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Abstract 

Catheter ablation has the potential to become an 

effective treatment for ventricular tachycardia (VT), but 

the current identification of ablation sites relies on the 

operator's judgement and experience. This study proposes 

a novel machine learning approach to identify ablation 

targets based on signal features derived from intracardiac 

electrograms recorded in sinus rhythm. 56 substrate maps 

were collected during pacing and sinus rhythm using a 

multipolar catheter (Advisor HD grid, Ensite Precision) in 

13 pigs with chronic myocardial infarction (n=31,515 

mapping points). 36 VTs were induced and critical 

components of the VT circuit including early-, mid- and 

late-diastolic signals, were localized. Cardiac sites within 

6 mm from these critical VT sites were considered as 

potential ablation targets (7.3% of all cardiac sites). 46 

features representing signal morphology, function, spatial 

and spectral properties were extracted from each bipolar 

and unipolar signal recorded during pacing or sinus 

rhythm. A random forest algorithm was trained on 80% of 

the data to identify the 20 most important features and 10 

times 10-fold cross-validation was used to identify the best 

model. Validation on the remaining 20% of data showed 

an area under the ROC curve of 77.8%, and both 70% of 

sensitivity and specificity, for the best model. This study 

demonstrates for the first time that machine learning may 

support clinicians in the localization of targets for VT 

ablation. 

 

1. Introduction 

Ventricular tachycardia is a life-threatening cardiac 

condition, and catheter ablation has the potential of 

becoming an effective and established treatment [1]. 

However, often more than half of the patients experience 

recurrence after the procedure due to the inability to 

accurately locate the critical points leading to VT during 

the electrophysiological study [2, 3]. A standard approach 

for the localization of ablation targets is to induce VT and 

to identify its critical components (early-, mid- and late-

diastolic pathway) through pacing manoeuvres (e.g. 

entrainment) or activation mapping. Due to the limitation 

of being able to only map hemodynamically stable VTs, 

substrate mapping has been proposed as a safer and 

potentially more effective alternative. This consists of 

mapping ventricular electrical activity during sinus rhythm 

or pacing to identify arrhythmogenic properties closely 

related to potential components of VT circuits.  Various 

signal metrics derived from substrate mapping have been 

shown to correlate with critical regions of VT circuit, such 

as, simultaneous amplitude frequency electrogram 

transformation [4], decrement evoked potential mapping 

[5], re-entry vulnerability index [6], but their accuracy 

remains limited. While machine learning and artificial 

intelligence are having a strong impact on the analysis of 

the body surface electrocardiogram (ECG) [7], little is 

known about their potential to improve targeted VT 

ablation. A recent study has shown that machine learning 

approaches can be used to accurately identify abnormal 

ventricular potentials [8], but their use for the identification 

of critical components of VT circuits remains unexplored. 

The potential relationship between signal features 

extracted from intracardiac electrograms (EGMs) and 

critical components of VT circuits also needs further 

research. The aim of this study was to develop a machine 

learning model based on substrate mapping features to 

predict the location of critical components of VT circuits. 

 

2. Methods 

2.1. Data collection and signal processing 

Bipolar and unipolar signals used in this study were 

collected from 13 female Danish Landrace pigs, with a 

healed anterior myocardial infarct. An EnSite Precision 3D 
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cardiac mapping system (Abbott Medical, IL, USA) was 

used to collect 3D electroanatomical maps by programmed 

electrical stimulation (S1S2) and sensed extra (SE) pacing 

from the right (RV) and left (LV) ventricle, or both (BIV). 

The additional stimulus was delivered at least 20 ms above 

ventricular effective refractory period, following a sinus 

beat for SE and a series of drive trains with cycle lengths 

ranging between 400 and 600 ms for S1S2 stimuli. Sinus 

rhythm (SR) maps were created retrospectively from all 

clinical records segments. After substrate mapping, VT 

was indicted and VT activation mapping was performed 

for sustained haemodynamically tolerated tachycardias, 

with critical isthmus components (early-, mid- and late-

diastolic signals) identified by dividing the diastolic period 

into 3 equal segments. We aimed to develop models able 

to identify the location of cardiac sites within 6 mm from 

36 critical VT sites based on substrate mapping features. 

Figure 1 shows an example VT activation map with the 

corresponding SR substrate map from Pig 13. 

 

   
 

Figure 1. Left: Activation map during VT showing a re-entrant 

circuit with early-, mid- and late-diastolic signals (white squares). 

Right: Voltage map in SR indicating a large LV anterior scar. 

Black squares and grey circles represent sites which belong to the 

positive (within 6 mm from VT critical sites) and negative class, 

respectively.   

 

The system collection window of the signals was 1000 

ms. In order to accurately extract features from specific 

segments, all signals were trimmed after manual review to 

ensure that the starting point of the selected segment was 

just after the pacing artifact and before local ventricular 

activation. The duration of bipolar EGMs was set at 200 

ms, while for unipolar EGMs this was set at 97.5 quartile 

of the repolarization time plus 30 ms. For both bipolar and 

unipolar EGMs, two windows of interest were defined as 

pre- and post-QRS, where the end of the QRS complex was 

identified from the 12-lead ECGs. The sampling frequency 

for EGMs was 2034.5 Hz and infinite Impulse Response 

band reject filter was used to eliminate 50±2 Hz electrical 

device noise. Unipolar and bipolar EGMs were band pass 

filtered between 0.50 – 500 Hz and 30 – 300 Hz, 

respectively. The location of EGMs to the 3D map was 

defined by the mapping system using actual coordinates in 

space. 

 

2.2. Feature extraction 

Features of the signals were extracted from bipolar and 

unipolar EGMs and categorized in four domains:  

Functional domain: The following features were 

extracted from the signal morphology and relate to local 

electrophysiological properties: Activation time (𝐴𝑇) was 

measured by the mapping system as the latest deflection in 

the bipolar EGMs and was reviewed by an expert blinded 

to the study and corrected if required. Repolarization time 

(𝑅𝑇) was measured as the maximum of the first derivative 

of the unipolar electrogram’s T-wave and activation-

recovery interval (𝐴𝑅𝐼) , a surrogate for local action 

potential, was defined as 𝐴𝑅𝐼 = 𝑅𝑇 − 𝐴𝑇 [9]. Other 

features include the amplitude of the electrograms, and the 

mean and maximum of the absolute value of their first 

derivative (
𝑑|𝑈|

𝑑𝑡
,
𝑑|𝐵|

𝑑𝑡
), within and after the QRS complex. 

The duration of the EGMs and the number of deflections 

were also measured in both bipolar and unipolar signals. 

Spatial domain: The spatial gradients of AT, RT and 

ARI (𝐺𝑟𝑎𝑑𝐴𝑇, 𝐺𝑟𝑎𝑑𝑅𝑇, 𝐺𝑟𝑎𝑑𝐴𝑅𝐼) were measured as the 

mean absolute change between neighbouring points within 

10 mm divided by the distance between them. These 

features capture the spatial heterogeneity of conduction 

and repolarization, which are primary factors in 

arrhythmogenesis. 

Spectral domain: Two features were included to 

capture signal properties that may not be assessed in the 

time-frequency domain: The first was the mean weighted 

frequency (𝑓𝑚𝑒𝑎𝑛 ), which was computed by the power 

spectral density estimated using Fast Fourier Transform. 

The second feature was the number of spectral peaks with 

minimum spacing as 5 Hz. 

Time-frequency domain: Time-frequency properties 

of the bipolar signal have been shown to correlate with VT 

circuits [4]. The time-frequency spectrum of bipolar and 

unipolar EGMs was estimated using Cohen’s class 

distributions [10] (with parameters  𝑣0 = 0.03, 𝜏0 = 0.15, 

𝜆 = 0.25). Spectral power was calculated by averaging the 

time-frequency distribution in 8 time-frequency regions, 

constructed by dividing the temporal domain in QRS and 

post-QRS intervals. The frequency domain was then 

divided into spectral bands 40 Hz wide from 0 to 160 Hz 

for bipolar EGMs and 20 Hz wide from 0 to 80 Hz for 

unipolar EGMs. The power of each band was then 

normalized by the total energy of the signal. 

Figure 2 shows the difference for some features between 

normal and critical VT sites. 
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Figure 2. The top and bottom panels represent bipolar and 

unipolar EGMs, respectively, from the same substrate map. Left 

and right panels represent EGMs from normal sites and critical 

VT sites, respectively. The yellow region shows the signal 

duration (bipolar EGMs) and the duration of the QRS complex 

(unipolar EGMs), the red points represent signal deflections, and 

the black vertical line is the end of the QRS complex on the body 

surface ECG. The time-frequency distributions were divided in 8 

regions. 

 

2.3. Statistical Analysis 

In total, 46 features were extracted. 30 features were 

log-transformed after manual check to reduce skewness 

and all continuous variables were normalized. Data from 

all maps were pooled together and 7 binary variables 

indicating the type of pacing strategy (Table 1) were 

included in the model. The positive class was composed of 

cardiac sites from substrate maps located within 6 mm 

from the 241 VT points, which from the 3 diastolic periods 

of the 36 VTs. To avoid data leakage, each VT point was 

treated as an individual during data partition with an 

80%:20% ratio for training and test. The importance score 

for each feature was calculated based on Random Forest 

on training data and started by adding the feature with the 

highest score into the model [11]. Cross-validation (CV) 

was used to identify the best model. To address the impact 

of class imbalance, re-sampling strategies were proposed 

where the majority class was randomly under-sampled 

with a 1:1 and 1:5 positive: negative ratio. Default 

parameters were used in the Random Forest model in 

MATLAB, considering all features when splitting, with 

100 trees ensembled, and the minimum number of samples 

in leaf equals to 1. The best performing model was 

assessed on the test set using accuracy, F1-score, positive 

predictive value (PPV), sensitivity, specificity, and area 

under the ROC curve (AUC), with the cut-off point closest 

to the upper left corner.  95% confidence intervals for AUC 

on the training set were calculated using bootstrapping, 

while CIs were not calculated on the test set since the 

sample number was too small. 

3. Results 

A total of 31,515 cardiac sites from substrate maps were 

included in the study, of which 2,305 points (7.3%) were 

marked as critical VT sites (Table 1). The model showed 

stable performance after adding the top 20 scoring features. 

The features with the highest score were RT, QRS duration 

and maximum changing rate during QRS complex from 

unipolar EGMs. The ARI, LAT, amplitude, and signals 

energy from both unipolar and bipolar EGMs were also 

included. No re-sampling strategy was performed as it 

can’t improve the performance. 

 

Table 1. Number of mapping points and VT critical 

sites for each pacing strategy. SR: Sinus Rhythm; RV: 

Right Ventricular; LV: Left Ventricular; BIV: 

Biventricular; SE: Sensed extra; S1S2: Programmed 

Simulation; N: Number of Maps; Q2(Q1-Q3): Median (1st 

quartiles-3rd quartiles). 

 

Map N Signal Points Per Map   VT critical sites  

SR 10 1091(543-1649) 69(51-86) 

RV (SE) 10 625(452-727) 40(15-51) 

RV (S1S2) 10 284(157-431) 26(9-39) 

LV (SE) 10 577(402-867) 46(16-88) 

LV (S1S2) 5 320(226-366) 16(1-29) 

BIV (SE) 8 281(194-469) 34(18-49) 

BIV(S1S2)  3 184(177-283) 16(5-59) 

Total  56 460(257-741) 32(15-61) 

 

The average performance of the model assessed in 10 

times 10-fold CV is shown in Table 2. On the under-

sampled training set, the AUC was 72.9% [95%CI: 71.9%- 

73.9%]. Accuracy, specificity, and sensitivity were all 

close to 70%, while the F1-score and PPV were lower, at 

23.8% and 14.5%, respectively. 

In the test set with the best model selected during 

training showed an AUC equal to 77.8%; accuracy, 

specificity, and sensitivity were all equal or over 70%. F1-

score and PPV were 24.9% and 15.1%. 

 

     Table 2. Average performance during 10 times 10-fold 

CV for Random Forest on training and the best model on 

test set. 

 

 Training (±SD) Test 

AUC 72.9% [CI: 71.9%-73.9%] 77.8% 

Accuracy 67.0±4.4% 70.0% 

F1-score 23.8±3.9% 24.9% 

PPV 14.5±2.8% 15.1% 

Specificity 67.9±5.6% 70.2% 

Sensitivity 68.0±4.7% 70.0% 
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4. Discussion and Conclusion 

The aim of this study was to develop a machine learning 

approach to accurately identify critical components of the 

VT circuit based purely on substrate map EGMs to guide 

ablation. As an advanced ensemble algorithm, Random 

Forest model was trained on multi-domain features from 

bipolar and unipolar EGMs recorded using a state-of-the-

art 3D mapping system in sinus rhythm or pacing. Using 

20 selected features capturing functional, spatial, spectral, 

and time-frequency properties, the model was able to 

predict the location of VT critical sites with an AUC close 

to 80%. The model showed stability and high performance 

even on the extremely unbalanced test set, which reflected 

a real case scenario. To the best of our knowledge, this 

study is the first study to propose a machine learning 

approach for the identification of VT ablation targets, 

which could support clinicians in eliminating critical 

substrate without having to induce VT. This strategy also 

has the potential to identify novel markers of increased 

vulnerability to re-entry by revealing associations between 

novel signal features and critical VT sites. 

     A relatively low F1-score and PPV indicate that the 

model may predict a substantial number of false positive 

sites. This is however expected in cases where there is a 

large imbalance between normal cardiac sites and cardiac 

sites which may be critical components of a potential 

unmapped VT circuit. Indeed, for fixed sensitivity and 

specificity levels, the PPV dramatically decreases for 

decreasing prevalence [12]. The under-sample strategies 

provided a similar result to the original ratio, but other 

solutions may be developed to improve the performance in 

the future. In this study, we have pooled together features 

from different substrate maps conducted in the 13 pigs, 

which may have resulted in some degree of pseudo-

replication. We included the type of substrate map as a 

predictor to alleviate this problem, but other solutions may 

be tested in further research. We used the default random 

forest parameters, and optimization of hyperparameters 

may further improve the model performance. Furthermore, 

our machine learning approach could be adopted to 

compare different substrate mapping strategies (e.g. sinus 

rhythm and different pacing configurations). Finally, 

extrapolating our methodology to deep learning methods, 

such as convolutional neural network [13] which is directly 

applied to intracardiac EGMs without requiring feature 

extraction, may further enhance identification of VT 

ablation targets.  
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