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Abstract
Few-shot semantic segmentation aims to accurately segment objects from a limited
amount of annotated data, a task complicated by intra-class variations and prototype
representation challenges. To address these issues, we propose the Multi-Scale Pro-
totype Convolutional Network (MPCN). Our approach introduces a Prior Mask Gener-
ation (PMG) module, which employs dynamic kernels of varying sizes to capture multi-
scale object features. This enhances the interaction between support and query fea-
tures, thereby improving segmentation accuracy. Additionally, we present a Multi-Scale
Prototype Extraction (MPE) module to overcome the limitations of MAP (Mean Average
Precision). By augmenting support set features, assessing spatial importance, and uti-
lizing multi-scale downsampling, we obtain a more accurate prototype set. Extensive
experiments conducted on the PASCAL-5i and COCO-20i datasets demonstrate that our
method achieves superior performance in both 1-shot and 5-shot settings.

1 Introduction
Semantic segmentation is a fundamental and critical task in computer vision, involving the
assignment of a distinct class label to each pixel within an image. This pixel-level classifica-
tion provides a comprehensive interpretation of visual data, enabling machines to perceive
and understand the objects within an image with high spatial accuracy. Semantic segmenta-
tion plays a pivotal role in various practical applications, such as autonomous driving, medical
image analysis, and satellite imagery, where precise object delineation is essential for decision-
making and further analysis. However, traditional semantic segmentation methods rely heav-
ily on large, labeled datasets to effectively train deep learning models. These datasets require
meticulous annotation to ensure that the model can accurately differentiate between various
object classes. The process of collecting and labeling such vast amounts of data is resource-
intensive, costly, and time-consuming. Furthermore, the complexity and variability of real-
world objects, along with the diverse range of image contexts, exacerbate the challenges asso-
ciated with this task [1–3].
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In recent years, few-shot segmentation has emerged as a promising solution to address theCompeting interests: The authors have
declared that no competing interests exist. limitations of traditional segmentation approaches. Few-shot segmentation aims to mitigate

the scarcity of labeled data by leveraging techniques from meta-learning and few-shot learn-
ing, enabling models to generalize from a limited number of annotated examples [4–6]. This
capability is particularly crucial for applications that require rapid adaptation to new, previ-
ously unseen object classes or environments. However, few-shot semantic segmentation faces
significant challenges, primarily due to the limited availability of labeled data for novel cat-
egories, compounded by substantial intra-class variability and inter-class similarity among
segmentation targets.

Currently, the majority of Few-Shot Segmentation (FSS) methods predominantly rely on
prototype-based approaches [7,8,10,11]. These methods extract segmentation cues by apply-
ing Masked Average Pooling (MAP) to the features from the support set. The prototypes
generated through this process represent typical feature samples of the target objects in the
support set images, and these prototypes are subsequently used to make predictions for the
objects in the query image via techniques such as cosine similarity or feature concatenation.
However, the simple averaging operation used in MAP has notable limitations. Specifically,
it fails to preserve the diversity information and intrinsic object details captured by the indi-
vidual pixels in the support images. By averaging the features, this process smooths out fine-
grained object details, resulting in the loss of critical spatial and structural information nec-
essary for accurate segmentation. As a result, the prototypes generated through MAP may
lack sufficient discriminative power, significantly undermining segmentation accuracy, par-
ticularly when dealing with complex and diverse objects. Additionally, significant scale vari-
ations and appearance changes within object classes further exacerbate the challenge, leading
to coarse segmentation results that lack precision and fine detail.

To tackle these challenges, we introduce a novel framework: the Multi-Scale Prototype
Convolutional Network (MSPCNet). This framework is specifically designed to mitigate intra-
class variation while effectively capturing the intrinsic details of objects. A pivotal component
of our approach is the Prior Mask Generation Module (PMG), which enhances interactions
between the features of the support set and the query image. By generating prior masks, the
PMG facilitates a more effective alignment of support and query features, guiding the seg-
mentation process and enabling the model to focus on the most relevant regions of the query
image. Specifically, we employ three dynamic kernels, each with a different sliding window
size. These kernels are strategically designed to extract features at varying spatial resolutions,
enabling the model to capture both fine-grained details and large-scale object characteristics.
The outputs from these kernels are subsequently utilized to generate distinct query activation
maps, which guide the model’s attention to the diverse scales and appearances of objects in
the query image. This multi-scale interaction strategy, though conceptually simple, is crucial
for achieving robust segmentation. It allows the model to adapt effectively to the wide range of
object sizes and structural variations within the query image, while preserving their intrinsic
details, thereby enhancing both segmentation accuracy and robustness.

Additionally, to address the issue that Masked Average Pooling fails to adequately extract
segmentation priors from support images, we propose a Multi-Scale Prototype Extrac-
tion Module (MPE). Specifically, we enhance support set features using a designed feature
enhancement module and evaluate the importance of each spatial position vector. We then
obtain a multi-scale feature set by applying different down-sampling factors and aggregate
the support set masks with the multi-scale features to derive the prototype set. This prototype
set, along with the query set features, is used to generate category-aware features. Finally, we
fuse the category-aware features, query activation maps, and intermediate query features to
produce refined query pseudo-masks. Our main contributions are as follows:
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• We introduce the Prior Mask Generation (PMG) module, which captures multi-scale object
features using dynamic kernels with varying sliding window sizes, thereby generating
diverse query activation maps.

• We also introduce the Multi-Scale Prototype Extraction (MPE) module, which addresses
the limitations of Mean Average Precision (MAP) by enhancing support set features, assess-
ing spatial importance, and employing multi-scale downsampling.

• Extensive experiments conducted on PASCAL-5i and COCO-20i datasets demonstrate that
our proposed Multi-Scale Prototype Convolutional Network (MPCN) achieves significant
performance improvements compared to current methods.

2 Related work
Semantic segmentation is a vital area of research in computer vision, concentrating on the
task of assigning class labels to each pixel in an image for a comprehensive understanding
of visual content. Few-shot segmentation seeks to tackle the challenges of image segmenta-
tion with only a limited set of labeled examples, offering a distinctive opportunity for image
analysis and interpretation using minimal training data.

2.1 Semantic segmentation
Semantic segmentation aims to provide a comprehensive understanding of visual scenes and
precise object localization. Early approaches, such as Fully Convolutional Networks (FCNs)
[12], pioneered the development of end-to-end networks tailored specifically for semantic
segmentation tasks. These networks utilized dense forward computation and backpropaga-
tion to generate outputs that match the input image size, effectively allowing for pixel-wise
classification. By integrating semantic information from various convolutional layers, FCNs
improved the accuracy of semantic segmentation networks significantly.

As the field evolved, more sophisticated architectures emerged. Encoder-decoder frame-
works and dilated convolution techniques, exemplified by models like U-Net [13], SegNet
[14], and the DeepLab series [15], made substantial strides in enhancing segmentation preci-
sion. These models not only excelled in detail restoration but also improved contextual under-
standing, which is crucial for accurately identifying and delineating objects within complex
scenes. To address the inherent challenges posed by multi-scale targets—where objects may
appear at various sizes—Pyramid Pooling Modules (PPM) [16] and Atrous Spatial Pyramid
Pooling (ASPP) [17] were introduced. These techniques significantly bolster the extraction of
global contextual features, enabling models to recognize and segment objects more effectively,
regardless of their scale.

Simultaneously, attention mechanisms gained traction, including spatial attention and
both position and channel attention modules [18–20]. These mechanisms are instrumental
in enhancing the aggregation of long-range contextual information, thereby enriching the
model’s ability to represent semantic information more robustly.

Despite these advancements, traditional semantic segmentation methods encounter sig-
nificant challenges, particularly in scenarios where annotated data is scarce or when there is
a need to adapt to new categories that were not included in the training dataset. This depen-
dency on large-scale annotated datasets constrains the scalability and generalization capabili-
ties of these models, prompting researchers to explore alternative strategies such as Few-Shot
Segmentation (FSS). FSS techniques aim to bridge this gap by enabling effective segmentation
with minimal labeled examples, thus broadening the applicability of semantic segmentation
in real-world scenarios.
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2.2 Few-shot segmentation
Few-shot segmentation overcomes the limitations of traditional methods by enabling seg-
mentation of objects using a minimal number of annotated examples for each class. The pri-
mary goal is to generalise from a small support set (labelled examples) to accurately classify
objects within a query image.

Recent years have seen substantial advancements in prototype-based semantic segmenta-
tion for few-shot images [21,22].The SG-One network [23] optimizes feature maps and seg-
mentation loss by utilizing two branches of shared convolutional layers. It employs Masked
Average Pooling to extract prototype features from support images, measuring the prototype
distance between support and query images using cosine similarity. The PANet [24] frame-
work leverages prototype-based metric learning and incorporates prototype alignment reg-
ularization to maximize the information derived from support images. ASGNet [25] intro-
duces a superpixel-guided clustering approach, which extracts multiple prototypes from sup-
port images and reconstructs their feature maps through a novel assignment strategy, thereby
enhancing semantic extraction and representation. PFENet [26] aggregates multi-scale infor-
mation from input samples to capture global feature information, significantly improving the
model’s predictive capability. To address information loss issues, HSNet [27] focuses on fea-
ture interrelationships, converting dense feature-related tensors into segmentation results
through high-dimensional convolutions. Additionally, advancements in attention mecha-
nisms have further improved few-shot segmentation models. DENet [28] introduces a novel
attention module that enhances algorithm generalization by adjusting the weights of the met-
ric classifier. MCE [39] enhances few-shot segmentation by capturing shared visual properties
and learning inter-image dependencies, improving pixel-wise labeling of unseen classes with
limited annotated images. BAM [29] optimizes prediction results through a fully supervised
semantic segmentation model, discarding erroneous predictions and proposing a new model
based on base classes. The methods mentioned above primarily rely on prototype-based
approaches, where features are extracted and prototypes are generated using Masked Average
Pooling (MAP). However, the averaging operation in MAP fails to preserve the details and
diversity information in the support set images, leading to the loss of fine spatial and struc-
tural information. As a result, the generated prototypes lack sufficient discriminative power.
These methods often lead to a reduction in segmentation accuracy when dealing with com-
plex and highly variable objects, particularly in cases where there are significant changes in
object scale and appearance, causing the segmentation results to lack fine-grained details.

To address the limitations of current Few-Shot Segmentation (FSS) methods, we pro-
pose the Multi-Scale Prototype Convolutional Network (MPCN). The MPCN enhances fea-
ture interaction between the support set and query images through the PMGmodule, utiliz-
ing dynamic kernels at multiple scales to capture fine details and large-scale object features,
thereby improving segmentation accuracy and robustness. Subsequently, the MPE module
is employed to strengthen the support set features, apply downsampling to generate multi-
scale features, and refine prototypes to achieve better query segmentation, thus overcoming
the limitations of Masked Average Pooling (MAP).

3 Our approach
3.1 Few-shot segmentation
The task of few-shot segmentation aims to address image segmentation challenges under con-
ditions of limited annotated data. In a typical few-shot semantic segmentation dataset Ddata,
the data is divided into training samples Dtrain and test samples Dtest, with the classes in Dtrain
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and Dtest being mutually exclusive, i.e., Ctrain ∩ Ctest = ∅. During the training phase, the few-
shot semantic segmentation model is trained on a large set of annotated training samples
Dtrain, under the guidance of the ground truth labelsMq for query images. The goal is to con-
struct a segmentation model f(S,Q) that can utilize K annotated images Is and their corre-
sponding support set masksMs to perform semantic segmentation on query images Iq, pro-
ducing predictionsMq1 that approximate the ground truthMq (where S and Q represent the
support and query sets, respectively). Consequently, during the inference phase, the model
is able to rapidly generalize to new class data Dtest using the limited annotated data, thereby
alleviating the dependency on extensive labeled datasets.

3.2 Overview
As illustrated in Fig 1, our Multi-Scale Prototype Convolutional Network comprises two key
modules: the Prior Mask Generation (PMG) module and the Multi-Scale Prototype Extrac-
tion (MPE) module. Specifically, given the support and query images, Is and Iq, we employ a
shared-weight backbone to extract mid-level and high-level features. The PMGmodule sub-
sequently generates an initial maskMact

0 for the target object in the query image and applies
foreground filtering to the query set features. Subsequently, the MPE module extracts sup-
port prototypes and generates similarity map by matching these prototypes with the filtered
query features. This process produces category-aware prototypes with contextual dependen-
cies and rich semantics. During the decoder stage, we fuse the category-aware features, query
activation maps, and intermediate query features to generate a refined query pseudo-mask.
The technical specifics of each module will be addressed in the subsequent sections.

Fig 1. The overall architecture of our proposed Multi-Scale Prototype Convolutional Network (MPCN) for few-shot semantic segmentation is illustrated. Ini-
tially, high-level support and query features are fed into the Prior Mask Generation (PMG) module to generate the initial mask for the query imageMact

0 , which is then
used to perform foreground filtering on intermediate query set features. Subsequently, the Multi-Scale Prototype Extraction (MPE) module extracts support prototypes
and matches these prototypes with the filtered query features to generate a similarity map and category-aware prototypes Xq. Finally, category-aware features, query
activation maps, and intermediate query features are fused to produce a refined query pseudo-mask.

https://doi.org/10.1371/journal.pone.0319905.g001
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3.3 Prior mask generation module
To align the features of the support set and query set, and to guide the segmentation model to
focus on the most relevant regions in the query image, we introduce the PMGmodule. Specif-
ically, we first use the high-level features from both the support set and the query set to gen-
erate a prior mask [8]. This prior mask, typically a matching between feature maps, represents
an approximate location of the target object without considering the overall contextual rela-
tionships. To address this, we employ three sliding windows to achieve global and regional
matching, as shown in Fig 2. Specifically, we utilize the high-level features from the support
set and query set, denoted as Fhs ∈ℝC×Hs×Ws and Fhq ∈ℝC×Hq×Wq , alongside binary masks
Ms ∈ℝC×Hs×Ws as inputs. Here, C represents the channel dimension, while Hs,Ws,Hq, andWq

denote the height and width of the support and query features, respectively. We then extract
the regional features Rs and Rq using the designed sliding windows:

Rs =W (Fhs ⊗Ms)∈ℝUV×C×HsWs (1)

Rq =W (Fhq)∈ℝUV×C×HqWq (2)

where⊗ denotes the Hadamard product,W represents the sliding window operation, and
U,V are the height and width of the windows. We use three multi-scale windows, specifically
(1,1), (3,3), and (5,5), to capture features corresponding to small, medium, and large objects.
We then compute the cross-correlation features Dsq based on similarity of Rs and Rq:

D = Ein (′icj, ick→ ijk′,Rs,Rq)∈ℝUV×HsWs×HqWq (3)

where Ein denotes the Einstein summation convention [9], icj represents the index of Rs, and
ick represents the index of Rq; the final cross-correlation feature Dsq has the index ijk, which
indicates summation over index c. Finally, we average and normalize the cross-correlation
features Dsq to obtain the activation maps for the target object masks. Given that we use three
different windows to obtainMact

1 ,Mact
2 , andMact

3 , we average these to produceMact
0 , which

represents the approximate location of the target object in the query image.

3.4 Multi-scale prototype extraction module
The initial mask from the previous section only provides an approximate location of the tar-
get object. To capture more details, we construct a Multi-Scale Prototype Extraction (MPE)

Fig 2. The specific structure diagram of Prior Mask Generation module.

https://doi.org/10.1371/journal.pone.0319905.g002
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module to generate sufficiently informative and scale-sensitive support prototypes, and use
a similarity spectrum module to filter out background from the query features, retaining the
foreground to produce the final query class semantic feature Xq. Specifically, to mitigate inter-
ference from irrelevant classes, we perform a pixel-wise multiplication between the initial
maskMact

0 and the query image features Fq to obtain F̂q. Similarly, we multiply the support
maskMs with the support image features Fs to obtain F̂s. The MS-CPE module then extracts
rich semantic information from F̂s, as shown in Fig 3.

First, we apply average pooling to F̂s, followed by convolutional layers and activation func-
tions to obtain the semantic-enhanced features As:

As = 𝜎 (Fconv (AF̂s)) (4)

where AF̂s denotes the support features after average pooling, Fconv represents the convo-
lutional layers and a rule layer, and 𝜎 is the Sigmoid function. To address the challenge of
scale diversity within class samples, we obtain multi-scale feature sets Ar

s by applying differ-
ent down-sampling factors r∈ {1, 2, 4}. Next, usingMr

s , we retain the foreground features in
Ar
s and flatten them into a set of feature vectors:

Ps = {Ar
s(x, y)𝕀 (Mr

s(x, y) = 1)} (5)

where (x, y) denotes spatial positions, 𝕀 is the indicator function that outputs 1 if the input
condition is met and 0 otherwise, and Ps represents the set of foreground feature vectors
derived from the support image. Unlike methods that use direct mask average pooling, we use

Fig 3. The specific structure diagram of Multi-Scale Prototype Extraction module.

https://doi.org/10.1371/journal.pone.0319905.g003
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average pooling to extract general features, maximum pooling to retain significant features,
and average the two pooled vectors to obtain the initial support prototype Pinit ∈ℝ1×C:

Pinit =Average (Avg (Ps) ,Max (Ps)) (6)

where Avg and Max denote average pooling and maximum pooling, respectively. Pinit effec-
tively summarizes the class semantic information. To achieve pixel-level predictions, we use
a prototype matching model to construct a non-parametric similarity measure across spatial
locations.

First, we calculate the cosine similarity between the feature vector F̂q at each spatial loca-
tion and the support prototype Pinit. The cosine similarity is used as the exponent in an expo-
nential function to obtain the similarity spectrum S:

S(x, y) = exp (cos -simi (Pinit, F̂q(x, y))) (7)

where exp and cos -simi denote the exponential function and cosine similarity, respectively;
(x, y) represents the spatial location; F̂q ∈ℝ1×C denotes the feature vector of F̂q at the location
(x, y); and S(x, y) represents the similarity score between F̂q(x, y) and Pinit. We use the simi-
larity spectrum S to reweight the query image features Fq, enhancing the foreground regions
while suppressing the background, to obtain the category-aware feature Xq:

Xq = S⊗ Fq (8)

Finally, the category-aware feature Xq, the query activation maps {Mact
i }3i=0, and the inter-

mediate query features Fq are reshaped to the same spatial dimensions and fused together to
produce the output feature Xout ∈ℝ2C+4×H×W:

Xout =Fcat (Xq,{Mact
i }3i=0,Fq) (9)

where Fcat denotes concatenation along the channel dimension. The final output Xout is then
input to the decoder to generate the segmentation mask M̂q for the query image Iq:

M̂q =Fcls (FASPP (Fconv (Xout))) (10)

where Fconv, FASPP, and Fcls are the consecutive modules constituting the decoder.

3.5 Training loss
Inspired by previous work [8,30,31], we employ the Binary Cross-Entropy (BCE) loss between
the predicted mask M̂q of the query image Iq and the ground truth maskMq as the primary
loss function for our model:

Lseg =
1
hw

h
∑
i=1

w
∑
j=1

BCE (M̂q(i, j),Mq(i, j)) (11)

Additionally, to ensure that the multi-scale contextual prototype extraction module gen-
erates more accurate support prototypes, we introduce an auxiliary loss Laux. This auxil-
iary loss is computed by predicting the support mask M̂s using the corresponding query
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prediction mask M̂q, with the generation of M̂s being similar to the method described in
Equation (10):

Laux =
1
hw

h
∑
i=1

w
∑
j=1

BCE (M̂s(i, j),Ms(i, j)) (12)

Here, Laux represents the BCE loss betweenMs and M̂s. Thus, the final loss function is:

L =Lseg + 𝜆Laux (13)

where 𝜆 is a balancing factor between the segmentation loss Lseg and the auxiliary loss Laux.
In our experiments, 𝜆 is set to 1.0.

4 Experiments
4.1 Dataset
PASCAL-5i [32] is a few-shot segmentation variant derived from the PASCAL VOC dataset
[33], designed to evaluate the performance of few-shot learning methods. It divides the 20
object categories covered by the PASCAL dataset into 4 subsets, with each subset containing
5 classes for testing and the remaining 15 classes for training.

COCO-20i [34] is a variant of the COCO dataset [35] specifically designed for few-shot
segmentation tasks. It partitions the 80 object categories in the COCO dataset into 4 subsets,
with each subset containing 20 classes for testing and the remaining 60 classes for training.

4.2 Experimental settings
Metrics and Evaluation. Consistent with previous work, we utilize mean intersection over
union (mIoU) and foreground-background IoU (FB-IoU) as our evaluation metrics. mIoU
is a widely accepted standard for assessing segmentation performance, as it computes the
ratio of the intersection to the union of predicted and ground truth regions for each category,
averaging the results across all categories to gauge overall performance.

mIoU = 1
N

N
∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

, (14)

where N is the number of categories, Yi is the ground truth for category i, and Ŷi is the pre-
diction for category i. Moreover, FB-IoU offers a comprehensive assessment of the model’s
segmentation capabilities by calculating the IoU between the predicted foreground and back-
ground regions and their corresponding ground truth segments. This metric provides a more
precise evaluation of the model’s performance in managing complex scenes.

FB – IoU =
|Yf ∩ Ŷf| + |Yb ∩ Ŷb|
|Yf ∪ Ŷf| + |Yb ∪ Ŷb|

, (15)

where Yf and Yb represent the foreground and background in the ground truth, respectively,
and Ŷf and Ŷb are the corresponding predictions for the foreground and background.

Implementation Details. In our few-shot segmentation experiments, we selected VGG-16
[36] and ResNet-50 [37] as backbone networks, both pretrained on the ImageNet classifica-
tion task, with their weights fixed during training. The implementation was carried out using
PyTorch 1.9.0, and experiments were executed on an NVIDIA RTX 3090 GPU. All images
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were cropped to a size of 473 × 473 pixels for training. We utilized stochastic gradient descent
(SGD) for optimization, setting the initial learning rate to 0.005, a batch size of 8, weight
decay to 0.0001, and momentum to 0.9. Within the PMGmodule, sliding window sizes were
configured to (1,1), (3,3), and (5,5). For the MPE module, downsampling factors r∈ {1, 2, 4}
were employed. Training was conducted for 200 epochs on the PASCAL-5i dataset and for 50
epochs on the COCO-20i dataset.

4.3 Comparison with state-of-the-art methods
PASCAL-5i: Table 1 provides a comparison of our model, MPCN, with various state-of-the-
art methods on the PASCAL-5i dataset. Using the VGG16 backbone, MPCN surpasses most
of the evaluated methods, attaining 63.2% mIoU and 75.6% FB-IoU in the 1-shot setting,
and 68.6% mIoU and 79.1% FB-IoU in the 5-shot setting. Likewise, with the ResNet50 back-
bone, MPCN exhibits notable improvements. When compared to the most recent methods,
SiGCN and MCE, MPCN achieves the highest mIoU and FB-IoU scores with the ResNet50
backbone. In the 1-shot setting, MPCN enhances mIoU by 2.3% compared to SiGCN and
by 1.7% relative to MCE. In the 5-shot setting, MPCN increases mIoU by 2.6% compared to
SiGCN and by 1.1% compared to MCE. Notably, MPCN also showed the highest foreground-
to-background intersection ratio (FB-IoU) value, further emphasizing its effectiveness in
distinguishing between foreground and background.

COCO-20i: COCO-20i presents a more challenging environment, featuring a greater num-
ber of categories and more complex scenes. Table 2 illustrates the performance of MPCN
in comparison to other methods on the COCO-20i dataset. Notably, MPCN excels in both
the 1-shot and 5-shot settings. Using the VGG16 backbone, MPCN achieves an average
Intersection over Union (mIoU) of 42.4% in the 1-shot setting and 47.8% in the 5-shot set-
ting, significantly outperforming other methods such as DPCN and BAM. When using the
ResNet50 backbone, MPCN’s performance is even more pronounced. In the 1-shot setting,

Table 1.The performance of the metrics on PASCAL-5i was evaluated using mean Intersection over Union (mIoU) (%) and Foreground-Background Inter-
section over Union (FB-IoU) (%). Results are presented with bold text indicating the best performance.The baseline results represent performance achieved
without incorporating any additional modules (e.g., PMG andMPE).
Methods Backbone 1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU
PFENet [26] VGG16 56.9 68.2 54.4 52.4 58.0 72.0 59.0 69.1 54.8 52.9 59.0 72.3
MMNet [38] VGG16 57.1 67.2 56.6 52.3 58.3 - 56.6 66.7 63.6 56.5 58.3 -
NTRENet
[31]

VGG16 57.7 67.6 57.1 53.7 59.0 - 60.3 68.0 55.2 57.1 60.2 -

HSNet [27] VGG16 59.6 65.7 59.6 54.0 59.7 73.4 64.9 69.0 64.1 58.6 64.1 76.6
BAM [29] VGG16 59.9 67.5 64.9 55.7 62.0 - 64.0 71.5 69.4 63.6 67.1 -
MCE [39] VGG16 60.6 69.5 65.1 56.3 62.9 74.5 65.6 72.8 69.7 64.7 68.2 78.2
CANet [40] ResNet50 52.5 65.9 51.3 51.9 55.4 - 55.5 67.8 51.9 53.2 57.1 -
ReRPI [41] ResNet50 59.8 68.3 62.1 48.5 59.7 - 64.6 71.4 71.1 59.3 66.6 -
SSP [42] ResNet50 60.5 67.8 66.4 51.0 61.4 - 67.5 72.3 75.2 62.1 69.3 -
PFENet [26] ResNet50 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
SCL [43] ResNet50 63.0 70.0 56.5 57.7 61.8 71.9 64.5 70.9 57.3 58.7 62.9 72.8
SiGCN [44] ResNet50 65.1 70.1 65.2 60.8 65.3 77.5 68.9 72.6 66.8 65.8 68.5 78.3
MCE [39] ResNet50 65.3 71.2 66.2 61.0 65.9 78.1 69.2 73.7 70.5 66.8 70.0 81.3
Baseline VGG16 56.9 65.2 63.6 52.4 58.5 71.8 63.1 68.4 66.3 61.8 64.9 75.7
MPCN VGG16 61.3 70.1 64.8 56.7 63.2 75.6 66.4 73.5 69.2 65.4 68.6 79.1
Baseline ResNet50 63.3 68.7 64.1 57.4 63.4 74.6 66.4 70.7 67.2 63.1 66.9 77.2
MPCN ResNet50 66.9 73.2 68.4 61.7 67.6 78.7 70.2 74.5 71.4 68.1 71.1 82.5

https://doi.org/10.1371/journal.pone.0319905.t001
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Table 2.The performance of the metrics on COCO-20i was evaluated using mean Intersection over Union (mIoU) (%) and Foreground-Background Inter-
section over Union (FB-IoU) (%). Results are presented with bold text indicating the best performance.The baseline results represent performance achieved
without incorporating any additional modules (e.g., PMG andMPE).
Methods Backbone 1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU
PFENet [26] VGG16 33.4 36.0 34.1 32.8 34.1 60.0 36.0 40.7 38.1 36.1 37.7 61.6
DPCN [8] VGG16 38.5 43.7 38.2 37.7 39.5 62.5 42.7 51.6 45.7 44.6 46.2 66.1
BAM [29] VGG16 36.4 47.1 43.3 41.7 42.1 - 42.9 51.4 48.3 46.6 47.3 -
SSP [42] ResNet50 35.5 39.6 37.9 36.7 37.4 - 40.6 47.0 45.1 43.9 44.1 -
HSNet [27] ResNet50 36.3 43.1 38.7 38.7 39.2 68.2 43.3 51.3 48.2 45.0 46.9 70.7
NTRENet
[31]

ResNet50 36.8 42.6 39.9 37.9 39.3 68.5 38.2 44.1 40.4 38.4 40.3 69.2

CyCTR [45] ResNet50 38.9 43.0 39.6 39.8 40.3 - 41.1 48.9 45.2 47.0 45.6 -
SiGCN [44] ResNet50 38.7 46.3 43.1 37.5 41.4 62.7 44.9 54.5 46.5 45.9 48.0 66.2
DPCN [8] ResNet50 42.0 47.0 43.2 39.7 43.0 63.2 46.0 54.9 50.8 47.4 49.8 67.4
MCE [39] ResNet50 42.1 48.3 43.7 42.8 44.2 - 47.8 55.2 50.8 50.3 51.0 -
Baseline VGG16 36.9 41.2 37.8 37.2 38.3 60.2 39.1 48.4 42.1 41.8 42.9 63.7
MPCN VGG16 40.4 45.6 42.2 41.4 42.4 64.5 43.8 52.3 47.8 47.4 47.8 67.8
Baseline ResNet50 38.1 44.7 41.6 39.4 41.0 63.8 43.7 51.2 48.1 48.6 47.9 66.7
MPCN ResNet50 42.6 49.1 45.2 43.6 45.1 69.4 48.6 56.5 52.4 51.7 52.3 71.2

https://doi.org/10.1371/journal.pone.0319905.t002

MPCN reaches an average mIoU of 45.1%, outperforming SiGCN and MCE by 3.7% and
0.9%, respectively. In the 5-shot setting, MPCN achieves an average mIoU of 52.3%, exceed-
ing SiGCN and MCE by 4.3% and 1.3%, respectively. Additionally, MPCN excels in FB-IoU,
with scores of 69.4% and 71.2% in the corresponding settings.

The Multi-Scale Prototype Convolutional Network (MPCN) addresses intra-class variabil-
ity and prototype representation issues through the Prior Mask Generation (PMG) and Multi-
Scale Prototype Extraction (MPE) modules, achieving significant improvements in segmen-
tation performance on the PASCAL-5i and COCO-20i datasets. However, the use of multiple
dynamic kernels with varying sliding window sizes and multi-scale feature extraction may
lead to a substantial increase in computational cost and memory usage.

4.4 Ablations
To assess the impact of various modules on the model’s performance, we conducted an
ablation study utilizing the ResNet-50 backbone in the 1-shot setting on the PASCAL-5i

dataset. As presented in Table 3, the baseline model, which excludes the two modules (config-
uration (a)), achieves an mIoU of 63.4% and an FB-IoU of 74.6%. Introducing only the PMG
module (configuration (b)) increases the average mIoU to 65.1% and the average FB-IoU to
76.3%. Adding only the MPE module (configuration (c)) further improves the average mIoU
to 66.0% and the FB-IoU to 77.4%. The most notable performance enhancement occurs when
both the PMG and MPE modules are utilized together (configuration (d)), resulting in a 4.2%
increase in mIoU and a 4.1% rise in FB-IoU compared to the baseline model. The ablation

Table 3. Ablation studies of main model components.
id PMG MPE Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU
(a) 63.3 68.7 64.1 57.4 63.4 74.6
(b) ✓ 64.5 70.2 66.4 59.1 65.1 76.3
(c) ✓ 65.4 71.6 67.2 59.8 66.0 77.4
(d) ✓ ✓ 66.9 73.2 68.4 61.7 67.6 78.7

https://doi.org/10.1371/journal.pone.0319905.t003

PLOS ONE https://doi.org/10.1371/journal.pone.0319905 April 15, 2025 11/ 16

https://doi.org/10.1371/journal.pone.0319905.t002
https://doi.org/10.1371/journal.pone.0319905.t003
https://doi.org/10.1371/journal.pone.0319905


ID: pone.0319905 — 2025/4/15 — page 12 — #12

PLOS ONE Multi-scale prototype network for few-shot segmentation

study results indicate that both the PMG and MPE modules significantly enhance the perfor-
mance of the MPCN model. While each module individually contributes to improving the
mIoU and FB-IoU metrics, their combined application yields the highest performance.

4.5 Impact of hyperparameters and comparison with other refinement
methods
In this subsection, we provide a detailed explanation of the selection of key hyperparameters,
as well as a comparison with other refinement methods to highlight the advantages of the
MPE module.

Fig 4a investigates the impact of different sliding window sizes on model performance. A1
represents the use of a sliding window of size (3,3), A2 represents a sliding window of size
(5,5), A3 represents a sliding window of size (7,7), and A4 corresponds to the original config-
uration with sliding windows of sizes (1,1), (3,3), and (5,5). As shown in Fig 4a, the A4 config-
uration achieves the optimal result, demonstrating that the multi-scale sliding window setting
significantly enhances the model’s performance.

Fig 4b explores the impact of different downsampling factor combinations on model per-
formance. In Fig 4b, B1 represents the use of downsampling factors [1,2,4], B2 uses [1,4,4],
B3 uses [1,4,8], and B4 employs [1,8,8]. As observed from Fig 4b, the B1 configuration yields
the best performance, indicating that this downsampling factor setting allows the model to
effectively capture the key features of the data, thus improving performance.

Additionally, Fig 4c shows a comparison between MPE and other refinement methods.
Here, DCM [8] represents dynamic convolution techniques, SGC [46] refers to superpixel-
guided clustering, and PAM [47] corresponds to prototype activation methods. As seen in
Fig 4c, our method achieves the best mIoU results. Compared to dynamic and weighted
adaptive clustering techniques such as DCM, SGC, and PAM, the MPE module significantly
improves segmentation accuracy. By leveraging dynamic kernels for multi-scale feature
extraction, our approach not only enhances feature alignment but also adapts more effectively
to variations in object size and structure.

4.6 Qualitative results
Fig 5 illustrates the segmentation results of MPCN in comparison to the baseline model on
the PASCAL-5i and COCO-20i datasets. As depicted, MPCN demonstrates greater accu-
racy in segmenting target objects and captures finer details more effectively than the base-
line model. Specifically, in columns 1, 3, 4, and 6 of Fig 5, our proposed MPCN accurately
segments the target objects, whereas the baseline model incorrectly includes irrelevant back-
ground elements in the segmentation.

As shown in Fig 6 we Visualization of different ablative results on the PASCAL-5i and
COCO-20i datasets and compare the comparative results of the other methods. It can be seen
that by adding PMG and MPG modules to the baseline model, the network can filter out irrel-
evant background regions and discover more target parts. For example, adding the fifth line
of MPG removes the redundancy of the segmentation of birds and cars compared to the base
prediction. In addition, adding the MPG module results in a more refined segmentation. For
example, compared to the base prediction, the sixth row can filter out a large number of irrel-
evant background regions and localize the target object accurately. Finally, we compare our
method with MCE, and as shown in Fig 6, our approach accurately segments the bird and the
car. In contrast, MCE erroneously includes the nearby motorcycle in its vehicle segmentation
and fails to fully capture the car as a whole.
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Fig 4. Figure (a) investigates the impact of different sliding window sizes on the model’s performance. Figure (b) explores the effect of various downsampling
factor combinations on the model’s performance. Figure (c) presents a comparison of MPE with other refinement methods. All experiments were conducted under
the PASCAL-5i 1-shot setting.

https://doi.org/10.1371/journal.pone.0319905.g004

Fig 5. Results of our approach MPCN and other model on PASCAL-5i and COCO-20i datasets.

https://doi.org/10.1371/journal.pone.0319905.g005

5 Conclusion
In this study, we tackle the challenges of few-shot semantic segmentation by proposing the
Multi-Scale Prototype Convolutional Network (MPCN), which incorporates two innovative
modules: Prior Mask Generation (PMG) and Multi-Scale Prototype Extraction (MPE). Our
approach effectively addresses intra-class variability and prototype representation issues by
utilizing dynamic kernels of varying sizes to capture multi-scale features and enhance fea-
ture interactions. The PMGmodule refines query predictions, thereby improving segmenta-
tion precision. Meanwhile, the MPE module addresses the limitations of traditional Masked
Average Pooling by generating a more accurate prototype set through enhanced feature aug-
mentation and multi-scale analysis. Extensive experiments conducted on the PASCAL-5i

and COCO-20i datasets demonstrate that our method achieves substantial improvements
in segmentation performance, surpassing existing techniques in both the 1-shot and 5-shot
settings.
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Fig 6. Visualization of different ablative results and compare it with other methods on PASCAL-5i and COCO-20i datasets.

https://doi.org/10.1371/journal.pone.0319905.g006
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