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Abstract

Catheter ablation has the potential to become an
effective treatment for ventricular tachycardia (VT), but
the current identification of ablation sites relies on the
operator's judgement and experience. This study proposes
a novel machine learning approach to identify ablation
targets based on signal features derived from intracardiac
electrograms recorded in sinus rhythm. 56 substrate maps
were collected during pacing and sinus rhythm using a
multipolar catheter (Advisor HD grid, Ensite Precision) in
13 pigs with chronic myocardial infarction (n=31,515
mapping points). 36 VTs were induced and critical
components of the VT circuit including early-, mid- and
late-diastolic signals, were localized. Cardiac sites within
6 mm from these critical VT sites were considered as
potential ablation targets (7.3% of all cardiac sites). 46
features representing signal morphology, function, spatial
and spectral properties were extracted from each bipolar
and unipolar signal recorded during pacing or sinus
rhythm. A random forest algorithm was trained on 80% of
the data to identify the 20 most important features and 10
times 10-fold cross-validation was used to identify the best
model. Validation on the remaining 20% of data showed
an area under the ROC curve of 77.8%, and both 70% of
sensitivity and specificity, for the best model. This study
demonstrates for the first time that machine learning may
support clinicians in the localization of targets for VT
ablation.

1. Introduction

Ventricular tachycardia is a life-threatening cardiac
condition, and catheter ablation has the potential of
becoming an effective and established treatment [1].
However, often more than half of the patients experience
recurrence after the procedure due to the inability to
accurately locate the critical points leading to VT during
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the electrophysiological study [2, 3]. A standard approach
for the localization of ablation targets is to induce VT and
to identify its critical components (early-, mid- and late-
diastolic pathway) through pacing manoeuvres (e.g.
entrainment) or activation mapping. Due to the limitation
of being able to only map hemodynamically stable VTs,
substrate mapping has been proposed as a safer and
potentially more effective alternative. This consists of
mapping ventricular electrical activity during sinus rhythm
or pacing to identify arrhythmogenic properties closely
related to potential components of VT circuits. Various
signal metrics derived from substrate mapping have been
shown to correlate with critical regions of VT circuit, such
as, simultaneous amplitude frequency electrogram
transformation [4], decrement evoked potential mapping
[5], re-entry vulnerability index [6], but their accuracy
remains limited. While machine learning and artificial
intelligence are having a strong impact on the analysis of
the body surface electrocardiogram (ECG) [7], little is
known about their potential to improve targeted VT
ablation. A recent study has shown that machine learning
approaches can be used to accurately identify abnormal
ventricular potentials [8], but their use for the identification
of critical components of VT circuits remains unexplored.
The potential relationship between signal features
extracted from intracardiac electrograms (EGMs) and
critical components of VT circuits also needs further
research. The aim of this study was to develop a machine
learning model based on substrate mapping features to
predict the location of critical components of VT circuits.

2. Methods

2.1. Data collection and signal processing

Bipolar and unipolar signals used in this study were
collected from 13 female Danish Landrace pigs, with a
healed anterior myocardial infarct. An EnSite Precision 3D
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cardiac mapping system (Abbott Medical, IL, USA) was
used to collect 3D electroanatomical maps by programmed
electrical stimulation (S1S2) and sensed extra (SE) pacing
from the right (RV) and left (LV) ventricle, or both (BIV).
The additional stimulus was delivered at least 20 ms above
ventricular effective refractory period, following a sinus
beat for SE and a series of drive trains with cycle lengths
ranging between 400 and 600 ms for S1S2 stimuli. Sinus
rhythm (SR) maps were created retrospectively from all
clinical records segments. After substrate mapping, VT
was indicted and VT activation mapping was performed
for sustained haemodynamically tolerated tachycardias,
with critical isthmus components (early-, mid- and late-
diastolic signals) identified by dividing the diastolic period
into 3 equal segments. We aimed to develop models able
to identify the location of cardiac sites within 6 mm from
36 critical VT sites based on substrate mapping features.
Figure 1 shows an example VT activation map with the
corresponding SR substrate map from Pig 13.
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Figure 1. Left: Activation map during VT showing a re-entrant
circuit with early-, mid- and late-diastolic signals (white squares).
Right: Voltage map in SR indicating a large LV anterior scar.
Black squares and grey circles represent sites which belong to the
positive (within 6 mm from VT critical sites) and negative class,
respectively.

The system collection window of the signals was 1000
ms. In order to accurately extract features from specific
segments, all signals were trimmed after manual review to
ensure that the starting point of the selected segment was
just after the pacing artifact and before local ventricular
activation. The duration of bipolar EGMs was set at 200
ms, while for unipolar EGMs this was set at 97.5 quartile
of the repolarization time plus 30 ms. For both bipolar and
unipolar EGMs, two windows of interest were defined as
pre- and post-QRS, where the end of the QRS complex was
identified from the 12-lead ECGs. The sampling frequency
for EGMs was 2034.5 Hz and infinite Impulse Response
band reject filter was used to eliminate 50+2 Hz electrical
device noise. Unipolar and bipolar EGMs were band pass
filtered between 0.50 — 500 Hz and 30 — 300 Hz,
respectively. The location of EGMs to the 3D map was

defined by the mapping system using actual coordinates in
space.

2.2.  Feature extraction

Features of the signals were extracted from bipolar and
unipolar EGMs and categorized in four domains:

Functional domain: The following features were
extracted from the signal morphology and relate to local
electrophysiological properties: Activation time (AT) was
measured by the mapping system as the latest deflection in
the bipolar EGMs and was reviewed by an expert blinded
to the study and corrected if required. Repolarization time
(RT) was measured as the maximum of the first derivative
of the unipolar electrogram’s T-wave and activation-
recovery interval (ARI), a surrogate for local action
potential, was defined as ARI = RT — AT [9]. Other
features include the amplitude of the electrograms, and the
mean and maximum of the absolute value of their first

derivative (%,%), within and after the QRS complex.
The duration of the EGMs and the number of deflections
were also measured in both bipolar and unipolar signals.

Spatial domain: The spatial gradients of AT, RT and
ARI (GradAT, GradRT, GradARI) were measured as the
mean absolute change between neighbouring points within
10 mm divided by the distance between them. These
features capture the spatial heterogeneity of conduction
and repolarization, which are primary factors in
arrhythmogenesis.

Spectral domain: Two features were included to
capture signal properties that may not be assessed in the
time-frequency domain: The first was the mean weighted
frequency (fimean), Which was computed by the power
spectral density estimated using Fast Fourier Transform.
The second feature was the number of spectral peaks with
minimum spacing as 5 Hz.

Time-frequency domain: Time-frequency properties
of the bipolar signal have been shown to correlate with VT
circuits [4]. The time-frequency spectrum of bipolar and
unipolar EGMs was estimated using Cohen’s class
distributions [10] (with parameters v, = 0.03, 7, = 0.15,
A = 0.25). Spectral power was calculated by averaging the
time-frequency distribution in 8 time-frequency regions,
constructed by dividing the temporal domain in QRS and
post-QRS intervals. The frequency domain was then
divided into spectral bands 40 Hz wide from 0 to 160 Hz
for bipolar EGMs and 20 Hz wide from 0 to 80 Hz for
unipolar EGMs. The power of each band was then
normalized by the total energy of the signal.

Figure 2 shows the difference for some features between
normal and critical VT sites.
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Figure 2. The top and bottom panels represent bipolar and
unipolar EGMs, respectively, from the same substrate map. Left
and right panels represent EGMs from normal sites and critical
VT sites, respectively. The yellow region shows the signal
duration (bipolar EGMs) and the duration of the QRS complex
(unipolar EGMs), the red points represent signal deflections, and
the black vertical line is the end of the QRS complex on the body
surface ECG. The time-frequency distributions were divided in 8
regions.

2.3.  Statistical Analysis

In total, 46 features were extracted. 30 features were
log-transformed after manual check to reduce skewness
and all continuous variables were normalized. Data from
all maps were pooled together and 7 binary variables
indicating the type of pacing strategy (Table 1) were
included in the model. The positive class was composed of
cardiac sites from substrate maps located within 6 mm
from the 241 VT points, which from the 3 diastolic periods
of the 36 VTs. To avoid data leakage, each VT point was
treated as an individual during data partition with an
80%:20% ratio for training and test. The importance score
for each feature was calculated based on Random Forest
on training data and started by adding the feature with the
highest score into the model [11]. Cross-validation (CV)
was used to identify the best model. To address the impact
of class imbalance, re-sampling strategies were proposed
where the majority class was randomly under-sampled
with a 1:1 and 1:5 positive: negative ratio. Default
parameters were used in the Random Forest model in
MATLAB, considering all features when splitting, with
100 trees ensembled, and the minimum number of samples
in leaf equals to 1. The best performing model was
assessed on the test set using accuracy, F1-score, positive
predictive value (PPV), sensitivity, specificity, and area
under the ROC curve (AUC), with the cut-off point closest
to the upper left corner. 95% confidence intervals for AUC
on the training set were calculated using bootstrapping,
while Cls were not calculated on the test set since the
sample number was too small.
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3. Results

A total of 31,515 cardiac sites from substrate maps were
included in the study, of which 2,305 points (7.3%) were
marked as critical VT sites (Table 1). The model showed
stable performance after adding the top 20 scoring features.
The features with the highest score were RT, QRS duration
and maximum changing rate during QRS complex from
unipolar EGMs. The ARI, LAT, amplitude, and signals
energy from both unipolar and bipolar EGMs were also
included. No re-sampling strategy was performed as it
can’t improve the performance.

Table 1. Number of mapping points and VT critical
sites for each pacing strategy. SR: Sinus Rhythm; RV:
Right Ventricular; LV: Left Ventricular; BIV:
Biventricular; SE: Sensed extra; S1S2: Programmed
Simulation; N: Number of Maps; Q2(Q1-Q3): Median (1
quartiles-3' quartiles).

Map N Signal Points Per Map VT critical sites
SR 10 1091(543-1649) 69(51-86)
RV (SE) 10 625(452-727) 40(15-51)
RV (S1S2) 10 284(157-431) 26(9-39)
LV (SE) 10 577(402-867) 46(16-88)
LV (S1S2) 5 320(226-366) 16(1-29)
BIV(SE) 8 281(194-469) 34(18-49)
BIV(S1S2) 3 184(177-283) 16(5-59)
Total 56 460(257-741) 32(15-61)

The average performance of the model assessed in 10
times 10-fold CV is shown in Table 2. On the under-
sampled training set, the AUC was 72.9% [95%CI: 71.9%-
73.9%]. Accuracy, specificity, and sensitivity were all
close to 70%, while the F1-score and PPV were lower, at
23.8% and 14.5%, respectively.

In the test set with the best model selected during
training showed an AUC equal to 77.8%; accuracy,
specificity, and sensitivity were all equal or over 70%. F1-
score and PPV were 24.9% and 15.1%.

Table 2. Average performance during 10 times 10-fold
CV for Random Forest on training and the best model on
test set.

Training (xSD) Test
AUC 72.9% [CI: 71.9%-73.9%] 77.8%
Accuracy 67.0x4.4% 70.0%
F1-score 23.8£3.9% 24.9%
PPV 14.5£2.8% 15.1%
Specificity 67.9+5.6% 70.2%
Sensitivity 68.0+4.7% 70.0%
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4, Discussion and Conclusion

The aim of this study was to develop a machine learning
approach to accurately identify critical components of the
VT circuit based purely on substrate map EGMs to guide
ablation. As an advanced ensemble algorithm, Random
Forest model was trained on multi-domain features from
bipolar and unipolar EGMs recorded using a state-of-the-
art 3D mapping system in sinus rhythm or pacing. Using
20 selected features capturing functional, spatial, spectral,
and time-frequency properties, the model was able to
predict the location of VT critical sites with an AUC close
to 80%. The model showed stability and high performance
even on the extremely unbalanced test set, which reflected
a real case scenario. To the best of our knowledge, this
study is the first study to propose a machine learning
approach for the identification of VT ablation targets,
which could support clinicians in eliminating critical
substrate without having to induce VT. This strategy also
has the potential to identify novel markers of increased
vulnerability to re-entry by revealing associations between
novel signal features and critical VT sites.

A relatively low F1l-score and PPV indicate that the
model may predict a substantial number of false positive
sites. This is however expected in cases where there is a
large imbalance between normal cardiac sites and cardiac
sites which may be critical components of a potential
unmapped VT circuit. Indeed, for fixed sensitivity and
specificity levels, the PPV dramatically decreases for
decreasing prevalence [12]. The under-sample strategies
provided a similar result to the original ratio, but other
solutions may be developed to improve the performance in
the future. In this study, we have pooled together features
from different substrate maps conducted in the 13 pigs,
which may have resulted in some degree of pseudo-
replication. We included the type of substrate map as a
predictor to alleviate this problem, but other solutions may
be tested in further research. We used the default random
forest parameters, and optimization of hyperparameters
may further improve the model performance. Furthermore,
our machine learning approach could be adopted to
compare different substrate mapping strategies (e.g. sinus
rhythm and different pacing configurations). Finally,
extrapolating our methodology to deep learning methods,
such as convolutional neural network [13] which is directly
applied to intracardiac EGMs without requiring feature
extraction, may further enhance identification of VT
ablation targets.
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