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Abstract: 

Amphibian chytridiomycoses are emerging fungal diseases caused by Batrachochytrium dendrobatidis (Bd) and 

Batrachochytrium salamandrivorans (Bsal). They are a significant threat to amphibians worldwide, driving 

catastrophic species declines and extinctions with documented knock-on impacts on the wider ecosystem and 

human health. This review examines the historical discovery and expanding distribution of Bd and Bsal, with a 

focus on Eastern Europe. Advances in diagnostics — including histopathology, PCR, and environmental DNA 

detection —, including their strengths and limitations, are discussed. This review considers morphological 

characteristics, pathogen life cycles, mechanisms of pathogenesis, and clinical signs useful for guiding infection 

and disease detection. Innate and acquired host immune responses in response to Bd and Bsal infection are 

discussed within the context of host resistance and tolerance. Finally, potential transmission routes are explored, 

with a focus on the role the pet trade plays in pathogen spread, and current treatment and mitigation approaches 

for both wild and captive amphibians are summarised. Insights into the epidemiology of Bd and Bsal and 

environmental factors influencing pathogen spread and resistance can inform proactive conservation and disease 

management strategies essential for protecting at-risk amphibian populations. 
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INTRODUCTION 

Amphibians represent the most threatened 

vertebrate class on Earth (Luedtke et al., 2023). 

This situation is being driven by multiple 

anthropogenic threats,  including habitat loss, 

climate change, pollution, overexploitation, 

invasive species, and emerging infectious 

diseases such as amphibian chytridiomycosis 

(Luedtke et al., 2023; Fisher et al., 2012). 

Global enigmatic amphibian declines 

documented since the 1970s spurred an intense 

interdisciplinary interest in amphibian 

conservation research (Laurance et al., 1996, 

Collins & Storfer, 2003, Stuart et al., 2004, 

Berger et al., 2016). This led to the 

establishment, in 1998, of a direct connection 

between chytridiomycosis, caused by the 

previously unknown fungus Batrachochytrium 

dendrobatidis (Bd), and  amphibian declines in 

Central America and Australia (Berger et al., 

1998, Longcore et al., 1999, Pessier et al., 

1999). In 2010, a closely related fungal 

pathogen, Batrachochytrium 

salamandrivorans (Bsal) was discovered 

linked to acute mortality and population 

declines in fire salamanders (Salamandra 

salamandra) in Western Europe (Martel et al., 

2013, Spitzen-van der Sluijs et al., 2013).  

To this date, Bd has been detected on all 

continents where amphibians are present 

(Castro Monzon et al., 2020), while Bsal is 

apparently restricted to Asia and some parts of 

Europe (Laking et al., 2017). Bd is known to 

affect at least 500 species and has led to the 



presumed extinction of at least 90 species 

(Scheele et al., 2019). Therefore, amphibian 

chytridiomycosis has been considered to be the 

worst infectious disease known to date in terms 

of the number of species impacted and  its 

capacity to drive population declines and 

species extinctions (Van Rooij et al., 2015, 

Scheele et al., 2019). The Bd-driven collapse 

of amphibian populations has led to knock-on 

impacts on the wider ecosystem, including 

declines in snake populations (Zipkin et al., 

2020) and an increase in malaria cases in 

humans (Springborn et al., 2022). 

Considering the importance of amphibian 

chytrid fungi and their widespread, dramatic 

effects (Lips, 2016), this review aims to 

provide a brief overview about the current 

knowledge of Bd and Bsal with an emphasis on 

their presence in Eastern Europe and, 

specifically, Romania.  

GENETIC DIVERSITY AND ORIGIN 

The chytrid fungi Bd and Bsal belong to the 

phylum Chytridiomycota, an early-diverging 

non-hyphal fungal lineage characterized by 

motile, flagellated zoospores (Longcore et al., 

1999). Unlike most chytrid fungi, which are 

saprobic or are parasitic on plants, algae, or 

invertebrates, Bd and Bsal are the only chytrid 

fungi known to infect vertebrates, with the 

possible exception of Ichthyochytrium vulgare, 

a poorly-described pathogen of freshwater fish 

(Martel et al., 2018). 

While most cases of amphibian decline have 

been associated with a globally-distributed, 

hypervirulent lineage of Bd termed the global 

pandemic lineage, Bd-GPL, several other 

genetic groups of varying virulence and more 

patchy geographical distribution have been 

identified (Fisher & Garner, 2020; O’Hanlon et 

al., 2018). Similarly, Bsal strains present 

multiple differences at both phenotypic and 

genotypic levels, which can influence 

variability in amphibian individual and 

population response following infection (Kelly 

et al., 2021, Kelly et al., 2024). The earliest 

debate regarding the origin of Bd and the onset 

of declines due to chytridiomycosis was 

between the Endemic Pathogen Hypothesis 

(EPH) and the Novel Pathogen Hypothesis 

(NPH). The EPH proposed that Bd infection 

had long been widespread in amphibian 

populations and only recently became 

pathogenic due to environmental changes or 

shifts in host-pathogen dynamics. In contrast, 

the NPH posits that Bd was a recent 

introduction to naïve, susceptible populations 

(Fisher et al., 2009, Farrer et al., 2011, 

Rosenblum et al., 2013). The majority of 

studies favour the NPH. Using whole-genome 

analyses, O’Hanlon et al. (2018) identified 

East Asia as the likely source of Bd, with the 

BdASIA-1 lineage exhibiting ancestral genetic 

signatures. Their findings also indicate that 

Bd-GPL originated in this region in the early 

20th century and has since colonized various 

parts of the world, likely facilitated by both 

intentional and unintentional human-driven 

movement of amphibians (O’Hanlon et al., 

2018). Similarly, evidence suggests that Bsal 

likely has an Asian origin, and that the 

pathogen was introduced to Europe through 

the amphibian pet trade  (Martel et al., 2013;  

Fitzpatrick et al., 2018, Castro Monzon et al., 

2022, González et al., 2024). 

MORPHOLOGY AND LIFE CYCLE 

Batrachochytrium dendrobatidis (Bd) and 

Batrachochytrium salamandrivorans (Bsal) 

share a biphasic life cycle, consisting of a 

motile zoospore stage and a sessile, 

reproductive zoosporangium stage. Zoospores 

are unicellular and flagellated, allowing them 

to disperse in aquatic environments before 

invading the host epidermis (Robinson et al., 

2022) and transitioning into sessile thalli (Van 

Rooij et al., 2015). Bsal has a second, non-

flagellated, environmentally resistant 

zoospore, which may allow prolonged survival 

in dry soil (Stegen et al., 2017). The encysted 

zoospores absorb the flagellum and  develop a 

cell wall and rhizoids, which anchor the 

organism while facilitating nutrient absorption 

(Berger et al., 2005a). Within the 

zoosporangium, cytoplasmatic cleavage 



produces new flagellated zoospores, which are 

released through a discharge tube, completing 

the cycle within 4–5 days at optimal 

temperatures (Voyles et al., 2011). 

While their life cycles are mostly similar, at 

least one strain of Bsal can have a saprotrophic 

life cycle, being able to feed on plant material, 

such as hay (Kelly et al., 2021). Furthermore, 

Bsal differs morphologically from Bd in 

forming tubular germ extensions from 

encysted zoospores, which can develop into 

new sporangia, and in producing a greater 

proportion of colonial thalli (Van Rooij et al., 

2015).  

Thermal preference in the laboratory differs 

between the two species: Bd grows optimally 

between 17–25°C, at 28°C growth ceases, and 

dies after a week at > 29°C (Spitzen-van der 

Sluijs, Zollinger, 2010). Bsal thrives at 10–

15°C and can survive at 5°C, and temperatures 

≥25°C are lethal for Bsal (Martel et al., 2013).  

Both fungi can attach to non-living keratinous 

substrates, suggesting potential for 

environmental persistence (Van Rooij et al., 

2015, Kelly et al., 2021). 

TRANSMISSION 

Understanding the transmission and 

introduction pathways of these fungi is crucial 

for mitigating their impact. Water acts as a 

major vector, as the infective life stage of these 

pathogens is a waterborne zoospore that persist 

in freshwater (Johnson & Speare, 2003). 

Additionally, Bd and Bsal can survive in wet 

environments, such as in biofilms and moist 

substrates, enabling indirect pathogen 

transmission (Stegen et al. 2017, Johnson & 

Speare, 2005, Kolby et al., 2015). Two studies 

also indicate that Bd zoospores might spread 

through rain (Kolby et al., 2015) and fog 

(Prado et al., 2023), although these results need 

repeating to rule out any contamination errors. 

In addition to the motile zoospore, Bsal has an 

environmentally resistant non-motile spore 

(Stegen et al. 2017), and a saprophytic 

lifecycle has been identified for one isolate 

(Kelly et al. 2021), which in combination 

suggest environmental transmission can be 

particularly relevant for this pathogen. In 

addition, transmission of both Bd and Bsal can 

occur through direct contact between infected 

and susceptible individuals (Stegen et al. 2017, 

Voyles et al., 2009). 

Beyond amphibians, other organisms can 

theoretically act as passive vectors or as 

alternative hosts for Bd. Birds and mammals, 

such as waterfowl and amphibian-eating 

predators, may transport spores between 

habitats (Johnson & Speare, 2005). Non-

amphibian hosts such as experimentally-

modified zebrafish larvae can become infected 

with Bd and develop disease, and could 

potentially also act as Bd reservoirs in aquatic 

environments (McMahon et al., 2013, Liew et 

al., 2017).   

The pet trade is a primary driver of Bd and Bsal 

introductions into naïve populations (Connelly 

et al., 2023). Many amphibians in the 

international trade are aclinical carriers, 

allowing these pathogens to spread undetected. 

Notably, Lithobates catesbeianus (American 

bullfrog), which is farmed for food and trade, 

frequently harbours Bd without showing 

clinical signs (Schloegel et al., 2009). The 

intentional or unintentional release of captive 

amphibians, has facilitated Bd and Bsal 

introduction into the wild (Fisher & Garner, 

2007, Peel et al., 2012, Tamukai et al., 2014) . 

Beyond trade, human-mediated transport via 

eco-tourism, research activities, and 

conservation translocations has the potential of 

contributing to the spread of chytrid fungi, 

often through contaminated equipment or 

direct movement of infected animals (Walker 

et al., 2008, Phillott et al., 2010). 

BD/BSAL IN EASTERN EUROPE AND 

ROMANIA 

Compared to Western Europe and other global  

Bd research hotspots, such as Australia and 

Central and South America, Eastern Europe 

remains significantly underrepresented in Bd 

studies, with large geographical and taxonomic 

gaps (Baláž, 2013). Figure 1 and table 1 below 



present an overview of Bd prevalences in 

Central, Eastern Europe and the Balkans. In 

Hungary, Bd has been detected in multiple 

species, with Bombina variegata and 

Pelophylax esculentus exhibiting the highest 

prevalences and infection intensities. Climatic 

factors appear to influence infection dynamics, 

as prevalence is negatively correlated with 

temperature and positively correlated with 

precipitation (Vörös et al., 2018). In a study by 

Baláž et al., (2014), positive qPCR samples 

were found in Hungary, the Czech Republic 

and Slovakia. The authors suggest the use of 

Alytidae and Bombinatoride as sentinel clades 

to be included in European national 

surveillance programmes due to their relative 

abundances, wide geographical European 

distributions, and their higher Bd infection 

prevalences. It might also be useful to include 

Pelophylax spp. to fill geographical gaps 

where Alytidae and Bombinatoridae are 

absent. In Serbia, Bd has been recorded in 

Pelophylax spp., including in two sites on the 

Danube River. As the role of large river 

systems in the spread of Bd is poorly 

understood, the authors raise the concern that 

the Danube should be investigated as a 

potential corridor for Bd transmission across 

Europe (Mali et al., 2017). One study in 

Montenegro, Albania, and North Macedonia 

reported Bd in Pelophylax spp., B. variegata, 

and Triturus macedonicus, with an overall 

infection prevalence of 14.3%. The authors 

suggested that the Carpathian Mountains could 

be an important area for future Bd research, 

particularly for B. variegata and Ichthyosaura  

alpestris (Vojar et al., 2017). In Russia, Bd has 

been found in Bufo bufo, often with ranavirus 

co-infection, complicating assessments of its 

impact (Reshetnikov et al., 2014). Further, Bd 

has been detected through qPCR screening 

surveys in Greece (Azmanis et al., 2016), 

Czech Republic (Civiš et al., 2012), Poland 

(Sura et al., 2010) and Austria (Sztatecsny & 

Glaser, 2011). 

With 20 native amphibian species present, and 

considering that the Danube Delta Biosphere 

Reserve, one of Europe's largest biodiversity 

hubs, is located entirely on Romanian territory, 

Romania has one of the richest mosaics of 

ecosystems and amphibian diversity in Europe 

(Cogălniceanu et al., 2013, Cogălniceanu & 

Rozylowicz, 2014). Yet Romania represents a 

critical gap in European Bd epidemiology, with 

few studies available. Bd was first reported in 

Romania by Vörös et al. (2013), with PCR-

positive detections in B. variegata, Lissotriton 

vulgaris ampelensis, and Rana temporaria. A 

more extensive study by Scheele et al. (2015) 

surveyed 60 ponds in Transylvania, and found 

Bd to be present in 26.6% of sites, with an 

overall prevalence of 4.5%. Notably, the 

prevalence of infection was significantly 

higher in juveniles (14.8%) than in adults 

(2.7%), suggesting differential susceptibility to 

infection or pathogen exposure at different life 

stages. 

Bsal has not been yet detected in Eastern 

Europe, including in Romania. In Europe, in 

the wild this pathogen remains insofar 

restricted to the Netherlands, Germany, 

Belgium, and Spain (Spitzen-van der Sluijs et 

al., 2013, Martel et al., 2014; Schulz et al., 

2020, Lastra González et al., 2019), but has 

also been detected in captive amphibians in the 

UK, Spain and Germany (Fitzpatrick et al. 

2018). 

PATHOGENESIS AND MECHANISMS 

OF HOST DEFENSE 

The infection process of Bd involves host 

attraction, attachment to keratinised tissue, 

penetration into the skin cells with endobiotic 

zoospore germination, and invasive growth 

into the stratum corneum and stratum 

granulosum, leading to host cell destruction 

and cytoplasm loss.  

Chemotaxis plays a crucial role, as zoospores 

are attracted to keratin and amphibian skin 

mucus, which contains carbohydrate 

components that facilitate movement toward 

the host, and promote encystation (Moss et al., 

2008, Van Rooij et al., 2015, Robinson et al., 

2022). Conversely, amphibian skin mucus 



serves as a defence barrier, limiting zoospore 

survival (Meyer et al., 2007). 

Adherence of Bd to host skin occurs within 2-

4 hours from contact, involving fibrillar 

projections (Van Rooij et al., 2012). Various 

genes related to the production of cell adhesion 

proteins are upregulated in sporangia 

(Zamudio et al., 2020). The presence of a 

chitin-binding module (CBM18) in Bd 

suggests a role in survival and pathogen spread 

through various non-host chitinous structures, 

such as insect or crustacean exoskeletons 

(Abramyan & Stajich, 2012, McMahon et al., 

2013). 

Once adhered, Bd invades the epidermis, 

generally developing intracellularly within 24 

hours and spreading through rhizoid-like 

structures which develop into zoospore-

producing thalli. The pathogen colonizes 

keratinized layers (the entire skin surface of 

adult amphibians and the mouth parts of many 

amphibian larvae), transitioning to new areas 

as keratinization progresses and the layers 

advance to the surface (Berger et al., 2005, 

Voyles et al., 2009, Greenspan et al., 2012).  

Bsal follows a similar infection pattern, 

although the specifics of its attraction and 

adhesion mechanisms remain largely unknown 

(Rollins-Smith & Le Sage, 2021).  

Chytrid infection impairs amphibian skin 

function, which is vital for osmoregulation, 

respiration, and defence. Bd secretes proteases 

and virulence factors that degrade host skin 

integrity, disrupt intracellular junctions, and 

impair osmoregulatory function. The infection 

reduces plasma sodium, potassium, and 

chloride levels, leading to ion imbalances and 

potentially fatal cardiac arrest (Voyles et al., 

2009, Campbell et al., 2012). Besides the more 

evident skin effects, organism-wide impacts of 

Bd infection have been reported. Such impacts 

include hematopoietic tissue depletion, which 

may be related to the species’ susceptibility to 

infection (Grogan et al., 2018), and 

catastrophic failure of normal homeostatic 

mechanisms and pronounced dysregulation of 

cellular energy metabolism (Brannelly et al., 

2016).  

The availability of the Bd full genome has 

enhanced the understanding of host-pathogen 

interactions, revealing potential pathogenicity 

factors targeting amphibian skin (Joneson et 

al., 2011). 

Research on Bsal is still in its early stages, with 

critical unknowns regarding its host 

specificity, infection processes, and host 

immune response (Rollins-Smith & Le Sage, 

2021). 

Bd is known to infect a wide variety of hosts, 

which inevitably will put forward an equally 

wide variety of defence mechanisms. Torres-

Sánchez et al. (2022) have shown that Bd 

displays plastic infection strategies when 

challenged by hosts with different disease 

susceptibilities. 

Amphibians exhibit varying susceptibility to 

both infection and disease caused by Bd and 

Bsal at individual, population, and species 

levels. Some species, such as Lithobates 

catesbeianus and Xenopus laevis, serve as 

aclinical reservoir hosts, while others 

experience high mortality and population 

declines (Berger et al., 2009, Kilpatrick et al., 

2010, Savage & Zamudio, 2011). 

Susceptibility varies due to genetic factors, 

immune responses, and environmental 

conditions (Ribas et al., 2009, Ellison et al., 

2014; Bataille et al., 2015, Zamudio et al., 

2020).  

The innate immune system plays a critical role 

in limiting Bd infections. Antimicrobial 

peptides (AMPs) secreted by dermal granular 

glands in some species inhibit Bd growth in 

vitro, although their effectiveness in vivo is 

uncertain due to degradation and fungal 

countermeasures, and it might not be a 

mechanism available to all species (Rollins-

Smith, 2009, Van Rooij et al., 2015). 

Additionally, Bd can secrete proteases that 

degrade AMPs (Thekkiniath et al., 2013). 

Symbiotic skin bacteria can contribute to 

defence by producing antifungal metabolites 



such as violacein, 2,4-diacetylphloroglucinol, 

and indol-3-carboxaldehyde, which inhibit Bd 

infection (Harris et al., 2009, Lam et al., 2011). 

Lysozyme present in amphibian skin mucus is 

also presumed to have an antifungal effect 

(Rollins-Smith et al., 2009). McMahon et al. 

(2014) found that individuals of at least three 

amphibian species can acquire behavioural or 

immunological resistance after exposure to 

live or dead Bd zoospores.  

Despite detectable Bd-specific antibodies in 

some species, a robust acquired immune 

response is largely absent, with Bd infections 

generally persisting despite repeated exposures 

(Ellison et al., 2014, Van Rooij et al., 

2015).Studies suggest Bd suppresses 

lymphocyte activation and complement 

pathways, impairing effective immune 

responses (Fites et al., 2013, Fites et al., 2014). 

Immunization trials with heat-killed Bd have 

largely failed, with some exceptions such as in 

X. laevis, where Bd-specific antibodies were 

detected (Stice & Briggs, 2010, Ramsey et al., 

2010). Oral vaccination with killed Bd led to a 

vigorous immune response in hellbenders 

(Cryptobranchus alleganiensis alleganiensis), 

but this response was ineffective at controlling 

disease (Kaganer et al., 2023).  

Host factors such as major histocompatibility 

complex (MHC) show varying influence on Bd 

resistance (Savage & Zamudio, 2011, Bataille 

et al., 2015). Corticosterone levels seem to be 

an unreliable indicator of susceptibility, with 

studies having conflicting results (Gabor et al., 

2013, Searle et al., 2014). Warmer 

microhabitats and thermoregulatory 

behaviours reduce Bd infection rates (Bielby et 

al., 2008), and higher temperatures (>25°C) 

are known to inhibit Bsal growth (Blooi et al., 

2015). Species with high aquatic dependency 

are disproportionately affected, as are 

individuals with increased social behaviours 

(Rowley & Alford, 2007). Conversely, 

behaviour can also function as a mechanism of 

host resistance, as some species exhibit learned 

avoidance of Bd after previous exposure to the 

pathogen (McMahon et al., 2014, 2021). 

CLINICAL ASPECTS, BIOSECURITY 

AND TREATMENT 

Bd infections manifest variably, ranging from 

subclinical infections to sudden death (Baláž, 

2013). Infected metamorphosed individuals 

often display lethargy, anorexia, abnormal 

posture, and loss of righting reflex, with signs 

typically appearing only in the final stages of 

infection (Berger et al., 1998,  Pessier, 2008). 

The most consistent external signs include 

excessive skin shedding, discolouration, and 

erythema (Van Rooij et al., 2015, Berger et al., 

2009). Histopathology reveals epidermal 

hyperplasia, hyperkeratosis, and disordered 

epidermal structure, with Bd sporangia 

localized to the stratum corneum and stratum 

granulosum (Berger et al., 1999).   

In tadpoles, infection is usually restricted to 

depigmentation and loss of the mouthparts 

with minimal direct mortality (Baláž, 2013).  

Bsal infection primarily affects 

metamorphosed urodeles (but it can also infect 

and cause disease in anurans; Gray et al., 2023, 

causing widespread epidermal ulceration and 

necrosis (Martel et al., 2013, Van Rooij et al., 

2015). When infected, susceptible urodeles 

exhibit excessive skin shedding, ataxia, 

anorexia, and rapid disease progression, often 

leading to death within days (Martel et al., 

2018). Unlike Bd, Bsal does not induce 

hyperkeratosis but instead penetrates deeper 

skin layers, leading to severe epidermal 

destruction and ulceration (Martel et al., 2013).  

Strict biosecurity protocols are essential to 

prevent human-mediated spread. As 

previously mentioned, Bd and Bsal can persist 

on soil, water, and fomites, therefore requiring 

effective chemical decontamination to prevent 

the inadvertent introduction or spread of these 

pathogens. Various disinfecting agents and 

protocols have been tested (Johnson et al., 

2003, Webb et al., 2007, Rooij et al., 2017, 

Bletz et al., 2023). As a result, we are now 

aware that ethanol (70%) will kill both Bd and 

Bsal within 30s, Virkon S® 1% in 2 min, 



Bleach 4% in 30s, while oxygen peroxide is 

ineffective.  

Given the thermal sensitivities of Bd and Bsal, 

host temperature manipulation has been 

proposed for clearing infections in some 

species. Amphibians that can access heat 

refuges, such as sun-exposed areas or warm 

microhabitats, have a greater chance of 

clearing Bd infections (Waddle et al., 2024). 

Controlled studies have demonstrated that 

exposing Bd-infected amphibians at various 

high temperature protocols can effectively 

eliminate infections (Woodhams et al., 2003, 

Daskin et al., 2011, Blooi et al., 2015). 

However, the applicability of host temperature 

manipulation is likely restricted to relatively 

heat-tolerant amphibian species. 

Azoles such as itraconazole and voriconazole 

are the most studied antifungal treatments for 

clearing Bd and Bsal infections in live animals. 

Itraconazole (0.01%) applied daily via 5–10 

minute baths for 7–11 days effectively clears 

Bd (Brannelly et al., 2012, Jones et al., 2012, 

Brannelly, 2014, Hudson et al., 2016). 

Voriconazole shows good  efficacy, with a 

relatively safe risk profile (Martel et al., 2011, 

Brannelly et al., 2024), whereas terbinafine 

proved to be ineffective against Bd (Roberts et 

al., 2019). 

Certain skin bacteria, such as 

Janthinobacterium lividum, produce 

antifungal compounds that inhibit Bd growth 

(Bletz et al., 2013, Kueneman et al., 2016). 

Therefore, probiotic therapy through using 

beneficial microbes to combat Bd has been 

proposed and mostly tested under controlled 

conditions, but its effectiveness in the wild 

remains unclear, especially as environmental 

conditions and the ability of hosts to maintain 

microbial taxa and to recruit them from the 

environment play a key role in determining 

their skin microbiome.  

DETECTION AND DIAGNOSTICS 

Accurate detection of Bd and Bsal is critical for 

amphibian disease management and 

conservation efforts. In the absence of overt, 

pathognomonic or clinical signs for direct 

visual diagnosis of Bd and Bsal (other than 

histopathology), several detection methods 

have been developed, each with varying 

degrees of sensitivity, specificity and 

applicability in different research and field 

settings. The most commonly used method for 

Bd and Bsal detection is quantitative/real-time 

PCR, and culture and histopathology are 

considered gold standards in the diagnosis of 

chytrid infections. Table 2 below summarises 

the detection methods currently available. 

MITIGATION 

Our knowledge about the control and 

mitigation of Bd and Bsal impacts on 

amphibians in the wild remains very limited 

(Garner et al., 2016; Fisher & Garner, 2020). 

Additionally, given the complex nature of  

host-parasite interactions, no single 

intervention is likely to be sufficient to fully 

control these pathogens and mitigate their 

impacts. There are at least two stages at which 

mitigation can be targeted: 1) prevention of Bd 

or Bsal spread into a naive population,  and 2) 

managing an already established infection 

(Fisher & Garner, 2020). In Table 3, we present 

a brief overview of potential mitigation 

measures and actions that have been reported 

in the literature. Eradicating the pathogen once 

it has established itself in a population can 

prove extremely challenging, if not impossible 

under most circumstances. As an example, 

intense Bd eradication efforts on the island of 

Mallorca have been only partially successful in 

tackling the pathogen (Bosch et al., 2015). 

CONCLUSION 

The chytrid fungi Batrachochytrium 

dendrobatidis (Bd) and Batrachochytrium 

salamandrivorans (Bsal) pose significant 

threats to amphibian biodiversity globally, 

driving severe population declines and even 

species extinctions. Over the past years we 

have been witnessing a considerable surge in 

advances in understanding their origins, 

genetic diversity, pathogenesis, and complex 

relationships between the pathogens and their 



hosts. However, substantial knowledge gaps 

remain, particularly in under-researched 

regions such as Eastern Europe, including 

Romania. We hope this review will lead the 

way to a series of efforts to help close these 

gaps, particularly concerning the distributions 

and impacts of Bd and Bsal in Romania. 

Continued efforts should prioritize enhanced 

surveillance, ideally through standardized 

national monitoring programs. Also, rigorous 

biosecurity measures within the pet trade and 

field research activities, and the development 

of effective therapeutic strategies should be 

advanced. Addressing these pathogens 

effectively will require interdisciplinary 

collaboration, targeted diagnostics, improved 

mitigation strategies, and increased awareness, 

especially in biodiversity-rich yet 

underrepresented regions.
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TABLES AND FIGURES 

 

 

Figure 1. Overview of Batrachochytrium dendrobatidis prevalences across Central, Eastern Europe and the Balkans 

 

Table 1. Prevalence values and references per country used for Figure 1. 

Country Bd 

Prevalence 

Reference 

Albania 14.3 Vojar et al., 2017 
Austria 5.9 - 45% Sztatecsny & Glaser, 2011 

Belarus N/A N/A 

Bosnia and Herzegovina 37% Zimić et al., 2020  
Bulgaria N/A N/A 

Croatia N/A N/A 

Czech Republic 19 Balá et al., 2014  
Greece 5.3 Strachinis et al., 2022  

Hungary 7.46 Vörös et al., 2018  

Kosovo N/A N/A 
Moldova N/A N/A 

Montenegro 14.3 Vojar et al., 2017 

North Macedonia 14.3 Vojar et al., 2017 
Poland 14.4 Palomar et al., 2021  

Romania 4.5 Scheele et al., 2015 

Russia 20-40 Reshetnikov et al., 2014  
Serbia 8 Mali et al., 2017  

Slovakia N/A N/A 

Slovenia 0 Kostanjsek et al., 2021 
Ukraine 7.4 Jakóbik et al., 2024 



Table 2. Summary of existing detection methods for Batrachochytrium dendrobatidis (Bd) and Batrachochytrium 

salamandrivorans (Bsal) 

Methodology Use Strengths Drawbacks References 

Histopathology Examines keratinised 

tissue for fungal particles 
and associated tissular 

effects  

Provides direct 

visualization of the 
pathogen and its 

effects on the host. 

Requires biopsy or 

euthanizing the animal 

Berger et al., 1999; 

Green & Kagarise 
Sherman, 2001; 

Knapp & Morgan, 

2006; Kriger et al., 
2006; 

Hyatt et al, 2007; 

Borteiro et al., 

2019; Thomas et 
al., 2018; Ossiboff 

et al., 2019 

Immunohistochemistry 

(IHC), 

RNAScope in-situ 

hybridisation (ISH) 

Uses antibodies to detect 

chytrid fungi in tissues, 
and target-specific (Bsal) 

oligonucleotide probes  

High specificity; 

useful for 
confirming 

presence in infected 

tissue samples 

Labor-intensive; requires 

special antibodies and lab 
expertise 

Quantitative PCR 

(qPCR) 

Gold standard. Detection 

of Bd from skin swabs.  

Highly sensitive; 

detects low levels 
of infection; 

quantifiable results; 

rapid 

Expensive; requires 

specialized equipment; 
vulnerable to laboratory 

errors, such as sample or 

lab contamination. 

Boyle et al., 2004; 

Kriger et al., 2006; 
Retallick et al., 

2006; Hyatt et al, 

2007; Kriger & 

Hero, 2007; Smith, 

2007; Blooi et al., 

2013; Fisher et al., 
2018; Thomas et 

al., 2018 

Standard PCR Amplifies DNA of chytrid 

fungi for detection 

Useful for detecting 

known strains; 
relatively cheaper 

than qPCR 

Lower sensitivity 

compared to qPCR; not 
quantitative; vulnerable to 

laboratory errors, such as 

sample or lab 
contamination. 

Environmental DNA 

(eDNA) 

Detects B. dendrobatidis in 

water and soil samples 

Non-invasive; good 

for large-scale 

monitoring 

Detection does not 

indicate infection in 

specific animals; limited 
by environmental 

degradation of DNA; 

vulnerable to laboratory 
errors, such as sample or 

lab contamination. 

Walker et al., 2007; 

Goldberg et al., 

2015; Olson & 
Chestnut, 2016; 

Schumer & Pilliod, 

2016 

DNA sequencing Used for characterisation 

rather than detection, in 
evolutionary studies, to 

assess pathogen diversity 

Allows strain 

differentiation 

Expensive and resource-

intensive; sample quality 
and DNA degradation can 

affect sequencing 

accuracy 

Farrer et al., 2017; 

Wacker et al., 2023 

 

Culture Techniques Grows the fungus in lab 

settings from infected 
tissues 

Useful for isolating 

and studying 
different fungal 

strains; confirms 

viability 

Time-consuming; requires 

specialized fungal culture 
conditions; not easily 

cultured 

Fisher et al., 2018; 

Robinson et al., 
2020 

Lateral Flow Test (LFT) Rapid immunoassay 
detecting Bd/Bsal antigens 

using antibody-coated 

strips. 

Quick results 
(minutes), field-

deployable, 

minimal equipment 
needed. 

May have lower 
sensitivity/specificity than 

molecular methods, 

qualitative rather than 
quantitative. 

Dillon et al., 2017 

 

Loop-Mediated 

Isothermal Amplification 

(LAMP) 

Amplifies DNA of B. 
dendrobatidis at a constant 

temperature 

Portable; allows in-
field detection 

without advanced 
equipment; faster 

than PCR 

Less widely used and 
validated; can have issues 

with specificity in field 
samples 

Boyle & al, 2013; 

Fischbach et al, 

2018 

 

Field-deployable, 

Isothermal, Nucleotide-

based Detection Method 

(FINDeM) 

CRISPR-based molecular 

DNA detection method 

Can be used on-

site, with 

immediate results 
and minimal costs 

Developed for Bsal only; 

sensitivity is lower than 

qPCR 

Hoenig et al., 

2024) 

 

  



Table 3. Overview of actions that have been used or have potential of being used towards Batrachochytrium 
dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) mitigation. 

 

Mitigation type Details References 

Pre-emergence measures (targeted on preventing disease) 

Biosecurity-oriented 

practices 

Use of quarantine; strict disinfection protocols Fisher & Garner, 2020, 

Thomas et al., 2019 

Amphibian trade 

restrictions 

USA, Europe, Canada and Australia have taken heed of the danger 

Bsal poses and tightened trade regulations 

Thomas et al., 2019  

Gray et al., 2015 

International and local 

institutional 

recognition 

The World Organisation for Animal Health has declared Bd and 

Bsal as notifiable diseases, however local governments should 

ideally institute internal reporting protocols  

Schloegel et al., 2010 

Creation and 

management of 

geographic refuges 

Areas free of Bd/Bsal: based on preventing Bd introduction, 

implementing of strict biosecurity protocols. 

Woodhams et al., 2011 

Post-emergence measures (targeted on managing disease) 

Ex situ programmes 

and translocations 

Captive breeding for reintroductions and reinforcements, as well 

as the potential selective breeding and/or translocation of resistant 

or tolerant individuals, cryopreservation banks  

Garner et al., 2016, 

Thomas et al., 2019, 

Knapp et al., 2024, 

Scheele et al., 2019 

Mitigating other 

threats  

Control of comorbidities, habitat degradation, invasive species, 

etc. The aim is to decrease mortality or sub-lethal negative impacts 

arising from other causes different to Bd or Bsal. This can also 

allow demographic compensatory mechanisms to operate 

efficiently. 

Scheele et al., 2019,  

Fisher & Garner, 2020, 

Valenzuela-Sánchez et 

al., 2022 

Creation and 

management of 

environmental 

refuges 

Based on manipulating environmental conditions to decrease 

suitability for Bd, decreasing disease-associated mortality rates  

Scheele et al., 2019, 

Garner et al., 2016 

Manipulation of Bd 

virulence 

Although laboratory settings show attenuation in Bd virulence 

with frequent Bd passages, this has not been found to be true in 

the wild. The method remains yet untested and may not prove 

efficient. 

Scheele et al., 2019 

Vaccination Even when an immune response can be obtained, susceptibility to 

infection or disease might not be reduced. There is evidence of 

behavioural and acquired resistance in three species after exposure 

to live and dead Bd zoospores.  

Woodhams et al., 2011 

Garner et al., 2016,  

Thomas et al., 2019, 

Kaganer et al. 2023, 

McMahon et al. 2014 

Biocontrol with 

predators of Bd 

Zooplankton, microcrustaceans Woodhams et al., 2011 

Bioaugmentation using 

probiotic therapy 

Aimed at encouraging the maintenance of topical protective 

microbiota, its effectiveness in the wild remains unclear 

Woodhams et al., 2011, 

Garner et al., 2016, 

Thomas et al., 2019 

Use of pathogens of 

Bd/Bsal 

Use of mycoviruses: recently the first Bd mycovirus BdDV 1 was 

discovered and characterised, no in vivo studies yet 

Woodhams et al., 2011, 

Clemons et al., 2024 

Reducing contact 

between susceptible 

and tolerant hosts 

An experiment to test the effectiveness of exclusionary fences to 

limit the contact of individuals of a highly susceptible species with 

potential Bd reservoirs is being conducted in Southern Chile 

A. Valenzuela-Sánchez, 

pers. Comm. 


