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Abstract: With over 50,000 merchant vessels and nearly two million seafarers operating
globally, more than 12,000 maritime incidents in the past decade underscore the urgent
need for proactive safety measures to ensure the structural integrity of aging ships and
safeguard the well-being of seafarers, who face harsh ocean environments in remote
locations. The Digital Healthcare Engineering (DHE) framework offers a proactive solution
to these challenges, comprising five interconnected modules: (1) real-time monitoring
and measurement of health parameters, (2) transmission of collected data to land-based
analytics centers, (3) data analytics and simulations leveraging digital twins, (4) AI-driven
diagnostics and recommendations for remedial actions, and (5) predictive health analysis
for optimal maintenance planning. This paper reviews the core technologies required to
implement the DHE framework in real-world settings, with a specific focus on the well-
being of seafarers and offshore workers, referred to as Human DHE (HDHE). Key technical
challenges are identified, and practical solutions to address these challenges are proposed
for each individual module. This paper also outlines future research directions to advance
the development of an HDHE system, aiming to enhance the safety, health, and overall
well-being of seafarers operating in demanding maritime environments.

Keywords: Digital Healthcare Engineering (DHE); Human Digital Healthcare Engineering
(HDHE); seafarer well-being; digital twins; human digital twins

1. Introduction
As reported by the International Chamber of Shipping, over 50,000 merchant vessels

and nearly two million seafarers are currently operating worldwide. Shipping is recognized
as one of the most globalized industries and, at the same time, one of the most hazardous.
According to the European Maritime Safety Agency, 12,502 maritime incidents involving
various types of vessels occurred between 2014 and 2022, resulting in numerous crew
casualties, as shown in Figure 1. Maritime accidents have profound consequences for
human lives, property, and the environment [1]. Notably, the “human element”, often
referred to as “human error” or the “human factor”, is widely recognized as the leading
cause of marine casualties. The complexity of the global maritime environment means that
even minor human errors can escalate into major accidents.
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Despite advancements in ship design, stability, equipment, and crew training, hu-
man errors continue to account for 60% to 90% of maritime accidents. The shipping pro-
cess involves numerous human-driven operations and decisions, significantly increasing 
the risks inherent in the industry [2–5]. In more detail, maritime operations widely vary 
across vessel types, with some working environments being particularly susceptible to 
human error. For example, fishing vessels typically operate during irregular hours and 
under physically demanding conditions, leading to fatigue and a heightened likelihood 
of errors. In contrast, cargo ships often benefit from more standardized schedules and 
higher levels of automation, which help mitigate such risks. Overall, the problem of sea-
farer fatigue is not to be underestimated. 

Like other industries, the maritime sector has entered a new era of digital transfor-
mation, adopting advanced digital and communication technologies to revolutionize ship 
design, construction, and operation. This transformation also offers promising solutions 
for protecting the health and well-being of seafarers and offshore workers. Monitoring the 
health and well-being of seafarers has become a key strategy for mitigating risks associ-
ated with human error [6–9]. 

One such solution is the concept of Digital Healthcare Engineering (DHE), intro-
duced by Paik [10,11], which aims to address these challenges. The DHE framework has 
been explored for enhancing the safety and sustainability of aging ships and offshore 
structures [12] as well as subsea pipelines [13]. The system focuses on real-time health 
monitoring by collecting on-site data and performing detailed analytics and simulations 
at land-based centers, leveraging Digital Twin (DT) technology. Communication between 
ships, offshore installations, and land-based centers is enabled through low Earth orbit 
(LEO) satellites. 

In addition, the Human Digital Twin (HDT)—a derivative of DT technology applied 
to human bodies—is expected to be integrated into the maritime sector. HDT enables real-
time monitoring of crew members’ health and well-being, ultimately improving the relia-
bility of human operations [14,15]. 

However, seafarers and offshore workers face unique challenges compared to land-
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Despite advancements in ship design, stability, equipment, and crew training, human
errors continue to account for 60% to 90% of maritime accidents. The shipping process
involves numerous human-driven operations and decisions, significantly increasing the
risks inherent in the industry [2–5]. In more detail, maritime operations widely vary across
vessel types, with some working environments being particularly susceptible to human
error. For example, fishing vessels typically operate during irregular hours and under
physically demanding conditions, leading to fatigue and a heightened likelihood of errors.
In contrast, cargo ships often benefit from more standardized schedules and higher levels
of automation, which help mitigate such risks. Overall, the problem of seafarer fatigue is
not to be underestimated.

Like other industries, the maritime sector has entered a new era of digital transfor-
mation, adopting advanced digital and communication technologies to revolutionize ship
design, construction, and operation. This transformation also offers promising solutions
for protecting the health and well-being of seafarers and offshore workers. Monitoring the
health and well-being of seafarers has become a key strategy for mitigating risks associated
with human error [6–9].

One such solution is the concept of Digital Healthcare Engineering (DHE), introduced
by Paik [10,11], which aims to address these challenges. The DHE framework has been ex-
plored for enhancing the safety and sustainability of aging ships and offshore structures [12]
as well as subsea pipelines [13]. The system focuses on real-time health monitoring by
collecting on-site data and performing detailed analytics and simulations at land-based
centers, leveraging Digital Twin (DT) technology. Communication between ships, offshore
installations, and land-based centers is enabled through low Earth orbit (LEO) satellites.

In addition, the Human Digital Twin (HDT)—a derivative of DT technology applied
to human bodies—is expected to be integrated into the maritime sector. HDT enables
real-time monitoring of crew members’ health and well-being, ultimately improving the
reliability of human operations [14,15].

However, seafarers and offshore workers face unique challenges compared to land-
based workers, as they operate in confined, enclosed environments under harsh marine
conditions. These factors significantly increase their work stress and intensity, placing both
their physical and mental health under considerable strain. Fatigue and discomfort among
seafarers heighten the likelihood of human error. Although extensive research has been
conducted on seafarers’ health, safety concerns for both crew members and vessel naviga-
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tion remain unresolved in the industry. Moreover, existing data indicate that the economic
burden resulting from seafarers’ poor health and stress-related incidents is considerable.
For instance, medical evacuations cost on average USD 100,000 per case, while indirect costs
from delays, insurance claims, and crew turnover significantly affect operational efficiency.
And a report by the International Maritime Health Association (IMHA) estimated that each
mental health-related repatriation costs shipping companies approximately USD 168,000
on average, factoring in transportation, medical care, and re-staffing.

Therefore, this study aims to provide a comprehensive review of current technologies
and applications of DHE for seafarers. To explore the application of DHE systems in
seafarers’ healthcare, this review aims to conduct a state-of-the-art analysis and address the
following three fundamental questions:

• Why should DHE systems be introduced to ensure the safety of seafarers?
• What technical support is needed to build a DHE system, and what are the latest

advancements in these technologies?
• What are the existing challenges in deploying DHE systems, and what is their potential?

The scope of this review includes journal and conference publications related to
seafarers and healthcare monitoring from 2014 to 2024. Dissertation theses were also
incorporated to ensure thorough coverage. Articles were sourced from online academic
databases, including Web of Science (webofknowledge.com, accessed on 20 January 2025),
ScienceDirect (sciencedirect.com, accessed on 20 January 2025), Google Scholar (scholar.
google.com, accessed on 20 January 2025), and Scopus (scopus.com, accessed on 20 January
2025). Reference management software Mendeley (mendeley.com, the version is 1. 19. 8)
was used to organize the selected papers. In total, 93 relevant articles were identified as
the foundation for this investigation. To maintain currency, most papers reviewed were
published within the last decade, with only a small number of older papers addressing
foundational principles.

The search strategy involved using a combination of keywords such as “seafarer”,
“crew”, “mariner”, and “sailor” alongside terms like “human health”, “healthcare”, and
“well-being”. Analysis of publication trends indicates that the number of articles related to
these keywords and their combinations has been annually increasing. While a significant
volume of papers exists in the categories of seafarers (or crew, mariners, sailors) and
healthcare (or human health, well-being), the intersection of these two fields (seafarers’
healthcare) has fewer publications. Moreover, there is no comprehensive article addressing
the technologies underlying a seafarers’ healthcare system, as illustrated in Figure 2.
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The structure of this article is outlined in Figure 3.
Section 2 introduces the general DHE framework and proposes the concept of Human

Digital Healthcare Engineering (HDHE).
Section 3 reviews recent advancements in key technologies for HDHE systems.
Section 4 outlines the challenges in implementing DHE systems for seafarers’ health-

care and explores their implications for health and well-being.
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Section 5 concludes with key insights from this review.
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2. Human Digital Healthcare Engineering (HDHE) Framework
This section introduces the concepts and research progress of Digital Twin (DT) and

Human Digital Twin (HDT) and proposes the new topic of Human Digital Healthcare
Engineering (HDHE) based on the Digital Healthcare Engineering (DHE) framework.

2.1. Research Progress in DTs and HDTs

Digital Twin (DT) was first introduced by Grieves in 2003 [16] and has since gained
significant attention in both industry and academia as a method for digitally understanding
and transforming the world [17]. The concept was initially applied by NASA during the
Apollo program. Figure 4 illustrates the evolution of DT.
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A DT system consists of five subsystems: physical objects (or physical entities), virtual
models (or virtual entities), connections, data, and service systems. The relationships
among these subsystems are shown in Figure 5. DTs provide a unique capability for digi-
tally representing physical entities [18,19]. Using sensory data acquisition and advanced
big data analysis, DTs are highly effective for monitoring, diagnostics, prognostics, and op-
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timization [20,21]. Once connected with digital representations of facilities, environments,
and individuals, DTs support decision-making by assessing current conditions, diagnosing
past issues, and predicting future trends [22].
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Human Digital Twin (HDT) is referred to when the physical entity in a DT is shifted
from inanimate assets to humans. Figure 6 depicts the evolution of HDT. First proposed
by Graessler and Poehler [23], HDT initially referred to simulating human attributes
and behaviors in cyber–physical production systems. Later, Chakshu et al. categorized
HDTs into three types (passive, semi-active, and active) and introduced the concept to
healthcare [24]. However, the conceptual model of HDT was not clarified until 2021,
when Shengli and Naudet et al. defined it as “a real-time mirroring computerized system
of a human agent [25–27], able to simulate or emulate their characteristics and behavior
in context”. In 2022, Taylor et al. integrated HDT into Maritime 4.0, specifically focusing
on seafarers [28].
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2.2. Research Progress in DHE

Digital Healthcare Engineering (DHE), introduced by Paik [10,11], aims to deliver
continuous healthcare for aging engineered structures such as ships and offshore platforms
under hostile ocean environments in remote locations throughout their lifecycle. The DHE
system comprises five key modules:

1. Real-time on-site monitoring and digitalization of health parameters.
2. Data transmission to land-based analytics centers via low Earth orbit (LEO) satellites.
3. Advanced data analytics and simulations using digital twins.
4. AI-driven diagnostics and automated treatment recommendations.
5. Predictive health analysis for proactive care planning.

Sindi et al. explored advancements and challenges in industrializing DHE systems
to enhance the safety and sustainability of aging ships and offshore structures [12].
Fadzil et al. made a literature review, aiming at the development of DHE systems for
aging subsea pipelines [13]. They proposed prototype systems with practical solutions
to address these challenges. Figure 7 illustrates a prototype DHE system for aging ships
and their seafarers [11].
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2.3. Concept of HDHE

Human Digital Healthcare Engineering (HDHE) is an integrated system dedicated
to ensuring the safety, health, and well-being of seafarers and offshore workers who
are working under hostile ocean environments in remote locations. It leverages HDT
as a revolutionary tool for healthcare personnel to remotely monitor seafarers’ health
and conditions. By creating a digital replica of each seafarer’s physiology, behavior, and
environment, HDHE provides advanced medical services such as predictive diagnostics,
real-time monitoring, and personalized medical support.

HDHE offers an efficient, cost-effective way to monitor seafarers’ health, enabling
proactive measures and informed decision-making. It can track vital signs (e.g., heart rate,
blood pressure, respiratory rate), operational conditions (e.g., maneuvering, ship speed,
vibration, noise), and environmental factors (e.g., sea state, temperature). Additionally,
HDHE monitors mental and emotional states, such as stress, fatigue, and anxiety. These
data can identify health risks and guide proactive interventions. Figure 8 illustrates a
prototype HDHE system for seafarers’ healthcare.
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While HDHE shares conceptual similarities with frameworks in smart healthcare and
remote worker safety, its novelty lies in tailoring these approaches to maritime conditions.
Unlike land-based systems, HDHE addresses the unique challenges of seafarers, including
long-term isolation, harsh environments, limited medical resources, and cross-jurisdictional
constraints. These distinctions necessitate adaptive architectures and maritime-specific
data pathways that substantially differ from conventional wearable AI or industrial health-
monitoring models.

3. Key Technologies for HDHE Systems
The development of the Human Digital Healthcare Engineering (HDHE) system

is critical to effectively manage the health of crew members and enhance their work
efficiency and training. Similar to Digital Healthcare Engineering (DHE), the HDHE system
involves five main steps: (1) real-time health parameter monitoring, (2) data transmission,
(3) data analytics and simulations using Human Digital Twins (HDTs), (4) AI-driven health
condition diagnosis, and (5) predictive health analysis. The data flow of the HDHE system
is illustrated in Figure 9, which outlines the interaction among three core components:
physical objects, virtual models, and service systems. Sensors worn by seafarers collect and
transmit health-related data. Virtual models receive and process this information, simulate
physiological states, and generate diagnostic decisions. These decisions are then executed
by service systems, which provide timely feedback. This closed-loop structure enables
continuous, intelligent health management tailored to the maritime environment.

3.1. Real-Time Health Parameter Monitoring

The initial step in establishing the HDHE system is real-time monitoring of seafarers’
health status. Real-time monitoring involves on-site and continuous observation of physical
parameters in their natural environment, enabling effective data collection and analysis
of seafarers’ health conditions. Sensing technology is a promising method for monitoring
these parameters and is integral to the HDHE system, ensuring timely and reliable data
acquisition from the physical space, as illustrated in Figure 9.

In recent years, wearable sensors have become a significant focus for monitoring
various health parameters, including heart rate [29,30], body temperature [31], blood
pressure [32,33], respiration rate [34], and sweat rate [35]. Equipped with the ability to
capture accurate sensory data in real time, these sensors provide valuable insights into the
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physical health of crew members. Practical applications of wearable sensing technologies
are shown in Figure 10.
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The accuracy and reliability of sensor measurements are foundational to the effective-
ness of wearable devices, particularly in maritime environments where extreme conditions
such as humidity, temperature fluctuations, and mechanical vibrations can compromise
sensor performance. For instance, Kun et al. developed a laser-induced graphene tempera-
ture sensor with enhanced stability under mechanical stress, a critical feature for seafarers
exposed to constant vessel movements [36]. Similarly, Yu et al. proposed stretch-resistant
sensors that maintain temperature sensitivity despite physical strain, addressing challenges
posed by seafarers’ dynamic tasks like heavy lifting or climbing ladders [37].

Wearing comfort is equally vital, as seafarers often wear devices for extended pe-
riods during demanding shifts. Flexible materials such as silicone-based polymers or
textile-integrated sensors [38–41] minimize skin irritation and accommodate motion, en-
suring compliance in confined onboard spaces. However, traditional electronic sensors
face limitations in maritime settings, including corrosion from saltwater exposure and
electromagnetic interference from ship machinery. Recent advancements in optical fiber
sensors (OFSs) [42–45] offer a robust alternative: their non-metallic composition resists cor-
rosion, while immunity to electromagnetic interference ensures reliable data transmission
in environments crowded with electronic equipment. Additionally, OFSs’ biocompatibility
reduces allergic risks, further enhancing their suitability for long-term health monitoring
at sea.

Future developments in wearable sensing technologies are expected to focus on the
following points:

• Miniaturization: reducing device size to micron or nanometer scales without compro-
mising performance.

• Low energy consumption: minimizing energy use, ideally powered by solar energy or
body heat.

• Interconnectivity: enabling integration with other smart technologies.
• Eco-friendliness: using sustainable materials to ensure environmental conservation.

3.2. Data Transmission

Data transmission and communication technologies form the backbone of the HDHE
system, facilitating seamless data flow. Over the years, transmission technologies have
significantly evolved, enabling faster and more reliable communication over long distances.
This section explores data transmission methods applicable to HDHE systems for maritime
workers, focusing on onboard and ship-to-shore communication. Figure 11 illustrates a
schematic of the network field.
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3.2.1. Onboard Data Transmission

For onboard data transmission, both wired and wireless technologies are viable op-
tions. Wired transmission methods, such as twisted-pair cables, coaxial cables, and fiber
optics, offer high transmission rates. For instance, the single-channel rate of fiber optics
increased from 2.5 Gb/s in 1982 to 400 Gb/s in 2020 [46]. However, wired systems are
challenging to install and maintain in ships due to their complex internal structures and
exposure to harsh maritime environments.

Wireless transmission technologies provide a practical alternative, with methods
such as Zigbee, Bluetooth, Wi-Fi, Ultra-Wideband (UWB), and Near-Field Communication
(NFC) offering diverse applications. Each method has distinct benefits and drawbacks,
with evaluation results based on criteria such as distance, speed, power consumption, delay,
and reliability shown in Figure 12.
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Figure 12. Evaluation results of five wireless transmission technologies.

• Zigbee and Bluetooth are ideal for short-distance, low-power communication, suitable
for sensor integration.

• Wi-Fi excels in medium-distance, high-speed data transmission, making it ideal for
transferring large datasets.

• UWB is particularly suited for long-distance communication requiring high-speed
data transfer, making it a promising choice for HDHE systems.

3.2.2. Ship-to-Shore Data Transmission

Ship-to-shore communication is crucial for relaying HDHE system data to onshore
centers. Satellite communication systems, such as the BeiDou Satellite Navigation Sen-
sor System (BDS) [47] and frameworks like the Ship Emission Monitoring Sensor Web
(SEMSW) [48], are commonly used for this purpose. Figure 13a,b shows two typical
satellite-based communication architectures. The left panel depicts a standard system
involving vessels, satellites, and ground stations. The right panel illustrates an applied
framework where ships transmit data via satellites to shore-based centers, enabling re-
mote health monitoring and operational coordination. The gradual reduction in satellite
communication costs has led to its widespread adoption in maritime industries.

3.3. Data Analytics and Simulations Using Human Digital Twins (HDTs)

Data analytics and simulations enhance the application of the data. It can improve
modeling and simulation for the proposed HDT-driven HDHE to outline the virtual world.
Advanced applications of data can further analyze, evaluate, and estimate human status.

The core of HDT is to establish virtual human models, which can accurately reflect the
physiological, structural, and motion characteristics of the human body. Currently, based on
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simulation techniques such as the finite element method (FEM) and computer-aided design
(CAD), researchers can simulate the response of the human body in different environments,
such as biomechanical response in motion, posture optimization, and load distribution. In
an assembly example, a predefined virtual model of the robot is designed with CAD, and
the digital human body model is represented by a deformable mesh [49].
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In order to accurately simulate the human motion process, simulation technology has
gradually integrated the latest research results in the fields of biomechanics, computer vi-
sion, and artificial intelligence [50]. For example, dynamic modeling and control algorithms
based on the musculoskeletal system can predict and simulate the motion behavior of the
human body in complex environments, as shown in Figure 14. Through the combination
of motion capture technology (such as the Vicon system) and simulation models, more
realistic and accurate human motion simulation can be carried out [51].

Systems 2025, 13, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 14. A human simulation [51]. 

At the same time, personalized health simulation has attracted more and more atten-
tion, especially in individualized treatment and precision medicine. By simulating the im-
pact of different treatment programs on individual physiological states, it helps doctors 
make more scientific and personalized treatment plans [52–55]. For example, virtual pa-
tient models based on HDT can be used to simulate drug treatment effects, surgical pro-
cedures, etc., thereby reducing the risk and cost of clinical trials. 

In recent years, virtual reality (VR) and augmented reality (AR) technologies have 
been widely used in the simulation research of HDT [56,57]. They enable users to interact 
with virtual human models in immersive environments, helping to better understand the 
physiological and health conditions of the human body. In the future, data analysis and 
simulations will continue to develop towards real-time and interactivity. 

3.4. AI-Driven Health Condition Diagnosis and Predictive Health Analysis 

The operation of HDHE systems generates vast amounts of data, necessitating the 
use of advanced analytics to derive meaningful insights. Artificial intelligence (AI) plays 
a pivotal role in processing and analyzing these data. Integrating AI with digital twins 
(DTs) enhances the analytical capabilities of HDHE systems, enabling intelligent decision-
making and predictive healthcare services [19,58]. Machine learning (ML) and deep learn-
ing (DL) are the most commonly used AI algorithms to analyze and evaluate human 
health conditions now. 

3.4.1. Machine Learning (ML) 

Machine learning (ML) is widely used for analyzing patterns in health-related data, 
including motion analysis [59], fatigue detection [60], and stress assessment [61]. Algo-
rithms such as linear regression (LR), k-nearest neighborhood (KNN), support vector ma-
chine (SVM), decision tree (DTr), random forest (RF), gradient boosting (GB), and naive 
Bayes (NB) are commonly applied. For example: 

• Ferreira et al. established a KNN prototyping scheme for embedded human activity 
recognition with online learning [62]. 

• Subramanian et al. developed a real-time emotion-recognition system using GB for 
healthcare applications [63]. 

• Moztarzadeh et al. employed ML methods including LR, DTr, RF, and GB to evaluate 
treatment progress and disease severity using DTs [64]. 

3.4.2. Deep Learning (DL) 

Deep learning (DL), a subset of ML, excels at analyzing high-dimensional data and 
extracting complex patterns. Models such as convolutional neural networks (CNNs), re-
current neural networks (RNNs), generative adversarial networks (GANs), deep neural 
networks (DNNs), and long short-term memory (LSTM) networks are particularly effec-
tive. 

Figure 14. A human simulation [51].

At the same time, personalized health simulation has attracted more and more at-
tention, especially in individualized treatment and precision medicine. By simulating the
impact of different treatment programs on individual physiological states, it helps doctors
make more scientific and personalized treatment plans [52–55]. For example, virtual patient
models based on HDT can be used to simulate drug treatment effects, surgical procedures,
etc., thereby reducing the risk and cost of clinical trials.

In recent years, virtual reality (VR) and augmented reality (AR) technologies have
been widely used in the simulation research of HDT [56,57]. They enable users to interact
with virtual human models in immersive environments, helping to better understand the
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physiological and health conditions of the human body. In the future, data analysis and
simulations will continue to develop towards real-time and interactivity.

3.4. AI-Driven Health Condition Diagnosis and Predictive Health Analysis

The operation of HDHE systems generates vast amounts of data, necessitating the
use of advanced analytics to derive meaningful insights. Artificial intelligence (AI) plays a
pivotal role in processing and analyzing these data. Integrating AI with digital twins (DTs)
enhances the analytical capabilities of HDHE systems, enabling intelligent decision-making
and predictive healthcare services [19,58]. Machine learning (ML) and deep learning
(DL) are the most commonly used AI algorithms to analyze and evaluate human health
conditions now.

3.4.1. Machine Learning (ML)

Machine learning (ML) is widely used for analyzing patterns in health-related data, in-
cluding motion analysis [59], fatigue detection [60], and stress assessment [61]. Algorithms
such as linear regression (LR), k-nearest neighborhood (KNN), support vector machine
(SVM), decision tree (DTr), random forest (RF), gradient boosting (GB), and naive Bayes
(NB) are commonly applied. For example:

• Ferreira et al. established a KNN prototyping scheme for embedded human activity
recognition with online learning [62].

• Subramanian et al. developed a real-time emotion-recognition system using GB for
healthcare applications [63].

• Moztarzadeh et al. employed ML methods including LR, DTr, RF, and GB to evaluate
treatment progress and disease severity using DTs [64].

3.4.2. Deep Learning (DL)

Deep learning (DL), a subset of ML, excels at analyzing high-dimensional data and
extracting complex patterns. Models such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), generative adversarial networks (GANs), deep neural
networks (DNNs), and long short-term memory (LSTM) networks are particularly effective.

• Ahmed et al. integrated DL with DTs to detect COVID-19 in X-ray images, achieving
94% accuracy [65].

• Wang et al. proposed a CNN-based framework for cognitive fatigue classification with
88.85% accuracy [66].

• Su et al. proposed an automated human activity recognition network HDL with
smartphone motion sensor units, which combines DBLSTM (deep bidirectional long
short-term memory) and a CNN. Its accuracy and F1 score are as high as 97.95%
and 97.27% [67].

The integration of ML and DL methods often yields superior results. For instance,
Irfan et al. enhanced motion recognition accuracy by combining CNN, LSTM, and BiLSTM
models [68]. By leveraging these technologies, the HDHE system can deliver robust
healthcare solutions, significantly improving seafarers’ safety and well-being. Table 1 lists
some model cases and provides a comparison of their accuracy.
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Table 1. Empirical research on AI-driven human healthcare.

Type Model Accuracy Detection Ref.

ML

DTr 82.6% Fatigue [69]
KNN 78.4% Motions [62]
SVM 80.3% Stress [70]
NB 85.5% Stress [71]
RF 73% Stress [72]

DL
CNN \ Motions [73]

BiLSTM 99.9% Fatigue [74]
CNN 88.85% Fatigue [66]

Hybrid
CNN + LSTM + BiLSTM 98.38% Motions [68]

CNN + RNN 85.71% Stress [75]
RF + SVM 98% Stress [76]

4. Discussion
4.1. Challenges and Practical Solutions

While the HDHE system holds promise for revolutionizing seafarer healthcare, it also
presents several challenges. Some of the key hurdles include the following:

4.1.1. Resource Constraints

Due to limited access to healthcare facilities while at sea, the development of accurate
HDHE systems necessitates sophisticated technologies like sensors, wearables, and comput-
ers that may not be readily available [77]. Moreover, the adoption of such technology can be
hindered by its high cost, posing a barrier to entry for smaller shipping companies [78–80].

It is crucial to promote the use and integration of medical equipment on ships to
address these challenges. Overcoming technical obstacles and demonstrating the tangible
benefits of HDHE systems to stakeholders are essential steps towards widespread adoption
in the maritime industry. Providing education and training programs for seafarers and
healthcare professionals is also needed to enhance acceptance and utilization of this system.

In addition, natural disasters and severe weather may disrupt communication and
power supply, affecting the stability of HDHE systems. To ensure reliability, future
systems should include backup communication methods, satellite links, and automated
emergency protocols.

4.1.2. Privacy Concerns

Privacy concerns surrounding the collection of sensitive medical data are another
challenge. Compliance with the European Union’s General Data Protection Regulation
(GDPR) [81] and the International Maritime Organization’s (IMO) Guidelines on Shipown-
ers’ Responsibilities for Seafarers’ Health [82] ensures alignment with stringent data privacy
and crew welfare standards. Emerging ethical AI frameworks, such as UNESCO’s Rec-
ommendation on the Ethics of Artificial Intelligence [83], further underscore the need for
transparency and accountability in AI-driven health diagnostics to mitigate biases and
uphold seafarers’ rights. Seafarers may hesitate to disclose personal medical information
due to apprehensions regarding confidentiality, potential data breaches, or misuse of their
data [84]. Moreover, navigating the sharing of personal data across diverse jurisdictions
can be complex due to varying regulations, leading to legal ambiguities. This increases the
difficulty of protecting seafarers’ privacy [85,86].

Practical measures to address these concerns include strict adherence to data protec-
tion regulations, employing secure data transmission methods, and implementing robust
data storage protocols [87]. Notably, blockchain technology emerges as a promising solu-
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tion to mitigate these challenges. By establishing a secure and transparent framework for
storing and transferring data, it can minimize the risk of data breaches [88,89]. Further-
more, blockchain facilitates more streamlined sharing of health records across different
jurisdictions, thereby resolving legal uncertainties [90].

4.1.3. Additional Stress

In addition, continuous health monitoring may lead individuals to overfocus on their
well-being, with potential psychological effects, causing excessive vigilance and worry
about small fluctuations or normal changes in health indicators, particularly when the
information is intricate or conflicting [81,91,92].

To address these issues, we need to design user-friendly interfaces and establish
clear communication channels to facilitate data understanding and interpretation. In the
meantime, appropriate adjustment for the frequency of notification and alarm should be
carried out to reduce the psychological burden.

4.2. Implications and Economic Benefits

In future practice, the integrated HDHE platform has great potential to improve both
crew health and operational efficiency. At present, with the rapid development of various
technologies, researchers have begun to develop similar systems. For example, Battineni
and Amenta introduced a telemedicine platform designed to enhance onboard medical
decision-making by non-medical personnel [85]. Seafarers are able to quickly create medical
requests to transmit symptom information to doctors on shore to obtain remote health
management guidance.

Stakeholders involved in HDHE systems include seafarers, ship owners, healthcare
providers, technology providers, and others. Employee performance, accident frequency,
maintenance costs, medical expenses, etc. are indicators for these stakeholders to measure
whether benefits can be obtained [29,93,94]. The substantial implications and economic
advantages that HDHE systems carry for them are mainly reflected in the following aspects:

• Health monitoring for seafarers: HDHE systems enable real-time remote monitoring
of seafarers’ health. This aids in early detection of potential health issues, averting
their escalation into critical conditions necessitating medical evacuation [95,96].

• Cost reduction for ship owners: HDHE can provide early prevention of health prob-
lems, reduce the frequency of accidents caused by human factors, and reduce the
downtime of ships. At the same time, it can reduce the need for medical personnel on
board and reduce medical costs.

• Improving diagnostic accuracy for healthcare providers: HDHE systems enable the ac-
cumulation and analysis of large amounts of seafarers’ health data and medical history
so that physicians can recommend the appropriate treatment for each individual [97].
This reduces the possibility of misdiagnosis or inappropriate treatment and improves
diagnostic accuracy and efficacy.

• Increase revenue for technology providers and training institutions: HDHE systems
create new revenue generation opportunities for technology vendors and training
institutions. As more companies invest in this system, they will benefit from the need
for monitoring equipment, data analysis tools, and specialized project training.

5. Conclusions
Seafarers face unique health challenges due to the nature of their work, which involves

extended periods at sea, isolation, and exposure to harsh environmental conditions. HDHE
systems being explored now, as a derivative of DHE, which focus on human health, have
proven valuable in monitoring and improving the health and well-being of seafarers and
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offshore workers. Since its introduction in 2017, the concept of HDT has gained widespread
application across industries, particularly in healthcare, and has become a promising tool
within the HDHE framework.

This paper provides a comprehensive exploration of the enabling technologies required
for implementing HDHE systems in seafarer healthcare. It comprehensively examines each
stage of the operational workflow of the HDHE system and reviews in detail three key
enabling technologies: data collection systems, data transfer methods, and data analysis
techniques. Furthermore, this paper discusses the problems that the HDHE system may
face in the development and practical implementation, such as resource shortage and
privacy concerns, and puts forward the corresponding solutions. The impact and economic
benefits of the system are also explored.

Through our literature review, several key insights have emerged:

• Unique Health Challenges: Seafarers and offshore workers face distinctive health risks
due to long periods away from medical facilities and exposure to extreme weather,
physical labor, and isolation.

• Role of Digital Twins: HDT is central to HDHE systems, enabling continuous real-time
monitoring of seafarers’ health, predictive diagnostics, and personalized medical care.
They integrate physical and digital data to allow ongoing health assessments and
interventions.

• Enabling Technologies: Successful implementation of HDHE systems hinges on ad-
vanced technologies, including sensing technology, wearable devices, satellite commu-
nication, wireless networks, and AI-driven data analysis.

• Operational Workflow: HDHE systems involve several stages, including data collec-
tion via sensors and wearables, data transmission to onshore facilities, processing
through AI algorithms, and providing real-time feedback for medical interventions.

• Challenges and Barriers: Implementation of HDHE systems faces technical complex-
ities, organizational challenges, ethical issues related to privacy and security, and
practical limitations like cost and resource constraints.

• Potential Impact: HDHE systems have the potential to transform healthcare for seafar-
ers by enabling remote monitoring, accurate diagnostics, timely medical interventions,
and personalized healthcare services, thereby improving their overall well-being,
productivity, and safety onboard.

• Rapid Development: Though HDHE technology is still in its early stages and currently
expensive, rapid advancements are underway. Ongoing research and development
are expected to make these systems more accessible, affordable, and efficient in the
near future.

In summary, HDHE systems offer tremendous potential for enhancing seafarers’
healthcare by harnessing advanced technologies and addressing existing challenges. As
these systems evolve, they are poised to revolutionize the maritime industry, ensuring the
safety, health, and well-being of seafarers worldwide.

Future research could explore adaptive architectures like the Adaptive Organizational
Systems Framework (AOSF) [98] to enhance HDHE’s responsiveness to dynamic maritime
conditions. Integrating reconfigurable digital twins with AI-driven decision-making, as
demonstrated in recent healthcare reviews [99,100], may further bridge gaps between
primary, secondary, and tertiary care data interfaces. Systematic analyses of AI’s role
in organizational agility [101] also offer insights into optimizing HDHE workflows for
real-time adaptability.
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References
1. Bye, R.J.; Holmen, I.M.; Størkersen, K.V. Safety in Marine and Maritime Operations: Uniting Systems and Practice. Saf. Sci. 2021,

139, 105249. [CrossRef]
2. Nurduhan, M.; Kuleyin, B. Cluster-Based Visualization of Human Element Interactions in Marine Accidents. Ocean Eng. 2024,

298, 117153. [CrossRef]

webofknowledge.com
sciencedirect.com
scholar.google.com
scholar.google.com
scopus.com
https://doi.org/10.1016/j.ssci.2021.105249
https://doi.org/10.1016/j.oceaneng.2024.117153


Systems 2025, 13, 335 17 of 20

3. Chen, J.; Bian, W.; Wan, Z.; Wang, S.; Zheng, H.; Cheng, C. Factor Assessment of Marine Casualties Caused by Total Loss. Int. J.
Disaster Risk Reduct. 2020, 47, 101560. [CrossRef]

4. Sánchez-Beaskoetxea, J.; Basterretxea-Iribar, I.; Sotés, I.; Machado, M. de las M.M. Human Error in Marine Accidents: Is the Crew
Normally to Blame? Marit. Transp. Res. 2021, 2, 100016. [CrossRef]

5. Yang, X.; Zhang, W.J.; Lyu, H.G.; Zhou, X.Y.; Wang, Q.W.; Ramezani, R. Hybrid Early-Warning Framework for Unsafe Crew Acts
Detection and Prediction. Ocean. Coast. Manag. 2023, 231, 106383. [CrossRef]

6. Sullivan, B.P.; Desai, S.; Sole, J.; Rossi, M.; Ramundo, L.; Terzi, S. Maritime 4.0—Opportunities in Digitalization and Advanced
Manufacturing for Vessel Development. Procedia Manuf. 2020, 42, 246–253. [CrossRef]

7. De la Peña Zarzuelo, I.; Freire Soeane, M.J.; López Bermúdez, B. Industry 4.0 in the Port and Maritime Industry: A Literature
Review. J. Ind. Inf. Integr. 2020, 20, 100173. [CrossRef]

8. Öztürk, Ü.; Boz, H.A.; Balcisoy, S. Visual Analytic Based Ship Collision Probability Modeling for Ship Navigation Safety. Expert.
Syst. Appl. 2021, 175, 114755. [CrossRef]

9. Paik, J.K. Ship-Shaped Offshore Installations: Design, Construction, Operation, Healthcare and Decommissioning; Cambridge University
Press: Cambridge, UK, 2022; ISBN 9781316519608.

10. Paik, J.K. Digital Healthcare Engineering for Marine Applications. In Proceedings of the International Conference on Marine
Equipment & Technology and Sustainable Development, Beijing, China, 1 April 2023.

11. Paik, J.K. Enhancing Safety and Sustainability through Digital Healthcare Engineering. In Marine Technology; The Society ofNaval
Architects and Marine Engineers: Alexandria, VA, USA, 2024; pp. 34–40.

12. Sindi, A.; Kim, H.J.; Yang, Y.J.; Thomas, G.; Paik, J.K. Advancing Digital Healthcare Engineering for Aging Ships and Offshore
Structures: An in-Depth Review and Feasibility Analysis. Data-Centric Eng. 2024, 5, e18. [CrossRef]

13. Mohammad Fadzil, N.; Muda, M.F.; Abdul Shahid, M.D.; Mustafa, W.A.; Hairil Mohd, M.; Paik, J.K.; Mohd Hashim, M.H. Digital
Healthcare Engineering for Aging Offshore Pipelines: A State-of-the-Art Review. Ships Offshore Struct. 2024, 1–14. [CrossRef]

14. Mauro, F.; Kana, A.A. Digital Twin for Ship Life-Cycle: A Critical Systematic Review. Ocean. Eng. 2023, 269, 113479. [CrossRef]
15. Han, S.; Li, F.; Lee, C.H.; Wang, T.; Diaconeasa, M.A. Mirror the Mind of Crew: Maritime Risk Analysis with Explicit Cognitive

Processes in a Human Digital Twin. Adv. Eng. Inform. 2024, 62, 102746. [CrossRef]
16. Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Pap. 2015, 1, 1–7.
17. Hu, W.; Zhang, T.; Deng, X.; Liu, Z.; Tan, J. Digital Twin: A State-of-the-Art Review of Its Enabling Technologies, Applications

and Challenges. J. Intell. Manuf. Spec. Equip. 2021, 2, 1–34. [CrossRef]
18. Söderberg, R.; Wärmefjord, K.; Carlson, J.S.; Lindkvist, L. Toward a Digital Twin for Real-Time Geometry Assurance in

Individualized Production. CIRP Ann. Manuf. Technol. 2017, 66, 137–140. [CrossRef]
19. Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling Technologies and Tools for Digital Twin.

J. Manuf. Syst. 2021, 58, 3–21. [CrossRef]
20. Cai, Y.; Starly, B.; Cohen, P.; Lee, Y.S. Sensor Data and Information Fusion to Construct Digital-Twins Virtual Machine Tools for

Cyber-Physical Manufacturing. Procedia Manuf. 2017, 10, 1031–1042. [CrossRef]
21. Zaccaria, V.; Stenfelt, M.; Aslanidou, I.; Kyprianidis, K.G. Fleet Monitoring and Diagnostics Framework Based on Digital Twin of

Aero-Engines. In Proceedings of the ASME Turbo Expo, Oslo, Norway, 11–15 June 2018; Volume 6, pp. 1–10.
22. Goossens, P. Industry 4.0 and the Power of the Digital Twin. Maplesoft 2017, 5, 1–17.
23. Graessler, I.; Poehler, A. Integration of a Digital Twin as Human Representation in a Scheduling Procedure of a Cyber-Physical

Production System. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management,
Singapore, 10–13 December 2017; pp. 289–293.

24. Chakshu, N.K.; Carson, J.; Sazonov, I.; Nithiarasu, P. A Semi-Active Human Digital Twin Model for Detecting Severity of Carotid
Stenoses from Head Vibration—A Coupled Computational Mechanics and Computer Vision Method. Int. J. Numer. Method.
Biomed. Eng. 2019, 35, 1–17. [CrossRef]

25. Shengli, W. Is Human Digital Twin Possible? Comput. Methods Programs Biomed. Update 2021, 1, 100014. [CrossRef]
26. Naudet, Y.; Baudet, A.; Risse, M. Human Digital Twin in Industry 4.0: Concept and Preliminary Model. In Proceedings of the

IN4PL—Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics, Online, 25–27
October 2021; pp. 137–144.

27. Miller, M.E.; Spatz, E. A Unified View of a Human Digital Twin. Hum.-Intell. Syst. Integr. 2022, 4, 23–33. [CrossRef]
28. Taylor, N.C.; Bekker, A.; Kruger, K. Mariner 4.0: Intergrating Seafarers into a Maritime 4.0 Emvironment. Int. J. Marit. Eng. 2023,

164, 373–384. [CrossRef]
29. Stephenson, A.C.; Willis, R.; Alford, C. Using In-Seat Electrical Potential Sensors for Non-Contact Monitoring of Heart Rate,

Heart Rate Variability, and Heart Rate Recovery. Int. J. Psychophysiol. 2021, 169, 1–10. [CrossRef]
30. Tang, X.; Yang, A.; Li, L. Optimization of Nanofiber Wearable Heart Rate Sensor Module for Human Motion Detection. Comput.

Math. Methods Med. 2022, 2022, 1747822. [CrossRef]

https://doi.org/10.1016/j.ijdrr.2020.101560
https://doi.org/10.1016/j.martra.2021.100016
https://doi.org/10.1016/j.ocecoaman.2022.106383
https://doi.org/10.1016/j.promfg.2020.02.078
https://doi.org/10.1016/j.jii.2020.100173
https://doi.org/10.1016/j.eswa.2021.114755
https://doi.org/10.1017/dce.2024.14
https://doi.org/10.1080/17445302.2024.2424320
https://doi.org/10.1016/j.oceaneng.2022.113479
https://doi.org/10.1016/j.aei.2024.102746
https://doi.org/10.1108/JIMSE-12-2020-010
https://doi.org/10.1016/j.cirp.2017.04.038
https://doi.org/10.1016/j.jmsy.2019.10.001
https://doi.org/10.1016/j.promfg.2017.07.094
https://doi.org/10.1002/cnm.3180
https://doi.org/10.1016/j.cmpbup.2021.100014
https://doi.org/10.1007/s42454-022-00041-x
https://doi.org/10.5750/ijme.v164iA4.773
https://doi.org/10.1016/j.ijpsycho.2021.08.005
https://doi.org/10.1155/2022/1747822


Systems 2025, 13, 335 18 of 20

31. Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O.M.; et al. Printable, Highly Sensitive Flexible
Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Res. Lett. 2020, 15, 1–34. [CrossRef]

32. Luo, N.; Dai, W.; Li, C.; Zhou, Z.; Lu, L.; Poon, C.C.Y.; Chen, S.C.; Zhang, Y.; Zhao, N. Flexible Piezoresistive Sensor Patch
Enabling Ultralow Power Cuffless Blood Pressure Measurement. Adv. Funct. Mater. 2016, 26, 1178–1187. [CrossRef]

33. Wang, S.; Xiao, J.; Liu, H.; Zhang, L. Silk Nanofibrous Iontronic Sensors for Accurate Blood Pressure Monitoring. Chem. Eng. J.
2023, 453, 139815. [CrossRef]

34. Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y.; Pham, H.N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D.M.; Khine, M.
Respiration Rate and Volume Measurements Using Wearable Strain Sensors. NPJ Digit. Med. 2019, 2, 1–9. [CrossRef] [PubMed]

35. Sim, J.K.; Yoon, S.; Cho, Y.H. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring. Sci Rep 2018, 8, 1181.
[CrossRef]

36. Kun, H.; Bin, L.; Orban, M.; Donghai, Q.; Hongbo, Y. Accurate Flexible Temperature Sensor Based on Laser-Induced Graphene
Material. Shock. Vib. 2021, 2021, 9938010. [CrossRef]

37. Yu, Y.; Peng, S.; Islam, M.; Wu, S.; Wang, C.H. Wearable Supercapacitive Temperature Sensors with High Accuracy Based on
Ionically Conductive Organogel and Macro-Kirigami Electrode. Adv. Mater. Technol. 2023, 8, 2201020. [CrossRef]

38. Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B.K.; Kim, J.H.; Ahn, J.H. Graphene-Based Stretchable/Wearable Self-Powered Touch
Sensor. Nano Energy 2019, 62, 259–267. [CrossRef]

39. Zhang, X.; Hu, Y.; Gu, H.; Zhu, P.; Jiang, W.; Zhang, G.; Sun, R.; Wong, C.P. A Highly Sensitive and Cost-Effective Flexible
Pressure Sensor with Micropillar Arrays Fabricated by Novel Metal-Assisted Chemical Etching for Wearable Electronics. Adv.
Mater. Technol. 2019, 4, 1900367. [CrossRef]

40. Yao, D.J.; Tang, Z.; Zhang, L.; Liu, Z.G.; Sun, Q.J.; Hu, S.C.; Liu, Q.X.; Tang, X.G.; Ouyang, J. A Highly Sensitive, Foldable and
Wearable Pressure Sensor Based on MXene-Coated Airlaid Paper for Electronic Skin. J. Mater. Chem. C Mater. 2021, 9, 12642–12649.
[CrossRef]

41. Li, X.; Chen, S.; Peng, Y.; Zheng, Z.; Li, J.; Zhong, F. Materials, Preparation Strategies, and Wearable Sensor Applications of
Conductive Fibers: A Review. Sensors 2022, 22, 3028. [CrossRef] [PubMed]

42. Zhao, Y.; Lin, Z.; Dong, S.; Chen, M. Review of Wearable Optical Fiber Sensors: Drawing a Blueprint for Human Health
Monitoring. Opt. Laser Technol. 2023, 161, 109227. [CrossRef]

43. Liu, Y.; Wang, F.; Hu, Z.; Li, M.; Ouyang, S.; Wu, Y.; Wang, S.; Li, Z.; Qian, J.; Wang, L.; et al. Applications of Cellulose-Based
Flexible Self-Healing Sensors for Human Health Monitoring. Nano Energy 2024, 127, 109790. [CrossRef]

44. Malode, S.J.; Alshehri, M.A.; Shetti, N.P. Revolutionizing Human Healthcare with Wearable Sensors for Monitoring Human
Strain. Colloids Surf. B Biointerfaces 2025, 246, 114384. [CrossRef]

45. Xie, J.; Pan, S.; Zhang, Y.; Wang, H.; He, J.; Guo, R. Knitted Fabric-Based Flexible Piezoresistive Pressure Sensors for Human
Monitoring and Underwater Emergency Rescue. Sens. Actuators A Phys. 2025, 382, 116183. [CrossRef]

46. Liu, X. Evolution of Fiber-Optic Transmission and Networking toward the 5G Era. iScience 2019, 22, 489–506. [CrossRef]
47. Zhuang, X.; Xu, Y.; Gao, Y.; Sun, G.; Lin, T.; Chan, C.C.K. Remote Data Transmission Technology Based on BeiDou Satellite

Navigation Sensor System Onboard Ship. Sens. Mater. 2021, 33, 715–726. [CrossRef]
48. Zhou, F.; Fan, Y.; Zou, J.; An, B. Ship Emission Monitoring Sensor Web for Research and Application. Ocean Eng. 2022, 249, 110980.

[CrossRef]
49. Bilberg, A.; Malik, A.A. Digital Twin Driven Human–Robot Collaborative Assembly. CIRP Ann. 2019, 68, 499–502. [CrossRef]
50. Roupa, I.; da Silva, M.R.; Marques, F.; Gonçalves, S.B.; Flores, P.; da Silva, M.T. On the Modeling of Biomechanical Systems for

Human Movement Analysis: A Narrative Review. Arch. Comput. Methods Eng. 2022, 29, 4915–4958. [CrossRef]
51. Wakabayashi, K.; Oda, T.; Okage, K.; Barolli, L. A Simulation System for Decision of Camera Position and Angle: Human Motion

Analysis in Case of Dangerous Posture Scenarios. Internet Things 2025, 30, 101471. [CrossRef]
52. Moingeon, P.; Chenel, M.; Rousseau, C.; Voisin, E.; Guedj, M. Virtual Patients, Digital Twins and Causal Disease Models: Paving

the Ground for in Silico Clinical Trials. Drug Discov. Today 2023, 28, 103605. [CrossRef]
53. Wang, H.; Arulraj, T.; Ippolito, A.; Popel, A.S. From Virtual Patients to Digital Twins in Immuno-Oncology: Lessons Learned

from Mechanistic Quantitative Systems Pharmacology Modeling. NPJ Digit Med 2024, 7, 189. [CrossRef]
54. Laubenbacher, R.; Mehrad, B.; Shmulevich, I.; Trayanova, N. Digital Twins in Medicine. Nat. Comput. Sci. 2024, 4, 184–191.

[CrossRef]
55. Vallée, A. Envisioning the Future of Personalized Medicine: Role and Realities of Digital Twins. J. Med. Internet Res. 2024, 26,

e50204. [CrossRef]
56. Kan Yeung, A.W.; Tosevska, A.; Klager, E.; Eibensteiner, F.; Laxar, D.; Stoyanov, J.; Glisic, M.; Zeiner, S.; Kulnik, S.T.; Crutzen, R.;

et al. Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature. J. Med. Internet Res. 2021, 23,
1–36.

57. Prajapati, M.; Kumar, S. Virtual Reality Revolution in Healthcare: A Systematic Review. Health Technol. 2025, 15, 231–242.
[CrossRef]

https://doi.org/10.1186/s11671-020-03428-4
https://doi.org/10.1002/adfm.201504560
https://doi.org/10.1016/j.cej.2022.139815
https://doi.org/10.1038/s41746-019-0083-3
https://www.ncbi.nlm.nih.gov/pubmed/31304358
https://doi.org/10.1038/s41598-018-19239-8
https://doi.org/10.1155/2021/9938010
https://doi.org/10.1002/admt.202201020
https://doi.org/10.1016/j.nanoen.2019.05.039
https://doi.org/10.1002/admt.201900367
https://doi.org/10.1039/D1TC02458B
https://doi.org/10.3390/s22083028
https://www.ncbi.nlm.nih.gov/pubmed/35459012
https://doi.org/10.1016/j.optlastec.2023.109227
https://doi.org/10.1016/j.nanoen.2024.109790
https://doi.org/10.1016/j.colsurfb.2024.114384
https://doi.org/10.1016/j.sna.2024.116183
https://doi.org/10.1016/j.isci.2019.11.026
https://doi.org/10.18494/SAM.2021.3038
https://doi.org/10.1016/j.oceaneng.2022.110980
https://doi.org/10.1016/j.cirp.2019.04.011
https://doi.org/10.1007/s11831-022-09757-0
https://doi.org/10.1016/j.iot.2024.101471
https://doi.org/10.1016/j.drudis.2023.103605
https://doi.org/10.1038/s41746-024-01188-4
https://doi.org/10.1038/s43588-024-00607-6
https://doi.org/10.2196/50204
https://doi.org/10.1007/s12553-025-00941-3


Systems 2025, 13, 335 19 of 20

58. Xuan, D.T.; Van Huynh, T.; Hung, N.T.; Thang, V.T. Applying Digital Twin and Multi-Adaptive Genetic Algorithms in Human–
Robot Cooperative Assembly Optimization. Appl. Sci. 2023, 13, 4229. [CrossRef]

59. Nguyen, B.; Coelho, Y.; Bastos, T.; Krishnan, S. Trends in Human Activity Recognition with Focus on Machine Learning and
Power Requirements. Mach. Learn. Appl. 2021, 5, 100072. [CrossRef]

60. Lambay, A.; Liu, Y.; Morgan, P.L.; Ji, Z. Machine Learning Assisted Human Fatigue Detection, Monitoring, and Recovery: A
Review. Digit. Eng. 2024, 1, 100004. [CrossRef]

61. Razavi, M.; Ziyadidegan, S.; Jahromi, R.; Kazeminasab, S.; Baharlouei, E.; Janfaza, V.; Mahmoudzadeh, A.; Sasangohar, F.
Machine Learning, Deep Learning and Data Preprocessing Techniques for Detection, Prediction, and Monitoring of Stress and
Stress-Related Mental Disorders: A Scoping Review. JMIR Ment. Heal. 2023, 11, e53714. [CrossRef] [PubMed]

62. Ferreira, P.J.S.; Cardoso, J.M.P.; Mendes-Moreira, J. KNN Prototyping Schemes for Embedded Human Activity Recognition with
Online Learning. Computers 2020, 9, 96. [CrossRef]

63. Subramanian, B.; Kim, J.; Maray, M.; Paul, A. Digital Twin Model: A Real-Time Emotion Recognition System for Personalized
Healthcare. IEEE Access 2022, 10, 81155–81165. [CrossRef]

64. Moztarzadeh, O.; Jamshidi, M.; Sargolzaei, S.; Jamshidi, A.; Baghalipour, N.; Malekzadeh Moghani, M.; Hauer, L. Metaverse and
Healthcare: Machine Learning-Enabled Digital Twins of Cancer. Bioengineering 2023, 10, 455. [CrossRef]

65. Ahmed, I.; Ahmad, M.; Jeon, G. Integrating Digital Twins and Deep Learning for Medical Image Analysis in the Era of COVID-19.
Virtual Real. Intell. Hardw. 2022, 4, 292–305. [CrossRef]

66. Wang, Y.; Huang, Y.; Gu, B.; Cao, S.; Fang, D. Identifying Mental Fatigue of Construction Workers Using EEG and Deep Learning.
Autom. Constr. 2023, 151, 104887. [CrossRef]

67. Su, T.; Sun, H.; Ma, C.; Jiang, L.; Xu, T. HDL: Hierarchical Deep Learning Model Based Human Activity Recognition Using
Smartphone Sensors. In Proceedings of the International Joint Conference on Neural Networks 2019, Budapest, Hungary, 14–19
July 2019. [CrossRef]

68. Irfan, S.; Anjum, N.; Masood, N.; Khattak, A.S.; Ramzan, N. A Novel Hybrid Deep Learning Model for Human Activity
Recognition Based on Transitional Activities. Sensors 2021, 21, 8227. [CrossRef] [PubMed]

69. Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. Monitoring Fatigue in Construction Workers Using Physiological Measurements.
Autom. Constr. 2017, 82, 154–165. [CrossRef]

70. Jebelli, H.; Mahdi Khalili, M.; Lee, S. A Continuously Updated, Computationally Efficient Stress Recognition Framework Using
Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL). IEEE J. Biomed. Health Inf. 2019, 23,
1928–1939. [CrossRef] [PubMed]

71. Priya, A.; Garg, S.; Tigga, N.P. Predicting Anxiety, Depression and Stress in Modern Life Using Machine Learning Algorithms.
Procedia Comput. Sci. 2020, 167, 1258–1267. [CrossRef]

72. Wang, Y.; Wang, X.; Zhao, L.; Jones, K. A Case for the Use of Deep Learning Algorithms for Individual and Population Level
Assessments of Mental Health Disorders: Predicting Depression among China’s Elderly. J. Affect. Disord. 2025, 369, 329–337.
[CrossRef]

73. Li, C.; Zhang, Z.; Lee, W.S.; Lee, G.H. Convolutional Sequence to Sequence Model for Human Dynamics. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition; IEEE Computer Society, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 5226–5234.

74. Mehmood, I.; Li, H.; Qarout, Y.; Umer, W.; Anwer, S.; Wu, H.; Hussain, M.; Fordjour Antwi-Afari, M. Deep Learning-Based
Construction Equipment Operators’ Mental Fatigue Classification Using Wearable EEG Sensor Data. Adv. Eng. Inform. 2023, 56,
101978. [CrossRef]

75. Manalu, H.V.; Rifai, A.P. Detection of Human Emotions through Facial Expressions Using Hybrid Convolutional Neural
Network-Recurrent Neural Network Algorithm. Intell. Syst. Appl. 2024, 21, 200339. [CrossRef]

76. Islam, R.; Layek, M.A. StackEnsembleMind: Enhancing Well-Being through Accurate Identification of Human Mental States
Using Stack-Based Ensemble Machine Learning. Inf. Med. Unlocked 2023, 43, 101405. [CrossRef]

77. Sagaro, G.G.; Amenta, F. Past, Present, and Future Perspectives of Telemedical Assistance at Sea: A Systematic Review. Int. Marit.
Health 2020, 71, 97–104. [CrossRef]

78. Hickey, B.A.; Chalmers, T.; Newton, P.; Lin, C.T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Smart Devices
and Wearable Technologies to Detect and Monitor Mental Health Conditions and Stress: A Systematic Review. Sensors 2021, 21,
3461. [CrossRef]

79. Mohammadzadeh, N.; Gholamzadeh, M. Equirements, Challenges, and Key Components to Improve Onboard Medical Care
Using Maritime Telemedicine: Narrative Review. Int. J. Telemed. Appl. 2023, 2023, 9389286. [CrossRef] [PubMed]

80. Seng, K.P.; Ang, L.M.; Peter, E.; Mmonyi, A. Machine Learning and AI Technologies for Smart Wearables. Electronics 2023, 12,
1509. [CrossRef]

81. Health and Safety Executive. Accident Statistics for Floating Offshore Units on the UK Continental Shelf ; Health and Safety Executive:
London, UK, 2022.

https://doi.org/10.3390/app13074229
https://doi.org/10.1016/j.mlwa.2021.100072
https://doi.org/10.1016/j.dte.2024.100004
https://doi.org/10.2196/53714
https://www.ncbi.nlm.nih.gov/pubmed/39167782
https://doi.org/10.3390/computers9040096
https://doi.org/10.1109/ACCESS.2022.3193941
https://doi.org/10.3390/bioengineering10040455
https://doi.org/10.1016/j.vrih.2022.03.002
https://doi.org/10.1016/j.autcon.2023.104887
https://doi.org/10.1109/IJCNN.2019.8851889
https://doi.org/10.3390/s21248227
https://www.ncbi.nlm.nih.gov/pubmed/34960321
https://doi.org/10.1016/j.autcon.2017.03.003
https://doi.org/10.1109/JBHI.2018.2870963
https://www.ncbi.nlm.nih.gov/pubmed/30235150
https://doi.org/10.1016/j.procs.2020.03.442
https://doi.org/10.1016/j.jad.2024.09.147
https://doi.org/10.1016/j.aei.2023.101978
https://doi.org/10.1016/j.iswa.2024.200339
https://doi.org/10.1016/j.imu.2023.101405
https://doi.org/10.5603/IMH.2020.0018
https://doi.org/10.3390/s21103461
https://doi.org/10.1155/2023/9389286
https://www.ncbi.nlm.nih.gov/pubmed/37362154
https://doi.org/10.3390/electronics12071509


Systems 2025, 13, 335 20 of 20

82. Supporting Seafarers: Resources and General Information. Available online: https://www.imo.org/en/MediaCentre/HotTopics
(accessed on 25 April 2025).

83. Yeung, K. Recommendation of the Council on Artificial Intelligence (OECD). Int. Leg. Mater. 2020, 59, 27–34. [CrossRef]
84. Abila, S.; Kitada, M.; Malecosio, S.; Tang, L.; Subong-Espina, R. Empowering Seafarers as Agents of Their Mental Health: The

Role of Information and Communication Technology in Seafarers’ Well-Being. Inquiry 2023, 60, 1–10. [CrossRef] [PubMed]
85. Battineni, G.; Amenta, F. Designing of an Expert System for the Management of Seafarer’s Health. Digit. Health 2020, 6, 1–8.

[CrossRef] [PubMed]
86. Battineni, G.; Chintalapudi, N.; Gagliardi, G.; Amenta, F. The Use of Radio and Telemedicine by TMAS Centers in Provision of

Medical Care to Seafarers: A Systematic Review. J. Pers. Med. 2023, 13, 1171. [CrossRef]
87. Ara, G. Deciphering the Digital Healthscape: Unveiling the Intricacies of the Internet of Medical Things (IoMT). Technoarete Trans.

Adv. Data Sci. Anal. 2024, 3, 1–8. [CrossRef]
88. Lodha, L.; Baghela, V.S.; Bhuvana, J.; Bhatt, R. A Blockchain-Based Secured System Using the Internet of Medical Things (IOMT)

Network for e-Healthcare Monitoring. Meas. Sens. 2023, 30, 100904. [CrossRef]
89. Singh, A.; Singh, M.; Singh, D. Blockchain Approach to Non-Invasive Gastro-Intestinal Diagnosis System. In Intelligent Human

Computer Interaction—Proceedings of the International Conference on Intelligent Human Computer Interaction; Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Cham, Switzerland, 2024; Volume 14531, pp. 417–434.

90. Shyam Mohan, J.S.; Kumaran, N. An Approach for Accessing Patients Records Using Medical Suite Blickchain. In Handbook of
Research on Artificial Intelligence and Soft Computing Techniques in Personalized Healthcare Services; Apple Academic Press: New York,
NY, USA, 2024; pp. 73–90. ISBN 9781000844276.

91. Lu, L.; Zhang, J.; Xie, Y.; Gao, F.; Xu, S.; Wu, X.; Ye, Z. Wearable Health Devices in Health Care: Narrative Systematic Review.
JMIR Mhealth Uhealth 2020, 8, 18907. [CrossRef]

92. Choudhury, A.; Asan, O. Impact of Using Wearable Devices on Psychological Distress: Analysis of the Health Information
National Trends Survey. Int. J. Med. Inf. 2021, 156, 104612. [CrossRef]

93. Jonglertmontree, W.; Kaewboonchoo, O.; Morioka, I.; Boonyamalik, P. Mental Health Problems and Their Related Factors among
Seafarers: A Scoping Review. BMC Public. Health 2022, 22, 282. [CrossRef] [PubMed]

94. Zafar, M.H.S. Human Digital Twin—A Systematic Review of Business Applications and Future Directions. Master’s Thesis, Lahti
University of Technology, Lappeenranta, Finland, 2024.

95. Paganelli, A.I.; Mondéjar, A.G.; da Silva, A.C.; Silva-Calpa, G.; Teixeira, M.F.; Carvalho, F.; Raposo, A.; Endler, M. Real-Time
Data Analysis in Health Monitoring Systems: A Comprehensive Systematic Literature Review. J. Biomed. Inf. 2022, 127, 104009.
[CrossRef] [PubMed]

96. Li, X.; Zhou, Y.; Yuen, K.F. A Systematic Review on Seafarer Health: Conditions, Antecedents and Interventions. Transp. Policy
2022, 122, 11–25. [CrossRef]

97. Transforming Industry Using Digital Twin Technology; Mishra, A., El Barachi, M., Kumar, M., Eds.; Springer Nature: Cham,
Switzerland, 2024; ISBN 9783031585234.

98. Wagenhals, L.W.; Zaidi, A.K.; Levis, A.H. Scalable Adaptive Architectures for Maritime Operations Center Command and Control.
Office of Naval Research. 2011.

99. Papachristou, K.; Katsakiori, P.F.; Papadimitroulas, P.; Strigari, L.; Kagadis, G.C. Digital Twins’ Advancements and Applications
in Healthcare, Towards Precision Medicine. J. Pers. Med. 2024, 14, 1101. [CrossRef]

100. Mayer, A.; Greif, L.; Häußermann, T.M.; Otto, S.; Kastner, K.; El Bobbou, S.; Chardonnet, J.-R.; Reichwald, J.; Fleischer, J.;
Ovtcharova, J. Digital Twins, Extended Reality, and Artificial Intelligence in Manufacturing Reconfiguration: A Systematic
Literature Review. Sustainability 2025, 17, 2318. [CrossRef]

101. Atienza-Barba, M.; del Río-Rama, M.d.l.C.; Meseguer-Martínez, Á.; Barba-Sánchez, V. Artificial Intelligence and Organizational
Agility: An Analysis of Scientific Production and Future Trends. Eur. Res. Manag. Bus. Econ. 2024, 30, 100253. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.imo.org/en/MediaCentre/HotTopics
https://doi.org/10.1017/ilm.2020.5
https://doi.org/10.1177/00469580231162752
https://www.ncbi.nlm.nih.gov/pubmed/36950721
https://doi.org/10.1177/2055207620976244
https://www.ncbi.nlm.nih.gov/pubmed/33343918
https://doi.org/10.3390/jpm13071171
https://doi.org/10.36647/TTADSA/03.01.A001
https://doi.org/10.1016/j.measen.2023.100904
https://doi.org/10.2196/18907
https://doi.org/10.1016/j.ijmedinf.2021.104612
https://doi.org/10.1186/s12889-022-12713-z
https://www.ncbi.nlm.nih.gov/pubmed/35148722
https://doi.org/10.1016/j.jbi.2022.104009
https://www.ncbi.nlm.nih.gov/pubmed/35196579
https://doi.org/10.1016/j.tranpol.2022.04.010
https://doi.org/10.3390/jpm14111101
https://doi.org/10.3390/su17052318
https://doi.org/10.1016/j.iedeen.2024.100253

	Introduction 
	Human Digital Healthcare Engineering (HDHE) Framework 
	Research Progress in DTs and HDTs 
	Research Progress in DHE 
	Concept of HDHE 

	Key Technologies for HDHE Systems 
	Real-Time Health Parameter Monitoring 
	Data Transmission 
	Onboard Data Transmission 
	Ship-to-Shore Data Transmission 

	Data Analytics and Simulations Using Human Digital Twins (HDTs) 
	AI-Driven Health Condition Diagnosis and Predictive Health Analysis 
	Machine Learning (ML) 
	Deep Learning (DL) 


	Discussion 
	Challenges and Practical Solutions 
	Resource Constraints 
	Privacy Concerns 
	Additional Stress 

	Implications and Economic Benefits 

	Conclusions 
	References

