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ABSTRACT
Hydrogen-bond networks in associating fluids can be extremely robust and characterize the topological properties of the liquid phase, as in
the case of water, over its whole domain of stability and beyond. Here, we report on molecular dynamics simulations of hydrogen fluoride
(HF), one of the strongest hydrogen-bonding molecules. HF has more limited connectivity than water but can still create long, dynamic
chains, setting it apart from most other small molecular liquids. Our simulation results provide robust evidence of a second-order percolation
transition of HF’s hydrogen bond network occurring below the critical point. This behavior is remarkable as it underlines the presence of
two different cohesive mechanisms in liquid HF, one at low temperatures characterized by a spanning network of long, entangled hydrogen-
bonded polymers, as opposed to short oligomers bound by the dispersion interaction above the percolation threshold. This second-order
phase transition underlines the presence of marked structural heterogeneity in the fluid, which we found in the form of two liquid populations
with distinct local densities.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0207202

INTRODUCTION

Hydrogen fluoride (HF) is one of the strongest hydrogen-bond
forming liquids known and a key chemical in essential indus-
trial processes, as a catalyst in alkylation units,1 in the production
of aluminum as a precursor of cryolite,2,3 in the production of
organofluorine compounds,4 as well as in silicon wafer etching.5 HF
is known to form persistent hydrogen-bonded structures, includ-
ing linear chains, rings, and branched structures,6 and its complex
behavior under varying thermodynamic conditions makes it one of
the prime candidates for testing our understanding of fluid associ-
ation. This complexity arises from a combination of the capability
to form exceptionally strong hydrogen bonds, the linear nature of
the molecule, and its large electronic polarizability, which is crucial
in determining several thermodynamic and structural properties,
including, for example, a markedly different dipole moment in the
liquid and gaseous phases.

The theoretical framework for associating liquids like HF
has evolved significantly over the years. Early models focused on

simple associating behaviors, but recent developments in Statisti-
cal Associating Fluid Theory (SAFT) and related approaches have
provided a more refined understanding of these systems. In theories
like Wertheim’s, it is not straightforward to incorporate the coop-
erativity effects in hydrogen bonding or the formation of ring-like
structures.7 Recent developments have improved our understanding
of liquids like HF.8–10 Other advances in computational chemistry,
particularly molecular dynamics simulations, have provided new
avenues for investigating the behavior of HF. Ab initio and empir-
ical models have been instrumental in examining HF’s structural
and thermodynamic properties, providing insights into its liquid
state.11–16

Much less information is available about the topological char-
acteristics of HF’s hydrogen-bonded network. The presence or
absence of infinite hydrogen-bond clusters of molecules in an asso-
ciating fluid can strongly influence its properties and has been
linked, for example, to the solubility of small organic compounds,17

the supercritical behavior of water,18–21 the stability of DNA,22 as
well as the surface tension anomaly of water.23,24 A previous anal-
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ysis by Kolafa and Nezbeda25 shows that primitive models for
molecules with asymmetric hydrogen bonding sites, such as ammo-
nia, methanol, or HF, do not predict the formation of percolating
hydrogen-bond networks, in contrast to the case of water.

The HF molecule could be in first instance approximated using
a dipolar hard sphere model.26,27 However, dipolar hard spheres are
now suspected to not admit a liquid–vapor phase transition.28–30 The
addition of a Lennard-Jones potential to the dipolar interaction, as
in a Stockmayer fluid,31 would seem to be a more appropriate choice
to model HF. However, as it was clearly demonstrated by Deraman
et al.,32 the structure of liquid HF is markedly different from that
of a dipolar fluid, and only the addition of a quadrupole moment
reproduces the experimentally determined structure.

Given the rich phenomenology of HF, we aim to investigate
the statistics of hydrogen-bond networks in HF with a more refined
model, using atomistic molecular dynamics.

METHODS

The first semiempirical models for liquid HF date back to 1978,
when Jorgensen and Cournoyer,33 and later Klein et al.,34 developed
early interaction potentials based on ab initio calculations. Later,
Cournoyer and Jorgensen introduced the three-site HFC model.35,36

This model, favoring three-site over two-site configurations, aligned
better with the first neutron diffraction experiments on liquid
HF reported one year later.32 Another three-site model (JV-NP) was
proposed in 1997 by Jedlovszky and Vallauri, which incorporated
long-range corrections for Coulomb interactions.37 Although this
model performed, in general, better than the previous ones, it failed
to replicate the temperature dependence of HF’s density and the
dimer structure.

In fact, the inability to reproduce the properties of the liquid
and vapor phases simultaneously turned out to be a general failure
of all non-polarizable models.

For this reason, Jedlovszky and Vallauri introduced a polariz-
able version of their model (JV-P) to include cooperative effects.38

The JV-P model showed reasonable accuracy across various thermo-
dynamic states and radial distribution functions in the liquid state,
as well as an improved description of the isolated dimer regarding

available experimental39 and ab initio results.40 In particular, later
experiments by Pfeiderer et al.41 proved the model’s ability to repro-
duce the elongation of the hydrogen bond that occurs when moving
from the liquid to the gas phase.42 In response to new experimental
measurements on partial structure factors in a broad range of ther-
modynamic states,43,44 Pártay, Jedlovszky, and Vallauri introduced
the PJV-P model,11 essentially a complete reparameterization of JV-
P to match the newly available experimental data. The PJV-P model
forms the foundation for the model used in this work. The orig-
inal PJV-P model represented the polarizability using an induced
point-dipole, which required an iterative, self-consistent field (SCF)
procedure for accurate determination, and long-range contribu-
tions were taken into account using the reaction field method. This
approach was especially effective for Monte Carlo (MC) simulations
involving minimal perturbations to the system. However, induced
dipoles necessitated additional handling beyond point charge inter-
actions, a feature not inherently supported by common atomistic
MD simulation packages. We adapted the PJV-P model by replacing
the point dipole with a Drude oscillator and treated long-range con-
tribution using the smooth Particle Mesh Ewald (sPME) algorithm.
In this adaptation, which we call PJVP-Drude (PJVP-D), a Drude
charge (qD) was positioned on the Drude site (D), with the fluorine
(F) site’s charge adjusted to preserve overall neutrality. The Drude
charge was connected to the fluorine via a harmonic spring potential,
forming an oscillating dipole. In principle, one can recover the limit
of a point dipole when polarization charge qD and spring constant
kD are infinitely large in such a way that the polarizability α = q2

D/kD
is the same of the induced point dipole. We chose the value qD = 4.0e
based on polarization energy evaluations of different Drude charges
in various system configurations. This choice yielded a polarization
energy of a test configuration of 2000 molecules that agrees within
uncertainty with the original PJV-P potential. However, possibly
because of the use of sPME in the present case, as opposed to reac-
tion field in PJV-P, this result is 5% lower than that obtained in
the limit of very large polarization charge.45 Our choice was moti-
vated by our aim of reproducing the polarization energy of the PJV-P
model as a whole rather than just matching the point dipole limit.
Further challenges in this parameterization included ensuring that
the average displacement of the Drude site was large enough to be

FIG. 1. Three simulation snapshots at, from left to right, 400, 380, and 300 K, and 926, 759 and 700 kg/m3, respectively. The largesst hydrogen-bonded cluster in the system
is highlighted using thicker, yellow bonds. HF molecules not belonging to the largest cluster are shown as sticks with white (H) and blue (F) ends.
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accurately represented on the sPME grid but not so large to become
attracted and trapped within another molecule. In fact, a positive
polarization charge tends to find its equilibrium position closer to
the molecule’s interior, improving stability.

In the following, we present the analysis of the percolation
threshold as computed from molecular dynamics simulations of two
systems (1000 and 8000 HF molecules, respectively) simulated at a
number of different state points in the canonical ensemble, vary-
ing the temperature from 230 to 400 K and the density from 320 to
1010 kg/m3. Figure 1 shows the simulation snapshots taken at 400,
380, and 300 K, where the largest hydrogen-bonded cluster (com-
puted as described later) is highlighted using thicker, yellow bonds.
At 400 K, the largest cluster cannot span the entire system, and the
hydrogen bond network is not percolating. At 380 K, the largest
cluster is able to span the whole system but comprises only a small
fraction of the molecules in the simulation box. Finally, at 300 K, the
largest cluster is not only percolating but consists also of the majority
of molecules in the system.

We performed the simulations using the GROMACS simula-
tion package46 version 2023.0 compiled in double precision to allow
for an accurate minimization of the energy in the self-consistent
field calculation for the induced dipoles. Note that a tight con-
vergence criterion for the induced dipole calculation is necessary
for an accurate evaluation of the virial.47 We performed the data
analysis using the MDAnalysis Python package.48 The full input
parameters, topology, and configurations are available online at
https://doi.org/10.5281/zenodo.10783788.

RESULTS

The percolation transition refers to the critical point at which a
system moves from one phase with isolated components to another,
forming a large, connected cluster spanning the entire phase. In
systems simulated using periodic boundary conditions, one can
investigate the transition by calculating the probability of finding
a cluster spanning the whole system as a function of the density
(at constant temperature). By comparing the spanning probabilities
for systems of different sizes, the percolation threshold is identi-
fied as the density where the probability curves for the two system
sizes intersect, indicating the density at which a percolation pathway
becomes sustainable across the system regardless of size.49–51 With
increasing system size, the transition happens in a narrower range
of densities. In the thermodynamic limit, when crossing the perco-
lation threshold, the system changes abruptly from zero percolation
probability to one. Here, we consider a cluster to be spanning if it
performs a closed loop across the periodic boundary conditions.

To perform this calculation, a criterion is needed to decide
whether two HF molecules belong to the same cluster, that is to
say, whether they are hydrogen-bonded or not. For this initial anal-
ysis, we require a pair of atoms H and F belonging to two different
molecules to be within a given distance dHB = 2.38 Å. The same dis-
tance dHB is used for all thermodynamic points. This criterion is
different form that used in the context of other hydrogen bonded
liquids as it uses one distance only instead of two distances or
one distance and one angle. In fact, the H⋅ ⋅ ⋅F coordination num-
ber computed up to the first minimum of the corresponding radial
distribution function accounts for about 1.01 molecules. The dis-
tribution of the F–H⋅ ⋅ ⋅F angle is sharply peaked at 180○, where

FIG. 2. Spanning probability curves as a function of the density, computed at
six temperatures for the large (squares) and small (circles) systems. The verti-
cal dashed line represents the liquid density of the model at the corresponding
temperature along the coexistence line.

configurations below 150○ are quite rare.11,38 Therefore, the addition
of an angular or a F–F distance criterion would be redundant.

The spanning probabilities shown in Fig. 2 are computed using
this simple yet effective strategy. The squares and circles represent
the spanning probability of the large and small systems, respec-
tively. In addition, we report, as vertical dashed lines, the value
of the liquid density at the same temperature but computed along
the liquid–vapor coexistence line using explicit coexistence simula-
tions.45 Even though, as it will become apparent soon, this approach
is not entirely correct or self-consistent, it shows that the percola-
tion threshold density is located below the coexistence line at low
temperatures (implying a percolating hydrogen-bond network in the
fluid at coexistence) and above it at high temperatures (implying
a non-percolating hydrogen-bonded network at coexistence). The
percolation threshold is located around about 300 K. We will elab-
orate later on the significance of this finding. Note that the system
can experience spontaneous separation into liquid and vapor at low
enough densities, close to or beyond the spinodal line. In this case,
the connectivity of the system improves, and there is a sudden jump
in the spanning probability. This jump is more likely to happen in
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the large systems, as they are less artificially stabilized by periodic
boundary conditions than the smaller ones. We have excluded these
data points from our analysis.

The issue with the present choice of the hydrogen-bonding cri-
terion is that the length of the hydrogen bond between two HF
molecules is known to depend on the state point.41 In this sense,
a fixed distance criterion to define whether two molecules share a
hydrogen bond might not be the best choice. A common solution
to this problem is using as dHB the minimum in the F–H inter-
molecular radial distribution function that occurs right after the first
peak, namely, the distance below which most of the first neighboring
hydrogens are included.

Figure 3 shows the H–F radial distribution function as well as
the contributions coming from the first, second, and third neighbor-
ing hydrogen atoms for a selected set of state points for the small
system, along with the result of a quadratic fit used to locate the dis-
tance rmin of the first minimum. It turns out that rmin is not only
state-dependent but also mildly size-dependent, being slightly dif-
ferent, under the same thermodynamic conditions, in the small and
large systems. In addition, rmin is clearly affected by the distribution
of the second and third neighbors, so it is not necessarily a perfect
proxy for the maximum hydrogen bond distance. In fact, the span-
ning probability curves computed using dHB = rmin become quite
noisy above the coexistence line, and it was possible to use only a
smaller set of state points for this analysis. Nevertheless, in this case,
the estimated percolation temperature crosses the coexistence line,
too, even though it is slightly lower (around about 290 K) than the
one obtained using the fixed cutoff criterion dHB = 2.38 Å. In Fig. 4,
we report on the ρ–T plane the locus of the percolation threshold
calculated using these two criteria, as well as the result of two more
calculations with dHB = 2.36 Å and dHB = 2.4 Å. All four curves are
close to each other in the neighborhood of the coexisting line, show-
ing that, at least in this region, they provide the same picture of
the existence and location of the percolation transition. The perco-
lation threshold curves start spreading out in the region above the
coexistence line, although they follow the same qualitative trend.

FIG. 3. Radial distribution functions measured at various state points of the F–H
pairs (solid lines), including the contributions from first (yellow), second (plum),
and third (purple) neighbors. The quadratic fit used to locate the minimum is also
reported (dashed lines).

FIG. 4. Temperature–density phase diagram, including the location of the liquid
branch of the coexistence line (yellow points with a black border), the calculated
percolation transition curves using four different criteria (circles), and the value of
the fraction f of the largest population in color code from purple (0.5) to yellow
(1.0). The label auto corresponds to the criterion that uses the state-dependent
cutoff.

All considered, these results seem to confirm the presence of
a well-defined percolation threshold close to the coexistence line
around 280–300 K. Interestingly enough, to the best of our knowl-
edge, the other small associating liquid that is known to possess a
hydrogen-bond percolation transition is water, which, however, is
located in the supercritical region.18,19

Still, as noted before, the uncertainty in how to properly define
the presence of a hydrogen bond calls for independent confirma-
tion of this effect, or at least to correlate it with other changes in the
properties of the liquid that do not depend on the hydrogen bond
criterion. To this end, we have investigated the properties of the
local density for structural changes upon crossing of the percolation
threshold.

We obtained the local density distribution by counting the
number of neighbors within a 6 Å distance from each fluorine atom.
Since these volumes are fixed, the probability p(ΔN) of observing a
fluctuation in the number of particles N within the volume can be
expressed52 as

p(ΔN)∝ exp [−
(ΔN)2

2kBT
(
∂μ
∂N
)

V ,T
], (1)

where kB is Boltzmann’s constant. This probability distribution
is a Gaussian function of ΔN with a variance, kBT(∂N/∂μ)V ,T
= kBTρNχT , which is proportional to the mean density ρ and
isothermal compressibility χT .

Figure 5 shows the (non-normalized) particle number distribu-
tions for a selected number of state points, along with the result of
the best fit to one and two Gaussian distributions. The upper left
panel of Fig. 5 shows that at high densities and low temperatures,
the distribution is unimodal and accurately described by a single
Gaussian probability distribution over about six orders of magni-
tude. The contribution of the second Gaussian is about four orders
of magnitude smaller and completely negligible. The local density
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FIG. 5. Distribution of the local density at four different state points. This plot
reports the counts (circles) of the number of neighboring fluorine atoms within a
6 Å distance from a central one. The solid lines represent the best fit to one (purple
solid line) or two (yellow solid line) Gaussian distribution functions. The dashed
lines represent the contribution of the two Gaussian functions in the bimodal fit.
The complete set of distributions is available in the supplementary material.

fluctuations at this state point are characteristic of a single mean
liquid density.

Not all the state points considered enjoy this feature. At higher
temperatures and lower densities, but still in the liquid phase at
340 K and 850 kg/m3, the distribution is no longer unimodal, as the
lower left panel of Fig. 5 shows. The superposition of two Gaussian
distributions (yellow solid line) fits the sampled points better than a
single Gaussian one (purple solid line). In this case, the fluid seems to
be characterized by two distinct populations with their mean density
and compressibility (linked to the width of the distribution). This
situation is similar to a state point in the metastable region, in the
upper right panel of Fig. 5, at 320 K and 800 kg/m3. Far away from
the coexistence line, at 300 K and 720 kg/m3, the two Gaussians
become increasingly separated. Note that in all cases, the Bayesian
information criterion53 strongly favors the bimodal distribution. In
this sense, it is clear that the distributions are bimodal, and the crit-
ical quantity that needs to be determined is the contribution of each
of the two modes to the total distribution.

The population fraction fi of the ith distribution can be cal-
culated using the amplitude, Ai, and standard deviation, σi, of the
corresponding Gaussian, as fi = Aiσi/(A1σ1 + A2σ2), because the
area under a Gaussian function is proportional to Aiσi. As a measure
of the uni- or bimodality of the density distribution, we com-
pute the parameter f = max( f1, f2), which ranges from 0.5 to 1.0.
The case f = 1.0 corresponds to a unimodal distribution, whereas
f = 0.5 corresponds to the case of two equally sized populations.

In Fig. 4, we use a color code to report the value of the fraction
f . By comparing the location of the percolation threshold and the
states with a unimodal distribution, one can notice some correlation
between the two. The liquid with a unimodal distribution at high
densities (ρ > 1050 kg/m3) and along the coexistence line from the
highest density down to around about 900 kg/m3 is characterized by
a percolating hydrogen bond network. The onset of the bimodal dis-
tribution, particularly along the coexistence line, seems to coincide
with the transition to a non-percolating fluid. Following the coex-
istence line toward lower densities, one can notice that the value of
f increases again.

This transition from high to low and eventually back again
to high values of f could reflect the previously described struc-
tural change. At high densities, the system forms a tightly connected
network of branched polymers. Once the percolation threshold is
reached, the system transitions into an ensemble of polymers that
are mainly bound via the van der Waals interaction. With increas-
ing temperature, the density of chains becomes smaller, while the
distance between hydrogen-bonded molecules cannot change much,
thereby increasing its relative contribution to the local density. In
other words, the increased prevalence of unimodality at high tem-
peratures could be an effect of HF chains becoming gradually more
separated. Here, we note that we have distinguished the two struc-
turally different molecular environments only through their local
density. More refined approaches that use the correlation between
the molecular dipole moments or other suitably defined order para-
meters could lead to a more detailed description of the liquid
structure.

CONCLUSIONS

Molecular dynamics simulations provided compelling evidence
of a percolation transition in the hydrogen bond network of liquid
HF. The percolation transition appears regardless of the criterion
used to define hydrogen bonds, even though its exact location
depends on it. The high connectivity region of the percolating fluid
seems to be correlated with a unimodal distribution in the local
densities. Instead, the low connectivity region with no percolating
hydrogen bond network is characterized by a bimodal local density
distribution at moderate temperatures, and a unimodal distribution
peaked at low density at high temperatures. It should be emphasized
that our results only reveal the existence of a percolation transition
and not of a first-order liquid/liquid phase transition. The existence
of two local structures with different densities is only a precondi-
tion for such a phase transition. In this sense, the present scenario
could even be compatible with the presence of a liquid–liquid phase
transition. A clarification of this point needs further investigations.

At the moment, we can only speculate on the possible micro-
scopic origin of this behavior. One possible explanation comes to
mind by regarding the liquid as a melt of (hydrogen-bonded) poly-
mers. At a relatively low macroscopic density, the bimodality of the
local density can reflect the coexistence of tightly bound neighboring
molecules within a hydrogen-bonded chain and more loosely bound
molecules belonging to neighboring chains, coordinated via van
der Waals attraction. Another possibility is that because of the low
surface tension of liquid HF, spontaneous cavitation effects could
break the connectivity of the hydrogen bond network, leading to the
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transition from a percolating to a non-percolating hydrogen-bonded
fluid.

The implications of our study extend far beyond the confines of
HF. They suggest a broader paradigm for interpreting the behavior
of associating liquids, in particular regarding the presence of struc-
tural heterogeneities and their link with the system’s connectivity.
This could potentially influence the development of new models
that can accurately predict fluid behaviors across a wider range of
conditions.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete set of local
density distributions.
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