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MI-CES: An explainable weak labelling approach to example selection
for Motor Imagery BCI classification*
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Abstract— Motor Imagery (MI) Brain Computer Interfaces
(BCI) can be used to control assistive devices such as
wheelchairs. These systems require a training period to get
both the user and the machine to learn and adapt to each other,
achieving an acceptable control accuracy. Previous systems have
discovered that providing a form of feedback to the user about
what the system thinks the user is thinking can increase the
effect of training and increase both the control accuracy of the
user and the classification accuracy of the BCI system. However,
if this feedback is ‘incorrect’ due to the classifier behind the
BCI system having a poor accuracy, this may cause the user
to ‘incorrectly’ adapt to the feedback, providing the system
with further poor examples of MI. In this paper, we propose
MI-CES, an explainable ‘example selection’ approach based on
the neuro-physiological principle of MI. We found that while
using 2 classification techniques, we achieved a statistically
significant increase in classification accuracy across 3 datasets
that were comprised of both multi-participant and multi-session
recordings.

I. INTRODUCTION

EEG Motor Imagery (MI) brain computer interfaces (BCI)
require a significant training period for both the user and
the machine learning (ML) algorithms to adapt to each
other [1], [2]. During this mutual learning cycle, the user
learns how to control the system and the ML-based BCI
learns to identify the user’s unique set of mental instructions.
This training often consists of multiple recording sessions of
the user performing the required mental instructions after
a corresponding cue (e.g. left hand or right hand) [3]. After
one or multiple sessions, a form of feedback is introduced to
the user representing either the classification of the previous
epoch of the instruction or a measure of how close the user
is to achieving the correct command [1]. The user then
relies on this feedback to adjust their mental commands
to learn to control the system correctly. However, if the
classification accuracy of the system behind the feedback
is poor, then the user could learn to perform the instructions
‘incorrectly’. We hypothesize that by selecting examples
in our dataset that contain the features most similar to
the known neurological effects of MI, we can increase
the classification accuracy, and by extension, the quality of
the feedback. A few previous weak labelling BCI studies
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have been carried out, however, none of the methods have
been physiologically explainable [4], [S]. In this paper, we
propose Motor imagery covariance example selection (MI-
CES), which aims to select examples for the ML training
that are based on neurological features related to MI, which
we hypothesize will improve classification accuracy.

II. RELATED WORK

BCIs can facilitate communication between a person’s
brain and a robotic device or computer. This can be particu-
larly useful for people suffering from disabilities or injuries
that cause them to lose most of their motor function below
the neck. EEG BCI systems to control assistive devices such
as wheelchairs, spelling devices and tele-presence robots
have been previously developed, and make use of different
types of mental instructions [6]-[8]. Some devices are con-
trolled using synchronous EEG paradigms, which rely on
measuring the user response to a given stimulus [7]. Other
devices rely on asynchronous BCI paradigms such as MI,
which rely on classifying voluntary user commands [8], [9].

A. Motor Imagery

The MI paradigm is a popular asynchronous form of
neurological communication between non-invasive EEG sys-
tems controlling assistive devices and the user. MI provides
a relatively high classification accuracy and is suitable for
users who suffer from tetraplegia due to spinal cord injuries
due to the signals originating from a cortical area that is
underutilized. MI functions by having the user think about
moving a limb. This has the effect of activating the neurons
across the motor sensory area associated with that limb.
When a user is not thinking of moving a limb, the neurons
in the motor cortex fire at their resting frequency within
the 8-12Hz band, which is known as mu-rhythm. When the
motor cortex is activated, the neurons begin to fire at different
frequencies, desynchronizing, and reducing the magnitude of
the 8-12Hz mu-rhythm component in the signal. This effect is
known as event-related de-synchronization (ERD) [10]. MI
has been used as a paradigm to control multiple different
devices such as smart wheelchairs, telepresence robots and
robotic arms [8], [9], [11].

B. Machine learning

ML is a core component of most MI BCI systems [12].
The ability of ML algorithms to learn allows BCI systems
to classify within each user’s or recording session’s specific
data space (Fig. 1), which can differ due to factors such as
cap position, cortical layout, peak band frequencies and a
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Fig. 1: Fourier basis frequency embedding of 2 instructions
of all users in the PhysioNet data [18] set (left) compared
to one (right). Data reduction was performed using uniform
manifold approximation (UMAP) to maintain the multi-
dimensional relationship, rather than extracting new features

difference in new features generated by prior pre-processing
steps in the BCI pipeline (e.g. ICA, PCA).

The majority of ML methods used to classify EEG data
have been linear models aiming to create a boundary between
2 areas in their feature spaces. The most popular methods
used are Linear discriminant analysis (LDA), Support vector
machines (SVM), Quadratic discriminant analysis (QDA),
decision trees and Multi-layer perceptrons [13]. However,
some sort of pre-processing is required to remove any
artefacts or related features and embed the EEG signals into
an appropriate feature space for ML methods to work [14].
Statistical classifiers such as naive bayes classifiers have also
been used in BCI devices before [9].

Deep learning methods have emerged as a popular option
to classify EEG signals. Lawhern et al. used a convolutional
neural network (CNN) to classify 4 MI instructions using
the BCI competition 4 dataset [15]. The shape of the CNN
kernels was designed to extract features across the temporal
and spectral domains separately, mimicking the filter bank
common spatial pattern (CSP) processing method. On 4
classes they achieved an inter-participant accuracy of ~ 60%.
However, when this method was applied to a combination of
all the participant’s data the accuracy decreased.

Further developments were made to increase the accuracy
of EEG BCI deep learning models by using 2D CNN
kernels designed to learn combined temporal-spatial features,
boosting their mean intra-participant accuracy to 76.2% [16].
Different types of deep learning layers have also been used
in combination with CNNs, such as Long short-term memory
layers (LSTMs), which combine the next input with the
previous output of that layer in an aim to learn some causal
features related to the signal. Models using LSTMs have
managed to achieve higher accuracies than their pure CNN
counterparts [17].

C. Limitations with previous methods

Even with further advances in ML, the development of
more complex networks still struggle to achieve a level of
accuracy that allows a user to control a wheelchair reliably in
the long-term. Most ML papers focus on offline classification
accuracy, which when focusing on the same dataset, can
cause development to tend towards over-fitting that dataset

rather than improving the generalization of models or their
online application [12], [13], [19].

Another issue with most examples is the way data is
extracted. Most MI datasets follow a broadly similar data
collection process, where the user is presented with a prompt,
and then asked to perform the MI task during a period of
time [3], [18], [20]. This collection process may lead to a
labelling issue that is not seen in other machine-learning
applications. When instructions are extracted or segmented
out of a larger recording, each one of these segments is
assigned the label of the larger section is was taken from. A
10-second recording between a left cue and a stop cue can
be split into 10 one-second recordings with all labelled as
a left-hand instruction. EEG MI data is extremely difficult
to visually identify as a correct example of one class, and
the time it would take to do so for the number of examples
generated in one training session would be extremely inef-
ficient during a BCI training session. Segmented examples
where the user may not have been performing the instruction
correctly would then be introduced into the dataset as a
labelled example of one class, even though it shows no
similar trends to the rest of that class. This can make it not
only difficult for the classifier to classify that example as well
as generate a concise and generalized boundary for the other,
but it can also make the classifier ineffective in future online
classification, especially during online feedback supported
training. Should this classifier provide poor quality feedback
during training, it may then cause the user to constantly
perform incorrect instructions, compounding the labelling
problem. Therefore, this makes EEG MI classification from
offline datasets a suitable “weak labelling problem”.

D. Weak Labelling

Weak labelling is a concept in ML that focuses on learning
from data whose corresponding labels may be incorrect,
ambiguous, only exist for a fraction of the dataset, or
provide partial information about the concept it’s designed to
learn [21]. Semi-supervised learning can be useful in incom-
plete labeling when you have a large dataset which would be
extremely costly to label manually or requires an expert to
label. A small subset of data can be used to train an initial
classifier to identify the rest of the dataset. This method
however is not suited to the problem in BCI MI studies
where the high variance across participants makes reliable
expert labeling and label estimation impractical (Fig. 1). The
issue of BCI MI learning is more suited to inexact labelling,
where we have a small amount of information about a group
of data examples, but not enough to identify where in the
data or which segments are correct. The common method for
solving these problems is multi-instance learning.

E. Multi-instance learning

One key concept of weak labelling is multi-instance learn-
ing (MIL). MIL (Fig. 2) aims to learn a concept from the
differences between or areas of high data concentration in
bags of data [22]. A bag is a group of examples, where each
bag is either a positive or negative bag. Negative bags must
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Fig. 2: A comparison of supervised learning (left) and multi-
instance learning (right). Multi-instance learning aims to
learn only the true positive examples inside the positive bags.

not contain any positive examples, whereas a positive bag
must contain at least one positive example. This technique
has been particularly effective at image segmentation, where
the aim of the ML algorithm is to learn a concept from
multiple different images which contain an example in com-
parison to images which do not. It can also be very effective
in classifying and locating images which are too large or have
relativity small discriminant features that a CNN architecture
would be unable to extract such as high-resolution cancer
slide images [23] and identifying objects in video format
which combines a temporal-spatial elements [24]

Sadatnejad et al. used MIL to classify a mental health-
related data EEG dataset [4]. MIL was used to account
for biological and external artefacts. After applying different
bandpass filters and data segmentation, they produced a bag
of concepts for each example. After this, the covariance ma-
trix of each concept was then embedded across a symmetric
positive definite manifold. MIL was then used to learn the
bag level difference between the classes.

Caicedo-Acosta et al. used a MIL framework for both
instance and feature selection [5]. Each EEG trail was
converted into a bag using a sliding window and short-
time Fourier transform. Instance selection was based on the
sparse representation classifier. A set of weights is learned
through a linear regressive process to create a vector of scalar
coefficients. Each instance is then sparsely reconstructed
using these learned weights and all other examples. Any
example where the difference between the actual signal and
the reconstructed signal greater than a threshold is removed.

Both MIL methods function based on learning a concept
generated within their feature space. However, the high
variability and artifact-prone nature of EEG data can mean
that this learned concept can become detached from the
data produced by the MI task and makes the assumption
that the majority of the data provided represents the true
concept you are aiming to classify. In the case of a classifier
used to feedback and to direct the user during training, the
classifier can overlearn a concept specific to that session
and not related to correct MI. For this reason, we aimed

to design an MI example selection algorithm that is based
of the neurological principles of MI.

III. METHOD

In this section, we describe the method and reasoning
behind MI-CES. Unlike the previous methods used for motor
imagery example selection [4], [5], our method uses a novel
approach by using the known neurological principles of MI
in its reasoning for selecting correct examples by comparing
each example to an similarly embedded ‘Ideal example’. This
aims to constrain the example selection algorithm within an
area of the search space we believe to be neurologically
relevant.

Calculate
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Fig. 3: Flow chart describing the MI-CES method

A. Datasets

Three MI datasets were selected for classification. Firstly,
the BCI-competition iV 2a dataset [20] set was selected for
its common use in a large number of MI BCI classification
papers. The PhysioNet BCI 2000 dataset was also selected
for its common use as well as it having over a hundred
participants with less data, allowing us to test over a wider
population [18]. The BCI-VR dataset recorded by Thomas et
al. was also selected because a feedback-based classifier was
used throughout the training sessions [3]. Due to the longi-
tudinal style of the dataset (multiple separate sessions over
different days per participant), each session was individually
tested instead of testing between participants.

B. Channel selection and instructions

In order to fairly assess the effect of MI-CES over the
3 datasets with different electrode layouts, 15 common
electrodes across the motor cortex were selected from all 3
datasets. The electrodes are positioned in the 10-20 system
positions as shown in Fig. 4.
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Fig. 4: A topographical layout of the international 10-20
system. Electrodes highlighted in red are the electrodes
selected across all datasets for this study



Since MI-CES extracts spatial features, we have opted to
test the viability of MI-CES on left and right-hand MI due to
the neuro-physiological effects of the MI instructions system
having a greater spatial separation across the motor cortex.
This measure is taken to avoid possible component contam-
ination by foot or tongue examples captured by electrodes
that may have been misplaced between the key areas of the
motor-sensory area.

IV. SEGMENTATION AND FILTERING

For each dataset, the time between instruction cues was
extracted and segmented into separate epochs using a 1-
second sliding window with a 0.5 second overlap between
examples. Each epoch was then filtered using a 4-40Hz 4th
order Butterworth filter to extract the frequencies that are
neuro-physiologically relevant.

A. Covariance combination

To create a general method that derives its logic from
neurological principles, that can be applied without any other
information, the method should be able to judge an example
based on consistent neurological features across the human
population. A temporal method would not be appropriate for
this due to the high variability in peak alpha power across
the population. Due to the structural layout of the brain in
healthy participants being consistent, we designed a method
that assesses the spatial difference of the participant’s neural
information. By taking the covariance of each epoch, we can
assess the similarity and difference between each channel,
where channels that have the greatest difference in frequency
have low covariance and channels that are similar having a
high covariance. When an MI mental instruction causes ERD
across a certain part of the motor cortex, the covariance of
that channel and all of the others should decrease (Fig. 6).
Unlike other connectivity measures such as coherence which
aims to measure which areas of the brain are firing at the
same specific frequency [25], low covariance is a measure of
difference in frequency across the spectrum and is therefore
less sensitive to user-specific peak alpha and ERD beta
frequency.

B. Ideal example generation

In order to assess an example, we need to generate a signal
for comparison. We generate a matrix p where each vector
along the temporal axis is a sinusoid of a specific frequency.
each sinusoid is generated using the equation:

X, = 2mn f 0
[s

Where X is the vector representing the signal, n is the
step of the signal, f is the desired frequency and f, is
the sampling frequency of our signal. The vectors in the
matrix associated with the channels located over the expected
cortical area affected by the MI instruction are sinusoids at
20Hz to mimic the increase in beta activity in that area that
occurs during MI [10]. For left-hand instructions, these are
the vectors linked to the 10-20 channels FC4 & C4 and for

the right-hand, the channels selected are FC3 & C3 (Fig. 4).
All channels that are not associated with the instruction are
set to 10Hz to mimic the alpha activity (Fig. 5). Due to
covariance being a relative measure, representing a relation-
ship between two signals, adjustments to these frequencies
do not need to be made for individual users, sessions or the
non-stationary nature of EEG.
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Fig. 5: Heat maps of left-hand (left) instruction and right-
hand (right) instruction “Ideal example” covariance matrices.
These examples are generated by measuring the covariance
of the generated “Ideal example” of both a left-hand and
right-hand motor imagery task

C. Comparison and selection

To compare the covariance matrices from a user example
to an “ideal example” (Fig. 6), we take the Frobenius inner
product, which allows us to compare 2 matrices, rather than
having to take the inner product or similar measures with
flattened vector representations of the matrix. The Frobenius
inner product is expressed as:

(A,B)p = tr(ATB) )

For each session or participant (dataset dependent) we nor-
malize the inner products for each instruction group of
epochs between 0 and 1. All values above a threshold are
then selected to be the new dataset.

D. Classification

Two proven classification techniques will be used to assess
the effect of the feature selection method.

The first technique is a 4-component common spatial
patterns (CSP) transformation followed by a class-balanced
SVM using a linear kernel. The simple nature of this clas-
sifier was chosen instead of a more advanced prepossessing
and ML method to not bias our results and to effectively as-
sess MI-CES. A second frequency-based method was chosen,
consisting of a 6-20Hz Butterworth filter, followed by a fast
Fourier transform followed by an RBF kernel class balanced
SVM. This was chosen to assess the effect of an embedding
method that does not extract its basis vectors from the data
it is provided, instead embedding the data into a common
pre-defined frequency space.

Since the method provided does not maintain a fixed
number of examples and with no prior knowledge of which
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Fig. 6: Left-hand example covariance matrix (left) and the
covariance matrix of an ”ideal example” for a left-hand
example (right). Both show a similar grid like area of love
covariance, indicating that the left-hand human example
(left) is a good example of of left hand motor imagery
example.

examples inside our data are correct, we decided not to test
any of the deep learning methods developed in previous
literature as they would most likely over-fit the small and
possibly imbalanced dataset provided by the example selec-
tion algorithm.

V. RESULTS

A. Same session classification accuracy

For all sessions and results below, a normalized score
threshold of > 0.5 was used. Statistical significance was
measured using a Wilcoxon signed rank test. A red ‘*’ is
used to indicate a statistically significant difference between
the 5-fold cross-validation accuracies between the standard
BCI pipeline attempting to classify all examples and the
same pipeline classifying the examples selected using the
MI-CES method.
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Fig. 7: Box plot of accuracies per participant using a CSP
linear-SVM classier on the BCI Comp IV 2a dataset
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Fig. 8: Box plot of accuracies per participant using an FFT-
SVM classier on the BCI Comp IV 2a dataset
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Fig. 9: Box plot of accuracies per participant using a CSP
linear-SVM classier on the PhysioNet dataset
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Fig. 10: Box plot of accuracies per participant using an FFT-
SVM classier on the PhysioNet dataset

3) BCI-VR dataset dataset:
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Fig. 11: Box plot of accuracies per session using a CSP
linear-SVM classier on the BCI-VR dataset
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Fig. 12: Box plot of accuracies per session using an FFT-
SVM classier on the BCI-VR dataset

4) Example loss to accuracy correlation:

In order to assess the relationship between the amount of
examples lost and the accuracy, scatter plots are generated
showing the number of examples lost in comparison to the
accuracy achieved. This provides information to see how
‘destructive’ the method is and if high accuracies are only
achieved when most of the data is lost. The least mean
squares method was used to measure the correlation. This
was only done using the CSP-SVM classifier and was not
performed on the BCI comp IV 2a dataset as only 9 tests
were performed.
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Fig. 13: Scatter plots of the amount of examples lost during
the selection process compared to the 5-fold cross-validation
accuracy achieved by the classifier after MI-CES example
selection. Left is the scatter plot of each participant in the
PhysioNet BCI 2000 dataset. Right is the accuracy of each
session in the BCI-VR dataset

PhysioNet
R2 0.22

BCI-VR
8.45% 10~ %

TABLE I: R? values of the correlations between examples
lost and accuracy achieved on both datasets (Fig. I)

VI. DISCUSSION
A. BCI Comp IV 2a analysis

Both classifiers while using example selection mostly
achieved a higher accuracy than when classifying all exam-
ples (Fig. 7, Fig. 8), with the FFT-SVM classifier achieving
a statistically significant increase (p < 0.05) in classification
accuracy per participant. Although the mean achieved by the
CSP-SVM classifier had a higher mean accuracy, the MI-
CES method produced a wider distribution, also achieving a
lower accuracy in some cases (Fig. 11). With the BCI-comp
IV 2a dataset only containing 9 participants, any examples

at the tail ends of the distribution can significantly harm the
results.

B. PhysioNet dataset analysis

Using the PhysioNet dataset, we achieved a statistically
significant increase in accuracy (p < 0.05) across partic-
ipants using MI-CES in combination with the CSP-SVM
classifier (Fig. 9). We however did not achieve a statistically
significant increase using the FFT-SVM classifier, with the
example selection algorithm producing a far wider distribu-
tion of accuracies (Fig. 10).

Although both classifiers achieved a higher mean accuracy
when trained on the chosen examples, the distribution of
these accuracies is wider than when trained on all examples
(Fig. 9, Fig. 10). This effect could be caused by the channels
with the greatest difference for those participants not match-
ing the channels chosen in the examples, therefore causing
the system to select poor examples or their data containing
a small number of considerably poor examples relative to
the rest of the dataset causing the distribution of normalized
scores to positively skewed.

C. BCI-VR dataset

The use of the feature selection algorithm increased the
performance of both classifiers (Fig. 11, Fig. 12) and the
inclusion of the MI-CES produced a statistically significant
increase in accuracy using both classifiers.

D. Example loss to accuracy correlation

Although there is a positive correlation seen between the
number of examples lost and the accuracy (Fig. 13), the
application of both datasets produce different correlations.

For the PhysioNet dataset, the application of the MI-
CES can be observed to be equally destructive across all
examples, yet have a high variance in accuracy between
examples within that range. This combined with the increase
in accuracy seen across participants (Fig. 9) suggests that
the feature selection method can be beneficial to some
participants or have little to no effect. This can be caused
by consistent artifacts not being removed, and the very
low scores provided by noisy examples increasing the low
scores of the poorer quality clear instructions during the
normalization phase. These trends may also be produced by
the lack of any filter personalization, where cap misalignment
or differences in cognitive layout relative to the cap position
produce examples where the spatial ERD/ERS elements
are miss-aligned with the ideal features generated for the
comparison (Fig. 6).

The correlation between accuracy and example loss for the
BCI-VR session is only slightly positive (Table: I). With a
large number of sessions achieving a 100% accuracy across
a wide range of examples lost, this suggests that MI-CES
works well across this dataset. This result may lend to the ex-
periment process used to collect the BCI-VR dataset, where
feedback was provided from the second training session
onward to each participant possibly introducing incorrect
feedback from very early on in the training period [3].



Without testing MI-CES on participants training in a real
time, the real effect of a high example loss remains unknown,
as the reason for the high rate of example loss could be
attributed to many factors such as the accuracy of feedback,
the users BCI literacy or number of ‘poor examples’ included
within the dataset.

E. Effects on future training

With the statistically significant increase in accuracy that
MI-CES achieved, we expect that the use of the MI-CES
method could improve the effectiveness of a feedback-
assisted MI BCI training paradigm. Due to MI-CES selecting
examples based on the neurophysiology principles of MI,
we believe that the feedback provided will more accurately
represent how close the user is to performing the task
accurately rather than how close the user is to performing
the same instructions from the previous sessions. In the
future, to test this hypothesis an online multiple-session test
across a group of participants would be required, analyzing
their classification accuracy through the training period, any
changes in the number of results they got correct and the
change in response to the feedback provided.

VII. CONCLUSION

In this paper, we set out to develop an explainable example
selection algorithm designed to assess a potential weak
labelling problem that occurs during EEG MI BCI data
collection which introduces the possibility of providing bad
feedback to the user during online training. We designed a
method that compares the covariance matrix of a synthesized
‘ideal example’ for a specific instruction and compared
it to the covariance matrix of a real MI example. Any
example with a normalized score above 0.5 was selected. We
found a statistically significant increase in the classification
accuracies of 2 BCI pipelines with different embeddings
across 3 different datasets, with our highest scores being seen
in the BCI VR dataset, which when collected did include
real-time online feedback. The wide correlations seen when
applying MI-CES to different datasets suggest that although
MI-CES is beneficial to some participants, a method of
filter personalization may help provide the benefit to all the
participants. Further testing is required to assess the effect
of the MI-CES in real-time online scenarios.
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