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Abstract 
 

Epilepsy is a neurological disease associated with structural and functional 

changes in the brain, genetic mutations, as well as factors mediated through 

brain injury. While extensive research has documented structural changes in the 

brains of people with epilepsy, it remains unclear whether these changes follow 

a distinct pattern of progression from one brain region to another. Furthermore, 

existing antiepileptic drugs often show limited effectiveness in treating epilepsy, 

posing challenges in clinical management. Therefore, I investigate if there are 

image-derived subtypes of epilepsy based on the unique progression of structural 

changes in the brain and if staging these patients helps identify the response to 

antiepileptic drugs. This will help identify patients that require personalised or 

alternate treatments during the early diagnostic stages of epilepsy. Furthermore, 

it is unclear if there is a link between structural changes in the brain and the 

subtle facial asymmetry seen across a subset of people with epilepsy. Therefore, 

I aim to investigate this association, which will improve our understanding of the 

underlying mechanisms that cause facial asymmetry in people with epilepsy. 

 

This report is structured in 7 chapters, where: Chapter 1 which serves as the 

introduction, I outline the main motivations and objectives of the research 

conducted here; Chapter 2 explains the causes, diagnosis, treatments in epilepsy 

and subsequently outlines the motivations for my research, Chapter 3 gives an 

overview of machine learning techniques used across the research presented 

here; Chapter 4 investigates the association of structural changes in the brain 

with the asymmetry of facial features; In Chapter 5, using one of the world’s 

largest epilepsy cohorts, from the ENIGMA-Epilepsy working group, I estimate 

the progressive sequence of structural changes in the brain; Chapter 6 extends 

the work of Chapter 5 by investigating imaging-derived subtypes of epilepsy 

based on the unique progressive changes in the brain. Lastly, Chapter 7 outlines 

the conclusions and future work of the research reported here.  

  



Impact statement 
Our collaborators, Dr. Simona Balestrini and colleagues, showed that people 

with lateralised focal epilepsies carrying structural variants in the genome 

exhibit a subtle yet quantitative increase facial asymmetry, compared to people 

with idiopathic generalized epilepsy or controls without epilepsy. However, the 

pathological mechanisms that cause facial asymmetry has not been explored. 

Here, I help demonstrate that the facial asymmetry observed in these patients is 

independent to the structural changes in the brain. This affirms that the 

pathological mechanisms that cause structural changes in the brain are 

independent to that of facial asymmetry. Future research can focus on 

investigating the link between facial asymmetry and other clinical variables such 

as seizure semiology, comorbidities, genetic mutations or other phenotypic 

traits.  
 

Utilizing the largest cohort of T1W and DTI MRI data in epilepsy research, we 

introduce a novel imaging-derived subtype and disease stage assignment based 

on the unique sequence in which structural changes progress in the brain. This 

sequence was estimated using cross-sectional data and validated using the 

duration of illness. Here, we established four imaging-derived subtypes which 

had majority of people with focal epilepsies grouped in the two limbic-led 

subtypes and two white matter-led subtypes that contained both people with 

focal and generalized epilepsies. This reaffirms the common disease pathology 

between the epilepsy syndromes.  

 

We also show here that early disease stages can represent changes in grey matter 

regions as well as changes in white matter tracts. The estimated disease stages 

were not very useful in predicting the treatment responses in patients. However, 

by incorporating the use of additional clinical features we may help improve its 

application in clinical management strategies such as treatment responses and 

surgical planning. Finally, in future, investigating the associations between 

disease stages and genetic variation or changes in gene expression we can help 

provide novel drug targets that prevents progressive structural changes in the 

brain or epileptogenesis. 
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Chapter 1 Introduction 
 

1.1 Overview of epilepsy  

Epilepsy is a group of neurological diseases mainly characterised by reoccurring 

seizures, and affects about 0.6-1.5% of the worldwide population (Sander, 2014; 

Beghi et al., 2019). This equates to around 7 million people in total. A seizure is 

a sudden temporary firing of electrochemical signals from neurons that disrupts 

the normal function of the brain (Scharfman, 2007). Broadly speaking, epilepsy 

is a diverse disease exhibiting various clinical syndromes. These epilepsy 

syndromes are classified based on the brain regions where the seizure originates, 

seizure symptoms and etiology of the disease (Engel, 2001; Berg and Scheffer, 

2011; Fisher et al., 2017). The brain regions where seizures originate are 

referred to as the epileptogenic focus or seizure onset. There are two broad 

categories based on the seizure onset: focal epilepsies where seizures originate in 

either one of the two brain hemispheres, and generalized epilepsies where the 

seizure onset involves both hemispheres (Fisher et al., 2017). The seizure onset 

is therefore considered to be lateralized in a single brain hemisphere in focal 

epilepsy. Furthermore, research has demonstrated that pathological mechanisms 

in focal and generalized epilepsy affect the network of neurons across the brain 

and not necessarily localised to a single brain region (Bernhardt et al., 2011; 

Blumenfeld, 2014; Fisher et al., 2017).  

 

Epilepsy is diagnosed by a specialist from the semiology of seizures and other 

supplementary information including a patient’ medical history, example reports 

of previous seizures if available (Engel, 2001; Harris and Angus-Leppan, 2020; 

Riney et al., 2021). In cases that require additional information to classify the 

seizure, a clinician may use videos brought in by family, or EEG recordings 

depending on their availability (Fisher et al., 2017; Riney et al., 2021). Epilepsy 

can be ruled out if any of the imitators of epileptic seizures are detected such as: 

syncope caused by reduced global cerebral perfusion; psychogenic non-epileptic 

seizures (PNES) caused due to behavioural phenomena that inhibits self-control 
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or seizures caused from withdrawal of alcohol and recreational drugs (Engel, 

2001; Brodtkorb, 2013).  

 

People with epilepsy (PWE) are usually prescribed a single or a combination of 

anti-seizure medications (ASMs). However, it is important to note that ASMs 

are not effective in approximately one third of PWE and are categorised as 

having resistance to ASMs (Kwan et al., 2010). Due to this, patients are advised 

to take precautions and avoid engaging in activities that could potentially 

jeopardize their safety or that of others until their treatment becomes effective. 

These precautions are particularly crucial in case a seizure occurs during 

activities such as driving, swimming, or participating in physically demanding 

tasks, as they could result in a loss of control and potential harm or even fatality. 

Consequently, PWE can face social and or economic repercussions depending 

on the disease severity, as determined by factors such as seizure frequency and 

symptoms during the seizure. Hence, an effective treatment plan is required to 

enhance the well-being and overall quality of life for people living with epilepsy.  

 

PWE that are resistant to ASMs may be considered for surgery, where the brain 

region considered as the epileptogenic focus is resected (Casazza et al., 1997; 

Jayakar et al., 2016). Electrophysiological methods sometimes used to aid in the 

diagnostic process include the electroencephalogram (EEG) or intracranial-EEG, 

whereas neuroimaging methods such as magnetic resonance imaging (MRI) are 

predominantly used to plan surgery (Jayakar et al., 2016; Vogt et al., 2017; 

Bernasconi et al., 2019). These techniques are detailed in Section 2.5. Current 

research efforts involve the analysis of brain imaging data from PWE to 

investigate structural alterations in the brain and their associations with clinical 

variables or phenotypic traits. This can help understand the underlying 

mechanisms of epilepsy which is crucial for enhancing the management and 

treatment outcomes. 

 

A study by Chinthapalli et al., (2012) demonstrated that PWE with structural 

variations in the genome exhibit subtle atypical facial features. Furthermore, 

they showed that patients with abnormality in their MRI scans had a greater 

degree of facial asymmetry. However, the underlying relationship between facial 
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asymmetry in PWE and brain pathology remains largely unknown. Previous 

research has indicated that individuals with focal epilepsy often exhibit a higher 

degree of brain asymmetry compared to those with generalised epilepsy, due to 

lateralized structural changes (Bernasconi et al., 2004; Thom et al., 2012; 

Bernhardt, Bonilha and Gross, 2015; Vaughan et al., 2017; Whelan et al., 2018). 

Therefore, in Chapter 4, we explore whether facial asymmetry quantified in 

PWE is associated with structural changes in the brains of individuals with 

lateralized focal epilepsy.  

 

Recent research using data derived from neuroimaging have shown PWE have 

widespread thinning of the cortical and subcortical regions. (Alhusaini et al., 

2012; Whelan et al., 2018). Furthermore, it is established that the progression of 

cortical thinning or structural changes in the brain is associated with the duration 

of illness (Bernasconi, Natsume and Bernasconi, 2005; Bonilha et al., 2006; 

Bernhardt et al., 2009; Coan et al., 2009; Whelan et al., 2018; Galovic et al., 

2020). However, the disease progression of these structural changes from one 

brain region to another is not well understood. Uncovering this pattern can help 

us better understand if there are imaging-derived subtypes of epilepsy based on a 

specific trend in the progression of structural changes and how they relate to 

epilepsy syndromes and treatment response. We start by investigating the 

progression of structural changes of the brain in patients with left and right 

mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) in 

Chapter 5 and subsequently investigate imaging-derived subtypes of epilepsy 

based on their unique disease progression patterns from a cohort of patients with 

common epilepsies in Chapter 6. Lastly, Chapter 7 outlines the conclusions and 

future work. 
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Chapter 2 Background 
 

2.1 Underlying biology of neurons and epilepsy 

The brain is composed of approximately 86 billion neurons or nerve cells, with 

diameters ranging from 4 to 100 micrometers. These neurons form an intricate 

communication network, exchanging neurotransmitters or biomolecules, that 

creates an action potential (electric discharge) as shown in Figure 2.1 

(Yamazaki, Igarashi and Yamaura, 2021). Imbalances of neurotransmitters such 

as γ-aminobutyric acid (GABA), glutamate, dopamine, noradrenaline, serotonin, 

acetylcholine in PWE can lead to seizures (Covenas, 2015). Seizures can also be 

caused by synchronous or redirected ions flowing through the network, that arise 

from damage in the brain due to injury, brain hypoxia, or infections, as well as 

malformations of cortical development (MCD) (Sisodiya, 2004; Hossain, 2005; 

Jiruska et al., 2013; Löscher et al., 2020). During a seizure, people often 

undergo temporary and involuntary alterations in muscle activity, which can 

manifest as convulsions, spasms, or jerking movements (Fisher et al., 2005; 

Riney et al., 2021). About one third of the PWE also suffer from anxiety and 

depression (Kwon and Park, 2014).  

 

In 2014, the International League Against Epilepsy (ILAE) defined epilepsy as a 

group of diseases which are characterised by at least two unprovoked seizures 

occurring >24 hour apart or a high risk of seizure reoccurrence after a first 

unproved or reflex seizure (Fisher et al., 2014). In this context, "unprovoked" 

indicates the absence of a temporary or reversible factor causing a seizure. The 

latter risk of seizure reoccurrence is evaluated based on diagnosis of a specific 

epilepsy syndrome, presence of structural lesions, central nervous system (CNS) 

infection, or traumatic brain injury among others. Seizures usually last for 3-5 

minutes (mins), after which the individual gradually recovers to a normal state. 

However, it is vital to get medical help if seizures continue for more than 5 mins, 

a condition referred to as status epilepticus which can cause significant damage 

in the brain (Lowenstein and Alldredge, 1998; Bengzon et al., 2002; Trinka et 

al., 2015). 
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Figure 2.1 Generation of action potential in a neuron: Figure shows the 

transition of sodium (Na+) and chloride (Cl-) ions entering and leaving the 

neuron through their channels located on the membrane. This creates an action 

potential (electric discharge) along the axon which releases biomolecules or 

neurotransmitters stored in dendrite vesicles. The released biomolecules activate 

neighbouring neurons or cells that regulate organ functions. Adapted from 

(Asadi et al., 2019). 

 

2.2 Anatomy of affected brain regions in epilepsy 

Functional and structural changes in both grey matter (cortical and subcortical) 

regions and white matter tracts have been found to play a crucial role in the 

development and manifestation of various neurological disorders. A basic 

anatomy of these brain regions is shown in Figure 2.2. Here, grey matter regions 

interact with one another and various brain regions through complex connections 

of white matter tracts. 

 

Previous studies have identified definitive thinning of sub-structures within grey 

matter regions, such as the superior frontal and superior temporal gyri, 

hippocampus and thalamus among others, in PWE compared to healthy 

individuals (Hardiman et al., 1988; Lee et al., 1995; Woermann et al., 2000; 

Scanlon et al., 2013; Whelan et al., 2018; Galovic et al., 2019). In addition, 
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changes in microstructural properties of white matter tracts, in particular tracts 

of the frontal, parietal, limbic system thalamo-cortical regions, corpus callosum 

which connects the two (left and right) hemispheres have also been identified in 

PWE (Focke et al., 2008; Lee et al., 2014; Szaflarski et al., 2016; Hatton et al., 

2020). Studies have also suggested that structural changes in the cerebellum is 

associated with the occurrence of seizures (Marcián et al., 2016). Depending on 

the brain regions affected, symptoms and etiology of the disease, epilepsy is 

classified into syndromes to manage and monitor treatments. 

 

 

 
Figure 2.2 Anatomy of cortical and subcortical regions:  In each hemisphere, 

three main sulci or tissue depressions distinguish the cortical structure into the 

four lobes as shown. These brain regions individually govern memory, 

behaviour, personality, speech, sense of touch, and interpret vision, among other 

functions. The orientation labels are affixed to sub-structures of the cortex for 

clear and concise identification. Reproduced from 1,2.   

 

 

 
1 https://sharpbrains.com/blog/2020/04/09/the-frontal-lobes-the-little-brain-down-under-and-
stayin-alive-3-3/ 
2https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical
_2014 
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2.3 Classification and causes of epilepsy 

2.3.1 Classification of epilepsy 

Epilepsy is broadly classified based on the origin and type of seizures. In March 

2017 the ILAE published the revised classification protocol for PWE that 

defined three diagnostic levels including 1) seizure type, 2) epilepsy type, and 3) 

epilepsy syndrome (Fisher et al., 2017). Figure 2.3 illustrates examples of 

seizure types under which a patient may be classified. Here, the classification 

lays out two main types of epilepsy we briefly mentioned earlier: focal and 

generalized onset, where the seizure originates within brain networks of one and 

both hemispheres respectively (Fisher et al., 2017). If the seizure onset cannot be 

identified from the information available at the time of diagnosis, the seizure can 

be classified as unknown onset. Seizures can be sub-classified as motor onset or 

nonmotor onset based on seizure characteristics. Here, motor activity 

encompasses various forms of muscular engagement and can manifest either as 

an increase or decrease in muscle contractions, resulting in distinct movements 

that are indicative of a seizure. (Fisher et al., 2017). Focal seizures can 

optionally be further characterized based on the presence or absence of retained 

awareness.  

 

Specific semiologies in focal epilepsies provide an insight into the localization 

of the seizure onset zone, which is particularly useful for diagnosis. For example 

the amygdala which is part of the mesial temporal lobe, is involved in emotion 

processing and autonomic regulation, including control of heart rate and 

breathing. When focal seizures originate or propagate to the amygdala, it may 

present with experiential aura (fear, déjà vu or jamais vu) or tachycardia 

(Bancaud et al., 1994; Illman et al., 2012; Du et al., 2015; Chowdhury et al., 

2021). In addition to localisation, some symptoms of a focal seizure may also be 

lateralized in the left or right side of the body. For example, unilateral tonic or 

unilateral clonic movements which indicate onset in the contralateral hemisphere 

(McGonigal and Chauvel, 2004; Stoyke, Bilgin and Noachtar, 2011; Tufenkjian 

and Lüders, 2012).  
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Figure 2.3 Epilepsy classification: As per the ILAE 2017 classification, the 

seizure type can be a focal seizure or a generalized seizure. These can be further 

sub-classified as motor or nonmotor based on the seizure symptoms. Cases 

where the origin of onset is not clear, or those with inadequate clinical data are 

categorised as unknown onset or unclassified respectively. Adapted from (Fisher 

et al., 2017). 

 

The ‘focal to bilateral tonic-clonic’ classification reflects the propagation pattern 

of seizures to bilateral networks and serve to distinguish from generalized 

seizures (Jobst et al., 2001; Hemery, Ryvlin and Rheims, 2014; Yoo et al., 2014; 

Sinha et al., 2021). For example, a patient may have an initial sense of fear and 

lip smacking, which progresses to a bilateral tonic-clonic seizure. The symptoms 

of the tonic-clonic seizure are illustrated in Figure 2.4.  

 

Typical absence seizures are characterised by a sudden onset, interruption of 

ongoing activities, a blank stare or unresponsiveness, and may involve a brief 

upward deviation of the eyes (Roger et al., 1989; Fisher et al., 2017). Absence 

seizures are considered atypical when changes in muscle tone are more 
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pronounced than in typical absence seizures. Atypical absence seizures are also 

be characterised by their slow onset or termination of the seizure. 

 

 
Figure 2.4 Tonic-clonic seizures stages: Patients may experience the aura stage 

before tonic-clonic seizures, followed by the postictal stage. Symptoms 

experienced during these stages are shown with their duration. Adapted from 3. 

 

 

The second level of classification is the epilepsy type and assumes that the 

patient has a diagnosis of epilepsy based on the definition of epilepsy discussed 

earlier. Depending on the seizure type, a patient may be diagnosed into one of 

the four categories 1) focal epilepsy, 2) generalized epilepsy, 3) combined 

generalized and focal epilepsy, or 4) an unknown epilepsy group (Scheffer et al., 

2017). The new group of combined generalized and focal epilepsies exists as 

there are patients who have both generalized and focal seizures. Patients may be 

categorised as having an unknown epilepsy if the clinician is not able to 

distinguish the epilepsy type as focal or generalized due to insufficient 

information available to infer the seizure type.  

 

Lastly, the third level of classification is an epilepsy syndrome diagnosis 

(Scheffer et al., 2017). An epilepsy syndrome refers to a group of features 

incorporating seizure types, symptoms, EEG and neuroimaging features that 

usually occur together. It often has age-dependent features such as age of onset, 

 
3 https://www.vectorstock.com/royalty-free-vector/stages-and-phases-a-seizure-depicts-phases-
vector-26129105 
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severity, remission, seizure triggers, diurnal variation, co-morbidities, and 

sometimes prognosis. An epilepsy syndrome may not have a direct association 

with an etiological diagnosis and serves a different purpose such as guiding 

management of the disease. The idiopathic generalized epilepsies (IGE)s are a 

sub-group within the generalized epilepsies that encompasses four well-

established epilepsy syndromes: childhood absence epilepsy, juvenile absence 

epilepsy, juvenile myoclonic epilepsy and generalized tonic-clonic seizures 

alone. Here, the term “idiopathic” is derived from the Greek word “idios” that 

refers to self, own or personal, and is thus meant to reflect the genetic etiology 

without explicitly stating so. However, in order to accommodate the fact that 

IGEs can have some genetic cause that are not necessarily inherited, the ILAE 

task force recommended to refer to this group of syndromes as genetic 

generalized epilepsies (GGEs) (Scheffer et al., 2017). 

 

 

2.3.2 Causes of epilepsy 

From the onset of the patient’ first epileptic seizure, clinicians should aim to 

identify the underlying cause of the epilepsy. This is essential because 

knowledge of the etiology may hold potential therapeutic implications. As per 

the recommendations made by the ILAE in 2017, a clinician may state the 

etiology as one of the following: structural, genetic, infectious, immune, 

metabolic or unknown factors and are listed in Figure 2.5 (Scheffer et al., 2017). 

Structural etiologies may be genetic such as MCD or acquired as a result of a 

stroke, injury or infection (Annegers and Rocca, 1996; Guerrini, Sicca and 

Parmeggiani, 2003; Sisodiya, 2004; Myint, Staufenberg and Sabanathan, 2006; 

Guerrini, Dobyns and Barkovich, 2008). Previous studies have reported that 

MCD arises from macroscopic alterations of brain structure like double cortex, 

absent or small gyri caused due to genetic mutations or environmental factors 

(Pilz et al., 1998; Parrini et al., 2016; Guarnieri et al., 2018).  
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Figure 2.5 Causes of epilepsy: The different causes of epilepsy are shown 

above. Mechanisms from one or more of the above causes may lead to epilepsy. 

 

 

Epilepsy can also be caused by changes in a persons’ genome that alter the 

function of proteins or ion channels located on neurons. The malfunction of 

these proteins that regulates the activation of neurotransmitters and ions leads to 

the abnormal firing of neurons. Some of these ion channels affected in epilepsy 

are the voltage-gated sodium channels, voltage-gated potassium channel, 

voltage-gated calcium channel, voltage-gated chloride channel and gamma-

aminobutyric acid (GABA) receptors (Petroff et al., 1996; Singh et al., 1998; 

Claes et al., 2001; Lossin et al., 2003).  

 

A typical example of a genetic cause is that in Dravet syndrome, where more 

than 80% of patients have a pathogenic variant of SCN1A gene (Depienne et al., 

2009; Marini et al., 2009; Bender et al., 2012). Infectious etiologies of epilepsy 

may arise from conditions like neurocysticercosis, tuberculosis, human 

immunodeficiency virus (HIV), or cerebral malaria (Pal, Carpio and Sander, 

2000; Singhi, 2011; Moyano et al., 2014; Vezzani et al., 2016). Metabolic 

causes involve epilepsy linked to metabolic disorders such as porphyria or 

uremia. An immune etiology is considered when there is evidence of 

autoimmune-mediated central nervous system inflammation. If the cause cannot 

be determined at the time of diagnosis, the etiology may be classified as 

unknown until new information becomes available. 
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In Chapter 4, some of the legacy terms are in line with the ILAE report 

published in 1989. According to this report, epilepsy with an acquired or genetic 

cause, associated with gross neuroanatomic or neuropathologic abnormalities, 

and/or clinical features such as brain injury, developmental abnormalities, or 

infections, was categorized as symptomatic epilepsy (Roger et al., 1989; 

Shorvon, 2011; Shorvon, Guerrini and Andermann, 2011). Cases where the 

cause cannot be identified due to unknown mechanisms were classified as 

cryptogenic epilepsy.  

 

2.4 Epidemiology 

Epilepsy stands as a prominent global health challenge, contributing to 

diminished work productivity, increased mortality rates, societal stigma, and 

heightened strain on healthcare systems (Fiest et al., 2014; Thurman et al., 

2017). In 2016, the global prevalence of active epilepsy reached 45.9 million 

people, with 24.0 million specifically diagnosed with active IGE (Beghi et al., 

2019). Notably, between 1990 and 2016, the prevalence of IGE remained 

relatively stable, yet mortality rates exhibited a significant 24.5% decrease, 

coupled with a 19.4% decline in disability-adjusted life years (DALYs) (Beghi 

et al., 2019). These positive trends can be linked to advancements in perinatal 

care, improved control of infectious diseases, and enhanced access to treatments, 

resulting in a reduced risk of death and milder disease severity. The global 

epidemiology chart for IGE, depicted in Figure 2.6 and sourced from Beghi et 

al., (2019), provides a comprehensive overview. 

 

Furthermore, Beghi (2020) reported the prevalence and incidence of epilepsy 

tends to be slightly lower in women compared to men, and that focal seizures 

were more commonly observed than with generalized seizures. The meta-

analysis by Vaughan et al. (2019) estimated that from a population of 51.7 

million people currently diagnosed with epilepsy, that 10.1 million patients were 

potential candidates for surgical treatment, with an annual projection of 1.4 

million new cases. According to the world health organisation (WHO), the 

estimated annual incidence of new cases is 49 per 100,000 people in high-
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income countries and 139 per 100,000 in low- and middle-income countries 4. 

However, this report does not account for the underreporting of cases in low-

income regions, where cultural beliefs and stigma may lead to many incidents 

going unreported. Overall, the epidemiological insight highlights the global 

effect of epilepsy, inspiring our pursuit of improving tools to predict treatment 

outcomes and a comprehensive exploration of disease progression.  

 

 
Figure 2.6 Global epidemiology chart for IGE: Global distribution of annual 

prevalence of IGE, prevalence per 100,000 people both sexes, 2016. Prevalence 

is higher in low-income countries, particularly sub-Saharan Africa, which can be 

linked to inadequate treatment facilities in these countries. Reproduced from 

(Beghi, 2020). 

 

2.5 Epilepsy diagnosis and tools to aid in treatments 

PWE manifest a variety of symptoms depending on the seizure type. Epilepsy is 

primarily diagnosed from the seizure semiology reported by the patient or care 

giver (Fisher et al., 2017; Riney et al., 2021). For example, a report of brief 

seizures with stiffening of the right arm and leg, during which responsiveness 

and awareness is retained would be classified as focal aware tonic seizure. If a 

patient experiences the “hair on my arms standing on edge”, a feeling of being 

flushed and retained awareness, the seizure would be classified as focal aware 

autonomic seizure. Generalized clonic seizures begin, progress, and end with 

sustained rhythmic jerking of limbs on both sides of the body and often head, 

 
4 https://www.who.int/news-room/fact-sheets/detail/epilepsy 
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neck, face, and trunk. In addition, the patients’ medical history can provide 

information about past seizures, which the clinician can use to make an informed 

decision on the diagnosis. (Angus-Leppan, 2008; Nass et al., 2017; Nobili et al., 

2020; Riney et al., 2021). In certain cases where the epilepsy syndrome is 

unclear, the clinician may utilize EEG to aid in the diagnostic process. For 

patients requiring surgery, magnetic resonance imaging (MRI) scans are 

conducted to localize the epileptogenic areas in the brain. 

 

2.5.1 EEG 

The EEG records electrochemical activity in the brain using electrodes placed on 

the patient’ scalp. The EEG recordings obtained during ictal and interictal states 

in PWE are distinctive compared to healthy people. (Jung and Berger, 1979; 

Tatum et al., 2018). Interictal spikes are characterized by a high amplitude, short 

duration waveforms with morphological characteristics of a spike lasting 20-70 

millisecond (ms) or a sharp wave with a duration of 70-200 ms. In, addition, the 

generalized spike-and-wave (GSW) patterns on EEG are noted as a hallmark 

of GGEs, with discharges bursts of about 3 Hz (Tatum et al., 2018). EEG may 

also be used in combination with a video recording to diagnose epilepsy 

syndromes (Mishra, Gautier and Glasscock, 2018). However, EEG may not be 

able to detect epileptogenic activity arising from deep sources such as 

orbitofrontal cortex. In such cases, electrochemical changes may not be 

detectable at the scalp, or if present, they may be widely distributed. Though 

sometimes this can be addressed by intracranial EEG, the procedure may not be 

suitable for all patients.  

 

2.5.2 MRI  

MRI emerges as the primary neuroimaging method employed to pinpoint 

epileptogenic regions or lesions in the brains of PWE. This diagnostic approach 

is not only instrumental in surgical planning but is also extensively employed for 

research purposes to provide insights on structural changes in the brain 

(Salmenpera and Duncan, 2005; Zhao et al., 2017; Bernasconi et al., 2019). The 
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analytical framework presented in this research relied on data extracted from 

MRI scans. 

 

2.5.1.1 Tissue composition-based contrast 

MRI uses strong magnetic fields and a radio frequency (RF) pulse to produce 

detailed images of the anatomy inside the body (Damadian, 1971; Koutcher, 

Goldsmith and Damadian, 1978). In an MRI scan, a magnetic field B0 is present 

which aligns hydrogen nuclei (protons) present in water in the body. This is 

followed by the application of the RF pulse that causes the protons to absorb 

energy and flip the protons’ direction out of alignment with respect to the B0 

field. The moment spins are out of alignment with B0, they start to precess 

(rotate) around B0. This precession can be measured by a receive coil as it acts as 

a moving magnetisation which induces a current in a coil. Over time, the protons 

realign with B0 (relaxation). 

 

Different tissues have different molecular compositions which result in different 

relaxation rates. This provides a contrast between tissue types which is translated 

into an image by a computer. There are two main magnetic relaxation properties 

with respect to B0 field, T1 (relaxation along B0) and T2 (relaxation in the plane 

transverse to B0). Depending on the sequence timings, images can be created of 

varying contrast, from strongly T2-weighted (T2W) to strongly T1-weighted 

(T1W), or anything in between. The T1W and T2W scans illustrated in Figure 

2.7.  

 

The location of the individual hydrogen nuclei is identified by spatial encoding, 

which is achieved with the help of gradient coils. First a slice is selected from 

one of the three dimensions by a RF pulse with bandwidth in the megahertz 

(MHz) range. Following this, the signal along one axis of the anatomy is located 

by frequency encoding gradients, where current is passed through a coil that 

produces a sloped magnetic field strength that is superimposed on B0. This alters 

the precession frequency of the hydrogen nuclei along the long axis. Similarly, 

the signal along the other axis is located by phase encoding gradients, by 

applying a sloped magnetic field that alters the phase of the precession hydrogen 
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nuclei. The composite signal containing spatial encoding information is recorded 

as a k-space matrix. In k-space, we essentially record the frequencies of signal 

intensities across space. To reconstruct the image from k-space, we use the 

inverse fast fourier transform algorithm which converts the frequency-domain 

information in k-space back into spatial signal intensities. Once the spatial 

domain data is obtained, greyscale values are assigned to the image pixels 

depending on the amplitudes of the sampled composite signal. This process 

results in the creation of a grayscale image. 

 

MRI is a non-invasive neuroimaging technique unless a contrast agent needs to 

be administered. Furthermore, in an MRI scan, patients are exposed to RF 

radiation which is not harmful, in contrast to other methods, eg. ionising 

radiation from computed tomography (CT) scans (Kuzniecky, 2005; Martin and 

Semelka, 2006). In clinical practice, MRI scans are also used to identify lesions 

in the brain as shown in Figure 2.7, which play a crucial role in monitoring 

treatment outcomes. Previous studies have used measures derived from T1W 

MRI scans to identify cortical thinning and volume loss, across cortical and 

subcortical structures in PWE (McDonald et al., 2008; Bernhardt et al., 2010; 

Kemmotsu et al., 2011; Labate et al., 2011; Whelan et al., 2018).  

 

Based on T1W and T2W MRI scans from PWE, lesions often show as abnormal 

masses with varying degrees of contrast compared to healthy tissue or blurring 

on the scan, along with changes in the grey and white matter signal intensity 

(Bernasconi et al., 2011). The use of T2-fluid-attenuated inversion-recovery 

(T2-FLAIR) enhances the visibility of lesions by suppressing cerebrospinal fluid 

(CSF) signals, leading to improved contrast between grey matter structures and 

reduced partial volume artifacts. This technique has proven effective in detecting 

lesions that might be overlooked in conventional T1W and T2W scans.  

 

A study conducted by Focke et al., (2009), demonstrated the capability of T2-

FLAIR to identify abnormal signal clusters in cortical regions corresponding to 

seizure onset that were not visible on T1W scans. However, limitations exist, as 

T2-FLAIR may be less sensitive to detecting hippocampal sclerosis due to 

inherent hyperintensity in limbic structures (Adler et al., 2018). Consequently, 
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the selection of the most appropriate MRI technique depends on the specific 

characteristics of the pathology under investigation and the desired diagnostic or 

research requirements. The research presented here primarily utilized data 

derived from T1W MRI given its widespread adoption across epilepsy treatment 

centers. 

 

 
Figure 2.7 Identifying lesions in the brain from MRI scans: Figures show an 

axial slice selected from the MRI scan, of a plane through the brain that can help 

visualise the lesion in the temporal lobe area, taken from a patient with 

dysembryoplastic neuroepithelial tumour (DNET) which causes epilepsy. In a 

T1W scan white matter of the brain which contains myelin (a fatty substance) 

appears bright, whereas cerebrospinal fluid (CSF) is dark and vice versa for the 

T2W scan. Air appears dark in both T1W and T2W MRI scans. Depending on 

the disease pathology investigated, T1W, T2W or alternative MRI techniques 

are used to highlight specific modalities. Figure a) shows the lesion in black 

which represents loss of internal structure of the tissue whereas b) shows lesion 

as hypersensitivity which can be due to a variety of factors including ischemia, 

breaches of CSF or deformed myelin sheath. Reproduced from (Bano et al., 

2011). 

 

2.5.1.2   Molecular diffusion-based contrast 

Fibre tracts that form the white matter in the brain are tightly packed together 

which makes it difficult to evaluate microstructural changes on T1W and T2W 

scans. However, by tracking the net diffusion of water molecules across these 

tracts we can infer their structural integrity. White matter tracts exhibit 
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anisotropic diffusion of water molecules in axons, differing along various 

directions, primarily because of faster diffusion along the long axis compared to 

the perpendicular direction (Bihan and Breton, 1985; Kang et al., 2005). In 

contrast, grey matter neurons, being more spherical in shape, demonstrate more 

isotropic diffusion, characterized by equal diffusion rates in all directions.  

 

Diffusion tensor imaging (DTI) is an MRI technique that capitalizes on these 

variations in diffusion properties to estimate the diffusion of water molecules 

within white matter tracts. (Bihan and Breton, 1985). In DTI, scans obtained at 

different orientations of diffusion-weighting are fitted to the diffusion tensor 

model, where diffusion within each voxel can be visualized as vectors in three 

dimensions called eigenvectors and magnitude as eigenvalues. The 3D 

representation of these eigenvectors and eigenvalues forms an ellipsoid as shown 

in Figure 2.8.  

 

 
Figure 2.8 Diffusion tensor model: Three eigenvectors and the corresponding 

eigenvalues (𝜆!, 𝜆", 𝜆#) quantify the water diffusion in three orthogonal axes of 

the diffusion ellipsoid in each voxel. The principal eigenvalue 𝜆!, measures the 

diffusion along the tract, whereas the eigenvalues 𝜆" and 𝜆# describes how 

uniform the radial diffusion is. Adapted from (Alexander et al., 2007). 

 
 

The eigenvalues from the tensor are used to calculate the fractional anisotropy 

(FA), which quantifies the dominance of the principal eigenvalue along the 

axons’ main axis. FA values range from 0 to 1, where 0 represents isotropic 

diffusion, or lack of anisotropic displacement, and 1 represents a high degree of 

anisotropic diffusion. Thus, lower FA values are typically assumed to reflect 

decreased white matter integrity, which is usually due to an underlying disease. 

On the other hand, mean diffusivity (MD) is the average of the three diffusion 
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tensor eigenvalues, quantifying the average rate of diffusion within each voxel. 

A higher MD generally indicates loss or expansion of white matter tracts. 

Therefore, the utilization of measures derived from DTI scans in Chapter 6 

enables a comprehensive exploration of microstructural changes within white 

matter tracts, offering valuable insights into underlying brain alterations. 

 
 

2.6 Treatments in epilepsy 

As discussed earlier, ASMs are the primary line of treatment for PWE. 

Typically, the prescription of ASMs is determined by factors such as the 

characteristics of the seizures, their frequency, and a careful assessment of the 

potential benefits in improving the patient’ condition weighed against any 

known side effects. ASMs work towards preventing seizures in individuals with 

epilepsy by reducing neuronal excitation. The current class of ASMs operates by 

modulating voltage-gated ion channels, neurotransmitter levels (e.g., GABA), 

and synaptic activation. For individuals who do not respond favourably to 

ASMs, alternative treatments may be considered, with the choice tailored to each 

case. These alternatives include dietary therapies, resective surgery and 

neurostimulation. Several dietary approaches, altering the body’s energy source, 

show efficacy in epilepsy treatment. Of these therapies, the ketogenic diet which 

is based on a high-fat, low-carbohydrate, and adequate protein intake is most 

popular. While the ketogenic diet shows promise as a therapy for epilepsy, its 

effectiveness may vary, suggesting it may not be universally effective for 

everyone. 

 

Resection surgery entails the removal of brain tissue suspected to be the source 

of seizures. For instance, in cases of mesial temporal lobe epilepsy (MTLE) 

resistant to ASMs, resection procedures such as selective temporal, amygdalo-

hippocampectomy, lesionectomy or corticectomy are considered. (Wieser, 1988; 

Clusmann et al., 2002; Jobst and Cascino, 2015). While these procedures are 

successful for most cases, it is essential that these patients undergo regular 

medical check-ups to monitor pathological progression. 
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For those patients ineligible for surgery, neurostimulation techniques like vagus 

nerve stimulation present a viable option, where an electronic device with 

electrodes are implanted to stimulate the vagus nerve (Handforth et al., 1998). 

This stimulation aims to modulate norepinephrine levels or trigger the release of 

anticonvulsant neurochemicals in potential epileptogenic regions. In summary, 

these diverse treatment modalities offer hope and improved quality of life for 

PWE, emphasizing the importance of personalized care and identifying 

candidates for the alternate treatments during diagnosis. 

 

2.7 Mechanisms and features of ASM resistance 

As the occurrence of seizures is an intermittent phenomenon, the period of being 

classified as seizure-free needs to be defined clearly in order to aid clinicians and 

researchers in accurately categorizing patients. We therefore first define ASM 

resistance in epilepsy as per the ILAE. 

 

2.7.1 Defining ASM resistance in epilepsy 

Resistance to ASMs is defined by the ILAE as the failure to achieve ‘substantial’ 

(discussed below) seizure freedom from adequate trials of two tolerated, 

appropriately chosen and clinically used drug schedules (Kwan, Arzimanoglou, 

et al., 2010). The criteria that was set out is summarised in Table 2.1, follows a 

hierarchical order where: Level 1 defines a standard measure of characterising a 

patient as seizure-free following therapeutic intervention, along with the 

minimum information required of the intervention; Level 2 provides the 

definition for treatment failure, and is based on the response from Level 1; Level 

3 are for those patients who’s ASM response is unknown (Kwan, Arzimanoglou, 

et al., 2010). Each of the three levels are further sub-classified based on the 

occurrence of adverse effects.  

 

Level 1 defines substantial seizure-free period as the period that is at least three 

times the longest inter-seizure interval experienced by the patient prior to 

starting the treatment (Kwan, Arzimanoglou, et al., 2010). In consensus the 
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seizure-free period is considered to be at least 12 months after commencing 

treatments. Treatment failure is defined based on recurrent seizure(s) after the 

intervention has been adequately (strength of dose and intervention duration) 

applied. 

 

Table 2.1 Categorisation criteria for drug resistance: Level 1 evaluates the 

presence of seizures after administering ASMs, and Level 2 defines treatment 

failure. Each level is sub-classified into A, B and C based on occurrence of 

adverse effects. Reproduced from (Kwan, Arzimanoglou, et al., 2010). 

 
 

 

Furthermore, the intervention must also be applied appropriately (sufficient 

dosage) to be considered for categorisation in Level 1 or Level 2. If the previous 

two conditions are not met, then the outcome is categorised as undetermined in 

Level 3. Similarly, if the patient drops out before the seizure-free assessment 

period is complete, or an incorrect dose of an ASM known to be effective was 

administered, then the patient being evaluated is classified as undetermined 

(Level 3) for that ASM. Understanding the factors contributing to resistance to 

ASMs is crucial for tailoring effective therapeutic strategies. 

 

2.7.2 Patterns and mechanisms of resistance to ASMs 

Resistance to ASMs can arise at multiple stages of treatments and may follow 

one of these patterns: 1) de novo (or ab initio) ASM resistance, which is when 
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the patient never achieves seizure freedom upon commencing treatments; 2) 

delayed resistance, where the ASMs are initially effective but after some time 

period (several years) seizures recur and become uncontrolled; 3) a fluctuating 

pattern of being effective for set time periods (>2 years) and incurring seizures 

in-between; or 4) the ASMs are not effective initially but are able to control the 

seizures after some time period (Schmidt and Löscher, 2005). Of these, the de 

novo pattern is most common among patients and indicates that the condition is 

present even before the first ASM is administered (Camfield et al., 1997; Kwan 

and Brodie, 2001; Berg, 2004).  

 

Resistance to ASMs can stem from various factors, including damage to the 

neural network, which hampers ASM accessibility to their targets, as well as 

alterations in neurotransmitter receptor properties or other ASM targets. (Tang, 

Hartz and Bauer, 2017). These mechanisms may contribute to the severity of 

epilepsy and also exacerbate resistance to ASMs.  

 

2.7.3 Clinical features linked to ASM resistance  

Although currently there is no dedicated protocol in the clinic to identify 

resistance to ASMs at the time of epilepsy diagnosis, some guidance on the 

ASM efficacy can be made based on some of the clinical features which are 

commonly recorded during diagnosis and treatment follow-ups. Of these, several 

studies have reported resistance to ASMs in patients with structural 

abnormalities on MRI scan, younger age of onset, symptomatic epilepsy and 

focal epilepsy with lesions, high frequency of tonic-clonic seizures, and failure 

to control seizures from the first ASM regime prescribed (Johnson et al., 2003; 

Bonnett et al., 2014; Assenza, 2020; Flores-Sobrecueva et al., 2020). The 

abnormalities reported by Flores-Sobrecueva et al., (2020) were hippocampal 

sclerosis and calcific neurocysticercosis lesions (CNLs) in the brain. However, 

the causal link between CNLs and ASM resistance are yet to be identified 

(Rathore et al., 2013). Other clinical features derived from the attendance to 

medical care facilities, past medical prescriptions or patient’ age are also 

reported to predict the response of ASMs (An et al., 2018).  
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The clinical indicators of ASM resistance discussed so far were from studies that 

ran for a few years, but were much less than a decade. Therefore, to understand 

predictors that lead to resistance over an extended time period, Chen et al., 

(2018) evaluated risks factors of resistance to ASMs in patients with epilepsy 

over a 30-year period. Their study observed that the history of recreational drug 

use and ‘higher seizure frequency’ prior to treatment were predictors of 

resistance to ASMs. Though the association of recreational drugs with resistance 

to ASMs is not established, one can speculate on structural changes in the brain 

caused in long term drug users (Hitiris et al., 2007; Yuan et al., 2009; Li et al., 

2014; Seifert et al., 2015). The ‘higher seizure frequency’ could simply indicate 

the effect of the pathology as per the intrinsic hypothesis of ASM resistance, 

rather than an independent cause (Rogawski and Johnson, 2008; Rogawski, 

2013). 

 

Furthermore, several studies have also identified resistance to ASMs in a subset 

of patients with comorbidities such as neuropsychiatric disorders, epilepsy in the 

family, prolonged febrile seizure and distinct EEG patterns (Hitiris et al., 2007; 

Xue-Ping et al., 2019). The distinct EEG patterns in patients resistant to ASMs 

were ‘diffuse slowing’, greater asymmetries and asynchronous waveforms, as 

well as distinctive epileptiform discharges (Ko and Holmes, 1999; Wirrell et al., 

2012). Lastly, the mechanisms that lead to resistance to ASMs in conjunction 

with neuropsychiatric disorders, epilepsy in the family and febrile seizure are yet 

to be established (Hitiris et al., 2007). In summary, while numerous studies have 

investigated various clinical variables in an effort to differentiate patients 

resistant to ASMs, a definitive solution has yet to be found. 

 

2.8 Role of neuroimaging in identifying ASM resistant patients 

As we’ve observed, neuroimaging methods can highlight epileptogenic regions 

within brain networks, as well as those regions affected by the ASM resistant 

pathology (Koepp and Woermann, 2005; Duncan, 2010; Bernhardt et al., 2011; 

Bonilha et al., 2014). Here, we delve into other neuroimaging techniques that 

have been employed in previous research to investigate distinctive lesions, as 
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well as structural or functional changes in the brain commonly observed in 

patients resistant to ASMs. 

The positron emission tomography (PET) is a useful tool that can investigate 

changes in uptake of specific molecules in the brain. Using this approach, 

several studies have used PET scans to identify patients associated with changes 

in ASMs’ target (Löscher and Potschka, 2005; Shin et al., 2016). Images 

acquired from PET scans are usually co-registered with a MRI scan, as we 

cannot see anatomic details on the PET image. Co-registration plays a crucial 

role in pinpointing the concentration of specific molecular uptake within 

individual brain regions. Using PET imaging, several studies have detected an 

increased expression or function of the drug efflux transporter Pgp using [11C]-

verapamil in patients resistant to ASMs. (Löscher and Potschka, 2005; Shin et 

al., 2016). Here, [11C]-verapamil is a tracer that binds to Pgp. This increased Pgp 

concentrations is detected at the BBB, as well as the epileptogenic focus and is 

believed to lower ASMs’ concentration in the brain networks.  

 

Furthermore, the Blood Oxygen Level Dependent (BOLD) functional MRI 

(fMRI) also provides a means to explore various functional mechanisms of the 

brain. The BOLD signal, measured in fMRI, acts as an indicator of neural 

activity by reflecting changes in blood flow associated with activated neurons 

(Glover, 2011). A notable study by Szaflarski et al. (2013) compared groups of 

patients diagnosed with IGE that were either resistant or responsive to sodium 

valproate using resting state fMRI and EEG data. Their study also reported that 

the GSW generators seen on EEGs were concurrent with abnormality detected in 

the fMRI data. In patients resistant to sodium valproate, these abnormalities 

were widespread across various brain regions, including the medial frontal 

cortex, paracingulate gyrus, and bilateral anterior insula. 

 

Within the mechanisms related to the changes in ASM target, seizures can 

specifically result from disruptions in GABA levels. A crucial player in this 

disruption process is glutamic acid decarboxylase (GAD) enzyme that is 

responsible for the decarboxylation of glutamate to GABA and carbon dioxide. 

Contrary to this knowledge, high levels of glutamic acid decarboxylase 

antibodies (GAD-ab) that work against GAD are reported to be prevalent in 
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about 10% of patients with MTLE who are resistant to ASMs (Giometto et al., 

1998; Peltola et al., 2000; Sokol et al., 2004; McKnight et al., 2005; Falip et al., 

2012; Iorio et al., 2015; Malter et al., 2015).  

 

The study by Iorio et al., (2015) suggested that such patients with increased 

levels of GAD-ab can be identified from distinct T2W-hyperintense lesions on 

MRI scans and immunoglobulin levels in the CSF. Their study also provided 

evidence of a significant (>50%) reduction in seizure frequency among these 

patients when incorporating immunoglobulin G (IgG) into the treatment 

regimen. However, the exact mechanism by which GAD-ab influences treatment 

responsiveness is complex and may involve multiple factors. Therefore, the 

presence of elevated GAD-ab alone does not necessarily determine whether a 

patient will be responsive or resistant to ASMs. In order to translate these 

findings for clinical use, additional research and clinical studies are needed to 

fully understand the relationship between GAD-ab levels and the effectiveness 

of ASMs. In summary, previous research studies have helped us understand that 

resistant to ASMs is a complex process and have multiple factors or phenotypic 

traits that may be detected by neuroimaging methods.  

 

 

2.9 Investigating the link between facial asymmetry and structural 

changes in the brain in epilepsy  

A study by Chinthapalli et al., (2012) reported a subset of PWE, particularly 

those detected with pathogenic structural variants exceeding 1 Mb or present in 

specific regions of the genome linked to epilepsy, exhibit subtle asymmetrical 

facial features compared to individuals lacking such variants. Moreover, their 

study found that facial asymmetry observed in these PWE was independent of 

factors like facial injury, intellectual disability, drug history among other 

patients analysed within the cohort. Additionally, our collaborators, Balestrini et 

al., (2021), showed that facial asymmetry is prominent in people with lateralised 

focal epilepsies compared to people with IGE or controls without epilepsy. 
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However, the mechanisms underlying facial asymmetry and its link to structural 

changes in the brain remain poorly understood. 

Furthermore, focal epilepsies discussed so far are considered to have network 

alterations in regions of the hemisphere ipsilateral to the seizure onset, whilst 

generalized epilepsies are considered to have bi-hemispheric network changes. 

We have also discussed epilepsies as a neurodevelopmental disease, with early 

changes in the brain underpinning seizure biology. As the development of the 

structure of the face is influenced by interactions in the developing forebrain, we 

hypothesize that facial asymmetry is associated with factors contributing to 

structural changes in the brain in PWE.  

As outlined in Section 2.8, various neuroimaging methods have been utilized to 

study distinctive lesions, structural or functional changes in the brain commonly 

reported in PWE. Nonetheless, T1W MRI stands out as one of the most 

accessible neuroimaging modalities, offering a broad array of tools for pre-

processing the brain scans. In our study, we utilized FreeSurfer to segment the 

MRI scans and extract regional brain measurements, a process detailed in 

Section 4.2.3. 

Chapter 4 focuses on utilizing these regional brain measurements from T1W 

MRI scans to investigate whether people with lateralised focal epilepsies (i.e., 

asymmetric network changes) have an increased degree of facial asymmetry 

compared with people with generalized epilepsies or controls without epilepsy. 

This investigation will improve our understanding whether there is a shared 

pathology between the mechanisms responsible for phenotypic traits of facial 

asymmetry and those underlying lateralized structural changes in the brains of 

PWE.  

 

2.10 Investigation of progressive changes in the brain in epilepsy 

Structural changes in grey matter and white matter tracts of the brain have been 

documented in people with both focal and generalized epilepsies compared to 

healthy controls (Bernasconi, Natsume and Bernasconi, 2005; Bernhardt et al., 
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2010; Coan and Cendes, 2013; Kim, 2017; Whelan et al., 2018; Buksakowska et 

al., 2019; Hatton et al., 2020). It is noteworthy that these structural changes are 

detected in both ASM-resistant patients and those with well-controlled seizures 

(Bernhardt, Kim and Bernasconi, 2013; Asadi-Pooya et al., 2016; Chipaux et al., 

2016; Kuzmanovski et al., 2016). Understanding the progression of these 

structural changes in the brain is crucial as it may provide insights on clinical 

variables such as treatment outcomes or seizure type.  

 

In an effort to unravel this progression of structural changes, Galovic et al., 

(2019) investigated a longitudinal dataset of T1W MRI scans taken at least six 

months apart from people with focal epilepsy. Their findings revealed that the 

annualized rate of atrophy within brain regions structurally connected to the 

ipsilateral hippocampus exceeded the rate associated with healthy aging. 

Subsequent work by Galovic et al., (2020) showed that resective surgery 

prevents further structural changes in the brain. While these previous studies 

demonstrated the progressive nature of the structural changes, their approach did 

not address whether there is an explicit sequence in which they occur in or 

whether this sequence can be used to stage epilepsy. Moreover, lower 

hippocampal volume has been reported in non-affected siblings and thus may 

reflect a genetic origin, (Kobayashi et al., 2002; Tsai et al., 2013; Vaughan et 

al., 2017; Long et al., 2020) predating any further changes such as cortical 

thinning, which was not observed in siblings (Alhusaini et al., 2019). However, 

progress on deciphering how grey matter reductions unfold over time in epilepsy 

has been limited by the scarcity of longitudinal imaging cohorts.  

 

Therefore, our objective is to first investigate whether structural changes in the 

brain in patients with MTLE-HS follow a distinct progression pattern using 

available cross-sectional data. This will be investigated by implementing the 

event-based modelling (EBM) in Error! Reference source not found. that 

infers a temporal progression of structural changes in the brain from cross-

sectional data (Fonteijn et al., 2012). For detailed insight into the EBM 

algorithm, please refer to Section 3.4.1. We will estimate the progression 

sequence based on regional brain measurements obtained from T1W MRI scans 

sourced from the ENIGMA-Epilepsy cohort (Whelan et al., 2018).  
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Subsequently, we broaden the scope of uncovering disease progression of 

structural brain changes to a broader population of PWE using the Subtype and 

Stage Inference (SuStaIn) algorithm (Young et al., 2018). SuStaIn, an extension 

of the EBM, identifies unique imaging-derived subtypes of diseases in the brain 

based on the unique progression of structural changes in the brain, a process 

detailed in Section 3.5. Previously, SuStaIn has been applied to model disease 

progression in Alzheimer’s disease (AD) using features derived from a range of 

neuroimaging techniques, including T1W MRI (Young et al., 2018), as well as 

PET and neuropathology data (Aksman et al., 2023). The application of SuStaIn 

in multiple sclerosis uncovered subtypes where progression was led by cortical 

regions, white matter tracts, or lesions in the brain (Eshaghi et al., 2021). 

Importantly, this study by Eshaghi et al., (2021) identified clinical implications 

linked to these data-driven subtypes: subtype assignment predicted the 

progression of disability in MS patients as well as their treatment response. 

 

Moreover, a recent study by Xiao et al., (2022) used the SuStaIn algorithm to 

identify imaging-derived subtypes of epilepsy based on the progression of 

changes in grey matter regions in PWE. Their findings revealed a Hippocampal 

subtype for focal epilepsies, and Cortical and Basal Ganglia-led subtypes that 

were common in both focal and generalized epilepsy syndromes. This study by 

Xiao et al., (2022) also reported most people (75%) in the limbic-led subtype 

had at least weekly seizures compared to 50% of PWE in the cortical and basal 

ganglia-led subtypes. However, the sequential changes in grey and white matter 

over time across epilepsy syndromes are not yet been explored in a single 

analysis due to the poor availability of longitudinal data. Uncovering this 

sequence would provide insights into the complex interaction between changes 

in grey matter and white matter tracts in epilepsy.  

 

Here, we also use measures derived from DTI scans, as described in Section 

2.5.1.2, which are used to quantify changes in white matter tracts. DTI has 

proven particularly valuable in tracking microstructural changes in people with 

non-lesional temporal lobe epilepsy (NL-TLE), with previous studies 

documenting changes in the ipsilateral uncinate and arcuate fasciculus 
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(Govindan et al., 2008; Ahmadi et al., 2009; Concha et al., 2009). We therefore 

use the SuStaIn algorithm in Chapter 6 to investigate imaging-derived subtypes 

based on changes in changes in grey matter regions detected from T1W MRI and 

white matter tracts quantified from DTI scans from a cohort of common 

epilepsies facilitated by the ENIGMA-Epilepsy group.  
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Chapter 3 Machine learning techniques 
 

3.1 Introduction to machine learning techniques 

Machine learning techniques play a pivotal role in the analysis of medical 

imaging data among other applications. These methods are utilized to extract 

features that offer insights into disease pathology, adjust for confounding effects 

(such as age and sex), and categorize subjects as either having a disease or being 

in a healthy state. Over the past years several machine learning methods have 

been employed to extract features from neuroimaging that display a quantitative 

change linked to epilepsy (Petrovski et al., 2010; Cantor-Rivera et al., 2015; 

Takahashi et al., 2020; Croce et al., 2021; Drenthen et al., 2021). Broadly 

speaking machine learning methods can be supervised or unsupervised. In 

supervised machine learning methods, an algorithm investigates the relationship 

or function between a set of observations (features) and some response variable 

(labels). This learned function can then be employed to make predictions on 

new, unseen data. Conversely, unsupervised methods operate without using 

labelled response variables, instead focusing on uncovering patterns or 

associations within the data itself.  

 

Examples of supervised learning methods include the random forest and 

regression algorithms. These models are trained on labelled data to make 

predictions or infer relationships between features and responses. In contrast, K-

Means is a widely used unsupervised method that clusters data into K distinct 

groups based on similarities in feature space, without the need for labelled 

responses. 

 

When choosing a machine learning model, it’s crucial to consider whether the 

response variable is continuous or categorical. Linear regression is suitable for 

datasets with continuous response variables, while logistic regression is more 

appropriate for datasets with categorical responses. Further details on these 

methods are provided in Section 3.2 and Section 3.3 respectively. In our 

analysis, we utilize the linear regression algorithm in Error! Reference source 
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not found., to remove confounding effects from regional brain measures. 

Conversely, logistic regression was chosen for classifying treatment outcomes in 

Chapter 6. In addition, regression-based techniques are prevalent in data 

analysis, and can easily be fine-tuned with regularization to minimize the 

prediction error.  

 

In order to assess the generalizability of a model for any application, it’s crucial 

to evaluate its performance on new out-of-sample data. One effective method for 

achieving this is k-fold cross-validation, which involves dividing the data into k 

subsets. The algorithm then iteratively holds out one of the subsets as the testing 

set, while the remaining form the training set. The prediction error is then 

computed based on the testing set. Similarly, in the next iteration, a new subset 

previously used in the training set is considered as the test set, and the previous 

test subset becomes part of the training set. The error is then averaged over all 

iterations to estimate the model’s performance for real-world application. The 

cross-validation algorithm was used in several instances across the research 

reported here. For instance, in Chapter 6, it was utilized to determine the optimal 

number of imaging-derived subtypes in SuStaIn, that best described the given 

dataset.  

 

 

3.2 Linear regression for continuous variables 

3.2.1 Ordinary least squares (OLS) 

The regression models commonly used for medical data analysis include the 

ordinary least squares (OLS) regression, Ridge regression and least absolute 

shrinkage and selection operator (LASSO) regression. These regression models 

assumes that the response is a linear combination of the input variables (Stigler, 

1981). The coefficients (slopes and intercept) of their linear projections are 

estimated, such that the sum of squared difference between prediction and actual 

response is minimized on the training data. This is illustrated in Figure 3.1 for a 

single predictor or feature 𝑥! and response	𝑦 with n samples.  
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Figure 3.1 OLS regression estimation: The figure shows	the OLS model built 

based on the linear projection between feature 𝑥!	and response 𝑦.	A new input 

on 𝑥!will predict the corresponding 𝑦 from this (projection) regression line. 

 

 

If we expand the number of predictors as  𝑥!, 𝑥". . . 𝑥$	 where 𝑝 is the total 

number of predictors, the linear regression (projection) of 𝑦	can be represented 

by  

 

 
								𝑦 = 𝛽& ++𝛽'𝑥'	

$

'(!

+ 	𝜀                     Eq. 3.1 

   
 

                          OR 	𝑦- = 𝛽.& ++𝛽.'𝑥'	

$

'(!

                     Eq. 3.2 

 

Where 𝛽& is the 𝑦-intercept of the regression entity (line for 2D, plane for 3D or 

higher dimensions) projected, and 𝛽' terms are the slopes or coefficients of each 

of the features considered in a model (Hastie et al., 2008). 𝜀 is the error term that 

represents the difference between 𝑦 and 𝑦-. This error accounts for measurement 

noise and natural variations. The 𝛽.  are estimates of the ‘true’ 𝛽 from the training 

data, and 𝑦- are the estimated or predicted values. The equations and derivations 
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presented in this text are extracted from the sources referenced here (Stigler, 

1981; T. Hastie, R. Tibshirani, 2008). 

If we have 𝑛 number of samples of the response 𝑦-) where 𝑖 = 1, 2. . . 𝑛, the OLS 

regression is obtained by minimising the residual sum of squares (RSS) of the 

actual 𝑦) 	and estimated responses 𝑦-) ,	where we pick the coefficients 𝛽' 	for each 

of 𝑥)' 	(𝑗 = 1, 2. . . 𝑝). The 𝑅𝑆𝑆(𝛽) below is a vector containing all 𝛽& to 𝛽$. 

 𝑅𝑆𝑆(𝛽) = 	+ (𝑦) − 𝑦-))"
*

)(!
			 Eq. 3.3 

   

 
	∴ 	𝑅𝑆𝑆(𝛽) = 	+ (𝑦) − (𝛽& 	+ 	+𝛽'𝑥)'

$

'(!

))"
*

)(!
 Eq. 3.4 

As we are interested in finding the minimum value for RSS, we can differentiate 

Eq. 3.4 w.r.t  𝛽&	and equate to 0 we get 

 
	∴ 	𝑅𝑆𝑆(𝛽)+)* 	= 𝛽. 	= 	

∑ (*
)(! 𝑥) − 𝑥̅)(𝑦) − 𝑦<)
∑ (𝑥) − 𝑥̅)"*
)(!

 Eq. 3.5 

Where 𝑥̅ and 𝑦< is the mean of individual features and their response values, 

respectively.  

We used OLS to statistically adjust features for the effects of covariates like age, 

sex and intracranial volume (ICV). It is important that number of samples 𝑛 is 

greater than predictors 𝑝 for estimating the regression solution. This is because 

when the number of predictors 𝑝>𝑛, the inverse of X	X,cannot be computed. In 

addition, while the model’ performance is optimised with the lowest RSS, it 

does not distinguish informative features versus features independent of the 

response. The OLS is therefore considered as an unbiased algorithm. However, 

for machine learning applications, it is often required to distinguish informative 

versus non-informative features. We can address this issue by penalising and 

eliminating features that do not contribute towards the response variable. The 

Ridge and LASSO regression are the two main types of penalised regression 

discussed below.  
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3.2.2 Optimizing OLS and feature selection using Ridge and LASSO 

The penalised/regularized regression, namely Ridge (L2 norm) (Hoerl and 

Kennard, 1970) and LASSO (L1 norm) (Tibshirani, 1996) creates a linear 

regression model along with a regularisation parameter that punishes features 

that are not informative of the response variable. This is achieved by applying a 

constraint on the RSS solutions as discussed below.  

 

The Ridge regression can be represented as an extension of OLS such that 

 

𝛽.-)./0 =	𝑎𝑟𝑔𝑚𝑖𝑛1 	B+(𝑦) − 𝛽& −	+𝑥)'

$

'(!

𝛽')"
*

)(!

	+ 	𝜆+𝛽'
"

$

'(!

C Eq. 3.6  

  

Where 𝜆 ≥ 0 is called the complexity (regularisation) parameter as it controls 

the amount of shrinkage against the corresponding RSS function. Thus, higher 

the value of 𝜆 greater the amount of shrinkage. We can express the Ridge 

problem as  

 

 

We can rewrite Eq. 3.6 in matrix form 

 

 𝑅𝑆𝑆-)./0(𝜆) = (𝑦 − 𝑋𝛽),(𝑦 − 𝑋𝛽) + 	𝜆𝛽,𝛽 Eq. 3.7  

 

Where 𝑋 is the matrix of 𝑛x𝑝 rather than (𝑝+1). Differentiating Eq. 3.7 w.r.t 𝛽 

we get the optimum 𝛽.-)./0 	𝑎𝑠 

 

 

 𝛽.-)./0 = (𝑋,𝑋	 + 	𝜆𝐼)2!𝑋,𝑦      Eq. 3.8 

 

Here 𝐼 is the identity matrix of dimensions 𝑝x𝑝, and therefore solves the OLS 

problem of computing the inverse of 𝑋,𝑋 in cases of 𝑝>𝑛. The Ridge regression 

does not eliminate features. We can use LASSO regression to achieve this while 

optimising RSS. 
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The other penalised regression is the LASSO regression, which is similar to 

Ridge regression. However, instead of taking the square of the coefficients we 

use their magnitudes to constrain the RSS function. Thus, we have 

 

𝛽.34556 =	𝑎𝑟𝑔𝑚𝑖𝑛1 	B+(𝑦) − 𝛽& −	+𝑥)'

$

'(!

𝛽')"
*

)(!

	+ 	𝜆+I𝛽'I
7

$

'(!

C Eq. 3.9 

  

 

Where 𝑞 > 0. In the case of LASSO 𝑞=1, and for Ridge regression 𝑞=2. We can 

express the regularisation of L1 norm as 

||𝛽||! 	= 	M+|𝛽'|
$

'(!

 

Where ||𝛽||!	is the LASSO regression or L1 norm. The |𝛽'| term is not 

differentiable at 𝛽' = 0, which complicates finding the solution to this 

optimization problem. We therefore use iterative optimization algorithms 

embedded in software packages that solves Eq. 3.9 up to some acceptable 

accuracy.  

 

In graphical form, the Ridge and LASSO regression can be illustrated as in 

Figure 3.2. As shown in the figure, in the Ridge regression the coefficient values 

of the predictor whose contribution to the response is not substantial are shrunk 

close to zero (𝛽" in this case), while in LASSO the coefficient values are set to 

zero. Hence, LASSO regression is best suited for tackling feature selection tasks, 

where the least contributing predictors are eliminated completely.  
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Figure 3.2 Regularization in L2 and L1 norms: The blue areas represent the 

constraint regions of the regularisation norms, whereas red ellipses are contours 

of the RSS for a set of 𝛽s. Here the RSS contours touch 𝛽!" + 𝛽"" ≤ c and |𝛽!| + 

|𝛽"| ≤ c close to zero and exactly zero at 𝛽", for the L2 and L1 norm respectively. 

Reproduced from (Hastie et al., 2008). 

 

In order to acquire the best performing model corresponding to the optimal 𝜆, we 

usually split the dataset into a training and test set and apply a series of 𝜆 values 

to the algorithm. The model’s performance on the train set and test set are 

evaluated with a measurement such as ‘Mean Square Error (MSE)’ given below.  

                                                                                       

 𝑀𝑆𝐸	 = 			
1
𝑛+ (𝑦) − 𝑦-))"

*

)(!
	 Eq. 3.10  

 

𝑦) is the actual response and 𝑦-) is the response predicted by the regression 

model. The model’ parameter 𝜆, is first optimised by applying the k-fold cross-

validation on the training set of the data. During cross-validation, 𝜆 of the best 

average MSE of the k-fold test set is selected. The models’ performance is then 

validated on the test dataset separated earlier, that was not used in the 𝜆 

optimising process. The LASSO regression model utilized in Chapter 4 for 

identifying features associated with facial asymmetry in PWE, incorporated the 

use of MSE to estimate the best value of λ for optimal model performance on the 

given dataset. 
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3.3 Logistic regression for classification analysis 

The regression methods described so far are mainly used for continuous 

response variables but face limitations for modelling discrete variables because 

they rely on applying linear projections to capture non-linear relationships. To 

overcome this, we use logistic regression which employs a sigmoid function to 

estimate probabilities of the response (outcomes) as shown in Figure 3.3 (Hastie 

et al., 2008).  

 

Figure 3.3 Logistic regression estimation: A sigmoid function provides a 

reliable estimation for classifying outcomes. Here for input variable x, the 

probability of the response Y in Class A ranges 0-1. The threshold typically 

from a point of 0.5 from the probability axis P(Y) projected on the sigmoid 

function assigns the class of each data point. 

 

 

Here, for simplicity we have considered a variable response with two possible 

classes: class A and class B. The sigmoid shown in the figure acts as the 

decision curve, which is estimated by maximum likelihood, a statistical 

technique further described in Section 3.4.2.1. The projection of each datapoint 

onto the sigmoid determines the probability of belonging to one of the classes. 

Thus, the datapoints are classified into one of the classes from the response 

variable. Similar to linear regression, a regularisation term can be added with the 
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maximum likelihood to penalise features that are not informative of the 

response.   

 

3.3.1 Evaluating the performance of classification models 

While designing a classification model for any dataset, features’ datapoint tend 

to overlap among the different response variables, and therefore inevitably some 

of the datapoints will be misclassified. Thus, in order to find the classifiers’ 

optimal threshold and evaluate performance, we use the Receiver Operator 

Characteristic (ROC) graph shown Figure 3.4. The area under the curve (AUC) 

is simply a measure on how well the classes are separatable based on the 

classifier’ prediction.  

 

 
Figure 3.4 ROC-AUC graph for logistic regression: The ROC graph illustrates 

the true positive (TP) rate and false positive (FP) rate encountered by the model 

with the corresponding threshold. Here, point A has the highest TP rate at 0 FP 

rate while point C is the lowest FP rate at the highest TP rate. Point B achieves 

the same TP as A, but increases FP and therefore not considered an optimal 

threshold. AUC values can be 1 for best performance and 0.5 for random 

predictions. Adapted from (Zhu, Zeng and Wang, 2010). 
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To graph the ROC, we define the sensitivity as a ratio of true positive (TP) and 

total positives P, and specificity as a ratio of true negative (TN) and total 

negatives N. Table 3.1 shows the confusion matrix of the potential outcomes 

expected by the model, where FN and TN are false negative and true negative 

respectively. The TP rate and FP rate can be calculated from  

 

𝑇𝑃	𝑟𝑎𝑡𝑒 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃
𝑃 = 	

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

 

		𝐹𝑃	𝑟𝑎𝑡𝑒 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −
𝑇𝑁
𝑁 =	

𝐹𝑃
𝐹𝑃 + 𝑇𝑁 

 
 
 
Table 3.1 Confusion matrix of outcomes classified: Table shows the logistic 

regression classes predicted as positive (P) and negative (N) versus the actual 

class.   

 
 

We can also use the positive predictive value, error rate or accuracy to evaluate 

the model’ performance. We use AUC in our analysis due to the advantage of 

being invariant to class-imbalances. Thus, the ROC graph and AUC values can 

be used to fine-tune, the logistic regression parameters of threshold, sensitivity 

and specificity. The AUC metric was employed in Error! Reference source not 

found. and Chapter 6 to assess the predictive power of the disease stages 

assigned to patients, in relation to their treatment response. 

 

3.4 Statistical tools used in disease progression modelling 

In Chapter 5, we utilize the EBM algorithm to estimate the sequence of 

structural changes in the brain, transitioning from normal to abnormal states, in 

PWE. An ‘event’ in this context could be hippocampal shrinkage to a certain 
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degree. For instance, we investigate whether the amygdala or the hippocampus 

shrinks first in PWE. The EBM algorithm can estimate this sequence from cross-

sectional data, providing insights into disease progression over time. The 

estimated order of events is optimised using the Markov Chain Monte Carlo 

(MCMC) sampling algorithm discussed in Section 3.4.1. Furthermore, the 

probability in which the brain measure of a patient transitions from normal to 

abnormal is estimated using mixture models which are discussed in Section 

3.4.2. 

 

3.4.1 The Event-based model architecture  

The overview of the EBM algorithm is depicted in Figure 3.5. The MCMC 

algorithm is the central component of the EBM, which plays a crucial role in 

determining the order of features that transition from normal to abnormal, such 

that the estimated order best explains our observed data. Here we assume the 

sequence of brain measures becoming abnormal cannot revert to a state where 

the brain measures are considered as normal. The Markov Chain also assumes 

that the future event state is independent of the past, given the present (Chung, 

1967). In the EBM algorithm, we define a discreet set of random events that 

correspond to each feature becoming abnormal: 𝐸!, 𝐸". . . 𝐸8 as a Markov Chain 

with 𝑘 number of events. The Markov Chain is a system where an event moves 

consecutively to the next event, and the future event does not depend on the 

previous events.  

 

We can express the sequence ordering that we aim to estimate as 𝑆̅=(s(1), 

s(2)…s(k)). If for each feature, we have 𝑛 subjects of patients and controls, and 

we have independent measurements X, then the likelihood of subject 𝑗 at 

position 𝑡 for a sequence 𝑆 is 

 

 
𝑃(𝑋'|𝑆, 𝑡) = 	\𝑃(𝑥')

9

)(!

|𝐸5())) \ 𝑃(𝑥')

8

)(9<!

|¬𝐸5())) Eq. 3.13 
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Where at position 𝑡, events 𝐸5()) representing structural changes in brain region 

1,…,𝑡 have occurred, whereas events 𝐸5()) 𝑡+1,…,𝑘 have not yet occurred, for 

the current sequence 𝑆. Subject 𝑗 can belong to an alternative event across events 

𝑡 = 0,…,𝑘, where at 𝑡 = 0, none of the events have occurred. We can reduce the 

unknown variable 𝑡 in Eq. 3.13, by defining the equivalent posterior probability 

𝑃(𝑋'|𝑆), for all possible events 𝑡 = 0,…,𝑘, such that 

 

 
𝑃(𝑋'|𝑆) =+𝑃(𝑡)𝑃(𝑋'|𝑆, 𝑡)

8

9(&

 Eq. 3.14 

 

Where 𝑃(𝑡) is the prior probability of subject being at point 𝑡 for subject 𝑗. 

Therefore, for all 𝑛 subjects we can write 

  

 
𝑃(𝑋|𝑆) =\𝑃(𝑋'

*

'(!

|𝑆) Eq. 3.15  

 

Substituting Eq. 3.13 and Eq. 3.14 in Eq. 3.15  we get  

 

 

Hence, the likelihood function 𝑃(𝑋|𝑆), describes how well our data 𝑋 is 

represented by the given sequence 𝑆. The EBM therefore strives to maximise 

this likelihood function, which corresponds to a characteristic sequence 𝑆̅. We 

can then use Bayes’ theorem to obtain the posterior distribution 𝑃(𝑆|𝑋) 

 

 
𝑃(𝑆|𝑋) =

𝑃(𝑆)𝑃(𝑋|𝑆)
𝑃(𝑋)   Eq. 3.17 

 

Here the marginal distribution is analytically intractable. We therefore use a 

MCMC algorithm to sample from 𝑃(𝑆|𝑋). Monte Carlo is a method of drawing 

a random sample from the probability distribution, such that the random sample 

is an approximate representation of that distribution (Metropolis et al., 1953). 

The MCMC is used to draw random sequences of 𝑆 and determines 𝑃(𝑋|𝑆) for 

𝑃(𝑋|𝑆) = 	\^+𝑃(𝑡)(\𝑃(𝑥'5())|𝐸5()))
9

)(!

) \ 𝑃(𝑥'5())

8

)(9<!

|¬𝐸5())))
8

9(&

_
*

'(!

 Eq. 3.16  
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each of these. A greedy ascent (GA) algorithm is used to find the best initial 

sequence 𝑆 which maximises 𝑃(𝑋|𝑆), to find the desired feature sequence 𝑆̅. 

Depending on the distribution of the feature’ measurements, we can use a 

gaussian distribution or kernel density to approximate the required likelihood 

function. The bootstrap samples provide a robust estimate uncertainty or 

variation of the maximum likelihood sequence. 

 

 
Figure 3.5 EBM architecture: Measures of brain regions from patients and 

controls are input into the EBM. Using mixture models and expectation-

maximisation, datapoints are assigned probability values (0-1) for each of the 

events. A GA algorithm run for m iterations, which gives the best sequence for 

the MCMC to start on, and is repeated for s different initialisation points. 

MCMC procedure run for n iterations, retains S=<!=	S’ for a<1, thus preventing 

the algorithm being adhered in a local maxima state. Finally, the uncertainty of 

the estimated sequence is computed from variance of the MCMC iterations. A 

bootstrap algorithm of p samples of the data can be used for a robust estimate of 

the uncertainty. Brain region measures that best describe the sequence, are used 

to place subjects in their respective stages.  
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3.4.2 Mixture Models 

3.4.2.1 Normal distributed data likelihood using maximum likelihood 

For a given dataset 𝑍 ∈ 𝑧) with 𝑖 =1,…,𝑛, we have a probability function 𝑃(𝑍|𝜃)  

that represents the probability of observing datapoints of 𝑍, given the parameters 

𝜃. Maximum Likelihood is simply the process by which we estimate parameters 

𝜃, so that observing datapoints 𝑧!, 𝑧",…, 𝑧*, (probability of 𝑃(𝑧!|𝜃), 𝑃(𝑧"|𝜃),… 

,𝑃(𝑧*|𝜃)) is maximized (Fisher, 1912). For a normal distribution, 𝜃 is simply the 

mean (𝜇) and standard deviation (𝜎) of the dataset. We can represent the 

probability density function of 𝑍 as 

 

 𝑧) 	~	𝑔>(𝑍)  Eq. 3.18  

   

Where θ represents one or more unknown parameters of the distribution of 𝑍. 

For a normal distributed data, we use a gaussian function represented as 

 

 𝑔>(𝑍) = 	
1

√2𝜋𝜎
𝑒2

!
"(?	2	@)

!/B! 

 
Eq. 3.19  

𝐻𝑒𝑟𝑒	𝜃 = 	 (𝜇, 𝜎) 

 

The likelihood function can be evaluated by computing the probability observed 

for all datapoints. If we have 𝑛 samples, we can compute this as 

 

 
𝐿(𝜃; 𝑍) =\𝑔>(𝑍)

*

)(!

 Eq. 3.20  

 

To find the maximum 𝐿(𝜃; 𝑍), we differentiate w.r.t 𝜃 components and equate to 

zero. As the derivative of log of 𝐿(𝜃; 𝑍) is easier to compute we write  

 

 
𝑙(𝜃; 𝑍) =+𝑙(𝜃; 𝑧))

*

)(!

 Eq. 3.21  
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																				= +𝑙𝑜𝑔	𝑔>(𝑧))

*

)(!

 Eq. 3.22 
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 Eq. 3.23  

 

Solving for 𝜇 and 𝜎 we get 

   

 
		𝜇 = 		+

𝑧)
𝑛

*

)(!

 

And 

Eq. 3.24  

 

 

									𝜎 = M
1
𝑛+(𝑧) 	− 	𝜇)"

*

)(!

 Eq. 3.25  

 

 

The standard EBM developed by Fonteijn et al. (2012) uses gaussian mixtures, 

i.e., one gaussian representing event (abnormal) and the other non-event 

(normal). These are estimated using the Expectation Maximization algorithm 

(Dempster, Laird and Rubin, 1977) which assigns values for 𝑃(𝑥'5())|𝐸5())) from 

Eq. 3.16, as shown in Figure 3.6.  
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Figure 3.6 Estimate abnormal events using mixture modelling: A Expectation 

Maximization algorithm is used to model the brain measures as abnormal and 

normal. This technique assigns probability values between 0.1-0.9 of being 

abnormal for each subject.  

 

 

3.4.2.2 Skewed or multimodal data’s likelihood using kernel density 

In some cases, neuroimaging data may not have a normal distribution and can be 

misrepresented by the maximum likelihood function we discussed in the 

previous section. The kernel density estimation (KDE) (Hall, 1982) is a non-

parametric way to estimate a smooth likelihood function of the observed data. 

This is done by taking the average of kernel functions centred at each data point. 

The kernel function should ideally be symmetric around data point 𝑥 such that 

𝐾(𝑥) = 𝐾(−𝑥), likelihood decrease away from datapoint such that 𝐾′(𝑥) ≤ 0 

for every 𝑥 > 0,	and non-negative 𝐾(𝑥) ≥ 0 for every 𝑥. Normally we use a 

gaussian, box or triangular function, as these satisfy the above criteria. A 

gaussian function being used to estimate the data likelihood is shown in Figure 

3.7. If we have 𝑛 samples, we can represent the KDE estimate 𝑓.(𝑥)	from a 

likelihood function 𝑓(𝑥) as 

 

 
𝑓.(𝑥) =

1
𝑛ℎ+

(𝑥 − 𝑥))
ℎ

*

)(!

 Eq. 3.26  
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Here ℎ is called the bandwidth of 𝑓.(𝑥),	and is used to control the width of each 

kernel. The mean integrated squared error (MISE) can be used to express the 

expected loss incurred by the choice ℎ such that 

 

 𝑀𝐼𝑆𝐸(ℎ) = 𝐸 wx(𝑓.(𝑥) − 𝑓(𝑥))"𝑑𝑥z Eq. 3.27  

 

The optimal bandwidth ℎ for Eq. 3.27 can be solved using Silverman's rule of 

thumb (Silverman, 1982) expressed in Eq. 3.28, with the assumption that the 

data is univariate. 

    

 
Figure 3.7 KDE for non-parametric distributions: The likelihood function is 

computed by taking the average of the gaussian functions imposed at each 

datapoint. The choice of bandwidth h determines the smoothness of the 

likelihood function. Here we represent probability density in blue and grey for 

the optimal h, and values of h higher or lower the optimal respectively.  

 

 

 
ℎ = |

4𝜎-C

3𝑛 �

!
C
= 1.06𝜎-𝑛2!/C Eq. 3.28  

 

The equation above in a nutshell is a function of sample size 𝑛, and the data 

spread 𝜎-.  
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Often in a dataset some feature’ distributions may be single skewed, and others 

have multiple peaks. In order to make the ℎ value robust for long-tailed skewed 

distribution, as well as bimodal mixture distribution, it is better to substitute the 

value of 𝜎- with another parameter A, which is given by: 

 

 𝐴	 = 	𝑚𝑖𝑛(	𝜎-, 𝐼𝑄𝑅/1.34) Eq. 3.29  

 

Where IQR is the interquartile range of the data. 

 

The above non-parametric mixture model was first incorporated into the EBM 

by Firth et al., (2020), and was used to determine the sequence of cortical 

atrophy in Alzheimer’s disease patients. 

 

3.5 The Subtyping and Staging Inference (SuStaIn) algorithm 

The SuStaIn algorithm, an extension of the EBM, addresses a limitation of the 

EBM assumption, which assumes that all individuals follow the same sequence 

of structural changes in neurodegenerative diseases. SuStaIn overcomes this 

limitation by revealing distinct imaging-derived subtypes, each characterized by 

unique patterns of structural brain changes. These different sequences within 

each imaging-derived subtypes identified by SuStaIn, allow for a more nuanced 

understanding of disease progression. A basic overview of the SuStaIn algorithm 

architecture is shown in Figure 3.8. The progression of these changes in brain 

measures within each imaging-derived subtype can be elucidated through a 

linear z-score model, depicting a piecewise linear trajectory across a temporal 

space. This z-score model within SuStaIn algorithm helps uncover the gradual 

and continuous linear accumulation of changes in brain measures, as opposed to 

an abrupt transition from a normal to an abnormal level in the EBM algorithm. 

The equation that the SuStaIn algorithm follows can be written as  

 

𝑃(𝑋|𝑀) =+𝑓D𝑃(𝑋|𝑆D)
E

D(!
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Here, the algorithm aims to maximise 𝑃(𝑋|𝑀) which represents the probability 

of observing the data 𝑋 for a given model 𝑀. The 𝑃(𝑋|𝑆D) is estimated similar 

to Eq. 3.16 in the EBM algorithm. The SuStaIn algorithm considers the number 

of image-derived subtypes 𝐶 specified by the user for which it estimates the 

proportion of subjects 𝑓D that belong to each subtype, and the order 𝑆D in which 

brain measures reach each z-score for each subtype 𝑐 = 1 … 𝐶. We determine 

the optimal number of image-derived subtypes 𝐶 for a particular data using 

cross-validation-based information criterion (CVIC) (Gelman, Hwang and 

Vehtari, 2014) as discussed in Section 6.2.3.  

 

 
Figure 3.8 Core architecture of the SuStaIn algorithm: At first the algorithm 

estimates the S1 sequence that can best describe the entire dataset using a 

maximum likelihood approach as described in the EBM algorithm. The 

algorithm then splits the dataset into two subtypes (S11 and S12) with a random 

set of subjects in each subtype, then swaps patients between subtypes and retains 

the set that demonstrates maximum likelihood for a sequence of ‘events’. 

Depending on the number of subtypes specified, the algorithm continues to split 

the newly determined subtype, into additional two subtypes as shown. Similar to 

the previous step, the algorithm selects the set of subtypes (split and previous 

unsplit subtype) with sequences that demonstrate maximum likelihood. 

 

 

 

 

 

 

 



 49 

Chapter 4 Investigating the association 

between facial asymmetry and brain asymmetry 

in epilepsy 
 
 
Parts of the following chapter have been published in Balestrini et al., (2021). 

My part was to investigate if asymmetry of regional brain measures observed in 

PWE are associated with their facial asymmetry. In particular, I processed the 

patients MRI scans, and developed the machine learning pipeline (Section 4.2.5) 

that predicted facial asymmetry from the asymmetry of regional measures in the 

brain caused by pathological mechanisms of epilepsy. I also investigated the 

association between these structural changes in the brain and duration of illness.  

 
 

4.1 Introduction 

Neurological disorders often do not affect brain regions bilaterally, thus, creating 

a disease-associated asymmetry. For instance, in autism, structural brain 

asymmetry has been found along with increased facial asymmetry (Hammond et 

al., 2008; Postema et al., 2019). Moreover, in Down syndrome a typical face 

shape can arise from pathogenic genetic variation along with increased structural 

brain asymmetry (Allanson et al. 1993; Fu et al., 2020).  

 

Previous studies using data derived from neuroimaging have identified cortical 

thinning, predominantly in the ipsilateral structures in people with focal 

epilepsies (Bernasconi et al., 2004; Thom et al., 2012; Bernhardt, Bonilha and 

Gross, 2015; Whelan et al., 2018). Therefore, in the context of focal epilepsy, it 

can be observed that patients exhibit an increase in asymmetry between the left 

and right brain regions that arise from lateralized structural changes (Alhusaini 

et al., 2012; Galovic et al., 2019; Hatton et al., 2020). We’ve also discussed in 

the introduction that PWE have subtle asymmetric facial features. Discreet 

points of facial features obtained from 3D models using the 3D 
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stereophotogrammetry technique can be used to quantify facial asymmetry in 

individuals (Hammond, 2007).  

 

Thus, using the asymmetric facial measures derived from 3D models, we 

investigate if unilateral changes in focal epilepsy leading to asymmetry brain 

measures are associated with a higher degree of facial asymmetry, compared to 

people with IGE (that tend to have lower degree of unilateral changes) or 

controls without epilepsy. We subsequently investigate whether the facial 

asymmetry is predominantly associated with focal symptomatic cases with noted 

brain lesions, as opposed to focal cryptogenic cases without detectable or 

identified lesions on the MRI scans.  

 

4.2 Methods 

4.2.1 Patients and controls 

PWE were consecutively recruited at the National Hospital for Neurology and 

Neurosurgery (UK). Controls were recruited as volunteers, unaffected relatives 

of PWE, from the UCL Institute of Child Health (London, UK). The data 

gathered included age, sex, epilepsy diagnosis (Commission on Classification 

and Terminology of the ILAE, 1989), MRI brain scans and history of facial 

injury or surgery. In brief, PWE were grouped according to their syndrome: 

focal cryptogenic, focal symptomatic, and IGE. In total we had 307 PWE with 

recorded measures of facial asymmetry. We also had MRI scans for 234 of the 

PWE. Data on duration of illness was available for 194 of these 234 PWE, 

including focal epilepsies classified as cryptogenic (n=97), symptomatic (n=70) 

and IGE (n=27).  

 

4.2.2 Signature asymmetry index (SAI)  

The signature asymmetry index (SAI) was acquired by collaborators at the UCL 

Institute of Neurology (Balestrini et al., 2021). The steps used for computing the 

SAI are illustrated in Figure 4.1. In brief, 3D face images were captured with a 

single device (Vectra CR 3D; Canfield Scientific Inc.), and landmarks 
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previously described by Toma et al., (2009) were manually annotated for each 

subject. Principal component analysis was used to reduce the number of points 

on the 3D face and construct the dense surface models (DSMs) that represented 

99% of the facial features.  

The ‘signature’ of a face surface is the set of differences between the points 

position on the DSM of PWE and controls, where the average of the controls 

across age and sex are compared to individual PWE. A signature heat map of the 

difference between the original face and its mirrored form (usually in the plane 

𝑥=0) can be used to demonstrate the facial asymmetry compared to that of 

controls. Thus, the signature weight of this difference, also called the SAI, is 

used to quantify the degree of facial asymmetry (Balestrini et al., 2021).  

 

 
Figure 4.1 Dense surface model (DSM):  PCA is applied on (A) DSM model 

with morphometric points of the face (measured in milli-meters (mm)). The 

principal components or modes of shape variation are extracted, which reduces 

the data dimensions (B). Sparse anatomical points extracted are projected on 

subjects individually (C), which is used to compute facial asymmetry. Adapted 

from (Hammond, 2007).    

 

 

 



 52 

4.2.3 Brain MRI imaging and processing 

SAI measures were obtained from 307 PWE, attending the clinics at the National 

Hospital for Neurology and Neurosurgery, London (UK). Of these we had T1W 

MRI scans for 239 PWE were acquired within a period of two years of 

measuring the respective SAI. In total, three different 3D-T1W MRI sequences 

were used: 1) a coronal T1W 3D inversion-recovery fast spoiled gradient echo 

(IR-FSPGR) with repetition time / echo time / inversion time = 8.1 / 3.1 / 450 

ms; field-of-view (FOV) 187x240x240 mm; matrix 170x256x256 (176 scans); 

2) an axial T1W 3D (FSPGR BRAVO) with TE/TR/TI 3.6/0.2/400 ms, FOV 

240×240×183 mm, matrix 256×256×166, parallel imaging acceleration factor 2 

(43 scans); and 3) a three-dimensional (3D) T1W inversion-recovery fast spoiled 

gradient recalled echo (TE/TR/TI 3.1/7.4/400 ms, FOV 224×256×256 mm, 

matrix 224×256×256, parallel imaging acceleration factor 2 (20 scans). 

Sequences 1 and 2 were used for data acquired between August 2004 and March 

2013 on a single 3T MRI GE Signa HDx scanner (GE, Milwaukee, WI, USA) 

using an 8-channel head coil. Sequence 3 was used for data acquired from 

September 2013 onwards, on a 3T GE Discovery MR750 (GE, Milwaukee, WI, 

USA) with a 32-channel head coil. 

 

 

Following a visual inspection, MRI scans with resections were excluded before 

using FreeSurfer 6.0 (Dale, Fischl and Sereno, 1999) for the automated 

segmentation of brain regions. A brief pipeline used in FreeSurfer to extract 

cortical thickness, surface area and subcortical volumes is shown in Figure 4.2. 

From the FreeSurfer processed images, we extracted information on 156 features 

from the left and right brain regions, which are defined in the Desikan-Killiany 

atlas (Desikan et al., 2006). We had 57 measures of the brain asymmetry index 

(BASI) which were computed (as described further and expressed in Eq. 4.1.) 

from: 70 (left and right hemisphere together) regional measures of cortical 

thickness, including average hemisphere cortical thickness and average 

hemisphere surface area; 16 subcortical volumes; and 26 measures were for 

hippocampus subfields. The BASI measures used in the analysis are listed in 

Supplementary Table S1. 
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Figure 4.2 FreeSurfer pipeline for segmentation and feature extraction: In the 

first step FreeSurfer uses a skull stripping algorithm to remove nonbrain tissue. 

To account for artifacts and RF-field inhomogeneities, the highest intensity of 

white matter is used to center the mean of every x-y white matter pixels. An 

image processing algorithm determines the grey-white matter boundary for each 

slice, and subsequently computes cortical and subcortical measures. This is 

followed by deformation of grey-white matter boundary outward, to generate the 

pial surface mesh. The cortical surfaces are inflated to a smooth surface where 

sulci are red and gyri are green. Each vertex on the inflated surface is registered 

to a template sphere, that is derived from a group of healthy and disease state 

scans. Adapted from Dale, Fischl and Sereno, (1999) and (Gao et al., 2020). 

 

 

For an automated quality control step, we employed a script developed by the 

ENIGMA consortium (http://enigma.ini.usc.edu/protocols), which, for every 

brain region, identifies potential outliers based on the distribution in the cohort. 

We tested for outliers for a range of z-scores and reviewed the FreeSurfer 

segmentation on MRI scans, for corresponding brain region indicated as outlier. 

Following this we found scan values showing a z-score of ≥4.7 in either 

direction marked as outliers were best in identifying mis-segmented regions. 
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This automated quality control highlighted five patients whose segmented brain 

scans were manually inspected and excluded as outliers. Using the resulting 234 

scans, regional measures were adjusted for ICV, age, sex and scanner using 

linear regression. We computed the absolute BASI between contralateral 

regions, where the BASI of each brain region (57 in total) was defined as the 

difference between the left (57) and right (57) brain regions, divided by their 

average as shown in Eq. 4.1                                 

 

 𝐵𝐴𝑆𝐼F- =	
𝐵𝑅3 − 	𝐵𝑅-

(𝐵𝑅3 + 𝐵𝑅-)/2
 Eq. 4.1 

 

4.2.4 Correlation analysis 

We computed Pearson’s correlation between duration of illness and the BASI of 

average thickness and surface area of cortical brain regions to investigate the 

effect duration of illness has on the brain. In order to investigate if face 

asymmetry is associated with increased brain asymmetry, we also computed 

Pearson’s correlation between SAI and the BASI of average thickness and 

surface area of cortical brain regions.   

 

4.2.5 Machine learning approach 

The automated segmentation of brain regions by FreeSurfer enables us to 

investigate the association between structural changes in the brain and facial 

asymmetry. In pursuit of this, we constructed a regression model utilizing 

sample data from our cohort and assessed the model’s predictions.  

 

We chose the LASSO regression model, as outlined in Section 3.2.2, due to its 

ability to provide a transparent interpretation of the BASI measures that predict 

the SAI values. Our objective was to predict patient’ SAI (response variable), 

from the 57 BASI brain regions (features) computed. Before incorporating them 

into the learning algorithm, BASI values underwent normalization, where each 

feature had the dataset mean subtracted, and the values were divided by the 

Euclidean norm. This ensured a comparable range for each BASI value, 
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facilitating a fair estimation of their corresponding LASSO coefficients. Figure 

4.3 illustrates the flow chart used to build and train the LASSO model. In brief 

we split the data into a training and testing set to ensure our predictions are not 

biased or overfitted to the data. We optimized the regularization parameter 𝜆, 

and compared the predicted SAI and measured SAI on the test set. This process 

was repeated 1000 times to introduce randomness in splitting train and test data 

and to better evaluate the trained model’ performance.  

 

 

 
Figure 4.3 Machine learning flow chart: The dataset is split into random 80% 

for training and 20% test. λ is optimised through a 10-fold cross-validation, (λ 

values 2-16 to 2-4) on the train set. Features selected by LASSO are noted along 

with the performance evaluation parameters of MSE and correlation between 

measured SAI and predicted SAI. This process was repeated 1000 times, and a 

15% frequency cut-off of features selected by LASSO model was used to extract 

the top five features to be interpreted. 
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A similar LASSO model was analysed with added features of lesion laterality 

observed on MRI scan, and the type of focal epilepsy determined for each 

patient. Thus, we investigated these additional clinical variables effect on SAI, 

of PWE. The BrainPainter software was used to visualise the frequency of the 

brain regions selected across the 1000 repetitions 

(https://brainpainter.csail.mit.edu) (Marinescu et al., 2019). Moreover, we 

analysed only people with focal cryptogenic (sample size (n)=109) and focal 

symptomatic (n=96) separately to investigate if the prediction accuracy of SAI is 

improved with LASSO model trained on BASI of brain regions and laterality of 

the lesion in an MRI scan as additional feature. 

 

4.3 Results 

Table 4.1 shows demographics of the 307 PWE with SAI measures, and the 194 

PWE with MRI scans available. The cohort had a fairly balanced proportion of 

sex ratio, with slightly more females. The duration of illness recorded for some 

PWE extended to over 50 years. PWE with lesions detected on left and right 

hemisphere were also well balanced. Sample size for people with focal 

symptomatic, focal cryptogenic and IGE and MRI sequences used in the 

acquisition process is also shown in Table 4.1. 

 

4.3.1 Duration of illness relation with SAI and BASI  

Duration of illness was significantly correlated with BASI of average cortical 

thickness (r=-0.19 p=0.0075) but not with BASI of surface area (r=0.06 

p=0.3968) (see Figure 4.4).  In the case of SAI and BASI of cortical measures, 

the correlation was r=-0.01 (p=0.9306) and r= -0.05 (p=0.4820) for BASI of 

average thickness and BASI of surface area, respectively (Figure 4.4). 
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Table 4.1 Patient demographics: Table shows sex, duration illness, lesion side 

detected on MRI for people with focal symptomatic, focal cryptogenic and 

generalized epilepsy. 

 

Focal 

symptomatic 

cases 

Focal 

cryptogenic 

cases 

Generalized 

cases 

Total (Focal + 

Generalized) 

cases 

Sex     

Male 55 61 17 133 

Female 71 82 21 174 

Total SAI measures 126 143 38 307 

Age at SAI     

Mean/±SD 41.63 ±11.64 38.10 ± 12.51 34.75 ±10.71 39.33 ±12.10 

Duration of illness     

Mean/±SD 27.73 ±13.21 22.30 ±12.45 21.37±12.46 24.61±13.06 

Lesion on MRI scan     

Left 34 N/A N/A 34 

Right 36 N/A N/A 36 

Unknown N/A 97 27 124 

Total MRI scans 70 97 27 194 

MRI sequence     

FSPGR_3D 53 69 17 139 

FSPGR_BRAVO 12 19 8 39 

1mm_Cor_MPRAGE 5 9 2 16 

 

 

4.3.2 Facial and brain asymmetries in PWE 

The LASSO model was trained on patients of all epilepsy syndromes using the 

BASI of brain regions, along with additional features of epilepsy syndrome, side 

of lesion present on MRI scan, in separate analysis as predictors, with SAI as the 

response variable. The main analysis involving all 234 patients using only brain 

regions yielded an average correlation of -0.022 and an average MSE of 0.099 

(Figure 4.5). Based on this correlation result, we can infer the model would not 

be able to make any useful predictions. 
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Figure 4.4 Correlation analysis of duration of illness and SAI vs BASI average 

cortical thickness and BASI average surface area: The strength of relationship 

shows BASI thickness decreases for longer duration of illness, whereas no such 

relationship is observed in the case of BASI average surface area and duration of 

illness. The facial asymmetry measures appear to be independent of the BASI 

measures as illustrated in the figure. 

 

 

Furthermore, adding the information on epilepsy syndrome and lesion laterality 

as features, yielded a mean correlation of -0.024 and mean MSE of 0.099. Thus, 

there was no notable difference in the average correlation and MSE of the two 

models. Of the 1000 iterations, in 683 models LASSO did not select any features 

besides the intercept (indicated by correlation values of exactly 0). However, in 

the remaining models, the frequency at which the features were selected are 

listed in Supplementary Table S1. Here, the most frequently selected features 

were the entorhinal gyrus (25.8%), fimbria (25.6%), the pallidum (25.2%), the 

frontal pole (16.8%) and the caudal anterior cingulate (16.2%), which span the 

frontal and anterior regions of the brain and are shown in Figure 4.6. The model 
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that included the two clinical variables also selected the side of lesion on MRI 

scan among these.  

The final analysis was to determine the association between increased SAI and 

focal epilepsies. We analysed only people with focal cryptogenic and focal 

symptomatic separately. Here we found the focal cryptogenic model performed 

slightly better compared to focal symptomatic cases, with average correlation 

(n=109) of 0.095 (average MSE of 0.11) and average correlation (n=96) of -0.03 

(average MSE of 0.09), respectively. 

 

 
Figure 4.5 Correlation and MSE distribution of predicted vs actual SAI:  

Average correlation of predicted vs actual SAI with LASSO model trained on 

BASI of brain regions.  
 

 

 

 

 
Figure 4.6 Brain region selection frequency: Patients from all categories 

included, model trained on BASI brain regions, epilepsy classification and lesion 

laterality on MRI scan. The entorhinal gyrus (dark red), fimbria (dark orange), 

pallidum, frontal pole, caudal anterior cingulate (yellow) were the top brain 

regions selected in the LASSO model to predict SAI across the 1000 iterations. 
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4.4 Conclusion 

Our collaborators, Balestrini et al., (2021), showed that people with lateralised 

focal epilepsies have an increased degree of facial asymmetry, compared to 

individuals with IGE or controls without epilepsy. Evident from the correlation 

result of BASI regional thickness and surface area measures, versus SAI, the 

performance of the LASSO model would indicate minimal relationship between 

these measures. This suggests that pathological mechanisms that cause structural 

changes in the brain in PWE are independent to those responsible for increased 

facial asymmetry. In addition, the actual sidedness of lesion included in the 

analysis did not appear to increase the model performance of predicting the SAI. 

This performance was maintained after excluding PWE with unilateral lesions of 

established acquired aetiology. Although the size of the lesions was not 

systematically measured, in most cases the brain structural lesion was not 

extensive. Whilst there was a significant effect of disease duration on both brain 

and facial asymmetries, there was no association between brain asymmetry and 

facial asymmetry.  

 

We found that disease duration is associated with increased asymmetry of 

cortical thickness as previously demonstrated (Bernasconi, Natsume and 

Bernasconi, 2005; Bonilha et al., 2006; B. C. Bernhardt et al., 2009; Whelan et 

al., 2018), and with increased facial asymmetry (Balestrini et al., 2021). In 

addition, studies using magnetoencephalography (MEG) have shown focal 

epilepsies with altered connectome profiles of the brain are also associated with 

disease duration (Martire et al., 2020; Ramaraju et al., 2020). This indicates 

structural changes in the brain affect networks in the brain and not confined to 

specific regions. Structural brain asymmetry and increased facial asymmetry has 

also been described in other neurological diseases, including autism spectrum 

disorder (Hammond et al., 2008; Postema et al., 2019). The findings from these 

studies suggests altered neurodevelopment may lead to structural changes in the 

brain. Our collaborators, Balestrini et al., (2021) proposed that the greater facial 

asymmetry may be explained by aberrant mechanisms between the brain and 

facial structures.  
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These findings published in Balestrini et al., (2021) suggest that the DSM model 

provides distinguishing features between focal and generalised epilepsy, 

warranting further research to explore its potential clinical implications. 

However, for future consideration, it’s crucial to note that alterations these in 

facial features resulting from pathological factors tend to be subtle in PWE. Such 

subtleties may escape detection by clinicians and necessitate specific training for 

accurate identification. (Chinthapalli et al., 2012; Galizia et al., 

2012).  Moreover, atypical facial features can result from injuries or conditions 

other than epilepsy. Additionally, the accuracy of identifying facial landmarks 

by operators in research may be compromised by the diverse facial structures 

across the population (Chinthapalli et al., 2012).  

 

In summary, appropriate measures would need to be considered for adopting the 

use of facial asymmetry for clinical applications and research for PWE. Future 

studies, incorporating data on seizure semiology and a larger sample size, can 

contribute to a better understanding of the utility of facial asymmetry. 

Furthermore, longitudinal data acquisition in future research can provide insights 

into the progression of facial feature asymmetry and epileptogenesis. 
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Chapter 5 A novel disease staging of PWE 

based on structural changes in the brain 
 

5.1 Background 

The investigation into structural changes in the brain in epilepsy has gathered 

significant interest in recent decades, aiming to enhance our understanding of 

disease progression and its implications for clinical management. Here we 

investigated whether staging people with MTLE-HS based on the progression of 

structural changes, from one region to another are associated with clinical 

features of disease duration and treatment response. This work has been 

published in Lopez et al., (2022). 

 

 

In a recent study conducted by Zhang et al. (2017), researchers aimed to 

elucidate a progression pattern comparable to our work by utilizing Granger 

causality analysis. Their analytical approach aimed to determine whether a 

previously affected brain region or a group of brain regions with structural 

changes could predict the subsequent abnormal brain region. Thus, their method 

attempts to make a “causal” inference from linear relationships. Zhang et al., 

(2017) found that subcortical regions such as the hippocampus and thalamus 

“causally” affected other regions, most prominently the prefrontal cortex and 

cerebellum. Their approach however does not allow direct inference of a 

temporal sequence. A major step towards addressing the question of progression 

was provided by previous longitudinal studies that assessed progressive atrophy 

in people with MTLE-HS (B. C. Bernhardt et al., 2009; Coan et al., 2009; 

Bernhardt, Kim and Bernasconi, 2013; Keller et al., 2014). The findings from 

these studies indicated structural changes in the subcortical regions, 

predominantly the ipsilateral hippocampus, thalamus, amygdala and were also 

widespread across cortical structures including those of the temporal and frontal 

lobe structures.  
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Here, we investigate the sequence in which structural changes in the brain occur 

in people with left and right MTLE-HS using the EBM described in Section 3.4. 

Since its inception the EBM has been used across a wide range of neurological 

diseases including Alzheimer’s disease (Fonteijn et al., 2012), multiple sclerosis 

(Dekker et al., 2021), amyotrophic lateral sclerosis (Gabel et al., 2020) and 

Parkinson’s disease (Oxtoby et al., 2021). The findings from these studies have 

helped map the early pathological changes in the brain in each of the respective 

diseases and the sequential progression of changes in other parts of the brain. 

Please see Young et al., (2024) for a recent review.  

 

Patients resistant to ASMs are reported to have a better outcome following 

surgery if the epileptogenic region is resected within 5 years (Simasathien et al., 

2013; Jehi and Mathern, 2014). However, the current referral process for surgery 

can take up to a decade or longer, which can seriously impact the quality of life 

for these patients. Early identification of patients resistant to ASMs and their 

causes at the time of epilepsy diagnosis would be highly advantageous. 

Moreover, resistance to ASMs has been suggested to be associated with the 

severity of the disease in the intrinsic hypothesis (Rogawski and Johnson, 2008; 

Rogawski, 2013). While severity primarily refers to frequency of seizures, it 

could also imply the extent of progressive structural changes in the brain. The 

EBM algorithm assigns ordinal stages to patients based on the estimated 

sequence that correspond to the extent of abnormality in brain regions. We can 

therefore investigate whether patients assigned in the early EBM stages are ASM 

responsive and those assigned in the later stages are resistant to ASMs. This will 

help assess if mechanisms of epileptogenesis accompanied with ASM resistance 

is associated with the structural changes of specific brain regions. 

 

5.2 Materials and methods 

5.2.1 Data analysis and feature selection 

We analysed data from the ENIGMA-Epilepsy working group (Sisodiya et al., 

2020) comprising of neuroimaging data from subjects, namely patients with 

MTLE-HS and controls from 25 centres (Table 5.1). As previously described in 
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Whelan et al., (2018), T1W brain MRI scans were acquired using 1.5T or 3T 

MRI scanners from different manufacturers and different imaging sequences. 

Brain scans were processed at each contributing centre using the same pipeline 

based on FreeSurfer Version 5.3.0 (Dale, Fischl and Sereno, 1999; Fischl, 2012). 

Diagnosis of left and right MTLE-HS were made by an epilepsy specialist at 

each centre, based on seizure semiology and EEG findings. Presumed sclerosis 

of the hippocampus or the mesial temporal lobe was diagnosed according to 

established features on MRI [i.e., a T1W, T2W or fluid-attenuated inversion 

recovery (FLAIR) scan].  

 

A common set of 156 regional features was extracted based on the Desikan-

Killiany atlas (Desikan et al., 2006): 68 measures for regional cortical thickness 

(CT), 68 measures of regional surface area (SA), two measures of hemispheric 

average CT, two measures of hemispheric SA, and 16 subcortical brain volumes 

as previously described in detail (Whelan et al., 2018). Since the initial study 

(Whelan et al., 2018), five new centres were added, providing an additional 244 

subjects. Overall, the ENIGMA-Epilepsy dataset features pre-processed MRI 

scans from 1,625 controls as well as 446 left MTLE-HS and 358 right MTLE-

HS patients. After segmentation quality assurance, certain regional brain 

measures were removed for some subjects in the acquired dataset (about 0.02% 

of the values). We removed subjects with more than ten missing values (66 

subjects). Missing measures in the remaining subjects were imputed within each 

centre using a singular value decomposition (SVD)-based approach 

(Troyanskaya et al., 2001). Additionally, age, sex, case-control status, 

lateralization (left or right MTLE-HS), age at onset and duration of illness were 

available. Furthermore, ASMs response status (defined as one or more seizures 

in the 12 months before MRI) was obtained for 408 MTLE-HS cases.  

 

5.2.2 Data harmonization and confound adjustment  

ENIGMA-Epilepsy is a multi-centric study and therefore the data are subject to 

centre-specific biases arising from various factors. To mitigate this, the regional 

measures were harmonized across centres using NeuroCombat (Fortin et al., 

2018). NeuroCombat posits a linear model within a Bayesian framework to 
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improve the estimation of the site parameters. It models the location and scale on 

the features, where each centre is assumed to have additive and multiplicative 

factors (Johnson, Li and Rabinovic, 2007; Fortin et al., 2018). Following the 

harmonization, the regional measures were adjusted for ICV, age at imaging and 

sex using linear regression. The residuals for each regional measure plus the 

intercept of the model were used for further analysis.  

 

5.2.3 Ipsilateral and contralateral features  

Studies have shown unilateral and bilateral changes in structural connectivity 

and cortical thinning in people with left and right MTLE-HS, with the ipsilateral 

regions being strongly affected (Bernasconi, Natsume and Bernasconi, 2005; 

Pereira et al., 2010; Caciagli et al., 2014; Whelan et al., 2018; Galovic et al., 

2019). In order to jointly analyse people with left and right MTLE-HS, we 

assembled the regional cortical thickness, surface area and volume measures by 

defining the ipsilateral regions as those on the same hemisphere as seizure onset 

(e.g., left hemisphere in left MTLE-HS), with regions in the other hemisphere 

defined as contralateral, effectively yielding a set of 156 imaging-derived 

features, where 78 were ipsilateral (34 cortical thickness (CT), 34 surface area 

(SA), 8 subcortical volumes (V), hemisphere CT and hemisphere SA and 

similarly 78 contralateral regions. For the controls, we randomly sampled half as 

controls for left MTLE-HS, where left and right hemispheres were defined as 

ipsilateral and contralateral regions, respectively. Similarly, the remaining half 

acted as controls for right MTLE-HS with the hemispheres swapped. Overall, 

this enabled us to analyse the lateralizing effect of structural changes in the brain 

in people with MTLE-HS. 

 

5.2.4 Brain asymmetry index features 

Previous studies have used the asymmetry of brain regions to model cortical 

thinning in people with MTLE-HS when compared with healthy controls, where 

regions ipsilateral to the side of seizure onset were found to be largely affected 

(Shah et al., 2019). Thus, to emphasize regions with increased brain asymmetry 

that is observed in people with MTLE-HS, we computed the BASI between 
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ipsilateral and contralateral brain regions. Here contralateral brain regions of 

each subject act as a personalized healthy reference region. We defined the 

BASI of regional cortical thickness, surface area and volume as ratio given in 

equation below 

 

 
BASI = 	

(ipsilateral	– 	contralateral)
(ipsilateral	 + 	contralateral)/2 

Eq. 5.1 

 

5.2.5 Feature selection 

The EBM requires selection of features, i.e., regional ipsilateral, contralateral 

and BASI measures, that differ to some degree between patients and controls. As 

our dataset had additional subjects compared to Whelan et al. (2018), we sought 

to identify relevant brain regions among these subjects. We combined the 

controls, people with left and right MTLE-HS and computed Cohen’s d of the 

234 features (78 ipsilateral, 78 contralateral and 78 BASI). That is, for each 

regional measure we divided the difference between the mean of patients and 

controls by the joint standard deviation (Cohen, 1966). In order to ensure that 

results were not driven by outliers, we additionally computed robust Cohen’s d 

which uses the median and mean absolute deviation in place of the mean and 

standard deviation, respectively (Hampel, 1974). A cut-off of the absolute 

Cohen’s d of >= 0.5 for a feature was specified as a sufficient distinct separation 

between patients and controls to be considered for disease progression 

modelling. We also evaluated a more lenient threshold (robust Cohen’s |d|≥0.4). 

 

5.2.6 Event based modelling 

The EBM algorithm assumes that for any given dataset a greater proportion of 

patients across the cohort will show abnormality for the early-stage features and 

a decreasing proportion for brain regions that undergo structural changes at later 

stages. The overall EBM architecture is described in Section 3.4. After we 

evaluate the features required for the analysis, the first step of the EBM 

computes distributions which define what normal and abnormal measures look 

like for every brain region. In practice, these distributions are estimated for every 
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feature by fitting a mixture model (see Section 3.4.2) to patients and controls. In 

our case, we used a KDE mixture model that smooths the probability density 

function to provide more accurate estimations for the patients and controls (Cao, 

Cuevas and González Manteiga, 1994; Firth et al., 2020). In the second step, the 

EBM determines the best ordering of features for the given dataset. Here, ‘best’ 

means that the ordering agrees with the brain measures’ profile of as many 

subjects as possible in the dataset.  

 

We initialized the MCMC step (see Section 3.4.1) using the greedy ascent 

algorithm described in (Fonteijn et al., 2012) for 10,000 iterations. Next, we run 

the MCMC procedure for 500,000 iterations, which yields one possible 

arrangements of features. However, changes to the training set (e.g., removing or 

adding some subjects) may lead to slightly different orderings. Lastly, the third 

step of the EBM determines the uncertainty and variability of the sequence using 

a bootstrap algorithm, which draws a random set of samples with replacement 

while maintaining the original sample size. Here, the maximum likelihood 

sequence was computed for 100 bootstrap samples of the data. Using the above 

bootstrapped sequence, we can create a positional variance diagram that shows 

the proportion of event uncertainty.  

 

The trained EBM model can then be applied to assign each of the patients and 

controls to a distinct disease stage. These stages range from 0, indicating no 

detected abnormality to stage N, representing all N features considered in the 

model are abnormal. To investigate whether the sequence is consistent in people 

with left and right MTLE-HS, we re-ran the analysis for these two types of 

syndromes separately. 

 

5.2.7 Association of EBM stages with duration of illness, age of onset, 
treatment response, and surgical outcome  

To determine whether individual EBM stage is related to illness duration or age 

of onset, we computed Spearman’s rank correlations between EBM stage and 

the duration of illness (in years) at the time of imaging and age of onset, 

respectively. We hypothesized that patients with advanced EBM-stages were 
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more likely to have a longer duration of illness, earlier disease onset, and are 

more likely to be ASM resistant. To investigate this, we used the Mann-Whitney 

U test to test for a difference in EBM-assigned stage regarding ASM response 

status. 

 

5.3 Results 

Table 5.1 and Supplementary Table S2 displays the overall cohort split by 

centre. On average, each centre contributed a range of subjects, ranging from 

young adults in their 20s to adults over 60 years (median 33.0 years; IQR 18.08 

years). The binary sex distribution within the dataset was well balanced with a 

slight majority of women (56.0% of people with MTLE-HS and 55.9% of 

healthy controls). The duration of illness ranged from recently diagnosed to 68 

years (median 20.0 years; IQR 24.0 years). 

 

5.3.1 Effect sizes of selected features 

The seven selected features (robust Cohen’s |d|≥0.5) were ipsilateral 

hippocampal volume and its BASI, ipsilateral thalamic volume, cortical 

thickness of bilateral superior parietal gyrus, ipsilateral precuneus and ipsilateral 

lateral ventricle volume (Supplementary Table S3). Supplementary Figure S1 

provides a visual representation of the effect sizes rendered using the ENIGMA 

toolbox (Larivière et al., 2021). Our effect sizes matched the findings of the 

original ENIGMA-Epilepsy multi-centric analysis (Whelan et al., 2018). In 

short, effect sizes (robust Cohen’s d) ipsilateral to the seizure focus were 

stronger than those in the corresponding contralateral region for the surface area 

(t=4.01; p=0.00033; df=33; paired t-test) but not for cortical thickness (t=1.95, 

p=0.06; df=33, paired t-test) nor for subcortical volumes (t=1.60; p=0.15; df=7; 

paired t-test). Furthermore, effect sizes for cortical thickness were stronger than 

effect sizes for surface area (t=8.08; p=1.09x10-11; df=67; paired t-test). Use of 

the lower Cohen’s d cut-off of 0.4 produced 12 additional features for EBM 

modelling (Supplementary Table S3).  
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Table 5.1 Demographics table: Table showing individual sites demographics 

including age, number of people with left and right MTLE-HS, controls and 

duration of illness of MTLE-HS cases. (Na= Not applicable) 

Centre 

Age 
controls 
(Mean ± 

SD) 

Age cases 
(Mean ± 

SD) 

Age of 
onset 

(Mean ± 
SD) 

Duration 
of illness 
(Mean ± 

SD) 

Total 
controls 

Total 
cases 

L 
MTLE-

HS 
cases 

R 
MTLE-

HS 
cases 

Total n 

Bern 32.5± 9.39 31.3 ± 
9.09 N/A N/A 78 18 10 8 96 

Bonn 40.4± 
13.79 

40.2 ± 
13.37 

17.1 ± 
12.14 23 ± 14.16 80 112 74 38 192 

CUBRIC 28± 8.17 N/A N/A N/A 48 0 0 0 48 

EKUT 35.3± 
12.33 N/A N/A N/A 18 0 0 0 18 

EPICZ 38.8± 
11.08 

39.7 ± 
9.11 

18.1 ± 
14.15 

21.6 ± 
13.48 116 46 19 27 162 

EPIGEN
_3T 34.7± 9.37 40.4 ± 

6.28 
21.8 ± 
13.16 

18.5 ± 
11.98 70 13 8 5 83 

Florence 32.2± 8.84 N/A N/A N/A 30 0 0 0 30 

Genova 25.2± 8.23 N/A N/A N/A 20 1 0 1 21 
Greifswa

ld 26.3± 7.48 N/A N/A N/A 99 0 0 0 99 

HFHS N/A 40.4 ± 
14.85 

10.4 ± 
12.96 

25.4 ± 
14.44 0 20 9 11 20 

IDIBAP
S 33.1± 5.99 37.4 ± 

9.94 
17.7 ± 
12.79 

18.8 ± 
9.97 52 53 17 36 105 

KCL_C
NS 31.7± 8.4 41 ± 9.57 17.5 ± 

14.16 
25.2 ± 
16.97 101 15 6 9 116 

KCL_C
RF 28.7± 8.29 37.8± 

11.52 
22.6 ± 
12.34 

15.2 ± 
8.04 26 5 3 2 31 

KUOPIO 25.2± 1.55 41.1± 
11.06 

23.3 ± 
18.23 

17.8 ± 
17.02 67 9 0 9 76 

MICA 31.9± 4.77 38.9± 
13.12 

23.4 ± 
11.71 

15.7 ± 
14.58 38 14 12 2 52 

MNI 30.7± 7.38 33.6± 9.53 17.3 ± 
10.57 

16.3 ± 
11.4 46 83 45 38 129 

MUSC 54.9± 8.4 33.5± 
12.73 

15.4 ± 
12.34 

18.2 ± 
12.79 58 27 21 6 85 

NYU 30.1± 
10.36 33.8± 9.31 14.1 ± 

8.04 
20.2 ± 
14.44 118 19 8 11 137 

RMH 38.8± 
20.44 

39.6± 
15.59 

27.1 ± 
17.69 

12.4 ± 
13.23 27 35 22 13 62 

UCL 37.7± 12.4 39.5± 
11.29 

11.8 ± 
8.72 

27.7 ± 
15.12 29 37 24 13 66 

UCSD 36.9± 15.1 39.2± 
12.53 

15.6 ± 
12.44 

24.3 ± 
17.82 37 26 16 10 63 

UMG 34.7± 
10.26 

40.6± 
12.49 

15.4 ± 
14.04 

23.9 ± 
18.49 21 20 10 10 41 

UNAM 33.2± 
12.29 

34.4± 
12.47 

15.5 ± 
13.84 

18.8 ± 
13.16 35 20 10 10 55 

UNICA
MP 

34.4± 
10.47 42.7± 8.33 11.4 ± 

9.6 
31.3 ± 
12.13 398 191 107 84 589 

XMU 31.5± 7 28.2± 8.45 17.2 ± 
12.06 

11.3 ± 
8.02 13 40 25 15 53 

Total 33.8 ± 
11.45 

38.5 ± 
11.44 

15.9 ± 
12.4 

22.7 ± 
14.39 1625 804 446 358 2429 
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5.3.2 Sequence of abnormal features in people with left and right MTLE-
HS  

The EBM estimated the sequence for the seven selected features using the KDE 

mixture models (Supplementary Figure S2) and placed them in stages 0 to 7 

(Figure 5.1). The bootstrapped version of the EBM placed the reduced ipsilateral 

hippocampal volume and increased asymmetry in hippocampal volume at the 

beginning of the sequence. This was followed by decreased cortical thickness 

and decreased ipsilateral thalamic volume in the sequence (Figure 5.1). We 

analysed people with left and right MTLE-HS separately, with similar 

progression patterns in both syndromes (Supplementary Figure S3). Reducing 

the inclusion threshold to Cohen’s |d|≥0.4 led to 19 features and provided a more 

fine-grained staging, but with essentially the same progression sequence as in 

the original analysis (Supplementary Figure S4).  

 

5.3.3 Cross-sectional distribution of disease stages as defined by EBM 

We used the trained EBM to stage subjects based on structural changes in 

regional brain measures (Young et al., 2014): PWE and controls were assigned 

to stages zero to seven. Most of the people with MTLE-HS (68.1%) were staged 

at stage one or greater (Figure 5.2). However, a large proportion of these patients 

(31.9%) were staged at zero, indicating mild or non-detectable abnormality on 

T1W MRI. About 49.3% were assigned to stages one and two, reflecting 

reduced volume of the ipsilateral hippocampus and abnormal asymmetry in the 

hippocampus. The other 18.8% of people with MTLE-HS were staged beyond 

stage two, suggesting neocortical involvement, reduction of ipsilateral thalamic 

volume and increase in ipsilateral lateral ventricle volume. The distribution of 

stages did not differ between people with left and right MTLE-HS (H = 0.08, p-

value = 0.78; Kruskal-Wallis test). 
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Ipsilateral hippocampal volumes in cases at stage zero were significantly larger 

than in patients assigned to later stages (t= 31.15, p =1.11x10-138, t-test; 

Supplementary Figure S5). Consequently, effect size of ipsilateral hippocampal 

volume was d=-0.42 and d=-2.16 for patients at stage zero and non-zero stages, 

respectively. 

 
Figure 5.1 Sequential Accumulation of Pathology in people with MTLE-HS: 

Data-driven sequence of atrophy or increased asymmetry of brain regions:  

Colour intensity in the positional variance diagram (PVD) represents the 

proportion of certainty (0,0 in white to 1.0 in dark blue) in which features (y-

axis) appear in a particular position (x-axis) in the event order obtained through 

bootstrapping. CT=cortical thickness, V=Volume, BASI=Brain Asymmetry 

Index, I=ipsilateral, C=contralateral. 
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Figure 5.2 EBM Stage Distribution: Histogram showing stages (x-axis) assigned 

to people with MTLE-HS and controls and the corresponding count (y-axis). 

Stage 0 is assigned to subjects with no statistically detectable abnormal regional 

brain measure based on the T1W MRI scans. EBM places subjects with 

abnormal features progressively, such that subjects in stage 7 exhibit 

abnormality in all seven features. 

5.3.4 EBM stage is associated with duration of illness and with response to 
ASMs in people with MTLE-HS. 

People with MTLE-HS assigned to early EBM stages showed a relatively shorter 

illness duration than those in later stages (Figure 5.3). Duration of illness and 

stages 0-7 were significantly correlated in all people with MTLE-HS 

(Spearman’s ρ=0.276, p=2.22x10-9). After excluding patients at stage zero, the 

correlation was no longer significant (Spearman’s ρ=0.046, p=0.42). Thus, the 

correlation was driven by the significant difference in duration of illness 

between EBM stage zero and non-zero (t=-6.61, p=1.09x10-10). The same pattern 

was observed for age of onset: EBM stage and age of onset were negatively 
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correlated (ρ=-0.17, p=9.76x10-5), but the effect vanished in the subset of 

patients at stages 1-7 (ρ=0.01, p=0.85). Age at onset was significantly later for 

patients in stage zero compared to those in non-zero stages (t=4.52, p=7.84x10-

6). EBM stages did differ between people with MTLE-HS who were resistant 

(N=336) or responsive (N=45) to ASMs in the 12 months prior to MRI 

(AUC=0.62, p=0.006, Mann-Whitney U test).  

 

 
Figure 5.3 Distribution of duration of illness per EBM stage: Box plots showing 

distribution of duration of illness (in years) of corresponding EBM stages 0-7 

assigned to people with MTLE-HS. Patients assigned to EBM stage 0 showed a 

shorter duration of illness compared to those assigned to the remaining EBM 

stages.  

 
 

5.4 Discussion 

In this multi-centre ENIGMA-Epilepsy consortium dataset we compared 

regional brain measures of surface area, cortical thickness, subcortical volumes 

as well as asymmetry measures for all brain regions between people with 

MTLE-HS and controls to identify features for the disease progression 

modelling. Main observations were volume reductions (and ventricular 

expansion) in nearly all subcortical regions ipsilateral as well as contralateral to 

the seizure focus. As expected in people with MTLE with hippocampal sclerosis, 

the strongest effect appeared in the ipsilateral hippocampus. Moreover, the 
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comparison with controls confirmed thinner cortices and reduced surface area in 

people with MTLE-HS, with effects being more pronounced in ipsilateral 

regions. Notably, measures of cortical thickness exhibited very pronounced 

distinction between people with MTLE-HS and controls, compared to measures 

of surface area. Here, the measured surface area depends on the number of 

columns containing neurons that run perpendicular to the cerebral surface, while 

cortical thickness is influenced by the number of cells within these columns 

(Rakic, 1995; Mountcastle, 1997). Moreover, previous studies have reported 

distinctive genetic influence on cortical thickness measures compared with 

measures of surface area (Panizzon et al., 2009; Eyler et al., 2012; Chen et al., 

2013; Hofer et al., 2020; Schmitt et al., 2020). Thus, the distinction in cortical 

thickness and surface area we report on, may reflect the distinct interplay of 

genetic factors influencing these neuroanatomical measures. 

 

For the progression modelling we retained only features exhibiting a strong 

effect size between people with MTLE-HS and controls (|d|≥0.5;Figure 5.1; and 

0.4 for a sensitivity analysis (Supplementary Table S3). The EBM applied to 

these data estimated an ordering of increasing pathological differences in the 

ipsilateral, contralateral brain regions and increased asymmetry in the 

hippocampal volume for people with left and right MTLE-HS analysed together, 

along with a measure of certainty of the acquired ordering (Figure 5.1). 

Furthermore, people with left and right MTLE-HS when analysed separately, 

had a similar progression pattern as when analysed together. However, for 

people with right MTLE-HS, the thalamus proceeded the cortical regions 

compared to the sequence of regions in people with left MTLE-HS. As expected 

for |d|≥0.4 patients with hippocampal sclerosis, measures quantified from the 

hippocampus were placed earlier compared to other brain regions: bilateral 

neocortical regions (e.g., precuneus and superior parietal lobule), the bilateral 

thalamus as well as the bilateral lateral ventricles (Supplementary Figure S4). 

Despite cortical regions having lower effect sizes compared with lateral ventricle 

measures, cortical and subcortical regions were staged before the lateral 

ventricles. Thus, EBM does not stage features based on effect sizes of the brain 

measures. 
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Besides the underlying mechanisms of epileptogenesis, hippocampal volume 

reduction and increased asymmetry may also be caused by a genetic 

predisposition to hippocampal sclerosis. Evidence supporting this comes from 

frequent observations of hippocampal abnormalities in healthy siblings of people 

with MTLE (Kobayashi et al., 2002; Tsai et al., 2013; Vaughan et al., 2017; 

Long et al., 2020), along with an association identified in a GWAS 

(Kasperavičiute et al., 2013). However, cortical thinning likely represents 

disease-related effects since these changes have not been reported in healthy 

siblings (Alhusaini et al., 2019). Furthermore, the progression pattern included 

decline in thalamic volume, which is a common feature in MTLE-HS (Bernhardt 

et al., 2012; Keller et al., 2008; Pulsipher et al., 2007; Seidenberg et al., 2008) 

and may be linked to the strong structural connectivity between the hippocampus 

and the thalamus (Bernasconi et al., 2004; Keller et al., 2008; Maller et al., 

2019).  

 

At first glance, it appears surprising that many people with MTLE-HS were 

assigned stage 0 despite the loss of hippocampal volume being considered as one 

of the hallmark signs of MTLE-HS. Two factors contribute to this discrepancy. 

Firstly, the radiologic diagnosis of hippocampal sclerosis is based on multiple 

imaging sequences, whereas hippocampal atrophy, as defined on T1W images is 

only one component of hippocampal sclerosis (Jin et al., 2018). This is 

supported by our observation that the fraction of stage 0 MTLE-HS varied 

across centres (Supplementary Figure S6) and may therefore reflect differences 

between regional practices and capabilities to detect and diagnose hippocampal 

sclerosis in imaging data. For instance, the MNI centre and UNICAMP, which 

contributed ~30% of stage 0 of people with MTLE-HS, were diagnosed from 

detecting hippocampal sclerosis on T2W MRI scans as reported in Bernasconi et 

al., (2019) and Coan et al., (2015) respectively. Secondly, even though we 

observed a large group effect size for hippocampal volume difference in the 

whole cohort (d=-1.76), there is significant variability in volume loss at the 

individual level. In fact, about half the patients with hippocampal sclerosis 

exhibit measures of hippocampal volume that is within the normal range (Coan 

et al., 2014); this is also the case in the ENIGMA-Epilepsy cohort 

(Supplementary Figures S2 and S5).  
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A study by Kong et al., (2018) concluded that in regions of the left hemisphere, 

healthy people have thicker cortical thickness and smaller surface areas. 

Therefore, the BASI measures computed here were not able to factor in the 

innate asymmetry of brain regions. Moreover, the BASI measures of brain 

regions with bilateral changes would not be easily distinguishable from those not 

affected. As we analysed people with left and right MTLE-HS, the BASI 

measures were employed to detect unilateral changes caused by pathological 

mechanisms of MTLE-HS. 

 

Longitudinal studies of PWE reveal cortical atrophy beyond the expected range 

of normal aging (Alvim et al., 2016; Bernhardt et al., 2009; Coan et al., 2009; 

Liu et al., 2003). Moreover, recent longitudinal studies of people with focal 

epilepsy (Galovic et al., 2019, 2020) found progressive atrophy in the 

contralateral regions of the parietal and frontal lobes, which was also featured in 

our study when using the more lenient cut-off (Supplementary Figure S4). 

Overall, we find that our regional disease progression sequence, which is based 

on cross-sectional data, agrees with previous findings in longitudinal cohorts that 

show the progressive nature of structural changes in MTLE-HS (Bernhardt et al., 

2009; Bernhardt et al., 2013; Caciagli et al., 2017). The contralateral 

hippocampal volume (d =−0.14) missed the inclusion threshold for the EBM. 

Thus, the analysis could not provide further insights on whether untreated 

unilateral hippocampal sclerosis will lead to bilateral hippocampal sclerosis. 

However, PWE assigned to later EBM stages did present with reduced volume 

in the contralateral hippocampus, whereas this was not the case for PWE 

assigned to earlier stages (Supplementary Figure S5), illustrating the potential of 

EBM. 

 

There are only few longitudinal imaging studies up to date detailing the long-

term effect of MTLE-HS on the cortex. However, duration of illness has been 

used as a proxy for progression in various cross-sectional studies (Bernasconi, 

Natsume and Bernasconi, 2005; McDonald et al., 2008; Caciagli et al., 2017; 

Whelan et al., 2018). Moreover, within study by Whelan et al., (2018), changes 

in numerous neocortical regions and subcortical volumes were negatively 
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correlated with duration of illness. However, these results were driven by 

epilepsies without hippocampal sclerosis; no correlations within the left MTLE-

HS subgroup were found to be statistically significant, and within the right 

MTLE-HS group significant correlations were limited to the ipsilateral 

hippocampus, putamen, thalamus, contralateral transverse temporal gyrus, and 

ipsilateral caudal middle frontal gyrus. Therefore, the marginal correlations 

between EBM Stages 1–7 and duration of illness in people with MTLE-HS 

agree with these earlier observations.  

 

The study by Zhang et al., (2017) suggested that in addition to the ipsilateral 

hippocampal volume, the grey matter volumes of the bilateral frontal lobes and 

cerebellar hemispheres were negatively correlated with duration of 

illness. However, in the same study, the lifetime number of seizures, another 

proxy for disease severity, was investigated and was correlated with structural 

changes in a different set of brain regions. Thus, either measure may capture 

different aspects of disease severity, and the relationship between disease 

duration and structural changes of the brain may be more complex. In our study, 

while disease duration and response to ASMs were the most apparent and 

plausible factors to investigate, they may not be the primary variables 

influencing the sequence of changes detected by the EBM. 

 

In addition, Thom et al. (2011) applied the Braak staging (Braak et al., 2006) for 

the progression of neurofibrillary tangle pathology in people with Alzheimer’s 

disease and MTLE-HS. Their study reported neurofibrillary tangles in the 

hippocampus as an early event, followed by changes in brain regions structurally 

connected with the hippocampus. However, their study found no association 

between the Braak stages and the duration of illness or age of onset of epilepsy. 

This emphasizes the intricate and complex nature of the progression of 

pathological mechanisms involved in epilepsy and the duration of illness. 

 

In summary, the EBM inferred the most likely sequence of structural changes in 

the brain from cross-sectional data derived from T1W MRI. The model could be 

further improved by considering measures from diffusion MRI scans to include 
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the role of white matter abnormalities in disease progression (Hatton et al., 2020; 

Sisodiya et al., 2020).  

 

There were several limitations in our study. First, this ENIGMA-Epilepsy cohort 

is not a population-based cohort but represents data mostly from tertiary epilepsy 

centres and therefore the findings may not be generalisable to the overall 

epilepsy population. Also, within the ENIGMA-Epilepsy cohort, we observed 

sampling bias regarding availability of ASM response data (Supplementary 

Table S4); PWE with missing response data were younger, diagnosed 

more recently, and had later age at onset. Second, although the results were 

robust under bootstrap validation, they would benefit from a validation in a 

longitudinal cohort. Once validated, the EBM can be used to stage people with 

MTLE-HS in other cohorts and help establish machine learning-based disease 

staging as a potential tool in a clinical setting. However, designing well-powered 

longitudinal studies in patients and controls is challenging, especially since 

people with MTLE-HS who are AMS resistant may eventually undergo epilepsy 

surgery (Caciagli et al., 2017). Third, clinical features such as frequency of 

seizure, pattern of ASM resistance and lifelong ASM exposure were not 

available in the ENIGMA-Epilepsy dataset. This would prove difficult to 

ascertain retrospectively but should be considered in future work. Finally, the 

use of specific ASMs may affect disease progression and, in some cases, even 

amplify tissue loss in epilepsy and should be considered in future analysis 

(Tondelli et al., 2020).  

 

In conclusion, we compared people with MTLE-HS to controls on range of 

cortical and subcortical features for surface area, cortical thickness, volume and 

their asymmetry between hemispheres, and used this information to produce a 

sequence of progressive pathology. The work indicated that the predicted disease 

stages may be associated with duration of illness. Further work is needed to 

investigate the link between disease progression stages and clinically relevant 

information such as ASM resistance, seizure frequency or severity. 
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Chapter 6 Novel imaging-derived subtypes of 

epilepsy based on structural changes in the brain 
 
 

6.1 Introduction 

In the previous chapter we have looked at estimating the progression sequence 

and staging of people with MTLE-HS based on structural changes of grey matter 

regions. Here, we aim to extend our analysis to a broader cohort of individuals 

with common epilepsies, with the goal of generalizing disease staging across a 

wider population. Additionally, numerous research studies have reported PWE 

have microstructural changes in white matter tracts compared to healthy 

controls, which are also considered to be of a progressive nature (Yasuda et al., 

2010; Winston et al., 2014; Vaughan et al., 2016; Buksakowska et al., 2019; 

Hatton et al., 2020). These regional changes in the brain among PWE vary 

across different epilepsy syndromes. 

 

Hence, we hypothesise that subtypes of epilepsies exist based on unique 

progression of structural changes in both grey matter regions and white matter 

tracts. To investigate this, we apply SuStaIn to investigate progression patterns 

of changes detected on T1W MRI and DTI scans, which were obtained from the 

ENIGMA consortium (Whelan et al., 2018; Hatton et al., 2020), consisting of 

people with common epilepsies. Identifying these novel imaging-derived 

subtypes of epilepsy will allow us to explore the association between structural 

changes of the brain and clinical variables from a fresh perspective.  

 

We know that resistance to ASMs is not specific to any of the epilepsy 

syndromes. Therefore, we aim to investigate whether the response to ASMs 

differs among the imaging-derived subtypes estimated by SuStaIn. Furthermore, 

from previous studies we know that patients with initial precipitating injury (IPI) 

develop mesial temporal sclerosis (MTS), where the extent of atrophy is 

believed to be progressive (Mathern, Pretorius and Babb, 1995). However, little 

is known about the impact of IPI on the progression of structural changes in 
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other brain regions. Similar to EBM, SuStaIn assigns each patient within the 

imaging-derived subtypes with a disease stage based on the estimated sequence 

of structural changes in the brain. Consequently, we aim to investigate whether 

disease stages estimated by our model are related to clinical markers of disease 

duration, response to ASMs or presence of IPI. Exploring these relationships 

will enhance our current understanding of the mechanisms underlying structural 

brain changes and provide deeper insights into the pathology of epilepsy. 

 

6.2 Methods 

6.2.1 Data 

We used data previously collected and analyzed by the ENIGMA-Epilepsy 

working group (Whelan et al., 2018; Hatton et al., 2020; Sisodiya et al., 2020). 

The data features subcortical volumes and cortical morphometrics extracted 

from T1W MRIs using FreeSurfer Version 5.3.0 (Dale, Fischl and Sereno, 1999; 

Fischl, 2012) as well as Tract-Based Spatial Statistics extracted from DTI MRI 

following the ENIGMA-DTI protocol (http://enigma.ini.usc.edu/ongoing/dti-

working-group/). Additional information on the collection, quality control, and 

processing of T1W and DTI MRI can be found in Whelan et al., (2018) and 

Hatton et al., (2020), respectively. The combined data comprises of subjects, 

namely PWE and healthy controls from 15 centres. All PWE were assessed by a 

specialist at each centre, using the International League Against Epilepsy (ILAE) 

criteria for diagnosis (Berg et al., 2010).  

 

For this study we retained only PWE where both T1W and DTI MRI were 

available. Following the processing with FreeSurfer based on the Desikan-

Killiany atlas (Desikan et al., 2006), we extracted eight subcortical volumes and 

34 cortical volumes per hemisphere. Missing regional values were imputed using 

a singular value decomposition (SVD)-based approach (Troyanskaya et al., 

2001; Lopez et al., 2022). To further reduce the dimensionality for the down-

steam analyses, the cortical volume features were grouped into left and right 

temporal, occipital, parietal and frontal lobes as well as the left and right 

cingulate, resulting in ten cortical features. From DTI scans, FA was extracted 
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for 39 tract bundles using the Johns Hopkins University (JHU) atlas as detailed 

previously (Hatton et al., 2020). We aggregated measures of 39 tracts from the 

left and right hemispheres following recommendations by Kochunov et al., 

(2014), resulting in a total of 23 tracts. FA values were shown to exhibit stronger 

effect sizes than MD values in the same cohort (Hatton et al., 2020), hence, this 

analysis focused on FA rather than MD. Thus, the features comprise 16 

subcortical volumes, 10 cortical volumes and the average FA of 23 white matter 

tracts. 

 

In addition to the features, sex and age at MRI were available for all subjects. 

For PWE a sub-diagnosis was available (left/right MTLE-HS, left/right NL-

TLE, GEE, extra-temporal lobe epilepsy (ETLE), or unspecified). Moreover, for 

PWE, duration of illness, age of disease onset, and seizure frequency in the 12 

months prior to the MRI were recorded. Here, ASM responsive status was 

defined as complete seizure freedom and ASM resistance defined as one or more 

seizures in the 12 months before MRI. Records of IPI for 50 PWE were 

available from one contributing centre. 

 

6.2.2 Data Harmonization and confound adjustment  

By design, the ENIGMA-Epilepsy dataset is a multi-centric cohort and therefore 

the data are subject to centre-specific biases arising from various factors. To 

harmonize the imaging data across centres NeuroCombat (Fortin et al., 2018) 

was applied. NeuroCombat (v0.2.12 in Python) was executed separately for the 

26 regional brain volumes extracted from T1W MRI and for the 23 tract level 

FA measures extracted from DTI MRI. The individual centre was used as the 

batch effect and ICV, diagnosis (controls versus epilepsy subtype), age at 

imaging and sex were used as the biological co-variates of interest to be 

retained.  

 

To convert the regional measures to z-scores that reflect the deviation from the 

expected value, given a subjects’ age and ICV we built normative models for 

each brain region (Marquand et al., 2016; Janahi et al., 2022) . In brief, we used 

Gaussian Process Regression (GPR) with a radial basis function (RBF) kernel 
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and white noise implemented in the sklearn python library (Pedregosa et al., 

2011) to estimate the regional measures in dependence of age and ICV. Next, 

using the trained GPRs, for a given subject we computed the expected mean and 

standard deviation of the regional measure and used these to convert the subject’ 

measure into a z-score. These z-scores were then used for disease progression 

modelling in the SuStaIn algorithm. 

 

6.2.3 Subtype and Stage Inference (SuStaIn) algorithm 

The SuStaIn algorithm which is used to estimate the imaging-derived subtypes is 

previously described in Section 3.5. Here, we used z-score SuStaIn implemented 

in pySuStaIn (Aksman et al., 2021), where abnormality of a measurement is 

expressed by exceeding a series of z-score cut-offs. The number of cut-offs and 

the exact values can be set for each of the brain regional measures. For this 

analysis we defined the suitable imaging-derived measures and z-score 

thresholds as follows: only imaging-derived measures where at least 7% of PWE 

exhibited a z-score of 2.0 or larger were considered within a SuStaIn model; the 

cut-offs of 1.0 and 2.0 were used for that measure. Further cut-offs of 3.0 and 

4.0 were added in circumstances where at least 5% of PWE exceeded that z-

score value for that imaging-derived measure. For instances, for left 

hippocampus volume there may be four severity cut-offs at z=1,2,3,4, while for 

the FA of the internal capsule tract there were only two severity cut-offs at 

z=1,2. Finally, to preserve symmetry we added the contralateral feature with the 

same number of thresholds (in case it was not selected by its own merit). 

 

The SuStaIn algorithm estimates a progression sequence based on maximum 

likelihood of the data and by using MCMC samples to estimate the uncertainty 

of the sequence (for further details see Section 3.4.1). Here, the number of 

subtypes is an input parameter of SuStaIn, and the optimal number of subtypes 

must be determined empirically from the data. In our case,  we used a model 

comparison approach and computed the CVIC (Gelman, Hwang and Vehtari, 

2014) which evaluates the likelihood of the held-out data in a cross-validation 

setting. A series of CVIC values were computed by varying the number of 

subtypes from one to five in the SuStaIn model, each time using five-fold cross-
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validation. The optimal number of subtypes was determined by minimising the 

CVIC score. More details of the SuStaIn algorithm and the CVIC metric can be 

found in Young et al., (2018).   

 

6.2.4 Statistical Analysis 

The SuStaIn algorithm assigns each patient a probability of belonging to each of 

the inferred imaging-derived subtypes based on changes recorded from their 

MRI scans. To analyse the clinical relevance of these imaging-derived subtypes 

we only consider confident subtype assignment (with probability > 0.5). Here, 

we hypothesized that patients assigned to distinct imaging-derived subtypes map 

to known clinical syndromes, which we investigated using a chi square test. 

Furthermore, as certain clinical syndromes, for example people with MTLE-HS, 

tend to be ASM-resistant compared to others, we hypothesized that patients 

assigned to distinct imaging-derived subtypes were associated with a drug-

response status. We used logistic regression to test for associations between 

imaging-derived subtype assignments and dichotomous outcomes such as ASMs 

response and IPI. These models were adjusted for age, sex, duration of illness 

and age of disease onset.  

 

Moreover, based on previous results (Lopez et al., 2022), we hypothesized that 

patients assigned to advanced stages by SuStaIn were more likely to have a 

longer duration of illness, to have earlier disease onset, and to be resistant to 

ASMs. To determine whether individuals’ disease stage is related to illness 

duration or age at onset, we computed Spearman rank correlations between the 

stage and the duration of illness (in years) at the time of imaging and age at 

onset, respectively. We also employed a logistic regression model to investigate 

whether the disease stage served as a predictive factor for the response to ASMs, 

as well as the IPI status, while adjusting for subtypes, age and sex, duration of 

illness and age of disease onset.  
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6.3 Results 

Our cohort comprised a range of epilepsy syndromes that were recruited from 15 

centres. Table 6.1 and Supplementary Table S5 display the overall demographics 

from our cohort split by centre and epilepsy syndrome, respectively. For this 

analysis we used data from 827 healthy controls and 1048 PWE across all 

included syndromes: 274 left MTLE-HS, 219 right MTLE-HS, 147 left NL-

TLE, 109 right NL-TLE, 70 GGE, 120 ETLE and 109 labelled as unspecified. 

On average, each centre contributed a group of patients, ranging from young 

adults in their 20s to adults over 60 years (median 36.26 years; IQR 11.65 years) 

and a similar group of healthy individuals (median 37.1 years; IQR 10.98 years). 

The sex distribution within the dataset had a slight majority of females (60.40% 

of PWE and 57.67% of healthy controls). Overall, 1.08% of measures from T1W 

scans were missing which we imputed as described. Duration of illness and age 

of disease onset was available for 925 and 983 PWE, respectively. The duration 

of illness ranged from recently diagnosed to 60 years (median 20.0 years; IQR 

13.0 years). Pre-imaging seizure frequency was available for 797 PWE. Of the 

50 PWE with the recorded IPI status, 30 PWE had reported an IPI incident, 

while the remaining 20 PWE did not have any IPI incident. 
 

6.3.1 Imaging-derived features selected for input into SuStaIn: 

The features generated by combining FA values from individual tracts were 

included in our analysis as the corpus callosum, bilateral (left and right) 

cingulum, internal capsule, fronto-occipital fasciculus and corona radiata 

(Supplementary Table S6). Of the total 49 imaging-derived features obtained 

from FA and T1W measures, only those imaging-derived features (n=23) that 

demonstrated a subject proportion of at least 7% with z-scores above 2 were 

retained (Supplementary Figure S7). T1W MRI features included here were the 

bilateral hippocampus and bilateral thalamus volume. Among the analysed 

features, z-scores of up to 3.0 were observed in the FA of the corpus callosum 

tracts and z-scores of up to 4.0 in the left and right hippocampal volume. 
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Table 6.1 Demographics: Demographics of subjects used in analysing subtyping 

and staging.  

Centre Age 
controls 

Age 
cases 

DURILL 
cases AO cases 

Total 
Male 

control
s  

Total 
Female 
control

s 

Total 
control

s 

Tota
l 

Mal
e 

case
s 

Total 
Femal
e cases 

Tota
l 

case
s 

Tota
l n 

Bonn 37.9±12.
6 

41.2±12
.5 23.7±14.1 17.5±11.

5 12 18 30 28 33 61 91 

CUBRIC 26.6±8.1 28.7±7.
7 16.2±9.6 12.4±4.0 7 17 24 10 24 34 58 

EPICZ 38.4±11.
1 

38.5±9.
5 19.3±12.5 19.2±12.

4 55 55 110 40 69 109 219 

EPIGEN 34.8±9.5 35.8±9.
1 19.4±11.0 16.3±13.

3 39 28 67 21 33 54 121 

Florence 32.2±8.8 34.4±8.
1 19.0±12.1 14.0±9.0 16 14 30 3 2 5 35 

HFHS NA 38.8±13
.5 19.1±12.9 19.1±16.

9 0 0 0 41 62 103 103 

IDIBAPS 33.1±6.0 36.4±9.
7 17.3±10.7 18.8±12.

0 23 29 52 35 46 81 133 

MNI 30.7±7.4 33.1±9.
7 16.0±11.2 17.1±9.7 24 22 46 50 64 114 160 

MUSC 54.9±8.4 36.7±10
.8 18.2±12.0 18.8±13.

4 13 44 57 15 28 43 100 

NYU 30.3±10.
0 

32.6±8.
9 8.6±9.9 24.0±12.

7 11 15 26 17 28 45 71 

UCL 37.2±12.
4 

38.7±11
.4 24.7±14.2 13.9±10.

7 11 17 28 20 33 53 81 

UCSD 38.2±15.
9 

35.6±11
.7 15.9±14.1 19.4±13.

4 16 9 25 26 28 54 79 

UNAM 33.7±12.
1 

31.4±11
.7 15.5±12.8 15.8±11.

1 9 25 34 11 23 34 68 
UNICAM

P 
35.7±10.

8 
40.3±9.

9 27.6±12.3 12.5±9.8 94 166 260 86 149 235 495 

MICA 31.9±4.8 36.2±12
.1 15.1±12.7 21.2±12.

4 20 18 38 12 11 23 61 

Total 36.26 ± 
11.65 

37.1 ± 
10.98 

19.95 ± 
13.34 

16.56 ± 
11.29 350 477 827 415 633 1048 1875 

AO: age of disease onset, DURILL: Duration of illness, Bonn: University 
Hospital Bonn, CUBRIC: Cardiff University Brain Research Imaging Centre, 
EPICZ: Epilepsy Centre Cantazaro, EPIGEN: Epilepsy Genetics Dublin, 
Florence: University of Florence, HFHS: Henry Ford Health System, 
IDIBAPS: Institut D’Investigacions Biomèdiques August Pi I Sunyer research 
center, MNI: Montreal Neurological Institute, MUSC: Medical University of 
South Carolina, NYU: New York University, UCL: University College London, 
UCSD: University California San Diego, UNAM: Universidad Nacional 
Autónoma de México, UNICAMP: Universidade Estadual de Campinas, Brazil, 
MICA: Multimodal Imaging and Connectome Analysis Laboratory from 
Canada. 
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6.3.2 Optimal number of subtypes uncovered by SuStaIn 

The CVIC plot used to determine the optimal number of imaging-derived 

subtypes is shown in Supplementary Figure S8. The CVIC score steadily 

decreased between models with one to four subtypes which indicates 

improvement of out-of-sample likelihood in the consecutive models. However, 

the CVIC increased for the model with five subtypes. Thus, four was the optimal 

number of imaging-derived subtypes was supported by the data. 

 

6.3.3 Imaging-derived subtypes uncovered by SuStaIn: 

In our analysis we first tested how the imaging-derived subtypes identified by 

SuStaIn correspond to the seven different epilepsy syndromes that are included 

in the ENIGMA cohort. The four imaging-derived subtypes uncovered, based on 

distinct progression patterns, are shown in Figure 6.1 and Supplementary Figure 

S9. The first subtype (Left Limbic) started with volume decline in the left 

hippocampus and left thalamus followed by decrease in FA in white matter 

tracts of the left cingulum, left fornix/stria terminalis and left external capsule, 

corpus callosum and contralateral regions. Subtype 2 (Right Limbic) is very 

similar to subtype 1 but mirrored, i.e., starting with volume loss in the right 

hippocampus and right thalamus, left hippocampus followed by decrease in FA 

in white matter tracts of the right and left cingulum. Subtype 3 (Late Right 

Limbic) started with changes in FA measures of white matter tracts of the 

bilateral external capsule, corpus callosum, fronto-occipital fasciculus, cingulum 

followed by changes in right limbic regions from stage 14 onwards. Lastly, 

subtype 4 (Bilateral Tracts-Only) was driven by changes in the white matter 

tracts of the posterior thalamic radiation, sagittal stratum, corpus callosum and 

superior longitudinal fasciculus, corona radiata and external capsule bilaterally. 
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Figure 6.1 Subtypes and their progression patterns uncovered in SuStaIn: 

Circular plots showing four subtypes with distinct progression patterns identified 

in SuStaIn. Progression starts from outer-circle and moves inwards. The four 

colours correspond to the four distinct z-score events, while the transparency 

represents the uncertainty of assigning the feature at that position, with no 

transparency indicating the highest certainty. Left Limbic subtype had a high 

certainty of the first feature as the left hippocampus to become abnormal. 

Similarly, Right Limbic subtype had a high certainty of changes starting in the 

right hippocampus. The Late Right Limbic and Bilateral Tracts-Only were 

mainly driven by changes in white matter tracts. UNC: Uncinate fasciculus, CG: 

Cingulum, FO: fronto-occipital fasciculus, CR: Corona radiata, IC: Internal 

capsule, SS: Sagittal stratum, SFL: Superior longitudinal fasciculus, PTR: 

Posterior thalamic radiations, FX.ST: fornix/stria terminalis, EC: External 

capsule. 
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Figure 6.2 Distribution of subjects assigned to subtypes across diagnostic labels 

in T1W-FA model: Majority of left MTLE-HS were clustered in left limbic 

subtype, right MTLE-HS patients in right limbic subtype and late right limbic 

subtype. Bilateral Tracts-Only subtype consisted of a set of the common 

epilepsies. 

 

 

6.3.4 Imaging-derived subtypes are associated with epilepsy syndrome, 

age at imaging and duration of illness  

The SuStaIn algorithm estimated on the ENIGMA-Epilepsy cohort can be used 

to assign PWE into imaging-derived subtypes and place them between stage 0 

(i.e., no imaging feature reached a z-score threshold) and stage 48 (i.e., all 

features exceeded the maximal z-score threshold) as shown in Supplementary 

Figure S10. To investigate the association of imaging-derived subtypes assigned 

to PWE and clinical variables, we only considered confident subtype 

assignments, i.e., assignments with a probability larger than 0.5. Furthermore, 

since stage 0 represents ‘no abnormality’ and cannot be attributed to a subtype, 

we removed 79 PWE placed at stage 0 from further analyses, leaving the 

following subtyped PWE: 661 with duration of illness, 708 with age of disease 

onset, 99 that were responsive and 475 that were resistant to ASMs. Patients 

assigned to the four imaging-derived subtypes had a similar distribution of sex 
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(𝜒"=3.9, p=0.26, dof=3) and age of disease onset (one-way ANOVA t=1.77, 

p=0.14). Clinical epilepsy syndrome showed a strong association with the 

imaging-derived subtype (𝜒"=495.16, p=1.08x10-93, dof=18; Figure 2).  

 

The Left Limbic subtype was composed of a majority of left MTLE-HS, the 

Right Limbic subtype of right MTLE-HS, while Late Right Limbic and Bilateral 

Tracts-Only subtypes were composed of a mixture of all syndromes, including 

left and right MTLE-HS. In the Late Right Limbic subtype, only patients with 

right MTLE-HS were placed beyond stage 14, which corresponds to changes in 

the right hippocampus (Supplementary Figure S11). Thus, the majority of people 

with right MTLE-HS were distributed between the Right Limbic (36%) and Late 

Right Limbic subtypes (42%). Right MTLE-HS PWE in the Late Right Limbic 

subtype displayed lower FA values compared to right MTLE-HS PWE assigned 

to the Right Limbic subtype (Supplementary Figure S12). Furthermore, there 

was no difference between people with right MTLE-HS assigned in Right 

Limbic or Late Right Limbic subtype with respect to age, sex, duration of 

illness, age of disease onset, centre or the response to ASMs (Supplementary 

Table S7).  

 

Between the progression subtypes there were also differences in age at imaging 

(one-way ANOVA t=10.82, p=5.7x10-7), duration of illness (one-way ANOVA 

t=11.33, p=2.9x10-7) and contributing centre (𝜒"=93.19, p=2.4x10-6, dof=39) 

(Supplementary Figure S11). We report that the subtype assignment was not 

associated with ASM response in the logistic regression (F=5.9, p=0.11). 

However, a marginal association was observed while predicting the IPI status 

from the imaging-derived subtypes in the logistic regression model (F=9.6, 

p=0.02). Likewise, using logistic regression with IPI status as the response 

variable, we examined the association between patients in the Left and Right 

Limbic subtypes, considered as a single group, and those in the white-matter-led 

subtypes (Late Right Limbic and Bilateral Tracts Only) as another group, 

resulting in a odds ratio of 0.21, p = 0.04 for the white-matter-led subtypes. 
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6.3.5 Imaging-derived staging is associated with duration of illness, age of 

disease onset and initial precipitating injury. 

Considering patients across all four imaging-derived subtypes, the inferred 

disease stage was highly correlated with the duration of illness (Spearman rank 

correlation, (r=0.23, p=2.24x10-09, N=661) while adjusting for imaging-derived 

subtype. Overall, PWE assigned to early stages within each subtype showed a 

relatively shorter illness duration than those in later stages (Table 6.2). However, 

the significance of the association varied across subtypes, ranging from non-

significant in the Left Limbic subtype (ρ=0.03, p=0.68, N=162) to highly 

significant in the Late Right Limbic subtype (ρ=0.46, p=1.7x10-10, N=169). To 

corroborate whether the high correlation was led by changes in white matter 

tracts we recalculated the correlation after excluding PWE with right MTLE-HS 

in the Late Right Limbic subtype: the association between disease stages and 

duration of illness remained significant (ρ=0.30, p=0.001, N=107).  

 

 

Table 6.2 Clinical associations: Associations between imaging-derived disease 

stages assigned by SuStaIn and clinical variables 

Subtype DURILL vs stages AO vs stages  ASM RESPONSE vs 
stages 

Left limbic r=0.03, p=0.68,  
N=162 

r=-0.03, p=0.64, 
N=181 

F=33.7, p=0.38, 
N1=20, N2=135 

Right limbic r=0.23, p=0.0125, 
N=112 

r=-0.17, p=0.053, 
N=118 

F=26.4, p=0.11, 
N1=12, N2=88 

Late right 
limbic 

r=0.46, p=1.7x10-10, 
N=169 

r=-0.39, p=3x10-8, 
N=182 

F=27.7, p=0.83, 
N1=27, N2=119 

Bilateral 
tracts-only 

r=0.26, p=6x10-5, 
N=218 

r=-0.12, p=0.058, 
N=227 

F=37.22, p=0.41, 
N1=40, N2=133 

r= pearson’s correlation; p=p-value; N=sample size; F=F statistic; N1=sample 

number for ASM responsive patients; N2=sample number for ASM resistant 

patients. 

 

 

Like for duration of illness, considering patients across all four imaging-derived 

subtypes, the inferred disease stage was negatively correlated with the age of 

disease onset (Spearman rank correlation, (r=-0.13, p=0.0002, N=708) while 
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adjusting for imaging-derived subtype. Within each imaging-derived subtype, 

age of onset showed an overall trend of negative correlations with disease stage 

(Table 6.2). However, magnitude and significance were reduced compared to the 

associations with duration of illness.  

 

We report that within our cohort the disease stages were not predictive of the 

response to ASMs (Table 6.2). Here, on an average, patients that were 

responsive to ASMs (N1=99) were placed in the early stages and those that were 

resistant (N2=475) were placed in later stages. Interestingly, we observed a 

marginal association between the disease stages and IPI status from the logistic 

regression model (F=40.5, p=0.018).   

 

  

6.4 Discussion 

We applied SuStaIn to a large multi-centre neuroimaging study of epilepsy, 

identifying distinct patterns of progression of structural changes in the brain, and 

assigning PWE to four different imaging-derived subtypes. The features used to 

train our model included z-scores from measures derived from T1W MRI and 

FA values acquired from DTI scans. These measures represent the pathological 

impact on grey matter regions and axonal integrity of white matter tracts, 

respectively. The use of z-scores allowed us to track the severity of structural 

changes, thus providing a fine-grained measure of progressive changes in 

regional brain measures. 

 

Among the identified imaging-derived subtypes, the Left Limbic and Right 

Limbic subtypes predominantly consisted of people with MTLE-HS. Our 

analysis revealed a localised pattern of limbic system involvement in the Left 

Limbic subtype, characterised by volume decline in the left hippocampus and 

thalamus and decreased FA values in key association and commissural fibers 

that started on the left hemisphere before progressing to the right side. 

Conversely, the Right Limbic subtype exhibited mirrored structural changes in 

the right hippocampus and thalamus, along with altered FA values in the right 

and left cingulum, suggesting potential hemispheric lateralization of limbic 
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system dysfunction in our study population. This mirroring of structural changes 

suggests a hemispheric lateralization of limbic system dysfunction in people 

with MTLE-HS. The distinct structural changes between these two subtypes 

might reflect the unique functional roles played by each hemisphere, like 

emotional processing or memory. Overall, this initial sequence involving 

changes to grey matter in people with MTLE-HS is similar to our previous study 

(Lopez et al., 2022). Beyond the grey matter, WM changes have been previously 

reported in ipsilateral and/or contralateral cingulum, fornix/stria terminalis, 

external capsule and corpus callosum in people with left and right MTLE-HS 

(Arfanakis et al., 2002; Concha, Beaulieu and Gross, 2005; Gross, Concha and 

Beaulieu, 2006; Rodrigo et al., 2007; McDonald et al., 2010; Buksakowska et 

al., 2019). However, our analysis identified the temporal sequence in which 

these changes occur and we used this sequence to investigate the clinical 

relevance of progressive structural changes in treatment response.  

 

In addition, we uncovered an alternate progression pattern in people with right 

MTLE-HS, where changes started in the bilateral white matter tracts before 

progressing to the right hippocampus and right thalamus. This discovery aligns 

with recent studies that also document early-stage white matter abnormalities in 

epilepsy (Chen et al., 2019; Luna-Munguia, Marquez-Bravo and Concha, 2021; 

Bartoňová et al., 2023). Notably, the findings of Buksakowska et al., (2019), 

analyzing 32 people with epilepsy, reinforce our observations, highlighting more 

widespread changes affecting bilateral white matter tracts in right MTLE-HS 

compared to left MTLE-HS. This result suggests that the progression of 

structural changes in the brain in left and right MTLE-HS are influenced by 

distinct pathological mechanisms, impacting grey matter regions and white 

matter tracts differently. 

 

The progression pattern in the Bilateral Tracts-Only subtype seen in all the 

epilepsy syndromes, started with changes in white matter tracts that connects the 

thalamus to the cortex, and progressed to those tracts emerging from the 

thalamus to the pontine nuclei, and other brainstem structures. A higher 

proportion of people with GGE and non-lesional epilepsies were assigned to this 

subtype. This observation may not be immediately apparent when considering 
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the results of Hatton et al., (2020), where FA measures in white matter tracts 

displayed distinct alterations between the left and right regions rather than 

exhibiting a bilateral effect. Here, it’s important to note that SuStaIn estimates a 

imaging-derived subtype based on the best fitting model. The lack of patients 

assigned to late stages in this subtype suggests that there were no changes in 

limbic regions considered here.  

 

In contrast, the staging of patients in the Late Right Limbic subtype distinctively 

indicated the changes in FA values of the left and right external capsule and 

other association fibers as early disease stages, before progressing to the 

hippocampus. Here, all syndromes were assigned up to stages representing 

abnormality in the white matter tracts, while right MTLE-HS patients were 

assigned to stages representing abnormality predominantly in the right limbic 

regions. This finding agrees with the earlier univariate analysis in the same 

cohort, which reported large effect sizes across all of the epilepsy syndromes 

compared to controls in the bilateral external capsule (Hatton et al., (2020)). The 

external capsule, which connects the putamen to the cortex, is a route for 

cholinergic and corticostriatal fibers. Changes to these fibres have been 

implicated in poor cognitive performance (Nolze-Charron et al., 2020). Hence, 

microstructural changes in the external capsule, cingulum and corpus callosum 

as early-stage events suggests an early disruption in fibres connecting the limbic 

system to the cortex.  

 

The progression sequences of both the Late Right Limbic and the Bilateral 

Tracts-Only subtypes suggests that an initial disruption in the connecting fibres 

between neurons may also lead to pathological mechanisms that cause structural 

changes in the brain. This finding may explain the coexistence of focal and 

generalized epilepsy in a sub-group of patients with MTLE-HS (Jeha, Morris 

and Burgess, 2006; Betting et al., 2010; Blume, 2010).  

 

Furthermore, Gleichgerrcht et al., (2021) reported that measures derived from 

T1W MRI were better in identifying laterality of MTLE-HS, whereas DTI based 

measures were better at diagnosing MTLE-HS from healthy controls. Similar to 
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our findings, Gleichgerrcht et al., (2021) could not distinguish patients with NL-

TLE from healthy controls. Our cohort with GGEs, NL-TLE, ETLE and 

unspecified epilepsy indicated grey matter regions analysed were intact. 

However, previous research has demonstrated that some patients with GGEs 

have changes in thalamus, superior mesiofrontal lobe and other cortical 

structures (Ciumas and Savic, 2006; Kim et al., 2007; Boris C. Bernhardt et al., 

2009; Lin et al., 2009). Here, the progression sequence estimated for GGEs is 

constrained by the absence of cortical structures, stemming from our selection 

criteria. Future analyses may benefit from a more comprehensive and inclusive 

set of features.  

 

The imaging-derived subtypes we present share similarities with those 

documented by Xiao et al., (2022), which utilized SuStaIn on a cohort of 

patients with focal and generalized epilepsies. The first subtype reported in Xiao 

et al., (2022), was the Hippocampal subtype which was characterized by 

structural changes in the ipsilateral hippocampus, ipsilateral thalamus and 

subsequently in other cortical regions. This matches with the two Limbic-led 

subtypes detected in our cohort. Their second subtype was the Cortical subtype 

which had widespread changes in the cortical structures, followed by subcortical 

structures in the late stages, which matches with our Late Right Limbic subtype. 

Lastly, their Basal Ganglia subtype which had structural changes that started in 

the globus pallidus before spreading to other basal ganglia region, is similar to 

our Bilateral Tracts-Only subtype.  

 

Moreover, in Xiao et al., (2022), each of the Cortical and Basal Ganglia 

subtypes only contained about 10% of people with focal epilepsies, while the 

rest had generalized epilepsy. On the other hand, our Bilateral Tracts-Only 

subtype demonstrated a consistent proportion of all seven epilepsy syndromes 

included in our analysis. Hence, our study unveils a novel observation indicating 

that a subgroup of PWE may exhibit white matter abnormalities preceding 

alterations in grey matter regions. Such findings hold potential clinical 

significance for enhancing treatment outcomes, informing surgical decisions and 

monitoring disease progression. 
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We used duration of illness as a proxy for validating the disease stages positions 

estimated by our model, an approach commonly adopted in cross-sectional 

studies (Bernhardt et al., 2009; Caciagli et al., 2017; McDonald et al., 2008). 

With the exception of Left Limbic subtype, our staging distribution of all other 

subtypes indicated that patients of all syndromes staged early in the progression 

sequence had a shorter illness duration and a later disease onset. This 

observation also agrees with our previous finding of weak association of disease 

stages based on progressive changes and duration of illness (Lopez et al., 2022). 

Hence, our findings suggest that the association between the duration of illness 

is more pronounced in relation to changes in white matter tracts as compared to 

changes in grey matter regions. This observation may be attributed to the greater 

sensitivity of FA measures in detecting microstructural alterations in white 

matter tracts, in contrast to the macro-level changes detected by cortical 

thickness measurements. Although the relationship between FA measures and 

cortical thickness is typically reported as linear (Kochunov et al., 2011), the 

ability of FA measures to capture subtle microstructural changes in white matter 

may contribute to their stronger association with the duration of illness. 

 

Overall, our staging assigned by SuStaIn for all syndromes indicates that 

response to ASMs was not associated with the extent of structural changes in the 

brain in epilepsy. In the future, SuStaIn staging information could also be 

combined with the type of prescribed ASM, seizure semiology, EEG data and 

type of epilepsy syndrome to predict treatment response. Using such features, 

previous studies have predicted the ASM efficacy with accuracy of up to 80%. 

(Wirrell et al., 1996; Nicolson et al., 2004; Mohanraj and Brodie, 2007; Caciagli 

et al., 2014; Kamitaki et al., 2022).  

 

Our study demonstrates that disease stages were marginally associated with the 

patients’ IPI status. Upon further investigation, we report a higher majority of 

patients (67%) with an IPI incident compared to those without an IPI incident 

(60%) were placed before stage 20. This can be attributed to the fact that patients 

from this centre having an IPI incident at childhood were only considered for 

presurgical evaluation after the age of 20 years of age. 
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There were several limitations in our study. First, this ENIGMA-Epilepsy cohort 

represents data mostly from tertiary epilepsy centres and therefore the findings 

may not be generalisable to the overall epilepsy population. Also, within the 

ENIGMA-Epilepsy cohort, we observed sampling bias regarding availability of 

ASM response data (Supplementary Table S8): PWE with missing response data 

were younger, diagnosed more recently and had a later age of onset. Second, 

results would benefit from a validation dataset and predicting other clinical 

variables such as cognitive score or seizure frequency. Lastly, given a larger 

cohort of patients with an IPI status, we would be able to further explore the 

longitudinal effects of an IPI on disease progression and its potential 

implications for treatment response and long-term outcomes. Additionally, 

investigating the interaction between an IPI and other relevant clinical factors 

such as type of ASM administered may provide valuable insights into the 

underlying mechanisms driving disease trajectories in epilepsy. 

 

In conclusion, we identified four imaging-derived subtypes based on disease 

progression using features from T1W MRI and DTI scans were used to quantify 

changes in grey matter and white matter tracts respectively. Disease stages 

assigned to all syndromes correlated with duration of illness and age of onset. 

Therefore, once validated in a new cohort, our SuStaIn model trained on the 

ENIGMA-Epilepsy data could be used to stage patients of these syndromes with 

relevant clinical data. This could help establish connections between imaging-

based disease stages and other clinical features such as seizure frequency, 

treatment outcomes, ASMs resistance patterns, surgical outcomes and 

psychiatric comorbidities.  

 

 

 

 

 

 

 

 

 



 97 

Chapter 7 Conclusion and future work 
 

7.1 Conclusion 

We successfully investigated the association of facial asymmetry and structural 

changes in the brain in PWE, and reported they were independent of each other. 

Our collaborators also showed that facial asymmetry was higher in patients with 

focal epilepsy compared to those with IGE or healthy individuals. This indicates 

that the SAI measured could serve as a valuable tool for gaining insights into the 

mechanisms underlying focal epilepsy. However, to effectively implement the 

SAI measure in clinical settings, additional studies are necessary to determine 

the sensitivity and specificity of SAI measurements across different operators.  

Furthermore, future work incorporating longitudinal data will help understand 

the progression of facial asymmetry and severity of structural changes in the 

brain, and the effect treatments have on them.  

 

We also examined regional brain measures in people with MTLE-HS and 

controls, unveiling a distinct, progressive sequence of structural changes in grey 

matter regions. Importantly, the duration of illness correlated with assigned 

stages, thus validating the identified sequence. Extending our analysis to a wider 

cohort of common epilepsies, we applied SuStaIn, revealing four imaging-

derived subtypes with unique progression patterns in brain structure. These 

included two limbic-led subtypes, a white matter-led subtype, and a late limbic 

subtype, suggesting early involvement of both abnormal grey and white matter 

tracts in disease pathology. Although our study lacked validation on an untrained 

cohort, we aim to assess the clinical viability of our EBM and SuStaIn model by 

applying it to an external dataset and evaluating the assigned stages against 

clinical variables. 
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7.2 Future work 

7.2.1 Investigate association of disease progression and genetics  

Several studies have suggested a potential link between alterations in gene 

expression and structural changes in the brain in neurodegenerative diseases 

(Julio-César and Rosa-Helena, 2018; Altmann et al., 2020; Guerra-Resendez, 

Brenner and Hilton, 2022). The findings from Altmann et al., (2020) proposed a 

more active involvement of specific cell types, such as astrocytes and 

endothelial cells, in the initiation of neurodegeneration in frontotemporal 

dementia than previously assumed. Evaluating the correlation between changes 

in gene expression or genetic mutations and our proposed disease stages has the 

potential to unveil insights into the molecular mechanisms that affect specific 

cell populations in the brain. Moreover, such investigations could serve as a 

foundation for the identification of novel therapeutic targets aimed at preventing 

brain atrophy and seizures, thereby advancing our ability to develop targeted 

interventions for PWE. 
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Supplementary Table  
 

Supplementary Table S1 Features selection frequency: Table lists the 57 BASI 
features computed from 57 left and 57 right individual brain regions, including 
side of lesion on MRI scan and epilepsy type the patient was categorised in. The 
selection frequency represents the number of times the features were included 
for prediction by the LASSO model. The table below corresponds to the model 
trained on subjects from all categories, BASI features, epilepsy category and 
lesion laterality on MRI scan. (CT: cortical thickness, SA: surface area, V: 
volume, SF: hippocampus subfield) 
 
BASI features Selection frequency 

BASI_entorhinal_CT  258 

BASI_fimbria_SF 256 

BASI_pallidium_V 252 

BASI_frontalpole_CT 168 

BASI_caudalanteriorcingulate_CT 165 

MRI_leasion_side 150 

BASI_inferiortemporal_CT 146 

BASI_lateraloccipital_CT 142 

BASI_caudalmiddlefrontal_CT 130 

BASI_Lateral_Ventricle_V 123 

BASI_superiorparietal_CT 120 

BASI_isthmuscingulate_CT 115 

BASI_hata_SF 90 

BASI_parsopercularis_CT 85 

BASI_precentral_CT 80 

BASI_transversetemporal_CT 70 

BASI_parsorbitalis_CT 65 

BASI_gc_ML_DG_SF 60 

BASI_CA1_SF 55 

BASI_paracentral_CT 50 

BASI_hemisphere_SA 50 

BASI_postcentral_CT 42 

BASI_cuneus_CT 40 
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BASI_fusiform_CT 35 

BASI_middletemporal_CT 32 

BASI_pericalcarine_CT 28 

BASI_CA4_SF 20 

BASI_inferiorparietal_CT 17 

BASI_presubiculum_SF 14 

BASI_temporalpole_CT 12 

BASI_superiortemporal_CT 11 

BASI_accumbens_V  11 

BASI_whole_hippocampus_SF 10 

BASI_bankssts_CT 10 

BASI_medialorbitofrontal_CT 10 

BASI_CA3_SF 10 

BASI_lingual_CT 9 

BASI_parahippocampal_CT 9 

BASI_precuneus_CT 9 

BASI_parasuniculum_SF 9 

BASI_posteriorcingulate_CT 8 

BASI_rostralmiddlefrontal_CT 8 

BASI_supramarginal_CT 7 

Epilepsy_category 6 

BASI_insula_CT 6 

BASI_lateralorbitofrontal_CT 6 

BASI_parstriangularis_CT 5 

BASI_putamen_V 5 

BASI_rostralanteriorcingulate_CT 4 

BASI_superiorfrontal_CT 4 

BASI_hippocampal_tail_SF 3 

BASI_amygdala_V 3 

BASI_caudate_V 3 

BASI_hippocampus_V 2 

BASI_thalamus_V 2 
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BASI_hippocampal_fissure_SF 1 

BASI_molecular_layer_hp_SF 1 

BASI_subiculum_SF 1 

BASI_Hemisphere_CT 0 

 

 

 

Supplementary Table S2 Summary of centres demographics: Table shows 
summary of sample size of controls, left MTLE-HS and right MTLE-HS from 
each centre along with the location and period of recruitment used in EBM. 

Centre Female 
controls 

Female 
cases 

Total 
controls 

Total 
cases 

L MTLE-
HS cases 

R MTLE-
HS cases Total n 

Bern 41 9 78 18 10 8 96 

Bonn 41 62 80 112 74 38 192 

CUBRIC 34 0 48 0 0 0 48 

EKUT 9 0 18 0 0 0 18 

EPICZ 59 26 116 46 19 27 162 

EPIGEN_3T 30 6 70 13 8 5 83 

Florence 14 0 30 0 0 0 30 

Genova 8 1 20 1 0 1 21 

Greifswald 59 0 99 0 0 0 99 

HFHS 0 15 0 20 9 11 20 

IDIBAPS 29 29 52 53 17 36 105 

KCL_CNS 54 11 101 15 6 9 116 

KCL_CRF 16 1 26 5 3 2 31 

KUOPIO 33 5 67 9 0 9 76 

MICA 18 7 38 14 12 2 52 

MNI 22 48 46 83 45 38 129 

MUSC 45 17 58 27 21 6 85 

NYU 62 12 118 19 8 11 137 

RMH 11 13 27 35 22 13 62 

UCL 17 21 29 37 24 13 66 

UCSD 16 15 37 26 16 10 63 

UMG 12 12 21 20 10 10 41 

UNAM 25 12 35 20 10 10 55 

UNICAMP 249 113 398 191 107 84 589 

XMU 4 15 13 40 25 15 53 

Total 908 450 1625 804 446 358 2429 
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Supplementary Table S3 List of classic and robust Cohen’s d and corresponding 

brain regions: BASI=Brain Asymmetry Index; IPS=ipsilateral; Contra= 

contralateral, CT=cortical thickness, SA=surface area, V=volume. 

Feature Robust Cohen’s d 
BASI Hippocampus V -2.6829179 
I Hippocampus V -1.7582463 
I Thalamus V -0.6664918 
I precuneus CT -0.5467175 
I superiorparietal CT -0.5380512 
C superiorparietal CT -0.5209357 
I superiortemporal CT -0.4723382 
I lingual CT -0.4631141 
I Pallidum V -0.458555 
I Putamen V -0.4504646 
C precentral CT -0.4451158 
C precuneus CT -0.4443393 
C Thalamus V -0.4344409 
C postcentral CT -0.4331437 
I precentral CT -0.4222914 
I paracentral CT -0.4218226 
C caudalmiddlefrontal CT -0.4162054 
I superiorfrontal CT -0.3899213 
I postcentral CT -0.3874891 
BASI Amygdala V -0.3866285 
I lateraloccipital CT -0.3854351 
C supramarginal CT -0.3842853 
C paracentral CT -0.3835202 
C superiorfrontal CT -0.3805965 
I supramarginal CT -0.3803446 
C lateraloccipital CT -0.3801412 
I caudalmiddlefrontal CT -0.378605 
C Putamen V -0.3742566 
I middletemporal SA -0.3738439 
C Pallidum V -0.3705729 
I inferiorparietal CT -0.3645912 
I cuneus CT -0.3626711 
C inferiorparietal CT -0.3520396 
I parstriangularis CT -0.3443501 
C cuneus CT -0.3397424 
I fusiform CT -0.3375276 
I inferiortemporal SA -0.3368785 
I pericalcarine CT -0.3275078 
C parsopercularis CT -0.3188425 
C transversetemporal CT -0.3119499 
C pericalcarine CT -0.3117247 
BASI middletemporal SA -0.3027246 
I middletemporal CT -0.3017855 
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I parahippocampal CT -0.2930618 
BASI inferiorparietal SA -0.2891688 
I parsopercularis CT -0.2889303 
I Caudate V -0.2880701 
I temporalpole CT -0.27784 
I transversetemporal CT -0.2759336 
I inferiorparietal SA -0.2683861 
I temporalpole SA -0.2677421 
I bankssts CT -0.2596088 
C lingual CT -0.2581602 
C rostralmiddlefrontal CT -0.2566672 
C parstriangularis CT -0.2522852 
I entorhinal CT -0.2500147 
BASI inferiortemporal SA -0.2483479 
BASI temporalpole CT -0.2452617 
I precentral SA -0.2407922 
BASI Thickness -0.2351717 
I Amygdala V -0.228986 
BASI superiortemporal SA -0.2254611 
BASI parahippocampal CT -0.2192267 
BASI Thalamus V -0.2173022 
C parsorbitalis CT -0.2121693 
I parstriangularis SA -0.2120204 
I parahippocampal SA -0.2068277 
BASI parsorbitalis SA -0.206631 
BASI lingual CT -0.2051527 
BASI rostralmiddlefrontal SA -0.2017726 
I cuneus SA -0.2004569 
BASI entorhinal CT -0.1995361 
BASI frontalpole SA -0.1971317 
BASI superiorparietal SA -0.1962724 
I parsorbitalis SA -0.1933529 
BASI superiortemporal CT -0.1901711 
BASI fusiform CT -0.189665 
I rostralmiddlefrontal SA -0.1878315 
I SurfArea -0.1862529 
C Caudate V -0.1860718 
C posteriorcingulate CT -0.1853445 
C bankssts CT -0.1838757 
I rostralmiddlefrontal CT -0.1803568 
C superiortemporal CT -0.1774301 
I superiortemporal SA -0.1753831 
I postcentral SA -0.1727137 
I insula SA -0.1698279 
I bankssts SA -0.1677565 
BASI cuneus SA -0.1673264 
BASI Putamen V -0.1672498 
I inferiortemporal CT -0.1627242 
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C precentral SA -0.1606092 
BASI inferiortemporal CT -0.1584654 
C lateralorbitofrontal CT -0.1566637 
C parsopercularis SA -0.1562873 
BASI SurfArea -0.1559051 
BASI parstriangularis SA -0.1551918 
C parahippocampal SA -0.1540064 
BASI bankssts SA -0.1514161 
I lateralorbitofrontal SA -0.1503787 
I superiorfrontal SA -0.1458241 
C caudalanteriorcingulate CT -0.1451751 
C Hippocampus V -0.14319 
C middletemporal CT -0.1426917 
BASI temporalpole SA -0.1327397 
I Accumbens V -0.1327248 
I parsorbitalis CT -0.1292584 
BASI middletemporal CT -0.1290904 
BASI superiorparietal CT -0.1250625 
C caudalmiddlefrontal SA -0.1235376 
I superiorparietal SA -0.1226229 
C frontalpole CT -0.1204295 
I posteriorcingulate CT -0.1192416 
I lateralorbitofrontal CT -0.1176395 
BASI posteriorcingulate SA -0.116049 
BASI paracentral SA -0.1130479 
I entorhinal SA -0.1126223 
BASI pericalcarine SA -0.1126034 
C medialorbitofrontal CT -0.1072757 
C rostralanteriorcingulate SA -0.1068092 
I caudalanteriorcingulate SA -0.1067414 
C fusiform CT -0.1062734 
BASI parahippocampal SA -0.1049692 
BASI lateraloccipital CT -0.1026907 
I lateraloccipital SA -0.0948732 
C transversetemporal SA -0.0938629 
C lateraloccipital SA -0.093557 
C Accumbens V -0.0913876 
C insula CT -0.0903123 
C temporalpole CT -0.0894061 
I posteriorcingulate SA -0.0883885 
BASI fusiform SA -0.0881418 
I fusiform SA -0.0879827 
I caudalmiddlefrontal SA -0.0860714 
I parsopercularis SA -0.0859082 
C insula SA -0.0857329 
BASI precentral SA -0.0849061 
C fusiform SA -0.0848152 
C paracentral SA -0.0844464 
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C isthmuscingulate SA -0.0815205 
C postcentral SA -0.080863 
I frontalpole CT -0.0797915 
BASI Caudate V -0.0771777 
BASI precuneus SA -0.0754572 
C entorhinal CT -0.0751199 
I medialorbitofrontal SA -0.0742784 
I medialorbitofrontal CT -0.0736646 
BASI entorhinal SA -0.0723618 
C rostralmiddlefrontal SA -0.0722609 
I isthmuscingulate CT -0.0714677 
BASI medialorbitofrontal SA -0.070861 
BASI superiorfrontal SA -0.0703944 
C parahippocampal CT -0.068767 
BASI insula SA -0.0646701 
C posteriorcingulate SA -0.0630943 
I pericalcarine SA -0.060347 
C superiorfrontal SA -0.0600856 
BASI precuneus CT -0.0591003 
BASI pericalcarine CT -0.0566343 
BASI lateralorbitofrontal SA -0.0537998 
C caudalanteriorcingulate SA -0.0529875 
C inferiortemporal SA -0.0424029 
I paracentral SA -0.0412793 
C superiortemporal SA -0.0412381 
BASI postcentral SA -0.0396793 
C lateralorbitofrontal SA -0.0396383 
BASI lateraloccipital SA -0.039085 
BASI paracentral CT -0.0382261 
BASI bankssts CT -0.035709 
I precuneus SA -0.0351027 
C cuneus SA -0.0336586 
C temporalpole SA -0.0302501 
BASI caudalanteriorcingulate SA -0.0275075 
BASI Pallidum V -0.0233492 
BASI supramarginal SA -0.0200667 
BASI caudalmiddlefrontal SA -0.017667 
BASI superiorfrontal CT -0.0157578 
I frontalpole SA -0.015389 
C middletemporal SA -0.0131659 
C entorhinal SA -0.0116351 
C isthmuscingulate CT -0.0115805 
BASI frontalpole CT -0.0088867 
BASI Accumbens V -0.0065703 
BASI parstriangularis CT -0.0056471 
C inferiortemporal CT -0.0009267 
I lingual SA 0.00300391 
BASI parsopercularis CT 0.0077404 
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I insula CT 0.0096573 
BASI postcentral CT 0.00979354 
BASI transversetemporal CT 0.00997855 
BASI posteriorcingulate CT 0.01070268 
BASI inferiorparietal CT 0.01107456 
BASI precentral CT 0.01665731 
BASI rostralanteriorcingulate CT 0.01928661 
C superiorparietal SA 0.02132597 
C lingual SA 0.02277294 
BASI isthmuscingulate CT 0.02439135 
C SurfArea 0.02487679 
I transversetemporal SA 0.02490681 
C parsorbitalis SA 0.02745711 
C bankssts SA 0.02800504 
BASI medialorbitofrontal CT 0.02888847 
BASI lateralorbitofrontal CT 0.03268548 
C precuneus SA 0.03765065 
C medialorbitofrontal SA 0.03786681 
BASI supramarginal CT 0.03942664 
BASI lingual SA 0.0405 
BASI cuneus CT 0.04124328 
C pericalcarine SA 0.04423045 
BASI parsorbitalis CT 0.04947811 
I caudalanteriorcingulate CT 0.05240513 
C supramarginal SA 0.07132833 
I supramarginal SA 0.07164339 
I isthmuscingulate SA 0.07213289 
C rostralanteriorcingulate CT 0.07223438 
I rostralanteriorcingulate SA 0.08276231 
I rostralanteriorcingulate CT 0.08474284 
C parstriangularis SA 0.08665371 
BASI caudalmiddlefrontal CT 0.08741198 
C inferiorparietal SA 0.09426966 
BASI isthmuscingulate SA 0.09982338 
BASI rostralmiddlefrontal CT 0.10202985 
BASI insula CT 0.11399903 
BASI parsopercularis SA 0.13987967 
BASI caudalanteriorcingulate CT 0.15544052 
C frontalpole SA 0.17046372 
BASI rostralanteriorcingulate SA 0.17375967 
BASI Lateral Ventricle V 0.18917073 
BASI transversetemporal SA 0.20267358 
C Amygdala V 0.2042172 
I Thickness 0.20783915 
C Thickness 0.21171169 
C Lateral Ventricle V 0.44088061 
I Lateral Ventricle V 0.5389778 
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Supplementary Table S4 Association between availability of ASM data and 

demographic and clinical variables in the ENIGMA-Epilepsy cohort: Columns 

correspond to the examined demographic and clinical variables. Diagnosis refers 

to left or right MTLE-HS. Rows: ‘Test’ indicates the applied test (Chi squared 

test or t-test); ‘Statistic’ provides the test statistic (and degrees of freedom (df); 

‘Mean difference’ provides the difference of the variable between PWE with 

missing ASM response data and PWE with available response data; ‘p-value’ 

provides the resulting p-value.  

 Sex Diagnosis Age Duration 

of illness 

Age of 

onset 

Site 

Test Chi-sq Chi-sq t-test t-test t-test Chi-sq 

Statistic 1.02; 

df=1 

0.67; df=1 -2.54 -4.96 3.49 426; df=19 

Mean 

difference 

  -2.08 -5.26 3.02  

p-value 0.31 0.41 0.011 8.88x10-07 0.0005 1.11x10-78 

 

 
 
 

Supplementary Table S5: Demographics of patients across the assigned 

syndromes: The demographic variables available for analysis included age, 

duration of illness, and age of disease onset. 
Syndrome Age DURILL Age of disease onset Total n 
GGE 32.0±9.5 18.9±10.2 13.0±7.0 70 
L MTLE-HS 39.0±10.6 24.3±13.7 14.4±11.7 274 
R MTLE-HS 40.2±10.7 24.7±14.0 15.5±11.4 219 
L NL-MTLE 36.3±10.4 17.4±11.6 18.7±11.4 147 
R NL-MTLE 36.1±11.3 15.7±11.2 20.6±13.4 109 
ETLE 32.6±10.7 14.8±11.7 17.6±12.2 120 
Unspecified 36.4±11.3 16.9±11.1 19.6±14.3 109 
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Supplementary Table S6 Combination of DTI measures from white matter tracts: 

Regional FA and MD measures combined based on origin of white matter tracts. 

Adapted from Kochunov et al., (2014). 

Left or right regional FA and 

MD measures added 

Overall FA and MD measures across left 

or right white matter tracts region based on 

origin in the brain 

Anterior limb of internal capsule 

(ALIC) 

Posterior limb of internal 

capsule (PLIC) 

Retrolenticular part of internal 

capsule (RLIC) 

Internal capsule (IC) 

Inferior fronto-occipital 

fasciculus (IFO) 

Superior fronto-occipital 

fasciculus (SFO) 

Fronto-occipital fasciculus (FO) 

Anterior corona radiata (ACR) 

Superior corona radiata (SCR) 

Posterior corona radiata (PCR) 

Corona radiata (CR) 

Cingulum/cingulate gyrus 

(CGC) 

Cingulum/hippocampus (CGH) 

Cingulum (CG) 

(connecting left to right regions) 

Genu of corpus callosum 

(GCC)  

Body of corpus callosum (BCC) 

Splenium of corpus callosum 

(SCC) 

(connecting left to right regions) 
Corpus callosum (CC)   
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Supplementary Table S7: Association between demographic and clinical 

variables in right MTLE-HS patients assigned to subtype 2 and subtype 3: 

Columns correspond to the examined demographic and clinical variables. Rows: 

‘Test’ indicates the applied test (Chi squared test or t-test); ‘Statistic’ provides 

the test statistic (and degrees of freedom (df); ‘Mean difference’ provides the 

difference of the variable between patients with right MTLE-HS in subtype 2 

and subtype 3; ‘p-value’ provides the resulting p-value; NA (Not applicable) 

 

 

Supplementary Table S8: Association between availability of ASM data and 

demographic and clinical variables in the ENIGMA-Epilepsy cohort: Columns 

correspond to the examined demographic and clinical variables. Diagnosis refers 

to left or right MTLE-HS, ETLE, unspecified/bilateral, GGEs, left and right NL-

TLEs. Rows: ‘Test’ indicates the applied test (Chi squared test or t-test); 

‘Statistic’ provides the test statistic (and degrees of freedom (df); ‘Mean 

difference’ provides the difference of the variable between PWE with missing 

AMS response data and PWE with available response data; ‘p-value’ provides 

the resulting p-value. 

 
Sex Diagnosis Age Duration of 

illness 

Age of 

onset 

Site 

Test Chi-sq Chi-sq t-test t-test t-test Chi-sq 

Statistic 0.24; 

df=1 

59.23; 

df=6 

2.35 3.92 -2.59 452.27; 

df=14 

Mean 

difference 

NA NA 2.25 4.96 -2.84 NA 

p-value 0.619 6.44x10-11 0.018 9.4x10-5 0.009 1.17x10-87 

 
Sex ASM 

response 
Age Duration of 

illness 
Age of disease 

onset 
Site 

Test Chi-sq Chi-sq t-test t-test t-test Chi-sq 
Statistic 0.01; 

df=1 
1.0; df=1 1.09 1.67 -1.12 9.39; 

df=9 
Mean 

difference 
NA NA 1.95 3.98 -2.09 NA 

p-value 0.908 1.000 0.27 0.095 0.261 0.401 
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Supplementary Figure 
 
 

 
Supplementary Figure S1: Regional differences in MTLE-HS compared to 

Controls. Effect size between MTLE-HS cases and controls measured as robust 

Cohens’ d for Surface Area, Cortical Thickness and Volumes depicted ipsilateral 

or contralateral to the seizure focus (top three rows). The bottom two rows 

depict effect sizes for asymmetry features.  



 146 

 
 

 
Supplementary Figure S2 Mixture models for the imaging features: Histograms 

of the feature distribution for cases (orange) and controls (blue). The estimated 

density using KDE is indicated in solid lines of the same color. The resulting 

probability that the event has occurred (i.e., the feature value is considered 

abnormal) is indicated by a purple solid line. 
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Supplementary Figure S3 Positional variance diagram of left and right MTLE-

HS cases: The EBM was estimated using only left MTLE-HS cases (left panel) 

or only right MTLE-HS cases (right panel). To assist comparisons of the order in 

which structural changes occur, the y-axis ordering was based on the full EBM 

(Figure 3). The right MTLE-HS PVD indicates a preferred start with 

hippocampal volume asymmetry and in addition places reduced ipsilateral 

thalamic volume on position three instead of five. The left MTLE-HS follows 

roughly the same ordering, however, increase in ipsilateral lateral ventricle 

volume was placed at position three followed by decreased cortical thickness in 

the contralateral superior parietal gyrus. CT=cortical thickness, V=Volume, 

BASI=Brain Asymmetry Index, I=ipsilateral, C=contralateral. 
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Supplementary Figure S4 Positional variance diagram for features above 

Cohen’s d of 0.4: Positional variance diagram for the full dataset with 19 

features passing the more lenient Cohens’ d cut-off (|d| ≥0.4). Fitting of the KDE 

mixture model for the feature ‘C caudalmiddlefrontal CT’ failed and the feature 

was therefore excluded from EBM modelling, leaving 18 features in the model. 

The ordering agrees with the original EBM: hippocampal features are followed 

by reduced cortical thickness, mainly in the parietal and frontal lobes. Next, 

there is a reduction in bilateral thalamic volumes and other subcortical 

structures. At the end of the sequence there is an increase in bilateral lateral 

ventricle volume.  CT=cortical thickness, V=Volume, BASI=Brain Asymmetry 

Index, I=ipsilateral, C=contralateral.  
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Supplementary Figure S5 Ridgeplots of hippocampal features in controls and 

MTLE-HS cases at different EBM stages: Each panel shows a series of density 

plots for hippocampal features, i.e., ipsilateral hippocampal volume (A), 

contralateral hippocampal volume (B) and BAIS of hippocampal volume (C). In 

each panel subjects are grouped into Controls and (top ridge) and EBM stages 

for MTLE-HS cases. For MTLE cases at stage 0 (EBM 0), hippocampal 

asymmetry is the same as in controls and ipsilateral hippocampal volume is only 

slightly decreased compared to controls. MTLE cases at stages 1 and 2 (EBM 1-

2) show increased hippocampal volume asymmetry, reduction in ipsilateral 

volume but no decrease in contralateral hippocampal volume.  
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Supplementary Figure S6 Distribution of stages in MTLE-HS cases by 

contributing centre: Distribution of MTLE-HS cases placed in stage 0, stages 1-

2 and stages 3-7 from individual centres. Some centres have a high fraction of 

MTLE-HS cases with EBM stage 0 (blue bars) potentially indicating different 

protocols and sensitivities in establishing sclerosis of the hippocampus or the 

mesial temporal lobe. 

 

 
Supplementary Figure S7 Features selected: 23 features were selected based on 

a cut-off of atleast 7% of PWE with z-score greater than 2. CC: Corpus callosum 

UNC: Uncinate fasciculus, CG: Cingulum, FO: fronto-occipital fasciculus, CR: 

Corona radiata, IC: Internal capsule, SS: Sagittal stratum, SFL: Superior 

longitudinal fasciculus, PTR: Posterior thalamic radiations, FX.ST: fornix/stria 

terminalis, EC: External capsule, CST: Corticospinal tract. 
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Supplementary Figure S8 CVIC of SuStaIn models: CVIC progressively 

decreased after considering 2, 3 and 4 subtypes and increased after considering 5 

subtypes in SuStaIn.  

 

 

 
Supplementary Figure S9 Detailed progression patterns of subtypes uncovered: 

The Variance Diagrams (PVDs) shows the progression of disease severity, 

where z1, z2,..,z4 correspond to z-scores 1, 2,..,4 for each of the features 

arranged as rows. The colour intensity of each box marks the probability or 

certainty that the feature has surpassed an event score at that stage. For instance, 

in the left limbic subtype, the changes in left hippocampal volume is very severe 

with a z-score of 3 at an early (stage 3) with a high certainty. 
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Supplementary Figure S10 SuStaIn stage distribution: Histogram showing 

stages (x-axis) assigned to PWE and the corresponding count (y-axis) across the 

four subtypes. These staging indicate around 30-40 features are affected in each 

of the subtypes. 

 

 

 
Supplementary Figure S11 Demographics of SuStaIn subtypes: The four 

subtypes uncovered by SuStaIn did not differ in sex (a) or age of disease onset 

(d), but did with respect to duration of illness (b) age (c), and centres (e). 

Majority of patients from MNI were assigned in subtype 1 while majority of 

patients from Bonn and UCL were assigned in subtype 2. 
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Supplementary Figure S12 Comparison of z-scores between subtypes: Box-plots 

showing right MTLE-HS patients assigned in Late Right Limbic subtype had 

lower FA values in white matter tracts than those assigned to the Right Limbic 

subtype. 

 

 

 
 
 
 

 

 


