.1093/intimm/dxy074
- Kaya-Aksoy, E., A. Cingoz, F. Senbabaoglu, F. Seker, I. Sur-Erdem, A. Kayabolen, T. Lokumcu, G.N. Sahin, S. Karahuseyinoglu, and T. Bagci-Onder. 2019. The pro-apoptotic Bcl-2 family member Harakiri (HRK) induces cell death in glioblastoma multiforme. *Cell Death Discov.* 5:64. https://doi.org/10.1038/s41420-019-0144-z
- Keenan, A.B., D. Torre, A. Lachmann, A.K. Leong, M.L. Wojciechowicz, V. Utti, K.M. Jagodnik, E. Kropiwnicki, Z. Wang, and A. Ma'ayan. 2019. ChEA3: Transcription factor enrichment analysis by orthogonal omics integration. *Nucleic Acids Res.* 47:W212–W224. https://doi.org/10.1093/nar/gkz446
- Kenderov, A., V. Minkova, D. Mihailova, N. Giltiay, S. Kyurkchiev, I. Kehayov, M. Kazatchkine, S. Kaveri, and A. Pashov. 2002. Lupus-specific kidney deposits of HSP90 are associated with altered IgG idiotypic interactions of anti-HSP90 autoantibodies. Clin. Exp. Immunol. 129: 169–176. https://doi.org/10.1046/j.1365-2249.2002.01887.x
- Kim, J.W., H.A. Kim, C.H. Suh, and J.Y. Jung. 2022. Sex hormones affect the pathogenesis and clinical characteristics of systemic lupus erythematosus.

- Front. Med. (Lausanne). 9:906475. https://doi.org/10.3389/fmed.2022 .906475
- Klein, S.L., S. Dhakal, R.L. Ursin, S. Deshpande, K. Sandberg, and F. Mauvais-Jarvis. 2020. Biological sex impacts COVID-19 outcomes. PLoS Pathog. 16:e1008570. https://doi.org/10.1371/journal.ppat.1008570
- Kracker, S., Y. Bergmann, I. Demuth, P.-O. Frappart, G. Hildebrand, R. Christine, Z.-Q. Wang, K. Sperling, M. Digweed, and A. Radbruch. 2005. Nibrin functions in Ig class-switch recombination. *Proc. Natl. Acad. Sci. USA*. 102:1584–1589. https://doi.org/10.1073/pnas.0409191102
- Kronzer, V.L., B.A. Kimbrough, C.S. Crowson, J.M. Davis III, M. Holmqvist, and F.C. Ernste. 2023. Incidence, prevalence, and mortality of dermatomyositis: A population-based cohort study. Arthritis Care Res. (Hoboken). 75:348-355. https://doi.org/10.1002/acr.24786
- Lakshmikanth, T., C. Consiglio, F. Sardh, R. Forlin, J. Wang, Z. Tan, H. Barcenilla, L. Rodriguez, J. Sugrue, P. Noori, et al. 2024. Immune system adaptation during gender-affirming testosterone treatment. *Nature*. 633:155–164. https://doi.org/10.1038/s41586-024-07789-z
- Li, L., M.-J. Halaby, A. Hakem, R. Cardoso, S. El Ghamrasni, S. Harding, N. Chan, R. Bristow, O. Sanchez, D. Durocher, et al. 2010. Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J. Exp. Med. 207:983–997. https://doi.org/10.1084/jem.20092437
- Lim, S.S., A.R. Bayakly, C.G. Helmick, C. Gordon, K.A. Easley, and C. Drenkard. 2014. The incidence and prevalence of systemic lupus erythematosus, 2002-2004: The Georgia Lupus Registry. Arthritis Rheumatol. 66:357-368. https://doi.org/10.1002/art.38239
- Lin, G.G., and J.M. Li. 2009. IgG subclass serum levels in systemic lupus erythematosus patients. Clin. Rheumatol. 28:1315–1318. https://doi.org/10 .1007/s10067-009-1224-x
- Lin, Y.-L., P.-P. Ip, and F. Liao. 2017. CCR6 deficiency impairs IgA production and dysregulates antimicrobial peptide production, altering the intestinal flora. Front. Immunol. 8:805. https://doi.org/10.3389/fimmu.2017.00805
- Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402-408. https://doi.org/10.1006/meth.2001.1262
- Loda, A., S. Collombet, and E. Heard. 2022. Gene regulation in time and space during X-chromosome inactivation. *Nat. Rev. Mol. Cell Biol.* 23:231–249. https://doi.org/10.1038/s41580-021-00438-7
- Love, M.I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550. https://doi.org/10.1186/s13059-014-0550-8
- Lucas-Herald, A.K., and R.M. Touyz. 2022. Androgens and androgen receptors as determinants of vascular sex differences across the lifespan. Can. J. Cardiol. 38:1854–1864. https://doi.org/10.1016/j.cjca.2022.09.018
- Madaio, M.P., J. Carlson, J. Cataldo, A. Ucci, P. Migliorini, and O. Pankewycz. 1987. Murine monoclonal anti-DNA antibodies bind directly to glomerular antigens and form immune deposits. J. Immunol. 138: 2883–2889. https://doi.org/10.4049/jimmunol.138.9.2883
- Mai, T., H. Zan, J. Zhang, J.S. Hawkins, Z. Xu, and P. Casali. 2010. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J. Biol. Chem. 285:37797–37810. https://doi.org/10.1074/jbc.M110.169086
- Massias, J.S., E.M.D. Smith, E. Al-Abadi, K. Armon, K. Bailey, C. Ciurtin, J. Davidson, J. Gardner-Medwin, K. Haslam, D.P. Hawley, et al. 2020. Clinical and laboratory characteristics in juvenile-onset systemic lupus erythematosus across age groups. *Lupus*. 29:474–481. https://doi.org/10.1177/0961203320909156
- McCleary, N., B.I. Nwaru, U.B. Nurmatov, H. Critchley, and A. Sheikh. 2018. Endogenous and exogenous sex steroid hormones in asthma and allergy in females: A systematic review and meta-analysis. J. Allergy Clin. Immunol. 141:1510–1513.e8. https://doi.org/10.1016/j.jaci.2017.11.034
- McMurray, R.W., and W. May. 2003. Sex hormones and systemic lupus erythematosus: Review and meta-analysis. *Arthritis Rheum.* 48:2100–2110. https://doi.org/10.1002/art.11105
- Metsalu, T., and J. Vilo. 2015. ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 43:W566-W570. https://doi.org/10.1093/nar/gkv468
- Milionis, C., I. Ilias, and E. Koukkou. 2022. Progesterone in gender-affirming therapy of trans women. World J. Biol. Chem. 13:66-71. https://doi.org/10 .4331/wjbc.v13.i3.66
- Morgan, R., and S.L. Klein. 2019. The intersection of sex and gender in the treatment of influenza. Curr. Opin. Virol. 35:35-41. https://doi.org/10 .1016/j.coviro.2019.02.009

- Muramatsu, M., K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. *Cell*. 102:553–563. https://doi.org/10.1016/S0092-8674(00)00078-7
- Nikolich-Žugich, J. 2017. The twilight of immunity: Emerging concepts in aging of the immune system. *Nat. Immunol.* 19:10–19. https://doi.org/10.1038/s41590-017-0006-x
- Nutt, S.L., P.D. Hodgkin, D.M. Tarlinton, and L.M. Corcoran. 2015. The generation of antibody-secreting plasma cells. *Nat. Rev. Immunol.* 15: 160–171. https://doi.org/10.1038/nri3795
- Oghumu, S., S. Varikuti, J.C. Stock, G. Volpedo, N. Saljoughian, C.A. Terrazas, and A.R. Satoskar. 2019. Cutting edge: CXCR3 escapes X chromosome inactivation in T cells during infection: Potential implications for sex differences in immune responses. *J. Immunol.* 203:789–794. https://doi.org/10.4049/jimmunol.1800931
- Olsen, N.J., and D.R. Karp. 2014. Autoantibodies and SLE: The threshold for disease. Nat. Rev. Rheumatol. 10:181–186. https://doi.org/10.1038/nrrheum .2013.184
- Osman, M. 2003. Therapeutic implications of sex differences in asthma and atopy. Arch. Dis. Child. 88:587–590. https://doi.org/10.1136/adc.88.7.587
- Pan, Q., H. Xiao, L. Shi, Y. He, J. Cai, J. Wu, A. Li, L. Ye, C. Yang, and H.F. Liu. 2020. IgG4 autoantibodies attenuate systemic lupus erythematosus progression by suppressing complement consumption and inflammatory cytokine production. Front. Immunol. 11:1047. https://doi.org/10 .3389/fimmu.2020.01047
- Pankewycz, O.G., P. Migliorini, and M.P. Madaio. 1987. Polyreactive autoantibodies are nephritogenic in murine lupus nephritis. J. Immunol. 139: 3287-3294. https://doi.org/10.4049/jimmunol.139.10.3287
- Pauklin, S., and S.K. Petersen-Mahrt. 2009. Progesterone inhibits activationinduced deaminase by binding to the promoter. *J. Immunol.* 183: 1238-1244. https://doi.org/10.4049/jimmunol.0803915
- Pauklin, S., I.V. Sernández, G. Bachmann, A.R. Ramiro, and S.K. Petersen-Mahrt. 2009. Estrogen directly activates AID transcription and function. J. Exp. Med. 206:99–111. https://doi.org/10.1084/jem.20080521
- Peckham, H., N.M. de Gruijter, C. Raine, A. Radziszewska, C. Ciurtin, L.R. Wedderburn, E.C. Rosser, K. Webb, and C.T. Deakin. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11:6317. https://doi.org/10.1038/s41467-020-19741-6
- Peckham, H., K. Webb, E.C. Rosser, G. Butler, and C. Ciurtin. 2022. Gender-diverse inclusion in immunological research: Benefits to science and health. Front. Med. (Lausanne). 9:909789. https://doi.org/10.3389/fmed.2022.909789
- Pefanis, E., J. Wang, G. Rothschild, J. Lim, J. Chao, R. Rabadan, A.N. Economides, and U. Basu. 2014. Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. *Nature*. 514:389–393. https://doi.org/10.1038/nature13580
- Pereira, M., and R.T. Gazzinelli. 2023. Regulation of innate immune signaling by IRAK proteins. Front. Immunol. 14:1133354. https://doi.org/10.3389/fimmu.2023.1133354
- Petri, M. 2008. Sex hormones and systemic lupus erythematosus. *Lupus*. 17: 412–415. https://doi.org/10.1177/0961203308090026
- Phiel, K.L., R.A. Henderson, S.J. Adelman, and M.M. Elloso. 2005. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. *Immunol. Lett.* 97:107–113. https://doi.org/10 .1016/j.imlet.2004.10.007
- Phillippi, K., M. Hoeltzel, A. Byun Robinson, S. Kim, L.S. Abramson, E.S. Anderson, M.L. Becker, H. Benham, T. Beukelman, P.R. Blier, et al. 2017. Race, income, and disease outcomes in juvenile dermatomyositis. J. Pediatr. 184:38–44.el. https://doi.org/10.1016/j.jpeds.2017.01.046
- Piątosa, B., M. van der Burg, K. Siewiera, M. Pac, J.J.M. van Dongen, A.W. Langerak, K.H. Chrzanowska, and E. Bernatowska. 2012. The defect in humoral immunity in patients with Nijmegen breakage syndrome is explained by defects in peripheral B lymphocyte maturation. Cytometry A. 81:835–842. https://doi.org/10.1002/cyto.a.22108
- Pucino, V., D.H. Gardner, and B.A. Fisher. 2020. Rationale for CD40 pathway blockade in autoimmune rheumatic disorders. *Lancet Rheumatol.* 2: e292–e301. https://doi.org/10.1016/S2665-9913(20)30038-2
- Qu, K., L.C. Zaba, P.G. Giresi, R. Li, M. Longmire, Y.H. Kim, W.J. Greenleaf, and H.Y. Chang. 2015. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 1:51–61. https://doi.org/10 .1016/j.cels.2015.06.003
- Rada, C., G.T. Williams, H. Nilsen, D.E. Barnes, T. Lindahl, and M.S. Neuberger. 2002. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12: 1748–1755. https://doi.org/10.1016/s0960-9822(02)01215-0

- Ramachandran, S., R. Chahwan, R.M. Nepal, D. Frieder, S. Panier, S. Roa, A. Zaheen, D. Durocher, M.D. Scharff, and A. Martin. 2010. The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Proc. Natl. Acad. Sci. USA. 107:809–814. https://doi.org/10.1073/pnas.0913790107
- Rovenský, J., S. Blažíčková, R. Imrich, I. Lazúrová, and J. Payer. 2014. Rheumatic diseases and klinefelter's syndrome. *Rheumatologia*. 28. https://doi.org/10.1111/j.1749-6632.2009.05292.x
- Ruggieri, A., M.C. Gagliardi, and S. Anticoli. 2018. Sex-dependent outcome of hepatitis B and C viruses infections: Synergy of sex hormones and immune responses? Front. Immunol. 9:2302. https://doi.org/10.3389/ fimmu.2018.02302
- Sadighi Akha, A.A. 2018. Aging and the immune system: An overview. J. Immunol. Methods. 463:21-26. https://doi.org/10.1016/j.jim.2018.08.005
- Santos, M.A., M.S.Y. Huen, M. Jankovic, H.-T. Chen, A.J. López-Contreras, I.A. Klein, N. Wong, J.L.R. Barbancho, O. Fernandez-Capetillo, M.C. Nussenzweig, et al. 2010. Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J. Exp. Med. 207:973-981. https://doi.org/10.1084/jem.20092308
- Scofield, R.H., G.R. Bruner, B. Namjou, R.P. Kimberly, R. Ramsey-Goldman, M. Petri, J.D. Reveille, G.S. Alarcón, L.M. Vilá, J. Reid, et al. 2008. Klinefelter's syndrome (47,XXY) in male systemic lupus erythematosus patients: Support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 58:2511-2517. https://doi.org/10.1002/art 23701
- Scully, E.P., J. Haverfield, R.L. Ursin, C. Tannenbaum, and S.L. Klein. 2020. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 20:442–447. https://doi.org/10.1038/ s41577-020-0348-8
- Seeland, U., F. Coluzzi, M. Simmaco, C. Mura, P.E. Bourne, M. Heiland, R. Preissner, and S. Preissner. 2020. Evidence for treatment with estradiol for women with SARS-CoV-2 infection. BMC Med. 18:369. https://doi.org/10.1186/s12916-020-01851-z
- Souyris, M., C. Cenac, P. Azar, D. Daviaud, A. Canivet, S. Grunenwald, C. Pienkowski, J. Chaumeil, J.E. Mejía, and J.C. Guéry. 2018. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3:eaap8855. https://doi.org/10.1126/sciimmunol.aap8855
- Spetz, J., A.G. Presser, and K.A. Sarosiek. 2019. T cells and regulated cell death: Kill or Be killed. Int. Rev. Cell Mol. Biol. 342:27–71. https://doi.org/ 10.1016/bs.ircmb.2018.07.004
- Vom Steeg, L.G., and S.L. Klein. 2019. Sex and sex steroids impact influenza pathogenesis across the life course. Semin. Immunopathol. 41:189–194. https://doi.org/10.1007/s00281-018-0718-5
- Stoler-Barak, L., E. Harris, A. Peres, H. Hezroni, M. Kuka, P. Di Lucia, A. Grenov, N. Gurwicz, M. Kupervaser, B.H. Yip, et al. 2023. B cell class switch recombination is regulated by DYRKIA through MSH6 phosphorylation. *Nat. Commun.* 14:1462. https://doi.org/10.1038/s41467-023-37205-5
- Sundling, C., A.W.Y. Lau, K. Bourne, C. Young, C. Laurianto, J.R. Hermes, R.J. Menzies, D. Butt, N.J. Kräutler, D. Zahra, et al. 2021. Positive selection of IgG+ over IgM+ B cells in the germinal center reaction. *Immunity*. 54: 988-1001.e5. https://doi.org/10.1016/j.immuni.2021.03.013
- Takahashi, T., and A. Iwasaki. 2021. Sex differences in immune responses Biological sex differences in immunity potentially underlie male bias for severe COVID-19. Science. 371:6527. https://doi.org/10.1093/cid/ciaa1022
- Touma, M., D.B. Keskin, F. Shiroki, I. Saito, S. Koyasu, E.L. Reinherz, and L.K. Clayton. 2011. Impaired B cell development and function in the absence of IkappaBNS. J. Immunol. 187:3942–3952. https://doi.org/10.4049/jimmunol.1002109
- Tukiainen, T., A.C. Villani, A. Yen, M.A. Rivas, J.L. Marshall, R. Satija, M. Aguirre, L. Gauthier, M. Fleharty, A. Kirby, et al. 2017. Landscape of X chromosome inactivation across human tissues. *Nature*. 550:244–248. https://doi.org/10.1038/nature24265
- Tuovinen, E.A., J. Grönholm, T. Öhman, S. Pöysti, R. Toivonen, A. Kreutzman, K. Heiskanen, L. Trotta, S. Toiviainen-Salo, J.M. Routes, et al. 2020. Novel hemizygous IL2RG p.(Pro58Ser) mutation impairs IL-2 receptor complex expression on lymphocytes causing X-linked combined immunodeficiency. J. Clin. Immunol. 40:503–514. https://doi.org/10.1007/s10875-020-00745-2
- Uhlen, M., M.J. Karlsson, W. Zhong, A. Tebani, C. Pou, J. Mikes, T. Lakshmikanth, B. Forsström, F. Edfors, J. Odeberg, et al. 2019. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 366. https://doi.org/10.1126/science.aax9198
- Villalta, D., N. Bizzaro, N. Bassi, M. Zen, M. Gatto, A. Ghirardello, L. Iaccarino, L. Punzi, and A. Doria. 2013. Anti-dsDNA antibody isotypes in systemic

- lupus erythematosus: IgA in addition to IgG anti-dsDNA help to identify glomerulonephritis and active disease. *PLoS One.* 8:e71458. https://doi.org/10.1371/journal.pone.0071458
- .org/10.1371/journal.pone.0071458
 Wang, J., C.M. Syrett, M.C. Kramer, A. Basu, M.L. Atchison, and M.C. Anguera. 2016. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl. Acad. Sci. USA. 113:E2029–E2038. https://doi.org/10.1073/pnas.1520113113
- Wang, W., L. Wang, and B. Zha. 2021. The roles of STAT6 in regulating B cell fate, activation, and function. *Immunol. Lett.* 233:87–91. https://doi.org/ 10.1016/j.imlet.2021.02.006
- Whincup, P.H., J.A. Gilg, K. Odoki, S.J.C. Taylor, and D.G. Cook. 2001. Age of menarche in contemporary British teenagers: Survey of girls born between 1982 and 1986. BMJ. 322:1095–1096. https://doi.org/10.1136/bmj .322.7294.1095
- White, C.A., J. Seth Hawkins, E.J. Pone, E.S. Yu, A. Al-Qahtani, T. Mai, H. Zan, and P. Casali. 2011. AID dysregulation in lupus-prone MRL/Fas(lpr/lpr) mice increases class switch DNA recombination and promotes interchromosomal c-Myc/IgH loci translocations: Modulation by HoxC4. Autoimmunity. 44:585-598. https://doi.org/10.3109/08916934.2011.577128
- Wong, A.H., N. Agrawal, and G.C. Hughes. 2015. Altered IgG autoantibody levels and CD4(+) T cell subsets in lupus-prone Nba2 mice lacking the

- nuclear progesterone receptor. *Autoimmunity*. 48:389-401. https://doi.org/10.3109/08916934.2015.1030613
- Yousif, A.S., A. Stanlie, N.A. Begum, and T. Honjo. 2014. Opinion: Uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination. *Int. Immunol.* 26: 575–578. https://doi.org/10.1093/intimm/dxu071
- Yu, B., Y. Qi, R. Li, Q. Shi, A.T. Satpathy, and H.Y. Chang. 2021. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell. 184:1790–1803.e17. https://doi.org/10.1016/j.cell.2021.02.015
- Zanotti, K.J., R.W. Maul, D.P. Castiblanco, W. Yang, Y.J. Choi, J.T. Fox, K. Myung, H. Saribasak, and P.J. Gearhart. 2015. ATAD5 deficiency decreases B cell division and Igh recombination. J. Immunol. 194:35–42. https://doi.org/10.4049/jimmunol.1401158
- Zhang, Y., G. Parmigiani, and W.E. Johnson. 2020. ComBat-seq: Batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 2:lqaa078. https://doi.org/10.1093/nargab/lqaa078
- Zhong, L., M. Pope, Y. Shen, J.J. Hernandez, and L. Wu. 2019. Prevalence and incidence of systemic sclerosis: A systematic review and meta-analysis. Int. J. Rheum. Dis. 22:2096–2107. https://doi.org/10.1111/1756-185X.13716
- Zhou, Y., B. Zhou, L. Pache, M. Chang, A.H. Khodabakhshi, O. Tanaseichuk, C. Benner, and S.K. Chanda. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nat. Commun.* 10: 1523. https://doi.org/10.1038/s41467-019-09234-6

Supplemental material

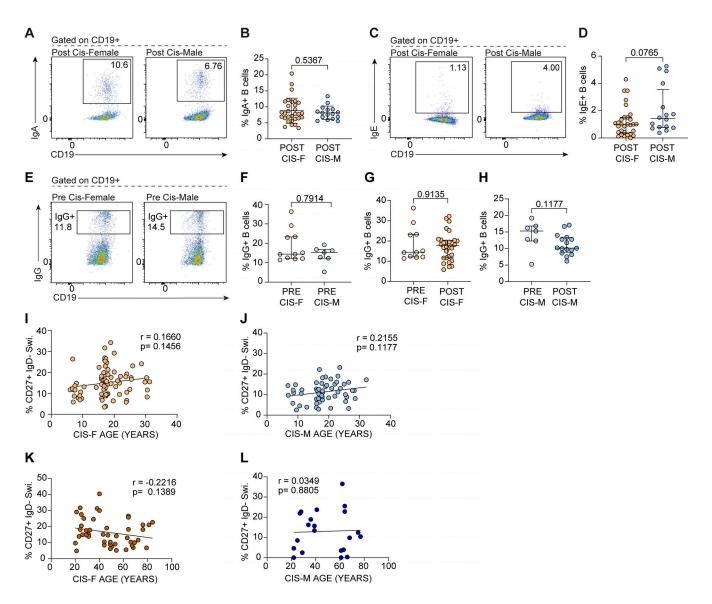


Figure S1. The frequency of class-switched memory B cells is dependent on puberty and menopause in cis-females. (A and B) Representative flow cytometry plots (A) and scatter plot (B) showing relative percentages of IgA+ B cells in postpubertal cis-females versus postpubertal cis-males (POST CIS-F n = 30; POST CIS-M n = 17; P = 0.5367). (C and D) Representative flow cytometry plots (C) and scatter plot (D) showing relative percentages of IgE+ B cells in postpubertal cis-females versus postpubertal cis-males (POST CIS-F n = 30; POST CIS-M n = 17; P = 0.0765). (E and F) Representative flow cytometry plots (E) and scatter plot (F) comparing proportions of IgG+ B cells between prepubertal cis-females and prepubertal cis-males (PRE CIS-F n = 11; PRE CIS-M n = 7; P = 0.7194). (G and H) Scatter plots comparing proportions of IgG+ B cells between (G) prepubertal cis-females (n = 11) and postpubertal cis-females (n = 30; P = 0.9135) and (H) prepubertal cis-males (n = 7) and postpubertal cis-males (n = 17; P = 0.1177). (I-K) Pearson test for correlation between age (years) and percentage of IgD- CD27+ switched B cells in (I) postpubertal cis-females (n = 78; r = 0.1660; P = 0.1456) and (J) postpubertal cis-males (n = 54; r = 0.2155; P = 0.1177) in the original PBMC cohort and (K) postpubertal cis-females (n = 46; r = -0.2216; P = 0.1389) and (L) postpubertal cis-males (n = 21; r = 0.0349; P = 0.9905) in the validation whole blood cohort. Unpaired t test with mean + SD (B) or Mann–Whitney U test with median + IQR (D and F-H) as appropriate to distribution of data.

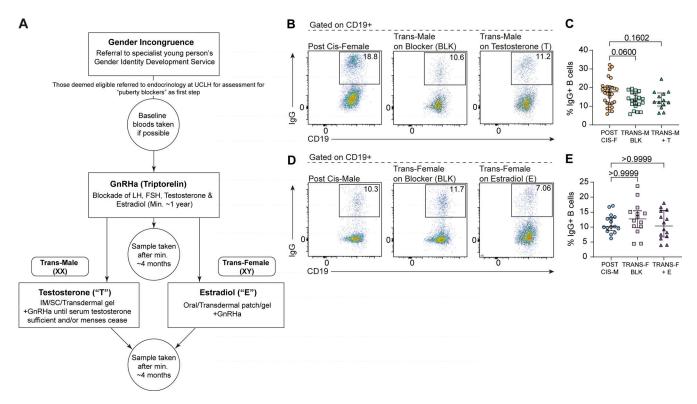


Figure S2. The frequency of IgG+ B cells are influenced by sex hormonal modulation intransgender people. (A) Summary of gender identity clinic treatment pathway and sample schedule. Treatment is prescribed on a case-by-case basis, based on individual country guidelines. This flowchart outlines the most commonly pursued routes by young persons referred to England's National Health Service (NHS) GIDS. Summarized from guidelines outlined in Hembree et al. (2017). (B and C) Representative flow cytometry plots (B) and scatter plot (C) comparing levels of IgG+ B cells between postpubertal cis-females (POST CIS-F; n = 30), trans-males on puberty blockers (TRANS-M +BLK; n = 20; P = 0.0600), and trans-males on testosterone (TRANS-M +T; n = 13; P = 0.1602). (D and E) Representative flow cytometry plots (D) and scatter plot (E) comparing levels of IgG+ B cells between postpubertal cis-males (POST CIS-M; n = 17), trans-females on puberty blockers (TRANS-F +BLK; n = 14; $P \ge 0.9999$), and trans-females on estradiol (TRANS-F +E; n = 14; $P \ge 0.9999$). Note: Representative plots shown in B for postpubertal cis-females and in D for postpubertal cis-males are duplicated from Fig. 1 G for ease of comparison with their respective transgender cohorts. Kruskal–Wallis test with Dunn's post hoc test and median + IQR shown (C and E). LH, luteinizing hormone; FSH, follicle-stimulating hormone; IM, intramuscular; SC, subcutaneous.

Provided online are Table S1 and Table S2. Table S1 shows the significantly up- or downregulated genes in B cells from postpubertal cis-females versus cis-males. Table S2 shows the class-switching gene set used in Fig. 3, L-O.