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Abstract— Musculoskeletal (MSK) disorders remain one of
the leading causes of disability worldwide. Although multi-
modal physiotherapy, an approach that combines manual
therapy, exercise therapy and education is the recommended
core treatment, many patients continue to face challenges.
Adhering to prescribed home exercise programs, staying
motivated and performing exercises correctly are amongst the
major obstacles faced in the absence of therapist supervision,
which can significantly impact treatment outcomes. This pilot
study explores the potential to integrate an artificial intelligence
(AI)-enabled chatbot with a novel electromyography (EMG)
device to enhance engagement and performance as part of
MSK rehabilitation. Fifteen healthy adults played two versions
of a game, one with the AI chatbot and one without, with the
device positioned on the forearm to measure Electromyography
(EMG) signals and control the game. The Al-enabled game
was associated with a statistically significant increase in muscle
activity and game performance. However, no statistically
significant differences were identified for engagement based
on assessments using the Game Engagement Questionnaire
(GEQ). These findings suggest that while AI can increase
physical engagement and task execution, further investigation
is needed to understand the impact on user engagement. This
study lays the groundwork for future research on Al-driven
home-based MSK rehabilitation.

Clinical relevance— These preliminary findings inform the
development of a program of work that aims to establish
the role of AI for supporting engagement with home-based
exercises among patients requiring rehabilitation for MSK
conditions.

I. INTRODUCTION

Musculoskeletal (MSK) conditions, affecting the joints,
muscles and bones impact nearly one-third of the UK pop-
ulation, with around 20 million people living with an MSK
condition, such as arthritis, low back pain and neck pain [1].
These conditions are the largest contributors to Years Lived
with Disability (YLDs) in the UK and have a substantial so-
cioeconomic burden, accounting for approximately £5 billion
annually in direct NHS costs and lost productivity. In 2022
alone, these conditions were responsible for 23.4 million
working days lost, making them the third most common
cause for work absence [1].
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In recent years, global health priorities have shifted from
communicable disease to non-communicable disease, such as
osteoarthritis [2]. Managing MSK disorders requires a mul-
tidisciplinary approach, involving health care professionals
from various specialties, including pharmacological, surgical
and Allied Health Professionals (AHPs) such as physio-
therapists and occupational therapists [3]. Guidelines from
the Osteoarthritis Research Society International (OARSI)
recommend a non-surgical management approach, including
the provision of home based-rehabilitation involving exercise
therapy [4], [S].

Despite its importance, adherence to home-based rehabil-
itation programs remains a significant challenge for people
with MSK conditions due to a multitude of reasons [6], such
as low motivation and self-efficacy, in addition to factors
like socioeconomic status, mental health and level of family
and peer support [7]. Higher adherence rates are more likely
achieved during supervised rehabilitation programs, high-
lighting the importance for enhancing patients’ self-efficacy
and motivation in the home setting [8]. Low adherence
can have negative effects on physical and psychological
outcomes leading to worsening symptoms and the need for
additional follow-up care.

Artificial Intelligence (AI) provides a promising solution
to enhance adherence and engagement with home-based
exercise programs delivered as part of MSK rehabilitation.
Al-powered solutions can provide personalized, adaptive
programs tailored to individual needs, through the provision
of real-time feedback. These capabilities have the potential
to mimic a similar level of supervision and support as
would be achieved with a therapist [9]. Integrating real-
time monitoring and feedback while collecting physiological
data, enables healthcare professionals to monitor progress
remotely. Gamifying exercise therapies can further transform
home-based exercises by making repetitive movements more
interactive, enjoyable and engaging in order to enhance
motivation [10].

Studies have shown that Al-based tools, such as con-
versational agents and gamification strategies, can enhance
user engagement and immersion in various settings. Fraser
et al., 2018 [11] demonstrated that emotionally aware con-
versational agents can improve engagement by maintaining
immersion, while Pirovano et al., 2012 [12] highlighted the
importance of balancing difficulty adjustments to maintain
flow in gaming experiences. However, these benefits also
come with challenges, as Al features may inadvertently
increase cognitive load or disrupt user flow if not carefully
designed [13]. Addressing these challenges in MSK rehabil-
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itation requires robust adaptive algorithms that can process
real-time data and ensure personalization for diverse patient
needs [14]. While these previous studies have explored
emotional Al in the context of spoken conversational agents
with Non-Playable Characters (NPCs), they did not influence
gameplay mechanics [11] for the users.

Real-time data processing from physiological sensors,
such as electromyography (EMG), can be easily influenced
by noise and variability, requiring stringent algorithms to
ensure accuracy. Additionally, ensuring that Al systems adapt
to the wide variability in patient responses is crucial for
success. By leveraging insights from studies [15], which
have demonstrated the benefits of EMG-based feedback for
improving muscle strength, the current study aims to address
gaps in rehabilitation gaming.

The aim of this study was to evaluate the feasibility
of an Al-enabled muscle-controlled game in improving en-
gagement and performance compared to a non-Al version
of the game. Specifically, this study investigates how the
addition of an Al-chatbot and real-time feedback influenced
player engagement, game metrics and muscle activation
(measured via EMG). This work addresses gaps identified
in related studies, such as the need for adaptive algorithms
in rehabilitation settings [10], [14], and provides insights
into the opportunities and challenges of integrating Al into
rehabilitation games.

II. METHODS AND MATERIALS

Adafruit Feather 32u4

Myoware Muscle
i1, Sensor

MMA8451
Accelerometer

Fig. 1. The schematic illustrates the integration of the MyoWare Muscle
Sensor and MMAS8451 accelerometers with the Adafruit Feather 32u4
micro-controller. The MyoWare Muscle Sensor (top-left) detects elec-
tromyography (EMG) signals, providing data to the Feather via the analog
pin (green wire). Two MMAR®451 accelerometers (bottom) measure motion
data, which was not utilized in this study.

In this study, we evaluated EMG data recorded from fifteen
healthy participants (6 female and 9 male), game perfor-
mance metrics and qualitative data, under ethical approval by
the UCL Research Ethics Committee (Study ID: 6860/015).

Player engagement was measured using the Games En-
gagement Questionnaire (GEQ), which is a validated ques-
tionnaire [16], comprising of 19 items distributed across
four dimensions: absorption, flow, presence and immersion.
Participants rated each item against a 5 point Likert scale,
immediately after playing both versions of the game in order
to measure their initial response capturing perceptions on
engagement.

EMG signals were collected via a wearable prototype
device which was developed by the research team building
upon the early works of Magee et al., 2017 [17]. Fig. 1
displays the circuit diagram of the device, which comprises
of a MyoWare EMG sensor, an Adafruit Feather 32u4
Bluefruit microcontroller and two MMAS8451 accelerometers
(the accelerometers were not used in the scope of this
project). The total cost of all prototype components remained
under £100, making the device a more cost-effective solution
for integrating home-based rehabilitation, in comparison to
laboratory-based equipment. The device sensors captured,
rectified and filtered EMG signals, which reflect muscle
contractions by measuring the amplitude. Higher amplitudes
indicate stronger muscle contractions, while lower ampli-
tudes closer to baseline suggest relaxation. The data was
sampled at a rate of 100ms to allow analysis of time-based
patterns. A study has been undertaken to experimentally
validate the feasibility of measuring joint angles with this
developed low-cost device compared to an OptiTrack motion
tract system, revealing excellent repeatability measurements
for static tests and acceptable repeatability for dynamic test
[18].

B. Development Process

Fig. 2. Experiment set up with participant wearing the device and connected
to the computer where the game was played. Along with the EMG activation
spikes displayed on screen (top left on computer screen).

An open-source Flappy Bird framework (available on
GitHub), originally developed by Sourabh Verma was uti-
lized during this study'. Leveraging this existing code-base
reduced development time, allowing greater focus on neces-
sary modifications and the integration of the chatbot which
was central to the experiment. The first step for integrating

Thttps://github.com/sourabhv/FlapPyBird



the prototype device into the game involved adapting the
game play mechanics to respond to muscle signals.

When a contraction occurred, the MyoWare sensor pro-
cessed the raw EMG data to produce a clean, interpretable
EMG signal that reflects muscle activity intensity. This signal
typically exhibits an approximate linear relationship with
muscle activation levels. This processed signal was sent to
the micro-controller, where a spike in the EMG signal was
observed (Fig. 2). If the signal exceeded a threshold of
60 units above the baseline, this provided indication of a
successful muscle contraction, the Arduino sends an “F”
representing a ‘flap’ command over serial communication.
The modified game interprets this signal as a command to
make the bird “flap”. This setup enabled players to control
the game solely through their muscle contractions in order
to make the experience more immersive and interactive.
While Fig. 2 illustrates the device placed on the forearm
of the participant, it is designed for uses on other parts of
the body such as the knee. Future studies will explore the
application of this wearable device, Al and gamification in
these alternative placements.

Game constraints were determined based on prior research
on similar games and piloting sessions. The game aligns
with principles of adaptive difficulty commonly used in
game design, where the game adjusts to the player’s skill
level to maintain a state of “flow,” a concept introduced
by Csikszentmihalyi [19]. Both versions of the game started
with the same difficulty level and default parameters. In the
non-Al-enabled game, the player could not make choices
about game-play instead, the game was pre-programmed to
adjust based on score.

In the Al-enabled game, the player could interact with a
chatbot to adjust the game’s difficulty level based on their
preferences and performance. The chatbot, created using
Rasa, provided real-time feedback and interactions aimed
at increasing engagement and personalizing the experience.
Rasa is an open-source machine learning framework for
building contextual assistants capable of handling actionable
tasks [20]. The framework architecture consists of two main
components: Rasa Core, which manages the dialogue flow
and Rasa NLU (Natural Language Understanding), which
processes player input to extract relevant information. Rasa
NLU employs the Dual Intent and Entity Transformer (DIET)
architecture for intent classification and entity extraction
[21].

In the chatbot-enabled game, custom actions were de-
signed to interact with the game’s back-end, retrieving and
adjusting game parameters such as pipe gap, speed and flap
strength. By leveraging Flask routes, the custom actions dy-
namically accessed the current state of these parameters and
modified them based on player input, such as perceived dif-
ficulty or achieved points. This dynamic adjustment enabled
real-time responsiveness to player preferences, creating a per-
sonalized and engaging gaming experience where difficulty
levels could be fine-tuned through natural language interac-
tions with the chatbot. These interactions were text based and
took place during gameplay when specific parameters had

been reached e.g 20 points, allowing the user to communicate
their preferences such as increasing the speed of the game.
Fig. 3 illustrates an example text based conversation with
the chatbot. The chatbot then interpreted the users input and
adjusted the game parameters as described above. In the non-
Al version the difficulty adjustments were pre-programmed
and linear.

EMG Flappy helper # EMG Flappy helper

@ gap, player gravity, or flap
Awesome! You've reached 20 strength, which would you
= '?'5! Time to increase prefer? Or if you want to know
difficulty. more about each just ask me
about it.

Let's choose a parameter to
increase the difficulty.

ﬂ S Fr————
speed for you.

| can change the speed, pipe @
8ap, player gravity, or flap Speed has increased by 20%.

strength, which would you X

prefer? Or if you want to know
more about each just ask me When you're ready to play, just
let me know or say goodbye!

about it.

a°
Speed

A \ A

Fig. 3. Example of conversation flow with chatbot in the Al-enabled game

C. Study Design

| All participants briefed and informed consent obtained

Connection to the prototype device with disposable electrodes
- 3 used per participant

Sensor data was visualised to ensure proper signal detection
and explain control mechanism

Once control mechanism understood by the participant,
practice session for up to three minutes to familiarise with
controlling the game with muscle contractions

Playing the non-Al enabled
game for three minutes

Playing the Al enabled game
for four minutes

15t Time 15t Time

Completing the Games
Engagement Questionnaire

Completing the Games
Engagement Questionnaire

2 Time 2 Time

End of Experiment

Fig. 4. Experimental protocol flow diagram.



To control for potential order effects and ensure validity, a
counterbalanced design was employed [22]. Each participant
played both versions of the game: one with Al features and
one without. A systematic approach was used to vary the
sequence in which participants experienced the two game
versions, ensuring that order effects were evenly distributed
across conditions. This design aimed to reduce variability
due to individual differences and learning effects, to detect
differences in engagement between the two game versions.
Figure 4 presents the experimental protocol flow diagram for
this study.

D. Data Analysis

To determine if there were any differences between games,
a series of one-tailed paired t-tests were conducted. This
statistical approach was chosen to test specific hypotheses
about the game metrics, with different directions of compar-
ison based on expected outcomes, the number of crashes and
successful muscle contractions were tested in the ”less than”
direction, while the total score was tested in the “greater
than” direction.

To account for possible type 1 errors arising from multiple
comparisons, Bonferroni corrections were applied, adjusting
the alpha level to 0.0167 (a) to maintain the overall sig-
nificance level across all tests. While the correction is a
conservative method, it was deemed appropriate given the
small sample size (n=15).

The raw EMG data collected during game-play underwent
a comprehensive normalization process to ensure consistency
across participants and conditions. This pre-processing step
was crucial to minimize variability due to individual dif-
ferences in muscle activity, electrode placement and muscle
strength. A normalization factor was computed for each
participant by averaging their top five valid EMG values
during game-play, which served as a reference for peak
muscle activity. All EMG values were then scaled to this nor-
malization factor, converting the raw signal into a percentage
of peak muscle contraction. While this method did not use a
formal Maximum Voluntary Isometric Contraction (MVIC)
test for calibration, it ensured session-specific normalization
tailored to each participant. This normalization process was
applied uniformly across both AI and non-Al conditions
to ensure that differences were attributable to game-play
rather than individual variability. Due to the non-normal
distribution of the EMG data, a Wilcoxon Signed-Rank test
was performed for this dataset.

III. RESULTS
A. EMG data

Muscle activation was assessed by comparing EMG data
across the minutes of game-play. By segmenting the data into
one-minute intervals, trends were more apparent. The median
EMG values indicated that the Al game version generally
resulted in slightly higher muscle activation compared to the
non-Al version. Notably, during the third minute of game-
play, the AI condition showed the highest median value of
0.16, while the non-Al condition recorded 0.11. The results

from the Wilcoxon Signed-Rank test indicated a statistically
significant increase in muscle activation for the Al condition
compared to the non-Al condition (p < 0.05). The Al-
enabled version required players to engage with the chatbot
as part of the gameplay, which naturally extended the overall
playtime compared to the uninterrupted and continuous non-
Al version. To maintain similarity and fairness between the
game versions the Al game was allocated a longer duration.
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Fig. 5. Normalized EMG values over time for both AI and Non-Al
conditions, segmented by one-minute intervals with the inter-quartile range.

B. Game Metrics

Three metrics were analyzed: total score, number of
crashes and number successful muscle contractions. The
mean number of successful muscle contractions during
the Al-enabled game was 86.87+£24.585D, compared to
118.13£23.445D in the non-Al enabled game. The paired t-
test revealed a statistically significant decrease in the number
of contractions in the Al condition (p < «).The paired t-test
showed the number of crashes was also significantly lower
in the Al-enabled game (12.07 £ 3.155D) when compared
with the non-Al enabled game (15.60 & 4.745D). The total
score had a mean value of 24.60+24.465 D in the Al-enabled
game compared with 42.074+29.825 D in the non-Al enabled
game. The paired t-test indicated the difference between the
two conditions was not statistically significant (p > «).
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Fig. 6. Box plot for both game versions showing game metrics.



C. Games Engagement Questionnaire

The mean absorption score was slightly higher for the
non-Al enabled game (2.45 + 1.10SD), compared to the
Al enabled game, at 2.39 + 1.115D. Flow had almost
identical mean scores with 2.94 £+ 1.195D for the non-
Al enabled game compared to 2.93 £ 1.24SD. Presence
dimension showed a mean score of 3.18 & 1.175D for the
non-Al enabled game and 3.08+1.245D for the Al-enabled
game. Lastly, immersion had the highest mean scores with
the non-Al game scoring 4.27 £0.595D and the Al-enabled
game mean of 4.20 &+ 0.685D. A paired t-test indicated no
statistically significant differences in any tested dimension
between game versions (p > 0.05).

In addition to the questionnaire data, users had an option
to leave comments about the game which can be seen in
Table 1.

Mean Scores and Standard Deviations for Each Dimension
5

w I l

w »

Mean Score
N

Absorption Flow Presence Immersion
Dimension
Fig. 7. GEQ mean scores for all dimensions.

TABLE I
COMMENTS FROM PARTICIPANTS PER GAME VERSION

Al-enabled game

Non-Al enabled game

“More encouragement with the
bot, makes me want to achieve
a higher score”

“This game is really fun, and
the controller is unique!”

“The chatbot is interesting and

“It was addictive and harder

I like the stats at the end, the | than I thought to control it with
voice is motivational to play | my muscle for me”
more”

“I thought this game is interest- | “The game makes you want to
ing” continue playing it as you want

to improve”

“The game works really well
however I hate flappy bird”

IV. DISCUSSION

This study explored the feasibility and impact of Al-
enabled features on player engagement, game performance
and muscle activation within a rehabilitation gaming context
on healthy participants. Data obtained from EMG signals
demonstrated there was a significant increase in muscle acti-
vation associated with the Al-enabled game, when compared
to the non-Al enabled game. Although these preliminary

findings should be interpreted with caution in light of the
small sample size, these observations suggest that the Al
features provided a more dynamic experience to facilitate ac-
tive muscle engagement. These findings align with previous
research by Lyons et al., 2003 [15], which showed that EMG-
based feedback in gaming environments can improve mus-
cle strength compared to controls. The increase activation
observed here indicates the Al-enabled games’ potential for
therapeutic applications, especially in rehabilitation where
maintaining or increasing muscle activation is usually a key
goal.

Although it was hypothesized that the Al-enabled game
would be associated with improved player engagement, no
differences were identified between the groups. Although
the sample size was not sufficiently powered, these findings
may also reflect challenges associated in capturing subtle
differences of player experiences through standardized ques-
tionnaires. Similar findings have been reported in prior stud-
ies, where engagement metrics showed limited sensitivity to
subtle variations in game design [14].

Qualitative feedback from participants, however high-
lighted the motivational role of the Al-chatbot, suggesting
that the chatbot may have positively influenced engagement
in ways not fully captured by the GEQ. For instance,
participants noted that the chatbot provided encouragement
and increased their motivation to continue playing. This is
consistent with Fraser et al., 2018 [11], who found that
emotionally aware spoken conversational agents enhanced
user engagement by maintaining immersion. Future studies
should consider using mixed-method approaches, incorporat-
ing tools like the Intrinsic Motivation Inventory (IMI) [23]
and semi-structured interviews to in order to obtained a more
detailed understanding of its impact. In light of this feedback,
offering a variety of games that utilize the same physical
actions but cater to different players preferences could further
enhance the engagement and overall experience, as can be
seen by the final comment.

It is also worth considering that participants may have
already been maximally engaged, leaving little room for
improvement in engagement metrics. The game duration (3-4
mins) may not have been sufficient to fully test these param-
eters, as longer play sessions might reveal more pronounced
effects on engagement. The small sample size in this study
(n=15) could have led to underpowered statistics, limiting
the ability to detect subtle differences. Future studies with
larger sample sizes are needed to fully assess the impact of
Al features on player engagement.

Game metrics revealed interesting exchanges between per-
formance and Al features. While the Al-enabled game signif-
icantly reduced the number of crashes, suggesting improved
precision and focus, it did not result in higher total scores
compared to the non-Al game. These findings suggest that
the chatbot and Al features, while beneficial for precision,
may have inadvertently introduced distractions or increased
cognitive load. While EMG data indicated increased muscle
activation in the Al-enabled condition, this was also accom-
panied by a decrease in the number of muscle contractions



and lower total score. One possible interpretation of these
results could be the participants may have exerted more
effort but with less precise game control, or alternatively
the participants had fewer but more controlled contractions
where participants were more measured and rhythmic in their
efforts. Similar challenges have been noted in studies where
Al features disrupted user flow [13] or led to overestimation
of player abilities when difficulty adjustments were user-
controlled [12]. Moreover, allowing participants to adjust
game parameters in the Al condition may have resulted
in overly difficult settings, further hindering performance.
Addressing these challenges requires careful consideration of
how Al features interact with game-play elements and player
cognition. Analyzing the chatbot interactions could provide
insight on the influence on player behavior and should also be
considered. This reduction in crashes supports the idea that
the Al may have enhanced the player’s ability to navigate the
game more effectively, or alternatively the game may have
been made easier or become better tailored to the players
current ability.

V. CONCLUSION

Despite the challenges, these findings demonstrate the po-
tential of Al to enhance rehabilitation gaming when designed
effectively. Future work should focus on refining Al features
to balance engagement, cognitive load, and performance.
Larger participant samples are necessary to improve statis-
tical power, and adaptive algorithms, such as reinforcement
learning could dynamically adjust game difficulty based on
real-time feedback, including %MVIC calibration. Extending
game durations may also provide more opportunities to ob-
serve engagement and performance differences. Integrating
advanced Al techniques, such as emotionally aware conver-
sational agents or generative adversarial networks (GANS),
could further enhance personalization and adaptability [24].
This study provides a foundation for exploring dynamic,
adaptive systems that balance engagement with therapeutic
goals, paving the way for innovative rehabilitation technolo-
gies.
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