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Abstract
Background Chronic respiratory diseases (CRDs) such as COPD and asthma have a substantial impact on
patients and healthcare systems. Recent research on diagnosing and monitoring CRDs highlights the
potential of continuous measurement of physiological parameters using nonlinear measures such as entropy
analysis. Entropy measures the irregularity and complexity of physiological signals, reflecting the
engagement of physiological control mechanisms. This systematic review examines the current evidence on
changes in the entropy of physiological signals in CRDs.
Methods The review follows Preferred Reporting in Systematic Reviews and Meta-Analyses (PRISMA)
guidelines and includes studies from databases such as Scopus, Medline, CINAHL and Embase. Quality
assessment was conducted using the Newcastle–Ottawa Scale. Evidence was qualitatively synthesised,
taking into account entropy signals, entropy type and results.
Results 11 studies met the inclusion criteria. Entropy in signals including heart rate variability (HRV),
airflow, peripheral oxygen saturation (SpO2

), inter-breath interval and tidal volume were evaluated. The
findings indicated that patients with COPD and asthma exhibit lower entropy in HRV and airflow
compared to healthy controls, with entropy decreasing as disease severity increases. Conversely,
SpO2

entropy values were increased during an exacerbation compared to stable COPD.
Conclusion The review highlights the potential of entropy analysis of physiological signals for early
detection of COPD exacerbations and for differentiating between various levels of disease severity in both
COPD and asthma. Additionally, it identifies research gaps, particularly in relation to other CRDs such as
bronchiectasis and interstitial lung diseases. Further research is needed to facilitate the development of this
approach into a fully effective tool for clinical practice.

Introduction
Chronic respiratory diseases (CRDs) represent a spectrum of conditions that adversely affect the lungs and
airways. These conditions have a profound impact not only on the individuals affected but also on their
families and the healthcare system. CRDs include, but are not limited to, COPD, asthma, bronchiectasis
and interstitial lung diseases (ILDs) [1]. A hallmark symptom of these conditions is dyspnoea, which
indicates an increased work of breathing due to impaired respiratory function. In many cases, prolonged
hypoxia is a common consequence of CRD, triggering adaptive changes in integrative physiological
control mechanisms. These adaptations alter the dynamic of physiological signals, potentially
compromising respiratory efficiency and disrupting homeostasis.

The incidence of CRDs is influenced by several prevalent risk factors, including exposure to biomass fuel
burning, which affects over two billion individuals worldwide, outdoor air pollution, impacting one billion
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people, and tobacco smoking, which directly affects one billion people and an additional billion through
passive exposure [2]. It is estimated that CRDs contribute to the premature deaths of approximately four
million individuals annually [3].

While CRDs cannot be cured, available treatments can alleviate symptoms, enhance patients’ quality of life
and prevent adverse outcomes such as frequent healthcare utilisation, increased morbidity, disability and
mortality [1]. However, diagnosing CRDs poses significant challenges; testing and appointments can be
time-consuming, the required equipment is often costly in terms of equipment or expertise [4], and the
tests are volitional, requiring patient effort and coordination. This can be particularly difficult for
individuals with severe respiratory impairment, cognitive limitations or anxiety, which may hinder their
ability to perform the necessary manoeuvres reliably [5].

Lung function tests are crucial for screening and identifying potential CRDs. Among these tests,
spirometry is commonly used to measure airflow obstruction. However, spirometry has limitations when it
comes to assessing the ongoing biological processes or changes occurring within a patient’s lungs over
time. It primarily measures airflow obstruction but does not capture the underlying dynamic changes in
lung tissue or inflammation that may be occurring, making it unsuitable for evaluating the complex and
evolving nature of a patient’s condition [6, 7].

Current research on diagnosing and monitoring CRDs highlights the potential of continuous measurement
of physiological parameters using nonlinear measures such as entropy analysis [8–11]. Entropy has been
used in statistical physics to describe the degree of disorder in a system. In 1948, Shannon expanded the
concept beyond statistical physics, applying it to signal processing to quantify the information content of a
signal. This expansion paved the way for entropy’s use in various fields such as information theory [12]
and the analysis of physical and physiological time-series [13].

Entropy is a measure of the irregularity and complexity of physiological signals and quantifies the
unpredictability within these signals. When the entropy of physiological signals is reduced, it can be
interpreted as decreased engagement of the physiological network or partial uncoupling of its components
[14]. In the context of dynamic physiological systems, several extended entropy concepts have been
developed with potential clinical application. These include approximate entropy (ApEn), which was
initially introduced to assess variability in physiological time-series data. However, a notable limitation of
ApEn lies in its dependence on sequence length, which can affect the reliability of its estimations [15]. To
overcome this limitation, sample entropy (SampEn) was developed as an improved alternative, offering
greater consistency and reduced sensitivity to data length [16]. Furthermore, to analyse data at different
resolutions and to better distinguish between randomness and complexity, multiscale entropy (MSE) was
developed [17]. These measures have been comprehensively explained in a previous systematic review [18].

The entropy of physiological signals relevant to CRDs, including dynamical changes of air flow [9],
peripheral oxygen saturation (SpO2

) [19], inter-breath interval (IBI) [10], tidal volume [10] and heart rate
variability (HRV) [20, 21], have been studied. It is known that the entropy of physiological signals differs
in patients with obstructive sleep apnoea compared to healthy individuals [18]. Given that the entropy of
physiological signals reflects the engagement of physiological control mechanisms, alterations in entropy
are anticipated in CRDs due to the complexity of these disorders [20–22]. This systematic review aims to
critically evaluate current evidence on entropy alterations in physiological signals, appraising findings from
relevant studies and identifying knowledge gaps that warrant further investigation.

Methods
This systematic review followed the Preferred Reporting in Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [23] and was registered a priori with PROSPERO (registration number: CRD42023439931).

Search strategy and criteria for inclusion
The Scopus, Medline, CINAHL and Embase databases were searched for keywords and titles of papers
published up to July 2024. The detailed strategy can be found in supplementary appendix 1. The search
results were inputted into Rayyan software (www.rayyan.ai) and two researchers (M. Cheung and
N. Alotaibi) assessed articles independently. Any disagreements were resolved by discussion, with the
senior researcher (S. Mandal) having the final say. The initial search yielded 461 articles, which was
reduced to 214 following the elimination of duplicates and the removal of those which were not pertinent
based on titles and abstracts. Of these, 54 papers satisfied the criteria for full-text eligibility assessment.
The result of this was that 11 studies ultimately satisfied the criteria for inclusion and were processed
according to the workflow shown in figure 1.
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The studies included in this review satisfied the following conditions: 1) studies involving human subjects;
2) adult participants >18 years of age; 3) patients diagnosed with CRDs; 4) utilisation of entropy for the
analysis of physiological signals; 5) published in English; and 6) published articles, excluding conference
abstracts. A SPIDER (sample, phenomenon of interest, design, evaluation, research type) format was used
to include or exclude studies (table 1) [24]. No other restrictions were applied in terms of date or
publication status specifications.

Data extraction and assessment of quality
We recorded the following parameters from the studies selected: physiological signals studied, gender and
ages of subjects, study location, entropy types, and entropy results. The quality of the studies was assessed
with the Newcastle–Ottawa Scale (NOS), which is designed to evaluate nonrandomised studies in
systematic reviews (see supplementary appendix 2). We selected a form of the NOS which is adapted for

Identification of studies via databases and registers
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FIGURE 1 Preferred Reporting in Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

TABLE 1 The SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research type) tool applied to the
review questions

Criteria Definition

Sample Adult with CRD
Phenomenon of interest Analysis of entropy signals in patients with CRD
Interest Entropy with CRD
Design All observational studies, e.g. cross-sectional studies
Evaluation Entropy signals, type of entropy, length of the time series
Research type Original studies

CRD: chronic respiratory disease.
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use in cross-sectional studies [25] (see supplementary appendix 3 for full details). This analysis gives a
point score, where ⩾7 is considered “good”, 2–6 “fair” and ⩽1 “poor”.

Results
Following the application of our inclusion criteria, a total of 11 studies remained for analysis (figure 1),
which were subsequently evaluated according to the procedure detailed in supplementary appendix 2. Of
these, seven demonstrated good methodological quality, as indicated by their NOS scores. A number of
physiological signals were measured in the studies, including air flow, IBI, tidal volume, SpO2

and HRV
time-series (see tables 2 and 3). The following sections describe each of these physiological signals
specifically in relation to the entropy studies conducted on COPD and asthma. No studies examined the
entropy of physiological signals in bronchiectasis or ILD.

Studies of COPD and entropy
Entropy of HRV
Four studies examined HRV entropy in COPD patients using electrocardiograms (ECG) with varying
sample rates and degrees of severity [11, 20, 26, 27]. CALISKAN et al. [26] observed that HRV measured by
ApEn was significantly lower in patients with moderate to severe COPD compared to healthy subjects.
ÁLVAREZ et al. [27] reported lower irregularity (lower SampEn) in overnight HRV recordings from patients
with COPD alone compared to those with overlap syndrome (COPD and obstructive sleep apnoea syndrome).

A study by MA et al. [20] explored the daytime differences in HRV between COPD patients and healthy
subjects. The study revealed that older people and those with COPD exhibited reduced HRV, as well as
diminished diurnal variations in HRV measurements when using MSE analysis. There was an increase in
HRV using Shannon entropy in COPD patients compared to healthy control subjects of similar ages [11].

Entropy of SpO2

One study investigated night-time SpO2
measured in 11 COPD patients using a pulse oximeter with 0.25 Hz

sample recording. The results showed that the SampEn of SpO2
increased during an exacerbation compared

to stable COPD. Furthermore, the study showed that SpO2
entropy exhibited reasonable sensitivity and

specificity for the early detection of COPD exacerbations, as demonstrated by an analysis using receiver
operating characteristic (ROC) curves [19].

Entropy of airflow
Two studies investigated airflow entropy as a potential marker for identifying alterations in airflow
complexity caused by airway obstruction in COPD [9, 22]. Both studies utilised SampEn to measure
airflow entropy, observing a reduction in entropy with increasing airway obstruction in COPD patients.
ROC analysis demonstrated the sensitivity of SampEn for detecting respiratory system changes, achieving
clinically acceptable values even in cases of mild obstruction, with an area under the curve (AUC) of 0.84
[9]. YENTES et al. [22] observed a significant difference in airflow between the groups and postures. COPD
patients had more regular airflow than the control group in the three postures of standing, sitting and
walking. In both groups, the airflow while walking showed significantly greater irregularity than that while
seated or standing. Standing airflow was also more irregular than sitting in both groups. The studies of
entropy and physiological signals in COPD are summarised in table 2.

Studies of asthma and entropy
Entropy of HRV
GARCIA-ARAÚJO et al. [21] analysed HRV in lying and seated positions, as well as respiratory sinus
arrhythmia in asthma and healthy subjects. They employed nonlinear analysis methods including SampEn,
ApEn and Shannon entropy to assess the complexity and irregularity of HRV (table 3). Those with asthma
had a higher SampEn of cardiac rhythm when lying down compared to when seated. However, they had a
significantly lower ApEn value whilst performing the respiratory sinus arrhythmia manoeuvre than the
control group.

Entropy of airflow
Two studies explored respiratory pattern complexity using entropy [10, 28]. VEIGA et al. [28] included
patients with asthma, exhibiting varying degrees of airway obstruction, and a healthy control group. They
found a significant decrease in airflow ApEn in the asthma patients, which was significantly correlated
with the indices of airway obstruction in relation to forced expiratory volume in 1 s. The airflow ApEn
values proved acceptable for use in the clinical determination of airway obstruction (AUC>0.8) as assessed
by ROC plots.
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TABLE 2 Studies on entropy comparing COPD patients and healthy subjects

Physiologic
time-series

Study,
year

Equipment
used/sample
rate/duration

Entropy
type

Country of
data

collection

Sample size
(COPD/

comparator)

Age in years
as mean±SD
or range

Gender
ratio
(male/
female)

Pulmonary
function as
mean±SD or

range

Entropy result ROC
analysis
used

HRV CALISKAN
et al. [26]

2018

ECG/200 Hz ApEn Turkey 24 (16/8) Moderate
COPD:

60.63±2.22
Severe COPD:
68.13±2.95
Control:

58.88±1.99

NA FEV1/FVC
Moderate COPD:

78.56±0.80
Severe COPD:
77.77±0.95
Control:

80.00±1.18
FEV1 (% pred)

Moderate COPD:
62.45±0.84

Severe COPD:
40.04±1.46
Control:

77.00±1.14

HRV entropy is lower in moderate
to severe COPD patients than in

the control group

No

ÁLVAREZ
et al. [27]

2019

Pulse oximeter/
1 Hz/10 min

SampEn Spain 84 (22/62) COPD: 60.5
(57–64)

COPD+OSAS:
66 (60–75)

74/10 FEV1/FVC
COPD: 59.4
(50.1–65.2)
COPD+OSAS:

60.9 (52.0–65.4)
FEV1 (%)

COPD: 68.5
(55.0–83.2)
COPD+OSAS:

62.5 (54.3–73.0)

HRV entropy is lower in COPD
patients compared to overlap

syndrome

No

SERRAO
et al. [11]

2020

ECG/250 Hz/
10 min

Shannon
entropy

Italy 74 (54/20) COPD:
66±8.99
Control:
65±8.59

61/13 FEV1/FVC
COPD: 0.43±0.10

Control:
0.77±0.06

FEV1 (% pred)
COPD: 34.42±9.67

Control:
101.66±16.83

HRV entropy is higher in COPD
patients compared to control

group

No

MA et al.
[20] 2023

ECG/256 Hz/24 h MSE USA 194 (16/178) COPD:
68.4±8.9
Younger
healthy:
34.5±8.9

Older healthy:
61.6±9.1

96/98 NA HRV entropy is lower
in day–night differences
in COPD compared to
healthy individuals

No

Continued
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TABLE 2 Continued

Physiologic
time-series

Study,
year

Equipment
used/sample
rate/duration

Entropy
type

Country of
data

collection

Sample size
(COPD/

comparator)

Age in years
as mean±SD
or range

Gender
ratio
(male/
female)

Pulmonary
function as
mean±SD or

range

Entropy result ROC
analysis
used

SpO2
AL RAJEH

et al. [19]
2021

Pulse oximeter/
0.25 Hz/90 min

SampEn UK 11 (11/0) 71.8±10.4 7/4 FEV1 (%):
47.7±18.8

SpO2
entropy is higher during

exacerbation compared to
stable COPD

Yes

Airflow DAMES

et al. [9]
2014

Spirometers/
5 Hz

SampEn Brazil 75 (59/16) Mild:
62.1±10.7
Moderate:
64.8±10.2
Severe:
70.8±10.8

Very severe:
67.3±8.9
Controls:
61.4±13.6

NA FEV1/FVC
Mild: 68.3±2.5
Moderate:
65±11.2

Severe: 39.7±10.1
Very severe:
40.2±10.2

Controls: 78.5±6
FEV1 (% pred)
Mild: 90.6±9
Moderate:
68.4±7.2

Severe: 39.5±6
Very severe:
25.2±0.2

Control: 94±18.9

Airflow pattern complexity is
reduced with moderate and very
severe airway obstruction in

COPD compared to control group

Yes

YENTES
et al. [22]

2020

Portable
metabolic unit/

25 Hz

SampEn USA 37 (16/21) COPD:
64.3±7.9
Control:
60.2±6.8

14/23 FEV1/FVC
COPD: 0.54
Control: 0.79
FEV1 (% pred)
COPD: 52
Control: 97

Airflow entropy is lower in COPD
compared to control group

No

ApEn: approximate entropy; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; HRV: heart rate variability; MSE: multiscale entropy; NA: not applicable/available; OSAS: obstructive
sleep apnoea syndrome; ROC: receiver operating characteristic; SampEn: sample entropy; SpO2

: peripheral oxygen saturation.
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TABLE 3 Studies on entropy comparing asthma patients and healthy subjects

Physiologic
time-series

Study, year Equipment used/
sample rate/duration

Entropy
type

Country of
data

collection

Sample size
(asthma/
control)

Age in years as
mean±SD or

range

Gender
ratio
(male/
female)

Pulmonary
function as
mean±SD or

range

Entropy result ROC
analysis
used

HRV GARCIA-ARAÚJO
et al. [21] 2015

Cardio frequency
meter/24 min

ApEn
SampEn
Shannon
entropy

Brazil 24 (14/10) Healthy: 31±8.7
Asthma: 28±8.5

21/3 FEV1/FVC (%)
Control:
102.1±8.0
Asthma:
70.0±13.0

FEV1 (% pred)
Control:
97.2±13.4

Asthma: 86±15

HRV entropy is lower in asthmatic
patients during respiratory sinus
arrhythmia manoeuvre compared

to healthy subjects

No

Airflow VEIGA et al. [28]
2012

Spirometer ApEn Brazil 51 (40/11) Healthy:
54.4±15.1

Mild: 51.1±13.5
Moderate:
54.2±10.7
Severe:
60.5±12.5

NA FEV1/FVC (%)
Control: 80.8±5.0
Mild: 68.6±5.3
Moderate:
53.4±4.7

Severe: 37.6±8.7
FEF25–75% (%)

Control:
88.9±22.9

Mild: 47.1±13.1
Moderate:
21.8±7.5

Severe: 8.4±3.4

Airflow entropy is lower in
asthmatic patients with different

levels of airway obstruction
compared to healthy subjects

Yes

Inter-breath
interval and
tidal volume

RAOUFY et al.
[10] 2016

Plethysmography/
70 min

SampEn Iran 40 (30/10) Control:
27.6±5.3
Controlled

atopic asthma:
30.8±9.8
Controlled

atopic asthma:
31.1±7.2
Nonatopic
asthma
32.7±8.1

NA NA Entropy of inter-breath interval is
lower in asthmatic patients,
particularly in UAA and UNAA

compared to healthy control group
Entropy of tidal volume time-series
is not different in nonatopic asthma

compared with healthy control
group, but it is reduced in UAA

Yes

Airway resistance GONEM et al.
[29] 2012

Impulse oscillometry
system/5–35 Hz/150 s

SampEn UK 96 (66/30) Control:
47.0±2.2
GINA4:
51.0±2.3
GINA5:
56.5±1.9

43/53 NA Airway resistance is higher in
asthmatic patients with frequent

exacerbations

No

ApEn: approximate entropy; FEF25–75%: forced expiratory flow at 25–75% of FVC; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; GINA: Global Initiative for Asthma; HRV: heart rate
variability; NA: not applicable/available; ROC: receiver operating characteristic; SampEn: sample entropy; UAA: uncontrolled atopic asthma, UNAA: uncontrolled non-atopic asthma.
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IBI and tidal volume
RAOUFY et al. [10] employed SampEn to compare respiratory complexity patterns between asthma patients
and healthy individuals. Continuous measurements of tidal volume and IBI were recorded, revealing a
significant reduction in SampEn for both parameters in the asthma patients, in comparison with the healthy
control group. This study also compares IBI and tidal volume time-series between patients with atopic and
nonatopic asthma. The results showed no significant differences in the SampEn of tidal volume between
nonatopic asthma patients and healthy subjects, whereas nonatopic asthma patients exhibited more regular
IBI series (i.e. reduced entropy). These findings suggest that entropy measures of respiratory time series
may distinguish between atopic and nonatopic asthma and provide insights into the pathophysiology of
nonatopic asthma.

Entropy of airway resistance
One study explored SampEn patterns in airway resistance in both patients with asthma and control subjects
and examined the correlation with asthma symptom exacerbation frequencies. The study found that the
SampEn of airway resistance was significantly higher in severe asthma patients compared to the control
group, both at baseline and after bronchodilation. Additionally, there was a significant correlation between
higher SampEn and the frequency of exacerbation (table 3). The only one independently linked to frequent
exacerbations (defined as two or more exacerbations in the previous year) was a SampEn of R5–R20,
which is the difference between resistance at 5 Hz and that at 20 Hz, a measure of the diversity of
bronchial tree obstruction [29].

Discussion
The present review identified 11 studies that explore the entropy of physiological signals in patients with
CRDs, specifically COPD and asthma. To the best of our knowledge, no studies have investigated the
entropy of physiological signals in other CRDs, such as bronchiectasis and ILD. Thus, there is a gap in
knowledge and understanding of the entropy of physiological signals in ILD and bronchiectasis, which
awaits further investigation.

The findings of this review demonstrate that the change in entropy patterns in CRDs are dependent on the
specific physiological signals being monitored. A key tool in the evaluation of physiological processes is
HRV. The findings demonstrate that individuals with asthma and COPD exhibit lower entropy values
compared to healthy controls in both HRV and airflow. Furthermore, entropy decreases progressively with
greater disease severity in these physiological signals [20, 21, 26, 27]. Alterations in HRV patterns serve as
an early and sensitive, though nonspecific, indicator of critical illness [30]. In healthy individuals, adequate
HRV indicates proper engagement and efficient autonomic mechanisms. Conversely, low HRV suggests an
uncoupling of the autonomic mechanisms that modulate heart rate [3]. Since COPD and asthma are chronic
conditions, they involve the release of proinflammatory cytokines, such as interleukin (IL)-1β and IL-6 [31].
These cytokines are known to interact with the autonomic control pathways, contributing to a decreased in
HRV [32]. Furthermore, patients with COPD may develop arrhythmia, heart failure, pulmonary vascular
disorders and ischaemic heart disease, all of which can influence autonomic control and HRV [33, 34].
The absence of detailed comorbidity information in certain studies limits our ability to fully understand the
impact of these additional factors on HRV outcomes in COPD and asthma patients. Thus, HRV provides
only nonspecific information regarding underlying physiological dysfunctions. Consequently, further
investigation is necessary to obtain a more detailed and comprehensive insight into the mechanism of
lower HRV entropy in CRDs.

While most studies have demonstrated a reduced entropy of HRV, one study reported an increase in
entropy of HRV in COPD [11]. However, Shannon entropy was the methodology employed the latter
studied to estimate entropy. Shannon entropy is a concept which is fundamental to information theory.
When considering a data source, this method measures the average quantity of information which it
produces. This gives rise to a number of limitations; for example, its sensitivity to noise which can
produce inaccurate results due a distortion of the entropy calculation. Furthermore, while Shannon entropy
exhibits uncertainty or randomness as a whole, it does not take into consideration local structures or
patterns arising in the data, which means that the method is not so appropriate for physiological time-series
analysis [35]. In addition, Shannon entropy assumes stationarity of the data, i.e., that the statistical
properties of data remain constant, which is not the case with such datasets derived from physiological
processes. Thus, the estimates produced by Shannon entropy for data sequences that are short may not be
reliable because they lack the quantity of data required to make accurate estimates of probabilities [13].

In terms of airflow, entropy is significantly reduced in patients with early-stage COPD and asthma
compared to both healthy individuals and those with more advanced stages of these diseases. This
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reduction in entropy indicates a loss of complexity in the respiratory dynamics of affected patients. The
theory outlined by GOLDBERGER et al. [12] provides a compelling framework for interpreting these results.
According to this theory, pathophysiological states are often associated with a reduction in the complexity
(“de-complexification”) of physiological processes. In such states, physiological signals may display either
increased regularity (i.e., reduced entropy) or a shift toward randomness (e.g., the development of
arrhythmias, which is linked to increased entropy). Therefore, the entropy of physiological signals alone is
not a direct measure of complexity and should be interpreted with caution. It is advisable to complement
entropy analysis with more advanced methods such as MSE, which can differentiate between random and
truly complex time-series data [17]. The observed reduction in airflow entropy in patients with early-stage
COPD and asthma compared to healthy individuals may reflect a decline in the complexity of the
physiological control system, potentially correlating with disease progression and severity [9, 28].
However, further analytical approaches, such as physiological network mapping [36] and MSE, are
necessary to fully understand and interpret these findings.

Airflow obstruction increases in asthma patients cause altered system resistance in respiration. The most
common clinical method of measuring the physiology of respiratory tract flow resistance is the forced
oscillation technique (FOT). One kind of FOT is impulse oscillometry, which uses external pressure
oscillation based on impulses to estimate airway resistance. The results of this demonstrate that airway
resistance leads to an inverse change in entropy; reduced entropy in airflow, airway resistance and HRV
are associated with increased obstruction of airways [29].

Several studies performed ROC analysis to assess the diagnostic accuracy of a test. The highest AUC value,
0.95, was observed with SampEn in IBI measurements when comparing asthma patients with healthy
subjects. However, SampEn did not yield sufficiently high discriminating power when differentiating
between controlled and uncontrolled asthma patients or between atopic (allergic) and nonatopic asthma,
with AUC values below 0.8. According to the literature, airflow ApEn exhibited acceptable AUC values
when comparing healthy individuals to asthma patients with moderate or severe airway obstruction [37].
However, an AUC>0.8 was observed when comparing patients with mild airway obstruction to healthy
individuals [28]. Patients with nonatopic asthma exhibited distinct patterns in ventilation dynamics
compared to those with atopic asthma, specifically in terms of the entropy of tidal volume time-series [10].
This finding aligns with other reports on the dynamic aspects of ventilation physiology in nonatopic asthma
[2, 38] and may provide insights into the pathophysiology of different asthma types.

Differences between control subjects and COPD patients could be detected by entropy in various
physiological signals, but the degree of COPD severity could not be distinguished. Thus, entropy analysis
for identifying CRD progression has not been utilised to any extent in prior research and evaluation of this
methodology deserves further studies. One study reported the potential for early detection of COPD
exacerbations 1 day before clinical diagnosis through overnight SpO2

entropy analysis [19]. This
proof-of-concept report suggests the potential of home monitoring for COPD patients, as early diagnosis of
exacerbations is known to prevent hospitalisations and support the efficient use of rescue packs [19].
However, further studies with larger sample sizes are needed before SpO2

entropy analysis can be
implemented clinically for home monitoring of COPD patients.

Our review highlights the potential value of entropy as a novel metric for assessing disease progression at
the individual level. However, further research is needed before it can be fully developed as an effective
tool for clinical practice. Firstly, the over-arching patterns of entropy variation need to be investigated
according to different disease stages. Secondly, the results of entropy analysis vary according to individual
differences, so that there is a need to develop standardised value ranges for healthy individuals, based on
their biological characteristics (weight, height, age, sex, etc.), in order to provide a benchmark for the
identification and classification of CRD status. In addition, longitudinal studies would be valuable in
revealing relationships between entropy changes and the progression of patients’ conditions over time.

Limitations
This systematic review and narrative analysis has some limitations. The primary weakness lies in the
heterogeneity of the included studies, which precluded the possibility of conducting a meta-analysis. There
is high variability in the physiological time-series measurement methodology, which may introduce
inconsistencies across studies and limit our ability to draw definitive conclusions or compare findings
effectively. In the context of our research synthesis, it is important to note that some of the studies
included were not grouped according to disease severity. This methodological choice has significant
implications for the homogeneity and comparability of the data, which can introduce potential bias,
particularly if the severity of the disease influences the outcomes.
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Additionally, the potential for publication bias exists due to the exclusion of unpublished grey literature
and non-English language studies, which may have resulted in the omission of supplementary evidence.
This may also have led to a bias in favour of studies reporting positive outcomes. Furthermore, conference
abstracts were excluded, despite the fact that a significant portion of entropy-related research originates
from engineering literature, where researchers often prioritise conference papers over full reports.

Conclusion
This systematic review may offer new insights into the application of entropy analysis as a tool for
assessing disease progression and enhancing diagnostic methods in chronic respiratory diseases. We found
reports of significant relationships between changes in the entropy of physiological signals and disease
severity in patients with COPD and asthma. Most of the physiological signals examined in the reviewed
literature, such as airflow and HRV, show a decrease in entropy with both diseases. Thus, this work lays a
foundation for using entropy measurements as indicators to assist in the early recognition of COPD
exacerbation and to distinguish between levels of severity in both COPD and asthma. The results of our
review suggest valuable avenues for future research on entropy of physiological time-series in CRDs.
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