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Abstract: Climate change poses a global threat, affecting both biodiversity and human
populations. To implement efficient mitigating strategies, the consistency and accuracy of
our monitoring of greenhouse gases at the local level must be improved. We can achieve
this with more advanced monitoring instruments or an enhancement of our processing
techniques, which will in turn improve data attributes such as spatial or temporal reso-
lutions and accuracy. This paper presents a daily high spatial resolution XCO, dataset
aiming to help monitor atmospheric CO, concentration on a global scale at a greater level
of detail compared with existing datasets. Using a super resolution deep learning model,
we increase the resolution of the OCO-2-derived dataset from 0.5° x 0.625° to 0.03° x 0.04°
and show that our product maintains the quality of the original dataset while consistently
improving the detail of the atmospheric pollution field. We conduct a benchmark that
highlights how our dataset outperforms similar products and present a use case of CO,
monitoring at the regional level. In conclusion, this work provides a complementary ap-
proach to the area of global continuous dataset reconstruction and focuses on the adjacent
problem of improving specific features of existing datasets.

Keywords: super resolution; GHG monitoring; global dataset

1. Introduction

According to the last Intergovernmental Panel on Climate Change (IPCC) report [1],
the policies implemented to reduce Greenhouse Gas (GHG) emissions are not compatible
with those required to meet the temperature target of the Paris Agreement of limiting
global warming to well below 2 °C with respect to pre-industrial levels by the end of
the century [2]. Indeed, with current policies, global temperature is expected to rise by
more than 2.5 °C (2.5-2.9 °C by 2100) [3]. The main driver of anthropogenic warming [4]
is cumulative carbon dioxide (CO;) emissions. CO, alone contributed to an estimated
0.8 °C (0.5-1.2°) to historical warming [5]. To develop and enforce effective mitigation
policies, it is crucial to provide more consistent, accurate, and fine-grained estimations of
CO; concentration [6,7] so that relevant policies can be implemented and enforced where
needed. Currently, ground-based spectrometers of the Total Carbon Column Network [8]
provide high precision measurements of local column-averaged dry air mole fraction of
CO; (XCO,). However, they are insufficient to monitor CO; on a regional or sub-regional
scale because of their scarcity. Therefore, the monitoring of global CO, concentration relies
on remote sensing measurements. TANSO (Thermal and Near infrared Sensors for Carbon
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Observation) on board GOSAT [9] and OCO-2/3 [10,11] are among the latest missions
that generate commonly used datasets [12,13]. Table 1 presents a list of CO, measurement
satellite-based devices. It only includes the satellites that are still active, in orbit, and public.
A more comprehensive list is provided in the review from Hu et al. [14].

Table 1. Satellites dedicated to CO, monitoring.

Satellite Launch Spatial Resolution Coverage Public/Private
AIRS 2002 13.5 km Global Public
TIASI 2007 25 km Global Public
GOSAT 2009 10 km Global Public
0OCO-2 2014 1.5 km Global Public
TanSat 2016 2.5 km Global Public
GOSAT-2 2018 7 km Global Public
0OCO-3 2019 1.5 km Global Public
DQ-1 2022 - Global Public
IASI-NG 2025 12 km Global Public
MicroCarb Not before 2025 2 km Global Public

Most of these satellites follow a near-polar orbit and map the atmosphere of the Earth
periodically. Several methods have therefore focused on reconstructing spatially continuous
maps of atmospheric CO; based on gathered data. They can be divided into interpolation-
based methods [15,16], physics-based methods with chemical transport models (CTMs)
like CarbonTracker [17,18], and Machine Learning-based methods. The main limitation of
CTMs is their relative coarse spatial resolution, making them appropriate to observe large-
scale fluxes but less useful for the monitoring of local variations or localized emissions [19].
Interpolation-based methods can be effective and have been used to increase the resolution
of XCO, data [20]. However, these methods can generate smooth results [21] and miss non-
linear relationships between measured points, while deep learning methods have proven
to handle complex non-linear relationships well [22]. For instance, He et al. [23] have
reconstructed complete coverage of XCO, over China with a LightGBM [24], where gaps
in satellite retrievals are filled by combining CarbonTracker predictions with additional
features such as elevation, normalized difference vegetation index (NDVI), temperature,
wind speed, and population density. Siabi et al. [25] rely on similar environmental variables
to produce the coverage of XCO; over Iran in 2015 with a Multilayer Perceptron (MLP) [26].
These studies have focused on countries or localized areas, while those that managed
to achieve global reconstruction either suffer from low spatial resolution or present a
lower temporal resolution of weeks or months (see Table 2). To address this issue, we
design a deep learning model to perform super resolution [27] and downscale global
continuous data. Originating from the field of Computer Vision, a super resolution model
produces a high-resolution counterpart from a low-resolution input by inferring additional
high-frequency details [28,29]. In the review from Wang et al. [30], the super resolution
model from Haris et al. [31] performed especially well on large downscaling factors (x8)
with remote sensing images. It notably outperformed GANs [32] and attention-based
models [33], and its framework serves as the foundation of our model. As high-resolution
CO;, is not available, the model is trained on temperature satellite data. We motivate
this choice through the analysis and comparison of temperature and CO, distributions,
emphasizing their similarity. Finally, an analysis of the resulting high-resolution dataset,
which has been released here, is presented.


https://www.imperial.ac.uk/data-science/research/research-themes/datalearning/super-resolution-dataset/
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Table 2. XCO; global L3 datasets.

Source

Spatial Resolution (°/km) Periodicity (days) Timespan Dataset Available

Sheng et al. [34]
He et al. [15]
Weir et al. [35]
Wang et al. [36]
Lietal. [37]

1°x 1°/100 km x 100 km
1°x 1°/100 km x 100 km
0.5°x 0.625°/50 km x 70 km
0.25°x 0.25°/25 km x 25 km
0.01°x 0.01°/1 km x 1 km

2009-2020 Yes
2003-2016 No
2015-onward  Yes
2001-2020 Yes
2014-2018 No

O — = o W

In summary, the main three contributions of this paper include the following:

¢ The design of a super resolution model for atmospheric CO, data downscaling;

¢  The deployment of the model on a global scale and the release of a high-resolution
global CO, dataset;

* Anillustration of the usefulness of the dataset with an example test case.

This paper is structured as follows: Section 2 first presents the datasets used in our
study and, in particular, the datasets we downscale and use for model training. It then
follows with the description of our super resolution model before detailing the training data
processing steps. Finally, in Section 3, we compare our dataset against global monitoring
products before Section 3.4, conducting a study of CO, pollution through the COVID
pandemic. The main contributions of our paper are summarized in Section 5.

2. Materials and Methods

This section introduces the three datasets we use in this study. One is serving as the
model input, another as validation, and the final dataset is for model training. Then, we
present our super resolution model’s key components , the processing steps of our training
dataset, and the final generation of our global maps.

2.1. OCO-2 L3 Dataset

OCO-2 and OCO-3 are CO; monitoring missions from NASA with spectrometers able
to estimate the concentration of atmospheric CO; to an accuracy of around 1 ppm [38].
OCO-2 possesses a swath of 10 km and a spatial resolution of 1.29 km across track and
2.25 km along track; it has a periodicity of 16 days [10]. OCO-3 was launched in 2019 to
continue OCO-2’s mission [11] and improves on some characteristics: although with a
smaller swath, 4.5 km, OCO-3 has a higher spatial resolution across track, 0.7 km, while
staying at 2.25 km across track. XCO; retrievals from OCO-2 are integrated using NASA’s
modeling and data assimilation system [35] into a daily gapless gridded dataset. This
dataset is presented in Table 2 as the dataset from Weir et al. [35] among a list of available
global XCO, datasets. Of the available datasets, only the dataset from Wang et al. [36]
presents a better resolution than OCO-2’s dataset but at the cost of a worse precision (see
Section 3). The other datasets are either unavailable or present worse specifications. We
therefore use the OCO-2 L3 dataset as the low-resolution dataset to downscale.

2.2. Total Carbon Column Network

The Total Carbon Column Observing Network (TCCON) [8] is a family of ground
spectrometers present in various locations worldwide (see Table 3) monitoring column
concentrations of CO, but also other GHGs such as CHy [39], CO, and N,O [40]. The
TCCON data were obtained from the TCCON Data Archive hosted by CaltechDATA at
https:/ /tccondata.org (accessed on 19 December 2023).

With a precision under 1 ppm under clear skies [41], CO, estimations from the TCCON
are considered as ground truth.


https://tccondata.org

Remote Sens. 2025, 17,1617

4 0f 20

Table 3. TCCON sites used to validate our dataset. Only the sites with enough estimations between
2015 and 2020 are considered.

Site (Abbreviation) Lat. Long. Range

Bremen, GER (br) 53.10N 8.85E 2015-2020
Burgos, PHL (bu) 18.53N 120.65E 2017-2020
Caltech, USA (ci) 34.14N 118.13W 2015-2020
Darwin, AUS (db) 12.425 130.89E 2015-2020
Edwards, USA (df) 34.96N 117.88W 2015-2020
Saskatchewan, CAN (et) 54.35N 104.99W 2016-2020
Eureka, CAN (eu) 80.05N 86.42W 2015-2020
Garmisch, GER (gm) 47 48N 11.06E 2015-2020
Hefei, CHI (hf) 31.91N 117.17E 2015-2018
Izana, ESP (iz) 28.30N 16.50W 2015-2020
JPL, USA (jf) 34.96N 117.88W 2015-2018
Saga, JAP (js) 33.24N 130.29E 2015-2020
Karlsruhe, GER (ka) 49.10N 8.44E 2015-2020
Lauder 02, NZL (11) 45.045 169.68E 2015-2018
Lauder 03, NZL (Ir) 45.034S 169.68E 2018-2020
Nicosia, CYP (ni) 35.14N 33.38E 2019-2020
Orleans, FRA (or) 47 97N 2.11E 2015-2020
Park Falls, USA (pa) 45.95N 90.27E 2015-2020
Paris, FRA (pr) 48.85N 2.36E 2015-2020
Reunion Isl., FRA (ra) 20.90S 55.49E 2015-2020
Rikubetsu, JAP (1j) 43.46N 143.77E 2015-2019
Sodankyld, FIN (so) 67.37N 26.63E 2015-2020
Ny Alesund, SJ]M (sp) 78.90N 11.90E 2015-2020
Wollogong, AUS (wg) 34.41S 150.88E 2015-2020

2.3. Land Surface Temperature Dataset

On board Terra [42], the Moderate Resolution Imaging Spectroradiometer (MODIS)
provides observations at daily, 8-day, and 16-day temporal resolutions with a spatial
resolution of 1000 m (bands 8-36) for surface or atmospheric temperature (https://modis.
gsfc.nasa.gov/about/specifications.php, accessed on 25 July 2023). The L3 global daily
Land Surface Temperature/Emissivity Daily MOD11C1 dataset [43] is derived from these
observations and used to train our super resolution model as detailed in Section 2.6.

2.4. Data Pre-Analysis

In order to train a machine learning model to increase (spatial) resolution, two datasets
are needed: a low-resolution dataset and a corresponding high-resolution dataset. During
training, the model can then learn the relationship between each pair of elements of the
training datasets. As high spatial resolution XCO, data do not exist, it is impossible for
our model to directly learn the mapping from low to high spatial resolution grids of XCO,.
Moreover, a deep learning model trained on one dataset can effectively be applied to
another, provided both datasets share a similar underlying distribution. This framework
allows the model to generalize learned patterns to the new data [44] and has been applied
to deep learning-based super resolution models [45,46]. Our model, therefore, needs to
be trained on an alternative dataset but with a similar structure before being used for
XCO; data.

Figure 1 presents data distributions of commonly used training datasets for super
resolution, DIV2K [47] and DOTA [48], and of the normalized (see Section 2.7) XCO, and
LST datasets. To confirm that we train our super resolution model on data with similar
distribution, we employ the LST dataset as we can see that the LST distribution is the one
that matches XCO; better. Other works have analyzed the analogies between LST and


https://modis.gsfc.nasa.gov/about/specifications.php
https://modis.gsfc.nasa.gov/about/specifications.php
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CO;. Zhang et al. [49] investigate the correlation between LST and carbon emissions, using
machine learning algorithms. Their findings indicate a significant correlation between CO,
emissions and LST, with an R? value of 0.72, suggesting that LST can serve as a proxy
for estimating carbon emissions in urban areas. Additionally, the study of Zhao et al. [50]
compares the spatial distribution of CO, emissions with nighttime LST. This paper reveals a
high spatial consistency between areas of elevated CO; emissions and increased nighttime
LST. The study concludes that regions with higher CO, emissions correspond to higher
LST values, again suggesting a significant correlation between the two variables. Similarly,
the research of Hong et al. [51] examines the potential correlation between LST and overall
CO; emissions, through land use and cover change data along with nighttime observations.
It provides insights into how changes in land surface characteristics and carbon emissions
are interrelated. Furthermore, as most pre-trained models for remote sensing data use 3-
channel RGB or hyperspectral imagery [52] and XCO, maps can be assimilated to 1-channel
images, transfer learning [53] is an unsuitable option for this task. Consequently, our model
is directly trained on LST maps instead of natural images as the latter do not exhibit the
same variability and range as CO, maps.

2.00 [ Normalized XCO2 distribution
DIV2K Images distribution

[1 Normalized LST distribution

[ DOTA Images distribution

175
1.50 O\
\

1.00

0.50

0.25

0.00
-0.25 0.00 0.25 0.50 0.75 1.00 1.25

Figure 1. Distributions of datasets after the following processing steps: for XCO, and LST, arrays
have been normalized while images are in gray scale for DIV2K and DOTA. Values close to 1 indicate
high values for the physical components and dark colors for natural images while values close to
0 indicate low values and light colors. We fixed the capitalization inconsistency.

2.5. Downscaling Using Super Resolution

The super resolution model developed in this paper relies on iterative down- and
upscaling cycles [54]. Each of these cycles takes place with up and down projection modules
(see Figure 2). For an up projection (downscaling) module, the output I}, of the t-th module
is given by

It;x = Deconv'(I! ) + RES, ¢ (1)

RESY;r = Deconv'(I} , — Conv'(Deconv'(I!z))) ()

where Deconv' and Conv' are deconvolution (or transposed convolution) and convolution
blocks, respectively; I! . is the low-resolution input of the up-projection module; and

RES! is the downscaled residual error from a first downscaling—upscaling stage applied
to I! . The module’s architecture is displayed in Figure 2b.
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Deconv Block

Conv Block Deconv Block

Conv Block

Figure 2. Super resolution model using a deep back projection network in (a), with the residual
connections and transitions between up- and down-projection modules being detailed in (d). The
compositions of an up-projection and down-projection module, blue and orange resp., are represented
in (b,c). Each block is composed of convolutional layers.

Conversely, for a down-projection (upscaling) module, the output Iﬁgl of the t-th
module is given by

Iik' = Conv'(Iizg) + RESig ©
RES! x = Conv'(I};z — Deconv'(Conv'(I};z))) 4)

where IL; is the high-resolution input of the down-projection module and RES!  is the
upscaled residual error from a first upscaling-downscaling stage applied to I},.. This
module’s architecture is visually represented in Figure 2c. Our model possesses 10 up- and
down-projection cycles. Each cycle focuses on learning to downscale different features
from the low-resolution map, and each residual error RES is providing feedback on each
block’s performance. During the last stage, the model concatenates all up-projection feature
maps before a convolution layer is applied to produce the final super-resolved map (see
Figure 2a).

The overall super resolution inference is described in Algorithm 1: 3 x 3and 1 x 1 con-
volution layers are first applied to the input map. The down- and upscaling cycles then take
place before a last convolution layer is applied to the final feature map after concatenation.

Algorithm 1 Super resolution inference

Input: Low-resolution inpupt x; g
Output: Super-resolved output xgg
h = Convs3(xLr)
I?x = Convy(h)
foriin range(10) do
Ii;r = Deconvi(I} ;) + RESL
[t = Conv!(Ii;z) + RESi
end for
h= Concat(I?IR, e, 119{1%)
return xgg = Convsz(h)
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2.6. Data Preprocessing

As the original LST dataset is our high-resolution ground truth during training, we
upscale it 16-times using bicubic interpolation to produce our low-resolution input dataset.
We then patchify each low-resolution map into feature maps of size (32, 32), where missing
values are masked, and normalize these feature maps between 0 and 1. During training,
to ensure generalization, we add Gaussian noise to the input maps following the idea
used in Wang et al. [55], which increases model robustness and prevents the model from
just reversing the interpolation process. The resulting maps are our input dataset for the
training stage. Regarding our choice of objective function, the L1 loss is preferred over
L2 loss to avoid over-smoothed super resolution outputs [30]. The training pipeline is
represented in Algorithm 2 and visually in Figure 3.

Algorithm 2 Supervised training with temperature LST dataset.

Input: LR dataset, HR dataset
Variables: N number of epoch, xir low resolution array of training dataset, xgr high
resolution array of training dataset, z ~ N (0, I) the Gaussian noise added to x; g
Functions: super resolution F, normalization NORM, mask M
Output: Trained model
for epoch in N do
for x g in LR dataset do

for XLRpatCh in XpR do
patch putch
=M(xzg )

matsl;led ch
patch patc
xno;’nzzed NSZRM ( X inasked )
pa o pa c
Pmch - normedh+ z
atc atc
xg R F( 5roc )
patch patch
s o
tch pa o pa o
Lpae H XHR ||1
end for
end for

end for

~ Upscalin
P
Masking

Normalisation

1 |
1 Super Resolution :
|

|

S it [ s |

Figure 3. Training pipeline. The high-resolution LST map (on the right) is upscaled, before noise is

>

added to it. Our super resolution model then brings the low-resolution input back to the original
resolution and the performance of our model is assessed using the L1 loss.
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2.7. Global Maps Mosaicing

Our model is implemented to downscale arrays of size (32, 32) into (512, 512). Con-
sequently, our global high-resolution maps are generated following multiple steps. First,
initial low-resolution (0.625° x 0.5°) global maps of size (361, 576) are sliced into partially
overlapping windows of size (32, 32) (see Figure 4). These windows are then normal-
ized and super-resolved (approx. 0.04° x 0.03°) separately before being reassembled. To
guaranty continuity throughout the final global map, values from overlapping areas are
obtained by averaging the values provided by each super-resolved window.

32 px
3 px

—

32 px

2px}

Figure 4. Slicing of our partially overlapping low-resolution areas. After super resolution, areas A
have one value, while areas B are the average of two values, and C the average of four.

2.8. Metrics

The Root Mean Squared Error (RMSE) in Equation (5) and the Mean Absolute Error
(MAE) in Equation (6) are used to quantify the precision of estimations, while the R? coeffi-
cient indicates how well the distribution of each dataset follows the TCCON estimations
for each site. They are commonly used quantitative metrics to assess the precision of
atmospheric component estimations such as CO, or CHy [37,56], as follows:

1 N
RMSE = | & Y (Vrecon — Yst)? ®)
k=1
MAE — - ok —yk 6
=~ Y |¥Tccon — Vest| (6)
N3

where VI%CCON is the column-averaged estimation of the spectrometer, and v, is the
high-resolution estimation derived from each method.

3. Results

Here, we present a few samples from our dataset before comparing it with existing
global datasets. We close the section with an example application of our dataset to CO,
monitoring during COVID.

3.1. Dataset Presentation

The super resolution dataset we generated is composed of daily global maps of XCO,
from 1 January 2015 until 28 February 2022 (see Table 4).



Remote Sens. 2025, 17, 1617 9 of 20

Table 4. Description of our global super-resolved XCO, dataset attributes.

Spatial Resolution (°/km) Temporal Resolution Coverage Timespan
o o 1 January 2015 to
0.03° x 0.04°/3 km x 4 km 1 day Global 28 February 2022

Each map is saved as a numpy array, and the convention we use to name a specific
day DD/MM/YYYY is as follows: YYYYMMDD.npy. Figure 5 below contains samples
from our dataset.

Figure 5. Samples from our super-resolved dataset for the year 2016. (a), (b), (c), and (d) are the
global daily maps of 15 January, 15 April, 15 August, and 15 December, respectively.

8

XCO2 (ppm)

8
g

3.2. Super-Resolved Dataset Evaluation

To assess the quality of our dataset, we compare it against the following global daily
datasets: in addition to the original OCO-2 dataset, our comparison includes the dataset
from Wang et al. [36], created by combining OCO-2 L2 data with the CAMS reanalysis
dataset [57], and a high-resolution dataset derived from OCO-2 L3 data using bicubic
interpolation, following the method from Xiang et al. [58] to downscale data coming from
of GOSAT. Their attributes are described in Table 5 below:

Table 5. Attributes of the additional datasets considered in our benchmark.

Dataset Spatial Resolution (°/km) Timespan

OCO-2 dataset (LR) 0.5° x 0.625°/50 km x 70 km 1 January 2015 to 28 February 2022
Bicubic interpolated dataset (BIC) 0.03° x 0.04°/3 km x 4 km 1 January 2015 to 28 February 2022
Fusion dataset (Fus) 0.25° x 0.25°/25 km x 25 km 1 January 2010 to 31 December 2020

Our validation data for this benchmark are XCO, estimations from the ground-based
spectrometers from the TCCON. Finally, we consider the period between 2015 and 2020 as
that is the overlapping period for all the datasets.

3.2.1. General Performance

The main takeaway from the comparison (described in Table 6) is that our model is
able to increase the resolution of the OCO-2 dataset 16 times while preserving the quality of
the data. Averaged over all members of the TCCON, our super-resolved dataset presents a
lower RMSE (0.92) than the original dataset (0.94). As the RMSE is known to penalize larger
errors more severely [59], the table shows that our model does not introduce significant errors
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to the estimations from the OCO-2 dataset. Similarly, the MAE results highlight that, on
average, our model predicts values closer to the ground truth, indicating that the downscaling
improves, albeit modestly, the estimations. Our dataset also reports the best average value for
the coefficient of determination R?, which emphasizes that the variations of XCO, are well
described by our super resolution model. On the other hand, the fusion dataset is consistently
outperformed by the other datasets. This is reflected in the row of average RMSE and MAE,
where its estimations are approximately 20% worse than our super-resolved dataset.

Table 6. RMSE, R2, and MAE from our dataset (SR), the original dataset from OCO-2 (LR), the bicubic
interpolated dataset (BIC), and the fusion dataset (Fus.) compared with the TCCON ground-based
spectrometers. For each site, the best metric is in bold, while the second-best one is underlined.

RMSE () R2 (1) MAE ({)
SR LR BIC  Fus. SR LR BIC  Fus. SR LR BIC  Fus.
eu 1.34 136 132 198 094 094 094 087 101  1.03 099 1.60

Site

s 096 097 094 121 095 095 095 092 079 080 077 102
iz 059 060 059 065 097 097 097 097 047 048 047 049
a 126 146 150 109 093 091 091 095 100 119 120 084
wg 080 08 073 083 097 097 097 097 061 063 055 0.65
Ir 062 062 062 077 089 088 088 082 051 052 052 061
br 098 100 095 123 097 09 097 095 077 079 074 094
sp 115 118 112 156 095 095 095 091 100 102 096 125
1l 050 050 051 061 096 096 096 095 038 039 039 047
pa 078 077 078 108 098 098 098 096 0.60 060 0.61 085
hf 131 148 121 174 084 079 08 071 107 121 099 144
if 115 138 136 108 080 071 072 083 098 119 118  0.83
ra 060 060 060 074 098 098 098 097 046 046 046 0.58
et 080 080 082 113 097 097 097 094 063 063 065 090
pr 137 139 137 153 092 091 092 090 1.09 110 1.09 1.0
gm 090 091 105 111 096 096 095 095 071 071 086 0.86
s0 091 091 092 146 097 097 097 093 070 071 071 115
or 112 112 115 119 095 095 095 094 092 092 095 094
bu 052 052 056 078 096 096 096 091 040 041 043 063
df 069 069 065 100 098 098 098 096 054 054 051 081
1 089 094 083 139 09 09 097 090 066 070 062 1.09
ka 112 114 119 140 095 095 094 092 092 093 099 111
ni 077 079 079 106 089 089 088 079 065 067 067 087

db 071 070 070 093 098 098 098 096 056 056 055 0.72
Avg. 092 094 094 112 097 09 096 095 070 072 072 085

3.2.2. Location-Specific Performance

These findings remain consistent when transitioning from broad to site-specific obser-
vations. Over all metrics (RMSE, R?, and MAE), the estimations generated by our model
are best or second best on all sites, underlining its consistency. We also note that the
choice of downscaling method matters. Our dataset and bicubic interpolation provide the
best estimations compared with the TCCON validation data (described in Section 2.2) in
approximately the same number of locations. However, our method is never outperformed
by the original dataset if we consider the R?> and MAE and in only two locations if we
consider the RMSE. In contrast, the interpolated dataset performs worse in nine, three, and
seven locations for the RMSE, R?, and MAE respectively, making it unreliable on a global
scale. The fusion dataset underperforms again, providing the best estimations in only two
locations and the worst ones in all other sites.

3.2.3. Visual Confirmation

Samples from each dataset over Western Europe in May 2020 and over Brazil in
September 2018 are presented in Figure 6. There is a significant discrepancy between the
fusion dataset and the other three datasets. This confirms the analysis stemming from
Table 6. In Figure 6a, we observe isolated sites of high or low CO, concentration in the
north of France and the United Kingdom. These spots may arise from the fusion of multiple
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datasets but appear erroneous. In Figure 6b, the high concentration zone following the
border between Brazil and Paraguay is well encapsulated by all methods, although it
appears more intense in the fusion dataset. When inspecting our super-resolved map, we
see that the small patches of high concentration have a more distinct shape and appear less
blurry than when interpolated using bicubic interpolation, although they are not clearly
visible. To mitigate the bias introduced by the fusion dataset, which stretches the color bar
in high and low values, and further highlight the differences between our dataset and the
bicubic interpolation, we present maps of the Namibia—Botswana border in January 2019
and Southeast Asia in March 2017 in Figure 7. We clearly recognize the issues with bicubic
interpolation, where high gradients are often flattened to produce smoother transitions [60]
between regions of high and low concentration. In Figure 7a, this effect is evident in
areas with sharp increase (respectively decrease) in CO, concentration, where our dataset
provides significantly higher (lower) estimations than the interpolated dataset.

413.5 414.0 414.5 415.0 415.5 416.0 416.5
XCO2 (ppm)

(a) Western Europe on 11 May 2020

(2)

o

(4)

405 406 408 409

407
XCO2 (ppm)

(b) South of Brazil on 1 September 2018

Figure 6. Visualization of benchmarking methods. The OCO-2 dataset is in (1), while the result of our
SR model, the fusion dataset, and the bicubic interpolation are in (2), (3), and (4), respectively.



Remote Sens. 2025, 17, 1617

12 of 20

-06 -04 -02 00 02 04 06
(ppm)

406.6 406.8 407.0 407.2 407.4 407.6 407.8
XCO2 (ppm)

(a) Namibia—Botswana border on 10 January 2019

—-0.6 -04 -02 00 02 04 06
(ppm)

744 f\" “‘\_'/"l 3

.

405.5 406.0 406.5 407.0 407.5 408.0 408.5 409.0
XCO2 (ppm)

(b) Southeast Asia on 15 March 2017

Figure 7. Visual comparison between our super resolution method and bicubic interpolation. The
OCO-2 dataset is in (1), while (2) represents the difference between our SR maps (3) and the bicubic
interpolation (4).

As a result, some information may be lost in the bicubic interpolation dataset as
it underestimates CO, concentration in high pollution areas but overestimates it in low
pollution areas.

3.3. Model Uncertainty

In this section, we evaluate the uncertainty in our super resolution model. To do so,
we analyze the propagation of a perturbation § added to the low-resolution XCO, data
before downscaling. This noise follows the following distribution:
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5~ N(0,01) @)

where ¢ is the standard deviation of the noise and I is the identity matrix sharing the same
dimension as our model inputs. Let %1 ¢ be the perturbed data.

Xrs = x5 +9 (8)

For a ground-based spectrometer of the TCCON, we then define ¢4 as the error between

the perturbed low-resolution estimation %72

and the spectrometers’ estimation y, which
we again consider as ground truth, as follows:

__ =sensor
€Iy = XI5 -

y )

Given sy as the output of the super resolution model F when noise is added,

Xsg = F(Xrs) (10)

We are therefore interested in evaluating the error ¢, (defined in Equation (11)) and its
relationship with g;,.
esr = Xog 0 — V. (11)
Figure 8 below depicts how noise affects ¢;, and €;,. We can observe that both variables
remain similar until the noise becomes too important (¢ > 0.05) and drowns the original
information (see Figure 9). This indicates that our model does not propagate small errors,
which in turn suggests that it is able to denoise, at least partially, the data while it performs
super resolution. Another result worth mentioning is that, for very noisy low resolution
maps (represented by purple dots in Figure 8), our super resolution model tends to increase
gsr for €, < 1 ppm, while for higher values of ¢;, (>1 ppm), the resulting error in XCO,
estimation can decrease, i.e., €5, < €.

-—= y=X o

1.6 e

1.4

Esr (ppm)
N

1.0 L
0.8 Noise std. 0.1: y=0.75x+0.31
Noise std. 0.05: y=1.00x+0.01
0.6
Noise std. 0.005: y=1.02x+-0.01
0.4 <
0.4 0.6 0.8 1.0 1.2 1.4 1.6
Er (ppm)

Figure 8. Relationship between the low resolution and super resolution error, respectively, ¢;, and &g,
after the introduction of Gaussian noise ¢ with various standard deviations ¢. Each dot represents a
ground-based spectrometer, and the lines depict the linear regression between each set of error.
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.

-
(a)

Figure 9. Influence of the noise § on the super resolution process. (a,b) are examples of low resolution,

(b) (c) (d)

respectively, super resolution, maps of XCO,, where § possesses a small standard deviation ¢. (c,d) are
the same example maps of XCO, but where 4 has a higher standard deviation (¢ = 0.1).

Finally, Figure 9 represents what happens when the low-resolution input becomes so
noisy that too little information remains: the model is not able to generate a conclusive
high-resolution XCO, map, and even low-frequency details in the low-resolution input
map are lost.

3.4. Application: Observation of Localized Changes in Pollution Through the COVID-19 Pandemic

In this section, we propose a use case designed to demonstrate the versatility of our
dataset in identifying both global and local fluctuations in CO, concentration, specifically
within the context of the coronavirus disease (COVID-19) pandemic. The COVID-19 pan-
demic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) [61] has
significantly impacted human societies from late 2019 until several months into 2021 [62].
Lockdowns, short-term factory closures, and a massive reduction in air travel [63] have
resulted in a global drop in CO, emissions. Figure 10 highlights the impact this drop in
emissions had on CO; concentration during 2020.

3.4.1. Global CO; Trends

The figure first confirms the global rise of CO, concentration over the years, which has
been noted in other studies [64,65]. In 2019, we see that the average CO, concentration in
the southern hemisphere is around 408 ppm. It steadily increases to reach around 415 ppm
at the end of 2021. This trend is even more apparent in the northern hemisphere, where the
CO;, concentration was rarely above 417 ppm in early 2020 before some areas reached well
above 420 ppm at the end of 2021.
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CO2 Distribution Pre-COVID (24 Jan 2019) CO2 Distribution Pre-COVID (24 Apr 2019)
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Figure 10. Evolution of global CO, concentration during the COVID pandemic (between 2019 and
2021) as visualized in our super-resolved dataset.

3.4.2. Local Variations

A second observation is the visible impact that governments’ responses to the pan-
demic [66] had on regional levels of CO, concentration in mid-2020. The areas delimited by
the red triangles in North America, Africa, and East Asia on Figure 10 are usually regional
spots of high concentration, as can be seen in 2019 and 2021. It appears that these spots
are far less prominent in terms of CO, concentration relatively to their surroundings in
April 2020. They stand out again in 2021, indicating a return to pre-pandemic behavior. This
is more distinctly observable in Figure 11: usual spots of high pollution in Hebei and Henan
(China), southwest of Beijing, are absent in Figure 11(1-(c)), corresponding to April 2020,
probably due to lockdowns and a drop in activity for most factories. The second row of
Figure 11 also highlights this reduction in pollution in the southern part of the Democratic
Republic of Congo (DRC), following the DRC-Angola border. The stark contrast between
Figure 11(2-(c)) in April 2020 and Figure 11(2-(d)) in January 2021 illustrates human activity
coming to a standstill and then resuming to “normal”, highlighting the impact it has on
CO, concentration.

a

418
XCO2 (ppm)

..

m
XCO2 (ppm)

Figure 11. CO; pollution evolution during the COVID pandemic, as visualized in our super-resolved
dataset. (1-(a)-1-(d)) are centered on Beijing (China), while (2-(a)-2-(d)) are centered on Kinshasa
(Democratic Republic of the Congo). *-(a), *-(b), *-(c), and *-(d) are taken from the global maps of
21 April 2019, 19 January 2020, 21 April 2020, and 19 January 2021, respectively.
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4. Discussion

Our results show that our super resolution model is able to downscale the OCO-2
dataset without compromising the quality of the estimations. Through our validation
with the TCCON and our visualizations, we demonstrate that our dataset yields better
local estimations, a superior resolution, and more plausible-looking maps compared with
existing products from alternative reconstruction approaches. However, we highlight here
a few areas worth investigating in future works. Currently, only the low-resolution dataset
serves as reference to create super-resolved maps. It is potentially relevant to consider
additional geographical features to guide the downscaling process [67]. By adjusting
our approach to allow multiple inputs, our model could gain further insights from the
added data, leading to better estimations. A complementary approach involves integrating
physical constraints into the model [68,69], ensuring that the super-resolved maps adhere
in a more explicit way to the laws of physics, which would in turn generate more realistic
global fields.

A major issue our model could face in the future is the distribution shift [70], which is
common for deep learning models applied to real-world problems. This shift occurs on
the target domain of our data, in our case, XCO; data. With the continuous rise of CO,
concentration in the atmosphere, the quality of our super-resolved maps could decrease as
the new distribution of XCO, will not necessarily match the data distribution our model
has been trained on. Different methods are available to retrain the model: a new existing
training dataset with a better matching distribution, an adapted sampling of the training
dataset, called weighted resampling [71], to match the new target distribution, or even the
generation of synthetic training data [72]. Inference time is another area of importance
for real-world applications such as air quality prediction [73] or wildfire monitoring [74]).
In such scenarios, running a simulation or generating a dataset needs to be performed
near real time. For example, air quality predictions need to be updated hourly and with
a fine spatial granularity. In this context, our super resolution model can generate high
spatial resolution XCO, maps of area of interest almost instantly without having to involve
physics-based models or integrate multiple datasets like the methods described in Section 3,
which can be an advantage to potentially help the air quality prediction.

5. Conclusions

In this paper, we present a new global high-resolution daily dataset of atmospheric
CO;, concentration. To generate this dataset, we downscale L3 products from NASA using
super resolution and manage to increase the spatial resolution of the original dataset
16 times while maintaining, and even marginally improving, its precision. The lack of
high-resolution CO, datasets renders supervised learning methods impractical as the
direct mapping between low and high CO, concentration maps remains inaccessible.
During training, our super resolution model therefore learns to reconstruct high-resolution
temperature data that were previously upscaled. We explain the theoretical validity of
using another physical variable for training and then transfer to CO, by establishing that,
once normalized, our training and target datasets share similar distributions. We release
this dataset and hope that it will provide new opportunities for global CO, monitoring. We
highlight how it can be used to monitor singular global scale events, like the COVID-19
pandemic, while also capturing local or regional changes. Finally, the global nature of each
map represents a significant advancement in achieving a more consistent monitoring across
different regions and thus reduces the disparities stemming from insufficient infrastructure.
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