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ABSTRACT Novel and repurposed antiviral drugs are available for the treatment of
coronavirus disease 2019 (COVID-19). However, antiviral combinations may be more
potent and lead to faster viral clearance, but the methods for screening antiviral
combinations against respiratory viruses are not well established and labor-intensive.
Here, we describe a time-efficient (72-96 h) and simple in vitro drug-sensitivity assay for
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using standard 96-well
plates. We employ different synergy models (zero interaction potency, highest single
agent, Loewe, Bliss) to determine the efficacy of antiviral therapies and synergistic
combinations against ancestral and emerging clinical SARS-CoV-2 strains. We found
that monotherapy of remdesivir, nirmatrelvir, and active metabolite of molnupiravir
(EIDD-1931) demonstrated baseline EC50s within clinically achievable levels of 4.34 mg/L
(Cl: 3.74-4.94 mg/L), 1.25 mg/L (Cl: 1.10-1.45 mg/L), and 0.25 mg/L (Cl: 0.20-0.30 mg/L),
respectively, against the ancestral SARS-CoV-2 strain. However, their efficacy varied
against newer Omicron variants BA.1.1.15 and BA.2, particularly with the protease
inhibitor nirmatrelvir. We also found that remdesivir and nirmatrelvir have a consistent,
strong synergistic effect (Bliss synergy score >10) at clinically relevant drug concentra-
tions (nirmatrelvir 0.25-1 mg/L with remdesivir 1-4 mg/L) across all SARS-CoV-2 strains
tested. This method offers a practical tool that streamlines the identification of effective
combination therapies and the detection of antiviral resistance. Our findings support
the use of antiviral drug combinations targeting multiple viral components to enhance
COVID-19 treatment efficacy, particularly in the context of emerging viral strains.

KEYWORDS SARS-CoV-2, Omicron, COVID-19, infection, in vitro assay, drug synergy

B road-spectrum antivirals approved for treating severe acute respiratory syndrome Editor Jared A. Silverman, Bill & Melinda
coronavirus 2 (SARS-CoV-2), such as remdesivir, molnupiravir, favipiravir, and  Gates Medical Research Institute, Cambridge,
nirmatrelvir, target key viral enzymes including RNA-dependent RNA polymerase (RdRp) Massachusetts, USA
and the main protease (Mpro or 3Cl protease) (1-5). While these drugs have pro- Address correspondence to Maximillian
ven largely clinically ineffective as monotherapies against coronavirus disease 2019  Voodal,mwoodall@uc.ac.uk, Claire M. Smith,
(COVID-19), combining these broad-spectrum antivirals, which target different stages CIMEMIEGAE SO 2 EEITeIne;

’ jstanding@ucl.ac.uk.
of the virus’s replication cycle or host response, has shown promising in vitro efficacy
and potential clinical benefits (6, 7). This approach follows the success of other combina-
tion therapies in treating viral infections like HIV and hepatitis C (8, 9). For instance, See the funding table on p. 13.
in immunocompromised patients, combinations of direct-acting antivirals (nirmatrel- Received 13 August 2024
vir/ritonavir with molnupiravir (EIDD-2801), remdesivir, or a monoclonal antibody) were Accepted 23 November 2024
more effective than monotherapy, achieving sustained viral clearance in 85.4% of cases ~ Published 17 December 2024
(10). Despite potential mutations in the viral genome, these broad-spectrum antivirals Copyright © 2024 Woodall et al. This is an open-

remain effective against various SARS-CoV-2 variants and other RNA viruses (including ~ accessarticle distributed under the terms of the
Creative Commons Attribution 4.0 International

license.

The authors declare no conflict of interest.

February 2025 Volume 69 Issue 2 10.1128/aac.01233-24 1


https://crossmark.crossref.org/dialog/?doi=10.1128/aac.01233-24&domain=pdf&date_stamp=2024-12-17
https://doi.org/10.1128/aac.01233-24
https://creativecommons.org/licenses/by/4.0/

Full-Length Text

MERS-CoV, Ebola, influenza) (11-13), but continuous screening against newly emerging
variants is essential to ensure the efficacy of existing treatments.

Phenotypic high-throughput screening, particularly assays that combine reporter
cells and wild-type viruses (14), is an efficient method for identifying potential drug
candidates (15) or repurposing clinically approved drugs (16). However, these assays
face limitations with cross-lab standardization, crucial for ensuring data reproducibility. A
notable instance of this issue was the prioritization of hydroxychloroquine for COVID-19
treatment. Initial reports suggested an EC50 of 0.24 mg/L for hydroxychloroquine (17),
which was significantly lower (between 6- and 24-fold) than those reported by other
groups (18). Despite this discrepancy, it led to the premature belief that hydroxychloro-
quine could be effective at clinically achievable concentrations, which it is not (19-21).

Standardization is vital, particularly regarding host cell types, time course, use of
drug efflux inhibitors, addressing plate edge effects, and uniform statistical analysis, to
improve the robustness and reproducibility of antiviral assays. Furthermore, the necessity
for biosafety level 3 (BSL-3) containment presents additional challenges, especially in
facilities that are not fully equipped for high-throughput research.

In this study, we develop and validate a time-efficient and simple method to
quantify and analyze drug synergy enabling scalable high-throughput applications with
other small molecules. We use this to identify the EC50 values for monotherapies and
combinations of remdesivir, the active moiety of molnupiravir (EIDD-1931), nirmatrelvir,
and favipiravir using clinically achievable drug ranges. The assay provides reproducible
data across various clinical strains and is based on time-effective and simple technology
and open-source software, making it feasible for both advanced and resource-limited
facilities worldwide.

MATERIALS AND METHODS
Virus strains and cell lines

The SARS-CoV-2 isolate hCoV-19/England/2/2020 (classified as part of the Wuhan-Hu-1
lineage obtained from Public Health England, London) was used as the “ancestral” strain
in this study. Clinical isolates of more recent SARS-CoV-2 variants were propagated
from nasal swabs collected in a parallel virology study (22, 23). Specifically, we used
three clinical SARS-CoV-2 isolates: AQ23 (BA.2 with L5F mutation), BD46 (BA.2), and
AQ28 (BA.1.1.15). (22, 23). Whole-genome sequencing was performed as outlined in
refs. (22, 23). Briefly, amplicon sequencing was performed with a target depth of 5,000x
per genome on an lllumina sequencer using 2 X 150 bp paired-end reads. The entire
processing of raw reads to consensus was carried out using nf-core/viralrecon pipeline
(24).

African green monkey kidney cell line Vero E6 (ATCC: C1008-CRL-1586) was provided
and authenticated by The Francis Crick Institute, London, UK, for use in this study. Vero
E6 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 5% fetal calf serum (Thermo Fisher) and 1x penicillin/streptomycin (Sigma-Aldrich).
Media was replaced three times a week, and cells were maintained at 37°C and 5% CO,.

Calu-3 were purchased from ATCC (HTB-55 batch no.: 70042799) and maintained
in DMEM supplemented with 5% fetal bovine serum (FBS) (Thermo Fisher) and
1% penicillin/streptomycin. Media was replaced three times a week, and cells were
maintained at 37°C and 5% CO,.

Viral propagation

For virus propagation, Vero E6 cells were infected with a multiplicity of infection (MOI)
0.01 PFU/cell, as performed previously (25, 26), in serum-free DMEM supplemented with
1% nonessential amino acids (Thermo Fisher), 0.3% (w/v) bovine serum albumin (Sigma),
and 1x penicillin/streptomycin. The viruses were harvested after 48 h, aliquoted, and
stored at —80°C.
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Cell seeding and preparation

Cells were seeded on nine 96-well plates per experiment, with three replicate plates
allocated for viral toxicity, cytotoxicity, and cytomorbidity assays, the three absorbance
results from each plate were averaged per condition (Fig. 1). Plates allocated for
cytotoxicity of the drugs and viral infection parameters were seeded with 2 x 10* cells
per well, in 100 pL of 5% v/v FBS media (Sigma). The remaining three plates were
designated for cytomorbidity studies (inhibition of cell proliferation), with each plate
receiving fewer cells per well to allow for expansion (4 x 10%) in 100 uL of 5% FBS media
(27). Post-seeding, plates were agitated to ensure an even distribution of cells across the
wells and incubated for 24 h at 37°C and 5% CO,.

Drug plate preparation and infection protocol

Drug concentrations were chosen to fit within clinically achievable ranges (NIH
COVID-19) (4, 22, 28, 28-31) and are detailed in the example drug distribution map
(Fig. 2). A premade drug plate was prepared as an exact copy of the distribution shown
in Fig. 2 but at 4x the final desired concentration of each drug. Then, 50 uL of the
4x drug solution was added from the premade drug plate to the appropriate wells of
the 96-well plate containing the cells. The compounds used are as follows: remdesivir
(Bio-Techne, Cat# 7226), favipiravir (Tocris Bioscience, Cat# 7225), EIDD-1931 (Sigma-
Aldrich, SML2872), and nirmatrelvir (PF-07321332, Cambridge Bioscience, HY-138687).
Each compound was solubilized in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, 472301)
at a stock concentration of 10 g/L and subsequently diluted in serum-free DMEM to
the required concentrations. Stock solutions were stored at —20°C. Where indicated, we
also added P-glycoprotein (Pgp) inhibitor CP-100356 at 1 mg/L (4x concentration) to the
drug plate so that, when the cells were added, the final concentration in the well was
0.25 mg/L (50 pM). Next, 50 L of 4x viral inoculum was added to the corresponding
wells, resulting in a final MOI of 0.01. This MOI reflects the ratio of infectious viral
particles to target cells, calculated based on an estimate of 2 x 10* cells and 2 x 10°
plagque-forming units per well. An MOI of 0.01 was selected to enable multiple viral
replication rounds, enhancing antiviral efficacy assessment and aligning with standard
methodologies (27, 32-34). Control wells received either 50 puL of DMEM, 50 pL of 4x
mitomycin C (4 mg/mL for final concentration of 1 mg/mL; Sigma-Aldrich, M4287), or
100% DMSO, to serve as uninfected controls, no proliferation (cytomorbidity) controls,
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FIG 1 Schematic of method and experimental workflow used for standardizing the testing of monotherapy and combination therapies against SARS-CoV-2.

(1) Vero E6 or Calu-3 cells are cultured at 37°C and 5% CO,. (2) Vero E6 or Calu-3 cells are seeded into 96-well plates (seeding density is given) and incubated

overnight. (3) Cells are infected with SARS-CoV-2 (viral inhibition) or incubated with the drugs alone to test for cell toxicity or morbidity and incubated for 72 or

96 h. (4) After peak viral toxicity, adherent cells are fixed and stained with crystal violet. (5) Crystal violet staining is quantified by absorbance (595 nm) using a

plate reader. (6) Data are analyzed using R. Graphic made using Biorender.com.
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FIG 2 Example setup for a microplate assay. Example plate maps showing drug concentrations for monotherapies and

combinations for each well of a 96-well plate. (a) Viral toxicity, (b) drug cytotoxicity, and (c) drug cytomorbidity.

and 100% cytotoxicity controls, respectively. Plates were incubated for 72 or 96 h at 37°C
and 5% COs.

Post-infection processing and staining

Each well received 50 pL of a 5x fixative solution (15% w/v paraformaldehyde + 0.1% v/v
crystal violet, PolySciences) and was left to incubate at room temperature for 30 min.
Following incubation, the fixative solution was aspirated and discarded.

Wells were then washed three times with water and allowed to air dry. Once dried,
absorbance at 595 nm was measured for each well using Spiral Averaging using FLUOstar
Omega plate reader (BMG Labtech). Here, the plate reader takes 100 measurements for
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each well on a 6 mm spiral orbit and calculates an average. A schematic of the method is
presented in Fig. 1.

Antiviral statistical analysis

The dependent variable for the statistical analysis of antiviral effect was the percentage
inhibition read from the optical density (35). Percent inhibition / for each well of a plate
with i rows and j columns was calculated by

Iij = (Dij — Dy)/(Dee = Do) X 100,

where [;; is the percent inhibition in row i column j, Dj; the observed optical density
from the well in row i column j, D, the mean optical density in the virus control wells,
and D, the mean optical density in the cell control wells.

To account for the edge effect, plate mean normalization was applied, where each
well’s signal was compared ith the mean signal of the entire plate before further analysis:

Dcorrected = Doriginal/Dplank Where Dpjank is the observed optical density from the
same well from a blank plate.

This normalization step adjusts for systematic variations across the plate and was
adapted from published methodologies (36, 37).

The Hill equation was then applied to this data estimating the predicted inhibition P
as follows:

Pyj = Eg + Emax Cly / (EC50™ + C),

where Pj; is the predicted viral inhibition in row i column j, Cj; is the drug concentra-
tion in row i column j, and Eg, Emayx, EC50, and A are the model parameters relating to the
effect with no drug present, the maximum possible effect, the concentration required to
elicit half the maximum effect, and the shape (Hill) parameter, respectively.

Eight possible models were fitted to each monotherapy data set, the simplest being
with only EC50 estimated, Eq fixed to O, Enax fixed to 100 and A fixed to 1, and the
most complex with all parameter estimated. Every possible combination of fixed and
estimated parameters (with EC50 always estimated) was tested. Models were ranked
based on Akaike information criteria (AIC), the model with the lowest AIC chosen. The nls
function in R (version 4.3.2) was used.

Synergy models for assessing drug combination efficacy

Synergy scores are calculated by R package SynergyFinder (38). Synergy score (S) is the
change in observed drug response (ycompb) compared with the noninteractive response
(/non-interaction) defined by the model: S = ycomb-Ynon-interaction

Given the distinct mechanisms of action—EIDD-1931 induces viral mutations,
remdesivir terminates RNA chain extension, and nirmatrelvir inhibits protease—we give
the Bliss independence model based on the assumption that the two drugs work
independently: ygjis = Y1+ Y2 — Y1. Yo Where y;, y, represents the monotherapy drug
response.

Loewe additivity (Loewe), highest single agent (HSA), and zero interaction potency
(ZIP) models are the three other major synergy models (39, 40); we also provide these in
the supplementary data for our study.

RESULTS
Assay optimization and standardization

Our experimental design enables simultaneous testing of four individual drug dilutions
and four combination treatments (Fig. 2) to assess potential synergy (Fig. 3a and b) as
measured by the absorbance of crystal violet present in viable cells (Fig. 3c and d).
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We found that peak viral toxicity for all strains tested occurred 72 h post-infection
(mean + SD: 48.3 + 3.84 vs 86.5 + 0.75 PFU/well; n = 6) (Fig. 3e). This time point provided
the widest range for fitting the EC50 model and resulted in a desirable >0.5 Z-factor for
reproducibility (absorbance difference 0.51 + 0.7, n = 6) (Fig. 3f).

To control for potential false positives, caused by restricted cell growth in the
absence of viral infection, we performed cytomorbidity assessments using the same
drug concentrations (27). Here, we found that no drug concentration tested induced a
cytomorbidity effect that reached >50% inhibition other than favipiravir (Fig. 3g through
j), which also demonstrated a cytotoxicity >50% (CC50 219.47 mg/L) (Fig. 3d and h). We
then set the limits of our model by first comparing fixed or estimated E,ax and Eq (Fig.
S1a through d) and adjusted our absorbance readings to account for the “edge effect” for
more accurate and reproducible estimation of Ey,3x and an optimal fit of the model (Fig.
S1e through h).

Using an estimated Eqax and A (lowest AIC: Table S1) mode, we report EC50 (+ SEM)
values (Fig. 2k through n) of 4.34 + 0.30 mg/L for remdesivir (Fig. 2k) and 1.25 + 0.10 mg/L
for nirmatrelvir (Fig. 3m). These values are >10-fold higher than those reported in other
in vitro assays (1). However, we did not use a Pgp inhibitor to limit compound efflux
in our assays, which could account for this difference. To investigate this further, we
added a Pgp inhibitor (CP-100356 at 0.25 mg/L) and found that this reduced the EC50 of
remdesivir 8-fold to 0.54 + 0.042 mg/L (Fig. S2a). The EC50 of nirmatrelvir also reduced
25-fold in the presence of the Pgp inhibitor to 0.05 + 0.045 mg/L (Fig. S2c). EIDD-1931
is not a substrate for Pgp (41), and therefore, the EC50 did not change in the presence
of the Pgp inhibitor (0.25 + 0.023 mg/L compared with 0.25 + 0.025 mg/L) (Fig. S2d).
Favipiravir proved ineffective as a viral inhibitor at all concentrations tested, similar to
what others have found (16). The addition of the Pgp inhibitor did not alter the drug
effectiveness of favipiravir (Fig. S2b).

Interestingly, the type of host cell used affected the potency of nirmatrelvir in the
presence of Pgp inhibitor, enhancing its effectiveness by up to 10%fold in Calu-3 cells
(7.44 + 0.10 mg/L to 0.025 + 0.005 mg/L) compared to 1000-fold in Vero E6 cells (1.25 +
0.10 mg/L to 0.050 + 0.045 mg/L) (Fig. S3a through d; Table 1). While Pgp inhibitors are
valuable tools in research, their use in clinical settings is limited, and there are concerns
about the potential adverse effects due to the alteration of the pharmacokinetics of
multiple drugs, leading to increased drug toxicity (42, 43). Therefore, we omitted their
use in the rest of this study.

We demonstrate that Calu-3 cells, a human airway cell line permissible to SARS-CoV-2
infection, can also be employed effectively in this assay allowing acquisition of reprodu-
cible EC50 values (Fig. S3a through d). However, we continued with Vero E6 cells as they
are highly susceptible to all SARS-CoV-2 strains tested in our study, allowing for more
direct comparison with previous research.

Analysis of synergistic drug combinations against the ancestral strain of
SARS-CoV-2

Our experimental setup allowed us to evaluate the effect of antiviral drugs combinations
and determine synergy scores of up to four 2 x 2 drug combinations per run. We tested
combinations of remdesivir and nirmatrelvir, remdesivir and EIDD-1931, and nirmatrelvir
with EIDD-1931 (n = 6). Favipiravir was excluded from this analysis due to its high
cytotoxic effects.

We found that the most synergistic drug combinations were 0.5 mg/L nirmatrelvir
and 4 mg/L remdesivir, which achieved a Bliss synergy score of 32.6 (+ 8.1, n = 6) (Fig.
4a and b) in Vero E6 cells and 43.7 (= 14.5, n = 3) in Calu-3 cells (Fig. S4; Table S2).
This was supported by similar scores in the ZIP, HSA, and Loewe models, indicating
consistent model agreement (Tables S2 and S3). Combining remdesivir (4 mg/L) with
EIDD-1931 (0.125 mg/L) also yielded a synergistic Bliss score (29.25 + 12.7, n = 6) (Fig.
4c and d), which was supported by most other synergy models (Table S2). In contrast,
the combination of nirmatrelvir and EIDD-1931 only showed additive effects (Fig. 4e and
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FIG 3 Antiviral efficacy and cytotoxicity of various compounds against ancestral SARS-CoV-2 strain in
Vero E6 cell culture. (a and b) Representative image of a plate post-treatment and after staining with
crystal violet for adherent viable cells for viral toxicity (a) and drug cytotoxicity (b). (c and d) Absorbance
values at 595 nm quantified on a FLUOstar Omega plate reader, for viral toxicity (c) and drug cytotoxicity
(d), with the color scale indicating red as the lowest absorbance (highest viral toxicity) and white as
the highest absorbance (lowest viral toxicity). (e) Time course of viral toxicity for the ancestral strain
against mock-infected wells, showing means + SD. (f) Difference in absorbance at 595 nm for mock
infected vs infected wells, at 48 h and 72 h post-infection time points, Z-factor for the assay at these time
points is given in the table below. The dose-response curves for remdesivir (g), favipiravir (h), nirmatrelvir
(i), and EIDD-1931 (j) showing % viral inhibition (blue lines) and cytotoxicity (red lines) at various drug
concentrations. EC50 is given, and error bars represent the standard error (n = 6). The cytomorbidity-
response curves at 72 h showing % cytotoxicity (solid red lines) and cytomorbidity (dashed red lines) at
various drug concentrations for remdesivir (k), favipiravir (I), nirmatrelvir (m), and EIDD-1931 (n).
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f), with a Bliss score near zero (highest score of 5.1 £ 11 at 0.5 mg/L and 2 mg/L, n = 6),
suggesting minimal interaction. Synergism of cytotoxic effects was minimal (<0 Bliss
cytotoxicity synergy score), with only EIDD-1931 2 mg/L and remdesvir 4 mg/L showing a
possible cytotoxicity increase (15.25 + 8.31, n = 6), though this did not significantly
influence synergy calculations (Table S5).

In conclusion, these synergy scores suggest that the combination of remdesivir and
nirmatrelvir demonstrates enhanced antiviral efficacy against the ancestral strain of
SARS-CoV-2 in Vero E6 cells, showing promise for potential therapeutic use. However,
further investigation is needed to confirm this efficacy across other viral strains and cell
lines.

Testing monotherapy and drug combinations against emerging clinical
isolates

We then tested the efficacy of these antiviral drugs against newly emerged SARS-CoV-2
clinical isolates with distinct viral genome sequences. All three isolates tested were
Omicron variants (lineage BA 1.1.15 and BA 2), each presenting distinct, albeit similar,
sequences (Fig. 5a). For instance, the AQ23 isolate (BA 2 + L5F) harbors distinct mutations
from BD46 isolate (also BA 2) L3606F in NSP6, P2685T in NSP3, ntC26681T (F53F) in the M
gene and L5F in the S gene (Fig. 5a).

Each isolate presented different time-dependent viral toxicity characteristics in Vero
E6 cells, with the ancestral strain and BD46 (BA 2) generating significantly (P < 0.001 n
= 6) more cell death at 72 h than AQ28 (BA 1.1.15) and AQ23 (BA 2) (Fig. 5b). However,
all clinical isolates produced significant (P < 0.001) viral toxicity by 96 h when comparing
infected and mock-infected wells (Fig. S5b). This time point also produced a higher assay
reliability, as measured by Z'-factor (ancestral 0.8, AQ28 0.8, AQ23 0.3, BD46 0.8) (Fig. S5¢)
and was therefore selected for the drug-sensitivity assay.

We found that the EC50 of the drug monotherapies (remdesivir, nirmatrelvir,
EIDD-1931, and favipiravir) remained fairly consistent across ancestral and clinical strains.
Remdesivir showed a slight increase in sensitivity against AQ23 (EC50: 2.90 + 0.35 mg/L,
P < 0.05, n = 3) and a reduced activity against BD46 (EC50: 7.77 £ 0.47 mg/L, P < 0.001, n
= 3) compared with the ancestral strain (EC50: 4.34 + 1.21 mg/L, n = 3), with no changes
against AQ28 (EC50: 4.94 + 0.97 mg/L, n = 3) (Table S5d). Nirmatrelvir also displayed
consistent efficacy, with AQ28 showing an EC50 of 1.35 + 0.25 mg/L (ns, n = 3), a slight
increase against AQ23 (EC50: 0.55 £ 0.10 mg/L, P < 0.001, n = 3) and a decrease against
BD46 (EC50: 2.10 £ 0.08 mg/L, n = 3) compared with the ancestral strain (EC50: 1.25
+ 0.17 mg/L, n = 3) (Fig. S5e). EIDD-1931 maintained stable activity across all strains
(EC50 ~0.25 mg/L, n = 3) (Fig. S5f). Favipiravir was ineffective against all strains (Fig.
S5g). Given the experimental error range (Cl ratios: remdesivir 1.322-fold, nirmatrelvir
1.318-fold, and molnupiravir 1.500-fold), only the slight increase in EC50 for BD46 with
remdesivir and nirmatrelvir is noted, likely presenting little clinical relevance (Fig. 5¢).

The combination of nirmatrelvir and remdesivir exhibited the highest synergistic
effects across all isolates (Fig. 5d), with the optimal dose combination of 1 mg/L
nirmatrelvir, 4 mg/L remdesivir, achieving a maximum synergy score of 85.7 + 6.8 for
AQ28 (n =3-8), 80.4 + 4.1 for BD46 (1 mg/L nirmatrelvir, 4 mg/L remdesivir, n = 3-8), 33.1
+ 6.3 for AQ23 (0.25 mg/L nirmatrelvir, 4 mg/L remdesivir, n = 3-8), and 32.6 + 8.1 for the
ancestral strain (0.5 mg/L nirmatrelvir, 4 mg/L remdesivir, n = 3-8). Drug combinations
of nirmatrelvir + EIDD-1931 and EIDD-1931 + remdesivir showed limited synergistic
activity across all strains, as indicated by scores close to or below zero without significant
deviation from the ancestral strain. Combining all Bliss synergy scores for nirmatrelvir
and remdesivir across all isolates and concentrations indicates a mean score of 10.48.
This score (>10) represents a consistent synergistic mechanism that has been linked to
improved therapeutic outcomes due to enhancing the potency of drug combinations
(44) (Fig. 5e).
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FIG 4 Antiviral drug combination efficacy against ancestral SARS-CoV-2 strain in Vero E6 cells. Heat maps represent
viral inhibition and 3D matrices represent Bliss synergy scores for the same respective drug combinations for nirmatrel-
vir +remdesivir (a and b), nirmatrelvir +EIDD-1931 (c and d), and EIDD-1931 + remdesivir (e and f) combinations. Inhibition
color scales represented as blue for high and white for low inhibition. Potential synergistic effects (0-100) are depicted in blue,

no effect (=0) in white, and possible antagonistic effects (-100 to 0) in yellow. The color scales are given by the distance from 0.
Showing mean scores (n = 6).

DISCUSSION

Here, we describe a simple in vitro drug-sensitivity assay for SARS-CoV-2 that we used to
determine the efficacy of antiviral therapies and synergistic combinations against both
ancestral and newer SARS-CoV-2 strains obtained from clinical samples. Importantly, as

indicated below, we describe the steps we have taken to standardize our assay and make
code freely available for comparative analysis.

February 2025 Volume 69 Issue 2 10.1128/aac.01233-24 10


https://doi.org/10.1128/aac.01233-24

Full-Length Text Antimicrobial Agents and Chemotherapy

L L] (] ] gene
a lineage ] E
BA.1.1.15% Ewv
W BA2 N
NSP12
AF - L NSP13
B’ g W ORF1a(nspi-11)
M ORF1ab
0.5 B ORF3a
M ORF6
o, g ORF7b
@ s
SR EEOL N R bR oS AN O e SOZO SOORA T LT L T XA SO T XB0

Rem ivir Nirmatrelvir EIDD-1931
b 100 Ancestral 2 C emdes atre 93
. AQ28 ——F &
S
2
s 50
%
o
=
.Tg A
> 0-
1 e & -\
0 5 6 @B D
O g N
O & S
?~
d e )
(421
I
g o
< S 50
]
>
2 ° train
§~ < AQ23
o a 73 AAO & Z égig
A © Ancestral
? ° & o A%
= 0 528 > < (
o m <TO_° Moy
< o & ]
CIC.) 5 e < @O
a ® o 5}
€ ° d
o © o °
0

BD46

FIG 5 Characterization of antiviral drug efficacy and synergy across SARS-CoV-2 variants in Vero E6 cells. (a) Heat map showing the whole-genome landscape
of consensus mutations within different clinical isolates (AQ28, AQ23, BD46) compared with the ancestral strain; allele frequency is represented by blue-red
color scale. (b) Time course of viral toxicity generated by the ancestral, AQ28, AQ23, and BD46 viruses, showing means + SD. Compared with mock-infected via
ANOVA with Welch correction, using Dunnett’s multiple comparison test, (c) EC50 values for remdesivir, nirmatrelvir, and EIDD-1931 against AQ28, AQ23, and
BD46 viruses, compared with the ancestral strain via ANOVA with Welch correction, using Dunnett’s multiple comparison test, P-values given. (d) 3D synergy
maps showing Bliss synergy scores for drug combinations against AQ28, AQ23, and BD46 variants, where blue indicates high synergy, white indicates no effect,
and yellow indicates antagonistic effects. (e) Violin plot of Bliss synergy scores for nirmatrelvir-remdesivir, nirmatrelvir-EIDD-1931, and EIDD-1931-remdesivir
combinations, irrespective of concentration, for the different strains, with mean scores annotated. The color scale for both the heat map and synergy maps is
provided. Statistical significance is indicated (*P < 0.05, **P < 0.01, ***P < 0.001).

First, we included a cytomorbidity assay to test for potential false positives, aligning
with recent practices (27). Second, we used different SARS-CoV-2 clinical isolates and
selected time points post-infection, resulting in complete cell death as key indicators for
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measuring drug efficacy and synergy, improving assay reproducibility, and establishing
reliable measurement standards. Finally, we show this assay is applicable for both Vero
E6 and Calu-3 cells and show the impact of cellular model selection for antiviral testing,
including the use of Pgp inhibitors.

Further refinements, such as addressing the plate edge effect (45) and estimating
Emax in our model fit, led to minor modifications in the EC50s of monotherapy across
SARS-CoV-2 isolates, but will contribute to data quality and consistency. We applied
plate mean normalization to account for edge effects, a method adapted from pub-
lished methodologies (36, 37). This normalization step ensures more reliable results by
mitigating systematic variations across the plate, ultimately enhancing the robustness of
antiviral efficacy assessments.

We observed differences in drug effectiveness between Vero E6 and Calu-3 cells.
Both cell types express the Pgp efflux pump (MDR1/ABCB1), which often requires a Pgp
inhibitor to prevent compound export and can affect antiviral activity (46, 47). These
differences highlight the impact of cellular model selection and Pgp susceptibility. Other
models are being developed, such as engineered A549 and H1299 human cell lines with
exogenous receptor expression show high susceptibility to SARS-CoV-2 variants (48, 49)
and VeroE6-Pgp-KO allows for control of Pgp activity (50). The incorporation of such
physiologically relevant cell lines could enhance the accuracy of pre-clinical drug testing
within this assay. Importantly, our assay design permitted the effective use of Calu-3
cells, demonstrating its versatility and potential applicability to other cell models.

Indeed, our results are in line with similar, but more labor-intensive work using a
secondary plaque assay following initial drug exposure (51). This work reported similar
monotherapy EC50 values for remdesivir, nirmatrelvir, and molnupiravir in Calu-3 cells
with a Pgp efflux inhibitor as our study (e.g., 0.26 mg/L, 0.047 mg/L, and 0.012 mg/L,
respectively) (51). Both studies also achieved similar peak Bliss synergy scores (~30) for
nirmatrelvir and remdesivir combinations, demonstrating the robustness and efficiency
of our simpler streamlined approach. Additionally, emerging methods like the two-way
pharmacodynamic model that may more accurately assess such drug combination
synergy at these clinically untested concentrations can aid in improving cross-study
comparisons and data integration (52).

In terms of drug efficacy, our results indicate that SARS-CoV-2 strains may have
different susceptibilities to remdesivir and nirmatrelvir as monotherapies, with certain
mutations like those present in the BD46 isolate (BA.2) potentially decreasing sensitivity
to antivirals. This response is consistent with recent work showing increased median
remdesivir and nirmatrelvir EC50s (0.75 mg/L and 0.28 mg/L, respectively) compared
with a similar reference strain (hCoV/Korea/KCDC03/2020; >99.5% sequence similarity
to the ancestral strain) (53). While this may have little clinical relevance immediately,
it highlights the complexity of reporting drug response across different SARS-CoV-2
variants/isolates and underscores the need for more research to monitor the develop-
ment of drug resistance due to viral mutations (1, 22, 23). Despite potential mutations
in the viral genome that may confer partial resistance (e.g., remdesivir: E796D, E802D;
nirmatrelvir: S144A, E166V) (54-58), broad-spectrum antivirals can remain effective as
combination therapies. To this point, it is essential to have rapid and accurate in vitro
assays to detect the development of antiviral resistance as part of a global strategy for
viral outbreak preparedness (59).

Combination therapies, targeting different parts of the viral replication cycle, can
offer an effective solution to these issues (51, 60-64). Our data show that combined
remdesivir and nirmatrelvir demonstrated a consistently strong synergistic effect across
all strains. High synergy scores > 10, such as those derived from Bliss independence
models, have been linked to improved therapeutic outcomes as they reflect enhanced
potency of drug combinations (44). This is especially important in antiviral therapies,
where studies have shown that synergistic drug interactions can lead to more efficient
viral suppression and improved patient recovery times compared with monotherapy (6,
10, 61). While we observe some antagonistic interactions between these drugs at high
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concentrations, this does not undermine their clinical usefulness, as seen with effective
HIV therapies (65). This aligns with work demonstrating that remdesivir and nirmatrel-
vir have significant synergistic activity (HSA > 10) against the 20A.EU1 strain, which
translated to positive clinical outcomes in an immunocompromised severe COVID-19
patient (61). This suggests that targeting multiple viral components, such as Mpro and
RdRp (66), with protease inhibitors like nirmatrelvir and viral polymerase inhibitors like
remdesivir, may maintain efficacy over time, despite emerging variants, especially as
resistance mutations have not become predominant in the viral population (67). Indeed
an ever-expanding list of effective SARS-CoV-2 viral protease inhibitors (2, 63, 68) and
RNA polymerase inhibitors (64, 69, 70) may fit this strategy.

In conclusion, our study presents a time-efficient method for evaluating the efficacy
of broad-spectrum antiviral drugs, both as monotherapies and in combination. We
demonstrate the benefits of using synergistic drug combinations against various
SARS-CoV-2 variants. With the continual evolution of the virus, ongoing efficacy testing
and early resistance monitoring are essential. This method offers a practical tool that aids
the identification of effective combination therapies and detection of antiviral resistance,
better equipping researchers to address the evolving challenges of COVID-19 treatment.
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