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Abstract 

 
 

Neurodegenerative diseases form a heterogeneous group of conditions characterised by 

the progressive degeneration of the structure and function of the central or peripheral 

nervous systems. The pathogenic mechanisms underlying these diseases are not fully 

understood. Various pathogenic mechanisms are thought to contribute to disease, and an 

increasing number of studies implicate dysfunction of oligodendrocytes (the myelin 

producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, 

the most widely studied epigenetic modification, has been associated with many 

neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson's disease (PD), 

Progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). Recent research 

highlights aberrant DNA methylation in oligodendrocyte (OLG)/myelin-related genes. In this 

thesis, we describe the results of investigations into the role of dysregulated DNA 

methylation within oligodendrocyte lineage genes across neurodegenerative diseases. 

Through complementary computational approaches, we identify key genes which have not 

previously been linked to altered DNA methylation as important in neurodegeneration. We 

also utilise gene expression datasets to follow up on findings, in order to uncover functional 

consequences of dysregulated DNA methylation. We find that several crucial myelin/OLG 

lineage genes such as MBP are differentially methylated and expressed across dementias. 

We also investigate DNA methylation changes during oligodendrocyte differentiation using 

DNA methylation profiles from iPSC derived cells across differentiation stages, and identify 

genes that we had found to be differentially methylated in disease as also being top 

differentially methylated genes during differentiation. This implicates aberrant DNA 

methylation as a mechanism that could be contributing to dysfunction of OLG lineage 
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progression. Finally, we investigate the oligodendrocyte-specific gene MOBP, which has 

been associated with multiple neurodegenerative diseases at the genetic level. MOBP has 

also been previously identified as aberrantly differentially methylated in multiple MSA. In this 

work, we highlight a shared genetic loci between ALS and PSP within MOBP that appears 

to be associated with changes in DNA methylation and gene expression in disease. 

Through this work, we have demonstrated dysregulation of DNA methylation affecting OLG 

lineage cells in neurodegeneration.  
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Impact Statement  

 

There is currently no cure for neurodegenerative disease. The work in this thesis aims to 

demonstrate the importance of dysregulated DNA methylation within oligodendrocyte 

lineage cells genes across neurodegenerative diseases, which we carried out using 

computational approaches across multiple publicly available DNA methylation and gene 

expression datasets. The role of OLGs in neurodegeneration has thus far been overlooked. 

Here, we have provided evidence that genes related to myelin/OLG lineage genes are 

differentially methylated in disease and show functional consequences at the gene 

expression level, underpinning the importance of this area of research. We have also 

identified genes that have not been previously associated with neurodegeneration, justifying 

further investigation into their role in pathology. As DNA methylation is reversible, 

identification of disease relevant genes that are modified through DNA methylation in 

disease, the hope is that this work will contribute to the development of disease modifying 

therapies for neurodegenerative disease.   

 

We have also investigated the role of DNA methylation in OLG lineage progression in 

human iPSC derived cells, which is so far not well understood. We identified genes that are 

important in the differentiation process that are also differentially methylated in disease, 

highlighting this as an area of research warranting further study. Work from Chapter 6 

investigating MOBP has demonstrated the need to investigate this gene further across 

neurodegeneration.  
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We have leveraged multiple multiomic datasets to integrate publicly available data, 

maximizing the utility of previously generated datasets and exemplifying the power of data 

repurposing in neurodegenerative disease research. We have developed pipelines to 

investigate DNA methylation changes, code for which will be made publicly available.  

 

Results from Chapters 3 and 4 have been partly published in Acta Neuropathologica, and 

manuscripts for other work are in progress.   
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Chapter 1 - Introduction  

1.1 Neurodegeneration  

Neurodegenerative diseases form a diverse group of neurological disorders characterized by 

progressive degeneration of the structure and function of the central nervous system or 

peripheral nervous system ultimately leading to loss of neurons. Most neurodegenerative 

diseases are age-associated 1, which, in a rapidly aging society, poses a significant public 

health challenge.  

Neurodegenerative diseases present with diverse clinical manifestations, brain region 

vulnerability and manner and length of progression. However, a central feature of many 

neurodegenerative diseases is aberrant aggregation of proteins 2. Protein aggregations can 

manifest in several ways (Figure 1.1 A). Inclusions can occur within neurons or glial cells (non-

neuronal cells of the central nervous system (CNS), either as intracytoplasmic aggregation or 

intranuclear aggregates. Proteins can also aggregate outside of cells in extracellular spaces, 

forming extracellular plaques. Mislocalization of proteins within cells can also occur, e.g. 

mislocalization of a nuclear protein to the cytoplasm of cells. Accumulation of proteins disrupts 

cellular functions and leads to death of neurons. So far, research into the pathology of 

neurodegenerative disease has been neurocentric, however there is growing evidence to 

suggest that understanding the involvement of glial cells is crucial 3. Although 

neurodegenerative diseases share the central feature of protein aggregation, underlying 

pathological mechanisms driving and/or associated with such changes can be more disease-

specific and remain incompletely understood. Features such as cell-type vulnerability 4, genetic 

associations 5 and regional susceptibility within the brain 6 are examples of such differences 

https://paperpile.com/c/HSDZKE/FskVr
https://paperpile.com/c/HSDZKE/oJiRl
https://paperpile.com/c/HSDZKE/DiPf
https://paperpile.com/c/HSDZKE/SLNqO
https://paperpile.com/c/HSDZKE/AwMIC
https://paperpile.com/c/HSDZKE/wKcIh
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across neurodegeneration. Clinical symptoms of neurodegenerative diseases are also diverse. 

Whilst many such diseases are associated with dementia (cognitive decline associated with 

memory loss), others are associated with motor impairments such as parkinsonism or weakness 

of limbs. Provided below is a brief overview of each of the neurodegenerative diseases that 

have been focused on throughout this thesis. 

 

1.1.2.i Alzheimer’s Disease  

 

The most common form of neurodegenerative disease is Alzheimer’s disease (AD) 7, which is 

also the leading cause of dementia worldwide 8. AD pathology is characterised by the 

occurrence of extracellular plaques formed of amyloid-beta and intracellular neurofibrillary 

tangles composed of hyperphosphorylated microtubule-associated protein tau 7. Such 

accumulation is associated with a range of pathological processes, including synaptic 

dysfunction, neuroinflammation, oxidative stress, vascular dysfunction and altered lipid 

metabolism 9. AD presents clinically with impaired cognitive function, specifically severe memory 

loss during disease progression. The vast majority (95%) of AD cases are sporadic 10. Such 

sporadic cases, also known as late-onset AD, have been associated with multiple genetic risk 

factors 11. Numerous pathways such as lysosomal dysfunction, neuroinflammation, cholesterol 

metabolism, mitochondrial dysfunction and blood brain barrier malfunction have been 

implicated, but none have been defined as a primary mechanism driving disease pathology 9. A 

minority of cases are familial and are caused by underlying genetic mutations, which has 

provided evidence for pathways involved, such as the finding of mutation of the APP and 

presenilin (PSEN1 and PSEN2) genes in familial AD providing evidence for the amyloid 

cascade hypothesis of AD 12.  

https://paperpile.com/c/HSDZKE/dY5fm
https://paperpile.com/c/HSDZKE/6YfzK
https://paperpile.com/c/HSDZKE/dY5fm
https://paperpile.com/c/HSDZKE/ov5WG
https://paperpile.com/c/HSDZKE/9a0xJ
https://paperpile.com/c/HSDZKE/xCrP7
https://paperpile.com/c/HSDZKE/ov5WG
https://paperpile.com/c/HSDZKE/GVSt6
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1.1.2.ii Frontotemporal lobar degeneration 

 

Frontotemporal lobar degeneration (FTLD), is an umbrella term for a clinically, genetically and 

pathologically heterogeneous group of diseases. Frontotemporal dementia (FTD) encompasses 

a spectrum of clinically defined disorders that are found to have underlying FTLD pathology 13. 

Disorders within the FTLD spectrum are characterised by atrophy and degeneration of the 

frontal and temporal lobes of the brain, but are diverse in their pathology and genetics. Most 

FTLD cases are characterised by 43 kDa transactive response DNA-binding protein (TDP-43) 

positive inclusions (FTLD-TDP), or with tau-positive inclusions (FTLD-tau), representing around 

50% and 40% of FTLD cases, respectively 14,15. Several diseases fall within the FTLD-tau 

spectrum, including frontotemporal dementia (FTD), corticobasal degeneration (CBD) and 

progressive supranuclear palsy (PSP). PSP is characterised by intracellular aggregation of the 

microtubule-associated protein tau in neurofibrillary tangles, tufted astrocytes and tau deposits 

in oligodendrocytes presenting as coiled bodies 16,17. FTLD-TDP cases are defined by the loss 

of TDP-43 from its nuclear location, and aggregation of the protein within the cytoplasm 13. 

Different subtypes of FTLD-TDP (including FTLD-TDP Types A, B and C, which are studied 

later in this thesis) are classified based on the distribution and type of pathological inclusions 

and lesions in cortical layers 18. TDP-43 inclusion types include neuronal cytoplasmic inclusions, 

neuronal intranuclear inclusions, oligodendroglial inclusions and dystrophic neurites 18. 

Clinically, the FTLD spectrum manifests as a variety of syndromes depending on the 

predominant brain regions affected and the underlying pathology. Broadly, FTLD encompasses 

behavioural variant frontotemporal dementia (bvFTD), primary progressive aphasia (PPA), and 

movement disorders, including corticobasal syndrome (CBS), PSP, and frontotemporal 

https://paperpile.com/c/HSDZKE/yost8
https://paperpile.com/c/HSDZKE/Z9QiV+4Gkv7
https://paperpile.com/c/HSDZKE/ZFsPo+q5B9P
https://paperpile.com/c/HSDZKE/yost8
https://paperpile.com/c/HSDZKE/leI7j
https://paperpile.com/c/HSDZKE/leI7j
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dementia with motor neuron disease (FTD-MND) 14,18. Each of these have distinct clinical 

manifestations (Figure 1.1.B).  

1.1.2.iii Other diseases highlighted  

 

Multiple system atrophy (MSA) is a rare neurodegenerative movement disorder, which is 

characterized by accumulation of ɑ-synuclein mostly in oligodendrocytes (OLGs) in the form of 

glial cytoplasmic inclusions 19, although how these are formed and their effect on neurons is not 

understood. MSA is characterised by very rapid decline, with death occurring ~10 years of onset 

of symptoms 20. Although the aetiology of MSA remains elusive, efforts have been made to  

uncover genetic associations 21. An interesting phenomenon in the activity of ɑ-synuclein in 

MSA is that strains of ɑ-synuclein (which are thought to be specific to MSA 22) have been shown 

to have seeding abilities, which is the ability of misfolded proteins to induce aggregation in other 

functioning proteins, thus allowing rapid spread 23.  

 

Parkinson’s disease (PD) is also characterised by pathological inclusions of ɑ-synuclein, which 

leads to neuronal loss in the substantia nigra in the basal ganglia, leading to loss of dopamine 

production 24. Several genes have been implicated in PD, including SNCA, which codes the 

protein ɑ-synuclein 25. As in MSA, it has been suggested that seeding of ɑ-synuclein may occur 

in PD 26. Mechanistically, much research has implicated mitochondrial dysfunction in the 

pathology of the disease 27, as well as neuroinflammation 28. The disease is classified as a 

movement disorder, with loss of neurons leading to motor impairment, however there are many 

non-motor symptoms, including dysregulation of sleep and mood disorders 29, and often 

dementia later on in disease progression30.  

 

https://paperpile.com/c/HSDZKE/leI7j+Z9QiV
https://paperpile.com/c/HSDZKE/2fcyv
https://paperpile.com/c/HSDZKE/sEKAC
https://paperpile.com/c/HSDZKE/rjeEE
https://paperpile.com/c/HSDZKE/p5EgZ
https://paperpile.com/c/HSDZKE/BEyjX
https://paperpile.com/c/HSDZKE/8sVwJ
https://paperpile.com/c/HSDZKE/4Kyi8
https://paperpile.com/c/HSDZKE/FQ0Wp
https://paperpile.com/c/HSDZKE/54cB7
https://paperpile.com/c/HSDZKE/itkvw
https://paperpile.com/c/HSDZKE/sTLT1
https://paperpile.com/c/HSDZKE/K9QR
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by 

degeneration of motor neurons, leading to weakness of limbs and muscle wastage 31. In the 

large majority of cases, ALS is a TDP-43 proteinopathy 15, where TDP-43 becomes mislocalized 

from the nucleus to the cytoplasm and forms insoluble aggregates 32. ALS and FTLD-TDP are 

thought to be two ends of a disease spectrum, as there are overlapping clinical, genetic and 

pathological features. In terms of genetics, several genes are associated with both FTLD and 

ALS, including C9orf72, TARDBP (coding for TDP-43), FUS and GRN 33. Mechanistic 

associations are also present with both ALS and FTLD, for example, associated with 

dysregulation of RNA pathways 34,35. As with other neurodegenerative diseases, 

pathophysiology is complex and not fully understood, although mechanisms implicated include, 

along with dysregulated RNA metabolism, impaired protein homeostasis and oxidative stress 

responses, among others 36.  

 

  

https://paperpile.com/c/HSDZKE/rv6UD
https://paperpile.com/c/HSDZKE/4Gkv7
https://paperpile.com/c/HSDZKE/oqD3y
https://paperpile.com/c/HSDZKE/HSypu
https://paperpile.com/c/HSDZKE/Mnzkv+ZJWl0
https://paperpile.com/c/HSDZKE/Kleh1
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Figure 1.1. Features of neurodegenerative disorders 

 

A) Key pathological hallmarks of neurodegenerative disease examined in this thesis, including protein mislocalization, 

protein aggregation, and neuronal loss and degeneration. B) Heterogeneity of neurodegenerative disease, non-

exhaustive list  illustrating hallmark clinical symptoms, brain regions affected and pathological protein aggregates. C) 

Overview of subclassification of frontotemporal lobar degeneration (FTLD) into FTLD-tau and FTLD-TDP based on 

underlying protein pathology relevant for this thesis.  FTLD: frontotemporal lobar degeneration, AD: Alzheimer’s 

disease, FTD: frontotemporal dementia, MSA: multiple system atrophy, PD: Parkinson’s disease, PSP: Progressive 

supranuclear palsy, ALS: amyotrophic lateral sclerosis.  
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1.2 Oligodendrocyte lineage cells and myelin  

OLGs are a major glial cell type in the CNS, which constitute around 75% of the CNS glial cell 

population 37. OLGs are responsible for the production, stability, and maintenance of myelin 38, 

the lipid-rich, multilamellar membrane which wraps around axons and enables fast transmission 

of electrical signals. Structurally, the myelin sheath is an extension of the OLG plasma 

membrane that wraps around nerve axons in a concentric fashion 39. The myelin sheath is not 

continuous along the neuron. Sections of myelinated axon are separated by nodes of Ranvier. 

These enable saltatory conduction, the ‘hopping’ of electrical impulses along axons, which 

allows for fast transmission of electrical signals. The importance of the myelin sheath is 

demonstrated by the consequences of its loss, notably in demyelinating diseases such as 

multiple sclerosis (MS), where it results in a range of neurological symptoms including visual, 

motor and sensory problems, with associated disability and reduced life expectancy 40. OLGs 

are also involved in homeostasis, trophic support to neurons, provision of lactate to neurons, 

and the secretion of various growth factors 41. 

 

OLGs arise from oligodendrocyte precursor cells (OPCs), which are characterised by the 

expression of PDGFR-α (platelet derived growth factor receptor α) and NG2 (neuron-glial 

antigen 2) 42. It is known that OPCs, which arise in the ventricular zone during early 

development 43–45, proliferate and migrate, and differentiate in stages into myelinating OLGs 46 

(Figure 1.2). Although most OPCs differentiate to form myelinating OLGs, some OPCs are 

retained in their proliferative stage. This results in OPCs accounting for 5–10% of all adult brain 

cells 47. The main role of adult OPCs is thought to be the provision of a source of new mature, 

myelinating OLGs. However, recent studies show they also have other important roles, including 

their involvement in cell signalling, metabolic regulation and as immune modulators 48–50. The 

maturation of OPCs into OLGs, though relatively well characterised in mice, is not well 

https://paperpile.com/c/HSDZKE/nUNEO
https://paperpile.com/c/HSDZKE/Oo3aH
https://paperpile.com/c/HSDZKE/jJPjU
https://paperpile.com/c/HSDZKE/4fY2Y
https://paperpile.com/c/HSDZKE/tMTCE
https://paperpile.com/c/HSDZKE/eFAXf
https://paperpile.com/c/HSDZKE/VBKan+lGxVu+mVYKj
https://paperpile.com/c/HSDZKE/KH1eV
https://paperpile.com/c/HSDZKE/PW6HH
https://paperpile.com/c/HSDZKE/F4myX+Fz5wB+I8svE
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described in humans (in health and/or disease) in part due to technical challenges of studying 

post-mortem brain tissue and/or limitations of current human OLG-like cell lines. 
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Figure 1.2 Schematic representation of the stages of OLG lineage differentiation 

 

Schematic representation of the stages of OLG lineage differentiation. OPCs (PDGFRα high/NG2+) arise from NPCs 

(A2B5+), before forming mature OLGs (O4+/CNP+/CC1+) and then myelinating OLGs 

(MOG+/MAG+/MBP+/CC1+/PLP+). NPC: Neural progenitor cell, OLG: Oligodendrocyte, OPC: Oligodendrocyte 

precursor cell. Figure created with BioRender and reproduced from Fodder et al. 51 

https://paperpile.com/c/HSDZKE/D8Wpt
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1.3 The involvement of myelin changes in neurodegeneration 

Myelination is a dynamic process that continues throughout life. Most myelination takes place 

from early childhood through to adolescence, with the major part taking place in the first two 

years of life. However, myelination does continue into adulthood, followed by an age-related 

decline in myelination occurring around the sixth decade of life (Figure 1.3) 52. Decreases in 

myelin with ageing are not uniform, with regions of the brain that are myelinated earlier in 

development (such as the primary motor and sensory regions) undergoing white matter decline 

later 37. 

Although neurodegenerative diseases such AD are mainly associated with grey matter and 

neuronal damage, there is evidence for decline and involvement of white matter during disease 

progression. Disruption of myelin in AD was described at the beginning of the twentieth century 

by Alois Alzheimer 53. It has also been noted that the typical age-of-onset of neurodegenerative 

diseases coincides with the time when age-related decline in myelination is observed (Figure 

1.3) 52. Moreover, early evidence of the disruption of myelin in AD suggested those regions of 

the cortex, such as the temporal and frontal lobes, that are myelinated later in development are 

more likely to present with AD pathology earlier 53,54. This suggests that those regions that 

myelinate later are more vulnerable to pathogenic mechanisms which result in 

neurodegeneration. Further evidence of this involvement of myelin comes from the observations 

of white matter changes in brain imaging studies 55–57. For example, white matter 

hyperintensities (WMHs), which are associated with loss of myelin integrity, have been shown to 

predict incident AD 55–57. Brain imaging data has indicated that β-amyloid deposition may 

change white matter microstructure in early disease stages 58. A study investigating causation 

versus causality in the link between β-amyloid deposition and myelin changes used a mouse 

https://paperpile.com/c/HSDZKE/KWlIy
https://paperpile.com/c/HSDZKE/nUNEO
https://paperpile.com/c/HSDZKE/JQmI0
https://paperpile.com/c/HSDZKE/KWlIy
https://paperpile.com/c/HSDZKE/JQmI0+9aHxt
https://paperpile.com/c/HSDZKE/AYLbo+Q1h8E+Q78By
https://paperpile.com/c/HSDZKE/AYLbo+Q1h8E+Q78By
https://paperpile.com/c/HSDZKE/wZ6oP
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model to show that changes in myelination induced through knockout of crucial myelin genes 

enhanced β-amyloid deposition in a 5xFAD model of AD (a transgenic mouse model used to 

recapitulate β-amyloid pathological features of AD) 59. This again adds strength to the 

hypothesis that white matter changes are not consequences of neurodegenerative processes, 

but are involved in driving pathogenesis. White matter abnormalities and myelin degradation are 

also described in other neurodegenerative diseases, including MSA 60, ALS 61 and PSP 62,63. 

Figure 1.3 Schematic of the myelin changes throughout life 

 

Shaded areas indicating myelination waves (as defined by de Faria et al. 52). Also depicted are visualizations of the 

progression of cortical myelination and the progression of Alzheimer’s disease related destruction. The average age 

of onset of multiple neurodegenerative diseases is also indicated and coincides with the start of normal ageing-

related decline in myelination, which is hypothesized to be accelerated in neurodegeneration. Figure created with 

BioRender and reproduced from Fodder et al. 51 

https://paperpile.com/c/HSDZKE/2qzY2
https://paperpile.com/c/HSDZKE/6NEkQ
https://paperpile.com/c/HSDZKE/uo94d
https://paperpile.com/c/HSDZKE/xYm8q+YrBuF
https://paperpile.com/c/HSDZKE/KWlIy
https://paperpile.com/c/HSDZKE/D8Wpt
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1.4 The involvement of the oligodendrocyte lineage in 
neurodegeneration 

1.3.1 Evidence from pathology 
 
A direct role for OLGs in neurodegenerative disease is exemplified by the pathology of MSA, 

where, as mentioned earlier, glial cytoplasmic inclusions (GCIs) in OLGs are the pathological 

hallmark of the disease 64. In MSA, these inclusions consist of aggregates of the synaptic 

protein α-synuclein. Whether α-synuclein is produced by the OLGs or propagated from neurons 

is not clear. In MSA, an increased number of OPCs is also reported in post-mortem brain tissue 

65,66. PSP and corticobasal degeneration (CBD) also display clear OLG pathology with disease 

hallmarks including tau deposits in OLGs, presenting as coiled bodies 7,17.  

Although the precise role of OLGs in AD pathology is less clear, there is evidence from human 

post-mortem studies that there are alterations in the numbers and morphology of OLG lineage 

cells in this disease 57. In post-mortem AD brain tissue, decreases in Olig2 + cells have been 

reported 67, as well as increased numbers of OPCs in white matter lesions 68. Morphological 

changes in OLGs derived from AD post-mortem brains have also been seen, specifically a 

decrease in nuclear diameter in parahippocampal white matter 69. A recent study, in 

apolipoprotein E-ε4 allele (APOE-ε4) carriers, also demonstrated aberrant deposition of 

cholesterol in OLGs and dysregulated myelination in AD 70. 

1.3.2 Evidence from genetics 

 

GWAS have also implicated specific myelin/OLG-related genes in neurodegeneration, including 

the bridging integrator 1 (BIN1) gene, which is the second strongest genetic risk factor for late 

https://paperpile.com/c/HSDZKE/3v3P0
https://paperpile.com/c/HSDZKE/cJg3Q+DyCpM
https://paperpile.com/c/HSDZKE/dY5fm+q5B9P
https://paperpile.com/c/HSDZKE/Q78By
https://paperpile.com/c/HSDZKE/UmkmO
https://paperpile.com/c/HSDZKE/sliRJ
https://paperpile.com/c/HSDZKE/qCgni
https://paperpile.com/c/HSDZKE/wFGxe
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onset AD (LOAD) 71–73 and known to be largely expressed by mature OLGs and localised to 

white matter tracts 74. Increased expression of BIN1 is reported in AD 75, although mechanisms 

behind the association of BIN1 and AD are unclear. The myelin associated oligodendrocyte 

protein (MOBP) gene has been associated with disease risk in several neurodegenerative 

diseases, including PSP 76–79, CBD 80, AD APOE-ε4 carriers 81, ALS 82 and PD 83, and has also 

been reported to be associated with white matter degradation and increased rates of decline in 

executive function in behavioural variant frontotemporal dementia 84. The functional 

repercussions of such associations remain unclear. However, in human brain tissue, the risk 

allele T, of the disease-associated single nucleotide polymorphism rs1768208, is also 

associated with increased expression of the MOBP gene in PSP 85. 

Aside from such examples of myelin/OLG relevant genes identified through GWAS, 

transcriptomic analyses reveal gene expression changes in additional myelin-related genes in a 

broad range of neurodegenerative diseases, including AD 86, PSP 86, MSA 87, and 

frontotemporal lobar degeneration (FTLD) 88, further supporting the idea of myelination changes 

as a common pathway across these diseases. Examples of evidence supporting the importance 

of OLG/OPC involvement across several neurodegenerative diseases are given in Figure 1.4. 

 

https://paperpile.com/c/HSDZKE/HGPIa+ixzHF+QROkF
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https://paperpile.com/c/HSDZKE/TBD9u
https://paperpile.com/c/HSDZKE/TBD9u
https://paperpile.com/c/HSDZKE/zt8hm
https://paperpile.com/c/HSDZKE/KU0Qp
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Figure 1.4 Non-exhaustive summary of evidence implicating the oligodendrocyte 
lineage across neurodegenerative diseases 

 AD: Alzheimer’s disease, ALS: Amyotrophic lateral sclerosis, BIN1: Bridging Integrator 1, CBD: Corticobasal 

degeneration, FTD: Frontotemporal dementia, GCI : Glial cytoplasmic inclusion, MSA: Multiple System Atrophy, 

MOBP: Myelin-associated oligodendrocyte protein, OLG: Oligodendrocyte, OPC: Oligodendrocyte precursor cell, 

PSP: Progressive supranuclear palsy.Figure created with BioRender and reproduced from Fodder et al. 51 

  

https://paperpile.com/c/HSDZKE/D8Wpt
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1.5 DNA Methylation 

 

Epigenetic modifications are those which, without altering the underlying DNA sequence, bring 

around changes in gene expression. DNA methylation, the most widely studied epigenetic 

modification, involves the transfer of a methyl group to a cytosine nucleotide to form 5-

methylcytosine (5mC) (Figure 1.5)89. This transfer is catalysed by a family of enzymes called 

DNA methyltransferases. The effect of DNA methylation on gene expression regulation is 

largely dependent upon genomic location 89,90. For example, methylation within the gene body, 

i.e. protein coding exons and introns, more often results in increased gene expression, whereas 

methylation in the promoter region frequently leads to decreased gene expression 91–93. DNA 

methylation, along with other epigenetic modifications, allow the intricate spatiotemporal control 

of gene expression and is crucial both during development and adult life.  

 

DNA methylation has been implicated in many processes relevant for the brain, including in 

brain development, learning, memory, and brain cell-type specification 94. DNA 

hydroxymethylation (5hmC), an oxidative derivative of DNA methylation (Figure 1.5), is also 

important. Having originally been presumed to be an intermediate mark before demethylation 95, 

evidence now supports a functional role for 5hmC 96. Interestingly, the distribution of different 

methylation states varies in a tissue dependent manner, with 5hmC known to be enriched 

tenfold in the human brain compared to peripheral tissues 97. Distribution of 5mC and 5hmC 

between brain cell-types has also been reported to be variable, with studies indicating that 

5hmC may be enriched in neuronal cells compared to OLGs 98,99.  

 

 

https://paperpile.com/c/HSDZKE/PtxIX
https://paperpile.com/c/HSDZKE/UGqgC+PtxIX
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Figure 1.5 Schematic representation of the DNA modifications cycle, including factors 
responsible for the transitions between states 
 

 

 

A) Overall DNA modifications cycle; B) Diagram summarising the known involvement of DNMTs and TET enzymes in 

OLG differentiation, developmental myelination, and in remyelination in response to injury. Evidence shows an age-

dependent role for DNMT1 and DNMT3A, with the former suggested to be more important in developmental 

myelination, and the latter in the remyelination involving differentiation of adult OPCs 100,101. Whilst it has been 

https://paperpile.com/c/HSDZKE/JfUOC+rYB6t
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suggested that all three TET enzymes are involved in oligodendrocyte differentiation 39, TET1 has been reported to 

be more important for myelination and remyelination after injury 95,102. DNMT1/3A/3B:DNA methyltransferase 

1/3A/3B, TET:ten-eleven translocation enzymes, TDG:thymine DNA glycosylase. Figure created with BioRender and 

reproduced from Fodder et al. 51 

 

 

1.5.1 DNA methylation in neurodegenerative diseases  

Although epigenetic modifications such as DNA methylation allow for the control of gene 

expression that is fundamental to many cellular processes, changes in DNA methylation have 

also been associated with several diseases. Through hypermethylation or hypomethylation, 

alterations in DNA methylation may lead to changes in normal expression of genes, either 

through silencing or over-activation. Such effects may then lead to pathological outcomes.  

 

Studies using immunodetection of 5mC or 5hmC have often failed to lead to consensus 

regarding the occurrence of global DNA methylation/hydroxymethylation changes in 

neurodegenerative diseases, possibly reflecting limitations of such techniques 103–105. However, 

technological advances that allowed querying throughout the genome at specific sites, have 

empowered investigations of relevant candidate genes and epigenome-wide association studies 

(EWAS) to identify DNA methylation alterations in neurodegenerative diseases at single 

nucleotide resolution. In AD, EWAS studies utilising bulk brain tissue have identified multiple 

genes with DNA methylation changes associated with the disease and its pathological burden 

106–109, and meta-analyses have identified significant changes across multiple brain regions 110–

113. Differentially methylated genes have also been identified in bulk brain tissue EWAS in other 

neurodegenerative diseases such as PD 114–116, PSP 117, MSA 118, FTLD 119 and Huntington’s 

disease 120,121. DNA methylation changes in AD and movement disorders (including PD, HD, 

PSP and MSA) have been reviewed by Smith et al. 111and Murthy et al. 104, respectively. 
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Whilst most DNA methylation studies employ ‘bulk’ tissue analysis, more recent studies 

exploring DNA methylation changes in neurodegeneration have investigated cell-specific 

alterations. Gasparoni et al. carried out DNA methylation profiling on glial and neuronal fractions 

of nuclei in AD and control, and identified glial specific changes in DNA methylation122. Shireby 

et al also investigated AD-related DNA methylation signatures in purified brain nuclei and found 

that many AD-related DNA methylation changes that had previously been detected in ‘bulk’ 

tissue were indeed driven by changes in non-neuronal cells, including in OLGs 110. This finding 

highlights the need for a deeper understanding of DNA methylation changes in OLGs which 

may also occur in AD and other neurodegenerative diseases. Below, we discuss several lines of 

evidence that support DNA methylation having a role in the dysfunction of OLGs and myelin in 

neurodegenerative diseases. These are summarised in Figure 1.6. 

 

 

 

  

https://paperpile.com/c/HSDZKE/MZh8a
https://paperpile.com/c/HSDZKE/mbKGh
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1.6 DNA methylation in oligodendrocyte dysfunction in 

neurodegenerative diseases 

1.6.1 DNA methylation plays a crucial role in determining the fate of OPCs 

in health and neurodegenerative diseases 

 

 

Gene expression changes determined by DNA methylation play an important role in the process 

of lineage specification from OPCs to mature OLGs 100,123. Although most studies investigating 

the OLG life cycle have been conducted in animal models, there is significant evidence to 

suggest that DNA methyltransferases and DNA methylation are dynamic in the processes of 

OPC specification, survival, proliferation, differentiation, and myelination 100,123–126. Proliferation 

of OPCs occurs in response to exogenous signals such as growth factors, and epigenetic 

modifications are important players in this regulation. In mice, ablation of DNA 

methyltransferases has been shown to result in a hypomyelinating phenotype through reduction 

in the OPC progenitor pool due to impaired OPC proliferation 124. During differentiation of OPCs 

to OLGs in mice, decreased DNA methylation levels in myelin genes and increased methylation 

levels in cell cycle and neuronal genes were reported 124. Given that the majority of the DNA 

methylation sites (CpGs) investigated in these studies were in promoter regions, and given the 

association of promoter region DNA hypermethylation with decreased gene expression, this 

supports an important role for DNA methylation in silencing cell cycle and proliferation genes 

and in activating myelin genes, thus enabling OPCs to leave their proliferative state and 

differentiate into myelinating OLGs. DNA methylation of specific genes involved in OPC 

differentiation has also been described. The DNA-binding protein inhibitors Id2 and Id4 showed 

https://paperpile.com/c/HSDZKE/JfUOC+8jV7C
https://paperpile.com/c/HSDZKE/JfUOC+3gB81+plCxz+IfRfl+8jV7C
https://paperpile.com/c/HSDZKE/3gB81
https://paperpile.com/c/HSDZKE/3gB81
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decreased expression during OPC differentiation in mice, which was correlated with 

hypermethylation of their promoter regions, suggesting a role for DNA methylation in the 

silencing of these genes to allow the expression of myelin genes during differentiation 126. As 

described in MSA and AD brain tissue, the increased number of OPCs observed 41,65,68 could be 

reflective of an inability of the OPCs to mature and differentiate into myelinating OLGs, possibly 

in part due to defective DNA methylation. However, further investigations are required to shed 

light on such effects. It is also worth noting that DNA methyltransferases DNMT1, DNMT3a and 

DNMT3b have been shown to have distinct roles in various aspect of the OLG lineage cell 

cycle, myelination, and in remyelination after injury (Figure 1.5 B) 100,101,123–125. 

 

DNA hydroxymethylation is also dynamic during the OLG life cycle, and TET1 is one of the 

enzymes involved in this process (Figure. 1.5). Slower cell cycle progression of OPCs was 

found in Tet1 knock-out mice, an effect that appeared to be largely specific to the OLG lineage 

compared to neurons and astrocytes 96. TET1 was also found to be implicated in processes of 

myelin repair through the regulation of genes important for the axon-myelin interface 102. 

Interestingly, there is increased hydroxymethylation in adult OPCs compared to neonatal OPCs 

in mice, and evidence suggests that TET1 is essential for myelin repair after damage 102. As 

with DNMTs, there is evidence for distinct and complex roles of the TET enzyme family in 

different aspects of the OLG lineage cell life cycle (Figure 1.5 B) 96,102,127. Overall, these studies 

indicate that DNA modifications undergo dynamic changes between neonatal and adult OPCs 

and are relevant for the decrease in myelinating capacity that is observed in ageing OPCs 128. 

 

More research is needed to elucidate further the importance of 5mC and 5hmC in OLGs, and to 

understand the complex roles of DNMTs and the TET family of enzymes. This should include 

investigation of changes in their catalytic activities, during OLG differentiation, in myelination, 

and in remyelination after injury. 

https://paperpile.com/c/HSDZKE/IfRfl
https://paperpile.com/c/HSDZKE/tMTCE+cJg3Q+sliRJ
https://paperpile.com/c/HSDZKE/JfUOC+3gB81+rYB6t+plCxz+8jV7C
https://paperpile.com/c/HSDZKE/l9J1I
https://paperpile.com/c/HSDZKE/FAmki
https://paperpile.com/c/HSDZKE/FAmki
https://paperpile.com/c/HSDZKE/FAmki+l9J1I+EHj6E
https://paperpile.com/c/HSDZKE/Ch2ER
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1.6.2 Oligodendrocyte-related genes are differentially methylated in 

neurodegenerative diseases 

 

As discussed above, OLG-related genes (e.g. MOBP and BIN1) have been associated in 

GWAS with the risk of developing neurodegenerative diseases. In addition, MOBP was shown 

to present aberrant DNA methylation in an EWAS of post-mortem MSA white matter 118. 

Specifically, hypermethylation (i.e. increased methylation levels) of the promoter region of the 

gene was detected in MSA compared to controls. DNA methylation changes in MOBP were 

found even in brain regions very mildly affected by MSA pathology (e.g. occipital lobe), 

indicating that these may reflect early changes and contribute to disease pathogenesis. The 

methylation status of MOBP in MSA is linked to changes in MOBP expression levels 129, and the 

observed downregulation of this gene is likely driven by the hypermethylation of its promoter 

region. As MOBP protein is involved in the morphological differentiation of OLGs 130, changes in 

its expression levels due to aberrant methylation during OLG differentiation likely lead to 

functional impairment of these cells. As another example, BIN1 is the second strongest genetic 

risk factor for late onset AD 71–73 and associations between AD neuropathology and the level of 

methylation at the BIN1 locus have also been reported 106,131, with BIN1 transcript levels being 

associated with β-amyloid load 131. Given this, and that BIN1 has been shown to be 

predominantly localised to white matter in the brain and expressed primarily in mature OLGs 74, 

it is reasonable to hypothesise that the involvement of BIN1 gene in disease processes may be 

mediated through DNA methylation changes affecting OLGs. 

 

https://paperpile.com/c/HSDZKE/BlGsC
https://paperpile.com/c/HSDZKE/bxCya
https://paperpile.com/c/HSDZKE/R33ln
https://paperpile.com/c/HSDZKE/HGPIa+ixzHF+QROkF
https://paperpile.com/c/HSDZKE/YYv8s+MIE05
https://paperpile.com/c/HSDZKE/MIE05
https://paperpile.com/c/HSDZKE/wVBMg
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1.6.3 Oligodendrocyte cell types and epigenetic age acceleration 

 

DNA methylation changes are known to occur during ageing, which is the major risk factor for 

neurodegeneration, with accelerated epigenetic ageing, as measured using epigenetic clocks, 

being reported in neurodegenerative diseases 120,132–134. As epigenetic clocks allow estimations 

of biological ages based on the DNA methylome, it is then possible to infer the difference 

between the biological age, and the actual chronological age, i.e. epigenetic age acceleration. 

Age-related changes have been described in OLGs, notably the decrease in myelinating 

capacity with increased age 128, but it has also been suggested that there is a loss of epigenetic 

memory in these cells 135. It has been proposed that intrinsic changes observed in ageing OLGs 

could be a result of changes on gene expression brought around by an altered epigenetic profile 

135. Indeed, a recent study investigating DNA methylation-based measures of accelerated 

ageing in post-mortem tissue from different brain regions in MSA and controls found that the 

relative frequency of OLGs in brain tissue is positively correlated with epigenetic age 

acceleration, which is opposite to that found in other brain cell types 136. This relationship 

between OLG proportions and epigenetic age acceleration has also been found in some forms 

of FTLD 136. These findings support a role for OLGs in pushing towards increased 

epigenetic/biological age, suggesting that this cell lineage ages faster than other brain cell 

types. 

 

  

https://paperpile.com/c/HSDZKE/VG0hd+bggcH+MmcJL+MygBz
https://paperpile.com/c/HSDZKE/Ch2ER
https://paperpile.com/c/HSDZKE/4tGpq
https://paperpile.com/c/HSDZKE/4tGpq
https://paperpile.com/c/HSDZKE/GJZmn
https://paperpile.com/c/HSDZKE/GJZmn
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1.6.4 Vulnerability of oligodendrocyte lineage cells to reactive oxygen 

species via epigenetic modifications 

 

A further role of OLGs (aside from myelination) is their involvement in iron equilibrium in the 

CNS. Iron is key for normal CNS function 137, and OLGs are important in maintaining brain iron 

homeostasis 138. Dysregulation, and, specifically, increased iron levels in the brain are 

associated with neurodegenerative diseases such as AD, PD, and MSA 139. Proposed 

mechanisms for the role of iron in neurodegeneration include increased oxidative stress, 

possibly due to enhanced generation of reactive oxygen species (ROS) associated with 

increased protein aggregation 41,139. Given that OLGs are the principal iron-containing cells of 

the brain 140, it is reasonable to hypothesise that aberrant OLG function could contribute to 

neurodegeneration via dysregulation of brain iron levels. Indeed, investigations into brain gene 

expression in the context of neurodegeneration with brain iron accumulation (NBIA), and in 

mouse models of increased brain iron loading, implicate OLGs and myelin-related genes 141,142. 

This may well be relevant for other neurodegenerative diseases. OPCs and OLGs are thought 

to be more vulnerable to oxidative stress than other brain cell types due to factors which include 

lower levels of antioxidant enzymes and free radical scavengers 143,144, as well as their high 

metabolic requirements 128,145. Excessive oxidative stress can lead to OLG malfunction through 

the impairment of effective OLG differentiation 146, with such effects having been reported in 

neurodegenerative diseases 147. Interestingly, a link between DNA methylation changes and 

presence of ROS has been suggested with the finding that increased ROS leads to oxidation of 

5mC into 5hmC 148, likely leading to changes in gene expression regulation. Although 

speculative, it could be hypothesised that this proposed increase in susceptibility of OPCs to 

ROS-induced damage compared to other brain cell types could, at least in part, be driven by 

ROS induced alterations in DNA methylation in these cells 143,144,146. However, causal 

https://paperpile.com/c/HSDZKE/4S6X1
https://paperpile.com/c/HSDZKE/6rbla
https://paperpile.com/c/HSDZKE/5aMu9
https://paperpile.com/c/HSDZKE/5aMu9+tMTCE
https://paperpile.com/c/HSDZKE/n17Rw
https://paperpile.com/c/HSDZKE/BeYK0+qJfFu
https://paperpile.com/c/HSDZKE/TD0lR+0bOTZ
https://paperpile.com/c/HSDZKE/fpmIa+Ch2ER
https://paperpile.com/c/HSDZKE/9I0Pq
https://paperpile.com/c/HSDZKE/vrJUR
https://paperpile.com/c/HSDZKE/3W9I8
https://paperpile.com/c/HSDZKE/TD0lR+0bOTZ+9I0Pq
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relationships between neurodegenerative processes, OPC dysfunction, DNA methylation and 

ROS are still unclear and require further investigations.  

 

Figure 1.6 Potential roles for DNA methylation in the dysfunction of oligodendrocytes 
and myelin in neurodegenerative diseases 

 

Panels illustrate different lines of evidence that implicate DNA methylation changes affecting OLGs/OLG-related 

genes and their relevance to neurodegeneration. BIN1:Bridging interactor 1, MOBP:Myelin associated 

oligodendrocyte protein, OPC:Oligodendrocyte precursor cell, OLG:Oligodendrocyte, ROS:Reactive oxygen species. 

figure created with BioRender and reproduced from Fodder et al. 51 

 

 

 

https://paperpile.com/c/HSDZKE/D8Wpt
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1.7 Thesis aims  
 

From what is described above, there is mounting evidence showing that the efficient 

development, proliferation, differentiation, and maintenance of the OLG lineage cells may be 

disrupted in neurodegenerative diseases, and that aberrant DNA methylation may be implicated 

(Figure 1.6). However, the role of OLG lineage cells in the context of these diseases has not 

been given the attention it deserves.  The overarching aim of the work I have carried out during 

my PhD is to investigate, using complementary computational approaches and a large number 

of DNA methylation datasets, the role of DNA methylation in dysregulation of OLG 

lineage/myelin relevant genes across neurodegenerative diseases.  

 

 

The specific aims of this thesis are therefore:  

1. To investigate differentially methylated genes relating to OLG lineage across 

neurodegenerative diseases, using network analysis as a complementary approach to 

uncover signatures of dysregulated DNA methylation associated with OLGs/OPCs 

across neurodegeneration (explored in Chapters 3 and 4). 

2. To investigate DNA methylation during OLG differentiation and in healthy tissue to 

explore consequences of disease associated DNA methylation changes identified in Aim 

1 (explored in Chapter 5). 



53 

3. To carry out a detailed investigation of the MOBP gene as an important OLG gene that 

has been implicated in multiple neurodegenerative diseases and found to be 

differentially methylated in MSA (explored in Chapter 6)  
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Chapter 2: General methods  
 

In this chapter, we describe methods which are applicable across multiple chapters, including 

DNA methylation and gene expression datasets used throughout this thesis, detailed 

demographics of samples across these datasets, and general quality control and processing of 

these data. We also described the OLG and OPC gene lists which were used across this work 

to identify OLG/OPC relevant DNA methylation changes across neurodegeneration. 

 

2.1 DNA methylation datasets and processing  

2.1.1 Datasets used  

 
Throughout this thesis, we describe the use of multiple DNA methylation datasets that were 

previously generated, derived from both bulk brain tissue, and from the glial fraction of sorted 

brain-nuclei samples. The datasets we analysed with disease/subtypes, brain regions, and a 

brief characterization of the samples is included in Table 2.1.  

 

For FTLD1 (N = 23), sorted-FTLD (N = 25), and AD2-sorted (N = 11) all post-mortem tissue 

originated from brains donated to the Queen Square Brain Bank archives, where tissue is stored 

under a licence from the Human Tissue authority (No. 12198). Both the brain donation 

programme and protocols have received ethical approval for donation and research by the 

NRES Committee London—Central. All cases were characterised by age, gender, disease 

history (including disease onset and duration) as well as neuropathological findings. For FTLD2 

(N = 48), all post-mortem tissues were obtained under a Material Transfer Agreement from the 

Netherlands Brain Bank, and MRC King’s College London, as described by Menden et al. 149. 

For FTLD3 (N = 163, after quality control), data made available by Weber et al. 117 was retrieved 

https://paperpile.com/c/HSDZKE/Qzimk
https://paperpile.com/c/HSDZKE/UGHGS
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from Gene Expression Omnibus (GEO) under accession code GSE75704. For AD1-sorted (N = 

31), data was made available by Gasparoni et al. 122, and retrieved from GEO under accession 

code GSE66351. For AD (N = 530), data was made available by de Jager et al. 106 and was 

retrieved from Synapse (synapse ID syn7357283).  For the AD brain region dataset (utilised in 

Chapter 4) data was made available by Semick et al.150 and retrieved from GEO under 

accession code GSE125895. This dataset comprised samples across multiple brain regions, 

including cerebellum (CRB) (N = 67), hippocampus (HPPO) (N = 65), entorhinal cortex (ERC) 

(N = 69) and the dorsolateral prefrontal cortex (DLPFC) (N = 67). The brain regions from which 

the DNA methylation profiles were derived are detailed in Table 2.1 and visualised in Figure 

2.1. 

 

https://paperpile.com/c/HSDZKE/MZh8a
https://paperpile.com/c/HSDZKE/YYv8s
https://paperpile.com/c/HSDZKE/enkTP
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Table 2.1 Pathological and demographic characteristics of the FTLD and AD cohorts used in this thesis for DNA methylation 
analyses.  

Cohort Pathological FTLD 
subtypes and controls 
(N after quality control) 

Mean 
age ± SD 
(years) 

Sex Regression models 
used for cohort-
specific EWAS 

Analyses this data was 
used for 
(corresponding Thesis 
Chapters) 

Dataset 
Reference  

Illumina Beadchip  

FTLD1 
(Frontal 
Cortex) 

FTLD (N = 15) 70.07 ± 5.59 7M/8F  ~ 0 + disease + age + se
x + SOX10+ 
proportions + Double− 

proportions + array (0 
surrogate variables 
detected) 

EWAS and Network 
analysis (Chapters 3 and 
4)  

Fodder et 
al.119 

Illumina Infinium 
MethylationEPIC (850K) 

 FTLD-TDP type A 
(C9orf72 mutation 
carriers, N = 7) 

 66.86 ± 4.85 3M/4F 

 FTLD-TDP type C 
(sporadic, N = 8) 

72.88 ± 4.79 4M/4F 

Controls (N = 8) 75.75 ± 5.63 3M/5F 

FTLD2 
(Frontal 
Cortex)  

FTLD (N = 34) 63.18 ± 7.92 14M/20F  ~ 0 + disease + age + se
x + SOX10+ 
proportions + Double− 

proportions + array + sli
de (0 surrogate 
variables detected) 

EWAS and Network 
analysis (Chapters 3 and 
4)  

Menden et 
al.149 

Illumina Infinium 
HumanMethylation450 
(450K) 

 FTLD-TDP type A (GRN 
mutation carriers, N = 7) 

65.57 ± 7.63 2M/5F 

 FTLD-TDP type B 
(C9orf72 mutation 
carriers, N = 14) 

64.57 ± 8.41 5M/9F 

 FTLD-tau (MAPT 
mutation carriers, N = 13) 

 60.92 ± 7.60 7M/6F 

Controls (N = 14) 78.43 ± 11.76 5M/9F 

https://paperpile.com/c/HSDZKE/Tza2a
https://paperpile.com/c/HSDZKE/Qzimk
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FTLD3  
(Frontal 
Cortex) 

FTLD (N = 93) 71.16 ± 5.32 54M/39F  ~ 0 + disease + age + se
x + SOX10+ 
proportions + Double− 

proportions + array + sli
de + surrogate variable 
(1/1 surrogate variables 
detected) 

EWAS and Network 
analysis (Chapters 3 and 
4)  

Weber et 
al.117 

Illumina Infinium 
HumanMethylation450 
(450K) 

 FTLD-Tau (sporadic 
PSP) 

Controls (N = 70) 76.17 ± 7.93 45M/25F 

FTLD-sorted  
(Frontal 
Cortex) 

FTLD (N = 19) 67.3 ± 12.2  10M/9F ~ 0 + disease + age + 
sex + NEUN+ 
proportions + array + 
surrogate variables (4/4 
detected surrogate 
variables )  

EWAS and Network 
analysis (Chapters 3 and 
4)  

Bettencourt 
lab, 
unpublished  

Illumina Infinium 
HumanMethylation450 
(450K) FTLD-TDP type A 

(C9orf72 mutation 
carriers, N = 7) 

64 ± 9.38 3M/4F 

FTLD-TDP type C 
(sporadic, N = 5) 

70.2 ± 3.96 3M/2F 

FTLD-TDP type A 
(sporadic, N = 7) 

68.5 ± 9.38 4M/3F 

Controls (N = 6) 59.5 ± 12.2  3M/3F  

AD  
(Dorsolateral 
Prefrontal 
Cortex) 

AD  (N = 201) 85.4 ± 5.39 120M/81F ~0 + disease + slide + 
bs_conversion + 
NEUN+ proportion + 
Double-  proportion + 
array + PC1+ PC2  

EWAS, 
Methylation/Gene 
expression correlations, 
Methreg (Chapters 3 
and 5)  

De Jager et 
al.106 

Illumina Infinium 
HumanMethylation450 
(450K) Controls (N = 329) 87.3 ± 3.91 212M/117

F 

AD1-sorted  
(Occipital 
Cortex)  

AD (N = 15) 80.27 ± 7.21 
  
 

5M/10F ~ 0 + disease + age + 
NeuN+ proportions + 
Double- proportions + 
slide + sex   

EWAS and Network 
analysis (Chapters 3 
and 4)  

Gasparoni 
et al. 122 

Illumina Infinium 
HumanMethylation450 
(450K) 

Controls (N = 16 69.63 ± 21.3 9M/7F 

https://paperpile.com/c/HSDZKE/UGHGS
https://paperpile.com/c/HSDZKE/YYv8s
https://paperpile.com/c/HSDZKE/MZh8a
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AD2-sorted  
(Frontal 
Cortex) 

AD (N = 5) 69 ± 7.97 2M/3F ~0 + disease + NeuN+ 
proportions + sex 

EWAS and Network 
analysis (Chapters 3 and 
4)  

Bettencourt 
lab, 
unpublished 

Illumina Infinium 
HumanMethylation450 
(450K) Controls (N = 6) 59.5 ± 12.2  3M/3F  

AD-HIPPO AD (N = 17) 81.5 ±  9.16 8M/9 ~0+Sample_group+plat
e+DoubleN+sex+NeuN
P+age+array 

Network analysis 
(Chapter 4) 

Semick et 
al.150 

Illumina Infinium 
HumanMethylation450 
(450K) 

CTRL (N = 48) 61.7 ±  7.66 29M/19F 

AD-DLPFC AD (N = 21) 79.9 ± 9.46 11M/10F ~0+Sample_group+neu
NP+age+sex+plate 

CTRL (N = 46) 61.3 ± 7.56 27M/19F 

AD-ERC AD (N = 20) 79.7 ±  9.64 9M/11F ~0+slide+DoubleN+Sox
10P+age + 1/1 
surrogate variables 
detected 
 

CTRL (N = 49) 61.6 ±  7.61 29M/20F 

AD-CRB AD (N = 24) 79.5  ±10.0 11M/13F ~0+Sample_group+slid
e+sex+age+neuNP+do
ubleN 

CTRL (N = 43) 60.6  ± 7.04 24M/19F 

 

FTLD, Frontotemporal lobar degeneration; FTLD-TDP, FTLD with 43 kDa transactive response DNA-binding protein (TDP-43) positive inclusions; FTLD-Tau, 

FTLD with tau-positive inclusions; PSP, progressive supranuclear palsy; AD, Alzheimer’s Disease; SD, Standard deviation; F, Females; M, Males; Double− 

proportions, NeuN−/SOX10− proportions; PC1, 1st principal component; PC2, 2nd principal component, HIPPO; hippocampus, DLPFC; dorsolateral prefrontal 

cortex, ERC; entorhinal cortex, CRB; cerebellum 

https://paperpile.com/c/HSDZKE/enkTP
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Figure 2.1 Brain regions analysed across DNA methylation cohorts  

 

Illustration highlights the brain regions analysed in DNA methylation cohorts. Each labeled region represents a distinct brain area. 

Dorsolateral Prefrontal Cortex (DLPFC) - marked in green. Hippocampus (HIPPO) - marked in blue. Entorhinal Cortex (ERC) - 

marked in orange. Cerebellum (CRB) - marked in teal. Occipital cortex - marked in yellow. Frontal lobe - marked in mid blue.  

2.1.2 Quality control  

 

DNA methylation profiles that we used throughout this thesis were generated using the Illumina 

Infinium HumanMethylation450 (450K) or MethylationEPIC v1 (850K) arrays (aside from those 

detailed in Chapter 5). Briefly, after DNA extraction from samples, bisulfite conversion is carried 

out, through which unmethylated cytosines are converted to uracil, while methylated cytosines 

remain unchanged. Bisulfite-converted DNA is then hybridized to illumina beadchip arrays, 

where methylation level at CpG sites is measured through the use of fluorophore incorporation 
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based on methylation level. Raw intensity levels are passed as IDAT files, which contain 

fluorescence intensity values which can then be used to generate beta-values ranging from 0 to 

1 (approximately 0% to 100% methylation, respectively). Beta-values are thus used to estimate 

the methylation levels of each CpG site using the ratio of intensities between methylated and 

unmethylated alleles. Coverage of CpG sites varies between Illumina Infinium 

HumanMethylation450 (450K) and MethylationEPIC v1 (850K) arrays. The Illumina Infinium 

HumanMethylation450 (450K) array covers ~ 450,000 CpG sites across the genome, largely 

focusing on promoter regions and CpG islands, whilst the Illumina Infinium MethylationEPIC 

(850K) array covers ~ 850,000 CpG sites including 90% of the CpG sites covered by the 

IlluminaMethylation450 (450K). The Illumina Infinium MethylationEPIC (850K) array, as well as 

increased coverage of regions analysed in the IlluminaMethylation450 (450K) array, also 

features increased coverage of enhancer regions 151. For the two arrays, 99% of RefSeq genes 

are probed.  

 

For each of the abovementioned cohorts, the following pipeline was carried out for quality 

control and data processing prior to its use in various downstream analyses.  

 

All cohorts were subjected to harmonised quality control checks and pre-processing. Briefly, raw 

data (idat files) were imported and subjected to rigorous pre-processing and thorough quality 

control checks using minfi 152, wateRmelon 153, and ChAMP packages 154. Examples of images 

used in quality control are given in Figure 2.2.A-B. The following criteria were used to exclude 

methylation sites that did not pass quality control checks from further analysis: (1) poor quality, 

(2) cross reactive, (3) included common genetic variants, and (4) mapped to X or Y 

chromosome. In addition, samples were dropped during quality control if: (1) they presented 

with a high failure rate (≥ 2% of methylation sites), (2) the predicted sex did not match the 

https://paperpile.com/c/HSDZKE/PleH
https://paperpile.com/c/HSDZKE/fBLiv
https://paperpile.com/c/HSDZKE/OMglh
https://paperpile.com/c/HSDZKE/sYJVY
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phenotypic sex, and (3) they clustered inappropriately on multidimensional scaling analysis. 

Beta-values were normalised with ChAMP using the Beta-Mixture Quantile (BMIQ) 

normalisation method (Figure 2.2.C), to normalise for the technological factors during DNA 

methylation profiling. M-values, computed as the logit transformation of beta-values, were used 

for all statistical analysis, as recommended by Du et al. 155, owing to their reduced 

heteroscedasticity (as opposed to beta-values) and improved statistical validity for differential 

methylation analysis. 

2.1.3 Cell type deconvolution estimation using DNA methylation data 
 

For a significant amount of the analysis undertaken in this thesis, we have utilised DNA 

methylation data derived from ‘bulk’ brain tissue. As DNA methylation patterns are subject to 

high levels of variation between distinct cell types, the proportion of each cell type in a sample 

could thus lead to DNA methylation changes being detected that merely reflect, for example, an 

increased/decreased proportion of a particular cell type in the sample being processed. 

Therefore, we have used a novel cell-type deconvolution algorithm described by Shireby et al. 

110 which has used reference panel data obtained from fluorescence activated sorted nuclei from 

cortical brain tissue to estimate the relevant proportions of the following cell groups: NeuN+ 

nuclei (representing neuronal cell-types), SOX10+ nuclei (representing oligodendrocytes), and 

NeuN-/SOX10- nuclei (representing other glial cell types). Using this cell-type sorted reference 

dataset and the CETYGO (CEll TYpe deconvolution GOodness) package 

(https://github.com/ds420/CETYGO), we estimated, for each sample in our datasets, the relative 

proportions of each three cell populations (example - Figure 2.2.D). We used these estimations 

as factors in our quality control steps and covariate correction.  

 

https://paperpile.com/c/HSDZKE/3x9HQ
https://paperpile.com/c/HSDZKE/mbKGh
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2.1.4 Differential methylation analysis  

 

We applied linear regression models (Table 2.1) using the M-values as the input to identify 

associations between DNA methylation variation at specific CpG sites and FTLD using the 

limma package 156. For FTLD1, we have accounted for possible confounding factors, such as 

age and sex as well as factors detected in principal components 1 and 2 as seen in Singular 

Value Decomposition (SVD) plots (ChAMP package154) (Figure 2.2.E), which included cell 

proportions (SOX10 + and Double−) and sample position in the array. Using this regression 

model, no surrogate variables were detected with the num.sv function of the SVA package 157, 

meaning there were no remaining unknown, unmodelled, or latent sources of variation 156. The 

same process was applied to FTLD2 and FTLD3. The model for FTLD2 was further adjusted for 

slide, whereas for FTLD3, the model was further adjusted for slide and one surrogate variable 

(Table 2.1). For the FTLD-sorted cohort, we included in the model age, sex, cell proportions 

(NeuN+), array and 2 surrogate variables. For AD1 (sorted), we included age, cell proportions 

(NeuN+ and DoubleN), slide and sex. The regression model for AD2 only included cell 

proportions (NeuN+) and sex. For the bulk AD dataset, we included, as well as slide, array and 

cell proportions (NeuN+ and DoubleN), principle components 1 and 2, and bisulfite conversion 

efficiency (technical variability arising from processing of DNA prior to sequencing). For the 

multi-region AD datasets, the following covariates were included: DLPFC - cell proportions 

(NeuN+), age, sex, plate, ERC - slide, cell proportions (DoubleN + SOX10+), age one surrogate 

variable, HIPPO - plate, cell proportions (DoubleN and NeuN+) sex, age, array and CRB - slide, 

sex, age and cell proportions (NeuN+ and DoubleN) (Table 2.1). 

  

https://paperpile.com/c/HSDZKE/8iTYd
https://paperpile.com/c/HSDZKE/sYJVY
https://paperpile.com/c/HSDZKE/EyY2
https://paperpile.com/c/HSDZKE/8iTYd
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Figure 2.2 Quality control steps example figures 

 

A) Scatter plot showing the relationship between unmethylated (Unmeth) and methylated (Meth) median 

intensities for all samples generated using minfi 152. Good-quality samples are represented as black circles, while 

low-quality samples are highlighted as red circles with sample indices. B) Scatter plot of transformed beta values 

versus final weights generated with wateRmelon 153. Red-hatched regions indicate transformed beta values 

https://paperpile.com/c/HSDZKE/fBLiv
https://paperpile.com/c/HSDZKE/OMglh
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outside the acceptable range. C) Density plots displaying the distribution of beta values (ranging from 0 to 1) 

for each sample in the dataset. Top panel shows density of samples pre-normalisation, whilst bottom panel shows 

density of beta values after normalisation using the BMIQ method in ChAMP 154. D) Results from cell-type 

deconvolution analysis. Bar plot illustrates proportions of each cell type: NeuN+ nuclei (representing neuronal cell-

types), SOX10+ nuclei (representing oligodendrocytes), and NeuN-/SOX10- nuclei (representing other glial cell types) 

for samples across control and frontotemporal lobar degeneration (FTLD) groups. E) SVD plots illustrating which 

covariates contribute to variation within the dataset. The top panel illustrates the diagnostic SVD plot as seen by 

principal components (PC), showing that batch and biological effects are contributing to data variation. The bottom 

panel illustrates covariate contribution after adjustment.  

2.2 Gene expression datasets  

2.2.1  RNA-sequencing datasets  

 

Throughout this thesis, we utilise three RNA-sequencing datasets (Table 2.2). For all of these 

RNA sequencing datasets, quality control and processing was performed as follows. 

Normalization factors were calculated using the limma package 156 to account for differences in 

library sizes across samples, ensuring comparability of expression values. Genes with low 

expression levels were filtered out (i.e. genes whose maximum counts per million (CPM) value 

across all samples was less than 1). The voom function from the limma package was then 

applied to the filtered data to model the mean-variance relationship and transform the counts 

data into log2 counts per million (log-CPM) values, making them suitable for linear modeling. A 

linear model was fitted to the transformed data used to adjust for covariates (as determined 

necessary using SVD analysis). Regression models and corresponding covariates used in each 

case are described in Table 2.2.  

 

https://paperpile.com/c/HSDZKE/sYJVY
https://paperpile.com/c/HSDZKE/8iTYd
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Table 2.2 Pathological and demographic characteristics of the FTLD and AD cohorts used in 
this thesis for gene expression analyses.  
 

FTLD, Frontotemporal lobar degeneration; FTLD-TDP, FTLD with 43 kDa transactive response DNA-binding protein 

(TDP-43) positive inclusions; FTLD-Tau, FTLD with tau-positive inclusions; PSP, progressive supranuclear palsy; AD, 

Alzheimer’s Disease; SD, Standard deviation; F, Females; M, Males 

 

2.2.2i Single-nuclei RNA sequencing dataset  

We also used single-nuclei RNA sequencing data from the previously published and publicly 

available ROSMAP study158 (https://www.synapse.org/#!Synapse:syn18485175). We obtained 

filtered cell counts from 24 individuals showing little or no pathology and 24 showing mild to 

severe AD pathology (N = 48 total). Filtered data consisted of 70,634 droplet-based single-

Cohort Samples  Mean 
age ± SD 
(years) 

Sex Regression models used for 
differential expression 
analysis 

FTLD1-Expression  FTLD-TDP (N = 44)  66.8 ± 13.2 25M/19M  
~0 + disease + age + sex + pmi 

CTRL (N = 24 ) 70 ± 9.46 11M/11M 

FTLD2-Expression  FTLD (N = 30) 62.6 ±  8.10 14M/16F  
 
~0 + disease + age + sex + pmi 

FTLD-TDP (N = 19) 63.9 ±  7.98 7M/12F 

FTLD-tau  (N = 11) 60.5 ±  8.23 7M/4F 

CTRL (N = 14) 78.4 ± 11.8  5M/9F 

AD-Expression  AD (N = 201)  83.1  5.26  81M/120F ~0 + disease + age + sex + pmi + 
sequencing batch  

CTRL (N = 329) 85.0   4.07 117M/212F 

https://paperpile.com/c/HSDZKE/8EuKO
https://www.synapse.org/#!Synapse:syn18485175
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nucleus covering a total of 17,926 genes. After downloading, we used Seurat to normalise the 

data with the function “NormalizeData” with the option “LogNormalize”, using a scale factor of 

10,000. We then assigned cell cluster identities as identified by Mathys et al 158, which contained 

8 cell-type clusters; Astrocytes (Ast), Endothelial cells (End), Excitatory neurons (Ext), Inhibitory 

neurons (In), Microglia (Mic), Oligodendrocytes (Oli), Oligodendrocyte precursor cells (Opc) and 

pericytes (Per). Subclusters of these cells were also defined, which for OLGs and OPCs were 

Oli_1,3,4 and 5, and Opc_0,1,2 (Figure 2.3).  

 

Figure 2.3 Single-nuclei Expression data used  

UMAP plot illustrating the distribution of various cell subclusters under two conditions: No-Pathology (left) and 

Pathology (right). Each point represents a single nuclei, and cells are grouped into distinct subclusters based on gene 

expression patterns. Ast: Astrocytes, End: Endothelial cells, Ext: Excitatory neurons, In: Inhibitory neurons, Mic: 

Microglia, Oli: Oligodendrocytes, Opc: Oligodendrocyte precursor cells, Per: pericytes, UMAP: Uniform Manifold 

Approximation and Projection 

  

https://paperpile.com/c/HSDZKE/8EuKO
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2.3 Oligodendrocyte and oligodendrocyte precursor cell gene lists  

For investigation into which genes showing differential methylation across diseases were 

relevant to OLGs and OPCs, we utilised a list of genes kindly provided by collaborator Dr Piras, 

who curated the gene lists from human snRNA-sequencing data generated by Mathys et al 158. 

As previously described by Dr Piras 159, data was imported through Seurat, and genes were 

assigned to a cell type class using a linear regression model where the dependent variable and 

predictor were gene expression level and cell type clusters respectively. Genes were assigned 

to a cell type if 1) adjusted p-value (false discovery rate (FDR)) was less than 0.05, and 2) the 

ratio of the regression coefficient of the most enriched cell type compared to the second most 

enriched cell type was  ≥ 1.76 (as defined by Piras et al, for more details, see reference159).  

 

For various analyses throughout this thesis, we utilized different thresholds to define 

oligodendrocyte (OLG) and oligodendrocyte precursor cell (OPC)-relevant gene lists, as 

provided by Dr. Piras. Specifically, in Chapter 3, which examines differential methylation of 

OLG/OPC-relevant genes, a more stringent cutoff was applied. Genes were selected if the ratio 

of the regression coefficient of the most enriched cell type to the second most enriched cell type 

was ≥ 3. Through this more stringent method, 251 and 123 genes were included as ‘stringent 

OLG genes’ and ‘stringent OPC genes’ respectively (Appendix A). This stringent filtering 

ensured a focus on highly specific cell-type markers. In Chapter 4, which assesses cell-type 

enrichment within co-methylation modules, the full list of all genes identified through the 

regression-based cell type assignment method (described earlier) was used, where 444 and 

447 genes were included as ‘OLG genes’ and ‘OPC genes’ respectively (Appendix A). This 

less stringent gene list was justified to uncover patterns of cell-type enrichment within co-

methylation networks modules.  

  

https://paperpile.com/c/HSDZKE/8EuKO
https://paperpile.com/c/HSDZKE/oMbfd
https://paperpile.com/c/HSDZKE/oMbfd


69 

Chapter 3:  Oligodendrocyte lineage 

genes show differential methylation and 

expression across dementias  

 

3.1 Introduction  

 

Differential methylation is an analytical approach commonly used to identify differences in DNA 

methylation patterns between disease and control groups. There have been several  

epigenome-wide association studies (EWAS) which have identified genes in which aberrant 

DNA methylation is associated with neurodegenerative disease (described in Chapter 1, section 

1.4.1). Numerous genes have been found to be consistently differentially methylated across 

datasets, for example ANK1, which is consistently found to be dysregulated in AD 106,107,160. 

Several genes relating to oligodendrocytes have also been identified, for example BIN1 and 

MOBP have been found to be differentially methylated inAD 106,131 and MSA 118,129 respectively. 

However, as far as we know, no studies comprehensively focusing on OLG and OPC relevant 

genes within EWAS of bulk brain tissue have been carried out. Meta-analyses have also been 

carried out across DNA methylation datasets, for example in AD112. Meta-analyses take results 

from multiple studies/datasets and combine them, allowing increased statistical power to detect 

novel differentially methylated sites. In the context of DNA methylation analysis, meta-analyses 

are a particularly valuable tool71,73; DNA methylation studies are often limited by small sample 

size and large batch effects due to technical variation.  

https://paperpile.com/c/HSDZKE/YYv8s+hFvfV+2EtQL
https://paperpile.com/c/HSDZKE/YYv8s+MIE05
https://paperpile.com/c/HSDZKE/bxCya+BlGsC
https://paperpile.com/c/HSDZKE/uxS6z
https://paperpile.com/c/HSDZKE/HGPIa+QROkF


70 

 

In this chapter, we used both bulk brain tissue data and sorted brain-nuclei data. Bulk DNA 

methylation datasets refers to datasets derived from a piece of brain tissue with a variable mix 

of neuronal and glial cells, frequently used due ease and cost-effectiveness as there is no need 

for complex and expensive cell/nuclei-sorting techniques. There are advantages to the use of 

data from such studies - namely that sample sizes tend to be greater, which is important when 

analysing DNA methylation data as referred to above. However, techniques to sort brain nuclei 

into cell-type specific fractions, mainly through Fluorescence-Activated Nuclei Sorting (FANS), 

have enabled the isolation of cell-type specific nuclei fractions, from which cell-type specific 

DNA methylation profiles can be generated. Gasparoni et al. used brain-nuclei sorting to profile 

DNA methylation changes associated with AD in neurons and glia, and identified genes which 

showed differential methylation in only one cell-type population that had not been detected in 

previous bulk tissue studies, underlining the importance of such techniques 122. A recent study 

went further and profiled three populations of cells - neurons, OLGs and astrocyte/microglia 

110,122. Interestingly it was found that most of the DNA methylation changes were identified in 

non-neuronal cell populations 110,122. This indicates that DNA methylation changes identified in 

bulk tissue may be highly driven by changes in OLGs, as well as other glial cell populations, and 

highlights the need for approaches studying cell-specific DNA methylation patterns in 

neurodegeneration. 

 

Another use of the generation of sorted brain-nuclei datasets is that they have enabled the 

development of reference based cell-type deconvolution algorithms, which allow populations of 

distinct cell types in bulk DNA methylation datasets to be estimated. The cell-type algorithm we 

use in this work was described by Shireby et al. 110. Briefly, FANS was used to obtained three 

purified nuclei populations: neurons (NeuN+), oligodendrocytes (SOX10+), and 

microglia/astrocytes (NeuN–/SOX10–), which were used as reference data. This cell-type 

https://paperpile.com/c/HSDZKE/MZh8a
https://paperpile.com/c/HSDZKE/MZh8a+mbKGh
https://paperpile.com/c/HSDZKE/MZh8a+mbKGh
https://paperpile.com/c/HSDZKE/mbKGh
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specific data was used, with an algorithm created using a method described by Houseman et al. 

161, to obtain DNA methylation markers of specific cell types. The methylation levels of the 

marker methylation sites were used to construct reference profiles for each of these cell-types. 

Quadratic programming was then applied to bulk data to estimate cell types based on the 

difference between observed bulk methylation levels and the predicted levels based on 

reference profiles. Such algorithms allow for the estimation of different cell type proportions 

which can then be added as variables to regression models. In differential DNA methylation 

analysis, this step is crucial. It is important that differences in DNA methylation between control 

and disease are not simply a reflection of distinct cell composition between sample groups. In 

studying neurodegeneration, where specific populations of cells are affected4, this is even more 

important.  

 

Here, we use differential methylation analysis to uncover which genes relating to OLGs and 

OPCs show dysregulated patterns of DNA methylation between controls and AD and/or FTLD. 

As described, brain-nuclei sorted DNA methylation datasets are invaluable as they enable the 

reduction of ‘noise’ signals coming from multiple cell types and DNA methylation changes that 

affect just one cell type are less diluted. In this work, where we are interested in DNA 

methylation changes affecting OLG lineage genes, the use of this type of data is particularly 

valuable. Due to complexity in generating data however, there are far fewer datasets available 

(both in house and publicly available), and such datasets tend to have smaller sample sizes. 

Therefore, we utilised both bulk and brain-nuclei sorted DNA methylation data as 

complementary approaches.  

 

 

https://paperpile.com/c/HSDZKE/Cefaf
https://paperpile.com/c/HSDZKE/SLNqO
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3.2 Methods  

3.2.1 DNA methylation datasets used in this chapter  

In this chapter, we utilised 7 DNA methylation datasets across FTLD subtypes and AD, both 

bulk-tissue and sorted brain-nuclei derived. We have described the demographic 

characterisation of these datasets in detail in Chapter 2 section 2.1. A brief overview of the 

datasets is provided in Table 3.1. To investigate DNA changes in FTLD relating to OLGs and 

OPCs, we carry out cohort-specific EWAS on three bulk FTLD datasets (FTLD1-3), followed by 

a meta-analysis of these three cohorts. We then utilise a brain-nuclei sorted dataset to follow up 

on findings from the bulk datasets (FTLD-sorted). In our investigation of DNA methylation 

changes associated with AD in OLGs and OPCs, we utilised one bulk AD dataset (AD) and two 

brain-nuclei sorted datasets (AD1-sorted, AD2-sorted) (Table 3.1).  

 

 

Table 3.1 Brief overview of the DNA methylation datasets used in this chapter  

Cohort Samples included after quality control  Reference  

FTLD1 FTLD (N = 15) and CTRL (N =8) Fodder et al.119 

FTLD2 FTLD (N = 34) and CTRL (N = 14) Menden et al.149 

]\   

FTLD3 FTLD (N = 93) and CTRL (N = 70) Weber et al.117 

AD AD (N = 201) and CTRL (N = 329) De Jager et al.106 

FTLD-sorted FTLD (N = 19) and CTRL (N = 6)  Bettencourt lab, unpublished  

AD1-sorted AD (N = 15) and CTRL (N = 16)  Gasparoni et al.122 

AD2-sorted AD (N = 5) and CTRL (N = 6) Bettencourt lab, unpublished  
FTLD, Frontotemporal lobar degeneration;AD, Alzheimer’s Disease. 

https://paperpile.com/c/HSDZKE/Tza2a
https://paperpile.com/c/HSDZKE/Qzimk
https://paperpile.com/c/HSDZKE/UGHGS
https://paperpile.com/c/HSDZKE/YYv8s
https://paperpile.com/c/HSDZKE/MZh8a
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3.2.2 Data processing and differential methylation 

Data processing was conducted as described in Section 2.1.2. Cell type deconvolution was 

carried out as described in Section 2.1.3. As described in Section 2.1, we carried out 

differential methylation analysis using regression modeling, where we include estimates of cell-

type proportions as covariates. The models used for differential methylation analysis are 

described in Section 2.1.4 and Table 2.1.  

3.2.3 Meta-analysis  

In the case of the three FTLD cohorts, and the two sorted AD datasets, we also carried out a 

meta-analyses. We used the estimated coefficients and SEs obtained from the regression 

models, described above for the three FTLD cohorts and the sorted-AD cohorts, to undertake 

an inverse variance meta-analysis using the metagen function from the meta R package 162. 

Only methylation methylation sites present in all datasets (N = 363,781 for the FTLD meta-

analysis, and N = 376,028 for the sorted AD meta-analysis) were considered for this analysis. 

When reporting differentially methylated sites, a conservative Bonferroni significance was 

defined as p < 1.374 × 10−7 (p < 0.05/363,781) and p < p < 1.330 × 10−7 (p < 0.05/376,028) for the 

FTLD and AD meta-analyses, respectively, to account for multiple testing. We report random-

effects meta-analysis results as the three cohorts included different FTLD subgroups/subtypes 

according to their neuropathological classification possibly leading to high heterogeneity in the 

meta-analysis.  

https://paperpile.com/c/HSDZKE/gAMEK
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3.2.4 Oligodendrocyte and oligodendrocyte precursor cell gene lists  

For investigation into which genes showing differential methylation across diseases were 

relevant to OLGs and OPCs, we utilised a list of genes kindly provided by collaborator Dr Piras. 

In order to only investigate genes strongly associated with OLGs and OPCs, in this analysis we 

filter for only those genes with a more stringent cut off for OLG/OPC association, as described 

in Chapter 2 Section 2.3, in order to limit findings to those genes highly relevant to our cell 

types of interest.  

3.2.4 Comparisons of DNA methylation hits with gene expression data 

To examine the gene expression patterns of genes we found to be differentially methylated, we 

used several gene expression datasets (Table 3.2), which have been described in detail in 

Chapter 2 section 2.2. In this chapter, we utilise two bulk FTLD RNA-sequencing datasets, 

which overlap with a subset of samples from the FTLD1 and FTLD2 DNA methylation datasets, 

and one bulk AD RNA-sequencing dataset, also overlapping with samples from the AD DNA 

methylation dataset. We also utilise a single-nuclei RNA sequencing dataset derived from AD 

and control samples. The quality control and processing of these datasets is described in 

Chapter 2 section 2.2. 

3.2.5 Further Investigation of DNA methylation hits 
 

To investigate any hits we have found in our EWAS, we have utilised online databases such as 

Protein Atlas (https://www.proteinatlas.org/). We have also carried out functional enrichment of 

groups of differentially methylated genes using Gene Ontology (GO) enrichment analysis 163,164. 

GO enrichment analysis was conducted through ClusterProfiler 165.  

 

https://www.proteinatlas.org/
https://paperpile.com/c/HSDZKE/q46YE+2QmT0
https://paperpile.com/c/HSDZKE/mzwTj
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A schematic for the work carried out in this Chapter is provided in Figure 3.1.  
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Figure 3.1 Schematic illustration work carried out in Chapter 3   
 
Cohort specific EWAS analysis were carried out on four bulk brain tissue DNA 

methylation cohorts; FTLD1, FTLD2, FTLD3 and AD. Cohort specific EWAS were 

also carried out on three sorted brain-nuclei DNA methylation cohorts; AD1, AD2 

and FTLD-sorted. Meta-analyses were carried out on the FTLD1, FTLD2, and 

FTLD3 datasets, and AD1 and AD2 datasets. Genes of interest were identified, 

and changes in gene expression were investigated through multiple gene 

expression datasets. Functional enrichment on differentially methylated genes was 

also carried out. FTLD: frontotemporal lobar degeneration, AD: Alzheimer’s 

disease, EWAS: epigenome-wide association study. 
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3.3 FTLD results and discussion 

 

3.3.1 EWAS of three bulk FTLD datasets reveals that oligodendrocyte 
lineage genes are differentially methylated in FTLD and show downstream 
changes in gene expression  
 

To investigate DNA methylation changes relating to oligodendrocyte lineage cells in our three 

FTLD cohorts, we used linear regression models to perform cohort-specific case-control EWAS, 

and then investigated effects within OLG/OPC relevant genes (as defined in Section 2.3). In 

these cohort-specific EWAS, likely due to limited sample size, no methylation sites mapping to 

genes within our OLG and OPC relevant gene lists reached genome-wide significance after 

multiple testing corrections. We thus discuss methylation sites that showed an arbitrary nominal 

significance of unadjusted P-value < 0.01 in each cohort (Appendix B).  

 

The top differentially methylated CpGs in FTLD1, FTLD2 and FTLD3 that mapped to OLG 

relevant genes were cg13010326 in ANLN (p = 6.74e-05), cg08407007 in HSPA2 (p = 4.27e-05) , 

and cg11965880 in PIP4K2A (p = 1.31e-05). ANLN codes for Anilin, which is a cytoskeletal gene 

known to be important in the process of cytokinesis (the division of cells post-mitosis)166. The 

gene was identified through snRNA-sequencing as being upregulated in OLGs in AD compared 

to controls 167. Two methylation sites within this gene were found to be significantly differentially 

methylated in the FTLD1 dataset, and one was found within the FTLD2 cohort (Appendix B). 

ANLN did not show changes in either of the FTLD expression datasets analysed.  

 

https://paperpile.com/c/HSDZKE/ZcQ1g
https://paperpile.com/c/HSDZKE/0mhfN
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HSPA2 codes for Heat shock Protein Family A Member 2, which acts as a molecular chaperone 

168. HSPA2 has been found to be upregulated in PD and MSA 169, and has also been linked to 

other neurodegenerative diseases. A study found that HSPA2 expression was associated with 

both amyloid plaque and neurofibrillary tangle density, and expression of the gene was also 

significantly different between control and AD OLGs in single nuclei RNA sequencing data 170.  

 

PIP4K2A codes for the enzyme phosphatidylinositol-5-phosphate 4-kinase type-2 ɑ, which has 

a role in the trafficking of cholesterol to peroxisomes from lysosomes 171. The gene was found to 

be part of a core set of OLG genes (from transcriptome co-expression networks)172, and is also 

genetically associated with AD 172. The gene showed upregulation at the gene expression level 

in the FTLD1-expression dataset (Figure 3.2.D, Appendix C).  

 

We investigated whether any genes showed differences in DNA methylation across all three 

FTLD cohorts. Differential methylation in CTNNA3, DNAH17 and SCD was found in all three 

cohorts (Figure 3.2, Appendix C). CTNNA3 encodes the adhesion protein catenin-ɑ 3, which 

has been (with some controversy) associated with AD 173–175, and is part of the Wnt-signalling 

pathway 176. DNAH17 codes for dynein axonemal heavy chain 17, a motor protein that has been 

associated with PD 177,178. Interestingly, in a study incorporating multi-omics data to investigate 

key molecular players in myelin-related dysregulation, both CTNNA3 and DNAH17 were 

identified as hits 172. SCD codes for the enzyme Stearoyl-CoA Desaturase, an enzyme involved 

in fatty acid biosynthesis. It was shown, in an AD mouse model, that inhibition of SCD (at the 

protein level) led to some restoration of hippocampal function 179.  

 

When examining regions of dysregulated DNA methylation patterns within these three genes, 

we saw that all 6 differentially methylated sites across the three FTLD cohorts mapping to 

CTNNA3 were located within the gene body (Figure 3.2 C,  Appendix B). Differentially 

https://paperpile.com/c/HSDZKE/xQ8Mv
https://paperpile.com/c/HSDZKE/2vDlx
https://paperpile.com/c/HSDZKE/9E6wD
https://paperpile.com/c/HSDZKE/BVJWn
https://paperpile.com/c/HSDZKE/H43o6
https://paperpile.com/c/HSDZKE/H43o6
https://paperpile.com/c/HSDZKE/Ng9cT+XcBf7+fne1V
https://paperpile.com/c/HSDZKE/oJ9vI
https://paperpile.com/c/HSDZKE/hM22P+eOdA8
https://paperpile.com/c/HSDZKE/H43o6
https://paperpile.com/c/HSDZKE/f5j1s
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methylated sites mapping to DNAH17 were also all located within the gene body (Appendix B). 

In contrast, the methylation sites mapping to SCD were positioned both within the promoter 

region (TSS1500) and within the gene body but close to the 5’ end of the gene (Appendix B). In 

the case of both CTNNA3 and DNAH17, there appears to be a general dysregulation of DNA 

methylation across a large section of the gene bodies, with both hypermethylation and 

hypomethylation. In the case of SCD, there was a tendency towards hypomethylation around 

the promoter region of the gene. Several other OLG genes showed dysregulated methylation 

across multiple datasets (Figure 3.2 A, Appendix B). 

 

To explore any potential downstream consequences of the DNA methylation patterns observed, 

we investigated, where possible, FTLD transcriptomic data. We utilised two FTLD expression 

datasets, FTLD1-expression and FTLD2-expression, which overlapped with samples from the 

FTLD1 and FTLD2 DNA methylation datasets. Several genes that showed differentially 

methylated sites also showed changes in gene expression between FTLD and controls (Figure 

3.2.A,C, Appendix C). The gene MYRF (myelin-regulatory factor), a gene of high importance to 

OLGs due to its role in maintenance of mature myelinating phenotypes, showed differential 

methylation at the body of the gene, and showed an upregulation at the gene expression level in 

the FTLD1-expression data (Figure 3.2 B,C, Appendix C). 

 

For the genes we identified as being differentially methylated across all three datasets: 

CTNNA3, DNAH17 and SCD, we saw no significant changes in expression in the available gene 

expression datasets. However, particularly in the case of the former two genes, differentially 

methylated sites were clustered within the gene bodies rather than the promoter regions, where 

the role of DNA methylation on gene expression is less well understood 89,180. It is possible that 

DNA methylation in the gene body may be having an effect that is beyond the scope of this 

thesis, for example in differential splicing.  

https://paperpile.com/c/HSDZKE/kIIa+PtxIX
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Figure 3.2 Differentially methylated oligodendrocyte genes from FTLD1, FTLD2 and 
`FTLD3 EWAS 
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(A) Circos plots representing genes that are differentially methylated across the three FTLD datasets (FTLD1, 

FTLD2, and FTLD3) that map to OLG genes. Each FTLD dataset is represented by a distinct colour; FTLD1: 

Purple, FTLD2: Teal, FTLD3: Orange. Coloured lines within the circle connect genes that are shared (overlapping) 

between two or more FTLD subtypes. DEGs Highlighted: Genes marked with red points outside the circular layout 

indicate genes that are differentially expressed (DEGs) in addition to being differentially methylated. B) Differentially 

Methylated genes that show increased or decreased expression in corresponding gene expression data. 

Boxes depict genes that are upregulated or downregulated in either of the FTLD expression datasets analysed. C) 

Bubble plot displaying CpG feature counts for differentially methylated genes across genomic features. The 

y-axis lists the genes, and the x-axis represents various genomic features (e.g., 1st Exon, 3' UTR, 5' UTR, Body, 

TSS1500, TSS200). The colour and size of each bubble indicates the count of CpG sites associated with a given 

feature for each gene. 

 

For OPC relevant genes, the top differentially methylated CpGs were cg19594305 in CHST8 (p 

= 0.00088), cg05602183 in TRAF4 (p = 0.00013) and cg24825027 in CREB3L1 (p = 0.00073) in 

FTLD1, FTLD2 and FTLD3, respectively (Appendix B). No genes relating to OPCs contained 

differentially methylated methylation sites (P < 0.01) across all three datasets, however there 

were several showing differential methylation in at least 2/3 datasets (Figure 3.3.B).  

 

CHST8 codes for carbohydrate sulfotransferase 8, which is not known to be linked to 

neurodegeneration, however we did see that this gene exhibited downregulation at the gene 

expression level in our FTLD2-expression data (Figure 3.3.D, Appendix C).  

 

TRAF4 codes for Tumor Necrosis Factor Receptor-Associated Factor 4 which is a ubiquitin 

ligase involved in cell proliferation amongst other processes 181. TRAF4 has been shown to be 

present at all stages of OLG differentiation, but most highly expressed in early OPCs in mice 182, 

suggesting the gene may be important in the early stages of the OLG life cycle. The gene has 

also been found to be involved in the Wnt/β-catenin signalling pathway, which is known to be 

https://paperpile.com/c/HSDZKE/SKqOA
https://paperpile.com/c/HSDZKE/a1Tt0


82 

important in OLG development 183. It has also been found that TRAF4-KO mice exhibit 

significant loss in myelin integrity 182. We did not see differential expression of this gene in our 

FTLD expression datasets.  

 

CREBL codes for CAMP responsive element binding protein 3 like 1, a protein involved in the 

endoplasmic reticulum stress response, and has been found to show decreased gene 

expression in AD 184. The gene has also been implicated as being involved in glioma 

pathogenesis 185.  

 

We also found that several of the OPC genes we identified in our EWAS analysis showed 

differential expression in FTLD-expression datasets 1 and 2. To highlight a few findings;  the 

gene ACAN was differentially methylated  in both FTLD1 and FTLD2 EWAS and differentially 

expressed (showing upregulation)in FTLD1-expression and FTLD2-expression, respectively. 

ACAN codes for Aggrecan, a crucial component of the extracellular matrix 186.  We had found 

terms related to ‘extracellular matrix’ to be enriched across all differentially methylated OPC 

genes found in our three FTLD EWAS (Figure 3.3.C). It has been found that variable number 

tandem repeat polymorphisms in this gene are associated with AD 187. Another gene of interest 

was SOX4, which was differentially methylated and downregulated in FTLD2, and is a 

transcription factor expressed in OPCs that is associated with inhibition of OPC differentiation 

188,189, making this a potentially key gene in myelin dysregulation in FTLD.  

  

https://paperpile.com/c/HSDZKE/g6pmj
https://paperpile.com/c/HSDZKE/a1Tt0
https://paperpile.com/c/HSDZKE/kFU8v
https://paperpile.com/c/HSDZKE/k92Le
https://paperpile.com/c/HSDZKE/qaCcA
https://paperpile.com/c/HSDZKE/LlTUT
https://paperpile.com/c/HSDZKE/V7Orf+GI797
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Figure 3.3 Differentially methylated oligodendrocyte precursor genes from FTLD1, 
FTLD2 and FTLD3 EWAS 

 

(A) Circos plots representing OPC genes that are differentially methylated across the three FTLD datasets 

(FTLD1, FTLD2, and FTLD3) that map to OPC genes. Each FTLD dataset is represented by a distinct colour; 

FTLD1: Purple, FTLD2: Teal, FTLD3: Orange.  Coloured lines within the circle connect genes that are shared 
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(overlapping) between two or more FTLD subtypes. DEGs Highlighted: Genes marked with red points outside the 

circular layout indicate genes that are differentially expressed (DEGs) in addition to being differentially methylated. B) 

Bubble plot displaying CpG feature counts for differentially methylated genes across genomic features. The 

y-axis lists the genes, and the x-axis represents various genomic features (e.g., 1st Exon, 3' UTR, 5' UTR, Body, 

TSS1500, TSS200). The colour and size of each bubble indicates the count of CpG sites associated with a given 

feature for each gene. C) Differentially Methylated genes that show increased or decreased expression in 

corresponding gene expression data. 

 

3.3.2 Meta-analysis of all three bulk tissue datasets reveals differentially 
methylated oligodendrocyte lineage relevant genes 
 

We also carried out a meta-analysis of all three FTLD cohorts, to enable the identification of 

OLG/OPC relevant differential DNA methylation signatures across 234 individuals (142 FTLD 

cases and 92 controls). No methylation sites within OLG/OPC relevant genes passed 

significance after a conservative Bonferroni adjustment for multiple testing (p < 1.37 × 10− 7). 

However, we ranked methylation sites by a conservative random effect P-value, subset those 

below the selected threshold (p-value < 0.01), and 31 and 12 methylation sites within OLG and 

OPC relevant genes, respectively, were considered to be significantly differentially methylated. 

These methylation sites and their positions within the genes are shown in Appendix D. 

  

Unsurprisingly, OLG genes methylation sites in CTNNA3, DNAH17, and SCD, identified in the 

cohort-specific EWAS were found to be in those top differentially methylated from the meta-

analysis (Figure 3.4.A, Appendix D), strengthening the association of dysregulation of DNA 

methylation in these regions across FTLD subtypes. Methylation sites in HSPA2 and PIP4K2A 

(those genes containing the top differentially methylated methylation site in FTLD2 and FTLD3, 

respectively) were also found to be among the top hits from the meta-analysis (Appendix D). It 



85 

was notable that 3/31 nominally significantly differentially methylated OLG methylation sites 

mapped to HSPA2 (Appendix D). 

  

Twelve methylation sites were differentially methylated in our meta-analysis that mapped to 

genes within our OPC list that were nominally significantly differentially methylated within our 

chosen threshold (p < 0.01) (Figure 3.4, Appendix D). The most significantly differentially 

methylated methylation site cg18716096 mapped to the promoter region of TNK2. This gene 

was also highlighted in the FTLD1 and FTLD3 EWAS (Figure 3.2.B, Appendix B), and showed 

a decrease in expression in the FTLD1-expression data (Figure 3.3.D). TNK2, which codes for 

ACK1 (activated CDC42 kinase 1), a non-receptor tyrosine kinase, which is associated with 

several forms of cancer 190 and has been found to be mutated in familial PD 191.  

 

There were several genes found within the OPC meta-analysis results that contained more than 

one differentially methylated site (Appendix D), possibly indicating robustness of association of 

aberrant DNA methylation within that gene. Three methylation sites mapping to GALR1 (2 within 

TSS1500 and 1 at TS200) and 2 methylation sites mapping to GFRA1 (both within TSS1500) 

were in those top identified through the meta-analysis. GALR1 codes for Galanin receptor 1, 

which is a G-protein coupled receptor (cell surface receptor) for galanin, a neuropeptide 

involved in many signalling pathways in the CNS 192. Galnin overexpression has been described 

in AD, although it is contested whether this contributes to disease or acts as a neuroprotective 

mechanism 192. Galanin has been described to act as a growth and survival factor in OLGs 193. 

Furthermore, in a mouse model to replicate demyelination in MS, gene expression changes in 

GalR1 during demyelination and remyelination was observed 192,194, indicating that this receptor 

is important in allowing correct myelination to occur. Additionally, increased galanin expression 

in a transgenic mouse model was associated with elevated expression of MBP (myelin basic 

protein), a marker of mature, myelinating oligodendrocytes 193. Although no significant gene 

https://paperpile.com/c/HSDZKE/VnlpX
https://paperpile.com/c/HSDZKE/zrGzg
https://paperpile.com/c/HSDZKE/S3VE7
https://paperpile.com/c/HSDZKE/S3VE7
https://paperpile.com/c/HSDZKE/XiB50
https://paperpile.com/c/HSDZKE/S3VE7+p0xFA
https://paperpile.com/c/HSDZKE/XiB50
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expression changes in GALR1 were observed in either of our FTLD-expression datasets, the 

differential DNA methylation detected at this gene suggests potential regulatory changes in 

OPC life/myelination processes. GFRA1 codes for GDNF (glial cell line-derived neurotrophic 

factor) family receptor ɑ-1. GDNFs and their receptors are known to have important roles in 

proliferation and differentiation of OLG lineage cells 186,195,196, and GFRA1 has been implicated 

as a risk gene in AD 197. 

 

Looking at the gene expression of genes mapping to methylation sites that were differentially 

methylated in the meta-analysis, we saw several changes in gene expression of several OLG 

genes (Figure 3.4).  

https://paperpile.com/c/HSDZKE/qaCcA+1ntf3+cJjUa
https://paperpile.com/c/HSDZKE/SDGH8
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Figure 3.4 EWAS Meta-analysis OLG/OPC gene presence across FTLD1, FTLD2 and 
FTLD3  
 

 

Meta-Analysis Gene Presence for A) OLG genes and B) OPC genes. Bar chart displaying the presence of 

differentially methylated OLG/OPC genes detected in the FTLD EWAS meta-analysis including the FTLD1, FTLD2 

and FTLD3 data. Orange dots indicate those genes that are differentially expressed in FTLD1 and/or FTLD2-

expression datasets. OLG: oligodendrocyte, OPC: oligodendrocyte precursor gene, FTLD: frontotemporal lobar 

degeneration, EWAS: epigenome-wide association study.  
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3.3.3 EWAS of glial fraction of FTLD sorted brain-nuclei data show 
differentially methylated OLG/OPC genes  
 

As with each of the bulk FTLD datasets described above, we used a linear regression model to 

perform an EWAS with the glial fraction of a cell-type nuclei sorted FTLD dataset (which 

contained overlapping brain donors with the FTLD1 dataset). As described in Section 3.1, the 

use of sorted brain-nuclei data should significantly remove ‘noise’ from neuronal cell types, 

allowing increased power to detect DNA methylation changes relevant to OLGs at finer 

resolution. The top differentially methylated CpG relevant to OLG genes was cg10415442 which 

mapped to the 5’UTR region of the gene ST18, a gene which has been identified as a 

susceptibility loci of brain atrophy in AD 198 (Appendix E). ST18, which codes for suppression of 

tumorigenicity 18 has been found to be hypermethylated in cancer which results in a decrease 

in ST18 expression, indicating that DNA methylation changes at this disease are associated 

with changes in gene expression.  

 

Several genes that were found to contain differentially methylated methylation sites in the three 

bulk FTLD EWAS and the corresponding meta-analysis were also found to be differentially 

methylated in this glial fraction of the sorted data, strengthening the likelihood of their 

importance to glial cells/OLGs in this disease context. These genes include the three genes 

containing differentially methylated methylation sites across all three datasets – CTNNA3, 

DNAH17 and SCD. As with the bulk data, the methylation sites mapping to the first of these two 

genes were found within the gene body, and for SCD within the promoter region. Functional 

enrichment analysis of OLG FTLD-sorted EWAS hits included very relevant terms such as 

“myelination”, “glial cell differentiation” and “gliogenesis”.  

 

https://paperpile.com/c/HSDZKE/4bbts


89 

In regards to OPC genes, the top-most differentially methylated methylation site from this FTLD 

nuclei-sorted EWAS mapped to the promoter region of PCDH15 (TSS200) (Appendix D). This 

gene was not found to show differential methylation in any of the bulk FTLD datasets. PCDH15 

codes for protocadherin-15, which has interestingly been described to have a role in OPC 

proliferation 199 200. Despite an increase in DNA methylation in FTLD vs controls (Delta-M = 0.7) 

(Appendix B), the gene did not show differential expression in either FTLD1-expression or 

FTLD2-expression (data not shown). As well as identifying new genes, we also saw methylation 

sites in genes such as TNK2 and GFRA1, in which we had identified differentially methylated 

sites in the bulk FTLD EWAS. Functional enrichment terms relating to OPC genes from the 

FTLD-sorted EWAS included many terms relating to cell growth, developmental maturation and 

also those relating to the regulation of peptidyl-tyrosine phosphorylation (Figure 3.5). 

Interestingly, the regulation of tyrosine-phosphorylation has been reported as being key to OLG 

differentiation 201 

 

 

  

https://paperpile.com/c/HSDZKE/YetLT
https://paperpile.com/c/HSDZKE/9Vuq0
https://paperpile.com/c/HSDZKE/zIY3l
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Figure 3.5 CpG genomic location of the differentially methylated OLG and OPC genes 
in the FTLD-sorted EWAS  

 

Bubble plot displaying CpG feature counts for differentially methylated genes across genomic features for A) 

OLG and B) OPC genes. The y-axis lists the genes, and the x-axis represents various genomic features (e.g., 1st 

Exon, 3' UTR, 5' UTR, Body, TSS1500, TSS200). The colour and size of each bubble indicates the count of 

differentially methylated sites associated with a given feature for each gene. OLG: oligodendrocyte, OPC: 

oligodendrocyte precursor cell, FTLD: frontotemporal lobar degeneration.  
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3.4 AD results and discussion 

3.4.1 EWAS of one bulk AD dataset reveals oligodendrocyte lineage genes 
are differentially methylated in AD and show downstream changes in gene 
expression  
  

To investigate DNA methylation changes relating to oligodendrocyte lineage cells in our AD 

cohort, we performed an EWAS and investigated effects within OLG/OPC relevant genes.  

 

Three differentially methylated sites within this EWAS mapped to OLG genes which reached a 

more stringent measure of significance (FDR-adjusted p-value < 0.05)  - methylation sites within 

PACS2, PCSK6 and RFFL (Table 3.5). PACS2, which we had also found to contain 

differentially methylated methylation sites within in our FTLD EWAS meta-analysis (Appendix 

D), codes for phosphofurin acidic cluster sorting protein 2, and is part of the tissue expression 

cluster ‘oligodendrocytes - myelination’ (PACS2 expression), is involved in the functioning of the 

mitochondria-associated endoplasmic reticulum membranes, and in secretory pathway 

trafficking 202. Mutations in the gene are associated with epilepsy, however its role in OLGs in 

neurodegeneration has not, as far as we are aware, been investigated. Of the 60 nominally 

differentially methylated methylation sites (P < 0.01), another 4 methylation sites also mapped 

to PACS2, all within the body of the gene, with 3 of the 4 methylation sites showing decreased 

DNA methylation in AD vs Control (Appendix F). The gene showed a decrease in gene 

expression in AD vs control corresponding gene expression data from the same samples 

(Figure 3.6, Appendix F).  

 

PCSK6 codes for proprotein convertase subtilisin/kexin type 6, and was found to be a member 

of a cluster of upregulated AD-specific OLG genes 203. PCSK6 was also found to be differentially 

https://www.proteinatlas.org/ENSG00000179364-PACS2
https://paperpile.com/c/HSDZKE/unOTB
https://paperpile.com/c/HSDZKE/WjtFz
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methylated in multiple sclerosis compared to control in white matter tissue 204. Another 

methylation site mapping to this gene showed nominally significant differential methylation in AD 

compared to controls (Appendix F), and both methylation sites mapping to this gene were 

located within the gene body and showed an increase in DNA methylation in AD vs controls. 

PCSK6  also showed a decrease in expression in AD compared to controls (Figure 3.6, 

Appendix G). 

 

The gene RFFL, which codes the E3 ubiquitin-protein ligase rififylin, showed an increase in DNA 

methylation in the promoter region (TSS1500) in AD compared to controls (Table 3.2). There 

was a second nominal significant methylation site within the same region (TSS1500) showing 

DNA methylation in the same direction (Appendix F). This gene displayed a corresponding 

significant decrease in gene expression in AD in matching samples (Appendix G), and has 

previously been reported to show downregulation in AD 205.  

 

Table 3.2 Genome-wide significant differentially methylated OLG CpGs in bulk AD data  

 

AD: Alzheimer’s disease, OLG: oligodendrocyte 

 

There were 60 methylation sites which passed the less stringent threshold for significance, 

which mapped to 36 distinct genes (Appendix F). We found that several genes previously 

Methylation site Gene Delta M-

value 

P value Adjusted P 

value (FDR < 

0.05) 

Feature 

OLG Genes 

cg01941881 PACS2 -0.10263 1.00x10-5 0.02123 Body 

cg16179521 PCSK6 0.07483 3.32x10-05 0.03306 Body 

cg10464462 RFFL 0.08819 8.00x10-5 0.04923 TSS1500 

https://paperpile.com/c/HSDZKE/s48r1
https://paperpile.com/c/HSDZKE/jTMeH
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identified in our FTLD analysis were also differentially methylated in this bulk AD cohort, 

including CTNNA3 and DNAH17 (Appendix F). There were 23/36 differentially methylated OLG 

genes which also showed differential expression (P < 0.05) (Figure 3.6, Appendix G). 

Interestingly, all of these genes were downregulated in AD compared to controls.  

 

Figure 3.6 Differentially methylated oligodendrocytes genes from AD EWAS 

 

A) Bubble plot displaying CpG feature counts for differentially methylated genes across genomic features for 

OLG genes in the AD EWAS. B) Differentially expressed genes showing DNA methylation changes in the AD 

EWAS. AD: Alzheimer’s disease, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell, EWAS: epigenome-

wide association study.  

 
 
For OPC genes, 3 methylation sites passed a more stringent threshold for significance (FDR-

adjusted p-value < 0.05) which mapped to FZD9, PLEKHH2 and TNK2 (Table 3.3). The CpG 

that was most significantly associated with changes in DNA methylation levels between AD and 
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control was located within the 1st exon of FZD9 (Table 3.3), showing decreased DNA 

methylation in AD compared to controls. This gene showed a decrease in expression in our 

corresponding expression data (Figure 3.7, Appendix G). FZD9 codes for Frizzled-9, a 

receptor involved in the Wnt signalling pathway 188.  

 

PLEKHH2 was found to show decreased DNA methylation in the 3’UTR region in AD compared 

to controls (Table 3.3). We had also found a methylation site mapping to the body of this gene 

within our FTLD meta-analysis (Appendix D). PLEKHH2 was found to be part of a cluster that 

was upregulated in the context of tau pathology, and is regulated by BIN1 206, which, as 

described in Chapter 1, is a strong genetic risk locus for late-onset AD71. However, this gene did 

not show changes within the available gene expression data.  

 

The final genome-wide significant differentially methylated OPC methylation site mapped to the 

body of TNK2 (Table 3.3). We had previously described methylation sites mapping to the 

promoter region of TNK2 as being differentially methylated in FTLD (Appendix B), where the 

gene was also downregulated in FTLD compared to controls in the gene expression analysis. In 

the available AD expression data, TNK2 showed no changes in gene expression between AD 

and controls.  

 

Table 3.3 Genome-wide significant differentially methylated OPC methylation sites in bulk AD 
data  

Methylation site Gene Delta M-value P value  Adjusted P value 

(FDR < 0.05) 

Feature 

OPC Genes 

cg20692569 FZD9 -0.116 4.18x10-6 0.0150 1stExon 

cg00916179 PLEKHH2 -0.084 1.00x10-4 0.0429 3'UTR 

cg17640485 TNK2 0.101 1.00x10-4 0.0488 Body 

https://paperpile.com/c/HSDZKE/V7Orf
https://paperpile.com/c/HSDZKE/hSu4P
https://paperpile.com/c/HSDZKE/HGPIa
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AD: Alzheimer’s disease, OPC: oligodendrocyte precursor cell 

 

Using our less stringent measure of significance (p < 0.01), we found that in total 27 OPC 

methylation sites showed differential methylation between AD and control, which mapped to 24 

distinct genes (Figure 3.7, Appendix F). We found that 7 of the methylation sites, mapping to 6 

genes, within our significantly differentiated OPC methylation sites matched to genes which 

were differentially expressed; LYPD1, GALR1, DNAH11, EPN2, FZD9 and SOX4 (Figure 3.7, 

Appendix G).  Aside from GALR1, all of these genes showed downregulation in AD compared 

to controls. GALR1 (described above for the FTLD EWAS), which showed promoter 

hypermethylation, showed increased gene expression, which we would not necessarily expect 

given the described role of increased DNA methylation at promoter regions more often leading 

to a decrease in gene expression. SOX4 had been previously identified as being differentially 

methylated and differentially expressed in FTLD, although in FTLD we had seen upregulation of 

SOX4 expression, in contrast to the downregulation we see in this AD dataset.  

  



96 

Figure 3.7 Differentially methylated oligodendrocyte precursor genes from AD EWAS 

 

A) Bubble plot displaying CpG feature counts for differentially methylated genes across genomic features for 

OPC genes in the AD EWAS. B) Differentially expressed OPC genes showing DNA methylation changes in 

the AD EWAS. AD: Alzheimer’s disease, OPC: oligodendrocyte precursor cell, EWAS: epigenome-wide association 

study.  

 

3.4.2 EWAS of two sorted brain nuclei AD datasets reveals differential 
methylation of oligodendrocyte lineage genes which show differential 
expression at single-nuclei resolution  
 

We also carried out differential methylation analysis on two brain-nuclei sorted AD datasets; 

AD1 (N=31) and AD2 (N=11). The top-most differentially methylated OLG CpGs in AD1 and 

AD2 were located in genes IPO13 (5’UTR) and CRYAB (TSS200), respectively (Figure 3.8, 
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Appendix H). There were five genes that contained differentially methylated sites across both 

datasets: HHIP, DNAH17, SCD, ARHGAP23 and MBP, and one methylation site that passed 

our significance level in both datasets; cg24402667 in the transcription start site (TSS1500) of 

the gene ARHGAP23 (Figure 3.8, Appendix H). This methylation site showed an increase in 

methylation in both datasets. SCD and DNAH17 have already been described above as genes 

differentially methylated across FTLD datasets (Figure 3.2).  

 

IPO13, which codes for Importin-13, is known to have important roles in the response to 

oxidative stress, which we have discussed as important in OPCs/OLGs in Chapter 1 188,189,207. 

CRYAB codes for ɑβ-crystallin, which is part of a heat shock family of proteins, and acts to 

counteract aggregation of abnormal proteins in cells 208 . CRYAB has been found to be 

upregulated in glial cells with cytoplasmic inclusions in PD 209. In AD, it was found the 

concentration of the ɑβ-crystallin protein was increased in the temporal and frontal lobes in AD 

compared to controls and was found to be localised within OLGs210. 

 

To investigate whether changes in DNA methylation we were observing across our brain-nuclei 

sorted AD datasets were having effects at the gene expression at higher cell-type resolution, we 

analysed a publically available single-nuclei RNA-sequencing dataset comprised of 24 samples 

with “no-pathology”, i.e. tau Braak stage < 3, and 24 cases showing pathological hallmarks of 

AD; Braak stages 3-6 (Chapter 2 Section 2.2.2). Of the top OLG genes identified in the AD1 

and AD2 EWAS mapping to OLG genes, only CRYAB showed differential expression, being 

significantly upregulated in one OLG cell cluster and downregulated in another. The most 

significantly differentially expressed gene of our differentially methylated genes was QDPR, 

which showed hypermethylation in the body of the gene in AD1 (Figure 3.8, Appendices G 

https://paperpile.com/c/HSDZKE/V7Orf+GI797+HsJrE
https://paperpile.com/c/HSDZKE/BznZX
https://paperpile.com/c/HSDZKE/xvRjt
https://paperpile.com/c/HSDZKE/cdtfG
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and H). QDPR, which codes for quinoid dihydropteridine reductase, is a gene highly expressed 

in OLGs and, in publicly available data repositories (The Human Protein Atlas), is within a 

myelination cluster based on neighbouring RNA tissue expression (QDPR expression) and was 

upregulated (Figure 3.8, Appendix I) in one OLG subcluster, but downregulated in another 

(less significant). Although there is little data in the literature about the importance of this gene 

in AD pathology, it was found to be a marker of pathogenic OLG cells in a snRNAsequencing 

dataset, and that there are high levels of QDPR protein expression in the white matter of AD-

pathology individuals 158.  

 

MBP was also differentially expressed, and was downregulated in the same OLG cluster that 

QDPR was upregulated in - Oli-3 (Figure 3.8). MBP contained differentially methylated sites in 

the AD1 and AD2 across multiple gene regions; 3’UTR and Body (Figure 3.8, Appendix H). 

MBP is a key marker of mature OLGs, and the expression of key myelin markers such as MBP 

has been reported to be decreased in AD 211. This could reflect a decrease in the ability of cells 

to express genes needed for myelination, and our finding that MBP is consistently differentially 

methylated across datasets could implicate aberrant DNA methylation as a contributing factor to 

such decreases in expression. The gene CTNNA3 was also downregulated in the same gene 

cluster - Oli-3. CTNNA3 showed changes in DNA methylation in the gene body in the brain-

nuclei sorted data and in the bulk data, and it was also one of the three genes which showed 

differential methylation across all three FTLD datasets as described above (Figure 3.8, 

Appendices G and H). DNAH17, another gene consistently differentially methylated across 

sorted and bulk FTLD and AD datasets, was also differentially expressed - being downregulated 

in Oli-1 (Figure 3.8).  

 

https://www.proteinatlas.org/ENSG00000151552-QDPR/tissue#expression_cluster
https://paperpile.com/c/HSDZKE/8EuKO
https://paperpile.com/c/HSDZKE/vwd4h
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Figure 3.8 Differentially methylated oligodendrocyte genes from the glial-fraction of two 
AD brain-nuclei sorted EWAS  
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 (A) Circos plots representing genes that are differentially methylated across the two brain-nuclei AD 

datasets (AD1 and AD2) that map to OLG genes. Each AD dataset is represented by a distinct colour; AD1: 

Purple, AD2: Teal. Coloured lines within the circle connect genes that are shared (overlapping) between the two AD 

datasets. Genes marked with coloured points outside the circular layout indicate genes that are differentially 

expressed (adjusted p-value < 0.05)  in addition to being differentially methylated. The colour of the point indicates 

which single-nuclei RNA-seq cluster the gene was most significantly differentially methylated in. C) Bubble plot 

displaying CpG feature counts for differentially methylated genes across genomic features. The y-axis lists the 

genes, and the x-axis represents various genomic features (e.g., 1st Exon, 3' UTR, 5' UTR, Body, TSS1500, 

TSS200). The colour and size of each bubble indicates the count of CpG sites associated with a given feature for 

each gene. D) Differentially Methylated genes that show increased or decreased genome-wide differential 

expression in corresponding gene expression data across single-cell subclusters. The y-axis lists the 

differentially expressed and differentially methylated, and the x-axis represents the subclusters in which these genes 

are differentially methylated. The size of the bubbles corresponds to the magnitude of statistical significance, with 

larger bubbles indicating higher significance. Triangles indicate genes which show decreased expression, circles 

indicate genes which are upregulated. AD: Alzheimer’s disease, OLG: oligodendrocyte.  

 

 

Of the methylation sites mapping to OPC relevant genes, the top-most differentially methylated 

CpGs in AD1 and AD2 mapped to genes VIPR2 (Body) and GALR1 (TSS1500), respectively. 

There was one methylation site which passed significance in both datasets – cg2515694, 

located in the 5’UTR region of the gene ABHD2 and hypermethylated in both datasets. This 

gene was upregulated (nominal significance, p < 0.05) in the Oli-1 subcluster in the single-nuclei 

RNA-sequencing dataset, but interestingly showed no significant differences in any of the OPC 

clusters. Other genes we have previously identified were also present in this analysis; GAL1R 

contained a differentially methylated methylation site in the 3’UTR in AD1 and was nominally 

differentially expressed (downregulated) in OPC cluster Opc_0 (Figure 3.9,  Appendices G 

and H) and GFRA1 which showed differential methylation in both datasets. 
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Figure 3.9 Differentially methylated oligodendrocyte precursor genes from the glial-
fraction of two AD brain-nuclei sorted EWAS  

 

 

(A) Circos plots representing genes that are differentially methylated across the two brain-nuclei AD datasets 

(AD1 and AD2) that map to OPC genes. Each AD dataset is represented by a distinct colour; AD1: Purple, AD2: 

Teal. Coloured lines within the circle connect genes that are shared (overlapping) between the two AD datasets. 

Genes marked with coloured points outside the circular layout indicate genes that are differentially expressed 

(adjusted p-value < 0.05)  in addition to being differentially methylated. The colour of the point indicates which single-

nuclei RNA-seq cluster the gene was most significantly differentially methylated in. B) Bubble plot displaying CpG 

feature counts for differentially methylated genes across genomic features. The y-axis lists the genes, and the 

x-axis represents various genomic features (e.g., 1st Exon, 3' UTR, 5' UTR, Body, TSS1500, TSS200). The colour 

and size of each bubble indicates the count of CpG sites associated with a given feature for each gene. C) 

Differentially Methylated genes that show increased or decreased nominal  differential expression in 

corresponding gene expression data across single-cell subclusters. The y-axis lists the differentially expressed 

and methylated genes, and the x-axis represents the subclusters in which these genes are differentially methylated. 

The size of the bubbles corresponds to the magnitude of statistical significance, with larger bubbles indicating higher 

significance. Triangles indicate genes which show decreased expression, circles indicate genes which are 

upregulated. AD: Alzheimer’s disease, OPC: oligodendrocyte precursor cell. 
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3.4.3 Meta-analysis of glial fraction of AD datasets reveals differentially methylated 

oligodendrocyte lineage genes   

   

As well as carrying out the cohort specific EWAS of AD1 and AD2, we also ran a random-effect 

meta-analysis of the glial fraction of both brain-nuclei sorted AD datasets to identify DNA 

methylation signatures relevant to OPC/OLG across 42 individuals (20 AD cases and 22 

controls). We found 58 methylation sites mapping to OLG genes and 30 methylation sites 

mapping to OPC genes to investigate further that had p-value < 0.01. These mapped to 41 and 

22 distinct genes for OLGs and OPCs, respectively (Figure 3.10, Appendix J).  

 

The top-most differentially methylated OLG CpG from the meta-analysis was cg24402667 in the 

promoter region (TSS1500) of the gene ARHGAP23, the same methylation site that was the top 

differentially methylated methylation site in the AD1 dataset. We also identified several genes 

which were not identified from either the AD1 or AD2 OLG individual EWAS analyses, including 

but not limited to the gene PPP1R14A (which we had previously identified as being 

dysregulated in FTLD), and MOG (a key marker of OLGs).  

 

The top-most differentially methylated OPC CpG was cg25592910 in promoter region (TSS200) 

of the gene PCDH15, which, within the same region, contained the the top-most differentially 

methylated methylation site from the FTLD-sorted EWAS. Again, we were interested to see that 

OPC genes not found within our significance threshold in either the AD1 or AD2 EWAS were 

found within this meta-analysis, notably the gene TRAF4, which was the differentially 

methylated OPC gene in the FTLD1 EWAS.  
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We also examined, as with the AD1 and AD2 EWAS, expression of these genes in the AD 

snRNA-sequencing data. In terms of genes which we have not discussed above in the context 

of the EWAS, we saw the MOG was nominally upregulated in AD compared to controls, as was 

PACS2 and PLEKHH1 (which were also differentially methylated in FTLD). For OPC genes, 

only one gene that was present in the meta-analysis was genome-wide significantly differentially 

expressed - LHFPL3, which was downregulated in AD compared to controls. This gene has 

been identified as a marker of different OLG lineage states, specifically of OPCs 200.  

 

Figure 3.10 Meta-analysis of differentially methylated genes in OLGs and OPCs and 
occurrence in AD1-EWAS and AD2-EWAS datasets.  

 

Meta-Analysis OLG Gene Presence for A) OLG genes and B) OPC presence. Bar chart displaying the presence of 

differentially methylated OLG/OPC genes detected in the AD meta-analysis in the AD1-EWAS and AD2-EWAS 

datasets. Blue and red dots indicate whether the gene is alo differentially expressed in snRNA-sequencing data, with 

red points denoting upregulation, and blue points denoting downregulation. Triangles indicate those genes which are 

https://paperpile.com/c/HSDZKE/9Vuq0
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differentially expressed at genome-wide significance in the snRNA-sequencing data, and circles denote those which 

are differentially expressed at nominal significance. OLG: oligodendrocyte, OPG: oligodendrocyte precursor cell, AD: 

Alzheimer’s disease, EWAS: epigenome-wide association study, snRNA-sequencing: single-nuclei RNA sequencing.  

 

3.5 Commonalities across AD and FTLD  

Given that we had seen multiple genes occurring across these analyses, we were interested to 

explore this in more detail. Forty-two OLG genes contained differentially methylated sites in at 

least 3 of the 7 total datasets that we analysed (FTLD1, FTLD2, FTLD3, FTLD-sorted, AD, AD1-

sorted and AD2-sorted) (Figure 3.11). Of the bulk datasets across FTLD (FTLD1-3) and AD, 

there were two genes which were always differentially methylated; DNAH17 and CTNNA3.  In 

the brain-nuclei sorted datasets; AD1, AD2 and sorted-FTLD, there were 3 genes which always 

showed differential methylation; DNAH17, SCD and MBP. The gene DNAH17 showed 

differential DNA methylation across all 7 datasets.  

 

It was interesting to see that key OLG genes including MOG and MBP - well described markers 

of OLGs, were differentially methylated in 4 and 5 datasets respectively. Both of these genes 

code for proteins crucial for OLGs 212213. MBP was also found to be differentially expressed in 

the snRNA-sequencing data, suggesting functional consequences of aberrant DNA methylation. 

This finding highlights the importance of DNA dysregulation affecting highly relevant OLG genes 

in neurodegeneration.  

 

In terms of OPC genes that showed consistent dysregulated DNA methylation across multiple 

datasets, we found 29 genes differentially methylated in at least 3/7 of the datasets (Figure 

3.11). GFRA1 showed dysregulation in 6/7 datasets analysed at our significance thresholds. 

https://paperpile.com/c/HSDZKE/gTbEO
https://paperpile.com/c/HSDZKE/n6ahG
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Genes ABHD2, TNK2 and WFDC1 all showed dysregulated DNA methylation in 5 of the 7 DNA 

methylation datasets. We also note that PDGFRA and SOX4, two genes known to be crucial in 

OPC differentiation 189,214, were differentially methylated in multiple datasets. This could indicate 

that OPC differentiation is a process affected by pathology associated with neurodegenerative 

disease, possibly contributing to altered proportions of OPCs/OLGs observed. It is also possible 

that these findings reflect compensatory mechanisms with attempts at 

upregulation/downregulation of genes necessary for OPC differentiation in response to 

processes associated with diseases that lead to malfunctioning of OLGs.  

  

https://paperpile.com/c/HSDZKE/GI797
https://paperpile.com/c/HSDZKE/WaDhO
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Figure 3.11 Gene occurrence across bulk and sorted FTLD and AD dataset for OPC 
and OLG genes. 

 

Figure illustrates the distribution of gene occurrences across FTLD1, FTLD2, FTLD3, sorted FTLD, sorted AD1, 

sorted AD2 and bulk AD datasets for OPC (top) and OLG (bottom) cell types. Each row corresponds to a specific 

dataset, and each column represents a gene that appears in three or more datasets. FTLD: frontotemporal lobar 

degeneration, AD: Alzheimer’s disease, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell. 
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3.6 General discussion  

In this work, we have used differential methylation analysis, both through EWAS (epigenome-

wide association studies) and meta-analyses, to investigate genes showing differential 

methylation in dementias, including FTLD and AD. An interesting observation was the 

substantial number of shared genes between AD and FTLD. Although roughly half of FTLD 

cases are characterised by tau pathology (which is also associated with AD pathology), a 

roughly equal number are also characterised by pathological inclusions of TDP-43. In our 

datasets, FTLD1 was composed solely of FTLD-TDP cases, FTLD2 was a mixed cohort of 

FTLD-TDP and FTLD-tau cases, and FTLD3 was composed of sporadic PSP cases (FTLD-tau). 

Whilst AD is traditionally defined as a tauopathy, it also has amyloid-beta pathology. We might 

have expected to see distinct differentially methylated genes across these diverse pathologies, 

however many genes were found to be dysregulated across multiple datasets and pathologies.  

Others have compared differential methylation signatures across cases with co-pathologies. 

Shireby et al110 analysed whether AD associated differentially methylated sites were also 

associated with TDP-43 status, and found consistent effects. Such observations could indicate 

that there may be shared underlying mechanisms and/or vulnerabilities of OLGs across 

neurodegenerative diseases, and this could be shared through altered epigenetics. 

 

Three genes; CTNNA3, SCD and DNAH17, all contained methylation sites that were 

differentially methylated across all 5 modes of analysis of FTLD DNA methylation data; the three 

bulk FTLD EWAS, the meta-analysis of these three cohorts, and in the EWAS of the glial 

fraction of the sorted FTLD data. CTNNA3 (also known as VR22) codes for Catenin ɑ-3, an 

actin-filament binding protein. The gene is of interest as it has been genetically associated with 

AD 173–175 and with AD particularly in females 215. It is worth noting that this finding has been 

controversial, although it has also been suggested that the effect of this gene on susceptibility to 

https://paperpile.com/c/HSDZKE/mbKGh
https://paperpile.com/c/HSDZKE/Ng9cT+XcBf7+fne1V
https://paperpile.com/c/HSDZKE/FVRO6
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AD is dependent upon the APOE status 175. CTNNA3 was identified as a significant hit in a 

myelin dysregulation in multi-modal investigation of myelin dysfunction in AD175, and was also 

identified through exome sequencing of MS families as a candidate gene177. The gene is part of 

the Wnt signalling pathway, dysfunction of which has been linked to aberrant (re)myelination 216. 

In addition to DNA methylation changes, we found that CTNNA3 showed downregulation in the 

AD single-nuclei RNA sequencing data (Figure 3.8). Throughout this chapter, we have 

identified several differentially methylated genes that have relevance to Wnt-signalling 

pathways, including TRAF as the top differentially methylated gene in FTLD2 EWAS, present in 

the AD-sorted meta analysis and nominally upregulated in AD snRNA-sequencing data. Another 

gene with functions related to Wnt signalling was FZD9213,217, which was also downregulated at 

the gene expression level in the bulk AD RNA-sequencing dataset we analysed. Wnt signalling 

is an important pathway in the regulation of cell proliferation, and has been implicated 

specifically in the role of OPC maturation and differentiation183. Wnt signalling has been reported 

to be downregulated with age218,219, and it has been reported that in AD, AD associated 

mutations such as in APP and PSEN1 are associated with altered Wnt/beta-catenin 

signalling218. Wnt signalling has also previously been found to be an enriched process in an 

investigation of DNA methylation changes in the white matter of MSA, PSP and PD 116.  

 

SCD, another gene that was consistently dysregulated, codes for the enzyme Stearoyl-CoA 

Desaturase, which is involved in fatty acid biosynthesis, particularly of the conversion of 

saturated fatty acids to oleic acid (and other monounsaturated fatty acids)220. In the brains of AD 

patients, elevated expression of SCD, and increased levels of monounsaturated fatty acids has 

been reported 179,221,222, although we did not see significant changes in gene expression of SCD 

in our data. It was shown that inhibition of this enzyme led to restoration of microglia activation, 

synaptic loss and learning and memory deficits in the 3xTf mouse (used to emulate AD 

pathological features)179. Expression of SCD was also found to be reduced in OLGs from white 

https://paperpile.com/c/HSDZKE/fne1V
https://paperpile.com/c/HSDZKE/fne1V
https://paperpile.com/c/HSDZKE/hM22P
https://paperpile.com/c/HSDZKE/GP5MV
https://paperpile.com/c/HSDZKE/n6ahG+iPwlY
https://paperpile.com/c/HSDZKE/g6pmj
https://paperpile.com/c/HSDZKE/t7wmo+NAWSr
https://paperpile.com/c/HSDZKE/t7wmo
https://paperpile.com/c/HSDZKE/ETdlq
https://paperpile.com/c/HSDZKE/mKekr
https://paperpile.com/c/HSDZKE/f5j1s
https://paperpile.com/c/HSDZKE/bLURE+15pVt
https://paperpile.com/c/HSDZKE/f5j1s
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matter in MSA cases compared to controls 223.  Although we did not see altered expression of 

SCD in our gene expression datasets, it is possible that aberrant DNA methylation of this gene 

in neurodegeneration is associated with other consequences of DNA methylation, for example 

alternative transcription. The same is true of the gene DNAH17, which was consistently 

dysregulated at the DNA methylation level without showing (in the gene expression datasets we 

analysed) altered gene expression. It could also be the case that limitations relating to cell 

compositions of RNA sequencing datasets could be disguising differential expression of these 

genes. 

 

DNAH17, which codes for Dynein Axonemal Heavy Chain 17. Recently DNAH17 was identified 

in a study investigating OLG genes associated with AD through analysing gene co-expression 

networks enriched for OLGs, and subsequently identification of which genes within these 

modules was nominally significantly associated with AD from GWAS statistics172. DNAH17 has 

also been associated with PD 224, although functional relevance to neurodegeneration of this 

gene is unclear. Interestingly, in this analysis, other genes that we have identified as showing 

differential methylation in this chapter were also present in the list of 43 genes identified as part 

of the gene co-expression networks and associated with AD in the abovementioned study; 

PIP4K2A and MBP172.  

 

We were also interested to see which genes showed most significant and/or substantial 

differential expression in corresponding datasets we analysed. QDPR was differentially 

methylated in AD and FTLD, and showed significant increases in both diseases. It was notable 

that this was one the top most differentially expressed genes in a disease associated OLG 

subcluster of cells in the single-nuclei RNA sequencing data. Another gene showing differential 

expression patterns was CRYAB, to which the top-most differentially methylated site mapped to 

in the AD2 EWAS. This gene was the second most differentially expressed in the same cluster 

https://paperpile.com/c/HSDZKE/cJqTi
https://paperpile.com/c/HSDZKE/H43o6
https://paperpile.com/c/HSDZKE/EPEL
https://paperpile.com/c/HSDZKE/H43o6
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of OLG genes as QDPR. In the original study presenting this snRNA-sequencing data, the 

finding of high levels of CRYAB and QDPR in AD-pathology associated OLG lineage cells was 

investigated at the protein level, and it was found that in the white matter of AD individuals, 

there was higher levels of these two proteins 158,225. It was interesting to see that two key genes 

showing significant differential expression are found in this investigation of aberrant DNA 

methylation in OLGs. QDPR codes for the enzyme quinoid dihydropteridine reductase, and has 

a role in the regeneration of tetrahydrobiopterin (BH4) which is needed for the production of 

some neurotransmitters 226. Interestingly, BH4 has been linked to reactive oxygen species 

(ROS), with low BH levels associated with damage through ROS 227. The gene IPO13, the top 

differentially methylated gene in the AD1 EWAS, is also known to be important in the response 

to oxidative stress 207. As we have discussed in Chapter 1 Section 1.5.3, OLGs are thought to 

be particularly vulnerable to oxidative stress 143,144, and oxidative stress has been linked to 

dysregulation of OPC differentiation 147,207.  

 

CRYAB codes for ɑβ-crystallin, which is a molecular chaperone acting to protect cells from 

protein aggregation. Heat shock proteins, including ɑB-crystallin, are implicated in 

neurodegenerative disease pathology228, and ɑβ-crystallin specifically has been found within 

OLG tau inclusions229. Interestingly, Dabir et al. 229 also report that increased expression of this 

protein was more marked in those diseases with greater glial pathology, indicating that this 

response/interaction with tau and this protein could be related to OLG lineage cells. 

Furthermore, it was found that in mice expressing human tau protein, infusion of ɑβ-crystallin 

was protective, leading to reduced neuronal loss208. Another heat-shock protein, HSPA2, was 

found to be differentially methylated in FTLD and AD, and was the top differentially methylated 

OLG loci in the FTLD2 EWAS.  

 

https://paperpile.com/c/HSDZKE/TBOgZ+8EuKO
https://paperpile.com/c/HSDZKE/iH2Gj
https://paperpile.com/c/HSDZKE/vz8a2
https://paperpile.com/c/HSDZKE/HsJrE
https://paperpile.com/c/HSDZKE/TD0lR+0bOTZ
https://paperpile.com/c/HSDZKE/HsJrE+vrJUR
https://paperpile.com/c/HSDZKE/pD6fu
https://paperpile.com/c/HSDZKE/vYvTe
https://paperpile.com/c/HSDZKE/vYvTe
https://paperpile.com/c/HSDZKE/BznZX
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MBP was also one of the top genes to be differentially expressed in the same cell cluster as 

CRYAB and QDPR (the disease associated cluster characterised by Mathys et al 158). MBP was 

differentially methylated across all of the brain-nuclei sorted datasets. MBP, coding for myelin 

basic protein, has previously been associated with AD, with the expression of MBP increased in 

AD compared to controls, and evidence to suggest that MBP localises with amyloid plaques in 

AD 230.  

 

We also saw multiple genes relating to OPC proliferation occurring throughout these EWAS 

studies, including SOX4 and PDGFRA which were differentially methylated across multiple 

datasets. We explore the concept of differential methylation in relation to OLG lineage cell 

differentiation further in Chapter 5.  

 

There are several limitations to the methods used in this chapter. An important point to note is 

the fact that we have not been able to use genome-wide significant p-values. Genome-wide 

significant p-values are the gold standard in studies to mitigate the interpretation of false-

positives as real results. Although we have had to use a more relaxed threshold in this analysis 

in order to explore effects of DNA methylation changes across OLG/OPC specific genes, we 

have attempted to mitigate the occurrence of false-positives by repeating our analysis across 

independent datasets, and carrying out meta-analyses, and paying close attention to those 

results which are consistent across datasets to increase robustness. 

 

Although we have taken steps to adjust for important confounding factors such as cell-type 

heterogeneity, it is still possible that we have not been able to account completely for different 

samples containing different cellular composition. As described in Chapter 3.1, cell-type 

composition of samples strongly influences DNA methylation, as DNA methylation has such a 

crucial role in cell differentiation and specificity. As well as using deconvolution to account for 

https://paperpile.com/c/HSDZKE/8EuKO
https://paperpile.com/c/HSDZKE/laWjA
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such factors, we have also included in our analysis the use of glial fraction portions of brain-

nuclei sorted DNA methylation data, which should be less affected by noise from neuronal 

populations.  

 

Although we have, as far as possible, integrated gene expression data in order to understand 

the effects that DNA methylation changes may be having on OLG/OPC genes during disease 

processes, there are many limitations, firstly lack of data available. It is also true that even when 

we do have access to matching DNA methylation and gene expression data from the same 

brain donors, sampling methods may mean that different tissue is analysed and correlations 

between DNA methylation changes and gene expression changes may be missed/obscured.  

 

Another important note would be that we have chosen to focus to a moderate degree on which 

genes contain differentially methylated sites rather than individually differentially methylated 

CpG sites. There are limitations to this approach - importantly that gene size will influence this. 

Larger genes will be more likely to contain methylation sites that are differentially methylated, a 

point confounded by the fact that we are having to use non-genome wide significant p-values. 

However, we note that several of the genes that we report to show differential methylation 

consistently show effects across one region of the gene, for example SCD was consistently 

differentially methylated around the promoter region of the gene rather than across the whole 

gene, strengthening the likelihood that this represents a real biological effect rather than rather 

than a random artefact driven by gene size or the inclusion of multiple CpG sites within larger 

genes.  

 

Future work set by this work described in this chapter would include further validation of genes 

identified that show aberrant DNA methylation. Whilst we have attempted to investigate gene 

expression changes, we have not investigated changes such as alternative splicing, which has 
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been associated with altered DNA methylation 231,232. Examining effects of DNA methylation on 

transcript expression could elucidate less well characterised functions of DNA methylation in the 

context of OLG dysfunction in neurodegeneration. Therefore, if warranted, follow up studies 

aimed at investigating functional consequences of DNA methylation changes of specific genes 

on gene expression would be necessary.  

 

In this chapter, we have described OLG/OPC genes which show differential methylation across 

dementias, and have demonstrated that many such genes show downstream changes in gene 

expression. While several of these genes have been previously implicated in dementia 

pathogenesis, many have not been associated with mechanisms involving DNA methylation 

changes. This finding highlights the potential role of epigenetic regulation as a key driver in 

OLG/OPC dysfunction and implicates DNA methylation as a critical pathway contributing to 

disease pathology in these cell types, which has not been investigated to a high degree. This 

chapter thus reinforces the contribution of DNA methylation in the pathology of 

neurodegenerative diseases and highlights several genes as candidates for further investigation 

in the role of DNA methylation alterations in OLG lineage cells in neurodegeneration.   

https://paperpile.com/c/HSDZKE/ymjDP+rg5Y4
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Chapter 4: Using network analysis to uncover 

disease-associated DNA methylation signatures 

relevant to oligodendrocyte lineage cell types across 

neurodegenerative diseases  

4.1 Introduction   

 

Network analysis is an agnostic systems biology approach to identify higher order relationships 

between biological entities. Weighted-gene correlation network analysis (WGCNA) is a widely 

used form of network analysis which takes into account strength of connections between such 

biological entities 233. In the context of this thesis, a network is a representation of the 

relationship between levels of DNA methylation in certain genomic sites and/or expression of 

genes, and how such relationships may be involved in neurodegenerative disease. Such 

analysis is a powerful tool to identify clusters of genes and DNA methylation sites that show 

similar patterns of expression and/or DNA methylation across samples, and therefore thought to 

be involved in similar functions or pathways. These clusters, also called modules, can then be 

probed to identify relevance to traits such as disease status, pathology status or features, and/or 

genetic signals. Network analysis is also a powerful tool in investigating an enrichment of cell-

type specific signatures where single-cell/single-nuclei data is unavailable or to complement 

such data. Presence of such enrichment would support that such a signature would be affecting 

that particular cell-type more than others.  

 

https://paperpile.com/c/HSDZKE/4SKFe
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Network analysis has been widely used to study gene and protein expression in disease to 

identify disease relevant expression changes that may not be detected using more basic 

analyses considering gene by gene such as differential expression. A few examples will be 

described next. In AD, co-expression network analysis was used on post-mortem derived 

transcriptomic data from LOAD by Zhang et al., who highlighted an immune/microglia module 

which was strongly associated with AD pathology, and identified the gene TYROBP as a 

regulator of genes within this module, thought to be involved in amyloid-beta turnover 234. 

Similarly, Chen et al. applied co-expression network analysis to identify hippocampus-related 

AD markers, which were subsequently validated in an independent cohort, demonstrating the 

utility of network analysis in developing diagnostic biomarkers and therapeutic targets 235. 

Beyond transcriptomics, network analysis has also been applied to protein co-expression. For 

instance, Zhang et al. examined AD-associated relationships between co-expressed proteins, 

facilitating the discovery of previously unrecognized disease-associated proteins and pathways 

and thus expanding our understanding of AD pathology. Indeed, a key strength of network 

analysis is the ability to investigate groups of co-regulated biological entities, enabling 

identification of functional modules of groups that may be missed by more reductionist 

approaches. The studies described above provide examples which underscore the value of 

network analysis in elucidating disease mechanisms, identifying biomarkers, and uncovering 

therapeutic targets. 

 

Network analysis is often used as a complementary approach to analysis such as differential 

expression. In the context of DNA methylation studies, this is applicable as well. The use of 

analyses such as differential methylation (as described in Chapter 3) to investigate disease 

associated DNA methylation changes, whilst no-doubt invaluable, may lead to important genes 

being overlooked, possibly due to small numbers of methylation sites reaching significance (due 

to DNA methylation changes being small), and/or large numbers of genes being identified, and 

https://paperpile.com/c/HSDZKE/VsEqM
https://paperpile.com/c/HSDZKE/nKIVy
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key genes being lost. In contrast to diseases such as cancer, where changes in epigenetic 

signatures including DNA methylation tend to show larger effect sizes and are more easily 

detectable, changes in DNA methylation in neurodegenerative disease tend to be more subtle 

and gene specific. Studying DNA methylation changes in neurodegenerative diseases is indeed 

complex for many reasons, including the inherent heterogeneity of the brain, which is composed 

of distinct cell types, including neurons, astrocytes, microglia, oligodendrocytes, and others, 

each with its own methylation profile and contributing to the overall methylation landscape. 

Further complexity is added due to cell-type composition changes over time - loss of neurons, 

activation of astrocytes and other glial cells, etc. Given this complexity, the use of more holistic 

systems biology approaches, complementary to traditional differential methylation analyses, can 

bring new insights to the understanding of DNA methylation changes in neurodegenerative 

diseases.  

 

Relatively few studies have taken the approach of creating DNA methylation networks to 

uncover DNA methylation signatures that are related to disease. One of the first studies to 

describe the application of network analysis to DNA methylation data was conducted by Hovarth 

et al. 236, who utilised the method to identify signatures of co-methylated genes that were 

associated with ageing in blood and brain 236. Our group has also recently published studies 

investigating DNA methylation signatures in neurodegenerative diseases.  Bettencourt et al. 

used network analysis to investigate DNA methylation changes in white matter in the ɑ-

synucleinopathy MSA 118, leading to identification of a co-methylation module including a 

methylation site in the gene SNCA (the gene encoding ɑ-synuclein), lending the first evidence 

for DNA methylation changes contributing to the pathology of MSA. We have also co-

methylation network analyses across FTLD subtypes, which identified ubiquitin and 

glutamatergic signaling as key processes in FTLD pathology. This analysis also highlighted 

OTUD4 and related genes as genes of significant interest in FTLD 119.  

https://paperpile.com/c/HSDZKE/49dLq
https://paperpile.com/c/HSDZKE/49dLq
https://paperpile.com/c/HSDZKE/BlGsC
https://paperpile.com/c/HSDZKE/Tza2a
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Although network analysis is implemented on one dataset at a time, useful methods have been 

produced to allow users to assess ‘replication’ of one network in another dataset - using module 

preservation analysis. Module preservation analysis is useful not only for replicability analysis 

(i.e. is a signature present in one dataset also present in another dataset of the same disease), 

but also in cross-region or cross-disease analysis. Cross-region analysis is particularly useful 

when studying neurodegenerative diseases where region-specific pathology is present, for 

example in AD. Understanding distinct regulatory changes that are present in distinct brain 

regions could add insight into disease progression. Cross-disease preservation analysis has 

utility in identifying both shared dysregulated signatures across distinct diseases, and those 

which are unique to a particular disease or pathology 116.  

 

The role of OLGs/OPCs and their molecular dysregulation in neurodegeneration, as described 

in Chapter 1, is not well described, and the use of tools such as network and preservation 

analyses can be useful. In this chapter, we use network analysis to uncover signatures present 

in DNA methylation datasets derived from post-mortem brain tissue that are associated with 

disease and are found to be relevant to OLG lineage cells. Through this approach, we identify 

modules of genes showing similar DNA methylation patterns. By identifying such signatures and 

carrying out hub gene (i.e. highly interconnected genes) and functional enrichment analysis, we 

then uncover OLG relevant pathways that may be altered by DNA methylation changes across 

and within neurodegenerative diseases.  For this, we have leveraged all datasets previously 

used in our EWAS analyses described in Chapter 3. In this chapter, we also describe the use of 

an additional bulk AD dataset where DNA methylation profiles are available for multiple brain 

regions; the ERC (entorhinal cortex), DLPFC (dorsolateral prefrontal cortex), HIPPO 

(hippocampus) and CRB (cerebellum).  As discussed in Chapter 3 Section 3.1, both bulk and 

https://paperpile.com/c/HSDZKE/ETdlq
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brain-nuclei sorted datasets have their uses, and as in Chapter 3, we utilise both to investigate 

OLG/OPC enriched signatures across neurodegeneration here.  
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4.2 Methods  

4.2.1 Datasets Used  

In this chapter, we describe our use of multiple DNA methylation datasets that were previously 

generated using the Illumina 450K or EPIC arrays, derived from both bulk brain tissue, and from 

the glial fraction of brain-nuclei sorted samples. The datasets we analysed are briefly described 

in Table 4.1, and a detailed characterisation of the cohorts is given in Table 2.1 (Methods 

Section 2.1).  

 

For the co-methylation networks, we used the datasets FTLD1, FTLD2, FTLD3, FTLD-sorted 

and AD-sorted datasets which we used also in Chapter 3. We have described the quality control 

and data processing in Chapter 3, as these datasets were also used for EWAS analysis. In 

place of the AD dataset (bulk tissue) that we utilised in Chapter 3, we instead utilise in this 

chapter a bulk AD DNA methylation dataset which contained samples from different brain 

regions; cerebellum (CRB), hippocampus (HPPO), entorhinal cortex (ERC) and the dorsolateral 

prefrontal cortex (DLPFC). This dataset was made publicly available by Semick et al. 150. The 

quality control and processing of these DNA methylation datasets is described in detail in 

Chapter 2, section 2.1. Linear regression models were then applied for covariate adjustment of 

the data. Adjusted M-value matrices were then used as input in downstream network 

construction.  

 

 

 

 

https://paperpile.com/c/HSDZKE/enkTP


120 

Table 4.1 Overview of datasets analysed using co-methylation network analysis in this chapter  

Cohort 
Pathological FTLD subtypes 
and controls included after 
quality control 

Soft-
thresholding 
power used  

Number (%) of 
methylation sites 
included  

Reference  

FTLD1 
(Frontal Cortex) FTLD (N = 15) and Controls (N = 8)  16 56,001 (20%) Fodder et al.119 

FTLD2 
(Frontal Cortex)  FTLD (N = 34) and Controls (N = 14) 10 56,001 (20%) Menden et al.149 

FTLD3  
(Frontal Cortex) FTLD (N = 93) and Controls (N = 70) 12 56,001 (20%) Weber et al.117 

FTLD-sorted  
(Frontal Cortex) FTLD (N = 19) and Controls (N = 6) 12 53, 410 (10%)  

Bettencourt lab, 
unpublished  

AD-HIPPO AD (N = 17) and Controls (N = 48) 12 44,609 (20%) 

Semick et al.150 
AD-DLPFC  AD (N = 21) and Controls (N = 46) 14 53,826 (20%) 

AD-ERC  AD (N = 20) and Controls (N = 49) 12 52,296 (20%)  

https://paperpile.com/c/HSDZKE/Tza2a
https://paperpile.com/c/HSDZKE/Qzimk
https://paperpile.com/c/HSDZKE/UGHGS
https://paperpile.com/c/HSDZKE/enkTP
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AD-CRB AD (N = 24) and Controls (N = 43) 16 52, 712  (20%) 

AD1-sorted  
(Occipital Cortex)  AD (N = 15) and Controls (N = 16) 16 57,620 (20%) Gasparoni et al.122 

AD2-sorted  
(Frontal Cortex) AD (N = 5) and Controls (N = 6) 12 52,637 (20%) 

Bettencourt lab, 
unpublished  

 

 FTLD, Frontotemporal lobar degeneration; AD, Alzheimer’s Disease; HIPPO; hippocampus, DLPFC; 

dorsolateral prefrontal cortex, ERC; entorhinal cortex, CRB; cerebellum 

 

Figure 4.1 Outline of FTLD cohorts used in analysis 

 

https://paperpile.com/c/HSDZKE/MZh8a
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FTLD, Frontotemporal lobar degeneration; PSP, Progressive supranuclear palsy.  

 

4.2.2 Co-methylation network analysis 

  

We used a systems biology approach to identify co-methylation modules in our datasets (i.e. 

clusters of highly correlated DNA methylation sites - CpGs). For this we have used weighted 

gene correlation network analysis (WGCNA 233). For all datasets, we excluded those CpGs 

annotated to intergenic regions (as such methylation sites would be less biologically informative 

in this context), and selected only those showing the highest variance (top 10-20% depending 

on dataset) across individuals within each dataset (again to increase ability to find disease 

relevant effects). The percentage of total methylation sites and number of methylation sites 

included for each analysis is given in Table 3.1. We used adjusted M-values (described in 

Chapter 2 section 2.1) for such high variance CpGs as input for this analysis. Before network 

construction, we assessed clustering of samples based on traits (i.e. disease status, age, 

sampling, batch effects) in order to confirm that networks would represent biologically 

meaningful relationships rather than dataset artifacts (Figure 4.2 A). To construct the weighted 

co-methylation networks, pairwise methylation expression correlations were calculated to create 

a similarity matrix233. Soft-thresholding was applied by raising the correlations to a power which 

puts more emphasis on strong correlations whilst still maintaining weaker correlations. Optimal 

soft-thresholding power is selected, using the pickSoftThreshold function in WGCNA, for which 

scale-free topology is reached (Figure 4.2.B). Scale-free topology is a network structure 

wherein most of the nodes (i.e. CpGs) have few connections, but few CpGs have many 

connections. Once this is chosen, networks are constructed using the WGCNA 

blockwiseModules function, and following the WGCNA package workflow. In this context, key 

components of the biological network are nodes, edges and modules. Nodes are the CpG sites 

where DNA methylation is measured, edges are the interaction between nodes (i.e. correlation 

https://paperpile.com/c/HSDZKE/4SKFe
https://paperpile.com/c/HSDZKE/4SKFe
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between methylation at CpG sites), and modules (also known as clusters) represent groups of 

nodes within the network that are more densely connected to each other than to other nodes in 

the network. 

 

Module membership (MM) was then reassigned for each network using the applyKMeans 

function of the CoExpNets package 237. Module membership is a measurement of the 

relationship between a CpG and it’s co-methylation module within the network - i.e. how strongly 

related a CpG’s methylation is associated with the module’s eigengene (a single representative 

methylation profile for the module, derived through summarising the methylation of all CpGs 

within a module). Reassignment through this method employs k-means clustering to reclassify 

CpGs in order to minimize within-cluster variance and maximise between-cluster separation. 

CpGs with high MM are considered hub genes, meaning they are highly connected, and likely 

key biological drivers within that module.  

 

After co-methylation modules are identified, we carry out module-trait correlation analysis (as 

part of the WGCNA workflow233) to understand the relationship between co-methylation modules 

and disease traits. Each co-methylation module’s eigengene is correlated with the disease trait 

(e.g presence or absence of disease), and each module is given a correlation coefficient and 

significance value (i.e. p-value). For each of the modules within our networks, we calculate the 

correlations and significance with disease status to identify disease relevant modules. We apply 

Bonferroni multiple testing correction, i.e. correct correlation p-value over the number of 

modules detected, to minimize the finding of false-positives.  

 

 

  

 

https://paperpile.com/c/HSDZKE/DNeKf
https://paperpile.com/c/HSDZKE/4SKFe
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Figure 4.2 Preprocessing of data pre-network analysis examples  

 

A) Sample dendrogram and trait heatmap. Hierarchical clustering dendrogram showing the relationships among 

samples based on DNA methylation profiles. Branch heights indicate the similarity/dissimilarity between samples, 

with shorter branches representing closer relationships. The associated heatmap illustrates the distribution of sample 

traits, including sample group classifications (CTRL, FTLD_C, FTLD_A, FTLD_c9) and covariates such as cell type 

proportions, age and sex. The intensity of red shading in the heatmap corresponds to the magnitude or presence of 

the trait value, while gray shading represents missing data. B) Diagnostic determination of soft-threshold power 

for network construction. The plot shows the scale-free topology model fit (signed R) as a function of the soft-

threshold power. Each point represents a tested power value, with the corresponding R2 value indicated. The red 

horizontal line at R2=0.8 represents the threshold for scale-free topology. A power value of 14 or higher achieves the 

desired R2, indicating the optimal soft-threshold power for constructing a scale-free network in this dataset. 

 

4.2.3 DNA methylation cross-network preservation analysis 

  

As a method for differential network analysis, i.e. to identify which co-methylation modules in 

each of the generated networks are preserved (i.e. shared) or perturbed (i.e. unique) in the 

other relevant datasets, we employ module preservation analysis, as described by Langfelder et 

al. 238 . For each network (taken as the “reference dataset”), module preservation in the other 

https://paperpile.com/c/HSDZKE/8TZxA
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datasets (the “test data”) can be calculated using the modulePreservation function implemented 

in WGCNA. In all instances, the “test data” contains methylation values (adjusted M-values) for 

CpG sites used to construct the “reference dataset” network. As a measure of module 

preservation, we use Z-summary statistics (a composite measure to summarise multiple 

preservation statistics). A Z-summary greater than 10 indicates strong preservation of this 

module in the “test data”, a Z-summary of between 2 and 10 indicates moderate preservation, 

and a Z-summary less than 2 indicates no preservation. The Z-summary integrates two 

measures of module preservation; connectivity-based preservation statistics and density-based 

preservation statistics. Preservation of connectivity (Zconnectivity) is a measure of the inter-

modular connectivity (i.e. the relationship between the modules in the test and reference 

dataset). This measure is based on the following:  

 

𝑍𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑚𝑒𝑑𝑖𝑎𝑛( 𝑍𝑐𝑜𝑟. 𝑘𝐼𝑀, 𝑍 𝑐𝑜𝑟. 𝑘𝑀𝐸, 𝑍𝑐𝑜𝑟. 𝑐𝑜𝑟) 

 

Where Zcor.kIM quantifies preservation of intramodular connectivity - i.e. how strongly a 

particular CpG site is connected to other sites within the same module, Zcor.kME as a 

measurement of the preservation of the correlation between module membership in the 

reference and test datasets, and Zcor.cor as a measure of how much relationships between 

individual CpG sites is retained in the test dataset compared to the reference dataset.  

 

Preservation of density measures how much the modules are retained between datasets, i.e. a 

comparison of the adjacency between CpG sites in the reference datasets with the same CpG 

sites in the test datasets:  
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𝑍𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  𝑚𝑒𝑑𝑖𝑎𝑛 (𝑍 𝑚𝑒𝑎𝑛𝐶𝑜𝑟, 𝑍𝑚𝑒𝑎𝑛𝐴𝑑𝑗, 𝑍𝑝𝑟𝑜𝑝𝑉𝑎𝑟𝐸𝑥𝑝𝑙, 𝑍𝑚𝑒𝑎𝑛𝐾𝑀𝐸)  

 

Where ZmeanCor is a measure of the pairwise correlations between CpG sites within a module, 

i.e. whether the correlations between sites in the test dataset are similar to those in the 

reference dataset, ZmeanAdj is a measure of the preservation of adjacency (derived using soft-

thresholding as described above), ZpropVarexpl is a measure of how much the module 

eigengene captures a similar proportion of variance in the test dataset as in the reference 

dataset, and ZmeanKME as a measure of preservation of the module membership (i.e. how 

strongly each CpG site is associated with the module eigengene) - calculated as the correlation 

between the CpG site and module eigengene.  

 

Zsummary is then defined as: 

 

𝑍𝑠𝑢𝑚𝑚𝑎𝑟𝑦 = 𝑍𝑑𝑒𝑛𝑠𝑖𝑡𝑦 +  𝑍𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
2  

 

Where equal weighting is given to each of the Zdensity and Zconnectivity statistics.  

For more details see the original publication by Langfelder et al. 238 

 

4.2.4 Functional and cell-type enrichment analyses 

 

To investigate disease-associated modules relevant to OLG/OPCs, we have carried out cell-

type enrichment analysis on disease associated modules using the package EWCE120 and 

https://paperpile.com/c/HSDZKE/8TZxA


127 

associated data121. EWCE requires an input gene list (which here is the list of genes mapping to 

CpGs within a module) and a reference expression dataset (which in this case is a single-cell 

mouse RNA sequencing dataset). The package then enables a bootstrap-based cell-type 

enrichment test, which tests whether observed enrichment of a gene list in specific cell types 

deviates from the null distribution generated through random sampling. Two measures are then 

given - the fold change (i.e. how much more expressed the genes are in a cell type compared to 

random expectation), and a p-value, which indicates the statistical significance of such an 

enrichment. To validate any cell-type enrichment results, we also checked for enrichment of 

OLGs and OPCs within modules using curated gene lists (courtesy of Piras et al.122) and a 

Fisher’s exact test (henceforth called gene list enrichment). The gene lists we have been 

provided with were described in Chapter 2 section 2.4. We also also checked modules within 

one cohort for enrichment of peroxisome related genes. We obtained a list of peroxisome 

relevant genes downloaded from GO, and tested for enrichment of these within modules using 

the same approach as the gene list cell-type enrichment analysis.  

 

Functional enrichment analysis to investigate the function of genes found within disease 

associated OLG/OPC enriched co-methylation network modules was then performed using 

HumanBase (https://hb.flatironinstitute.org/), which allows for tissue specific enrichment analysis 

to be performed. In the case where the number of genes mapping to modules was less than 

3,000 (the maximum input for this database), we have used all genes present within the module. 

In the case where the number of genes exceeds 3,000, we have chosen the top 3,000 genes 

which methylation sites show the highest module membership. An example of the output of 

module enrichment analysis using HumanBase is given in Appendix K. All enrichment terms 

reported had significance value q < 0.05, with q used as a statistical measure used to account 

for multiple hypothesis testing, given the large number of genes being tested.  

 

https://hb.flatironinstitute.org/
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4.2.4 Follow-up Datasets  

We used several gene expression datasets to investigate gene expression changes in genes 

identified through co-methylation network analysis, including the FTLD1 and FTLD2 expression 

datasets, and the AD snRNA-sequencing dataset used in Chapter 3 and described in detail in 

Chapter 2 Section 2.2. 

A schematic illustrating the approaches utilised in this chapter is given in Figure 4.1.  
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Figure 4.3 Schematic of the analysis workflow in Chapter 4 

 

The workflow includes two primary sources of genome-wide DNA methylation profiles: (1) Bulk brain tissue DNA 

methylation profiles from FTLD and AD samples and (2) Sorted brain nuclei DNA methylation profiles separated into 

neuronal and glial cell fractions for AD and FTLD samples. Both datasets undergo network analysis to identify 

disease-associated modules. Subsequently, a cell-type enrichment analysis is conducted to extract disease-

associated Oligodendrocyte (OLG)/Oligodendrocyte Progenitor Cell (OPC) enriched modules. Further downstream 

analyses include Pathway Enrichment Analysis, Cross-network/disease/region preservation analysis, and Hub Gene 

Analysis. AD; Alzheimer’s disease, FTLD; frontotemporal-lobar degeneration, OLG; oligodendrocyte, OPC; 

oligodendrocyte precursor cell 
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4.3 Results  

4.3.1 Bulk Tissue Networks  

4.3.1.1 FTLD Networks  
 

We used three FTLD cohorts to generate networks encompassing a range of FTLD pathological 

subtypes in order to investigate the role of DNA methylation and oligodendrocytes 

dysregulation/dysfunction across the pathological spectrum. For each of these three cohorts, we 

generated a distinct network.  

 

After multiple testing corrections, 9/33 (p < 0.002, 0.05/33 modules), 16/49 (p < 0.001, 0.05/49 

modules) and 10/14 (p < 0.004, 0.05/14 modules) co-methylation modules were found to be 

associated with the disease status (i.e. FTLD or control), for the FTLD1, FTLD2 and FTLD3 

networks, respectively (Figure 4.4 A–C). Several disease-associated modules were enriched 

for OPC/OLG relevant genes in the FTLD1 and FTLD3 networks, but not in the FTLD2 networks 

(as further detailed below) (Figures 4.5 and 4.6).   
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Figure 4.4 Module-trait correlations for the FTLD co-methylation networks 
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Module trait relationships for networks A) FTLD1 B) FTLD2; C) FTLD3. The rows represent the co-methylation 

module Eeigengenes (ME) and their colours, and the column represents the correlation of the methylation levels of 

CpGs in each module with the disease status. p-values are presented within each cell and the colour scale at the 

right indicates the strength of the correlation (darker cells depict stronger correlations, with blue representing negative 

and red representing positive correlations). FTLD: frontotemporal lobar degeneration.  

 

 

 

Figure 4.5 Cell-type enrichment for all FTLD-associated co-methylation modules across 
the three co-methylation networks using EWCE.  

 

Enrichment of modules using EWCE. Green denotes FTLD-associated modules in the FTLD1 network; Yellow denotes FTLD-

associated modules in the FTLD2 network; Blue denotes FTLD-associated modules in the FTLD3 network. Dark filled circles 

highlight the cell types found to be significantly enriched with adjusted p<0.05 after Bonferroni correction over all cell types within 

each module; the size of the circles represents the number of standard deviations (SD) from the mean. Cell-type enrichment 

analysis on the FTLD-related modules was performed using the package EWCE 239 and associated single-cell transcriptomic 

data240. FTLD: frontotemporal lobar degeneration, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell.

https://paperpile.com/c/HSDZKE/r6NC
https://paperpile.com/c/HSDZKE/kASi
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Figure 4.6 Gene list enrichment for all FTLD-associated co-methylation modules across the three co-methylation 
networks.  
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Enrichment analysis using curated lists of OLG and OPC relevant genes which CpGs within the FTLD associated modules 

of each network map to. A-C) Enrichment of methylation sites mapping to OPC relevant genes within FTLD1, FTLD2 and FTLD3 

networks within disease associated modules. D-F) Enrichment of methylation sites mapping to OLG relevant genes within FTLD1, 

FTLD2 and FTLD3 networks within disease associated modules. Odds Ratios and 95% confidence intervals were calculated using 

Fisher’s exact test. Asterisks indicate significant Enrichment (p < 0.05).  FTLD: frontotemporal lobar degeneration, OLG: 

oligodendrocyte, OPC: oligodendrocyte precursor cell. 

 

FTLD1  network  modules  

 

For the FTLD1 network, one module was significantly enriched for OPC-relevant genes, the 

skyblue module, and one for OLG-relevant genes, the white module, from the gene list 

enrichment (Figure 4.6). 

  

The top hub gene of the skyblue module was TMEM168, which codes for transmembrane 

protein 168. From publicly available gene clustering analysis, TMEM168 is part of a gene cluster 

highly associated with white matter/myelination (TMEM expression), and the gene showed the 

highest expression in OLGs and OPCs compared to all other brain cell types (TMEM 

expression). TMEM168 has been found to be involved in glioblastoma (a tumour of glial cell 

origin in the brain) pathogenesis through involvement in the Wnt/beta-catenin signalling pathway 

241. Functional enrichment terms within this module included “sphingolipid translocation” and 

“phosphatidylinositol-3-phosphate biosynthetic process” (Table 4.2). Sphingolipids include 

sphingomyelins, which are a crucial component of myelin. Sphingolipid pathways are known to 

be important in the pathology of MS 242, making this functional enrichment term notable.  

 

Through the use of EWCE, the FTLD1 white module was additionally identified as being 

enriched for OLG genes (Figure 4.5). The hub gene of this module was CTDSP2, which codes 

for CTD (Carboxy-Terminal Domain, RNA Polymerase II, Polypeptide A) Small Phosphatase 2. 

https://www.proteinatlas.org/ENSG00000146802-TMEM168/brain
https://www.proteinatlas.org/ENSG00000146802-TMEM168/single+cell+type
https://www.proteinatlas.org/ENSG00000146802-TMEM168/single+cell+type
https://paperpile.com/c/HSDZKE/OC8jO
https://paperpile.com/c/HSDZKE/9Bj1v
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It is thought to be involved in the suppression of neural transcripts in non-neuronal cells 243. 

Functional enrichment of genes within this module included “amyloid precursor protein 

biosynthetic process” and “regulation of amyloid precursor protein biosynthetic processes” 

(Table 4.2).  

 

FTLD3 Modules 

  

In the FTLD3 network, 5 modules were found to be significantly enriched for OLG/OPC relevant 

genes. Through gene list enrichment analysis, the cyan module was identified as being enriched 

for OLG genes and the purple module for OPCs. In the analysis using EWCE, the blue, 

turquoise, salmon and cyan modules (the latter of which was also identified in the gene list 

enrichment analysis) were all identified as being enriched for OLG cell type genes (Figure 4.5, 

Table 4.2).  

  

The hub gene of the FTLD3 cyan module was DDIT4L (also known as REDD2), which codes for 

DNA-damage-inducible transcript 4 like, which is a stress response protein. REDD2 is a known 

inhibitor of mTOR signaling pathways 244, which play crucial roles in OLG differentiation and 

myelination 245. In line with this, functional enrichment terms from this module included “negative 

regulation of cell differentiation” and “negative regulation of cell proliferation” (Table 4.2) 

  

The hub gene of the FTLD3 salmon module was PCK1, which codes for phosphoenolpyruvate 

carboxykinase 1, and has been reported to be a risk gene for AD 246 and has also been found to 

influence brain atrophy in MS patients 247. PCK1 is an enzyme involved in gluconeogenesis, a 

process whereby glucose is created from non-carbon sources such as lipids or proteins, and 

mice with reduced Pck1 expression exhibit dysregulated lipid metabolism 248. The finding that 

this gene is dysregulated in FTLD as well could indicate common processes involving 

https://paperpile.com/c/HSDZKE/xFe03
https://paperpile.com/c/HSDZKE/wTnXZ
https://paperpile.com/c/HSDZKE/JTBYg
https://paperpile.com/c/HSDZKE/WsXUk
https://paperpile.com/c/HSDZKE/odfRr
https://paperpile.com/c/HSDZKE/3Who


136 

dysregulated lipids and myelin across these neurodegenerative diseases. Functional 

enrichment terms within this module included “regulation of superoxide anion generation” (Table 

4.2), suggesting that genes within this module may be important in influencing how reactive 

oxygen species are produced and/or cleared.  

 

Additionally identified from EWCE analysis was the FTLD3 blue module (Figure 4.5, Table 4.2). 

The hub gene of the FTLD3 blue module was GDAP1, which codes for ganglioside induced 

differentiation associated protein 1. Mutations of this gene are associated with a demyelinating 

subtype of Charcot Marie Tooth disease (an inherited peripheral neuropathy)249. Functional 

enrichment analysis of the blue module revealed terms including “ganglioside biosynthetic 

processes” and “ganglioside metabolic processes” (Table 4.2). The presence of genes and 

terms relating to gangliosides within this module is notable due to their importance in the 

stability in myelin structure 250. Other enriched terms of interest to us were “glycolipid metabolic 

processes”, “glycolipid biosynthetic processes” and “glycosphingolipid metabolic processes”, 

due to the importance of both glycolipids and glycophospholipids in myelin 251,252 The blue 

FTLD3 module notably included the methylation site mapping to PIP4K2A that was found to be 

the most significantly differentiated methylation site mapping to OLG relevant genes in the 

FTLD3 dataset (Chapter 3, Section 3.1, Appendix B). As described in Chapter 3, this gene 

has a role in cholesterol trafficking between peroxisomes and lysosomes. Interestingly, 

knockdown of GDAP1 (the FTLD3-blue hub gene) was found to alter peroxisome function and 

morphology in vitro 253. Due to the presence of the PIP4K2A gene in this module and the link 

between GDAP1 and peroxisomes, we were interested to see if any other genes relating to the 

function of peroxisomes were enriched within this module, and found that indeed this module 

was significantly enriched for these terms (Appendix L).  

 

https://paperpile.com/c/HSDZKE/0VAhM
https://paperpile.com/c/HSDZKE/zNgql
https://paperpile.com/c/HSDZKE/P3feA+Yxiwa
https://paperpile.com/c/HSDZKE/B1qWc
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The purple module, enriched in the gene list analysis for OPC genes (Figure 4.6), had the hub 

gene FMN1, which codes for the protein Formin 1. It has been suggested that formins may have 

links to neurodegeneration through tau biology 254,255 We found nothing in the literature linking 

this gene to neurodegeneration,FMN1 in particular has also been implicated in glioblastoma 

invasion 256. Enrichment terms from this module included “positive regulation of reactive oxygen 

species metabolic process”. As discussed, OPCs are known to be particularly vulnerable to 

reactive oxygen species, making this enrichment term notable.  

 

The final module enriched for OLG genes was the FTLD3 turquoise module. The hub gene of 

which is FUT8, coding for the enzyme Fucosyltransferase 8. From public databases, the gene is 

highly expressed in oligodendrocytes and is part of a tissue expression cluster enriched for 

OLGs and associated with myelination (FUT8 Tissue expression). FUT8 codes for an enzyme 

involved in glycosylation (a post-translational modification of proteins). This module contained 

many functional enrichment terms of interest, including “plasma membrane bounded cell 

projection morphogenesis” and “phosphatidylinositol metabolic processes” (Table 4.2). OLGs 

extend cell projections which wrap around axons in order to form the myelin sheath, and as 

components of cell membranes phosphatidylinositols are likely relevant 257 . 

https://paperpile.com/c/HSDZKE/l9W4+1FyJ
https://paperpile.com/c/HSDZKE/Nd0q
https://www.proteinatlas.org/ENSG00000033170-FUT8/tissue
https://paperpile.com/c/HSDZKE/imfRA
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Table 4.2 Hub genes and functional enrichment of disease associated OLG lineage gene 
enriched modules across FTLD-networks 
 

Module Disease 
trait(s) 
associated 
with 

Hub Gene Key enrichment terms relevant to 
OLG/OPCs and/or neurodegeneration 

Type of 
enrichment 
analysis 

FTLD1 
skyblue 

FTLD  TMEM168 “sphingolipid translocation” 
“phosphatidylinositol-3-phosphate 
biosynthetic process” 

EWCE 

FTLD1 
white 

FTLD CTDSP2 “amyloid precursor protein biosynthetic 
process” 
“regulation of amyloid precursor protein 
biosynthetic process” 

EWCE 

FTLD3 
cyan 

FTLD  DDIT4L “negative regulation of cell differentiation” 
“negative regulation of cell proliferation” 
“cholesterol homeostasis” 
“protein targeting to lysosome” 
“protein localization to lysosome” 

Gene list OLG 
and EWCE 

FTLD3 
purple  

FTLD FMN1 “positive regulation of reactive oxygen 
species metabolic process” 

Gene list OPC 

FTLD3 
salmon 

FTLD PCK1 “regulation of ion transmembrane 
transport” 
“regulation of ion transport” 
“regulation of superoxide anion 
generation” 

EWCE 

FTLD3 
blue 

FTLD  GDAP1 “ganglioside biosynthetic processes” 
“ganglioside metabolic processes” 

EWCE 

FTLD3 
turquoise 

FTLD  FUT8 “neuron death in response to hydrogen 
peroxide” 
“regulation of mitochondrial membrane 
potential” 
“plasma membrane bounded cell 
projection morphogenesis” 
“regulation of axogenesis” 
“phosphatidylinositol metabolic process” 
“regulation of plasma lipoprotein particle 
levels” 

EWCE 

FTLD: frontotemporal lobar degeneration, OLG: Oligodendrocyte, OPC: oligodendrocyte precursor cell, EWCE: 

expression weighted cell type-enrichment analysis.  
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We were next interested to see if any of the identified hub genes were differentially expressed in 

either the FTLD1-expression or FTLD2-expression datasets (described in Chapter 2, Section 

2.2). Four of the eight hub genes of the FTLD associated OLG/OPC enriched co-methylation 

network modules were significantly (genome-wide) differentially expressed in at least one of 

these two expression datasets. The gene GDAP1, the hub gene of the FTLD3-blue module , 

was significantly downregulated (Table 4.3). DDIT4L, hub gene of the FTLD3-cyan module was 

significantly upregulated in both FTLD datasets (Table 4.3). CTDSP2 showed genome-wide 

significant upregulation in the FTLD2-expression dataset, and nominally significant upregulation 

in the FTLD1-expression dataset (Table 4.3). PCK1 showed significant upregulation in the 

FTLD1-expression dataset and nominally significant upregulation in the FTLD2-expression 

dataset (Table 4.3). The identification of gene expression changes in hub genes uncovered 

through DNA co-methylation network analysis adds support to our findings implicating their 

dysregulation in disease pathogenesis.  

 

Table 4.3 Expression of hub genes in FTLD RNA-sequencing datasets 

 FTLD1-Expression FTLD2-Expression  

Gene logFC 
Adjusted P-
value logFC  Adjusted P-value 

GDAP1 -0.369 0.022 -0.891 0.007 

DDIT4L 1.144 0.001 1.386 0.007 

CTDSP2 0.204 0.086 0.499 0.018 

PCK1 1.190 0.034 1.855 0.097 

FTLD: Frontotemporal lobar degeneration, logFC: log Fold change, FDR Adjusted P-value: p-value adjusted for 

multiple testing correction, GDAP1: DDIT4L: CTDSP2: PCK1.  
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Oligodendrocyte-enriched, FTLD-associated co-methylation modules are preserved 

between sub-types 

  

To assess replication of FTLD-associated co-methylation modules across datasets, we then ran 

preservation analysis for each dataset against each of the networks. As previously outlined, the 

three FTLD datasets we have analysed here are composed of different subtypes of FTLD. In 

brief, FTLD1 is composed of only FTLD-TDP cases (subtypes A and C), FTLD2 is composed of 

both FTLD-TDP (subtypes A and B) and FTLD-tau cases, and FTLD3 is composed only of 

sporadic FTLD-tau cases (PSP cases). Interestingly, all four disease-associated OLG/OPC 

enriched FTLD3 modules were highly preserved in the FTLD2 data (Table 4.4). The salmon 

module was also highly preserved in the FTLD1 data. This was interesting given that its hub 

gene was PCK1, a gene implicated in lipid dysregulation that has also been associated with the 

neurodegenerative diseases MS and AD 247. Combined with the high preservation found across 

FTLD subtypes, this could indicate that this signature represents common dysregulation of 

OLG/OPCs and lipids across a spectrum of neurodegenerative diseases and pathological 

subtypes. It was interesting to see that the FTLD3 blue module, which we had identified as a 

module implicated in peroxisome function, whilst not being preserved in the FTLD1 data, was 

highly preserved in the FTLD2 data. As described, whilst FTLD2 contains mixed cases of FTLD-

TDP and FTLD-tau pathology, whilst FTLD1 only contains FTLD-TDP. It is possible that the 

FTLD3-blue module signature is associated with tau pathology, hence it being preserved in a 

cohort containing this pathology and not preserved in the FTLD1 data. The same is true of the 

FTLD3-cyan module. 

https://paperpile.com/c/HSDZKE/odfRr
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 Table 4.4  Module preservation between OLG enriched FTLD co-methylation modules in 
FTLD1, FTLD2 and FTLD3 networks  

FTLD: Frontotemporal lobar degeneration 

  

 Preservation in 
FTLD1 

Preservation in 
FTLD2 

Preservation in 
FTLD3 

FTLD1 
skyblue  Moderate Not Preserved  
white  Not Preserved Moderate 
FTLD3 
blue Not preserved High  
turquoise Not preserved High  
salmon High High  
cyan Moderate High  



142 

4.3.1.2 Alzheimer’s Disease Networks 
 
For the analysis into oligodendrocyte-related co-methylation signatures in AD, we utilised a 

dataset composed of DNA methylation profiles from multiple brain regions; entorhinal cortex 

(ERC) , hippocampus (HIPPO), cerebellum (CRB) and dorsolateral prefrontal cortex (DLPFC) 

(Figure 4.1). 

 

For each of these brain regions, we generated co-methylation networks (Figure 4.7). For the 

ERC, DLPFC,  HIPPO and CRB, networks, 17/25 (p < 0.002, 0.05/25 modules), 6/16 (p < 0.003, 

0.05/16 modules),  7/18 (p < 0.003, 0.05/18 modules) and 4/6 (p < 0.008, 0.05/6 modules), co-

methylation modules were found to be associated with the disease status (i.e. AD or control), 

respectively (Figure 4.7 A-D). We next analysed which of these modules were enriched for 

OLG/OPC relevant genes, again using both gene list enrichment methods and the package 

EWCE as described for FTLD (Figures 4.8 and 4.9) 
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Figure 4.7 Module-trait correlations for the AD brain region co-methylation network
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Module trait relationships for A) ERC, B) DLPFC, C) HIPPO, and D) CRB networks. The rows represent the co-methylation 

module eigengenes (ME) and their colours, and the column represents the correlation of the methylation levels of CpGs in each 

module with the disease status. p-values are presented within each cell and the colour scale at the right indicates the strength of the 

correlation (darker cells depict stronger correlations, with blue representing negative and red representing positive correlations). 

ERC: entorhinal cortex, DLPFC: dorsolateral prefrontal cortex, HIPPO: hippocampus, CRB: cerebellum
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Figure 4.8. Cell-type enrichment for all AD-associated co-methylation modules across the four brain-region co-methylation 
networks
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Enrichment analysis using curated lists of OLG and OPC relevant genes which CpGs within the AD associated modules of 

brain-region network map to. For all plots, the left panel indicates the enrichment of methylation sites mapping to OPC relevant 

genes the ERC, CRB, DLPFC and HIPPO modules, the right panel indicates enrichment of methylation sites mapping to OLG 

relevant genes for the same modules. For each module within each network, Odds Ratios and 95% confidence intervals were 

calculated using Fisher’s exact test. Squares indicate significant enrichment (Odds Ratio p < 0.05), circles indicate non-significant 

results (Odds Ratio p > 0.05) 

 

 

Figure 4.9 Cell-type enrichment for all AD-associated co-methylation modules across 
the four brain-region co-methylation networks using EWCE  
 

Enrichment of modules using EWCE for A) ERC, B) CRB, C) DLPFC and D) HIPPO networks. Dark filled circles highlight the 

cell types found to be significantly enriched with adjusted p<0.05 after Bonferroni correction over all cell types within each module; 

the size of the circles represents the number of standard deviations (SD) from the mean. Cell-type enrichment analysis on the 

FTLD-related modules was performed using the package EWCE239 and associated single-cell transcriptomic data 240. EWCE, 

https://paperpile.com/c/HSDZKE/r6NC
https://paperpile.com/c/HSDZKE/kASi
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expression-weighted cell-type enrichment, ERC: entorhinal cortex, DLPFC: dorsolateral prefrontal cortex, HIPPO: hippocampus, 

CRB: cerebellum, AD: Alzheimer’s disease.  

 

DLPFC modules  

 

The greenyellow module was significantly enriched for OLGs, both from the gene list enrichment 

analysis and from analysis using EWCE (Figure 4.8, Table 4.6). The hub gene of this module 

was MOG (Myelin oligodendrocyte glycoprotein), a well described marker of mature OLGs 258 

which has been found to present with differential methylation in chronic demyelinated lesions in 

multiple sclerosis 259. We also found that this gene was significantly differentially methylated in 

our meta-analysis of brain nuclei-sorted AD datasets, as well as being nominally differentially 

expressed in AD snRNA-sequencing data (Chapter 3, Section 3.3.2.iii). The finding of such a 

well described marker of OLGs as the hub gene of this OLG enriched module adds strength to 

the hypothesis that this module does indeed represent a group of genes relevant to OLGs that 

are differentially methylated in disease. The CpG with the second highest module membership 

(MM) (after MOG) in this module mapped to the gene ATP11A (ATPase phospholipid 

transporting 11A). This was also of particular interest due to this gene having been reported to 

be mutated in hypomyelinating leukodystrophy 260. We noted that several methylation sites with 

high MM in this greenyellow module mapped to the gene ATP11A. Another methylation site with 

high MM (top 10) in this module mapped to the gene PIP4K2A, which we have previously 

described as showing dysregulation in neurodegeneration, and present within disease 

associated co-methylation modules in FTLD. Enrichment of terms relevant to 

OLGs/neurodegenerative diseases was limited, but included terms related to ageing of cells 

(Table 4.6). It has previously been described by Murthy et al. 136 associating OLGs with 

increased epigenetic ageing (as discussed in Chapter 1) .  

  

https://paperpile.com/c/HSDZKE/K3nYi
https://paperpile.com/c/HSDZKE/drZpF
https://paperpile.com/c/HSDZKE/4v9mh
https://paperpile.com/c/HSDZKE/GJZmn
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Another module from the DLPFC network that was enriched for OLG lineage cells was the 

purple module, which was significantly enriched for OPC-relevant genes in our gene list 

enrichment analysis only (Figure 4.8, Table 4.6). The hub gene of this module was PRKAG2, 

which codes for PRKG2 (cGMP-dependent protein kinase 2). The gene has previously been 

linked to AD, with elevated protein expression being associated with increased levels of 

amyloid-beta 261. Functional enrichment terms within this module included those relevant to lipid 

function, including “sphingolipid translocation”.  

 

The final module enriched for OLG related genes was identified with EWCE, and was the 

DLPFC green module (Figure 4.9, Table 4.6). FAM69A (also known as DPIK1A) was the hub 

gene of this module, genetic mutations of which have been associated with MS 262. The gene is 

known to be highly expressed within OLGs, and has been also reported to show altered gene 

expression in MS 263. Enriched terms within this module included those related to lysosomes 

(Table 4.6).  

 

ERC Modules  

 

The disease associated modules in the ERC network that were significantly enriched for OLG 

lineage genes were the darkred, tan, darkgrey and blue modules (Figures 4.8 and 4.9, Table 

4.6). The only ERC module that was significantly enriched for OLG relevant genes within both 

forms of enrichment analysis was the tan module. Interestingly, the hub gene of this module 

was C11ORF9 (also known as MYRF), which codes for myelin regulatory factor, an important 

driver of post-OLG differentiation myelination and myelin maintenance 264. Again, the finding of 

such a highly relevant OLG gene as the hub gene of a disease associated module is of high 

relevance within the context of this work. The methylation site with the second highest MM for 

the tan module also mapped to the same gene. In a previous study using gene expression and 

https://paperpile.com/c/HSDZKE/I7x06
https://paperpile.com/c/HSDZKE/kCTeI
https://paperpile.com/c/HSDZKE/X1dSY
https://paperpile.com/c/HSDZKE/yhC64
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proteomic networks, MYRF was found to be a key driver of AD-associated disrupted OLG 

signatures 172. We also identified MYRF as being differentially methylated and differentially 

expressed (upregulated) in our analysis of differentially methylated genes in FTLD (Chapter 3). 

Another gene to which many methylation sites mapped to was the gene ATP11A, which was 

also present within the DLPFC-greenyellow module, with 4 methylation sites within the top 50 

CpGs with highest MM in this tan module (data not shown). We also note the presence of a 

methylation site mapping to MBP (a well described marker of mature OLGs) with high module 

membership in the module. Functional enrichment terms within this module included those 

related to acetyl-coA metabolic processes, and those involved in reactive oxygen species 

(Table 4.6).  

 

Another module with very high enrichment of OLG lineage genes in the ERC module was the 

darkred module, which was enriched for genes relevant to OPCs in the gene list analysis 

(Figure 4.8, Table 4.6). The hub gene of the darkred module was KIAA0556. A gene 

associated with microtubule function 265 that is mutated in Joubert syndrome - a disease 

associated with abnormal brain development that has been described as a congenital cerebellar 

ataxia 266. We also note that within this module several of the methylation sites with highest MM 

mapped to the gene TNK2, which we had identified as an OPC gene frequently showing 

differential methylation in Chapter 3. Enrichment terms within this module included, again, those 

relating to lysosomes (Table 4.6).  

 

The darkgrey module was also enriched for OLG genes from our gene list analysis (Figure 4.8, 

Table 4.6). The hub gene of this module was NUAK1. This gene codes for an AMPK-related 

kinase which is known to stabilise the tau protein, and it has been found that reduction of this 

protein in a mouse model resulted in alleviation of tau-related deficits 267. Enrichment terms 

within this module included “lysosomal transport” (Table 4.6). 

https://paperpile.com/c/HSDZKE/H43o6
https://paperpile.com/c/HSDZKE/43LUX
https://paperpile.com/c/HSDZKE/YLX6P
https://paperpile.com/c/HSDZKE/f69RW
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The final ERC module enriched for OLG genes was the blue module, identified in the gene list 

enrichment analysis, of which the hub gene was WDR81 (Figure 4.8, Table 4.6). This gene has 

previously been associated with cerebellar ataxia 268 and hypermethylation of the promoter 

region of this gene has been reported following demyelination in the hippocampus of MS 

patients 269.  

 

HIPPO modules  

 

Within the HIPPO network, the grey60 module was significantly enriched for OLG genes (in both 

the gene list enrichment and EWCE analyses) (Figures 4.8 and 4.9, Table 4.6). The hub gene 

of this module was MGC14436, which maps to chromosome 12 and is not well characterised. 

Several methylation sites with high MM in this module mapped to this gene. Interestingly, the 

same gene was present within the ERC tan module and the DLPFC greenyellow module. This 

disease-associated OLG module also contained several methylation sites mapping to the gene 

ATP11A, as we had seen with the ERC-tan and the DLPFC-greenyellow module. Enrichment 

genes within this module included “glycosphingolipid metabolic processes” (Table 4.6). 

 

From the EWCE analysis, we also saw that the magenta module was enriched for OLG genes 

(Figure 4.9, Table 4.6). The hub gene of this module was RTTN. From The Human Protein 

Atlas, we saw that RTTN is highly expressed in OLGs, and is part of cluster ‘Oligodendrocytes - 

Unknown function’ (RTTN Protein Atlas). Mutations in RTTN have been reported to result in 

dysregulated cortical development and microcephaly 270.  

 

CRB modules  

 

https://paperpile.com/c/HSDZKE/863e6
https://paperpile.com/c/HSDZKE/DMTuJ
https://www.proteinatlas.org/ENSG00000176225-RTTN/single+cell
https://paperpile.com/c/HSDZKE/8lfFA
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In our enrichment analysis using EWCE of the modules in the CRB co-methylation networks, 

none were significantly enriched for OLG cell types. In the gene listl enrichment analysis 

however, we found that the yellow and brown modules were enriched for OPC (yellow) and 

OLG (yellow and brown) relevant genes (Figure 4.8, Table 4.6). 

 

The hub gene of the CRB-yellow module was C1orf92, also known as LRRC71. There was 

relatively little in the literature as to the function or relevance of this gene, although it has been 

found to be upregulated in the white matter of AD samples 271. Functional enrichment terms 

from this module “medium-chain fatty-acyl-CoA metabolic process” (Table 4.6). The hub gene 

of the CRB-brown module was FLJ10213, for which there is also limited information in the 

literature.

https://paperpile.com/c/HSDZKE/Q5XV
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Table 4.5 Hub genes and functional enrichment of disease associated OLG lineage gene 
enriched modules across AD-networks 

Module Hub Gene 
Highlighted enrichment terms 
relevant to OLG/OPCS and/or 
neurodegeneration 

Type of enrichment 
analysis 

DLPFC-greenyellow  MOG  “cellular senescence” 
“cell ageing”  

Gene list enrichment OLG, 
EWCE  

DLPFC-purple PRKAG2 
“sphingolipid translocation” 
“phosphatidylinositol-3-phosphate 
biosynthetic process” 

Gene list enrichment  OPC 

DLPFC-green  FAM69A 
“lysosomal transport” 
“cytosolic transport” 
 

EWCE 

ERC-darkred  KIAA0556 
 

“lysosomal transport”  
“dermatan sulfate proteoglycan” 
“biosynthetic process”  
“golgi to lysosome transport”  

Gene list enrichment OPC 

ERC- tan  MYRF  

“negative regulation of reactive 
oxygen species biosynthetic process”  
“acetyl-CoA biosynthetic process”  
“acetyl-CoA metabolic process”  

Gene list enrichment  
OLG, EWCE  

ERC-darkgrey  NUAK1 
“lysosomal transport “ 
“signal transduction involved in cell 
cycle checkpoint” 

Gene list enrichment  OLG 

ERC- blue WDR81 “maintenance of protein location in 
cell” Gene list enrichment  OLG 

HIPPO-grey60  MGC14436 “maintenance of unfolded protein” 
“glycosphingolipid metabolic process” 

Gene list enrichment  
OLG, EWCE 

HIPPO-magenta  RTTN 
“inositol lipid-mediated signaling”  
 
 

EWCE 

CRB-yellow  C1orf92 

“medium-chain fatty-acyl-CoA 
metabolic process”  
“establishment of protein localization 
to plasma membrane” 
“Golgi to plasma membrane protein 
transport” 

Gene list enrichment  OLG 
and OPC 

CRB-brown   
FLJ10213 

“regulation of DNA biosynthetic 
process”  
“positive regulation of RNA splicing“ 

Gene list enrichment  OLG  



153 

 
AD: Alzheimer’s disease, DLPFC: dorsolateral prefrontal cortex, ERC: entorhinal cortex, HIPPO: hippocampus, CRB: 

cerebellum, OPC: oligodendrocyte precursor cell, OLG: oligodendrocyte, EWCE: expression weighted cell-type 

enrichment  

 

As with the FTLD network hub genes, we were also interested to see if any of our AD network 

hub genes showed differential expression. We utilised the AD snRNA-sequencing dataset that 

we have described in Chapter 3 to investigate this. We found that only three of the hub genes 

were differentially expressed in at least one subcluster of OLG/OPC cells in our snRNA-

sequencing dataset. The gene WDR81, which was the hub gene of the ERC-blue module, was 

significantly (p < 0.05) downregulated one OLG cluster (Figure 4.10.A). The gene MOG, which 

was the hub gene of the DLPFC-greenyellow module, was differentially expressed across 4 

clusters, showing increased expression in 3 and a decrease in expression in one OLG cluster 

(Figure 4.10.A). Finally, the gene FAM69A, hub gene of the DLPFC-green module showed an 

increased expression in one OLG cluster (Figure 4.10.A). None of the genes were significantly 

differentially expressed in any OPC modules.  

 

 

To assess whether these identified OLG DNA methylation signatures identified in one brain 

region were present across other brain regions, we carried out preservation analysis of all 

network modules against all other brain regions (Table 4.7). In general, modules showed 

preservation across brain regions - only one disease associated OLG enriched module showed 

no preservation in another dataset; the ERC-darkrey module in the DLPFC. Given that the data 

is derived from the same post-mortem brain samples but in different brain regions, this is 

perhaps unsurprising. It was interesting to see that the DLPFC-greenyellow and ERC-tan 

modules, which we had identified as representing a potentially shared cross-region OLG 

disease signature (discussed above), were highly preserved across all datasets.  
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Table 4.6 Module preservation between OLG enriched AD co-methylation modules across 

brain region DLPFC, ERC, HIPPO and CRB networks 

AD: Alzheimer’s disease, DLPFC: dorsolateral prefrontal cortex, ERC: entorhinal cortex, HIPPO: hippocampus, CRB: 

cerebellum 

 

Comparison of modules across brain region networks  

 

Given that we had identified recurring hub genes that methylation sites mapped to across the 

ERC-tan, DLPFC-greenyellow and HIPPO-grey60 modules, and high preservation in particular 

of the ERC-tan and DLPFC-greenyellow modules across datasets, we decided to investigate 

Module  Preservation in 
HIPPO 

Preservation in 
CRB  

Preservation in 
DLPFC  

Preservation in 
ERC  

DLPFC 

purple High  Moderate   High  

greenyellow High  High   High  

ERC  

tan  High  High  High   

darkgrey  Moderate  High  Not preserved   

blue  High  High  High   

darkred  High  High  Moderate   

HIPPO  

grey60  High  Moderate Moderate 

CRB  

yellow Moderate  Moderate Moderate 

brown High   High  High  
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similarities across these modules further. We found that methylation sites mapping to MYRF 

(hub gene of ERC-tan) and MGC14436 (hub gene of HIPPO-grey60) were present across all 

three modules. Seventy four methylation sites mapping to 54 unique genes were present across 

in all three of these modules. Notably, 8/74 methylation sites mapped to the gene ATP11A. 

Other genes overrepresented amongst this list of common methylation sites were INPP5A (5/69 

methylation sites) and FAM107B (3/74 methylation sites). INPP5A (inositol polyphosphate-5-

phosphatase A), which has been implicated in the pathology of spinocerebellar ataxias 272 

shows relatively low brain-cell type specificity, but of the non-neuronal brain cell types, is most 

highly expressed in OLGs (INPP5A Protein Atlas). FAM107B is highly expressed in OLGs in 

comparison to all other brain cell types (FAM107B Protein Atlas), and has been shown to 

present with upregulation at the gene expression level in AD in the temporal cortex 257,273. 

Another gene of interest that contained a methylation site across all three of these modules was 

BIN1, which, as discussed, is a risk factor for AD71, of high relevance to OLGs 74, and previously 

found to be differentially methylated in disease 106,131.  

 

We then decided to investigate if any of the genes identified across this 3 module signature 

showed differential expression using the AD snRNA-sequencing dataset previously described 

(Chapters 2 and 3). Seven genes identified from the OLG AD DNA methylation signatures 

showed differential expression in at least one OLG subcluster; ADARB2, FAM107B, QDPR, 

RASGRF2, UNC5C, CAV1 and SLC5A11 (Figure 4.10.B). Five of these seven genes showed 

differential expression in the same subcluster; Oli3. Although only these seven genes showed 

significance after adjustment for multiple testing, 27/54 genes from our signature also showed 

nominally significant differential expression patterns across at least one OLG/OPC subcluster/.  

 

One of the genes showing significantly different patterns of expression in AD was QDPR, to 

which one methylation site had mapped to in our signature. This gene had been found to be 

https://paperpile.com/c/HSDZKE/K9pJS
https://www.proteinatlas.org/ENSG00000068383-INPP5A/single+cell+type
https://v21.proteinatlas.org/ENSG00000065809-FAM107B/single+cell+type
https://paperpile.com/c/HSDZKE/imfRA+YC47j
https://paperpile.com/c/HSDZKE/HGPIa
https://paperpile.com/c/HSDZKE/wVBMg
https://paperpile.com/c/HSDZKE/YYv8s+MIE05
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differentially methylated in FTLD and AD, and differentially expressed (upregulated) in our 

FTLD-expression data. Interestingly, Mathys et al. found that this gene was a marker of AD 

pathology in OLG subclusters and showed with immunohistochemistry that QDPR exhibited 

higher expression in white matter of AD individuals 158.  

 

Another gene showing significant differential expression patterns was ADARB2, which has 

previously been reported to show differential methylation in the hippocampus of AD individuals 

compared to controls 274. 

 

SLC5A11, which was present in our signature and upregulated in the snRNA-sequencing data, 

had also been found to contain differentially methylated sites across our bulk FTLD meta-

analysis, sorted brain-nuclei FTLD EWAS, and bulk AD methylation EWAS, where it was also 

found to show a decrease in expression in the corresponding bulk RNA-sequencing data.  

  

https://paperpile.com/c/HSDZKE/8EuKO
https://paperpile.com/c/HSDZKE/Oef5E
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Figure 4.10. Expression of genes of interest in AD brain region co-methylation network 
modules  

 

A) Expression levels of AD co-methylation OLG/OPC enriched module hub genes that were significantly differentially 

expressed in at least one snRNAseq subcluster (adjusted p-value < 0.05). B) Expression levels of genes found 

across our three module signatures that were significantly differentially expressed in at least one snRNAseq 

subcluster (adjusted p-value < 0.05). Each triangle represents a gene, with the shape indicating the direction of 

regulation: upregulated (▲) or downregulated (▽). The size of the triangle corresponds to the absolute log2 fold 

change (log2FC), indicating the magnitude of differential methylation. The colour gradient reflects the significance 

level of the adjusted p-values (-log10(p_val_adj)), with red indicating highly significant genes. 
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4.3.1.3 Comparison of disease signatures across Neurodegenerative 
Diseases in bulk co-methylation networks  
 

In order to assess whether the disease signatures that were enriched for OLG/OPC genes were 

disease specific, or represented a general dysregulation of neurodegeneration, we carried out 

cross-disease preservation analysis. First, we compared each of the AD brain region networks 

against each of the FTLD1, FTLD2 and FTLD3 datasets, focusing firstly on the modules of 

interest (i.e. disease-associated and OLG lineage relevant) as described above. For the HIPPO 

network, the grey60 module (OLG enriched) was moderately preserved in the FTLD1 and 

FTLD2 datasets, but highly preserved in the FTLD3 network (Table 4.7). For the DLPFC 

network, the greenyellow module (OLG enriched) was moderately preserved in the FTLD1 and 

FTLD2 data and highly preserved (the most highly preserved of all modules) in the FTLD3 data 

(Table 4.7). Following a similar pattern, the tan module (OLG enriched) in the ERC network 

data, whilst being moderately preserved across the FTLD1 and FTLD2 networks, was again 

highly preserved and the most preserved module in the FTLD3 data (Table 4.7).  

 

An explanation for this higher preservation of AD associated OLG enriched modules with the 

FTLD3 data compared to the FTLD1/2 datasets could well be linked to the underlying pathology 

of the FTLD subtypes present across the datasets. As described, the FTLD3 data is composed 

of FTLD-tau cases solely (sporadic PSP). As AD is also a tauopathy, it could be that the 

molecular changes that are represented by these AD co-methylation modules highlight potential 

shared OLG dysfunction that is related in some way to tau pathology. The distinct pathological 

mechanisms in FTLD-TDP subtypes may result in less overlap with AD-associated molecular 

pathways, explaining less preservation of OLG-enriched modules in these datasets. However, it 

is of note that there is some degree of overlap, highlighting potential shared mechanisms of 

DNA methylation driven dysregulation across OLG cells in neurodegeneration.  
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Other modules of interest from the AD brain region networks that showed high preservation 

between datasets was the purple DLPFC module (significantly enriched for OPC cell types), 

which showed high preservation in all three FTLD datasets (Table 4.7). However, for the FTLD1 

and FTLD2 data, this DLPFC-purple module was by far the most highly preserved (Table 4.7), 

whilst it was 7th most highly preserved module in the FTLD3 data (Table 4.7). The DLPFC-

purple module contained enrichment terms associated with “sphingolipid translocation” (Table 

4.7), which we had also seen as enriched within several FTLD1 and FTLD2 OLG/OPC enriched 

disease-associated modules (Chapter 4 Section 4.3.1). The ERC darkred module (also 

enriched for OPC cell types), was also highly preserved across all three FTLD datasets (Table 

4.7). We had highlighted that this module contained many methylation sites mapping to the 

gene TNK2 (a gene from our OPC list) which showed high module membership. We had 

identified this gene as being frequently differentially methylated and expressed in FTLD and AD 

in our EWAS analysis in Chapter 3. This could point towards dysregulation represented by this 

module being shared across distinct pathologies and representing general dysfunction of OPCs 

in neurodegeneration.  
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Table 4.7 Module Preservation Analysis of FTLD Brain Region Networks against AD Data 

FTLD: frontotemporal lobar degeneration, AD: Alzheimer’s disease, DLPFC: dorsolateral prefrontal cortex, ERC: 

entorhinal cortex, HIPPO: hippocampus, CRB: cerebellum  

 

We also carried out the analysis vice-versa, and analysed the preservation of FTLD1, FTLD2 

and FTLD3 network modules against the AD brain region networks.  

Module Preservation in FTLD1 Preservation in FTLD2 Preservation in FTLD3 

DLPFC-greenyellow  High Moderate High (highest of all 
modules, regardless of 

disease status) 
DLPFC-purple High (highest of all, regardless of 

disease status) 
High (highest of all, 

regardless of disease 
status) 

High 

DLPFC-green  Not preserved Moderate High 

ERC-darkred  High High High 

ERC- tan  Moderate Moderate   High (highest of all 
modules, regardless of 

disease status) 
ERC-darkgrey  Moderate Moderate High 

ERC- blue High High High 

HIPPO-grey60  Moderate Moderate High 

HIPPO-magenta  Moderate Moderate Moderate 

CRB-yellow  Moderate Moderate High 

CRB-brown  High High   High 
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In the FTLD1 networks, there was one OPC enriched disease-associated module -  the skyblue 

module. The skyblue module was moderately preserved in the HIPPO, DLPFC and CRB, but 

not preserved in the ERC data (Table 4.8). In the FTLD2 networks, the singular OPC enriched 

module (orangered4), was moderately preserved across the HIPPO, DLPFC and CRB data but 

not preserved in the ERC data (Table 4.8), following a similar pattern to the FTLD1-skyblue 

module.  

 

There were five modules of interest from the FTLD3 networks; cyan, salmon, turquoise and 

blue. The blue module was highly preserved across HIPPO, DLPFC, and CRB but not 

preserved in the ERC data (Table 4.8). 

 

The salmon module was highly preserved across all brain regions (which was interesting given 

we had also seen preservation of this module across all three FTLD datasets), and the 

turquoise and cyan modules were either moderately or highly preserved across all brain regions 

(Table 4.8).  

 

In general, we see higher preservation of disease-associated OLG/OPC modules across the 

FTLD3 datasets in comparison to the FTLD1 and FTLD2 networks against the AD brain region 

datasets (Table 4.8). As discussed above, such increase in preservation between FTLD3 and 

AD networks could be attributed to similar underlying pathologies - i.e. the presence of tau, 

which is present to a lesser extent in the FTLD2 dataset (a mixed TDP and tau cohort) and not 

in the FTLD1 dataset (composed solely of FTLD-TDP cases).  

 

The FTLD3 salmon module, which we saw to be highly preserved across all AD brain regions, 

and was also highly preserved across all FTLD subtypes (Table 4.5). The hub gene of this 

module was PCK1, which as described above has been previously associated with 
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neurodegenerative diseases such as MS and AD 247. It is interesting therefore to see this FTLD 

module well preserved across all brain region networks of this AD dataset, strengthening the 

hypothesis that this module could represent common dysregulation of processes relating to 

OLGs across neurodegeneration.  

 

 

Table 4.8 Module Preservation Analysis of FTLD Brain Region Networks against AD Data 

Module 
  

Preservation in 
DLPFC data 

Preservation in 
ERC data 

Preservation in 
HIPPO data 

Preservation in CRB 
data 

FTLD1-skyblue Moderate Not preserved Moderate Not preserved 

FTLD1-white Moderate Not preserved Moderate Not preserved 

FTLD3-blue Moderate Not preserved Not preserved Not preserved 

FTLD3-turquoise High Moderate High High 

FTLD3-cyan High Moderate High Moderate 

FTLD3-salmon High High High High 

FTLD3-purple High (highest of all 
modules, 
regardless of 
disease status) 

High High (highest of all 
modules, 
regardless of 
disease status) 

High 

FTLD: frontotemporal lobar degeneration, AD: Alzheimer’s disease, DLPFC: dorsolateral prefrontal cortex, ERC: 

entorhinal cortex, HIPPO: hippocampus, CRB: cerebellum  

  

https://paperpile.com/c/HSDZKE/odfRr
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4.3.2 Brain-nuclei Sorted Networks  

4.3.2.1 FTLD-sorted Network  
We next carried out co-methylation network analysis on the glial fraction of a brain nuclei-sorted 

FTLD dataset. We found 12/34 (p < 0.002, 0.05/34 modules) co-methylation modules that were  

associated with the disease status (i.e. FTLD or control) (Figure 4.11.A). Cell-type enrichment 

analysis using gene list enrichment revealed one module that was significantly enriched for 

OPC-relevant genes (the brown module), but none for OLG relevant genes ((Figure 4.11.B). 

Using EWCE, we identified the black and darkturquoise modules as being enriched for OLGs 

(Figure 4.11.C) 
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Figure 4.11 Module-trait correlations and celltype enrichment within brain-nuclei sorted FTLD network
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A) Module-trait correlations for the sorted FTLD co-methylation networks. The rows represent the co-methylation module 

eigengenes (ME) and their colours, and the column represents the correlation of the methylation levels of CpGs in each module with 

the disease status. p-values are presented within each cell and the colour scale at the right indicates the strength of the correlation 

(darker cells depict stronger correlations, with blue representing negative and red representing positive correlations). B) Gene list 

enrichment analysis using curated lists of OPC (left panel)  and OLG (right panel) relevant genes with CpGs within the 

sorted-FTLD associated modules.. For each module within each network, Odds Ratios and 95% confidence intervals were 

calculated using Fisher’s exact test. Square shape indicates significant enrichment (Odds Ratio (p < 0.05)).C) Cell-type enrichment 

for all FTLD-associated co-methylation modules. Dark filled circles highlight the cell types found to be significantly enriched with 

adjusted p<0.05 after Bonferroni correction over all cell types within each module; the size of the circles represents the number of 

standard deviations (SD) from the mean. Cell-type enrichment analysis on the FTLD-related modules was performed using the 

package EWCE239 and associated single-cell transcriptomic data 240. 

 

The hub gene of the brown module (enriched for OPCs in the gene list enrichment analysis 

(Figure 4.11.B)) was PARM1, which codes for Prostate androgen-regulated mucin-like protein 

1, has been reported to be dysregulated in AD and ALS 184,275. It has been suggested that the 

gene plays a role in the regulation of telomerase 275. One of the terms enriched in genes from 

this module was “cell ageing”, which is interesting given the role of telomerase in cell 

senescence. Other terms enriched in the brown module were “cell cycle phase transition”, 

“regulation of mitotic cell cycle” and “nervous system development” (Table 4.9). 

 

The hub gene of the black module was LOC100288798, which codes for a long non-coding 

RNA, which is uncharacterised. It was also notable that this module contained several terms 

relating to peroxisomes, which we had also seen in the FTLD3-blue module in the bulk FTLD 

networks (Table 4.9). 

 

The hub gene of the darkturquoise module was RABEP2, Rab-GTPase binding effector protein 

2. Rab proteins are involved in membrane trafficking There is little in the literature relating this 

https://paperpile.com/c/HSDZKE/r6NC
https://paperpile.com/c/HSDZKE/kASi
https://paperpile.com/c/HSDZKE/kFU8v+ehQPz
https://paperpile.com/c/HSDZKE/ehQPz
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gene to OLGs or neurodegeneration, however it was identified as a substrate for GSK3 276, 

Glycogen synthase kinase 3, which has been linked to AD and PD 277. Functional enrichment 

terms of this module included those relating to fatty acid metabolism, notable due to the role of 

fatty acids in myelin function and structure 278 (Table 4.9). 

 

Table 4.9 Hub genes and functional enrichment of disease associated OLG lineage gene 
enriched modules across brain-nuclei sorted FTLD network 
 
Module Hub Gene Highlighted enrichment terms 

relevant to OLG/OPCS and/or 
neurodegeneration 

Type of enrichment 
analysis 

FTLD-sorted 
brown 

PARM1  “glycosphingolipid metabolic 
process”  

Gene list enrichment 
OPC  

FTLD-sorted 
black  

 
LOC1002887
98 

“fatty acid derivative biosynthetic 
process”  
“cholesterol transport” 
“intracellular cholesterol transport” 
“peroxisomal membrane transport “ 
“protein targeting to peroxisome” 
“peroxisomal transport” 
“positive regulation of amyloid-beta 
formation” 
“positive regulation of amyloid 
precursor protein catabolic 
process”  
“positive regulation of stress-
activated protein kinase signaling 
cascade” 

EWCE  

FTLD-sorted 
dark turquoise 

RABEP2 “fatty acid elongation”  
“fatty acid biosynthetic process” 
“positive regulation of neuron 
apoptotic process” 
“very long-chain fatty acid 
metabolic process” 

EWCE  

FTLD: frontotemporal lobar degeneration, OPC: oligodendrocyte precursor cell, OLG: oligodendrocyte, EWCE: 

expression weighted cell-type enrichment  

https://paperpile.com/c/HSDZKE/y7uf
https://paperpile.com/c/HSDZKE/FawL
https://paperpile.com/c/HSDZKE/yi5n
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Finally, we checked the expression of these hub genes in our FTLD1-expression and FTLD2-

expression datasets (Table 4.10). Only PARM1, the hub gene of the brown module, showed 

significant differential expression between FTLD and controls. In the FTLD1-expression dataset, 

the gene was genome-wide significantly downregulated in FTLD compared to controls, whilst in 

the FTLD2-expression data, the genome was nominally significantly downregulated.  

 

Table 4.10 Expression of hub genes in FTLD RNA-sequencing datasets 

 FTLD1-Expression FTLD2-Expression  

Gene logFC Adjusted P-value logFC  Adjusted P-value 

PARM1 - 0.429 
0.041 -0.825 

0.093 
FTLD: Frontotemporal lobar degeneration, logFC: log Fold change, FDR Adjusted P-value: p-value adjusted for 

multiple testing correction 
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4.3.2.2 AD-sorted Networks 
 

We also carried out co-methylation network analysis on the glial fraction of each of the two brain 

nuclei-sorted AD datasets separately. For the AD1 and AD2 networks respectively, 11 and 3 

modules significantly associated with disease status (p < 0.0016, 0.05/32 modules, and p < 

0.0015, 0.05/33 modules for AD1 and AD2, respectively) (Figure 4.12). The package EWCE 

identified 2 oligodendrocyte enriched modules in the AD1 dataset that were significantly 

associated with disease status; the blue and brown modules (Figure 4.13.A,  Table 4.11). In 

the AD2 data, EWCE identified the blue module as being enriched for OLGs (Figure 4.13.B, 

Table 4.11). The second method, using gene list enrichment, showed results consistent with the 

first; the AD1 brown module and the AD2 blue module were found to be significantly enriched 

for OLG relevant genes (Figure 4.13.C,D, Table 4.11). Using this method no other modules 

significantly associated with disease status were revealed to be enriched for OLG or OPC cell 

types. 
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Figure 4.12 Module-trait correlations AD-sorted Networks 

 
Module-trait correlations for the AD co-methylation networks for AD1 and AD2. The rows represent the 

co-methylation module eigengenes (ME) and their colours, and the column represents the correlation of the 

methylation levels of CpGs in each module with disease status. P values are presented within each cell and the 
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colour scale at the right indicates the strength of the correlation (darker cells depict stronger correlations, with 

blue representing negative and red representing positive correlations).  
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Figure 4.13. Cell-type enrichment across AD-sorted co-methylation network modules 

 

Cell type enrichment in those co-methylation modules showing significant association with disease status. 

Results using EWCE for A) AD1 and B) AD2. Dark filled circles highlight the cell types found to be significantly 

enriched with adjusted p<0.05 after Bonferroni correction over all cell types within each disease associated module; 

the size of the circles represents the number of standard deviations (SD) from the mean. Cell-type enrichment analysis 

on the FTLD-related modules was performed using the package EWCE239 and associated single-cell transcriptomic data 240.. 

Enrichment analysis using curated lists of OLG and OPC relevant genes within AD1 (C) and AD2 (B) co-methylation 

disease associated modules. Enrichment of methylation sites mapping to OPC relevant genes within FTLD2 associated modules 

For each module within each network, Odds Ratios and 95% confidence intervals were calculated using Fisher’s exact test. Square 

shape indicates significant enrichment (Odds Ratio (p < 0.05)). 

https://paperpile.com/c/HSDZKE/r6NC
https://paperpile.com/c/HSDZKE/kASi
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 Table 4.11 Hub genes and functional enrichment of disease associated OLG lineage gene 
enriched modules across brain-nuclei sorted AD networks 

Module Hub Gene Highlighted enrichment terms 
relevant to OLG/OPCS and/or 
neurodegeneration 

Type of enrichment 
analysis 

AD1-brown  CTNNA1  “establishment of Golgi 
localisation”  
“regulation of cell shape” 
“Positive regulation of oxidative 
stress-induced cell death”  
“cell death in response to oxidative 
stress”  

EWCE and gene list 
enrichment OLG 

AD1-blue ZNF143  “regulation of transcription from 
RNA polymerase II promoter in 
response to stress” 
“positive regulation of stress-
activated protein kinase signaling 
cascade” 
“lysosomal transport” 

EWCE 

AD2-blue FAAH “regulation of neuron 
differentiation” 

EWCE and gene list 
enrichment OLG  

 

  

AD1 Blue module 

The hub gene of the AD1 blue module was ZNF143, coding for a transcription factor for which 

abnormal expression is associated with cell proliferation and differentiation in cancer 279. 

Enrichment terms within this module included “regulation of transcription from RNA polymerase 

II promoter in response to stress”, indicating that other genes within this module could be linked 

to transcriptional activity as well (Table 4.11). 

 

AD1 Brown module 

https://paperpile.com/c/HSDZKE/MwuS4
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The AD1 Brown module was found to be enriched for OLG lineage cells with both methods. The 

hub gene of this module CTNNA1 ((Table 4.11), which codes for catenin (cadherin-associated 

protein) ɑ-1, which has a role in cell adhesion and has been identified as a gene amongst those 

elevated in OLGs derived from post-mortem AD patients 280. Notably, CTNNA1 was also 

identified as being within a differentially hydroxymethylated locus in AD patients 281. The 

occurrence of this gene as a hub gene in this OLG associated AD module is therefore 

interesting and warrants further investigation. Within this module we also noted that several 

methylation sites with high module membership (MM) mapped to the gene ATP11A (data not 

shown), which we had described as being present across a three module signature in the bulk 

AD brain region networks.  

 

AD2 Blue module 

The AD2 Blue module was the only module to be enriched with OLG cell types and significantly 

associated with AD. The hub gene of AD2 blue was the gene FAAH, which codes for fatty-acid 

amine hydrolase 1, which is involved in lipid metabolism and in the brain is most highly 

expressed in oligodendrocytes (FAAH expression ). FAAH has been shown to be 

overexpressed at the protein level in glial cells that are associated with increased inflammatory 

processes in AD 282. In this module, as with the AD1-brown module, we also found several 

methylation sites mapping to the gene ATP11A.  

 

Again, we also used the above described AD single-nuclei dataset to investigate expression 

patterns of these genes across OLG/OPC subclusters and the single-nuclei level (Figure 4.14). 

CTNNA1 and FAAH both showed significant differential expression in one subcluster. CTNNA1 

https://paperpile.com/c/HSDZKE/tX9nZ
https://paperpile.com/c/HSDZKE/1tB2E
https://www.proteinatlas.org/ENSG00000117480-FAAH
https://paperpile.com/c/HSDZKE/XM9LC
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which has previously been reported as being upregulated in AD brains vs controls 280, was also 

upregulated in an OLG cluster in this dataset in AD compared to controls.  

 

Figure 4.14 Differential expression of brain-nuclei sorted AD co-methylation network 
hub genes in snRNA-seq data  

 

Plot shows genes that are significantly differentially methylated in various Oli subclusters. The y-axis represents gene 

names, and the x-axis represents subclusters (e.g., Oli_0, Oli_3). The size of the points corresponds to the 

significance of the differential methylation (-log10 of the p-value). The colour gradient of the points represents the 

magnitude of the absolute log2 fold change (absolute log2FC), ranging from blue (lower absolute log2FC) to red 

(higher absolute log2FC). Triangular shapes indicate the direction of regulation, with "Upregulated" genes 

represented in this case.  

 

https://paperpile.com/c/HSDZKE/tX9nZ


175 

 

 

As with previous datasets, we carried out module preservation analysis to analyse whether our 

identified OLG signatures were replicated across datasets. We found that the AD1 Brown 

module (hub gene CTNNA1) was the most highly preserved in the AD2 data, and that the AD2 

blue module (hub gene FAAH) was the second most highly preserved AD2 module against the 

AD1 dataset (Table 4.12). This finding suggests that this strong OLG signature is not a dataset 

artefact but in fact represents a replicable signature related to dysregulation of OLG genes in 

AD.  

 

We investigated overlap of the methylation sites and genes present in these two modules of 

interest further. There were 447 genes which had methylation sites present in both modules, 

representing 25% and 21% of the unique genes in the AD1-brown and AD2-blue modules 

respectively.   

 

Table 4.12: Module Preservation between brain-nuclei sorted AD datasets AD1 and AD2  

Module  Preservation in AD1  Preservation in AD2  

AD1-brown   High (highest of all 
modules, regardless of 
disease association)  

AD1-blue  Moderate  

AD2-blue High   
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4.4 Discussion  

In this chapter, we have employed network analysis across a number of DNA methylation 

datasets and across multiple neurodegenerative diseases, in order to investigate the effect of 

DNA methylation on OLG relevant genes in disease. We have identified several modules across 

FTLD and AD that are associated with disease and enriched for OLG/OPC genes. To 

investigate these signatures, we have carried out hub gene and functional enrichment analysis, 

and also investigated gene expression profiles of the genes of interest. Below, we highlight the 

most notable findings and discuss their significance in the context of the broader scientific 

literature.  

 

 

To gain insight into the role of OLGs and myelin-related genes across different 

subgroups/subtypes of FTLD, we investigated three different FTLD DNA methylation datasets 

comprising different FTLD pathological subgroups and subtypes. In the FTLD1 dataset, 

composed of FTLD-TDP type A (C9orf72 mutation carriers) and FTLD-TDP type C (sporadic) 

cases, we saw one disease-associated OPC enriched module, the FTLD1-skyblue module. The 

hub gene of this module was TMEM168, which is part of the brain expression cluster related to - 

‘White matter - Myelination’ (TMEM168 expression), and is known to be a gene involved in cell 

cycle progression via regulation of the Wnt/β-catenin pathway in glioblastoma cells 241. Enriched 

terms within the FTLD1 skyblue module included “sphingolipid translocation”. Several other 

modules across all networks were also enriched for terms relating to sphingolipids; enrichment 

terms in the FTLDsorted-brown module (enriched for OPCs), the DLPFC-greenyellow module 

and the HIPPO-grey60 module included “glycosphingolipid metabolic processes”, the term 

“sphingolipid translocation” was also found in enrichment analysis for the DLPFC-purple module 

(enriched for OPC genes). Sphingolipids are an important component of plasma membranes, 

https://www.proteinatlas.org/ENSG00000146802-TMEM168
https://www.proteinatlas.org/ENSG00000146802-TMEM168
https://paperpile.com/c/HSDZKE/OC8jO


177 

particularly in the nervous system, and include the group of lipids sphingomyelins. Changes in 

sphingolipid composition/structure are known to be important in diseases in which altered 

myelination occurs 283. In an investigation into myelin lipid dysregulation in FTLD, Marian et al. 

found that sphingolipid metabolism was significantly altered across FTLD-GRN and FTLD-

C9orf72 cases compared to controls 284.  

 

Given the well characterised and distinct pathology relating to OLGs in PSP (FTLD-

Tau/sporadic), it was unsurprising that we found the greatest number of modules enriched for 

OLG genes within the FTLD3 network of all three bulk FTLD co-methylation networks. The 

FTLD3 cyan module had the hub gene of DDITL4/REDD2, a known regulator of the mTOR 

pathway 285, and we saw that this gene showed an increase in expression in two FTLD gene 

expression datasets. The mTOR pathway is known to be vital in allowing the correct 

differentiation of OLGs 286. Supporting the evidence that this module could represent a 

dysregulated signal of OLG differentiation; enrichment terms within this module included 

“negative regulation of cell differentiation” and “negative regulation of cell proliferation”. 

Furthermore, DDITL4 also has a role in DNA damage response 285,286, which is essential for 

cells under stress conditions such as oxidative stress, to which OLGs are particularly vulnerable 

(as discussed in Chapter 1). The FTLD3 cyan module was seen to be moderately or highly 

preserved across all FTLD and  AD brain region datasets.  

 

The FTLD3 blue module shows enrichment for genes related to OLGs with the hub gene 

GDAP1, which is a mitochondrial fission factor that is mutated in a demyelinating subtype of 

Charcot Marie Tooth disease 287. We saw that this gene showed downregulation at the gene 

expression level in both FTLD RNA-sequencing datasets. Gdap1 knockout mice exhibit 

changes in mitochondrial morphology and oxidative stress, as well as hypomyelination 288. A 

study investigating GDAP1 protein activity found that, as well as altering mitochondrial fission, 

https://paperpile.com/c/HSDZKE/NtjHh
https://paperpile.com/c/HSDZKE/ndiKB
https://paperpile.com/c/HSDZKE/wGoGV
https://paperpile.com/c/HSDZKE/I5ggT
https://paperpile.com/c/HSDZKE/I5ggT+wGoGV
https://paperpile.com/c/HSDZKE/p3N1v
https://paperpile.com/c/HSDZKE/mXX4o


178 

loss of GDAP1 also resulted in the altered morphology of the organelles peroxisomes 253. 

Peroxisomes are organelles that are essential for myelination, and play important roles in 

myelination, and also in the response to oxidative stress 289. This finding was notable to us given 

that, when investigating top OLG/OPC genes differentially methylated across datasets (Chapter 

3), we identified the CpG mapping to the gene PIP4K2A as the topmost differentially methylated 

OLG/OPC relevant gene. This gene, which also showed increased expression in the FTLD1 

RNA-sequencing dataset, codes for an enzyme crucial in the functioning of peroxisomes. 

Specifically, PIP4K2A codes for phosphatidylinositol 5-phosphate 4-kinase type-2 ɑ which is 

involved in the regulation of intracellular cholesterol transport. In the central nervous system, 

~70-80% of cholesterol is found within myelin membranes 290,291, therefore rendering findings 

related to cholesterol trafficking of particular relevance to oligodendrocytes. Indeed, the 

demyelinating disease MS has been linked to disruption of CNS cholesterol metabolism 292, and 

cholesterol transport has also recently been associated with altered myelination and AD through 

a study investigating effects of APOE4 (coded for by APOE, the strongest genetic risk factor for 

AD) on the human brain 70. In this study, it was found that cholesterol was aberrantly deposited 

in oligodendrocytes, and that this altered deposition was associated with reduction in myelin. 

Given that we noted several genes within this module that have known relevance to peroxisome 

biology, and also the fact that the CpG mapping to PIP4K2A was the most differentially 

methylated from the OLG PSP EWAS, we checked to see whether the blue module was 

enriched for terms relating to peroxisome. Indeed we found that, when using a list of 

peroxisome relevant genes (from publicly available databases), the FTLD3 blue module was 

significantly enriched for peroxisome function. Peroxisomes are also involved in the production 

of reactive oxygen species (ROS) 293, which, as we have previously discussed (Chapter 1), 

could be potentially highly damaging to OPCs/OLGs due to their high metabolic oxygen demand 

51. The blue module was moderately preserved in the FTLD1 dataset, and highly preserved in 

the FTLD2 dataset, indicating that although such pathogenic mechanisms discussed may have 

https://paperpile.com/c/HSDZKE/B1qWc
https://paperpile.com/c/HSDZKE/dmR5F
https://paperpile.com/c/HSDZKE/DekoX+XnfOZ
https://paperpile.com/c/HSDZKE/TrnR3
https://paperpile.com/c/HSDZKE/wFGxe
https://paperpile.com/c/HSDZKE/lzuQg
https://paperpile.com/c/HSDZKE/D8Wpt
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greater relevance to tau biology. The FTLD3-blue module was also highly preserved across the 

HIPPO, DLPFC and CRB AD brain region datasets. In terms of AD, PIP4K2A was found to be a 

pTau interacting protein 294, further strengthening the possibility that the mechanism through 

which peroxisomes dysfunction is related to tau biology. It is also important to note that whilst 

the FTLD1 dataset is derived from post-mortem grey matter, the FTLD2 dataset contains both 

grey and white matter, possibly contributing to the greater preservation of such myelin 

signatures in the latter dataset. Whether peroxisome dysfunction could be resulting in changes 

to ROS (or other) pathways which in turn leads to alterations in DNA methylation in OLG lineage 

cells, or whether DNA methylation changes could be causative in potential malfunction of these 

organelles is warrants further investigation. Interestingly, we also saw that the FTLD-sorted 

black module was functionally enriched for terms relating to peroxisomes, again adding 

evidence for the involvement and importance of these organelles in the context of OLGs in 

FTLD.  

 

Next, we analysed AD associated DNA methylation signatures relating to OLGs/OPCs across 

four brain regions; HIPPO, DLPFC, ERC and CRB. We generated networks for each of the four 

brain regions separately in order to assess how such signatures may differ between regions 

with distinct susceptibility to AD pathology. Whilst the ERC and HIPPO are known to exhibit 

changes early on in AD progression, DLPFC is thought to become affected later on, and the 

CRB is not thought to be affected by “conventional” AD pathology to a great degree 295.  

 

When investigating the network modules for these brain region datasets, we found several 

modules of interest. The DLPFC-greenyellow and the ERC-tan module were both highly 

enriched for OLG lineage markers, and strongly positively associated with AD disease status, as 

well as being preserved across brain regions. Both of these modules had hub genes which are 

known important regulators of myelination; MOG for DLPFC-greenyellow and MYRF for ERC-

https://paperpile.com/c/HSDZKE/86nWv
https://paperpile.com/c/HSDZKE/phNyd
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tan. MYRF is a transcription factor that is essential for myelin maintenance 296 and a target of 

SOX10 - another crucial activator of OLG differentiation-related genes 297. MOG is a gene 

expressed by mature OLGs. It is interesting that these two cross-region modules exhibit hub 

genes crucial to myelination and mature OLG function. When investigating these two modules, 

as well as the HIPPO-grey60 module (which also showed strong enrichment for OLG genes and 

was strongly positively associated with AD disease status), we found that several genes 

occurred recurrently through these modules. We noticed that across all three of these modules, 

several methylation sites were present with high module membership (MM) that mapped to the 

gene ATP11A, a gene implicated in a hypomyelinating leukodystrophy 260 Mechanisms behind 

such effects of mutations in this gene were suggested to involve disruption of phospholipids in 

the cell membrane which led to, amongst other effects, disrupted cell cholesterol homeostasis. 

Given the known importance of cholesterol functioning in OLGs mediated through the APOE-ε4 

mutation in AD (Chapter 1)70, this was of interest. When investigating this gene, we noticed that 

this gene is part of a cluster of genes involved in white matter signal transduction, and that its 

nearest neighbour based on RNA tissue expression correlation is MYRF - the hub gene of the 

ERC-tan module (ATP11A expression), which is notable to the recurrent finding of these genes 

together in disease-associated co-methylation modules. In transcriptomic analysis of AD, 

ATP11A has been found to be upregulated in AD compared to controls 298. When investigating 

other genes that were present across all three modules in this signature, we also found genes 

that had known relevance to AD pathology and white matter perturbations. The gene QDPR, 

which codes for quinoid dihydropteridine (an enzyme important in the regeneration of 

tetrahydrobiopterin (BH4), which is important in nitric oxide production) was found to present 

across all three modules, which was interesting as we have previously identified this gene as 

being differentially methylated in FTLD and AD, and showing increased expression in AD 

compared to controls (Chapter 3A. 3.ii), therefore the finding of this gene within this signature is 

notable.  

https://paperpile.com/c/HSDZKE/DW7yj
https://paperpile.com/c/HSDZKE/XeG3z
https://paperpile.com/c/HSDZKE/4v9mh
https://paperpile.com/c/HSDZKE/wFGxe
https://www.proteinatlas.org/ENSG00000068650-ATP11A/brain
https://www.proteinatlas.org/ENSG00000068650-ATP11A/brain
https://paperpile.com/c/HSDZKE/Fhzk
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We also carried out network analysis on the glial fraction of three sorted brain-nuclei  datasets, 

2 AD and one FTLD. As described in Chapter 3 Section 3.1, there are many advantages in the 

use of brain-nuclei sorted data over bulk DNA methylation datasets. Through our analysis of the 

glial fraction of these DNA methylation datasets, we expect that there will be less dilution of 

disease signals through the presence of neuronal cell types. As mentioned above, we identified 

a module in this network, the black module, that was enriched for terms relating to peroxisomes, 

which was a key finding also in the bulk tissue analysis, confirming the relevance of bulk tissue 

findings.  

 

In our analysis of the two brain-nuclei sorted AD datasets, we found a strong signature enriched 

for OLG genes that was highly preserved between the two datasets. The hub genes of the two 

modules, AD1-brown and AD2-blue, were CTNNA1 and FAAH respectively. CTNNA1 is a cell-

adhesion protein and part of the brain expression cluster ‘White matter - Signal transduction’ 

(CTNNA1 expression). Interestingly, its second nearest neighbour in terms of brain RNA 

expression correlation is the gene PIP4K2A (0.9228 correlation based on brain RNA 

expression), found within our FTLD3-blue module and discussed above. CTNNA1 has been 

found to be significantly upregulated in OLGs in AD 280 and also showed increased expression 

in the AD snRNA-sequencing data we have utilised throughout this Chapter and Chapter 3. The 

gene has also been identified as being differentially hydroxymethylated in AD 281. It is also worth 

highlighting here that the gene CTNNA3 is frequently presented with aberrant DNA methylation 

across AD and FTLD EWAS analysis in Chapter 3. CTNNA1 and CTNNA3 are two of three ɑ-

catenin genes expressed in humans. It was notable therefore that we find that the hub gene of 

an OLG enriched AD associated module is also a gene important in ɑ-catenin biology.  

 

FAAH is part of the brain expression cluster - ‘White matter - Myelination’, and interestingly has 

https://www.proteinatlas.org/ENSG00000044115-CTNNA1/brain
https://paperpile.com/c/HSDZKE/tX9nZ
https://paperpile.com/c/HSDZKE/1tB2E
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the highest RNA expression correlation with APLP1 (Amyloid beta precursor like protein 1) 

(0.928 correlation based on brain RNA expression) (FAAH Expression). This correlation could 

represent a functional link between pathways involving/regulated by FAAH and amyloid 

precursor pathways, which are well known to be implicated in AD pathology 299. In the AD1-

brown and AD2-blue modules, we also found methylation sites mapping to the gene ATP11A, 

which we previously discussed, strengthening the likelihood that this gene is an important 

component of dysregulation of DNA methylation affecting OLGs in AD.  

 

There are, of course, several limitations to methods we have used in this chapter, specifically in 

the use of cell-type and functional enrichment analysis. Whilst both can provide important 

information, there are drawbacks specifically related to limitations of annotations available. Cell 

type markers are continuously evolving, and whilst we have attempted to limit the overlooking of 

OLG/OPC specific modules through our use of two different methods of cell-type enrichment 

analysis, available cell type markers might not cover all possible cell types, especially rare or 

newly characterised types, limiting the depth of cell-type enrichment analyses. There is also the 

possibility that markers are expressed across multiple cell types or subtypes, leading to 

ambiguity when assigning genes or pathways to specific cell populations. Some modules are 

enriched for multiple cell types, which could either represent a signature that is not cell-specific, 

or ambiguity in annotations. A further problem that is specific to DNA methylation analysis is that 

in contrast to gene expression, multiple DNA methylation sites (CpGs) may map to one singular 

gene. This means that one gene can be represented in more than one co-methylation module. 

Added complexity is given by the fact that the effect of DNA methylation is highly dependent 

upon genomic context. Whilst a module could contain both genes relevant to, for example, 

astrocytes and OLGs, it could be that the signature leads to a repression of astrocyte relevant 

genes and an increase in expression of OLG genes that has become dysregulated.  

 

https://www.proteinatlas.org/ENSG00000117480-FAAH
https://www.proteinatlas.org/ENSG00000117480-FAAH
https://paperpile.com/c/HSDZKE/3VqOC
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In conclusion, throughout the work in this chapter, using co-methylation analysis complemented 

with additional datasets, we have identified signatures representing disruption of DNA 

methylation affecting OLG/OPCs across neurodegenerative diseases. Across our signatures, 

we saw functional enrichment terms of high relevance to OLG/OPCs and neurodegeneration, 

highlighting the utility of the use of network analysis to identify disease relevant effects.  This 

method has allowed us to identify genes that recurrently appear in signatures across 

neurodegenerative diseases and datasets, e.g. ATP11A, QDPR, and MYRF. Overall, it was 

interesting to see that many of our disease-associated modules that had hub genes with known 

relevance to AD and/or FTLD were preserved across datasets, and contained genes we had 

identified in our EWAS analyses. This could indicate that dysregulation of OLG genes across 

these dementias is more similar than previously thought. We have also been able to use 

functional enrichment analysis to multiple pathways as being effected, for example peroxisome 

pathways, altered lipid metabolism/homeostasis and responses to oxidative stress. Such 

pathways have been previously linked to AD and/or OLG dysfunction, but we have provided 

evidence as to the contribution of DNA methylation. The work in this chapter demonstrates the 

utility of the use of network analysis to identify disease and cell type relevant genes that show 

dysregulated DNA methylation in disease, and highlights several key genes and pathways and 

generates hypotheses that warrant further investigation.  
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Chapter 5 - Investigating the role of DNA Methylation in 

gene regulation in oligodendrocytes: insights from human 

cell models and tissue towards a better understanding of 

neurodegenerative disease-associated changes 

 

5.1 Introduction  
 

DNA methylation is crucial in the control of gene expression both in health and disease, acting 

in a spatiotemporal manner to allow intricate control of when and where genes are expressed. It 

is known that DNA methylation is crucial in cell fate determination. By selectively repressing or 

activating genes, DNA methylation patterns establish and maintain cell-type specificity, ensuring 

that specific genes required for a particular cell's function are expressed, while others are 

silenced 89,90. As we have described in Chapter 1, although there have been several studies 

investigating the role of DNA methylation in OLG lineage progression from immature OPCs to 

mature myelinating OLGs in mice 124, as far as we are aware studies investigating this process 

in human cells are limited. As there is evidence for aberrant proportions of OPCs and OLGs in 

several neurodegenerative diseases (Chapter 1), understanding the role of DNA methylation 

changes during OPC differentiation might be key in understanding how aberrant DNA 

methylation may be contributing to disease processes affecting OLGs in neurodegeneration.  

 

In previous chapters, we have identified OLG lineage relevant genes showing differential 

methylation in neurodegenerative diseases and, where possible, investigating downstream 

https://paperpile.com/c/HSDZKE/PtxIX+UGqgC
https://paperpile.com/c/HSDZKE/3gB81
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effects using corresponding gene expression data. However, due to limited numbers of datasets 

available including overlapping samples, and confounding factors such as tissue variability, 

elucidating the causal effect of DNA methylation is difficult. The role of DNA methylation on 

gene expression, as previously described (Chapter 1), is best characterised to occur in the 

promoter region of genes, where increased promoter DNA methylation is more often associated 

with a decrease in gene expression89. The mechanism behind this is not well understood. 

Methyl-CpG-binding domain (MBD) proteins are a family of proteins known to ‘read’ the 

epigenome, and are thought to lead to gene repression through recruitment of transcription 

factors and chromatin remodelers 300. However, we have, in addition to finding DNA methylation 

changes within promoter regions, identified many differentially methylated sites within the gene 

body and other non-promoter regions. We aimed here to investigate effects on gene expression 

of DNA methylation across genes which we had found to be differentially methylated, in order to 

add to understanding of the role of DNA methylation on OLG/OPC genes. We therefore 

investigated which DNA methylation sites showed high correlation with gene expression in 

healthy tissue using matched DNA methylation and gene expression datasets from a large 

cohort of control brains.  

 

Building upon previous findings of differential DNA methylation in neurodegenerative diseases, 

this chapter explores the role of DNA methylation during OLG differentiation and in regulating 

gene expression in post-mortem control tissue, leveraging insights from cell models and healthy 

tissue to assess the potential functional relevance of DNA methylation changes observed in 

neurodegeneration. We utilized DNA methylation profiles from Induced pluripotent stem cells 

(iPSCs) derived cells throughout OLG differentiation stages (kindly provided by Dr Evans from 

the Gandhi lab). iPSCs are stem cells created through the reprogramming of human adult cells 

to a pluripotent state, allowing them to develop into nearly any cell type in the body 301. Such 

cells are highly useful in studying differentiation, as they can be programmed to differentiate 

https://paperpile.com/c/HSDZKE/PtxIX
https://paperpile.com/c/HSDZKE/mkibs
https://paperpile.com/c/HSDZKE/zVoO
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from neural stem cells to cells expressing mature OLG markers 301. We have investigated DNA 

methylation profiles at three stages of OLG differentiation, allowing us to study changes in DNA 

methylation through OLG lineage fate progression. The overarching goal of this Chapter was to 

investigate genes that undergo changes in DNA methylation during OLG lineage progression in 

order to understand if changes in DNA methylation in neurodegeneration, identified in Chapters 

3-4, could reflect dysfunction of this process. We also undertook a bioinformatic approach to 

investigate DNA methylation/expression of disease associated OLG/OPC genes in healthy 

tissue, in order to explore the functional consequences of DNA methylation changes in disease.  

 

 

  

https://paperpile.com/c/HSDZKE/zVoO
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5.2 Methods  
 

5.2.i iPSC model of OLG differentiation  
 
 
 
Dr James Evans (Gandhi lab, Francis Crick Institute, London), kindly provided us with cell 

pellets from hiPSC-derived OLGs at three differentiation stages. OLIG2-positive neural cells 

(NSCs) were generated through dual SMAD inhibition (inhibition of TGF-beta (SMAD2/3) and of 

BMP (SMAD1/5/8) pathways). SOX10-induced cells (USIs) were produced through introduction 

of lentiviral mediated overexpression of OLG transcription factor SOX10. O4-positive cells (O4s) 

were purified from the SOX10-induced culture using magnetic-activated cell sorting (MACS). 

We therefore analysed cells at three states of OLG maturation; NSC, USIs (OPC like) and O4s 

(OLG like), O4+ being a marker of more mature OLGs 302. The hiPSC cell lines used for DNA 

methylation analysis in this thesis (as provided by Dr James Evans), included both control cell 

lines and lines from donors carrying the SNCA A53T mutation, which is associated with 

Parkinson’s disease (Table 5.1). Characterization of these cell lines is further detailed in the 

PhD thesis of Dr James Evans (Thesis publication).  

 

Table 5.1 Summary of hiPSC donor lines for which DNA methylation data was derived for this 
Chapter 

Sample Mutation  PD Diagnosis  Stages of OLG 
analysed  

C1 - Negative NSC, USI and O4 

C2 - Negative NSC and USI  

C3 - Negative NSC, USI and O4 

https://paperpile.com/c/HSDZKE/0wTiK
https://profiles.ucl.ac.uk/79113-james-evans/publications
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C4 SNCA A53T 
corrected  

-  NSC, USI and O4 

D1 SNCA A53T Positive  NSC, USI and O4 

D2 SNCA A53T Prodromal  NSC, USI and O4 

D3 SNCA A53T Positive  NSC, USI and O4 
PD: Parkinson’s disease, OLG: Oligodendrocyte, NSC: OLIG2-positive neural stem cells, USI: SOX10-induced cells, 

O4: O4-positive cells, SNCA: alpha-synuclein gene.  

 

 

Figure 5.1 Differentiation stages of OLGs as generated from hiPSCs  

 

Schematic illustration demonstrating the OLG model of differentiation through which DNA methylation changes were 

measured in this chapter. Stage 1 represents the transition from NSC (representing the most immature stage of OLG) 

to USI (an intermediate stage of OLG differentiation), whilst Stage 2 represents the transition from USI to O4-positive 

cells (representing the most mature stage of OLG differentiation). NSC: OLIG2-positive neural stem cell, USI: 

SOX10-induced cells, O4: O4-positive cells.   

 

5.2.ii DNA methylation profiling of iPSC-derived cells  
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Genomic DNA was extracted from iPSC derived cell pellets using the Quick-DNA/RNA Miniprep 

kit, following the manufacturer’s instructions (Zymo Research, product code D7001). Five 

hundred ng of DNA per sample were then sent to UCL Genomics for bisulfite conversion and 

DNA methylation profiling. Genome-wide methylation profiles were generated using the Infinium 

HumanMethylationEPIC Version 2 BeadChip (Illumina).  

 

Beta-values ranging from 0 to 1 (approximately 0% to 100% methylation, respectively), were 

used to estimate the methylation levels of each CpG site using the ratio of intensities between 

methylated and unmethylated alleles. Data analysis was conducted using several R 

Bioconductor packages. Due to differences in array versions and inability to load data from 

EPIC v2 with the current version of the ChAMP package154, we modified the method of loading 

and quality control from that described in Chapter 2 Section 2.1, relying on the minfi and 

wateRmelon R packages only, and manually filtering out methylation sites that showed: (1) poor 

quality, (2) cross reactivity, (3) included common genetic variants, and (4) mapped to X or Y 

chromosome. As with other DNA methylation datasets described in Chapter 2 Section 2,1, 

samples were dropped during quality control if: (1) they presented with a high failure rate (≥ 2% 

of methylation sites), or (2) they clustered inappropriately on multidimensional scaling analysis. 

Beta-values were normalised with wateRmelon using the dasen normalisation method. M-

values, computed as the logit transformation of beta-values, were again used for all statistical 

analysis, as recommended by 155, and further described in Chapter 2.  

 

https://paperpile.com/c/HSDZKE/sYJVY
https://paperpile.com/c/HSDZKE/3x9HQ
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5.2.iii Differential methylation analysis  

 

We applied linear regression models using the M-values as the input to identify associations 

between DNA methylation variation at specific CpG sites and differentiation stage (condition) 

using the limma package 156 using the following model: 

 

~ 0 + condition + slide 

The following comparisons were performed USI versus NSC and O4 versus USI. False 

discovery rate (FDR) adjusted p-values < 0.05 were considered genome-wide significant. Given 

that we did not see on SVD plots any separation between samples with or without the SNCA 

A53T mutation (Figure 5.2), all samples were analysed together in a single model to increase 

statistical power with a larger sample size, without stratifying for the presence of the mutation. 

We adjusted the data for slide, as we had seen that this technical batch effect contributed to 

data variance (data not shown).  

Figure 5.2 Singular Value Decomposition (SVD) analysis of DNA Methylation Data in iPSC 
derived OLG Cells 

 
SVD analysis visualising both technical and biological variances explaining data variance after quality control, 

normalisation and covariate adjustment. PC: Principal component, Disease - presence/absence of A53T mutation, 

https://paperpile.com/c/HSDZKE/8iTYd
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Condition - OLG differentiation stage (i.e. NSC, USI or O4+), NSC: neural stem cell, USI: unstimulated SOX10-

induced, O4+: O4 antigen expressing cells, SVD: singular value decomposition, Sentrix_Position: slide position (as 

detailed above), Sentrix_ID (array).  

5.2.iv Post-mortem brain tissue DNA methylation - gene expression 

correlations  

 

To analyse the role of DNA methylation on gene expression within OLG/OPC genes, we chose 

the largest brain derived control dataset for which we had matching DNA methylation and gene 

expression profiles, which was control samples from our bulk AD dataset (N = 518) described in 

Chapter 3 (and described in methods section 2.1). Processing of this data is described in 

Chapter 2.2, where we also provide a description of the quality control and processing of the 

RNA-sequencing data matching with this DNA methylation dataset.   

 

5.2.v Curation of gene lists of interest  

 

In order to investigate the disease-associated differentially methylated genes from previous 

Chapters 3 and 4, we curated a list of ‘genes of interest’ to examine. As well as looking solely at 

differentially methylated methylation sites from the EWAS analyses described in Chapter 3, we 

included in this list hub genes of disease associated OLG/OPC modules from co-methylation 

networks described in Chapter 4. We also included genes which, although not themselves hub 

genes, showed consistent presence in disease-associated co-methylation modules and showed 

differential expression in disease. Gene list and reasons for inclusion are outlined in Appendix 

M.  
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5.3 Results 
 

5.3.1 DNA methylation changes during Oligodendrocyte Differentiation 
using iPSC derived Models  
 
5.3.1.i Characterisation of DNA methylation profiles across OLG differentiation stages  
 

Firstly, we undertook differential methylation analysis to investigate which genes contained 

differentially methylated sites at the two stages of differentiation - NSC to USI (OPC-like) (Stage 

1), and USI to O4 (OLG-like) (Stage 2). We first checked DNA methylation changes in two 

known markers of OLG differentiation states, to add confidence to this model of differentiation 

derived from iPSCs, namely at VCAN and MBP. VCAN is a well described marker of OPCs and 

has previously been used to ascertain differentiation in a human cell model of OLG 

differentiation 303. MBP codes for myelin basic protein which is exclusively expressed by 

myelinating OLGs 304. We saw methylation changes at key sites in these genes across the two 

differentiation stages (Figure 5.3). For VCAN, we saw hypermethylation of the promoter region 

during Stage 2 of differentiation - from OPC-like to OLG-like. Given that increased DNA 

methylation at the promoter region of genes is associated with decreases in gene expression - 

this aligns with repression of this OPC gene in more mature cells. For MBP, we again saw 

significant changes in promoter region DNA methylation in both Stages 1 and 2. In the change 

from NSC to USI/OPC-like cells, the promoter region is hypermethylated, whilst the region 

becomes hypomethylated in the transition from USI (OPC-like) to O4+ (OLG-like). These 

changes in MBP DNA methylation support silencing of gene expression during the first stages of 

differentiation, and then activation during the change from OPC-like cells to OLG-like cells. 

Since MBP is expressed by myelinating mature OLGs, this finding suggests that this model of 

OLG differentiation in iPSC recapitulates key features of OLG differentiation processes.  

https://paperpile.com/c/HSDZKE/ntzhf
https://paperpile.com/c/HSDZKE/sCz2F
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Figure 5.3 Differential methylation changes across OLG maturation markers at two 
stages of OLG differentiation 

 

Differential methylation changes in key oligodendrocyte genes (e.g., MBP and VCAN) during Stage 1 (A) and Stage 2 

(B) of differentiation. Each point represents a methylation methylation site mapped to a specific genomic position. The 

y-axis shows the magnitude of methylation change (values above zero represent hypermethylation and below zero 

show hypomethylation) measured as Delta Beta values, while the x-axis represents the genomic coordinates. 

Methylation sites are coloured by their genomic features.  

 

Looking more generally at which genes contained differentially methylated sites across the two 

stages of OLG differentiation, we found a striking number of differentially methylated sites at 

both stages. Of the 704,510 methylation sites analysed, 89,370 and 198,043 for stages 1 and 2, 

respectively, showed significantly different methylation (adjusted p-value < 0.05). The top most 

differentially methylated methylation site in stage 1 of OLG differentiation mapped to the gene 
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body of RERE (Table 5.2). RERE has been implicated as a mediator of neural progenitor cell 

proliferation 305. The top-most differentially methylated methylation site in stage 2 of OLG 

differentiation mapped to the gene EPHB2  (Table 5.2).  EPHB2 codes for ephrin type-B 

receptor 2 which is a transmembrane protein, ephrins and ephrin receptors have been shown to 

be important during OPC differentiation 306. Interestingly, in a mouse model of OPC 

differentiation, Ephb2 was found to be differentially methylated between OPCs and OLGs, as 

well as being differentially expressed 124. These findings of top differentially methylated genes, 

including RERE and EPHB2, having described roles in OPC differentiation adds confidence to 

the biological relevance of this iPSC model of differentiation.  

 

Interestingly, many of the top differentially methylated genes in both stages showed opposite 

directions of effect in the other stage (Figure 5.4, Table 5.2). For example, several genes 

mapping to the gene CTNNA1 showed significant increase in DNA methylation during Stage 1 

of differentiation - in the transition from NSC to USI, but then showed significant decrease in 

DNA methylation during Stage 2 - from USI to O4 (Figure 5.4, Table 5.2). This was true for 

multiple genes, as is visualised in Figure 5.4C. When investigating the top significantly 

differentially methylated sites across both stages, all show opposing directions of DNA 

methylation change. This highlights the importance of DNA methylation changes during OLG 

maturation. The dynamic nature of these changes in DNA methylation status may regulate 

processes that are activated at one stage (e.g., during the NSC to USI transition) and 

deactivated at the other (e.g., during the USI to O4 transition), or vice versa. The 10 top-most 

differentially methylated sites in Stages 1 and 2 of the model of OLG differentiation are provided 

in Table 5.2. Interestingly, 7/10 of these sites are the same, but show opposite directions of 

effect. This could be explained through a potential reversal in dynamics between the early and 

late stages of OLG differentiation - potentially a shifting mechanism whereby DNA methylation 

allows expression of genes essential for one stage of OLG differentiation and then re-

https://paperpile.com/c/HSDZKE/hVj3N
https://paperpile.com/c/HSDZKE/P7How
https://paperpile.com/c/HSDZKE/3gB81
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establishes repression once that stage of OLG differentiation is complete. This aligns with the 

concept of gene switching307, where genes are activated in one stage and deactivated at a later 

stage, or vice versa. It has been found that the activation of the Wnt signalling pathway (which 

we have discussed in Chapters 3 and 4 in relevance to OPC proliferation and discussed below) 

inhibits specification of OPCs from NSCs, but is required for differentiation of OPCs into OLGs 

183.

https://paperpile.com/c/HSDZKE/R1QR
https://paperpile.com/c/HSDZKE/g6pmj
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Figure 5.4 Top Differentially 
methylated sites (DMPs) between 
two stages of oligodendrocyte 
differentiation. 

 

Heatmap of differentially methylated sites 

(DMPs) across oligodendrocyte differentiation 

comparisons. Methylation differences (delta M-

values) for the top 100 significant methylation 

sites across two comparisons: USI vs NSC 

(SOX10-induced stem cells vs neural stem 

cells) and O4 vs USI (mature oligodendrocytes 

vs SOX10-induced stem cells). Rows represent 

individual genes associated with the DMPs. 

Columns represent the two comparisons (USI 

vs NSC and O4 vs USI). Red indicates 

increased methylation (positive delta M-value). 

Blue indicates decreased methylation (negative 

delta M-value). White represents no change 

(delta M-value near zero). Coloured bars on 

the left hand side represent the genomic 

feature of each methylation site (e.g., Body, 

TSS200, 5'UTR, etc.), as indicated in the 

legend. NSC: neural stem cell, USI: SOX10 

induced cell, O4: O4+ cell. 
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Table 5.2 Top 10 differentially methylated sites from differentiation stages in iPSC model of 
Oligodendrocyte differentiation  
 

CpG CHR Gene Feature Delta M-Value P-value (adjusted) 

Top differentially methylated sites Stage 1 Differentiation  

cg07145988 1 RERE Body 4.0077202 5.86E-09 

cg15447913 1 EPHB2 Body 4.45407123 5.86E-09 

cg06606949 5 CTNNA1 Body 4.3140927 2.21E-08 

cg22333841 2 THADA Body 4.68778293 2.59E-08 

cg14196395 2 DYSF Body 5.03555759 2.86E-08 

cg00285941 2 UNC80 Body 4.0069706 3.49E-08 

cg06211743 15 CGNL1 5'UTR 3.93739665 3.80E-08 

cg11285029 3 ATP2C1 TSS1500 3.61385993 4.34E-08 

cg00066640 15 FRMD5 Body 3.64116213 4.44E-08 

cg03173797 1 CAPN9 Body 2.78572712 4.44E-08 

Top differentially methylated sites Stage 2 Differentiation  

cg15447913 1 EPHB2 Body -4.5801337 2.48E-11 

cg07145988 1 RERE Body -3.7089158 5.99E-11 

cg06606949 5 CTNNA1 Body -4.2827302 9.43E-11 

cg22333841 2 THADA Body -4.7802765 9.43E-11 

cg06211743 15 CGNL1 5'UTR -4.1864351 9.86E-11 

cg03795776 6 BACH2 Body -3.6034639 1.26E-10 

cg14196395 2 DYSF Body -4.9093266 1.45E-10 
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cg21902252 1 MAST2 Body -2.5181932 1.55E-10 

cg00285941 2 UNC80 Body -3.914429 1.83E-10 

cg23184518 5 CTNNA1 Body -4.3013814 1.83E-10 

 

 

 
Next, we investigated whether any of the specific DNA methylation sites that were significantly 

differentially methylated during these stages of differentiation were also differentially methylated 

in any of the AD and FTLD EWAS analyses (Chapter 3). We found that there were several 

methylation sites which showed differential methylation at both OLG differentiation and in 

disease. To highlight some observations, we saw that a DNA methylation site in FZD9 that was 

the top-most differentially methylated OPC site in the bulk AD EWAS was differentially 

methylated in Stage 2 of differentiation (Figure 5.5). FZD9 codes for Frizzled-9, a receptor 

involved in the Wnt signalling pathway, which is known to undergo stage specific changes 

during OPC differentiation 183. We also saw that the gene FERMT1 was differentially methylated 

during differentiation (Figure 5.5). FERMT1 was found to be differentially methylated in the 

FTLD1, FTLD2, FTLD-sorted and AD datasets, and upregulated at the gene expression level in 

the FTLD1-expression data. It has been found that FERMT1 activates the Wnt signalling 

pathway through interaction with β-catenin 308. Additional genes found to be differentially 

methylated in disease and differentiation that have been proposed to be involved in Wnt 

signalling include GPNMB 309, SEMA5A 310 and EPN2 311, highlighting the relevance of this 

signalling pathway.  

 

Looking at OLG EWAS disease-associated methylation sites and sites differentially methylated 

during differentiation, we again saw overlap. Only one specific methylation site was present 

https://paperpile.com/c/HSDZKE/g6pmj
https://paperpile.com/c/HSDZKE/sG9Xq
https://paperpile.com/c/HSDZKE/3zE40
https://paperpile.com/c/HSDZKE/xqzQT
https://paperpile.com/c/HSDZKE/CE34E
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across multiple EWAS and differentially methylated during differentiation - a methylation site 

within the 3’UTR of the gene PXK. Although this gene showed an increase in DNA methylation 

during the Stage 1 of OLG differentiation, this methylation site showed a decrease in DNA 

methylation in the bulk AD and sorted AD2 analysis. 

 

For both OPC and OLG genes, in some cases, the direction of methylation change in disease 

(i.e. disease vs control) was the same as in differentiation stages, i.e. the methylation site 

showed increased DNA methylation through the differentiation stage (either Stage 1 or Stage 2), 

and also showed increase in DNA methylation in disease vs control (Figure 5.5). However, 

there were also instances in which the direction was different (Figure 5.5). Where directions are 

opposite, this could indicate that processes by which DNA methylation acts to allow 

differentiation of OLGs are being disrupted by disease-associated DNA methylation changes. It 

could also indicate altered proportions of OLGs/OPCs in disease tissue. If there is a higher 

proportion of OPCs in disease samples, that would tend towards DNA methylation profiles 

showing more similar patterns of DNA methylation to earlier stages of the OLG lineage.  
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Figure 5.5 Heatmaps of significantly differentially methylated sites in EWAS analyses of 
oligodendrocyte precursor cells and oligodendrocytes and in stages of oligodendrocyte 
differentiation  
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Heatmaps of differentially methylated sites (DMPs) in EWAS analyses of oligodendrocyte precursor cells (OPCs) and 

oligodendrocytes (OLGs). Left Panel (EWAS OPC methylation sites): Heatmap displaying the Delta M-values of 

DMPs associated with OPC genes across multiple EWAS datasets and Delta M-values of those DMPs in stages 1 

and 2 of OLG differentiation. Right Panel (EWAS OLG methylation sites): Heatmap displaying the Delta M-values of 

DMPs associated with OLG genes across multiple EWAS datasets and Delta M-values of those DMPs in stages 1 

and 2 of OLG differentiation. Columns represent specific EWAS datasets, including FTLD1, FTLD2, FTLD3, FTLD-

Sorted, AD, AD1, AD2, and differentiation stages (Stage_1 and Stage_2). Rows indicate genes linked to differentially 

methylated sites found in OPCs/OLGs. Colour Scale - red indicates positive mean difference of M-value 

(hypermethylation), blue indicates negative mean difference of M-value (hypomethylation), white indicates no change, 

grey indicates that the CpG was not significantly associated with disease or differentiation stage. AD: Alzheimer’s 

disease, FTLD: frontotemporal lobar degeneration, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell, 

EWAS: epigenome-wide association study.  

 

 
Aside from looking at specific DNA methylation sites that were found in both disease (EWAS 

from Chapter 3) and differentiation associated, we were also interested more generally in the 

behaviour of key genes identified across our network analysis (Chapter 4) (Figure 5.7). For this, 

we used a curated list of genes showing high relevance to disease (Appendix M, Methods 

Section 5.2). In the differentiation Stage 1, the gene of interest which contained the highest 

number of differentially methylated sites was ADARB2 (Figure 5.7). This gene was of interest 

due to its consistent occurrence in our DNA methylation signatures associated with OLGs 

across multiple brain regions in AD (Chapter 4). INPP5A was another gene of interest that was 

included due to its presence across this disease-associated cross-brain region signature, as 

was ATP11A, UNC5D and FAM107B. All of these genes showed multiple methylation sites that 

were significantly differentially methylated across both stages of differentiation. As was 

described in Chapter 4, hub genes of the co-methylation modules containing the above 

mentioned genes, included MYRF, and MOG, which are important drivers of OLG maturation 
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and myelination 312. The identification of multiple sites mapping to these genes highlights and 

supports potential functional consequences of DNA methylation changes in differentiation and 

disease.  

Figure 5.7 Distribution of differentially methylated sites across top genes and associated 
genomic features in oligodendrocyte differentiation.  
 

A) Bar plot visualising the top genes with DMPs in the comparison between SOX10-induced stem cells (USI) and 

neural stem cells (NSC). B) Bar plot visualising the top genes with DMPs in the comparison between mature 

https://paperpile.com/c/HSDZKE/nraiM
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oligodendrocytes (O4-positive cells) and SOX10-induced stem cells (USI). For both, the x-axis represents genes, and 

the y-axis shows the number of DMPs mapped to each gene. Colours correspond to specific genomic features (e.g., 

TSS200, Body, 3'UTR), as shown in the legend. NSC: neural stem cell, USI: SOX10 induced cell, O4: O4+ cell. 

 

 

As we had described above, a gene which contained some of the most significantly differentially 

methylated sites in both stages of OLG differentiation (although in opposite directions in each of 

these stages) was CTNNA1, which codes for ɑ-catenin. This gene was also of particular interest 

due to it being the hub gene of an OLG enriched AD module from the co-methylation network 

analysis in Chapter 4 (Appendix M). In this module, increases of DNA methylation in 

methylation sites within the module were associated with increased disease risk. Here, we see 

that multiple methylation sites mapping to CTNNA1 show hypomethylation and seem needed for 

the transition from USI to O4 (Stage 2 of differentiation). If opposing directions are seen in 

transition and disease, as we see here (Figure 5.6) this could indicate that increased DNA 

methylation of this gene in disease represents dysfunction of the decrease in methylation of the 

gene needed for maturation of OLGs.  

 

The gene PIP4K2A also showed multiple methylation sites that were significantly differentially 

methylated during both stages of OLG differentiation. This gene contained the top-most 

differentially methylated OLG methylation site in the FTLD3-EWAS (Chapter 3), and was also a 

gene with high module membership in an FTLD-associated co-methylation module that was 

enriched for peroxisome-associated genes. The role of peroxisomes and associated signalling 

pathways have been found to be important in OPC proliferation and differentiation into 

myelinating OLGs 313, and once again possibly linking disease to OLG lineage changes.  

https://paperpile.com/c/HSDZKE/098vA
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5.3.2 Investigating the role of DNA methylation in gene 

expression within oligodendrocyte lineage genes in healthy brain 

tissue  

 

In this section, we describe the analysis of correlations between DNA methylation and gene 

expressions in a large sample of control samples. The rationale behind this approach was to 

strengthen the link between DNA methylation changes and downstream gene expression by 

identifying CpGs that, in control tissue, exhibit a strong effect of DNA methylation on the 

expression levels of their corresponding genes. This analysis provides evidence to support the 

hypothesis that aberrantly differentially expressed genes in disease are driven, at least in part, 

by changes in DNA methylation.  

 

 

Firstly, we examined which of the CpGs mapping to genes within the general OLG and OPC 

gene lists seem to show stronger effects on the expression levels of the corresponding genes. 

To do this we used a DNA methylation dataset for which we also had overlapping gene 

expression datasets - the AD bulk data described in Chapter 3. We subset these data for only 

control samples (N= 318), and carried out correlation analysis between DNA methylation and 

gene expression at all methylation sites in OLG/OPC genes (those described in Appendix A). 

Interestingly, the majority of these CpGs were not located within the promoter of the gene (66% 

and 56% for OLG and OPC, respectively), again illustrating the complexity of DNA methylation-

gene expression dynamics, and highlighting the need for more research into the role of non-

promoter region DNA methylation.  
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We looked at methylation sites within our EWAS analysis across diseases, and if any of these 

were significantly associated with gene expression in control brain tissue. Several disease 

associated OLG and OPC methylation sites were present (Table 5.3). Of the OPC genes, we 

found that two methylation sites mapping to GALR1 promoter region (TSS1500) were 

significantly negatively correlated with gene expression in control data. This is in line with the 

model that DNA methylation at the promoter region is associated with a decrease in gene 

expression. The two methylation sites in GALR1 were hypomethylated in disease (AD2 

dataset), and we saw corresponding upregulation of this gene in the bulk AD RNA-sequencing 

dataset. GALR1 codes for Galanin receptor 1, and expression changes of this gene have been 

observed during remyelination in MS 192,194, as well as the gene having been found to be 

overexpressed in AD192. We saw that methylation sites within GALR1 were differentially 

methylated across multiple diseases (the FTLD-sorted, FTLD1, FTLD2 and AD EWAS analyses, 

Chapter 3). This finding adds strength to the model that aberrant DNA methylation at the 

promoter leads to aberrant upregulation of GALR1 in disease. Another gene where a 

methylation site was significantly correlated with gene expression and was disease associated 

was COL9A1. This gene was differentially methylated in the FTLD1, FTLD2, FTLD-sorted and 

AD2 EWAS, and was downregulated in an OPC cluster in the AD snRNA-seq data.  

 

Within our OLG genes, two methylation sites mapping to the promoter region of HHIP, which 

unexpectedly showed positive correlation with gene expression in control, were found across 

our AD EWAS analyses. We saw that in the bulk AD expression data, HHIP was 

downregulated. We had seen both hypo- and hypermethylation of the promoter region of this 

gene in AD, thus, the relationship between gene expression and methylation, and perturbations 

of this relationship in disease, remain unclear.  

https://paperpile.com/c/HSDZKE/S3VE7+p0xFA
https://paperpile.com/c/HSDZKE/S3VE7
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Table 5.3 Methylation sites significantly associated with gene expression in control tissue that 
are also present across disease EWAS analyses 

CpG  Gene  Feature  EWAS  Correlation with 
gene expression 
in controls (P-
value) 

Altered gene 
expression in 
disease  

OPC Genes 

cg03075065 WFDC1 Body  AD (Hypo) -0.16 (0.029) -  

cg14273027 KLHL1 TSS200 AD (Hypo) -0.23 (0.001) -  

cg17274742 GPNMB 1st Exon AD (Hyper) -0.45 (3.2E-11) -  

cg04525189 VIPR2  Body AD1 (Hypo, top most 
differentially 
methylated 
methylation site in 
AD1 and meta-
analysis of AD2 and 
AD2)  

-0.22 (0.002) -  

cg05528293 GALR1  TSS1500 AD2 (Hypo) -0.22 (0.002) Upregulated in bulk 
AD, downregulated in 
OPC subcluster of 
snRNA-sequencing  

cg07390210 GALR1 TSS1500 AD2 (Hypo) -0.19 (0.009) As above  

cg07862930 KCNJ16 5’UTR AD2 (Hypo) -0.17 (0.021) -  

cg09961397 COL9A1 Body AD2 (Hypo) -0.15 (0.032) Downregulated in 
OPC subcluster of 
snRNA-sequencing  

cg05144285 VIPR2  Body  FTLD-sorted (Hyper) -0.26 (0.0003) -  

OLG Genes  

cg03018256 TTYH2 Body AD (Hypo) 0.21 (0.003) Downregulated in bulk 
AD  

cg07318204 HHIP TSS1500 AD, AD2 (Both hypo) 0.18 (0.01) Downregulated in bulk 
AD 

cg10069691 ST18 5’UTR AD (Hypo) -0.16 (0.03) Downregulated in bulk 
AD 

cg17036418 RFFL TSS1500 AD (Hyper) -0.15 (0.03) Downregulated in bulk 
AD  

cg02524475 HHIP TSS1500 AD1 (Hyper) 0.16 (0.03) As above 
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cg04007987 TTYH2 Body AD1 (Hyper) 0.21 (0.003) As above  

cg13882486 LPAR1 5’UTR FTLD-sorted (Hyper) -0.14 (0.04) -  

cg26347632 CDC42EP1 3’UTR FTLD-sorted (Hyper) 0.18 (0.01) -  

cg04826663 ANLN Body FTLD1 (Hyper) -0.16 (0.02) - 

cg07119871 PRIMA1 Body FTLD1 (Hypo) -0.21 (0.003) - 

cg07354124 TCP11L2  TSS1500 FTLD3 (Hypo) 0.20 (0.004) - 

cg17012863 LIPA  TSS200 FTLD3 (Hypo) 0.17 (0.018) -  

AD: Alzheimer’s disease, FTLD: frontotemporal lobar degeneration, OLG: oligodendrocyte, OPC: oligodendrocyte 

precursor cell, EWAS: epigenome-wide association study, Hypo: hypomethylated, Hyper: hypermethylated. 

 

Next, we looked more generally at which genes within our list of curated disease-associated 

‘genes of interest’ contained methylation sites with significant associations with gene 

expression. The aim here was to investigate which of the disease-associated genes appeared 

to have expression significantly influenced by DNA methylation. Within OLG genes of interest 

(curated for this Chapter), we saw several genes that showed correlation between gene 

expression and DNA methylation that had also been identified as being differentially expressed 

in disease, for example MBP and PIP4K2A (Figure 5.8). The finding that there is indeed strong 

correlation between DNA methylation and gene expression strengthens the likelihood that the 

differential methylation that we see in disease is associated with the observed differential 

expression in disease. In terms of OPC genes, we again highlight GALR1, which contained 

several methylation sites that were associated with gene expression, again providing evidence 

as to the importance of DNA methylation at this gene leading to aberrant expression of the gene 

in disease.  

 

We also saw correlations between gene expression and DNA methylation in genes that we had 

identified as differentially methylated, but had not observed changes in gene expression in 

disease. For OLG genes, a notable example included DNAH17, which had differentially 
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methylated sites across all 7 disease EWAS analyses. In control tissue, it appears as though 

there are many methylation sites within this gene which are strongly correlated with gene 

expression (Figure 5.8), indicating that DNA methylation does play a strong role in expression 

of the gene, but that effect is likely perturbed in disease.  
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Figure 5.8 Distribution of differentially methylated sites showing high correlation with 
gene expression across disease-associated OLG and OPC genes 
 

 
Bar plot showing the number of CpGs associated with A) OLG and B) OPC disease-associated genes. The x-

axis represents genes, and the y-axis indicates the count of CpGs correlated with gene expression within each gene. 

Each bar is stacked by genomic features (e.g., 1stExon, 3'UTR, Body, TSS1500, TSS200). OLG: oligodendrocyte, 

OPC: oligodendrocyte precursor cell.  
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5.4 Discussion  
 

In this chapter, we describe the investigation of the relevance of genes identified as differentially 

methylated in disease, to the OLG life cycle, and to gene expression regulation in healthy brain 

tissue.  

 

It was interesting to see that the majority of the most significantly differentially methylated 

positions were shared across the two stages of OLG differentiation we have investigated, but 

show opposing directions. This finding emphasises the importance of stage-specific DNA 

methylation effects. Furthermore, we found that several genes identified as differentially 

methylated in neurodegenerative diseases also displayed differential methylation throughout the 

OLG differentiation process. If the intricate changes in DNA methylation involved in genes 

relevant to OLG differentiation are disrupted, this could lead to an inability of the OLGs to pass 

through maturation stages, and lead to accumulation of more immature OPCs and decreased 

proportions of mature myelinating OLGs. Indeed, as described above and in the introduction, we 

see evidence of altered proportions of OPCs and OLGs across neurodegeneration. Our findings 

support the role of altered DNA methylation in this phenomenon. We investigated the 

directionality of methylation changes occurring in disease and in OLG differentiation. In some 

cases, we saw that the direction of effect was the same in disease and differentiation. It is 

possible that the same pathways that are involved in differentiation are also disease relevant, 

potentially pointing at an amplification or silencing of a particular pathway. Our findings could 

also indicate a compensatory response to disease. It could also be the case that, if more 

immature OLG lineage cells have methylation profiles more similar to earlier differentiation 

stages, their increases in disease would shift the methylation profiles to resemble less 

differentiated states. When the direction was reversed, i.e. observed hypomethylation of 
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methylation sites with increased DNA methylation through disease, pathological processes that 

interfere with normal differentiation programs could be implicated.  

 

A gene of particular interest that we found was differentially methylated in disease and during 

differentiation was CTNNA1. This was the hub gene of an AD OLG enriched co-methylation 

network module described in Chapter 4. As described here, we saw that multiple methylation 

sites mapping to CTNNA1 show hypomethylation in the transition from USI to O4 (Stage 2 of 

differentiation), but hypermethylation in the transition from NSC to USI (Stage 1 or 

differentiation). In our module of interest, we saw that increases in DNA methylation at this gene 

were associated with AD. CTNNA1 was found to be upregulated in AD in single-cell RNA 

sequencing data,  revealing the gene to be more highly expressed in mature OLGs than OPCs 

(314). CTNNA1 codes, along with CTNNA2 and CTNNA3 (the latter of which is differentially 

methylated across neurodegenerative disease, Chapters 3 and 4), for α-catenins, which have 

the role of linking cadherins with the actin cytoskeleton 315, and have roles in maintaining the 

structure of tissue. As well as having structural roles, α-catenins, through interactions with ꞵ-

catenins and Wnt signalling pathways (a recurring finding throughout this work), are thought to 

have roles in cell proliferation. Mice with altered Wnt/ꞵ-catenin signalling (which can be 

modulated through α-catenin 316) have been found to exhibit delayed appearance of mature 

OLGs 317, and there is substantial evidence that the Wnt/ꞵ-catenin signalling pathway is vital in 

OPC differentiation and myelin formation 183. It is therefore interesting that we see that this gene 

shows important DNA methylation modulation throughout OLG differentiation and is differentially 

methylated in disease. Interestingly, a significant disease and differentiation associated 

methylation site mapping to the OPC associated gene FERMT1 also showed opposing 

directions of DNA methylation in disease and differentiation (Figure 5.6). In FTLD, a methylation 

site within the body of this gene was hypomethylated, whilst the same methylation site was 

https://paperpile.com/c/HSDZKE/RcGIN
https://paperpile.com/c/HSDZKE/WpmjV
https://paperpile.com/c/HSDZKE/QwC5i
https://paperpile.com/c/HSDZKE/Ot0O3
https://paperpile.com/c/HSDZKE/g6pmj
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hypermethylated in Stage 2 of OLG differentiation in our iPSC model. This is of relevance due to 

the role of this gene having been found to interact with ꞵ-catenin, and provide activation of ꞵ-

catenin transcriptional activity and the Wnt/ꞵ-catenin signalling pathway 308. In FTLD, we found 

that FERMT1 showed an increase in expression (Chapter 3). These findings potentially 

implicate DNA methylation changes as being important in regulating such pathways during OPC 

to OLG differentiation, which could be being disrupted in neurodegeneration.  

 

Other genes showing highly significant DNA methylation changes throughout differentiation 

were MOG and MBP, that are key markers of mature OLGs and myelin production 318. With 

methylation sites mapping to these genes, we showed changes both in neurodegeneration and 

in differentiation, supporting again a potential role for DNA methylation changes affecting 

proliferation and/or differentiation of OPCs in neurodegeneration.  

 

To gain insight into the downstream consequences of DNA methylation patterns, we also 

investigated those genes from our OLG and OPC gene lists that showed strong and significant 

correlation with gene expression in control tissue. Although we had investigated changes in 

gene expression of genes which we identified as differentially methylated in previous chapters, 

we aimed here to investigate more direct consequences of DNA methylation on gene 

expression in control, to highlight how changes in disease may be functionally relevant, and 

when the relationship between DNA methylation and gene expression may be broken. Multiple 

genes showed significant correlations between DNA methylation and gene expression. 

Interestingly, we saw that many of the methylation sites associated with gene expression were 

not located within or near the transcription start site, but rather within the body of the gene or the 

3’UTR. Throughout our investigation into disease-associated differentially methylated sites, 

many have not been within the transcription start sites. Whilst research into the role of DNA 

https://paperpile.com/c/HSDZKE/sG9Xq
https://paperpile.com/c/HSDZKE/hZ7OK
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methylation previously focused mostly on promoter region DNA methylation, this highlights the 

need to investigate changes across other regions.  

 

Methylation sites within the gene GALR1 were found to be associated with gene expression in 

control tissue and differentially methylated in disease, with the gene also showing aberrant gene 

expression in AD. Other genes which also contained sites showing both differential methylation 

in disease, correlation with gene expression in control data, and aberrant gene expression in 

disease included COL9A1, TTYH2, HHIP, ST18 and RFFL. We also saw that, in healthy tissue, 

several genes contained multiple methylation sites associated where DNA methylation was 

associated with gene expression that we had not identified as being aberrantly expressed in 

disease, even though we had observed differential methylation across disease. This highlights 

the need for more cell-type specific investigations into DNA methylation changes, as any 

changes in gene expression in disease may have been diluted by noise from other cell types. It 

is also true that gene expression may be under the influence of other factors aside from DNA 

methylation, both in health and/or disease.  

 

There are limitations to consider with the approaches we have used in this chapter. To 

investigate DNA methylation changes during OLG differentiation, we have utilised an iPSC 

derived model of OLGs, kindly provided through Dr James Evans and Prof Sonia Gandhi, 

Francis Crick Institute. Although the use of iPSC cells has been revolutionary in the study of 

neurodegeneration (and other fields), there are of course multiple caveats to their applicability to 

disease processes. iPSCs in isolation may not fully capture the complex interactions of 

multicellular environments present in diseases. This is particularly relevant to OLGs, whose role 

it is to wrap around neurons, and, without the presence of these neurons, the OLGs may not 

fully differentiate into myelinating OLGs. Furthermore, and of high relevance to the study of DNA 

methylation using iPSCs, although iPSCs are reprogrammed prior to differentiation, they may 
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retain epigenetic marks from the original cells, thus potentially altering the effects we can 

measure.  

 

There were also caveats with our attempts to investigate gene expression changes associated 

with DNA methylation. In our first approach, simply investigating which DNA methylation sites 

showed significant correlation between gene expression and DNA methylation levels, we 

utilized a large (for DNA methylation datasets) control dataset. An important consideration here 

is that, although samples will be derived from the same patient, tissue heterogeneity might be a 

significant confounding factor. Brain tissue is composed of multiple cell types, and proportions of 

these cell types will vary between tissue samples obtained. Such differences, even intra donor, 

could mean that correlations between gene expression and DNA methylation may be disguised 

by noise. Indeed, we did see that, even when correlations were statistically significant, effect 

sizes (i.e. correlation coefficients) were relatively small in magnitude. As is the case with all of 

the DNA methylation datasets, with the analyses described in this thesis, sample size is a 

limitation, meaning that statistical power to infer subtle changes in DNA methylation and gene 

expression is limited, even though we have chosen the largest of our control datasets to 

analyse.  

 

Further work is needed to complement the investigation of the consequences of disease-

associated DNA methylation changes. In this analysis, we grouped together iPSC cells showing 

the AT53 mutation and the control lines (described Methods, Section 5.2). We saw, using 

singular value composition analysis, that there was no separation between these two groups, 

and we therefore took this approach to increase the power of detection of differentially 

methylated sites with a larger sample size. However, expanding the study to investigate these 

data to investigate if there are any, albeit potentially subtle, differences between DNA 

methylation changes throughout differentiation between the two conditions would be of interest.   
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It would also be interesting to explore the concept of DNA methylation leading to splicing 

changes throughout differentiation. In a mouse model investigating effects of ablation of Dnmt1 

on OPC differentiation, Moyon et al. found that dysregulation of DNA methylation during 

differentiation led to widespread changes in splicing events, caused by aberrant exon-skipping 

and intron retention124. We noted that several methylation sites undergoing changes during the 

two stages of differentiation investigated in IPSC derived cells were not located within the 

promoter region. This could be, in part, down to the alternative role for DNA methylation in the 

control of splicing throughout OPC differentiation, and would be worthy of follow up.  

 

In work described in this chapter, we have attempted to investigate consequences of changes in 

DNA methylation in neurodegeneration that we have identified in previous chapters. We found 

that several genes containing differentially methylated sites in disease also underwent changes 

in DNA methylation in OLG lineage progression, highlighting a role for aberrant DNA 

methylation in disease leading to dysfunction of OPC differentiation and underpinning the need 

for further investigation into the role of DNA methylation changes affecting OPC differentiation in 

disease (discussed in Chapter 1 Section 1.6.1). We have also investigated a more direct 

causal relationship between gene expression and DNA methylation in genes which we have 

identified as being differentially methylated in previous chapters, adding strength to associations 

between aberrant DNA methylation and gene expression in disease. 

https://paperpile.com/c/HSDZKE/3gB81
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Chapter 6 - Genetic and epigenetic insights into the 

role of MOBP across neurodegenerative diseases  

 

6.1 Introduction  
 
 
MOBP, the gene encoding for myelin oligodendrocyte basic protein, is located on chromosome 

3p22.1 (GRCh37 Chromosome 3: 39,508,689-39,570,970). This gene has several exons, and 

exhibits complex patterns of alternative splicing to produce distinct transcripts (Figure 6.1), 

some of which are predicted to undergo nonsense mediated decay (NMD) or lack open reading 

frames (ORF). There are three major protein isoforms of MOBP (RefSeq: isoform a 

[NP_001265251], isoform b [NP_001265252] and isoform c [NP_891980]), the most highly 

expressed of these in the brain is isoform c 129.  

 

Although the exact function of MOBP is still unknown, it is the third most abundant myelin 

protein in the CNS 319, it is a myelin structural protein thought to contribute to stabilisation of 

myelin 319,320, and also to be involved in the morphological differentiation of OLGs 130. It has 

been found that, during OLG differentiation in mice, Mobp mRNA was detected much earlier 

than MOBP protein, possibly indicating a form of translational repression 130. Schäfer et al. 

investigated the role of MOBP through siRNA mediated knockdown of MOBP transcripts in 

primary oligodendrocytes, and observed a significant decrease in the cell surface area of MBP-

positive oligodendrocytes compared to control siRNA-treated cells. Schäfer et al. further 

https://www.ncbi.nlm.nih.gov/protein/NP_001265251
https://www.ncbi.nlm.nih.gov/protein/NP_001265252
https://www.ncbi.nlm.nih.gov/protein/NP_891980
https://paperpile.com/c/HSDZKE/bxCya
https://paperpile.com/c/HSDZKE/UdGYA
https://paperpile.com/c/HSDZKE/UdGYA+3tCKZ
https://paperpile.com/c/HSDZKE/R33ln
https://paperpile.com/c/HSDZKE/R33ln
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investigated effects of MOBP knockdown, and found that overexpression of MOBP enhances 

the formation of myelin-like membranes, while MOBP knockdown significantly reduces their 

production by oligodendrocytes. Finally, Schäfer et al. investigated effects of MOBP 

overexpression on OLG processes - the long thin projections extending from the cell body which 

wrap around axons to form the myelin sheath 130. Using Oli-neu cells, a simplified model for 

analyzing oligodendroglial morphology, the authors found MOBP overexpression led to a 3-fold 

increase in process length and a significant enhancement in process number and width.  

 

Figure 6.1 Transcript structure of human MOBP  

 

Rows represent unique MOBP transcripts described in Ensembl (MOBP Ensembl). Transcripts are color-coded 

based on their type. The exonic regions are shown as filled bars, coloured according to the transcript type. Introns are 

represented as connecting lines between the exonic ranges.  

 

 

 

 

https://paperpile.com/c/HSDZKE/R33ln
https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000168314;r=3:39467198-39529479
https://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000168314;r=3:39467198-39529479
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Genetic variation in the MOBP gene has been linked to multiple neurodegenerative diseases 

(Table 6.1), marking the relevance of the gene. SNPs in MOBP have been associated with 

disease risk, including PSP 76–79, corticobasal degeneration (CBD) 80, Alzheimer’s Disease (AD) 

in apolipoprotein E-ε4 allele (APOE-ε4) carriers 81,  frontotemporal lobar degeneration (FTLD)321 

and amyotrophic lateral sclerosis (ALS)82, as well with disease duration and more severe white 

matter degeneration in behavioural variant of frontotemporal dementia (bvFTD)84. The SNP 

rs1768208 in particular is an intronic variant in MOBP (NC_000003.11:g.39523003T>C) that, 

through GWAS, was found to be associated with the risk of PSP18,22 and CBD19 , and has also 

been reported to be associated with white matter degradation and increased rates of decline in 

executive function in bvFTD149. The functional repercussions of such associations remain 

unclear. However, in human brain tissue, the risk allele T is also associated with increased 

expression of MOBP in PSP 22,150.  

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/HSDZKE/bYnIY+SsjFf+EZ06W+d5iZL
https://paperpile.com/c/HSDZKE/KDmc5
https://paperpile.com/c/HSDZKE/nAb83
https://paperpile.com/c/HSDZKE/UqPSq
https://paperpile.com/c/HSDZKE/FF7wk
https://paperpile.com/c/HSDZKE/X3I2a
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Table 6.1 Non-exhaustive summary of genetic disease-associated alterations in MOBP  

FTD: Frontotemporal dementia, bvFTD: behavioural variant frontotemporal dementia, PSP: progressive Supranuclear 

Palsy, ALS: amyotrophic lateral sclerosis, CBD: corticobasal degeneration, AD: Alzheimer’s Disease, SNP; single-

nucleotide polymorphism.  

 

Additionally, through investigations into DNA methylation patterns in MSA, Bettencourt et al. 

showed that in cerebellar white matter tissue, the promoter region of MOBP is the most 

differentially methylated region in MSA compared to controls 118. CpGs mapping to this region 

were also differentially methylated in other brain regions, such as frontal and occipital white 

matter. Notably, as DNA methylation changes in MOBP were found even in brain regions very 

mildly affected by MSA pathology (e.g. occipital lobe) indicates that these may occur early in the 

disease and contribute to pathogenesis. In a subsequent study investigating downstream effects 

of altered DNA methylation at MOBP, Bettencourt et al. found that methylation status of MOBP 

in MSA is inversely correlated with MOBP expression levels (Figure 6.2A), indicating that the 

observed downregulation of this gene is likely driven by the hypermethylation of the promoter 

Disease Risk SNP (s) Consequence Reference (s)  

FTD cohort 
(heterogenous)  

rs1768208 - Disease risk  
- Reduced white matter integrity in 

midbrain  

321 

bvFTD  rs1768208 - Shorted median disease duration 
- Increased white matter 

neurodegeneration  

84 

PSP  rs1768208/multiple  - Disease risk  
- Increased MOBP expression 
- Increased tau threads 

77 
79,85 
79,85 
76–79 
76–79 

ALS  rs616147 
rs631312 

- Disease 82,322 
82,322 
 

CBD  rs1768208 - Disease risk  80 

AD rs538867 - Cognitive decline  323 

https://paperpile.com/c/HSDZKE/BlGsC
https://paperpile.com/c/HSDZKE/UqPSq
https://paperpile.com/c/HSDZKE/X3I2a
https://paperpile.com/c/HSDZKE/bYnIY
https://paperpile.com/c/HSDZKE/M1UgN+d5iZL
https://paperpile.com/c/HSDZKE/M1UgN+d5iZL
https://paperpile.com/c/HSDZKE/bYnIY+SsjFf+EZ06W+d5iZL
https://paperpile.com/c/HSDZKE/bYnIY+SsjFf+EZ06W+d5iZL
https://www.ebi.ac.uk/gwas/variants/rs616147
https://www.ebi.ac.uk/gwas/variants/rs631312
https://paperpile.com/c/HSDZKE/FF7wk+Wf4cy
https://paperpile.com/c/HSDZKE/FF7wk+Wf4cy
https://paperpile.com/c/HSDZKE/KDmc5
https://www.ebi.ac.uk/gwas/variants/rs538867
https://paperpile.com/c/HSDZKE/MAtGK
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region of this gene 129. MOBP expression was also found to be decreased in OLGs extracted 

(through laser capture microdissection) from cerebellar white matter in MSA compared to 

healthy controls223.  

 

Protein expression of the three main isoforms of MOBP were also investigated in MSA, as well 

as in PSP, PD and Huntington’s disease (HD). In MSA, it was found that there were no changes 

in any of the three isoforms, and no alteration in the ratio between the isoforms, compared to 

controls. However, it was notable that in PSP, there was both an increase in expression of the 

three isoforms (Figure 6.2 B,C), and an altered isoform ratio, with there being a increased ratio 

between levels of 20.8–23.3 kDa (isoforms b and a) over 9.5 kDa (isoform c) (Figure 6.2 E). 

Localisation of MOBP was also investigated In the cerebellar white matter in MSA and controls. 

In healthy controls, MOBP was detected in the myelin sheaths, while the cytoplasm of 

oligodendrocytes was immunonegative. In contrast, in MSA patients, GCIs (a hallmark of MSA 

pathology) showed strong immunopositivity for MOBP (Figure 6.2 B). Finally, protein–protein 

interactions of ɑ-synuclein (as the pathological aggregating protein in MSA) and MOBP were 

investigated. Bettencourt et al. demonstrated that MOBP interacts with α-synuclein within GCIs 

in MSA cerebellar tissue.  

 

Changes in MOBP protein expression and localization have also been implicated in other 

neurodegenerative diseases aside from MSA. Immunohistochemical analysis with anti-MOBP 

antibodies suggest that MOBP is sequestered into the core of Lewy bodies in PD and DLB 324, 

however, these findings were not replicated in subsequent studies, and should therefore be 

interpreted with caution.  

 

Given the involvement of MOBP in common and rare neurodegenerative diseases, 

understanding shared mechanisms involving this gene in disease processes could give crucial 

https://paperpile.com/c/HSDZKE/bxCya
https://paperpile.com/c/HSDZKE/cJqTi
https://paperpile.com/c/HSDZKE/c4dy6
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insight into common pathways that lead to neurodegeneration and provide targets for 

therapeutic intervention in a broader range of diseases. The aim of this work was to elucidate in 

as much detail as possible how this gene is dysregulated across several neurodegenerative 

diseases through investigations of genetic, epigenetic and transcriptomic data.  
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Figure 6.2: MOBP DNA Methylation, RNA Expression, and Immunohistochemistry key 
findings in MSA and Control Groups   
 

A) Correlations of top differentially methylated methylation sites mapping to MOBP and gene expression in cerebellar 

white matter in MSA. B) Immunoreactivity of MOBP in healthy controls (N = 5) and MSA patients (N = 5): In controls, 

MOBP immunolabeling was restricted to myelin sheaths (asterisk), with no staining in the oligodendroglial cytoplasm 

(white arrows). In MSA patients, glial cytoplasmic inclusions (GCIs) showed strong MOBP immunopositivity (white 

arrowheads). C) Expression of 23.3 kDa (isoforms b and a)  and D) 9.5 kDa (isoform c) bands, in CTRL, MSA, PD, 

PSP and HD. E) Analysis of the ratio between levels of 20.8–23.3 kDa (isoforms b and a) over 9.5 kDa (isoform c). 

MOBP; myelin-associated oligodendrocyte protein. MSA: multiple system atrophy, PSP:progressive supranuclear 

palsy, PD: Parkinson’s Disease, HD: Huntington’s Disease, CTRL: control. Adapted from Bettencourt et al129 

https://paperpile.com/c/HSDZKE/bxCya


223 

6.2 Methods  
 

6.2.1 Colocalization Analysis  

6.2.1.i Datasets Used  
 

To investigate the MOBP locus across neurodegenerative diseases, we carried out 

colocalization analysis. We first did this by using available GWAS summary statistics from 

multiple studies, as summarised/outlined in Table 6.2. GWAS summary statistics were kindly 

passed to us by Dr Jack Humphrey (Icahn School of Medicine at Mount Sinai), who had 

collected and processed the data.  

 

Table 6.2. Description of the disease GWAS used to investigate genetic associations at MOBP 
across neurodegenerative diseases in this Chapter. 

Disease  Sample Size Reference  

PSP  2,779 cases (2,595 neuropathologically-confirmed), 5,584 controls 79 

FTD  4,685 cases, 15,308 controls  325 

ALS  29,612 cases, 122,656 controls 326 

LBD  2,981 cases, 4,391 controls 327 

MSA  888 cases, 7,128 controls 21 

AD 111,326 clinically diagnosed/‘proxy’ cases, 677,663 controls 11 

CJD  4,110 cases, 13,569 controls  328 

PD  37,700 cases, 18,600 proxy cases, 1,400,000 controls 329 
PSP: progressive supranuclear palsy, FTD: frontotemporal dementia, ALS: amyotrophic lateral sclerosis, LBD: Lewy 
body dementia, MSA: multiple system atrophy, AD: Alzheimer’s disease, CJD: Creutzfeldt–Jakob disease, PD: 
Parkinson’s disease. 
  
Summary statistics from methylation quantitative trait loci (mQTL) analysis were downloaded 

from https://mostafavilab.stat.ubc.ca/xqtl/ (N = 534). As described by Ng et al. 330, we use a 

https://paperpile.com/c/HSDZKE/d5iZL
https://paperpile.com/c/HSDZKE/AWzxY
https://paperpile.com/c/HSDZKE/8UBVn
https://paperpile.com/c/HSDZKE/57rXQ
https://paperpile.com/c/HSDZKE/rjeEE
https://paperpile.com/c/HSDZKE/xCrP7
https://paperpile.com/c/HSDZKE/Klf6R
https://paperpile.com/c/HSDZKE/n2lhk
https://mostafavilab.stat.ubc.ca/xqtl/
https://paperpile.com/c/HSDZKE/59WjP
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significance value of p < 5x10−9 for SNP-CpG pairs, given the number of pairings between 

SNPs and CpGs (measured across 420,103 CpG sites). OLG specific expression quantitative 

trait loci (eQTL) summary statistics were made available by Bryois et al. 331 and downloaded 

from https://zenodo.org/records/7276971. For initial analyses, we used a region comprised 

between 1MB upstream and downstream of the coordinates of MOBP (GRCh37 Chromosome 

3: 39,508,689-39,570,970) to investigate association between disease QTLs, mQTLs and 

eQTLs.  

 
6.2.1.ii Computational colocalization analysis and visualisation  
 

We utilised the R package COLOC 332. COLOC assesses whether two traits (e.g. mQTL or 

eQTL and a disease GWAS signal) share a common causal genetic variant within a specific 

genomic region using summary statistics. COLOC uses a Bayesian approach to estimate 

posterior probabilities of five hypothesis:  

● H0 - No association with either trait  

● H1 - Association with trait 1 only  

● H2 - Association with trait 2 only  

● H3 - Association with both traits, but under different causal variants  

● H4 - Association with both traits, under the same causal variant - i.e. colocalization  

Inputs required to COLOC are summary statistics including Effect sizes (β), standard errors 

(SE) and Minor allele frequencies (MAF). For consistency across analyses, we chose to use the 

MAFs from the most recent GWAS included in our analysis, e.g. the PSP GWAS published by 

Farrell et al. 79. Also required as an input are prior probabilities for trait 1, trait 2 and 

colocalization. Prior probabilities represent assumptions about the likelihoods of certain 

hypotheses, p1 and p2 being the prior probabilities that a SNP is associated with traits 1 or 2 

respectively, and p12 being the prior probability that a SNP is associated with both traits. For 

https://paperpile.com/c/HSDZKE/ehZMK
https://zenodo.org/records/7276971
https://paperpile.com/c/HSDZKE/BW20X
https://paperpile.com/c/HSDZKE/d5iZL
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COLOC, small prior probabilities are considered due to a small fraction of SNPs expected to be 

causal for any given trait (p1 and p2). The default values of prior probabilities for p1, p2 and p12 

are p1=1×10−4, p2 = 1×10−4 and p12 = 1×10−6. However, these can be adjusted based on the 

analysis being undertaken. As there was prior evidence to suggest a strong genetic association 

between the MOBP locus and diseases (as described above), we increased the size of these 

prior probabilities in order to reflect existing knowledge. The prior probabilities we considered 

after such relaxation were p1 and p2 = 1 x10-3, and p12 = 1x10-5. Once prior probabilities have 

been decided upon, COLOC utilises Approximate Bayes Factor (ABF) computation to evaluate 

the evidence for association, where ABF for each SNP is defined as  

𝐴𝐵𝐹 =  √1 −  𝑟  × 𝑒𝑥𝑝 ൭
𝑍ଶ

2  ×  𝑟൱ 

Where 𝑍 =  ఉ෡

√௏
. r  is the ratio of the variance of the prior and total variance (𝑟 =  𝑊/(𝑉 +  𝑊)). 

W as the prior variance of the effect size reflects prior beliefs about the expected size 

distribution of the data, and V is the observed variance derived from the data. This ABF formula 

is used to calculate evidence for each SNP, taking into account both prior expectations and 

observations within the data. ABFs are then combined to calculate likelihoods for the data under 

each hypothesis;  

● H0: no association with either trait - P (Data ∣ H0) = 1 

● H1: Association with trait 1 only - P (Data ∣ H1) = ∑௜ 𝐴𝐵𝐹ଵ௜ (The sum of all the ABFs 

across all SNPs for trait 1)  

● H2: Association with trait 2 only - P (Data ∣ H2) = ∑௜ 𝐴𝐵𝐹ଶ௜ (The sum of all the ABFs 

across all SNPs for trait 2)  
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● H3: Both traits are associated, but with distinct causal variants  -  P (Data ∣ H3) 

= ∑௜ 𝐴𝐵𝐹ଵ௜  × 𝐴𝐵𝐹ଶ௝ (The joint likelihood across all SNP pairs (e.g i and j), but 

assuming different causal variants for each trait)  

● H4: Both traits are associated with the same causal variant -  P (Data ∣ H4) = 

∑௜ 𝐴𝐵𝐹ଵ௜  × 𝐴𝐵𝐹ଶ௜  (Assuming SNP i is causal for both traits, therefore products of 

ABFs for traits 1-N are summed across all SNPs (N).  

Prior probabilities are then incorporated as:  
 

P (Hk∣ Data) = P (Data ∣ Hk ) * P (Hk)  

Where, P (Hk) are defined as P (H0)=1−(p1+p2−p12),  P( H1)=p1, P (H1) = p1, ,  P (H2)=p2, P 

(H3)=p1*p2 and P (H4)=p12.  

 

Final posterior probabilities are then calculated by normalising these values to each other so 

that the posterior probabilities sum to 1 across all 5 hypotheses. 

 
Colocalisation results were plotted using the package locuscompare 333. For transcript plotting, 

we used the package ggtranscript 334.  

 
6.2.2 Genotyping of MOBP rs1768208 
 
  
At the time of this analysis, several SNPs within MOBP had been shown to have associations 

with neurodegenerative diseases. rs1768208 was described by several studies to be the 

potential lead SNP (Table 5.1), we therefore decided to investigate this SNP. Although more 

recent findings have indicated that this may not be the lead SNP 79, rs1768208 is known to be in 

very high LD with SNPs in the surrounding region, meaning that even if it is not the causal 

https://paperpile.com/c/HSDZKE/mCcdE
https://paperpile.com/c/HSDZKE/b4pYm
https://paperpile.com/c/HSDZKE/d5iZL
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variant, it can still act as a reliable proxy for investigating the effect of genetic variation on DNA 

methylation within this region. rs1768208 is an intronic variant at Chromosome 3:39,508,968 

(GRCh37 ).  

 

The region of interest was amplified by polymerase chain reaction (PCR) using flanking primers 

(forward primer 5’-TCC TCT CAA GCC TCA AAC TCT C’3’; reverse primer 5’-GGC AAC TCA 

GCC CAG AAA TTT G-3’), which were designed using Primer3 software153. A PCR mix was 

made of 7.5μl of Promega GoTaq® Green Master Mix, 2.25μl of forward primer (3 μM), 2.25μl 

of reverse primer (3 μM), 2μl template DNA (~100 ng) and 2μl dH2O per sample. The following 

PCR conditions were used: 

94°C for 5 minutes 

10 cycles of:                                                        

-    95°C for 30 seconds 

-    72°C for 60 seconds 

25 cycles of: 

-    95°C for 30 seconds 

-    62°C for 30 seconds 

-    72°C for 30 seconds 

72°C for 5 minutes 

Hold at 4°C 

  

PCR amplification was verified in all cases by visualisation in agarose gel electrophoresis. PCR 

products were then purified using a “home-made” enzyme mix (1ml of “ExoSap-IT” was made of 

50 μl of exonuclease I [Thermo Fisher Scientific, USA], 200 μl of Fast-AP alkaline phosphatase 

[Thermo Fisher Scientific, USA] and 750 μl of autoclaved dH2O) and the following conditions: 

37 °C for 30 minutes 
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80 °C for 15 minutes 

hold at 4 °C. 

Sanger sequencing using the Forward primer (5’-TCC TCT CAA GCC TCA AAC TCT C’3’) was 

performed by Source Biosciences. The sequence traces were visualised with Benchling 

([Biology Software],2022)), and the rs1768208 genotypes determined as exemplified in Figure 

6.3.  

 

We genotyped DNA from MSA (N = 121), PD (N = 15) and PSP samples (N =15) as well as 

control samples (N = 89).  

 

Figure 6.3. Possible genotypes at rs1769208 from Sanger sequencing results visualised 
with Benchling Software 

A) Homozygous (CC). B) Homozygous (TT). C) Heterozygous (CT).   

 

6.2.2 DNA methylation cohorts used for the genotyping of MOBP rs1768208 
 
To investigate the effect of SNP rs1768208 on DNA methylation patterns, we used DNA 

methylation data previously generated by our group corresponding to overlapping samples that 
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were genotyped for this SNP (Table 6.3). Dr Megha Murthy carried out DNA methylation 

profiling on frontal lobe white matter from CTRL, MSA, PD, and PSP samples 116. Dr Murthy 

also carried out loading, quality control and analysis of data, passing us the adjusted M-values 

which we then used to investigate effects of this SNP presence/absence of T alleles.  

 

Table 6.3 Characteristics of the MSA, PD, and PSP frontal lobe white matter cohort  
Disease Sample Number Mean age (SD) Sex 

CTRL 17 72.35 ± 4.47 8M/9F 

MSA 17 67.71 ± 6.47 9M/8M  

PD 17 68.06 ± 3.67 8M/9F 

PSP 17 65.35 ± 3.75 9M/8F  

 

Characteristics of samples used by Dr Megha Murthy to investigate DNA methylation changes 

in frontal lobe white matter tissue of CTRL, MSA, PD and PSP samples. CTRL controls, MSA: 

multiple system atrophy, PD: Parkinson’s disease, PSP: progressive supranuclear palsy, SD: 

standard deviation, M; males, F; females.  

 

  

https://paperpile.com/c/HSDZKE/ETdlq
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6.3 Results  
 

6.3.1 Genetic analyses of MOBP  

 

6.3.1ii  Neurodegenerative diseases GWAS colocalization with the MOBP 
locus  
 
With the aim of gaining a preliminary understanding of genetic associations at MOBP across 

neurodegenerative diseases, we examined the MOBP locus and surrounding region, including 

1MB upstream and downstream from the MOBP locus (as described in methods) using 

summary statistics from GWAS studies for the following diseases: AD, PSP, FTLD, ALS, LBD, 

PD, MSA and CJD (Table 6.1). Manhattan plots were utilized to assess the distribution and 

significance of SNPs across this region for each disease, with both genome-wide significance (P 

< 5x10-8) and suggested significance (P < 1x10-5) being taken into account (Figure 6.4.A). For 

ALS and PSP, there was a clear peak, with multiple SNPs passing both genome-wide and 

suggestive significance (Figure 6.4 A). For FTLD, there were several SNPs that passed the 

suggested significance threshold, but none that were genome-wide significant, possibly 

contributed to by small sample sizes and heterogeneous cohorts. No other disease GWAS 

showed SNPs passing significance threshold in this locus. Next we aimed to investigate genetic 

colocalization of associations within the MOBP region across distinct neurodegenerative 

diseases. Colocalization analysis is an approach used to determine whether two diseases share 

the same risk causing genetic variant, in this case within the MOBP locus. We carried out a 

simple correlation analysis using summary statistics significance values for SNPs within the 

MOBP locus and surrounding region (Figure 6.4). Using this approach, we aimed to identify 

which or if any of the diseases showed a shared genetic signature within this region. The result 
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of a correlation gives an R2 value which was used to assess how correlated p-values are. If two 

GWAS show strong correlation, it is likely that there is/are shared risk causing variant/s. We 

found that ALS, FTLD and PSP all showed strong correlations (R2 ranging between 0.7 and 0.9) 

pairwise (Figure 6.4 B). There was moderate correlation between CJD and ALS, FTLD and 

PSP (ranging between 0.3 and 0.38)  (Figure 6.4 B) indicating that there may be some shared 

genetic signature, but which appears to be weaker than between ALS, FTLD and PSP. There 

was very little correlation between other diseases (Figure 6.4 B).  
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Figure 6.4 Correlation heatmap of GWAS p-values across neurodegenerative diseases. 

 
 
A) Manhattan plots of GWAS results for MOBP (+/- 1MB) locus across neurodegenerative diseases: ALS, PSP, CJD, PD, MSA, 

LBD, AD, and FTLD. Each plot shows the -log10(P-value) of variants within the MOBP locus on chromosome 3. Dashed pink line 

represents the genome-wide significance threshold (p > 5 × 10⁻⁸), dashed orange line indicates the suggestive significance 

threshold (p < 1 × 10⁻⁵). SNPs are coloured based on significance: pink for genome-wide significant, orange for suggestive 

significant, and grey for non-significant. B) Heatmap visualising the Pearson correlation coefficients (r) between -log10-transformed 

GWAS p-values across neurodegenerative diseases at MOBP. Each cell represents the correlation between two diseases based on 

their GWAS summary statistics at this locus. ALS; amyotrophic lateral sclerosis, PSP; progressive supranuclear palsy, CJD;   

Creutzfeldt-Jakob disease, PD; Parkinson’s disease, MSA; multiple system atrophy, LBD; Lewy body dementia, AD; Alzheimer’s 

disease, and FTLD; frontotemporal lobar degeneration, GWAS; Genome-wide association study 

 

Given that these three diseases showed significant genetic associations at this locus, we 

prioritised investigation of PSP, ALS and FTLD from this point on. We looked at which SNPs 

were the ‘top’ SNPs (i.e. most significant) in each of these three disease GWAS (Table 6.4). 
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Notably, the top four SNPs from the ALS and PSP GWAS were the same (albeit in a slightly 

different ranking), strengthening the finding of a shared genetic contribution to these diseases. 

While the top SNPs associated with PSP and ALS also show moderate association with FTD, 

their rankings are notably lower (e.g., rs631312 ranked 168 in FTD vs. 1 in PSP and ALS). The 

association of the top SNP in the FTLD GWAS at MOBP, rs2018725, which ranked lower in 

PSP and ALS, although in the PSP dataset, the association of this SNP was still genome-wide 

significant. This could indicate the possibility of a different causal variant driving the association 

in FTLD, but within a similar region.  

 

 

Table 6.4 Top SNPs in PSP, ALS and FTLD GWAS data at MOBP  

SNP PSP p-value79 PSP rank 
ALS p-value 
82 ALS rank 

FTLD p-
value325 FTLD rank 

rs631312 4.60E-20 1 5.24E-11 1 0.0001613 168 

rs1768208 1.10E-19 2 1.80E-10 3 0.0005135 173 

rs616147 1.13E-19 3 1.32E-10 2 0.0003654 172 

rs1768190 5.51E-19 4 5.03E-10 4 6.01E-05 65 

rs545397 1.34E-18 5 1.59E-09 7 0.000275 171 

rs1708104 2.11E-18 7 9.06E-10 5 0.0001368 165 

rs2018725 4.83E-15 43 1.62E-07 53 1.12E-06 1 

rs13081054 4.98E-15 44 1.67E-07 61 1.12E-06 1 

rs12495185 5.01E-15 45 1.66E-07 59 1.12E-06 1 

rs11129832 5.03E-15 46 1.66E-07 58 1.12E-06 1 

rs1009966 5.33E-15 48 1.61E-07 52 1.12E-06 1 
For each SNP, the table lists the p-values and ranks across all three datasets. SNPs that appear in the top five of 

multiple datasets are consolidated into a single row. PSP; progressive supranuclear palsy, ALS; amyotrophic lateral 

sclerosis, FTD; frontotemporal dementia, SNP; single nucleotide polymorphism. 

 

https://paperpile.com/c/HSDZKE/d5iZL
https://paperpile.com/c/HSDZKE/FF7wk
https://paperpile.com/c/HSDZKE/AWzxY
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Next, we aimed to investigate in more detail the relationship of the genetics at MOBP between 

FTLD, ALS and PSP, given that we had seen preliminary strong correlation of significant SNPs  

between these diseases. We utilised the package COLOC, which allows for the analysis of 

colocalization between genetic traits by estimating the posterior probability that a single causal 

variant is shared between traits, several probabilities are provided; PP.H0: Probability that 

neither disease is associated with any SNPs at MOBP, PP.H1: Only the first disease is 

associated, PP.H2: Only the second disease is associated. PP.H3: Both diseases are 

associated, but with different causal variants. PP.H4: Both diseases are associated and share 

the same causal variant. We found that between ALS and PSP, there was a very high 

probability (99.99%) that these diseases share the same causal variant at MOBP (Table 6.5). 

Between ALS and FTD, and PSP and FTD, there was a lower probability, 54% and 46%, 

respectively. For the ALS and FTD, and PSP and FTD, there was also a 45% and 53% 

probability, respectively, for PP.H3. Colocalization results for these comparisons are visualised 

in Figure 6.5 A.  

 

Table 6.5. Colocalization analysis between the PSP, ALS and FTLD GWAS at the MOBP locus 
using the package COLOC.  

 PSP-ALS Colocalization ALS-FTLD Colocalization PSP-FTD Colocalization 

PP.H0.abf ~0 % ~0 % ~0 % 

PP.H1.abf ~0 % 1 % 1 % 

PP.H2.abf ~0 % ~0 % ~0 % 

PP.H3.abf ~0 % 45 % 53 % 
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Table displaying results from COLOC between PSP, ALS and FTLD. The probability of the following scenarios are 

displayed for each combination - PP.H0: Probability that neither disease is associated with any SNPs at MOBP, 

PP.H1: Only the first disease is associated, PP.H2: Only the second disease is associated. PP.H3: Both diseases are 

associated, but with different causal variants. PP.H4: Both diseases are associated and share the same causal 

variant.For PP.H1.abf and PP.H2.abf in each column, the ‘first’ disease described refers to the first in each column, 

e.g. for column ‘PSP-ALS Colocalization’, PP.H1.abf refers to the probability that only PSP is associated with genetic 

variation at MOBP.  PSP: Progressive Supranuclear Palsy, ALS: Amyotrophic Lateral Sclerosis, FTLD: 

Frontotemporal Lobar Degeneration, ABF; approximate bayes factor, PP; posterior probability. 

 

To further understand the underlying genetic architecture of the potential shared association, we 

also analysed linkage disequilibrium (LD) of our top SNPs in the three diseases. LD is a 

phenomenon that occurs due to non-random segregation of alleles as a result of close-proximity 

335. LD can be measured through calculating an R2 correlation coefficient between two loci, this 

allows quantification of how well a genotype at one locus predicts the genotype at another locus 

with values close to 1 indicating strong LD. We investigated LD at the top 5 MOBP SNPs within 

the ALS, FTD and PSP GWAS. Interestingly, although the top 5 associated SNPs for PSP and 

ALS had very high LD (R2 between 0.91 and 1), indicating that they are within a haplotype 

block, these top PSP/ALS SNPs had low LD with the top FTLD SNPs (R2 between 0.35 and 

0.37) (Figure 6.5.B). This indicates that FTLD risk variants at the MOBP locus may reside in a 

distinct haplotype block. Visually inspecting the positions within the MOBP region of the top 

SNPs for the three datasets, we show that although the top SNPs within the ALS and PSP 

overlap with the start and gene body of MOBP (Figure 6.5.C), the (suggestively) significant 

FTLD SNPs sit upstream of the coding region gene. Together with the results from COLOC, 

these results support disease-specific causal variants at MOBP for FTD versus ALS/PSP.  

PP.H4.abf ~ 99.99 % 54 % 46 % 

https://paperpile.com/c/HSDZKE/HwAz
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Figure 6.5 Colocalization analysis between the PSP, ALS and FTD GWAS at the MOBP locus 
using the package COLOC 
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(A-C) Pairwise colocalization scatter plots showing the association between GWAS -log10(p-values) for (A) FTD and 

PSP, (B) ALS and PSP, and (C) ALS and FTD. The points represent individual SNPs, coloured based on their linkage 

disequilibrium (R²) with the lead SNP in the region. (D) Manhattan plots displaying the -log10(p-values) for SNPs 

associated with PSP, FTLD, and ALS in the MOBP locus on chromosome 3. The x-axis represents the genomic 

location, while the y-axis shows the strength of the association. Genome-wide and suggestive SNPs  are annotated 

and highlighted in pink and orange respectively. The region displayed is a smaller region around the coding region 

MOBP: 39408689 -39670970, to aid visualisation of location of genetic variants. Below the manhattan plots is a plot 

showing the coding region of MOBP: 39505000 - 39571000. GWAS: genome-wide association study, SNP: single-

nucleotide polymorphism, PSP: progressive supranuclear palsy, FTLD: frontotemporal lobar degeneration, ALS: 

amyotrophic lateral sclerosis, MOBP: myelin-associated oligodendrocyte protein.  

 

6.3.1ii Colocalization between GWAS and eQTLs at the MOBP locus  
 
 

Genetic variants can have multiple phenotypic effects, depending on multiple factors including 

the type of mutation and location within a gene. Effects include but are not limited to: protein 

sequence changes, splicing variation, histone modifications, chromatin accessibility, and, of 

particular interest to us, DNA methylation and gene expression. Expression QTL data enables 

us to investigate genomic loci that are directly associated with expression of a certain gene. 

Using publicly available eQTL data, we investigated colocalisation between OLG specific eQTLs 

331 (derived from single-nuclei RNA sequencing data) and disease SNPs at MOBP, to see 

whether our disease associated SNPs across PSP, FTLD and ALS were also found to modulate 

expression of the gene. Again, we used the package COLOC to estimate posterior probabilities 

for the following scenarios for each of these three diseases; PP.H0.abf: probability that neither 

disease or gene expression trait is associated with any SNPs at MOBP, PP.H1.abf: only the 

disease is associated with SNPs at MOBP, PP.H2: only gene expression of MOBP is 

associated with SNPs within MOBP. PP.H3.abf: both disease and gene expression of MOBP 

https://paperpile.com/c/HSDZKE/ehZMK
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are associated with genetic variation, but with different causal variants, and PP.H4.abf: both the 

disease and MOBP expression are associated with genetic variation in the region, and they 

share the same causal variant. For PSP, ALS and FTLD respectively, there was a 57%, 50% 

and 72% probability that the disease associated SNPs and eQTLs at MOBP are associated with 

the same causal variant (Table 6.6, Figure 6.6). It was interesting that the dataset that had the 

highest probability that the causal variant was shared was the FTLD data, we previously saw 

that the most significant FTLD SNPs sit upstream of the MOBP transcription start site (therefore 

potentially within promoter/enhancer regions), whilst the top ALS/PSP SNPs lie (in general), 

more across the gene body.  

 

Figure 6.6 Visualisation of colocalisation of eQTLs at MOBP and PSP, FTLD and ALS 
SNPs at MOBP. 

 
OLG eQTLs with disease-associated QTLs for A) PSP, B) FTLD and C) ALS across MOBP D) Manhattan plot 

displaying OLG eQTL significance (−log⁡10(P)) along chromosome 3 (chr3). SNPs are coloured according to their 

LD R2 with the lead SNP.  
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Table 6.6. Colocalisation analysis between the PSP, ALS and FTLD GWAS with OLG eQTL 
data at the MOBP locus using the package COLOC.  

 
Table displaying results from COLOC between PSP, ALS and FTLD QTLs and OLG eQTLs. The probability of the 

following scenarios are displayed for each combination, PP.H0.abf: Probability that neither disease or gene 

expression trait is associated with any SNPs at MOBP, PP.H1.abf: Only the disease (PSP, ALS or FTLD, depending 

on column) is associated with SNPs at MOBP, PP.H2: Only gene expression of MOBP is associated with SNPs 

within MOBP. PP.H3.abf: Both disease (PSP, ALS or FTLD depending on column) and gene expression of MOBP 

are associated with genetic variation, but with different causal variants. PP.H4.abf: Both the disease and MOBP 

expression are associated with genetic variation in the region, and they share the same causal variant. PSP, 

progressive supranuclear palsy; FTLD, frontotemporal lobar degeneration; ALS, amyotrophic lateral sclerosis. 

 

6.3.1.iii Analysis of disease GWAS and mQTLs at the MOBP locus 
 

Next, we used mQTL data 330 to investigate if any of the disease associated SNPs at MOBP 

colocalized with mQTLs. We plotted mQTLs within the region spanning the MOBP locus and 

found that, in general, the most significant mQTLs that were also disease associated SNPs (P < 

5 x 10-9 and P < 5 x 10-8 respectively for mQTLs and disease associated SNPs) lay upstream of 

coding region of the gene (Appendix N). However, these disease associated SNPs were not 

 PSP-eQTL Colocalisation ALS-eQTL Colocalisation FTLD-eQTL Colocalisation 

PP.H0.abf 0.0 % 0.0 % 0.1% 

PP.H1.abf 16.0 % 18.8 % 10.3 % 

PP.H2.abf 0.0 % 0.0 % 0.2 % 

PP.H3.abf 26.7 % 31.4 % 17.3 % 

PP.H4.abf 57.3 % 49.8 % 72.0 % 

https://paperpile.com/c/HSDZKE/59WjP
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the same SNPs as the SNPs of interest that we had identified as being shared between PSP 

and ALS and being the most significantly associated with disease.  

 

Given that we had also identified a highly significant locus of genetic variation that was shared 

between ALS and PSP within the gene body, we therefore decided to investigate this region 

further. We examined mQTLs at the top 6 associated SNPs from the ALS and PSP GWAS. We 

found that these SNPs were also significant (P < 5x10-9) mQTLs for one CpG - cg15069948, 

which we will refer to hence as the ‘top CpG’ (Table 6.7, Figure 6.7.A). We then sought to 

examine the manner of apparent regulation between the SNPs and the top CpG in terms of 

distance. We expected the associated CpG to be in close proximity to the region of genetic 

variation, but found that the apparent effect of genetic variation on methylation here spanned 

several Mb downstream of the SNPs (distances from 10kb to over 35kb). It was interesting to 

note that the CpG that is the significant mQTL for these SNPs lies within a region of the gene at 

the start site for multiple MOBP transcripts (Figure 6.7.B). This observation could implicate the 

presence of an alternative promoter/transcription start site at this region. We also looked at the 

effect of the SNPs at the level of methylation at this CpG. For all of the top 6 SNPs and the top 

CpG, there was an associated decrease in level of methylation (delta betas ranging between -

0.265 and -0.278), indicating that the presence of the disease associated allele leads to a 

decrease in DNA methylation at this region. Interestingly, as previously described in Chapter 1, 

it is known that a decrease in DNA methylation at a promoter region of a gene is often 

associated with an increase in gene expression levels. If the genomic region containing this 

CpG does indeed act as an alternative promoter, we would therefore expect to see an increase 

in MOBP expression with the risk allele in these diseases. Farrell et al. recently reported that the 

risk SNP rs631312 was indeed associated with an increase in expression of MOBP, which is 

one of the top SNPs that is also an mQTL for this top CpG.  
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Figure 6.7 Position of mQTLs and disease significant SNPs at MOBP 
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A) Manhattan plot surrounding MOBP coding region which contains the “top SNPs” associated with ALS and PSP. 

Highlighted CpG-SNP pairs (e.g., rs1762808-cg15069948) are annotated with their identifiers. The bottom panel 

shows the MOBP gene region. CpG pairs are highlighted if the SNP is within our “top SNPs” associated with ALS and 

PSP. B) Schematic of MOBP transcripts with highlighted CpG sites and SNPs of interest. The diagram depicts MOBP 

transcript variants (MOBP-201 to MOBP-213), annotated with CpGs (green circles) and SNPs (dark pink triangles). 

Blocks indicate exons, whilst lines indicate intronic regions. Key SNP-CpG pairs of interest are shown with vertical 

dashed lines aligned to their genomic position. Only the 6 most significant SNPs from the ALS and PSP GWAS are 

included. ALS: amyotrophic lateral sclerosis, PSP: progressive supranuclear palsy, SNP: single-nucleotide 

polymorphism,  

Table 6.7. SNP-CpG Associations in the MOBP Region.  

 
Table summarising key SNP-CpG associations identified in the MOBP region, highlighting their genomic positions, 

alleles, effect sizes, and statistical significance in mQTL and disease-specific analyses (PSP and ALS). SNP; The 

single nucleotide polymorphism identifier. Position: Genomic position of the SNP (GRCh37). A1/A2: Reference allele 

(A1) and alternative allele (A2). CpG: Identifier of the associated CpG site. CpG positions: Genomic position of the 

CpG site (GRCh37). Beta; Effect size of the SNP on CpG methylation levels in the mQTL analysis. P_value; p-value 

for the association between the SNP and CpG in the mQTL analysis. PSP_p_value; p-value for the association of the 

SNP with PSP, ALS_p_value; p-value for the association of the SNP with ALS. 

SNP SNP Position  A1 A2 CpG CpG Position 

Methylation 

mean difference  

CpG P-

value  PSP P-value ALS P-value 

rs1708104 Chr3:39534742 T C cg15069948 Chr3:39544697 -0.265 3.3E-10 2.1E-18 9.1E-10 

rs1768190 Chr3:39509440 T C cg15069948 Chr3:39544697 -0.269 1.8E-10 5.5E-19 5.0E-10 

rs1768208 Chr3:39523003 T C cg15069948 Chr3:39544697 -0.270 1.6E-10 1.1E-19 1.8E-10 

rs545397 Chr3:39530083 T C cg15069948 Chr3:39544697 -0.264 4.3E-10 1.3E-18 1.6E-09 

rs616147 Chr3:39534481 A G cg15069948 Chr3:39544697 -0.273 1.0E-10 1.1E-19 1.3E-10 

rs631312 Chr3:39508968 G A cg15069948 Chr3:39544697 -0.278 4.0E-11 4.6E-20 5.2E-11 
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Table 6.8 Colocalization of cg15069948, cg07405330 and cg25226092 mQTLs with ALS 

QTLs, PSP QTLs and MOBP eQTLs 

 

Table displaying results from COLOC between PSP, ALS and eQTLs and mQTLs of interest. For each combination, 

only PP.H4.abf is shown , the posterior probability that both the disease/expression and DNA methylation are 

associated with genetic variation in the region, and they share the same causal variant. PSP, progressive 

supranuclear palsy; ALS, amyotrophic lateral sclerosis, mQTL; methylation quantitative trait loci, eQTL; expression 

quantitative trait loci, TSS1500; 200-1500bp from transcription start site.  

 

 

To further establish shared causal variants, we performed colocalization analyses between 

mQTLs and PSP and ALS GWAS summary statistics. Remarkably, the same three CpGs 

showed strong colocalization (PP.H4 > 0.75) in both analyses (Table 6.8, Figure 6.8 B,C). 

Among these, cg15069948 exhibited the highest posterior probability (PP.H4 = 0.99) for both 

PSP and ALS. This indicates a high likelihood that the mQTL and disease-associated SNP 

share the same causal variant, suggesting that the same genetic variant drives changes in DNA 

methylation and disease phenotype. Finally, we analysed colocalization between mQTLs and 

eQTLs at MOBP (Table 6.8, Figure 5.8 D). The CpG that showed highest colocalization with 

the eQTL data was cg15069948, for which the PP.H4 was 62% (Table 6.8). Although this is a 

CpG PP.H4.abf ALS PP.H4.abf PSP PP.H4.abf eQTL  Feature  

cg15069948 99% 99% 62% Body  

cg07405330 90% 91% 4.2%  Body  

cg25226092 89% 90% 7.04% TSS1500 
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moderate probability, it could indicate that genetic variation that is associated with disease 

(described above), could be affecting both DNA methylation and expression.  

 

Figure 6.8 Position of CPGs showing high colocalization with PSP and ALS GWAS 
across MOBP 

A) Schematic displaying the positions of CpG sites along the MOBP gene on the x-axis (genomic positions in base 

pairs) (GRCh37). Each CpG is represented by a point, with colours corresponding to their genomic features: 1stExon, 

3'UTR, 5'UTR, Body, TSS1500, and TSS200. Points with a triangle shape represent CpGs with a posterior probability 

PP.H4 > 75% (those CpGs which show strong colocalization with disease-associated SNPs), while circles denote all 

other CpGs in the MOBP gene. B) Colocalization of cg15069948 QTLs with PSP SNPs. C) Colocalization of 
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cg15069948 QTLs with ALS SNPs. D) Colocalization of cg15069948 QTLs with OLG eQTLs. MOBP: myelin 

associated oligodendrocyte protein, QTL: quantitative trait loci, SNP: single-nucleotide polymorphism, PSP: 

progressive supranuclear palsy, ALS: amyotrophic lateral sclerosis.  

 

 

6.3.3 Analysis of rs1768208 in pathologically confirmed MSA, PD and PSP 
cases and controls  
 
To complement the analysis of genetic variation at MOBP and any associated DNA methylation 

variation across neurodegenerative diseases, we undertook genotyping of the SNP rs1768208 

to investigate the frequency of the risk allele T in pathologically confirmed cases and controls  

from the Queen Square Brain Bank for neurological disorders (QSBB), for which we had DNA 

samples and in some cases associated DNA methylation profiles available (SNP selected as 

discussed in Methods, Section 6.2) (CTRL = 89, MSA = 121, PD = 15, PSP = 68). In our 

genotyping analysis of these movement disorders, we found no significant changes in allele 

frequency in MSA or PSP compared to controls (Table 6.9). We did observe a significantly 

different allele frequency in the PD cohort, with the risk “T” allele being associated with a lower 

risk of PD (OR = 0.247, OR p = 0.047) (Table 6.9), however these results should be interpreted 

with caution due the very small sample size. The main purpose of generating these genotyping 

results was to enable us to investigate any effects of genotype on DNA methylation.  
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Figure 6.9. Genotype distribution of rs1768208 in QSBB samples and associated odds 
ratios in GWAS data from several neurodegenerative diseases  

(A) Stacked bar plot showing the genotype distribution (CC, CT, TT) of rs1768208 across sample groups, including 

controls (CTRL), MSA, PD, and PSP QSBB cohorts (CTRL N = 89, MSA N = 121, PD N = 15, PSP N = 68) . (B) 

Forest plot displaying the odds ratios (ORs) and 95% confidence intervals (CIs) for rs1768208 in MOBP from PSP, 

FTLD, ALS, MSA, PD, LBD, AD, and CJD GWAS. The orange dashed line at OR = 1 indicates no effect, with points 

to the right representing increased disease risk associated with the T allele.  ALS; amyotrophic lateral sclerosis, PSP; 

progressive supranuclear palsy, CJD;   Creutzfeldt-Jakob disease, PD; Parkinson’s disease, MSA: multiple system 

atrophy, LBD: Lewy body dementia, AD: Alzheimer’s disease, FTLD: frontotemporal lobar degeneration, GWAS: 

Genome-wide association study, QSBB: Queen Square Brain Bank, OR: Odds Ratio, CI: confidence interval.  

 

 

Table 6.9: Genotypes of SNP rs1768208 from a cohort of MSA, PD, PSP and control 

samples 

Sample Group Total Alleles Frequency C Frequency T OR  OR P-value 

CTRL 178 0.70 0.30 -  -  

MSA 242 0.76 0.24 0.738  0.327 
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PD 30 0.90 0.10 0.247 0.047 

PSP 136 0.72 0.28 1.037 1 

Summary of allele counts, frequencies, and odds ratios (OR) for a genetic variant (rs1768208) across different 

sample groups. Sample Group: Groups analysed, including controls (CTRL) and disease cohorts (FTLD, MSA, PD, 

PSP). Total Alleles: Combined total of "C" and "T" alleles in each group, Frequency C: Proportion of the "C" allele 

within the total alleles. Frequency T: Proportion of the "T" allele within the total alleles, OR: Odds ratio comparing 

allele frequencies between each disease group and controls, OR P-value:Statistical significance of the odds ratio, 

FTLD: frontotemporal lobar degeneration, MSA: multiple system atrophy, PD: Parkinson’s disease, PSP: progressive 

supranuclear palsy, CTRL: control.  

Our group had previously produced genome-wide DNA methylation profiles of frontal lobe white 

matter for a subset of the cases genotyped across these three diseases subsequently 

genotyped, but had not looked in detail at the MOBP region. Therefore, we first investigated 

DNA methylation patterns across MOBP for these three diseases (regardless of genotype). With 

analysis of the data (preprocessing carried out by Dr Megha Murthy) 116, we observed several 

methylation sites differentially methylated between controls and disease. In MSA, 9/28 CpGs 

mapping to MOBP were nominally significantly differentially methylated (p < 0.05), 7 of which 

were in the promoter region of the gene (5’UTR, TSS1500 or TSS200), aligning with previous 

work carried out by Dr Bettencourt (described above in section 6.1), who described increased 

DNA methylation at the promoter region of the gene 118 (Table 6.11). Of the MOBP CpGs, 6/28 

were nominally significantly differentially methylated in PD, again primarily within the promoter 

region. In PSP, only 3 methylation sites showed nominal significant differential methylation at 

MOBP (at the 5’UTR and 1st Exon) (Table 6.11).  

  

https://paperpile.com/c/HSDZKE/ETdlq
https://paperpile.com/c/HSDZKE/BlGsC
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Table 6.11. Differential methylation of methylation sites mapping to MOBP in frontal lobe 

white matter tissue in MSA, PD and PSP  

 MSA vs Control  PD vs Control  PSP vs Control  

CpG Feature Delta M  P Value  Delta M  P Value  Delta M  P Value  

cg23605644 TSS200 0.504 0.023 0.281 0.173 0.417 0.077 

cg27272723 TSS1500 0.171 0.185 0.245 0.048 0.235 0.093 

cg01684805 TSS1500 -0.259 0.040 -0.177 0.135 -0.261 0.054 

cg21827971 TSS1500 0.256 0.010 0.221 0.018 0.114 0.268 

cg22110662 TSS1500 0.339 0.008 0.304 0.011 0.190 0.154 

cg21696316 5'UTR 0.109 0.360 -0.081 0.470 -0.169 0.187 

cg04442806 5'UTR 0.558 0.033 0.521 0.035 0.605 0.031 

cg03054684 5'UTR 0.633 0.033 0.384 0.165 0.553 0.080 

cg14968361 5'UTR 0.811 0.003 0.629 0.014 0.691 0.017 

cg05633900 1stExon 0.485 0.041 0.377 0.091 0.449 0.077 

cg07878407 1stExon 0.522 0.017 0.428 0.038 0.479 0.041 
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CpGs showing significant (P < 0.05) differential methylation in MSA, PD or PSP vs CTRL within MOBP. CTRL: 

Control, MSA: multiple system atrophy, PD: Parkinson’s disease, PSP: progressive supranuclear palsy.  

 

Next, we examined whether any CpGs within MOBP showed distinct patterns in samples with 

distinct rs1768208 genotypes. Given our modest sample size, we divided samples into 

“Positive” and “Negative”, indicating the presence of the disease-associated T allele (i.e. either 

TT or TC genotypes for Positive, and CC for Negative). We found that none of the CpGs 

showed different patterns of DNA methylation when all samples (disease and controls) were 

grouped together (data not shown). There were three methylation sites which showed nominally 

significant differential methylation when stratified by disease and genotype (Table 6.12). One 

methylation site, cg14968361, located in the 5’UTR, showed differential methylation both in PD 

and CTRLs, but with differing direction of effect - in CTRL samples, the presence of the T allele 

led to a decrease in DNA methylation, whilst in PD, an increase in DNA methylation was 

observed. This was one of 3 CpGs to be differentially methylated in MSA, PD and PSP. 

cg23603305, which is located in the promoter region of the gene (TSS1500), showed significant 

decrease in methylation in MSA T-positive cases only, and interestingly, was not one of the 

methylation sites to show differential methylation in any of the disease vs. CTRL analyses 

(Table 6.11). One CpGmethylation site was differentially methylated between genotype groups 

in PSP, cg15069948, was the same CpG identified above as being an mQTL with strong 

association with PSP and ALS, and having a moderate association with eQTLs in MOBP (Table 

6.12). Furthermore, the direction of effect - a decrease in DNA methylation being associated 

with the presence of the SNP T-risk allele, is in accordance with that described above. The 

finding of cg15069948 as linked to PSP through two distinct analyses highlights its biological 

relevance to linked genetic and epigenetic modulation of MOBP.  
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Table 6.12 Differential methylation of methylation sites mapping to MOBP in frontal lobe 

white matter tissue in MSA, PD and PSP stratified by genotype at rs1768208 

 

Significantly differentially methylated methylation sites between carriers of the SNP rs1768208 stratified by genotype. 

Positive indicates individuals homozygous (TT) or heterozygous (CT) for the risk allele T at rs1768208, Negative 

indicates individuals homozygous (CC) at rs1768208. CTRL: Control, MSA: Multiple System Atrophy, PD: 

Parkinson’s Disease, PSP: Progressive Supranuclear Palsy.  

 

  

 CTRL (Positive vs. Negative) MSA Positive vs. Negative) PD Positive vs. Negative) PSP (Positive vs. Negative) 

Name feature Delta M P value Delta M  P Value  Delta M  P Value  Delta M  P Value 

cg14968361 5'UTR -0.4613 0.0488 0.1160 0.5876 0.5987 0.0282 -0.3717 0.0786 

cg15069948 Body -0.2093 0.0698 -0.0153 0.8851 0.1435 0.2794 -0.2942 0.0058 

cg23603305 TSS1500 -0.1627 0.1868 -0.2300 0.0466 0.1468 0.3034 -0.0651 0.5576 
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6.4 Discussion  
 

Here, we have investigated genetic sequence and DNA methylation variation at the MOBP 

locus across neurodegenerative diseases, highlighting both shared and distinct mechanisms. 

Using GWAS summary statistics, we identified significant genetic associations at the MOBP 

locus with ALS, PSP, and FTLD, with ALS and PSP showing particularly strong overlap in top 

SNPs and high colocalization probabilities, suggesting shared causal variants between the two 

diseases. In contrast, FTLD-associated variants demonstrated weaker genetic correlation and 

distinct localisation upstream of the MOBP transcription start site, indicative of a distinct disease 

mechanism. mQTL analyses highlighted cg15069948 as a significant mQTL for shared ALS and 

PSP top SNPs, linking genetic variation to altered DNA methylation. These findings suggest that 

while ALS and PSP may share a common risk mechanism at MOBP, FTLD likely involves 

unique genetic and regulatory contributions within the same locus, underscoring the nuanced 

interplay of genetics and epigenetics in neurodegenerative disease risk at this locus.   

 

The first thing we considered was the underlying proteinaceous inclusion of each disease, and 

whether this could offer an explanation as to the pattern of MOBP association across 

neurodegenerative diseases. ALS and PSP both have pathological links to tau, with PSP being 

classed as a primary tauopathy. Although ALS is classically defined by the presence of TDP-43 

pathology, there is some evidence for altered tau metabolism in the disease 336. We also saw a 

suggestively significant signal at the MOBP locus in FTLD, in a mixed FTLD-TDP and FTLD-tau 

cohort. Indeed, it has been reported that the T risk allele in PSP is associated with an increase 

in semi-quantitative scores of tau thread pathology and scores for phosphorylated tau-

immunoreactive coiled bodies 337. It is possible that the increased occurrence of the risk allele T 

in PSP cohorts is linked to tau pathology which is not replicated in α-synucleinopathies such as 

PD, MSA and LBD. However in the AD GWAS we saw no genetic signal at the MOBP locus, 

https://paperpile.com/c/HSDZKE/HEYO
https://paperpile.com/c/HSDZKE/9uyga
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thus, if the association was mediated through tau, we would expect to have seen a signal in the 

AD as another tauopathy. MOBP has been genetically linked to AD, but that link is thought to be 

mediated through the APOE genotype 81. APOE, the strongest genetic risk factor for AD, has 

recently been linked to the function of OLGs in AD. Blanchard et al. investigated the effect of 

APOE genotype on post-mortem human OLGs, and found that OLGs derived from APOE3/4 

and APOE4/4 (APOE4 being the AD risk associated allele) exhibited downregulation of key 

myelin-associated genes, regardless of AD status 70. Furthermore, altered APOE function was 

associated with changes in cholesterol deposition in OLGs, which in turn led to a reduction in 

myelin 70. The fact that genetic association of MOBP was only detected in APOE4 carriers could 

lead to a hypothesis that the presence of genetic variation at MOBP exacerbates effects of OLG 

dysfunction, and that without the aberrant cholesterol function already associated with OLGs 

and APOE status, genetic variation may not have the same pathological impact. It would be 

interesting to investigate if there was any genetic association in AD APOE4 carriers that was 

shared between PSP and ALS.  

 

In a similar vein, it is possible that the observed potential genetic mediation of MOBP effects via 

APOE status could extend to other neurodegenerative diseases, offering some explanation for 

the patterns observed across diseases. All of these diseases are highly polygenic, involving 

contributions from numerous genetic variants. It is plausible that variants at MOBP, in 

combination with other disease-specific variants, could act synergistically to influence disease 

risk and progression. This interplay might help explain why MOBP genetic associations appear 

more pronounced in some diseases, such as PSP and ALS, compared to others like MSA and 

AD, where different genetic landscapes dominate. 

 

We also considered whether the association was linked to the amount of OLG pathology 

reported in these diseases, as one of the main pathological hallmarks of PSP is cytoplasmic 

https://paperpile.com/c/HSDZKE/nAb83
https://paperpile.com/c/HSDZKE/wFGxe
https://paperpile.com/c/HSDZKE/wFGxe
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inclusions in OLG presenting with coiled bodies 81,338338. However, although there is evidence for 

OLG pathology in ALS (discussed in Chapter 1), loss of motor neurons is the major pathological 

hallmark. Furthermore, in MSA, the primary cell type affected is OLGs, and one would expect 

that if it was the case that the genetic association was linked to degree of OLG pathology, we 

would see a stronger genetic signal at MOBP.  

 

It is also worth noting that whilst in PSP, there is an observed increase in expression of MOBP 

associated with the risk T allele, in MSA, MOBP mRNA levels were shown to be 

downregulated87,129. It is therefore possible that, although the gene is important across 

neurodegenerative disease pathology, its involvement in pathogenic mechanisms may be 

distinct between diseases. Furthermore, whilst in MSA, significant correlations between MOBP 

gene expression and DNA methylation at the promoter region have been observed118,129, no 

similar correlations were found in a PSP cohort 85. This further underscores the complexity of 

interactions between DNA methylation, genetic variants and gene expression, and 

demonstrates the need for deeper investigation to elucidate such potentially disease specific 

effects. 

 

Whilst our analysis into MOBP across neurodegenerative diseases has provided important 

insights, there are of course some limitations to discuss. As with any analysis utilising publicly 

available data, we rely upon quality and completeness of datasets. Heterogeneity, mixed 

diagnosis and misclassification can all lead to GWAS results overestimating the importance of 

genetic signals that may not be disease relevant and underestimating important genetic loci. 

There are also limitations in our colocalization analysis, for example in the use of the COLOC 

package. Importantly, COLOC has the assumption of a single causal variant - i.e. that each 

region contains only one causal variant per trait. If this is not true, results may be misleading. 

SuSiE (Sum of Single Effects) is a computational approach that enables COLOC to include 

https://paperpile.com/c/HSDZKE/nAb83+a3xbH
https://paperpile.com/c/HSDZKE/a3xbH
https://paperpile.com/c/HSDZKE/zt8hm+bxCya
https://paperpile.com/c/HSDZKE/BlGsC+bxCya
https://paperpile.com/c/HSDZKE/M1UgN
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multiple causal variants 339. This could be interesting to apply this to the eQTL colocalization 

analysis, where we did not see strong colocalization, even though genetic variation at MOBP at 

SNPs discussed has been associated with altered expression of MOBP 79,85 

 

 

There is much promising future work to be carried out to continue this research. Farrell et al79. 

identify SNP rs631312 as the lead SNP driving association between MOBP and PSP, further 

work on fine mapping to identify if the same causal SNP is responsible across distinct diseases 

would be important. Detailed investigations into the relationship between genetics, DNA 

methylation and gene expression is also warranted. In ALS and PSP, we observe genetic 

associations at MOBP that are linked to changes in both gene expression and DNA methylation. 

However, additional computational modeling and functional studies are needed to clarify the 

causal directionality and potential synergy of these effects. For example, while the traditional 

assumption is that DNA methylation changes drive gene expression changes, it is also possible 

that these two processes are independent or influenced by a shared upstream mechanism. 

Elucidating these relationships could provide deeper insights into the complex regulatory 

dynamics at play in neurodegenerative diseases. It would also be interesting to explore the 

potential for a distinct alternative promoter region close to the region of the CpG that showed 

differential methylation with distinct genotypes in PSP (cg15069948), especially considering the 

finding of altered ratio of protein isoforms present in PSP compared to controls and other NDs 

129. Investigating transcript structure would also be important here. Although we looked at gene 

expression and genetics at MOBP through eQTL/disease QTL colocalization, it would be useful 

to use alternative transcript analysis, for example long-read sequencing which better allows for 

analysis of alternative splicing patterns or unannotated isoforms. Future work should also be the 

analysis of the neurodegenerative disorder corticobasal degeneration (CBD). CBD has been 

identified to share genetic associations at MOBP with PSP 80,340. CBD is also a primary 

https://paperpile.com/c/HSDZKE/4I1tR
https://paperpile.com/c/HSDZKE/M1UgN+d5iZL
https://paperpile.com/c/HSDZKE/d5iZL
https://paperpile.com/c/HSDZKE/bxCya
https://paperpile.com/c/HSDZKE/KDmc5+ArsFO
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tauopathy with significant white matter/OLG pathology 341. Investigating colocalization between 

CBD associated loci at MOBP and other diseases, as we have carried out in this chapter 

between ALS, PSP and FTLD, would be interesting. Integrating DNA methylation and gene 

expression data with CBD genetics at MOBP could offer further elucidation as to why we see 

association at MOBP across some neurodegenerative diseases but not others.  

 

In this work we have carried out analysis to investigate genetics, DNA methylation and 

transcriptomics at MOBP across neurodegenerative diseases, in order to further understanding 

of the involvement of this gene in pathology. By identifying both shared and distinct 

mechanisms, we have found that there appears to be a shared locus of genetic association 

within MOBP between ALS and PSP, which is also associated with DNA methylation. This work 

has provided key insights into the importance of MOBP in neurodegeneration and established a 

foundation for future research into this gene. 

  

https://paperpile.com/c/HSDZKE/PjNvL
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Chapter 7 - General discussion and 

conclusions 

7.1 Overview   

In this thesis we have analysed multiple DNA methylation and gene expression datasets, to 

attempt to obtain insights into the role of DNA methylation affecting OPCs and OLGs across 

neurodegenerative diseases. We have additionally used genetic data to understand the role of 

MOBP, as a gene which is highly relevant to OLGs and which has previously been associated 

with aberrant DNA methylation in neurodegeneration 118,129.  

 

In Chapter 3, we report on EWAS analyses across numerous DNA methylation datasets and, 

where applicable, meta-analyses to allow us to report on robust findings from the EWAS 

analysis and to increase statistical power for additional identification of genes of interest. We 

used both DNA methylation datasets derived from bulk and sorted nuclei isolated from brain 

tissue and have found that several genes show consistent dysregulated DNA methylation 

patterns across FTLD and AD, many of which also show disturbance at the gene expression 

level. Some of these genes have previously been linked to altered myelin function/OLG lineage 

biology and/or disease mechanism. Here, we have provided evidence as to the potential role of 

DNA methylation contributing to such changes.  

 

In Chapter 4, we report on a complementary analysis approach to further investigate DNA 

methylation perturbations in neurodegenerative disease relating to OLGs/OPCs. To reach that 

https://paperpile.com/c/HSDZKE/BlGsC+bxCya


258 

goal, using a systems biology approach based on WGCNA, we have constructed co-methylation 

networks and investigated modules associated with neurodegeneration and enriched for 

OLG/OPC genes. We found several modules of interest and have investigated these for 

biological function, both through GO enrichment analysis and by detailed investigation of top 

genes in these modules. We also investigated preservation of these modules across distinct 

neurodegenerative diseases and brain regions. We observed generally high preservation of 

OLG/OPC enriched disease associated modules. This suggests that dysregulation of DNA 

methylation in OLGs may be common across the diseases we have analysed. Several genes, 

including by way of example PIP4K2A, that we identified in the EWAS analyses in Chapter 2 

were found to be present in disease associated modules across FTLD. This finding implicates 

DNA methylation changes in the functioning of peroxisomes as relevant in neurodegeneration, 

which was strengthened through functional enrichment and identification of additional 

peroxisome related genes. We have identified other pathways of interest, including the 

Wnt/beta-catenin signalling pathway in OLGs/OPCs, known to be important in OPC 

differentiation, which warrants further investigation. We also identified co-methylation modules 

with hub genes that have high relevance to OLGs, including MYRF and MOG, which are known 

to be crucial modulators of myelination and OLG function, indicating that regulation of such 

crucial genes is modified in disease via changes in DNA methylation.  

 

In Chapter 5, we have reinforced findings reported in Chapters 3 and 4 by leveraging an iPSC 

OLG cell differentiation model to investigate OLG/OPC genes which show distinct DNA 

methylation profiles throughout the OLG life cycle. In particular the gene CTNNA1, which was 

found as a hub gene in a co-methylation module associated with AD, showed significant and 

large changes in DNA methylation throughout OLG differentiation. As well as being of biological 

interest, this highlights the benefit of using multiple and complementary datasets and 

approaches in identifying disease relevant changes. 
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In Chapter 6, we report on a focused investigation into the genetic and epigenetic associations 

of the MOBP gene with neurodegeneration across a larger range of diseases. We chose to 

investigate this gene because of its genetic association with multiple neurodegenerative 

diseases and the previous findings within our group of disease-associated aberrant DNA 

methylation at the promoter region of the gene. Despite multiple lines of evidence pointing 

towards this gene as being important in neurodegeneration, studies involving the gene are 

limited. Chapter 6 sets out our attempt to understand how, in different neurodegenerative 

diseases, genetics and DNA methylation may be influential within the gene locus to lead to 

aberrant gene expression. We have demonstrated that there is strong genetic colocalisation  of 

disease risk within this gene between ALS and PSP. We have also shown that such disease 

associated genetic variability is also influencing DNA methylation changes which are likely 

linked to altered MOBP expression, which has been observed in PSP 79 and MSA 342. We have 

also demonstrated that, although MOBP is linked to multiple diseases, it appears as though 

underlying molecular alterations are distinct between diseases. These results highlight the 

complexity of risk associated SNPs at this gene locus, warranting further functional studies to 

dissect its role in neurodegeneration.  

 

Overall we provide new evidence as of the importance of DNA methylation in the regulation of 

OLG/OPC genes across neurodegenerative diseases.  

  

https://paperpile.com/c/HSDZKE/d5iZL
https://paperpile.com/c/HSDZKE/Ekg67
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7.2 Issues arising  

 

7.2.1 Implications of the findings  
 
In work described throughout this thesis, we aimed to identify genes that are differentially 

methylated in disease and to investigate these genes in terms of OLG differentiation and gene 

expression changes. Through this, we have contributed to the field of study through 

identification of genes that may play a role in neurodegenerative disease pathogenesis and 

linked together findings from multiomics in order to identify biological pathways that play a role 

in disease, showing that DNA methylation is an important and still overlooked area in this 

context. There is, of course, much additional work to be done from this thesis in investigating 

further genes identified in terms of function (discussed further in Section 7.2.3). We have, in this 

work, identified genes that (as far as we know) have not previously been linked to DNA 

methylation changes, but have previously been shown to be important in disease pathogenesis, 

providing a potential functional role for DNA methylation and OLG lineage genes. We have also 

uncovered genes showing aberrant DNA methylation that, again to the best of our knowledge, 

have not previously been linked to neurodegenerative disease. Newly identified genes may 

represent hitherto unrecognised contributors to disease pathogenesis. In identifying both 

previously identified and novel disease candidates, we have broadened the understanding of 

OLGs in neurodegeneration.  

 

As well as identifying disease associated genes and pathways to contribute to general 

understanding of disease pathogenesis, the study of DNA methylation in disease is important 

from a therapeutic perspective. As DNA methylation changes are reversible, this means that 

they are an attractive target for disease modifying treatments. Although not currently used as 
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therapeutic intervention strategies, several approaches have emerged to edit DNA methylation 

in specific genomic sites, see reviews by Kantor, Murthy, 104,343–345. These approaches include 

the use of CRISPR-Cas9 fused to DNA methyltransferases which allow site specific 

manipulation of DNA methylation patterns 343. In PD, elevated levels of SNCA are a hallmark, 

although normal expression levels of this gene are vital for normal cell physiology. Kantor et al. 

demonstrated that through CRISPR-Cas9 mediated targeting, mRNA and protein expression 

levels of SNCA were decreased, which increased cell function in an iPSC model. These 

examples provide promising evidence as to the efficacy of such approaches. It is possible that, 

with further investigations and biological validation of targets, genes such as CTNNA1, which 

we have found to be important in the differentiation of OLGs and dysregulated in disease, could 

be targeted to restore functionality of OLGs in neurodegeneration.  

 

We have looked at DNA methylation changes occurring within brain tissue due to their 

relevance in understanding neurodegenerative disease associated mechanisms. Although 

beyond the scope of the work descibed in this thesis, DNA methylation changes are also known 

to be important in blood, hence their potential to be developed into blood-based biomarkers. 

Indeed, recent studies have demonstrated that there is significant correlation at some CpG sites 

between blood and brain 346. Blood based biomarkers offer minimally invasive approaches for 

disease detection, as well as disease monitoring. Early detection of neurodegenerative diseases 

is crucial as it allows timely intervention. By the time patients present with clinical symptoms of 

neurodegeneration, significant and irreversible damage has already occurred. Therefore, timely 

detection and monitoring of disease is crucial. Although in this thesis we have mainly looked at 

changes consistent across neurodegenerative diseases, blood based biomarkers that allow 

clinicians to distinguish between distinct diseases will empower tailored treatments to match 

underlying pathologies more effectively.  

 

https://paperpile.com/c/HSDZKE/LqE6O+oEG7u+pZ86V+vXngZ
https://paperpile.com/c/HSDZKE/LqE6O
https://paperpile.com/c/HSDZKE/uft8I


262 

7.2.2 General Limitations  
 
 
Throughout this thesis, we have described limitations of the approaches used in each chapter. 

However, there are general considerations to discuss from the work.  

 

A critical factor to consider in any research conducted into DNA methylation in disease in 

postmortem brain tissue is cause or effect. Whilst we and others have demonstrated the 

presence of aberrant DNA methylation across neurodegeneration, the determination of whether 

such changes are causing disease or simply a consequence of disease processes remains a 

challenge. We have investigated DNA methylation and gene expression data, and often have 

found that genes showing differential methylation also exhibit changes at the gene expression 

level. However, investigating the relationship between these two data types is challenging due 

to small sample sizes of overlapping data, and confounding factors such as tissue heterogeneity 

and cell type specificity. In Chapter 5, we report having used a large control dataset to 

investigate which OLG/OPC relevant genes show high correlation with gene expression, and 

determine for which of the disease associated genes this is also true. In our analysis of DNA 

methylation changes across multiple brain regions in AD, we have found consistent disease 

associated DNA methylation signatures across brain regions affected at different stages of 

disease progression; the entorhinal cortex and hippocampus are known to exhibit changes early 

in AD, whilst the dorsolateral prefrontal cortex is thought to be affected later on in disease. The 

finding of aberrant DNA methylation across both early and late stages of pathology suggests 

causal alterations contributing to disease rather than being the secondary effects of 

neurodegeneration. Although it is still possible that some of the changes we have observed may 

be a consequence of disease mechanisms rather than contributing themselves to disease, 

these findings are still of interest as they may reflect compensatory mechanisms and/or point to 

possible druggable targets; for example, decreased methylation of a DNA damage gene, 
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important in OLGs, could reflect the need for upregulation of damage response genes in 

response to increased levels of oxidative stress. Where genes important for OLG differentiation 

processes have been identified, it could be the case that OPCs are attempting to compensate 

for damage caused to mature OLGs by increasing in proliferation and/or differentiation. The 

research carried out for this thesis shows that multiple genes critical for OPC differentiation, 

including those implicated in the Wnt/beta-catenin pathway, show altered DNA methylation, 

which could lead to dysregulation of the differentiation process.  

 

A significant challenge in studying neurodegenerative diseases is heterogeneity of cohorts. In 

Chapters 3 and 4 we have discussed DNA methylation changes across AD and FTLD. FTLD is 

an umbrella term for a clinically and pathologically heterogeneous group of diseases. We  

investigated changes across FTLD, as well as investigating more subtype/disease specific 

alterations, e.g. changes in FTLD-tau (importantly PSP) and FTLD-TDP cohorts. Although we  

found that multiple genes, including CTNNA3, SCD and DNA17 showed dysregulation across 

these datasets, it is possible that we have missed more subtle subtype/disease specific effects. 

It is also true that we have not explored, aside from in our analysis of network analysis across 

brain regions in AD (Chapter 4), differences in DNA methylation between brain regions, which 

would be worthy of further investigation.  

 

Another challenge is the potential misdiagnosis and/or degree of co-pathologies of the samples 

we have utilised. This is particularly applicable to Chapter 4, where we have leveraged multiple 

GWAS from a broad range of diseases. Neurodegenerative diseases are clinically 

heterogeneous, but also share many clinical features such as cognitive decline and changes in 

behaviour. There is also a complex relationship between clinical diagnosis and post-mortem 

pathology. By way of example, whilst PD and PSP share motor features, underlying pathologies 

are highly distinct. Importantly, PSP is a primary tauopathy, whilst PD is characterised by 
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accumulation of ɑ-synuclein. Confounding this is the presence of mixed pathologies. Where 

cases have been misdiagnosed, this may lead to weakening of DNA methylation and genetic 

signals. Many of the cases utilised in the production of the GWAS analysed in Chapter 6 are 

pathologically diagnosed, which is considered the gold standard diagnosis, however not all 

cohorts are composed solely of such cases. Exciting new approaches such as machine learning 

and artificial intelligence are now being considered to mitigate issues of misdiagnosis and to 

more accurately detect and quantify neuropathological changes 347,348. The advent of such 

techniques should enable clearer diagnosis and aid the identification of more specific disease 

effects.  

 

The work written up in this thesis, aside from the use of the iPSC OLG differentiation cell model, 

relies wholly on the use of post-mortem brain tissue. Although the use of such data is invaluable 

in the study of neurodegenerative disease, its use presents several challenges. With any 

analysis using post-mortem tissue, there will be a post-mortem interval; the time between death 

of the subject and preservation of the tissue. Longer post-mortem delays may lead to DNA 

degradation and affect the detection of DNA methylation signals. We have attempted, where 

possible, to control for post-mortem intervals in our statistical analyses so as to reduce the 

possibility of finding differentially methylated sites which are artifacts of post-mortem 

degradation rather than as a cause of disease modifying effects. However, alterations in DNA 

methylation changes that may occur after death can hinder the detection of differentially 

methylated genes. Another caveat to the use of post-mortem tissue in the study of differential 

methylation in disease is that DNA methylation changes in post-mortem tissue only capture the 

end stage of disease, they do not capture the dynamic changes within tissue and disease 

progression. It is possible that end stage disease effects such as neuronal cell death and tissue 

inflammation will obscure additional disease relevant changes in the DNA methylation profile of 

OLGs. Altered cellular composition will also add to this; in advanced stages of 

https://paperpile.com/c/HSDZKE/1TP7R+YJGba
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neurodegeneration, neuronal cell loss will change the composition of the tissue. This is 

particularly relevant where we have used bulk DNA methylation and RNA-sequencing data. 

Shifts in composition may lead to detection of DNA methylation changes that are more reflective 

of altered cellular proportions rather than disease causing modifications. We have attempted to 

mitigate this possibility through the use deconvolution methods to estimate cell type proportions 

and statistically adjusted for this as well as the use of brain-nuclei sorted DNA methylation 

datasets and single-nuclei RNA sequencing datasets, which should be less affected by cellular 

composition alterations, and through the use of our analysis of the iPSC model of OLG 

differentiation. 

 

7.2.3 Future research directions  

 
7.2.3.i Validation  
 

Throughout this thesis, we have observed changes in OLG/OPC relevant genes across multiple 

DNA methylation datasets. To mitigate the detection of artifacts as a result of batch effects and 

data preparation, we have validated findings across multiple datasets relating to each disease 

analysed. However, to solidify findings, it would be beneficial to cross-check findings across a 

larger number of disease datasets, and carry out further meta-analyses to confirm 

reproducibility. As the use of single cell/single nuclei and sorted brain-nuclei DNA methylation 

datasets emerges and/or continues to grow, in the neurodegeneration field, it will be crucial to 

prioritise their investigation as a gold standard for achieving cell-type specificity in epigenetic 

studies. 
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7.2.3.ii Other effects of DNA methylation  
 
 

We have attempted to investigate functional repercussions of changes in DNA methylation in 

neurodegeneration through the use of complementary gene expression datasets. However, it is 

known that changes in gene expression are not the only consequence of DNA methylation 

alterations. It would be interesting to explore the role of DNA methylation in alternative splicing 

of gene transcripts. Alternative splicing is a post-transcriptional modification through which a 

single gene results in the production of multiple transcript variants, and therefore diversity in the 

protein isoforms present. DNA methylation has been shown to be an important factor in the 

control of alternative splicing 349. Mechanisms described include modulation of splicing through 

targeting of MeCP2 to included exons; ablation of MeCP2 was found to lead to aberrant splicing 

effects 350. This was found to occur when there were intragenic DNA methylation marks, 

highlighting the importance of investigating DNA methylation changes outside of the promoter 

region. It has also been found that binding of CTCF resulting in inclusion of exons is mediated 

by changes in DNA methylation 351. It is therefore possible that some of the DNA methylation 

changes that we have observed within the body of genes that do not appear, in our data, to 

modulate gene expression, are contributing to alternative splicing. Alternative splicing is an 

important phenomenon in neurodegenerative diseases. For example, aberrations in differential 

splicing of the MAPT pre-mRNA that cause changes in the balance of the different isoforms of 

the protein tau contributes to the pathogenesis of AD and other tauopathies 352. Additionally, in 

Chapter 6, we have described how altered protein isoforms of the gene MOBP are detected in 

PSP 129, and that genetic and DNA methylation changes are located, within MOBP, around a 

site that could be acting as an alternative promoter region or is important in determining 

transcript usage, thus further investigation into this line of research is warranted. It is also worth 

noting that we have only investigated 5mC DNA methylation, and have not investigated DNA 

https://paperpile.com/c/HSDZKE/hYo1c
https://paperpile.com/c/HSDZKE/PjfDy
https://paperpile.com/c/HSDZKE/G12PL
https://paperpile.com/c/HSDZKE/W61c3
https://paperpile.com/c/HSDZKE/bxCya
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hydroxymethylation (5hmC), an oxidative derivative of DNA methylation. As mentioned in 

Chapter 1, 5hmC is known to be enriched  in the human brain compared to peripheral tissue, 

and studies in mice have defined a role for 5hmC in OLG fate determination. Although beyond 

the scope of this thesis, further investigation into this particular form of DNA methylation is 

warranted.  

 
 
7.2.3.iv Extension to other diseases  
 

In Chapters 3, 4 and 5 of this thesis, we have focused on my research into altered DNA 

methylation affecting OLG/OPC genes into the dementias AD and FTLD. In Chapter 5, we have 

looked at the MOBP locus in a wider range of diseases, including in MSA and PD. To gain a 

more holistic view of the role of DNA methylation in neurodegeneration, it would be useful to 

examine whether the effects we have seen consistently across diseases in Chapters 3 and 4, 

for example dysregulation of genes such as CTNNA3, DNAH17 and SCD, extend to other 

neurodegenerative diseases or are found only in the diseases we have investigated. It would be 

interesting to gain more insight into how DNA methylation changes relate to underlying 

pathological processes that are hallmarks of each disease. MSA and PD are both ɑ-

synucleinopathies, and the work by Murthy et al. (2024) shows they share more similarities in 

alterations of DNA methylation between themselves than with PSP (a tauopathy). However, we 

have not explored this aspect in much detail in this thesis. Although we did examine 

dysregulation across tauopathies and TDP-43 proteinopathies, it is possible that dysregulation 

of DNA methylation in OLG/OPC relevant genes would be distinct.  

 

Multiple sclerosis (MS), would be an intriguing disease to consider alongside the findings set out 

in this thesis. MS is a demyelinating disease where the loss of OLGs and OPCs to autoimmune 

attack is central to pathology 353. Are epigenetic changes in these cells similar to those that 

https://paperpile.com/c/HSDZKE/vdFvy
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occur in the diseases we have analysed, representing general dysregulation and damage/death 

of cells? Or are different mechanisms in play? 

 
 

7.3 Final remarks  
 
 
 
Neurodegenerative diseases inflict an extremely high cost on society, both economically and 

socially. They also have devastating effects on individuals and their families. It is estimated that 

by 2050, the incidence of neurodegenerative disease will rise from 57.4 million cases in 2019 to 

152.8 million cases globally 354. This emphasises the importance of continued research into 

understanding the pathogenesis of the diseases in order to develop disease modifying therapies 

for care and intervention. Compared to fields such as cancer epigenetics, the study of 

epigenetic changes in neurodegeneration is less evolved, necessitating further progress. 

Similarly, research into OLG lineage cells in neurodegeneration has also been neglected. In this 

work, we have demonstrated the importance of dysregulated DNA methylation affecting OLGs 

in neurodegeneration, adding to the body of literature investigating epigenetics in 

neurodegenerative disease pathology. I hope that the work we have carried out for this thesis 

will contribute to the understanding of these devastating diseases so that a cure for them can be 

found.  

 

 

 
  

https://paperpile.com/c/HSDZKE/mfyFl
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9. Appendix  
 
Appendix A: OPC/OLG gene lists  

 

Gene list Gene names  

OPC genes  
COL20A1, GPR17, NR0B1, BEST3, HAS2, CACNG5, B3GNT7, NEU4, COL9A1, STK32A, MEGF11, MYT1, 
GPNMB, SAPCD2, MROH9, RUFY4, SPSB4, BCHE, KLRC4-KLRK1, SMOC1, SOX4, SPC25, CHST9, 
LHFPL3, SNX22, WSCD1, FZD9, TSPAN11, XYLT1, AMZ1, ATP2C2, FERMT1, CREB3L1, KLHL1, USP24, 
ACAN, NTN1, HRASLS, ASIC4, VIPR2, WFDC1, BLM, CSPG4, LRRN1, PLEKHH2, GSG1L, VSX1, TRAF4, 
ASCL1, PCDH15, SEMA3E, CHST8, OLIG2, KCNJ16, EPN2, DNAH11, TNK2, GALR1, CCDC146, NKAIN4, 
SEMA5A, ABHD2, PDGFRA, FABP7, LYPD1, NLGN3, TMEM255A, LAMA4, GFRA1, LIMD1, BCAN, SPRY4, 
ZDHHC14, GALNT13, CSPG5, NOS1, CCDC50, NAV1, PRKG2, RAB3IP, SULF2, NLGN4Y, OLIG1, PRTG, 
ZNF462, SCRG1, DCC, CALCRL, BRINP3, KIF13A, MAP3K1, SEZ6L, CRISPLD2, SORCS3, TEK, TACC2, 
CSMD2, THBS4, S100A16, RHOC, NLGN4X, AFAP1L2, ALK, PXDN, PEAK1, SCN9A, ADAMTS17, CTTNBP2, 
DPYSL3, TMEM100, ETV5, C3orf70, SOX13, TIMP4, LRRC4C, STK32B, HIP1R, FBLN2, PHLDA1, GPSM2, 
C1QL1, PYGO1, TMEM163, TNKS, TTC16, TAOK3, MATN2, GLCCI1, WWP2, GRIK4, CTSO, SLC22A3, 
INHBA, TGFA, PCOLCE2, CRISPLD1, SETD5, KANK4, BTBD17, ALDH1A3, SUSD5, DSEL, C1QL2, 
ONECUT1, TPCN2, C1orf106, NME9, GPC2, UPF3A, MMP2, ANGPTL2, EMILIN3, PDPN, COL4A3, GALNT3, 
TMC2, SOX3, COL4A4, MIDN, CDCA7L, FAM184B, UGDH, B3GAT2, OXTR, KCNG4, TMEM196, NSUN7, 
ASIC1, PCMTD2, DLL3, KLHL7, WDR11, INSC, ISG15, EBF4, DBX2, CHAD, GLDC, DHRS12, SIM2, 
MAMLD1, SLC25A27, ANGPT2, HFM1, RCBTB1, PRSS48, ANGEL1, 44630, INTS12, QPRT, KANSL1L, 
ZNF730, TLL1, ADAMTS7, SENP7, SLC5A9, SLC40A1, TMEM41A, KIF18B, G0S2, TMEM229B, STAT5B, 
HIBADH, MEX3A, FARP2, LMOD1, HMX1, VAX2, ASB5, SPRED3, EMC10, NUPL2, NAT16, TRA2A, NUP160, 
BMP8B, GDF6, PIGN, RP1-27O5.3, PPA2, GPR82, NBPF12, FUS, RAB5A, CXorf57, SLC8B1, PPP2R3B, 
JADE3, SLC15A4, PYCR1, MGARP, CA1, FHDC1, GSTCD, YIF1A, TM6SF2, RP11-403P17.5, LRCH3, 
CLEC12A, TMEM38B, ARHGEF38, FAM89A, MMP3, BMP2, OPTC, PCCA, SPATA9, SELV, CCKAR, LOR, 
BRWD3, MAB21L1, PDE6D, KCTD14, ZFP37, EXOG, GPR146, DLK1, DUSP9, ZNF107, SMARCC1, 
SLC35F5, TRMT10B, TMEM167A, ZNF790, RAB9A, CCDC90B, CHD1L, SLC29A2, SFPQ, KLRG1, NBPF3, 
AQP5, PIGF, CAPN7, RDH11, ARHGEF35, GALNT8, SHD, HELZ2, FBXL4, PARP12, GLIPR1L2, GSX1, 
ZNF439, KRBOX4, ZNF677, EPC2, APOA1BP, LECT1, CACNG1, ZNF577, ZNF469, SLC25A15, ZNF300, 
CST1, AC003006.7, VPS54, MRPS28, TP73, TRIM16, FZD10, DCAF4L2, MYCN, C9orf50, TK2, CNTD2, 
HCAR1, ZNF85, CTHRC1, TIGD7, QRSL1, ZFP69, COX6A2, MAP3K7CL, METTL3, ATP6V1B1, CD1D, 
ZMAT5, GDNF, PSG9, ZNF578, FGFBP3, RBM4B, C6orf10, ZNF880, C5orf15, EEA1, MST1R, TMED7, 
TMPRSS11D, TRIM73, SLC26A5, HPS5, SLC43A3, CLEC18A, PABPC5, OPN1SW, ARMCX6, TMEM39A, 
ZNF772, LEFTY2, RPS27L, PCDHB8, PZP, LAMB4, S100G, USP41, AMDHD1, PLN, ZNF850, SYNPO2L, 
SGOL1, LIX1L, MSMP, POLG2, PLEKHG7, COMMD3, PCDHB1, ZKSCAN7, GNRHR, BATF2, CD300LD, 
ZNF705D, PRSS42, CDH15, SLC17A1, SCAMP3, SFTPA1, WEE1, TAL2, IRX2, HSD17B10, ZNF649, ASF1B, 
KLRC2, MNX1, CLDN22, DMP1, TMCO5A, NECAP2, ZNF729, RNASEK-C17orf49, PDZD3, C1orf158, DAZL, 
DEFB136, GOLGA6L2, GOLGA6L9, BPY2, POU5F1B, CRISP1, CTD-2278I10.6, UMOD, BOP1, FAM217A, 
SNAI1, HLA-G, RFX6, NOTO, SLC17A4, FMR1NB, TPPP2, TBC1D28, HLA-DMA, POTEJ, IRX1, CTSD, 
NUTM2A, ZNF181, ITPRIPL1, CYP2A6, CLEC18C, C8A, BARHL2, FAM111B, PRR15L, PRDM14, CRISP2, 
LRRC52, TAS2R8, AMBP, MMP10, BPIFB3, GCM1, PBK, CTSE, BCKDHA, XAGE5, EPS8L1, TM4SF5, 
CCT8L2, MMP13, FNIP1, C1orf94, COMMD3-BMI1, PRRG2, RP11-166N6.3, VSIG8, C2orf16, CDCP2, 
CYP2F1, LUZP4, ZNF607, PHOSPHO2, RFPL4B, DMRTB1 

OLG genes  
ST18, CNDP1, PLP1, MAG, OPALIN, MOBP, FOLH1, MYRF, NKX6-2, SLC5A11, TMEM235, ANLN, CARNS1, 
GPR62, RP11-432B6.3, KLK6, LDB3, MOG, GJB1, ENPP2, HHIP, LRP2, GPR37, ERMN, CPB1, TF, CD22, 
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CERCAM, FAM107B, CDK18, CAPN3, SH3TC2, NINJ2, TMEM125, TP53TG5, SLC31A2, SCD, CLDND1, 
CLCA4, TMEM98, ADAMTS14, TMEM144, ADAMTS18, PLA2G16, PALM2, KIF6, CTNNA3, LRRC63, S1PR5, 
CNTN2, PLEKHH1, TMEM165, POLR2F, TMTC4, MAN2A1, C21orf91, BOK, PCSK6, DNAH17, CHRM5, 
ABCA2, LAMP2, ZDHHC9, GJC2, CBR1, QDPR, MBP, KIF13B, PPP1R14A, TMEM63A, TJAP1, FRYL, 
MID1IP1, CCP110, PSEN1, PXK, TMC7, SUN2, CLMN, HSPA2, LPGAT1, SLC44A1, MAL, HAPLN2, PRIMA1, 
CRYAB, TCP11L2, IP6K3, MOSPD2, PDE1C, DYSF, CDC42EP1, PRUNE2, CDH19, ATG4C, ASPA, 
PIP4K2A, PLEKHG3, LPAR1, RFFL, SPATA22, ITGA2, LIPA, RASGRP3, SEPP1, CA2, ARHGAP23, 44808, 
CNP, ADAMTS4, HSD17B3, SPINT2, EFHD1, PACS2, MAP6D1, NDE1, PLCL1, PIEZO2, TPRN, UGT8, 
TTYH2, VRK2, IPO13, AMER2, CPNE2, ARHGAP1, GALNT6, VWA1, GLTP, CDH1, AFMID, NEK3, KCNJ2, 
SLC25A13, IFIT3, FA2H, RYBP, ICOSLG, LIPE, NT5DC1, GOLGA7, PRR5L, DICER1, TPPP3, MYLIP, TFEB, 
SYNJ2, LARP6, RNF220, PDE8A, CALD1, CDKN1C, GPIHBP1, GNAI1, SLC45A3, SEMA4D, TSPAN15, 
ABHD17B, NXPE3, ZDHHC20, SLCO3A1, FAM102A, DIP2B, ITCH, HIPK2, YPEL2, KLHL4, CCDC122, 
KLHL32, AATK, 44811, RDX, TMTC2, FAM124A, UNC5C, RHOG, NPC1, APOLD1, TMCC2, DEPTOR, 
EVA1C, STXBP3, DAAM2, SIK3, CPOX, PLEKHB1, RHOU, ZNF397, FAM222A, SLCO1A2, CUEDC1, CDK19, 
GREB1L, HBS1L, TMEM123, MVB12B, ANKIB1, KDM6A, TBC1D2, WDR20, NENF, LRRC1, SLC24A2, 
PTBP2, RNASE1, MOB3B, FGF1, TARSL2, PRKCQ, DLG1, PIK3C2B, SLC12A2, SHROOM4, MYO1E, CD55, 
BIN1, LAMP1, ARHGAP21, ELOVL1, DFNB31, ZNF708, DOCK5, TRIM2, DPYSL5, SH3GL3, CHD7, LSS, 
SORT1, EXOC6B, NFASC, BAIAP2L2, SLC22A15, COL4A5, FAM13C, DUSP16, SHC4, COLGALT2, FUT8, 
CHADL, PHLDB1, MAP4K4, MYO1D, C12orf76, C10orf90, ARRDC2, TULP4, DNAJC6, ZNF565, TUBA1A, 
FAM69C, HS3ST5, HPN, HDAC11, PSME4, GREM1, ADA, ACSS2, RNH1, TRIM59, FCHO1, NSMCE2, PTRF, 
CFL2, ANAPC5, SLC6A9, C4orf48, TRPM6, KEL, TRAPPC10, PAQR4, FAT4, ANKRD18A, LZTS2, FRK, 
DOHH 

Stringent OPC 
genes  

COL20A1, GPR17, NR0B1, BEST3, HAS2, CACNG5, B3GNT7, NEU4, COL9A1, STK32A, MEGF11, MYT1, 
GPNMB, SAPCD2, MROH9, RUFY4, SPSB4, BCHE, KLRC4-KLRK1, SMOC1, SOX4, SPC25, CHST9, 
LHFPL3, SNX22, WSCD1, FZD9, TSPAN11, XYLT1, AMZ1, ATP2C2, FERMT1, CREB3L1, KLHL1, USP24, 
ACAN, NTN1, HRASLS, ASIC4, VIPR2, WFDC1, BLM, CSPG4, LRRN1, PLEKHH2, GSG1L, VSX1, TRAF4, 
ASCL1, PCDH15, SEMA3E, CHST8, OLIG2, KCNJ16, EPN2, DNAH11, TNK2, GALR1, CCDC146, NKAIN4, 
SEMA5A, ABHD2, PDGFRA, FABP7, LYPD1, NLGN3, TMEM255A, LAMA4, GFRA1 

Stringent OLG 
genes  ST18, CNDP1, PLP1, MAG, OPALIN, MOBP, FOLH1, MYRF, NKX6-2, SLC5A11, TMEM235, ANLN, CARNS1, 

GPR62, RP11-432B6.3, KLK6, LDB3, MOG, GJB1, ENPP2, HHIP, LRP2, GPR37, ERMN, CPB1, TF, CD22, 
CERCAM, FAM107B, CDK18, CAPN3, SH3TC2, NINJ2, TMEM125, TP53TG5, SLC31A2, SCD, CLDND1, 
CLCA4, TMEM98, ADAMTS14, TMEM144, ADAMTS18, PLA2G16, PALM2, KIF6, CTNNA3, LRRC63, S1PR5, 
CNTN2, PLEKHH1, TMEM165, POLR2F, TMTC4, MAN2A1, C21orf91, BOK, PCSK6, DNAH17, CHRM5, 
ABCA2, LAMP2, ZDHHC9, GJC2, CBR1, QDPR, MBP, KIF13B, PPP1R14A, TMEM63A, TJAP1, FRYL, 
MID1IP1, CCP110, PSEN1, PXK, TMC7, SUN2, CLMN, HSPA2, LPGAT1, SLC44A1, MAL, HAPLN2, PRIMA1, 
CRYAB, TCP11L2, IP6K3, MOSPD2, PDE1C, DYSF, CDC42EP1, PRUNE2, CDH19, ATG4C, ASPA, 
PIP4K2A, PLEKHG3, LPAR1, RFFL, SPATA22, ITGA2, LIPA, RASGRP3, SEPP1, CA2, ARHGAP23, 44808, 
CNP, ADAMTS4, HSD17B3, SPINT2, EFHD1, PACS2, MAP6D1, NDE1, PLCL1, PIEZO2, TPRN, UGT8, 
TTYH2, VRK2, IPO13, AMER2, CPNE2, ARHGAP1, GALNT6, VWA1, GLTP, CDH1 

 
OLG/OPC gene lists used throughout this thesis derived from single-nuclei RNA sequencing data 158 and processed 
by Dr Piras 159.  For OLG and OPC genes, genes were included as described in Section 2.3 (FDR p-value < 0.05 and 
ratio ≥ 1.76) . For stringent OPC and OLG gene lists, a filtering strategy based on the expression of that gene in 

OPCs/OLGs compared to other cell types was applied as described in Section 2.3 (FDR p-value < 0.05 and ratio ≥ 
3). OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell, FDR: false-discovery rate.  
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Appendix B: Results from the FTLD1, FTLD2 and FTLD3 EWAS analyses  

Probe logFC FTLDvsCTRL P.Value FTLDvsCTRL Gene Feature 

FTLD1 OPC 

cg19594305 -0.7389965 0.00087542 CHST8 1stExon 

cg06998031 0.78900016 0.00113898 XYLT1 Body 

cg12415224 -0.8027056 0.00182561 XYLT1 Body 

cg10004990 0.64903964 0.00196173 VSX1 Body 

cg00425944 0.68081313 0.00250536 ACAN Body 

cg23889875 1.30016875 0.00258153 SEMA3E 1stExon 

cg17414248 0.70405921 0.00387719 ACAN 5'UTR 

cg26836413 1.59923 0.00395594 PDGFRA Body 

cg14029669 -1.3434532 0.00405219 WFDC1 Body 

cg15484988 1.431929 0.00435901 GALR1 TSS1500 

cg11197909 -0.6619404 0.00570855 TSPAN11 3'UTR 

cg08719965 0.487121 0.00583543 GPNMB Body 

cg01951671 -0.6939151 0.00733734 KLHL1 Body 

cg02111748 0.827545 0.00755314 PLEKHH2 Body 

cg00429706 1.085571 0.00761221 CCDC146 TSS200 

cg23713090 0.77171699 0.00777569 COL9A1 Body 

cg14487304 0.476144 0.00812086 SEMA5A 5'UTR 

cg02230373 0.4214282 0.0083862 AMZ1 Body 

cg01223423 -0.6472784 0.00860494 SEMA5A 5'UTR 

cg16270670 0.8222554 0.00868788 KLHL1 Body 

cg16421850 0.5250777 0.0087429 FERMT1 Body 

cg04848502 0.8004356 0.00972661 TNK2 TSS1500 

cg03502002 -0.5744363 0.009892 GALR1 1stExon 

FTLD2 OPC 

cg05602183 -0.5082425 0.00013019 TRAF4 Body 

cg14487304 -0.757614 0.00073355 SEMA5A 5'UTR 
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cg04645817 -0.8479956 0.0008377 ABHD2 Body 

cg11052958 -0.6365886 0.00125161 DNAH11 Body 

cg17448156 -0.4248624 0.00130194 ABHD2 5'UTR 

cg27607412 0.8937851 0.00134947 CREB3L1 Body 

cg16601153 -0.5647103 0.00146811 SMOC1 Body 

cg02954590 -0.7668536 0.00160999 STK32A TSS1500 

cg13497866 -0.6142556 0.00186501 SEMA5A 5'UTR 

cg20762419 -1.135096 0.00186811 MEGF11 Body 

cg23032674 -0.4398372 0.00198863 COL9A1 Body 

cg06668073 -0.4274583 0.00240955 FERMT1 1stExon 

cg15665400 -0.9595823 0.00247184 LYPD1 TSS200 

cg17860366 -0.90838 0.00273243 ABHD2 5'UTR 

cg06418646 -1.056016 0.00314078 EPN2 TSS200 

cg21211413 -0.4256513 0.00354986 ACAN 5'UTR 

cg27198485 -0.4061729 0.00454962 CHST8 5'UTR 

cg26187005 -0.6901525 0.00456194 WSCD1 TSS1500 

cg26047151 0.5693594 0.00467557 ACAN Body 

cg22593533 -0.5630169 0.00492138 OLIG2 TSS1500 

cg06170053 2.127599 0.00517061 SOX4 3'UTR 

cg02303520 0.3518848 0.00564889 BLM Body 

cg01994513 -0.540371 0.00570537 BLM 5'UTR 

cg11671308 0.69326392 0.00605581 MEGF11 Body 

cg03885119 -0.5416982 0.00639067 GFRA1 Body 

cg20181251 -0.4413067 0.00643226 CREB3L1 TSS200 

cg06997545 0.7462881 0.00714068 XYLT1 Body 

cg09414426 -0.4871463 0.00733413 LAMA4 Body 

cg12200950 0.32829403 0.00757922 CHST8 5'UTR 

cg10397941 2.092119 0.00824359 CHST9 TSS200 

cg12828294 0.505654 0.00848264 HAS2 5'UTR 

cg23178192 -0.291465 0.00862625 GSG1L TSS1500 
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cg17371049 0.4503356 0.00951015 MEGF11 Body 

cg04232246 0.4804495 0.0095852 MYT1 Body 

cg04462652 -0.4119489 0.00986454 LYPD1 TSS1500 

cg10414198 0.3282102 0.00988817 CREB3L1 Body 

FTLD3 OPC 

cg24825027 0.3720794 0.00073627 CREB3L1 TSS1500 

cg05855618 -1.689192 0.00078838 SEMA3E 1stExon 

cg02884053 0.9646468 0.00081628 VIPR2 Body 

cg18716096 -0.811466 0.00107871 TNK2 TSS200 

cg11842610 -0.4905241 0.00110194 GFRA1 TSS1500 

cg13890706 -0.6040917 0.00139539 GFRA1 1stExon 

cg18438300 0.5409309 0.00207465 FZD9 TSS1500 

cg17110364 0.7396864 0.00281672 PLEKHH2 Body 

cg17912112 0.5591033 0.0032162 LRRN1 Body 

cg14547067 -1.381547 0.00356013 CREB3L1 Body 

cg18340535 0.5504516 0.00432008 WSCD1 Body 

cg08927739 -0.3029243 0.00477042 ASCL1 TSS1500 

cg18443629 0.4921888 0.00590208 GALR1 TSS1500 

cg25351565 -0.4358636 0.006367 GFRA1 TSS1500 

cg19818218 0.5541061 0.00729548 CCDC146 5'UTR 

cg09576074 0.9484115 0.00739336 WFDC1 Body 

cg25483854 0.4251287 0.00880668 GFRA1 Body 

cg16375358 0.4456595 0.00880839 CACNG5 TSS200 

cg20738665 0.4833503 0.00895735 NKAIN4 Body 

cg04555779 -0.4110074 0.00933346 LAMA4 5'UTR 

FTLD1 OLG 

cg13010326 1.11572342 6.74E-05 ANLN Body 

cg21204870 0.8332753 0.00010403 PALM2 Body 

cg25560173 -0.896103 0.00033562 AMER2 TSS1500 
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cg10370144 -0.8376445 0.00041853 PIP4K2A Body 

cg14506332 0.6867308 0.00072852 CCP110 ExonBnd 

cg10042572 1.225336 0.00080398 CTNNA3 Body 

cg16585827 2.114521 0.00154328 LRP2 TSS200 

cg17849530 0.7074948 0.00280321 FAM107B 1stExon 

cg18733967 0.5734606 0.00289283 DNAH17 Body 

cg08817786 1.51848 0.0033508 EFHD1 TSS200 

cg06592333 -0.6724416 0.0034582 GPR37 Body 

cg05297352 -0.6387336 0.00393163 FAM107B 5'UTR 

cg10746396 -0.8199421 0.00422079 PCSK6 Body 

cg07980015 -0.7254877 0.00432458 TMTC4 Body 

cg00803762 0.68349949 0.0051869 CLCA4 Body 

cg04489786 -0.5912267 0.00547777 LPGAT1 TSS1500 

cg08285862 0.56423214 0.00626887 CDH1 Body 

cg06868415 0.5095751 0.00633513 CTNNA3 Body 

cg16864731 0.6362055 0.00649491 CTNNA3 Body 

cg23659216 0.4137947 0.00700419 CDH1 Body 

cg00093095 0.6037456 0.00701231 DNAH17 Body 

cg20037072 -0.7869802 0.00702374 PIEZO2 Body 

cg25114586 0.3865834 0.00759183 PACS2 Body 

cg08866897 0.4171995 0.00761641 MYRF Body 

cg10503635 2.064732 0.00771467 MOG 3'UTR 

cg14625975 0.6614531 0.00797631 ABCA2 Body 

cg07119871 -0.5983757 0.00825134 PRIMA1 Body 

cg01806713 0.7326345 0.00868674 MAN2A1 Body 

cg19813868 -1.487371 0.00887614 QDPR TSS1500 

cg08220149 -0.517982 0.00889706 NDE1 Body 

cg26467952 0.5017531 0.00908322 PRUNE2 Body 

cg18628493 -0.4682805 0.00909713 TMTC4 5'UTR 

cg24375244 0.4657584 0.00914539 PCSK6 Body 
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cg02956019 -0.8176598 0.00937005 PCSK6 Body 

cg02835742 1.17569117 0.00949579 KIF13B TSS1500 

cg04826663 1.263206 0.00961232 ANLN Body 

cg03440556 -0.9276868 0.00988155 SCD Body 

FTLD2 OLG 

cg08407007 -0.7350882 4.27E-05 HSPA2 5'UTR 

cg08909938 0.7958662 0.00013333 NINJ2 Body 

cg09547698 -0.5485639 0.00033158 PALM2 5'UTR 

cg11598403 -0.8537922 0.00038872 MBP Body 

cg13572782 -0.6652821 0.00052119 MBP Body 

cg13543436 0.7015383 0.00095792 PRUNE2 Body 

cg01786715 -0.9495888 0.00109873 HSPA2 1stExon 

cg24807354 -0.4595228 0.00115413 S1PR5 TSS1500 

cg23225103 0.7864026 0.00144214 CNTN2 Body 

cg06138643 -0.6374172 0.00173103 DYSF Body 

cg14371817 -0.9695061 0.00189402 PLEKHH1 5'UTR 

cg06400428 -2.216374 0.00202769 SCD Body 

cg23288103 -0.4925922 0.00203698 BOK Body 

cg09025960 -0.5625344 0.00219234 TMEM63A TSS1500 

cg12600692 0.6305011 0.00220556 PLCL1 Body 

cg18563812 -0.926239 0.00234096 ST18 Body 

cg06304841 -0.9663024 0.00244937 SPATA22 TSS1500 

cg20162626 -0.9852278 0.00303445 ENPP2 Body 

cg10662093 -0.3749633 0.00337498 PPP1R14A TSS200 

cg14272175 -0.4969135 0.00358419 PXK Body 

cg01560493 -0.438741 0.00368364 MAN2A1 TSS1500 

cg13850625 -0.809915 0.00390843 TMEM144 5'UTR 

cg10771968 -0.7090675 0.00471617 CPB1 Body 

cg27379573 -0.5508829 0.00483076 TMEM235 5'UTR 

cg22413063 0.3766988 0.00499656 CAPN3 5'UTR 
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cg16864731 -0.5226198 0.00549206 CTNNA3 Body 

cg06912990 -0.6718896 0.00560266 TMEM144 1stExon 

cg09032863 -0.4716535 0.00565476 IPO13 5'UTR 

cg12249207 -0.4153343 0.00575364 C21orf91 TSS200 

cg00954566 -0.853223 0.00585419 SCD TSS1500 

cg14102267 -0.68168 0.00616531 PALM2 TSS1500 

cg12695986 -1.482131 0.0065382 ITGA2 TSS200 

cg19298588 -0.7513747 0.00661768 ADAMTS18 Body 

cg18191162 -0.3398265 0.00672503 KIF6 TSS200 

cg22621867 -0.8039745 0.00692401 GPR62 1stExon 

cg06424168 0.4166857 0.00724177 TMC7 TSS1500 

cg20316614 -0.5270099 0.00724912 TMEM63A 5'UTR 

cg13515395 -0.3199654 0.00766233 MBP Body 

cg15375239 -1.094902 0.00802145 SPINT2 5'UTR 

cg07309124 -0.683337 0.00811736 CTNNA3 Body 

cg21042919 -0.4805335 0.0082647 ARHGAP23 Body 

cg23105820 -0.3400106 0.00850634 MOG 1stExon 

cg00936790 -0.7049655 0.00875874 KIF13B Body 

cg13534698 0.6088663 0.00878147 NDE1 5'UTR 

cg17667454 -0.6937434 0.0088171 KIF6 TSS1500 

cg03663576 -0.5714469 0.00890287 ENPP2 Body 

cg00204249 0.3173641 0.00925061 DNAH17 Body 

cg17604758 -0.6062349 0.00930714 ANLN Body 

cg16596039 0.2951763 0.00941052 PIEZO2 Body 

cg02906707 0.5066916 0.00965292 PCSK6 Body 

cg26559661 0.2923501 0.0097141 GALNT6 Body 

cg06784867 -0.3487582 0.00976167 CNTN2 Body 

cg14849071 -0.5209993 0.00978822 TMEM63A TSS200 

cg20481032 -0.5521592 0.00980069 PRIMA1 Body 

FTLD3 OLG 
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cg11965880 -2.679896 1.31E-05 PIP4K2A TSS200 

cg03558769 0.9217398 4.98E-05 BOK TSS1500 

cg07354124 -0.4845015 8.22E-05 TCP11L2 TSS1500 

cg05523056 -0.9266833 0.00026453 ADAMTS18 Body 

cg23109129 -1.902458 0.00054699 HHIP Body 

cg16004911 -4.905445 0.00068653 FRYL TSS1500 

cg01870140 -1.346707 0.00069201 TMTC4 TSS200 

cg03142956 -0.5795641 0.00114831 CNTN2 1stExon 

cg23053525 0.4573756 0.00144186 DNAH17 Body 

cg21815781 -0.6416225 0.00179734 PLEKHH1 TSS200 

cg26371957 0.9821989 0.0024596 NINJ2 Body 

cg00477086 0.609925 0.00299513 DYSF Body 

cg10734940 -0.7988895 0.00300492 PSEN1 Body 

cg14272175 -0.5981389 0.00315265 PXK Body 

cg17012863 -1.384354 0.00366199 LIPA TSS200 

cg14245120 0.7782098 0.00413889 KIF6 Body 

cg27026695 0.5063622 0.0045363 HSPA2 TSS1500 

cg20264966 -0.9257232 0.0046845 CTNNA3 Body 

cg06252382 -1.456909 0.00578693 SLC31A2 Body 

cg00148325 0.3315188 0.00593041 TTYH2 TSS200 

cg07230380 -1.601482 0.00600129 SCD TSS1500 

cg09444531 0.5188627 0.0070737 ENPP2 Body 

cg08645980 0.7751442 0.00723884 LRP2 3'UTR 

cg17275844 -0.8360219 0.00754782 FRYL 3'UTR 

cg19756789 -0.5243171 0.00755741 RASGRP3 1stExon 

cg18568335 0.5080226 0.00760835 PACS2 Body 

cg04934643 0.557157 0.00763676 PACS2 Body 

cg25272394 0.663744 0.00770489 CLCA4 Body 

cg26787256 0.5185892 0.00808321 DYSF Body 

cg18501001 0.4494832 0.00947437 DNAH17 Body 
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cg14875449 -0.5759124 0.00984583 PXK 1stExon 

Differentially methylated sites mapping to OLG and OPC genes from the FTLD1, FTLD2 and FTLD3 EWAS. FTLD: 
frontotemporal lobar degeneration, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell.  
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Appendix C: Differential expression of genes identified in the FTLD1, 2 and 3 EWAS 

analyses 
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Gene Probe logFC_

FTLDv

sCTRL

_DNA

meth 

Feature logFC_E

xpressio

n 

P.Value_E

xpression 

Expressio

n 

Methylati

onstatus 

FTLD1_OPC  

ACAN cg00425944 0.681 Body 0.462 0.000 Up Hyper 

ACAN cg17414248 0.704 5'UTR 0.462 0.000 Up Hyper 

AMZ1 cg02230373 0.421 Body -0.280 0.002 Down Hyper 

CCDC146 cg00429706 1.086 TSS200 0.144 0.026 Up Hyper 

GPNMB cg08719965 0.487 Body 0.430 0.013 Up Hyper 

SEMA3E cg23889875 1.300 1stExon -0.432 0.042 Down Hyper 

TNK2 cg04848502 0.800 TSS1500 -0.148 0.029 Down Hyper 

VSX1 cg10004990 0.649 Body 0.404 0.001 Up Hyper 

WFDC1 cg14029669 -1.343 Body -0.306 0.003 Down Hypo 

FTLD1_OLG 

AMER2 cg25560173 -0.896 TSS1500 0.268 0.004 Up Hypo 

CDH1 cg08285862 0.564 Body 0.442 0.017 Up Hyper 

CDH1 cg23659216 0.414 Body 0.442 0.017 Up Hyper 

FAM107B cg17849530 0.707 1stExon 0.437 0.001 Up Hyper 

FAM107B cg05297352 -0.639 5'UTR 0.437 0.001 Up Hypo 

GPR37 cg06592333 -0.672 Body 0.360 0.015 Up Hypo 

LPGAT1 cg04489786 -0.591 TSS1500 -0.239 0.003 Down Hypo 

LRP2 cg16585827 2.115 TSS200 0.511 0.006 Up Hyper 

MAN2A1 cg01806713 0.733 Body 0.307 0.002 Up Hyper 

MYRF cg08866897 0.417 Body 0.359 0.033 Up Hyper 

PIEZO2 cg20037072 -0.787 Body 0.385 0.013 Up Hypo 

PIP4K2A cg10370144 -0.838 Body 0.259 0.017 Up Hypo 

PRIMA1 cg07119871 -0.598 Body 0.601 0.000 Up Hypo 

QDPR cg19813868 -1.487 TSS1500 0.315 0.003 Up Hypo 
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Differentially expressed genes to which methylation sites mapped to in the FTLD1, FTLD2 and FTLD3 EWAS. FTLD: 
frontotemporal lobar degeneration, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell.  
 

 

  

FTLD2_OPC 

ACAN cg26047151 0.569 Body 0.512 0.030 Up Hyper 

ACAN cg21211413 -0.426 5'UTR 0.512 0.030 Up Hypo 

CHST8 cg12200950 0.328 5'UTR -0.660 0.002 Down Hyper 

CHST8 cg27198485 -0.406 5'UTR -0.660 0.002 Down Hypo 

CHST9 cg10397941 2.092 TSS200 0.513 0.012 Up Hyper 

DNAH11 cg11052958 -0.637 Body 1.086 0.006 Up Hypo 

FERMT1 cg06668073 -0.427 1stExon 0.556 0.008 Up Hypo 

GSG1L cg23178192 -0.291 TSS1500 0.530 0.004 Up Hypo 

MEGF11 cg11671308 0.693 Body 0.208 0.032 Up Hyper 

MEGF11 cg17371049 0.450 Body 0.208 0.032 Up Hyper 

MEGF11 cg20762419 -1.135 Body 0.208 0.032 Up Hypo 

SMOC1 cg16601153 -0.565 Body 0.698 0.011 Up Hypo 

SOX4 cg06170053 2.128 3'UTR 0.372 0.012 Up Hyper 

WSCD1 cg26187005 -0.690 TSS1500 0.551 0.002 Up Hypo 

FTLD2_OLG 

CPB1 cg10771968 -0.709 Body -1.363 0.010 Down Hypo 

SPINT2 cg15375239 -1.095 5'UTR -0.805 0.001 Down Hypo 
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Appendix D: Results from the FTLD1, FTLD2 and FTLD3 meta-analysis  

  

CpG TE.random P-value random Chromosome Gene Position 

OPC Genes 

cg18716096 -0.503519734 0.00056605 3 TNK2 TSS200 

cg18443629 0.334404672 0.000927 18 GALR1 TSS1500 

cg06580318 -0.291271963 0.001135707 2 SPC25 TSS200 

cg09368832 0.412167423 0.001742224 17 NTN1 3'UTR 

cg25617725 -0.293112611 0.00180402 10 GFRA1 TSS1500 

cg17154602 0.362747343 0.004265685 18 GALR1 TSS1500 

cg21690489 -0.230764176 0.004589552 11 CREB3L1 Body 

cg20872937 -0.644242889 0.004833112 18 GALR1 TSS200 

cg14454477 0.453642849 0.005796448 2 PLEKHH2 Body 

cg27462405 -0.342714813 0.007437921 5 SEMA5A 5'UTR 

cg06271623 0.518119015 0.007710976 2 RUFY4 Body 

cg20095233 -0.305913628 0.009561602 10 GFRA1 TSS1500 

OLG Genes 

cg12600692 0.528939091 1.78E-05 2 PLCL1 Body 

cg14849071 -0.55108699 1.95E-04 1 TMEM63A TSS200 

cg14272175 -0.400489864 2.59E-04 3 PXK Body 

cg07119871 -0.486667472 3.58E-04 14 PRIMA1 Body 

cg27026695 0.386164257 6.26E-04 14 HSPA2 TSS1500 

cg12571928 -0.412468723 7.38E-04 2 BOK Body 

cg17122437 0.365888198 7.74E-04 10 FAM107B 1stExon 

cg01806713 0.48626362 0.001524677 5 MAN2A1 Body 

cg04905644 0.319038166 0.001706192 8 KIF13B Body 

cg26421140 0.203980251 0.002135411 14 HSPA2 TSS1500 

cg06998038 0.308756865 0.002415002 14 PLEKHG3 Body 

cg01786715 -0.539645912 0.002556728 14 HSPA2 1stExon 
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cg24807354 -0.310620376 0.00264963 19 S1PR5 TSS1500 

cg25139187 -0.335516953 0.003287719 1 HAPLN2 Body 

cg12162778 -0.397636053 0.003836848 14 PSEN1 5'UTR 

cg14775560 -0.718265541 0.004025309 11 FOLH1 1stExon 

cg02396982 0.272952911 0.004763075 16 NDE1 Body 

cg08187425 -0.260382685 0.005338688 2 EFHD1 TSS1500 

cg16719517 -0.67921887 0.005718725 21 CBR1 1stExon 

cg08589981 0.58294705 0.005806083 10 PIP4K2A Body 

cg00807430 -0.25141277 0.006169178 5 MAN2A1 1stExon 

cg02960853 -0.299005552 0.006226633 7 GPR37 1stExon 

cg13993734 0.359257057 0.007142274 19 MAG Body 

cg16747785 0.360384725 0.007368041 14 CLMN Body 

cg11311579 -0.440685595 0.008169193 10 SCD TSS200 

cg19098785 0.291765283 0.008428158 1 CDK18 5'UTR 

cg26677958 0.262819459 0.008618372 14 PACS2 Body 

cg01560493 -0.238625822 0.008720767 5 MAN2A1 TSS1500 

cg12768447 0.49044515 0.009079316 10 CTNNA3 TSS1500 

cg16559695 -0.29379934 0.009378443 14 PACS2 3'UTR 

cg15375239 -0.604902952 0.009685521 19 SPINT2 5'UTR 

 

Differentially methylated sites mapping to OLG and OPC genes from the FTLD1, FTLD2 and 
FTLD3 meta-analysis. FTLD: frontotemporal lobar degeneration, OLG: oligodendrocyte, OPC: 
oligodendrocyte precursor cell.  
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Appendix E: Results from FTLD-sorted EWAS 
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Probe Gene Feature Delta M P.Value 

OPC Genes  

cg20588045 PCDH15 TSS200 0.70951951 0.0001668 

cg12092351 GSG1L Body 0.72406599 0.00029508 

cg26321126 MEGF11 Body 0.99596103 0.00076029 

cg17783815 NTN1 Body 0.66983169 0.0008812 

cg14789080 KLHL1 Body 0.58409469 0.00111138 

cg03570006 ATP2C2 Body 1.02343102 0.00163563 

cg07229946 ABHD2 5'UTR -0.738612 0.0019155 

cg08543143 CHST8 Body 1.28546765 0.00259315 

cg21191541 TNK2 5'UTR 0.86932414 0.00308807 

cg21950367 KLRC4-KLRK1 5'UTR 0.66088237 0.00314037 

cg01439383 AMZ1 5'UTR 0.64505164 0.0033725 

cg25617725 GFRA1 TSS1500 0.58920422 0.00472367 

cg09699193 SEMA5A 5'UTR 0.63812851 0.0051067 

cg14029669 WFDC1 Body -0.8371062 0.00530147 

cg05144285 VIPR2 Body 0.88131434 0.00538402 

cg00556126 WFDC1 TSS200 0.71607837 0.00550451 

cg08909835 USP24 Body 0.86308607 0.00575563 

cg26577658 ATP2C2 Body -0.6434043 0.00612552 

cg20919596 AMZ1 TSS1500 0.48907194 0.00649895 

cg05711251 AMZ1 Body 0.5759589 0.00703424 
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cg06433369 MYT1 Body 0.59301831 0.00705627 

cg12169338 WSCD1 Body 0.63339923 0.00712321 

cg13944537 MEGF11 5'UTR -2.5569339 0.00739029 

cg00545918 COL20A1 Body 0.46559438 0.00743353 

cg23865698 WFDC1 TSS1500 0.52310609 0.00760983 

cg26066180 COL20A1 TSS1500 -1.1485145 0.00815615 

cg17110364 PLEKHH2 Body 0.49579913 0.00846157 

cg00452694 HRASLS ExonBnd 0.81104928 0.00848034 

cg14006448 COL9A1 Body 0.93771172 0.0090853 

cg17922749 GSG1L Body 0.50341686 0.00915629 

cg25849086 USP24 3'UTR 0.57171346 0.00948906 

cg03483267 FERMT1 5'UTR -0.8672395 0.00957876 

cg21609684 CSPG4 1stExon 0.51772177 0.00973855 

cg10276400 XYLT1 Body 0.7813862 0.00978865 

cg01661350 KLHL1 1stExon -0.5425529 0.00999528 

OLG Genes 

cg10415442 ST18 5'UTR -1.2198579 0.00038771 

cg20723425 DNAH17 Body 0.60867088 0.00040227 

cg16176654 FAM107B Body 0.68918859 0.00071179 

cg21696316 MOBP 5'UTR 1.51241846 0.00075903 

cg14465747 PDE1C TSS1500 0.7378028 0.00095886 

cg00932128 HSPA2 TSS1500 -0.8732706 0.00134025 

cg19113053 KIF6 Body 0.72414173 0.00150166 
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cg05784996 PIEZO2 Body 0.73389475 0.00174207 

cg06028605 SLC5A11 5'UTR -0.5124864 0.00177054 

cg20198768 MOG 3'UTR -0.7047336 0.00178449 

cg12600692 PLCL1 Body -0.9061647 0.00182993 

cg07068376 IPO13 Body 0.59792189 0.00188306 

cg05778847 PPP1R14A Body -0.9922623 0.00207578 

cg26347632 CDC42EP1 3'UTR 1.08269643 0.00213249 

cg02691058 ST18 3'UTR 0.62380579 0.00218387 

cg05304658 ADAMTS18 Body 0.49142331 0.00230198 

cg08808571 QDPR Body 0.64548631 0.00237343 

cg11552370 NINJ2 Body 0.64867318 0.00242588 

cg15783427 MBP Body 0.55201912 0.002526 

cg14940461 KIF6 Body 0.64658781 0.00280886 

cg19962468 SH3TC2 1stExon 0.55026426 0.00281129 

cg17275551 KIF6 Body 0.51788159 0.00309269 

cg04906616 POLR2F Body 0.7699259 0.00328913 

cg13882486 LPAR1 5'UTR 0.65557069 0.00344196 

cg00702126 VWA1 TSS1500 -1.4712543 0.00376084 

cg21481658 RFFL Body 0.70184717 0.00431881 

cg03072665 BOK Body -1.7055425 0.00440333 

cg24400204 PRUNE2 Body -0.4936703 0.00450896 

cg21816234 CTNNA3 Body 0.43443761 0.00476436 

cg09281830 KIF13B Body 0.55474027 0.00477658 
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Differentially methylated OLG and OPC methylation sites from brain-nuclei sorted FTLD EWAS reaching our chosen 

significance threshold (p < 0.01).  FTLD: frontotemporal lobar degeneration, OLG: oligodendrocyte, OPC: 

oligodendrocyte precursor cell.  

 

cg11139063 TMEM165 Body -0.6742209 0.0049246 

cg18419549 GALNT6 5'UTR 0.52117047 0.00544792 

cg22447679 TMEM63A Body 0.56385719 0.00580976 

cg16544209 PRUNE2 TSS200 -2.1972918 0.00691746 

cg07649988 SCD TSS200 0.63222166 0.00748193 

cg13735453 CLMN Body 0.54556979 0.00756862 

cg07063370 POLR2F Body -0.7402299 0.00772039 

cg25678491 TMTC4 TSS200 -1.1461034 0.00808232 

cg03760081 FAM107B 5'UTR 0.51443107 0.00815369 

cg24855781 CTNNA3 Body 0.51771535 0.00828858 

cg05264408 PCSK6 Body 0.52810523 0.0083788 

cg08899203 RASGRP3 Body 0.57062988 0.00880356 

cg07099998 SLC5A11 TSS1500 0.67899381 0.0088213 

cg19040750 CDK18 5'UTR 0.61710267 0.00883616 

cg15651293 PRIMA1 Body 0.44730736 0.00924092 

cg25499397 GPR62 1stExon 0.55918941 0.00936414 

cg11027058 DYSF 5'UTR 0.58612938 0.00945425 

cg03641375 FAM107B 5'UTR -0.7418409 0.00974516 

cg14399369 VRK2 TSS200 -0.5633325 0.00981632 

cg25432316 PLEKHH1 Body 0.58575896 0.00990618 



322 

 

Appendix F: Results from the AD EWAS analysis  

Probe Gene logFC P.Value adj.P.Val Feature 

OPC Genes 

cg20692569 FZD9 -0.116 0.0000 0.0150 1stExon 

cg00916179 PLEKHH2 -0.084 0.0001 0.0429 3'UTR 

cg17640485 TNK2 0.101 0.0001 0.0488 Body 

cg22274825 SOX4 -0.141 0.0001 0.0505 TSS200 

cg19178642 ABHD2 0.094 0.0001 0.0671 5'UTR 

cg23865698 WFDC1 0.047 0.0009 0.1546 TSS1500 

cg17650274 VSX1 -0.106 0.0013 0.1796 TSS1500 

cg26338723 GFRA1 -0.135 0.0015 0.1920 Body 

cg14273027 KLHL1 -0.086 0.0022 0.2220 TSS200 

cg13016408 LYPD1 -0.090 0.0030 0.2503 5'UTR 

cg02631468 VSX1 -0.088 0.0031 0.2548 TSS200 

cg15484988 GALR1 0.137 0.0039 0.2793 TSS1500 

cg17274742 GPNMB 0.083 0.0040 0.2803 1stExon 

cg03075065 WFDC1 -0.061 0.0041 0.2830 Body 

cg11970679 DNAH11 -0.077 0.0046 0.2950 Body 

cg18285681 AMZ1 0.037 0.0056 0.3154 5'UTR 

cg03175653 GALR1 0.035 0.0061 0.3263 TSS1500 

cg20473723 FERMT1 0.182 0.0064 0.3308 TSS1500 

cg17158750 COL20A1 0.053 0.0071 0.3420 TSS200 

cg11835978 SEMA5A 0.188 0.0071 0.3430 3'UTR 

cg17792108 CACNG5 0.053 0.0073 0.3467 TSS1500 

cg25012274 NTN1 0.065 0.0075 0.3488 Body 

cg24182468 VIPR2 -0.055 0.0078 0.3518 Body 

cg17742418 EPN2 0.041 0.0078 0.3534 5'UTR 

cg16465663 MEGF11 0.099 0.0089 0.3666 Body 

cg10979891 SMOC1 0.065 0.0092 0.3716 TSS1500 
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cg04986899 XYLT1 -0.065 0.0100 0.3815 Body 

OLG Genes 

cg01941881 PACS2 -0.10263 0.00001 0.02123 Body 

cg16179521 PCSK6 0.07483 0.00003 0.03306 Body 

cg10464462 RFFL 0.08819 0.00008 0.04923 TSS1500 

cg02363711 TMEM144 -0.10500 0.00008 0.05098 Body 

cg12461930 GJC2 0.08076 0.00016 0.07292 5'UTR 

cg05706061 SLC31A2 -0.07092 0.00032 0.09882 TSS1500 

cg20704602 MOG -0.11282 0.00036 0.10616 3'UTR 

cg00479347 PACS2 -0.08688 0.00057 0.12836 Body 

cg02534163 ENPP2 -0.16252 0.00079 0.14757 1stExon 

cg01994290 PLEKHG3 0.04983 0.00082 0.14934 TSS1500 

cg10772086 TF -0.06499 0.00100 0.16047 TSS1500 

cg24765079 CDH1 -0.08609 0.00103 0.16224 Body 

cg11950778 UGT8 -0.05604 0.00108 0.16655 TSS1500 

cg07637837 MBP 0.10646 0.00117 0.17174 5'UTR 

cg15035133 CDC42EP1 0.05920 0.00159 0.19437 Body 

cg09627520 PXK -0.12641 0.00168 0.19888 3'UTR 

cg25677261 PCSK6 0.07272 0.00168 0.19888 Body 

cg17655614 CDH1 -0.04394 0.00168 0.19912 TSS1500 

cg20123637 TF -0.09411 0.00182 0.20600 Body 

cg22908922 PACS2 0.07143 0.00183 0.20663 Body 

cg01644592 MOG -0.07124 0.00186 0.20749 3'UTR 

cg03065165 GJC2 0.03886 0.00187 0.20812 TSS200 

cg15552051 PPP1R14A -0.11182 0.00196 0.21220 Body 

cg02428538 SLC5A11 0.11445 0.00225 0.22397 TSS1500 

cg16419054 PACS2 -0.03944 0.00235 0.22819 Body 

cg15069948 MOBP -0.11550 0.00277 0.24372 Body 

cg24402667 ARHGAP23 -0.04957 0.00298 0.25112 TSS1500 

cg09317371 CPNE2 -0.03429 0.00329 0.26052 Body 
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cg04105230 PCSK6 0.07950 0.00333 0.26148 Body 

cg03018256 TTYH2 -0.05343 0.00386 0.27777 Body 

cg22810875 NINJ2 -0.04092 0.00400 0.28112 3'UTR 

cg03147503 MOG -0.06631 0.00462 0.29622 3'UTR 

cg21927177 PLEKHG3 0.03513 0.00471 0.29832 5'UTR 

cg07318204 HHIP -0.07353 0.00499 0.30415 TSS1500 

cg19178876 MBP -0.08628 0.00501 0.30432 3'UTR 

cg03917584 MAG -0.09676 0.00503 0.30460 Body 

cg17036418 RFFL 0.09743 0.00505 0.30490 TSS1500 

cg02475474 MOG -0.04385 0.00506 0.30520 3'UTR 

cg05279622 MOG -0.06362 0.00523 0.30920 Body 

cg14833933 CAPN3 -0.04203 0.00551 0.31483 1stExon 

cg01279990 ARHGAP23 0.06418 0.00569 0.31854 Body 

cg26341831 TMEM63A 0.04017 0.00642 0.33101 Body 

cg07020596 CTNNA3 -0.07216 0.00667 0.33579 Body 

cg23053525 DNAH17 0.07406 0.00681 0.33765 Body 

cg25060035 TTYH2 -0.03932 0.00714 0.34391 Body 

cg01611017 CLMN 0.04558 0.00715 0.34404 Body 

cg09138865 LDB3 0.03119 0.00717 0.34442 TSS1500 

cg12236045 CTNNA3 0.15215 0.00723 0.34549 Body 

cg10069691 ST18 -0.05922 0.00729 0.34602 5'UTR 

cg16563470 CNP -0.05273 0.00739 0.34723 Body 

cg24487969 TMTC4 -0.14258 0.00756 0.34924 Body 

cg10944735 DYSF 0.07196 0.00796 0.35488 TSS200 

cg08220149 NDE1 -0.08923 0.00849 0.36281 Body 

cg03238797 ADAMTS18 -0.15741 0.00858 0.36414 1stExon 

cg14875449 PXK -0.08785 0.00876 0.36574 1stExon 

cg23761616 TMEM144 -0.05979 0.00897 0.36855 TSS200 

cg09662369 NDE1 0.12975 0.00903 0.36959 TSS200 

cg06570930 PPP1R14A -0.07620 0.00934 0.37349 Body 
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cg22681074 GJC2 0.03656 0.00948 0.37520 5'UTR 

cg06880930 CPNE2 -0.08852 0.00962 0.37707 Body 

Differentially methylated methylation sites (P < 0.01) mapping to OLG/OPC genes in the bulk AD data. AD: 

Alzheimer’s disease, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell.  
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Appendix G: Differentially expressed genes identified in the AD EWAS  

Gene CpG Delta M CpG 

Methylation 

P.Value CpG 

Methylation 

Feature logFC Gene 

Expression 

P.Value Gene 

expression 

OPC genes 

LYPD1 cg13016408 -0.0904 0.0030 5'UTR -0.1242 0.0084 

GALR1 cg15484988 0.1372 0.0039 TSS1500 0.1248 0.0265 

DNAH11 cg11970679 -0.0766 0.0046 Body -0.1989 0.0263 

GALR1 cg03175653 0.0354 0.0061 TSS1500 0.1248 0.0265 

EPN2 cg17742418 0.0406 0.0078 5'UTR -0.0438 0.0429 

FZD9 cg20692569 -0.1155 4.1842e-06 1stExon -0.1513 0.0042 

SOX4 cg22274825 -0.1412 7.9940e-05 TSS200 -0.1144 0.0064 

OLG Genes 

PACS2 cg01941881 -0.1026 1.2991e-05 Body -0.0402 0.0055 

TF cg20123637 -0.0941 0.0018 Body -0.1637 0.0027 

NDE1 cg08220149 -0.0892 0.0085 Body -0.1870 5.4491e-06 

CPNE2 cg06880930 -0.0885 0.0096 Body -0.0835 0.0031 

PACS2 cg00479347 -0.0869 0.0006 Body -0.0402 0.0055 

CDH1 cg24765079 -0.0861 0.0010 Body -0.1417 0.0260 

HHIP cg07318204 -0.0735 0.0050 TSS1500 -0.1476 0.0154 

CTNNA3 cg07020596 -0.0722 0.0067 Body -0.1575 0.0094 

SLC31A2 cg05706061 -0.0709 0.0003 TSS1500 -0.1224 0.0153 

TF cg10772086 -0.0650 0.0010 TSS1500 -0.1637 0.0027 

ST18 cg10069691 -0.0592 0.0073 5'UTR -0.1714 0.0018 

UGT8 cg11950778 -0.0560 0.0011 TSS1500 -0.2265 0.0004 

TTYH2 cg03018256 -0.0534 0.0039 Body -0.1032 0.0224 

ARHGAP23 cg24402667 -0.0496 0.0030 TSS1500 -0.0753 0.0007 

CDH1 cg17655614 -0.0439 0.0017 TSS1500 -0.1417 0.0260 

NINJ2 cg22810875 -0.0409 0.0040 3'UTR -0.1455 0.0115 

PACS2 cg16419054 -0.0394 0.0023 Body -0.0402 0.0055 
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TTYH2 cg25060035 -0.0393 0.0071 Body -0.1032 0.0224 

CPNE2 cg09317371 -0.0343 0.0033 Body -0.0835 0.0031 

PLEKHG3 cg21927177 0.0351 0.0047 5'UTR -0.0884 0.0364 

GJC2 cg22681074 0.0366 0.0095 5'UTR -0.0930 0.0240 

GJC2 cg03065165 0.0389 0.0019 TSS200 -0.0930 0.0240 

TMEM63A cg26341831 0.0402 0.0064 Body -0.1343 0.0058 

CLMN cg01611017 0.0456 0.0071 Body -0.1970 8.7250e-05 

PLEKHG3 cg01994290 0.0498 0.0008 TSS1500 -0.0884 0.0364 

CDC42EP1 cg15035133 0.0592 0.0016 Body -0.1310 0.0018 

ARHGAP23 cg01279990 0.0642 0.0057 Body -0.0753 0.0007 

PACS2 cg22908922 0.0714 0.0018 Body -0.0402 0.0055 

DYSF cg10944735 0.0720 0.0080 TSS200 -0.1119 0.0049 

PCSK6 cg25677261 0.0727 0.0017 Body -0.1734 0.0006 

DNAH17 cg23053525 0.0741 0.0068 Body -0.1475 0.0283 

PCSK6 cg16179521 0.0748 3.3244e-05 Body -0.1734 0.0006 

PCSK6 cg04105230 0.0795 0.0033 Body -0.1734 0.0006 

GJC2 cg12461930 0.0808 0.0002 5'UTR -0.0930 0.0240 

RFFL cg10464462 0.0882 7.7249e-05 TSS1500 -0.1056 0.0003 

RFFL cg17036418 0.0974 0.0050 TSS1500 -0.1056 0.0003 

SLC5A11 cg02428538 0.1145 0.0022 TSS1500 -0.2456 0.0033 

NDE1 cg09662369 0.1297 0.0090 TSS200 -0.1870 5.4491e-06 

CTNNA3 cg12236045 0.1522 0.0072 Body -0.1575 0.0094 

Significantly differentially methylated probes mapping to genes that are significantly differentially expressed in bulk 

AD data.CpG methylation and gene expression of significantly differentially methylated (P < 0.01) which also map to 

genes which are significantly differentially expressed (P < 0.05). AD: Alzheimer’s disease, OLG: oligodendrocyte, 

OPC: oligodendrocyte precursor cell.  
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Appendix H: Results from the AD1 and AD2 EWAS  

 

Probe Gene Feature Delta M P.Value 

AD1 OPC Genes 

cg04525189 VIPR2 Body -0.428006919 0.000381785 

cg20791593 NEU4 TSS1500 0.381533044 0.000714713 

cg04913160 ABHD2 1stExon 0.339511987 0.000733702 

cg14173476 EPN2 5'UTR 0.305605811 0.000836407 

cg15299832 OLIG2 TSS200 0.347481408 0.002155247 

cg18493027 SMOC1 5'UTR -0.275376224 0.002548964 

cg16933181 CHST9 TSS200 0.321088356 0.002715211 

cg07099991 WFDC1 Body 0.298544835 0.002810256 

cg15042332 FABP7 5'UTR 0.441169 0.002967258 

cg22736323 PDGFRA 1stExon -0.362727447 0.004345708 

cg25164490 SPSB4 Body 0.42217454 0.004398757 

cg06039355 GFRA1 5'UTR 0.342250606 0.004403473 

cg20588045 PCDH15 TSS200 0.303864393 0.004534342 

cg12162377 B3GNT7 Body -0.25843262 0.004575852 

cg00164894 USP24 Body 0.239656027 0.005062574 

cg27418204 TNK2 Body 0.276391066 0.005907791 

cg10071275 MYT1 5'UTR 0.306768601 0.006231633 

cg25857018 BLM TSS200 0.279950974 0.006317593 

cg25156843 ABHD2 5'UTR 0.275076175 0.006364144 

cg22235407 MEGF11 Body 0.313078601 0.007522292 

cg11959156 MYT1 Body 0.401388784 0.007621494 

cg10354232 LYPD1 Body 0.409098519 0.008187175 

cg07575407 MEGF11 5'UTR 0.350284376 0.008365171 

AD1 OLG Genes 

cg16985259 IPO13 5'UTR 0.354612413 3.17E-05 

cg24402667 ARHGAP23 TSS1500 0.516080314 0.0001973 
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cg22238209 MAG Body -0.597199878 0.000394012 

cg13311357 FRYL TSS200 0.359260178 0.000576944 

cg15923042 QDPR Body 0.352396179 0.001385939 

cg04007987 TTYH2 Body 0.414274168 0.001670194 

cg00524271 PLCL1 TSS1500 0.337585692 0.002183969 

cg10251094 DNAH17 Body 0.353749432 0.002193613 

cg23394510 GLTP Body 0.397719217 0.002269928 

cg23428192 TMTC4 Body -0.435264872 0.003238146 

cg25296646 POLR2F 5'UTR 0.289887521 0.003254817 

cg23687677 CNP 3'UTR 0.317024493 0.003480274 

cg09345954 PLCL1 TSS200 0.247360311 0.003813256 

cg10586087 SH3TC2 3'UTR -0.328883746 0.003960395 

cg10415442 ST18 5'UTR -0.303589435 0.004223364 

cg03312124 RFFL 5'UTR 0.346823273 0.005186746 

cg18200741 RASGRP3 Body -0.334863863 0.005487429 

cg03005055 HSPA2 TSS1500 0.364003109 0.00581851 

cg06439124 TMEM144 5'UTR 0.297153891 0.006660309 

cg00401471 SPINT2 3'UTR 0.377712287 0.007231842 

cg05314420 MAL TSS1500 0.342248873 0.007947175 

cg16759204 TJAP1 5'UTR -0.325167341 0.00823156 

cg02524475 HHIP TSS1500 0.377314281 0.008757836 

cg11311579 SCD TSS200 0.216390763 0.009053459 

cg06102777 PLA2G16 TSS200 0.340298193 0.009267348 

cg19295451 PCSK6 Body 0.280125747 0.009514906 

cg24446429 MBP Body 0.261574601 0.009619992 

AD2 OPC genes 

cg07390210 GALR1 TSS1500 -0.98560592 0.000758257 

cg23046475 EPN2 5'UTR -0.974270892 0.000892543 

cg25592910 PCDH15 TSS200 -0.959383843 0.000952641 

cg27201457 WSCD1 Body -1.036821236 0.001031079 
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cg10632899 DNAH11 Body 0.900855588 0.001809256 

cg19713057 HRASLS TSS1500 -0.960449292 0.00272003 

cg10122698 GALR1 TSS200 -0.937963537 0.003013186 

cg06742101 SEMA3E 1stExon 1.188576122 0.003157185 

cg25734490 ASCL1 TSS1500 -0.695167666 0.003586539 

cg09961397 COL9A1 Body -1.186319397 0.003935182 

cg17414248 ACAN 5'UTR 0.881974956 0.004374363 

cg06859463 CREB3L1 Body -0.67109949 0.004663787 

cg00588575 SAPCD2 Body -1.706791291 0.005283239 

cg21822822 LAMA4 Body 0.661557799 0.005342867 

cg16532510 DNAH11 Body 0.609776098 0.00543077 

cg16862641 COL9A1 Body -0.903574381 0.005447197 

cg19594305 CHST8 1stExon -0.659322522 0.005742579 

cg27341926 GFRA1 1stExon -0.604803204 0.005907863 

cg08637302 WSCD1 Body 0.699561112 0.006346086 

cg03808835 PCDH15 5'UTR -0.846864275 0.006853095 

cg07805424 USP24 Body -0.667860868 0.006928677 

cg26836413 PDGFRA Body -0.608543895 0.008007674 

cg07862930 KCNJ16 5'UTR -0.640420146 0.008330074 

cg24279131 DNAH11 Body -0.756721556 0.008607698 

cg12499584 USP24 TSS200 -0.822399385 0.009102444 

cg03165383 GALR1 3'UTR -0.874968608 0.009231183 

cg25156843 ABHD2 5'UTR -0.648799861 0.009424758 

cg05528293 GALR1 TSS1500 -1.038056455 0.009679931 

cg08625851 SOX4 TSS200 -1.064461663 0.009879825 

AD2 OLG genes 

cg15545878 CRYAB TSS200 -1.3757029 0.00018849 

cg09627520 PXK 3'UTR -1.7361527 0.00018921 

cg07527273 MBP 5'UTR 1.09957218 0.00056493 

cg10841593 TCP11L2 TSS1500 -0.8845859 0.00133706 
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cg02510091 MAN2A1 TSS1500 -0.8893519 0.0014006 

cg00281717 PALM2 TSS200 -0.9548064 0.00259212 

cg17478193 LRP2 Body -0.6947888 0.0028 

cg15428653 ABCA2 TSS1500 -0.8886078 0.00290592 

cg23588204 LPGAT1 5'UTR -0.9153007 0.00313023 

cg07318204 HHIP TSS1500 -0.6908225 0.00318705 

cg01253534 LRP2 ExonBnd 1.02698315 0.00344745 

cg16400871 LDB3 Body 0.71432482 0.00387244 

cg05069012 UGT8 TSS1500 -0.7972486 0.00398548 

cg01655548 DNAH17 Body 0.84779563 0.00408599 

cg13173405 PSEN1 TSS200 -1.3085912 0.00449504 

cg17187287 UGT8 TSS200 -0.6528107 0.00501436 

cg16176654 FAM107B Body -0.7916488 0.00501683 

cg08505473 PRIMA1 TSS1500 -0.7174529 0.00502496 

cg14864972 PIP4K2A Body -0.5869494 0.00585676 

cg19239924 TCP11L2 5'UTR -0.6326963 0.00592009 

cg17037859 DYSF Body 1.23216535 0.00649162 

cg24402667 ARHGAP23 TSS1500 -0.7385276 0.00663073 

cg27333693 PIP4K2A Body -0.6181074 0.00681462 

cg07230380 SCD TSS1500 -0.9844734 0.00697924 

cg01140770 MYRF Body 0.63138307 0.00697964 

cg16231452 TCP11L2 TSS200 -0.7120043 0.00703719 

cg16354502 DYSF Body 0.64928926 0.00705941 

cg23676734 DNAH17 Body 0.59021489 0.00728303 

cg10182697 NKX6-2 TSS1500 -0.7146255 0.00768955 

cg05565537 GALNT6 Body 0.81063644 0.0080416 

cg27553637 CDC42EP1 5'UTR -0.7239523 0.0080421 

cg13914324 PRUNE2 Body -0.5912214 0.00810189 

cg13215003 CTNNA3 Body 0.78146135 0.00820934 

cg05347732 DYSF Body 0.6853443 0.00829565 
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cg05941521 NINJ2 Body 0.68954763 0.00911718 

cg21099653 CDH1 Body 0.72571087 0.0097135 

cg11598403 MBP Body -0.8059314 0.00987361 

cg03588861 PIEZO2 Body 0.63280071 0.00993767 

 AD: Alzheimer’s disease, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell.  

 

 

 

 

 

 

 

  



333 

Appendix I: Genes differentially expressed in snRNA-sequencing OLG/OPC clusters 

identified in the AD1 and AD2 EWAS  

Gene  P_value  avg_log2FC Subcluster 

OPC Genes 

ABHD2 0.00082 0.18531 Oli_0 

TNK2 0.00701 0.18906 Oli_0 

NTN1 0.04483 0.67801 Oli_0 

OLIG2 0.00797 0.40552 Oli_1 

USP24 0.01083 0.44474 Oli_3 

SEMA5A 0.04577 0.61578 Oli_3 

GFRA1 0.04638 4.29681 Oli_5 

MEGF11 0.00002 0.24337 Opc_0 

GSG1L 0.00004 0.37619 Opc_0 

SMOC1 0.00042 0.18076 Opc_0 

CHST9 0.00072 0.44280 Opc_0 

XYLT1 0.00247 -0.15182 Opc_0 

OLIG2 0.00640 0.18199 Opc_0 

SEMA5A 0.01293 -0.15586 Opc_0 

GALR1 0.01445 -0.44809 Opc_0 

PDGFRA 0.00048 0.46213 Opc_1 

LAMA4 0.00065 0.44792 Opc_1 

COL9A1 0.00738 0.24335 Opc_1 

GFRA1 0.01023 0.43260 Opc_1 

XYLT1 0.01066 -0.20521 Opc_1 

SMOC1 0.01619 0.17890 Opc_1 

GFRA1 0.01713 -2.48011 Opc_2 

OLG Genes 

CNP 0.00000 -0.20383 Oli_0 

DNAH17 0.00000 -0.62638 Oli_1 

SCD 0.00003 -0.15493 Oli_1 

PACS2 0.00386 0.22217 Oli_1 

QDPR 0.00690 -0.12480 Oli_1 

RASGRP3 0.02113 0.21127 Oli_1 

QDPR 0.00000 1.35254 Oli_3 

MBP 0.00000 -0.51347 Oli_3 

ST18 0.00000 -0.52480 Oli_3 

POLR2F 0.00000 -0.88393 Oli_3 
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Gene  P_value  avg_log2FC Subcluster 

GLTP 0.00005 0.90301 Oli_3 

PLEKHG3 0.01127 -0.87469 Oli_3 

PACS2 0.00072 0.61158 Oli_5 

CNP 0.04330 0.17969 Opc_1 

MBP 0.02454 -1.85002 Opc_2 

POLR2F 0.03585 -1.47701 Opc_2 

AD: Alzheimer’s disease, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell.  
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Appendix J: Results from the AD1 and AD2 meta-analysis  

CpG Gene Feature TE.fixed pval.fixed 

AD Meta OPC 

cg04525189 VIPR2 Body -0.433840 0.000003 

cg27201457 WSCD1 Body -0.629704 0.000027 

cg07429743 SEMA5A Body -0.380999 0.000543 

cg20791593 NEU4 TSS1500 0.318704 0.000597 

cg07099991 WFDC1 Body 0.301686 0.000622 

cg12162377 B3GNT7 Body -0.268130 0.000653 

cg18493027 SMOC1 5'UTR -0.261915 0.000668 

cg22143285 KCNJ16 TSS1500 0.388692 0.000712 

cg04913160 ABHD2 1stExon 0.273336 0.000829 

cg25857018 BLM TSS200 0.281460 0.000830 

cg23190972 SEMA5A Body -0.231266 0.001070 

cg07390210 GALR1 TSS1500 -0.451657 0.001289 

cg03082589 GSG1L Body -0.365783 0.001289 

cg14173476 EPN2 5'UTR 0.238721 0.001693 

cg10525432 SEMA5A 5'UTR -0.295811 0.002777 

cg00164894 USP24 Body 0.211763 0.003125 

cg26806527 XYLT1 Body 0.356987 0.003155 

cg15299832 OLIG2 TSS200 0.283836 0.003531 

cg21841583 ABHD2 TSS1500 -0.297851 0.003968 

cg06039355 GFRA1 5'UTR 0.298516 0.004065 

cg16933181 CHST9 TSS200 0.251742 0.004376 

cg08083599 COL20A1 Body -0.244581 0.005113 

cg18080303 LAMA4 TSS1500 -0.283774 0.005449 

cg23550826 PDGFRA 1stExon -0.282623 0.006101 

cg27418204 TNK2 Body 0.233487 0.006208 

cg07575407 MEGF11 5'UTR 0.316550 0.006286 
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cg19441674 NTN1 3'UTR 0.238670 0.008127 

cg04487479 COL9A1 Body -0.307709 0.008211 

cg20349377 KLHL1 TSS1500 -0.565467 0.008402 

cg22335692 CHST8 Body 0.251177 0.008874 

cg16713743 OLIG2 TSS1500 -0.309166 0.009277 

cg10764907 VIPR2 Body 0.198061 0.010000 

AD Meta OLG 

cg16985259 IPO13 5'UTR 0.3477004 0.0000004 

cg23676734 DNAH17 Body 0.3419555 0.0003198 

cg24446429 MBP Body 0.2873290 0.0006537 

cg15923042 QDPR Body 0.3051573 0.0007392 

cg13311357 FRYL TSS200 0.2752738 0.0011142 

cg00618155 ADAMTS14 Body -0.3081429 0.0013589 

cg23687677 CNP 3'UTR 0.2560790 0.0039307 

cg10251094 DNAH17 Body 0.2814563 0.0041784 

cg07865517 PLEKHG3 TSS1500 -0.3304465 0.0045710 

cg23394510 GLTP Body 0.3003015 0.0058522 

cg11311579 SCD TSS200 0.2024740 0.0061537 

cg12131510 ADAMTS14 Body -0.2458166 0.0073264 

cg12529006 LIPA 5'UTR -0.2231279 0.0077497 

cg25296646 POLR2F 5'UTR 0.2172582 0.0080987 

cg07421682 PCSK6 TSS1500 -0.3993335 0.0081129 

cg18200741 RASGRP3 Body -0.2678405 0.0093903 

cg11028291 PACS2 Body 0.2117862 0.0097648 

cg22238209 MAG Body -0.3331616 0.0097802 

cg10415442 ST18 5'UTR -0.2235869 0.0099360 

AD: Alzheimer’s disease, OLG: oligodendrocyte, OPC: oligodendrocyte precursor cell.  
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Appendix K: Example output of functional enrichment using HumanBase  
 

 
Example of output from functional enrichment analysis with HumanBase of the FTLD-sorted 
black module.  
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Appendix L: Gene list enrichment analysis of peroxisome related genes with FTLD3 co-
methylation network modules  
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Appendix M: Curated set of genes of interest for Chapter 5 

 

Reason for inclusion  Gene (s)  Disease 

FTLD Bulk Networks  

Hub gene FTLD1- skyblue TMEM168  FTLD  

Hub gene FTLD1-tan  C5orf51   

Hub gene FTLD1-white  CTDSP2   

Hub gene FTLD2 orangered ZNF696  FTLD   

Hub gene FTLD3 cyan  DDIT4L FTLD (PSP) 

Hub gene FTLD3 salmon PCK1  FTLD (PSP)  

AD Bulk Networks  

Hub gene FTLD3 blue  GDAP1  FTLD (PSP)  

Hub gene AD DLPFC greenyellow  MOG  AD  

Hub gene AD DLPFC purple   AD 

Hub gene AD ERC tan (also 
differentially methylated (FTLD1 
EWAS, AD2 EWAS) and expressed 
(FTLD1-expression) 

MYRF  AD 

Hub gene AD HIPPO grey60 MGC14436 AD 

Hub gene AD HIPPO greenyellow   AD 

Consistently present in disease 
associated AD signature (Chapter 
3.X)  

ADARB2, FAM107B, QDPR, RASGRF2, UNC5C, 
CAV1, SLC5A11, ATP11A, INPP5A 

 

Sorted FTLD Networks  

Hub gene FTLD-sorted midnightblue  ZNF292  FTLD  

Hub gene FTLD-sorted brown  PARM1  FTLD  

Hub gene FTLD-yellow  ARHGAP15  FTLD 

Sorted AD Networks  

Hub gene AD1 brown  CTNNA1  AD 
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Hub gene AD1 blue  ZNF143  AD 

Hub gene AD1 midnightblue  METT10D  AD 

Hub gene AD2 blue  FAAH AD 

Common genes across FTLD and AD EWAS and meta-analyses  

OPC genes present in 3 or more 
analyses (Chapter 3. 3.ii) 

GFRA1, ABHD2, TNK2, WFDC1, CHST8, COL9A1, 
EPN2, FERMT1, GALR1, MEGF11, PLEKHH2, 
SEMA5A, VIPR1, WSCD1, XLYT1, ACAN, AMZ1, 
CREB3L1, DNAH11, KLHL1, LAMA4, LYPD1, 
MYT1, PCDH15, PDGFRA, SEMA3E, SMOC1, 
SOX4, USP24  

AD, FTLD  

OLG genes present in 3 or more 
analyses (Chapter 3.3.ii)  

DNAH17, CTNNA3, SCD, DYSF, MBP, NINJ2, 
PCSK6, TMTC4, ADAMTS18, ARGHAP23, HHIP, 
HSPA2, MOG, PIEZO2, PRIMA1, PRUNE2, PXK, 
ST18, BOK, CDC42EP1, CDH1, ENPP2, FAM107B, 
GALNT6, IPO13, KIF13B, KIF6, LRP2, MAN2A1, 
NDE1, PACS2, PALM2, PIP4K2A, PLCL1, 
PLEKHH1, PPP1R14A, QDPR, RAGRP3, RFFL, 
TMEM144, TMEM63A, TTYH2  

AD, FTLD  

OLG Genes from AD EWAS also 
showing differential expression 
patterns  

MBP, CTNNA3, CRYAB, FAM107B, TMEM144, 
DNAH17, ST18, QDPR, CNP, MBP, POLR2F  

AD 

OPC genes from AD EWAS also 
showing differential expression 
patterns  

USP24, CREB3L1, SEMA3E, PCDH15, GALR1, 
SAPCD2, TNK2, PDGFRA, CHST9, OLIG2, MYT1, 
MEGF11, GFRA1, ABHD2 

AD 

OLG Genes from FTLD EWAS also 
showing differential expression 
patterns  

LRP2, PIP4K2A, LPGAT1, CDH1, PIEZO2, 
MAN2A1, GPR37, QDPR, FAM107B, AMER2, 
PRIMA1  

FTLD  

OPC genes from FTLD EWAS also 
showing differential expression 
patterns  

WFDC1, SEMA3E, SOX4, CHST9, GSG1L, 
SMOC1, FERMT1, DNAH11, ACAN, CHST8, 
MEGF11, TNK2, FERMT1, AMZ1, CCDC146, 
GPNMB 

FTLD 

Curated set of genes, as well as diseases associated with, and reason for inclusion in list across Chapters in this 
thesis. FTLD: frontotemporal lobar degeneration, AD: Alzheimer’s disease, OLG: oligodendrocyte, OPC: 
oligodendrocyte precursor cell.  
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Appendix N: Position of mQTLs that are also disease associated SNPs across FTLD, PSP 
and ALS 
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