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Abstract

Idiopathic Pulmonary Fibrosis (IPF) is a severe lung disease characterized by rapid
progression and high mortality, with a highly variable prognosis between patients.
This thesis leverages machine learning to enhance prognosis prediction in IPF by
analysing clinical data and volumetric imaging. We first address the challenge of
missing data in patient records by applying latent variable models to accurately
impute missing attributes based on the available information in each record. Next,
we use the Cox proportional hazards model to predict mortality risk from patient
data. As a ranking objective, the Cox model requires many samples per training
iteration, which is computationally expensive and often infeasible for volumetric
data. We introduce a scalable memory bank-based training approach for efficient
model training with volumetric data. Recognizing the inherent constraints of the
Cox model, we also propose a new method, CenTime, which better utilizes censored
data and directly predicts the time-to-mortality. CenTime relaxes the assumptions
of the Cox model, provides a more precise estimation of patient outcomes, and
leverages right-censored data more effectively. Our methods are validated on a
comprehensive dataset of IPF patients, demonstrating significant improvements in
prediction accuracy over existing approaches. This work can advance personalized

prognosis in IPF, aiding clinicians in developing tailored treatment strategies.



Impact Statement

This thesis advances prognosis prediction in Idiopathic Pulmonary Fibrosis (IPF)
using machine learning techniques. IPF is a severe lung disease with a median
survival of 2-3 years post-diagnosis and a highly variable prognosis among patients.
This work tackles key challenges in IPF prognosis, including missing data imputation,
computationally efficient training with high-resolution volumetric imaging, and
precise time-to-death prediction. By improving mortality risk assessment, these
models enable clinicians to identify high-risk patients and develop personalized
treatment strategies. Additionally, this research facilitates the discovery of novel
imaging biomarkers, paving the way for improved disease understanding and targeted
therapies.

Beyond IPF, the presented methods extend to broader prognosis prediction tasks,
including interstitial lung diseases, cancer, and chronic conditions. The CenTime
model, in particular, enhances survival prediction by effectively leveraging censored
data and providing more accurate time-to-event estimations. This work contributes
to the broader field of machine learning for healthcare, advancing personalized

medicine and data-driven clinical decision-making.
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Chapter 1

Introduction

1.1 Idiopathic Pulmonary Fibrosis

Idiopathic Pulmonary Fibrosis (IPF) is a fibrotic lung disease that belongs to the
group of Interstitial Lung Diseases (ILDs) and is characterized by stiffening and
scarring (fibrosis) of the lung tissue. This leads to shortness of breath, progressive
decline in lung function, and ultimately respiratory failure and death [1, 2, 3, 4]. IPF
is the most common and severe fibrotic lung disease, with a median survival rate
ranging from two to three years, worse than many cancers [5, 6]. The incidence
and prevalence of IPF are rising; in the United Kingdom (UK), rates increased by
78% from 2000 to 2012 [7]. As an idiopathic disease, IPF has no known cause [1].
For treatment, there is no definitive cure for the disease, and the available drugs
aim to slow down the progression of the disease and manage the symptoms [8].
Diagnosing IPF is also challenging and requires a multidisciplinary approach that

includes clinical, radiological, and histopathological assessments [6].

A significant challenge in the management of IPF is the heterogeneous and
highly unpredictable disease progression, making it difficult to predict the prognosis
and response to treatment for individual patients. Although numerous computer-
based methods have been applied to improve disease prognosis predictions, accurate

and widely accepted models for predicting disease progression and outcomes in
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clinical practice for IPF patients are still lacking [9].

These challenges underscore the need for reliable prognostic models to predict
IPF progression, guiding clinical decisions and identifying high-risk patients for early
intervention. Furthermore, probing these models can help identify potential prog-
nostic markers and risk factors associated with the disease, guiding future research
and clinical practice and ultimately improving the understanding and management
of IPF.

Several studies have shown the potential of machine learning methods in pre-
dicting the future progression of IPF using clinical data, such as demographic
information, pulmonary function tests, and blood tests [10, 11]. However, these
models often rely on clinical data alone, which may not capture the full complexity of
the disease or provide accurate predictions. High-Resolution Computed Tomography
(HRCT) offers precise anatomical insights into the characteristics and progression of
lung disease, serving as an essential tool in supporting clinicians with IPF diagnosis,
prognosis, and monitoring. Furthermore, HRCT has demonstrated higher sensitivity
than pulmonary function measurements in some instances, particularly for asymp-
tomatic IPF patients [12, 13]. This enhanced sensitivity enables the potential for
earlier and more reliable prognoses in IPF.

Given the complexity and variability of IPF progression, conventional methods
have struggled to provide reliable prognostic models. Machine learning, with its
ability to process vast amounts of data and uncover complex patterns, presents a
promising approach to improving IPF prognosis. In particular, multimodal machine
learning — which integrates diverse data sources like clinical records and imaging

— can capture the disease’s full complexity and enhance prediction accuracy.

1.2 Multimodal Machine Learning

Machine learning is a subfield of Artificial Intelligence (AI) which focuses on devel-

oping algorithms that can learn from vast amounts of data, without being explicitly
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programmed, to make predictions or decisions [14]. It has shown outstanding per-
formance and capabilities in various domains, such as computer vision [15], natural
language processing [16], and healthcare [17]. Multimodal machine learning pertains
to developing machine learning algorithms that can learn from multiple data sources,
such as images, text, speech, and other modalities, to make decisions [18].

Integrating imaging and clinical data through multimodal machine learning
has shown promise in enhancing prognostic models for various chronic diseases,
including cancer [19], cardiovascular [20, 21], and respiratory diseases [22, 23].

In the context of IPF, multimodal machine learning can integrate and learn
from multiple data sources, such as clinical and imaging data, to predict the fu-
ture progression of the disease accurately and reliably. Clinical data can include
demographic information, pulmonary function tests, blood tests, and other clinical
assessments, while imaging data includes HRCT images. By integrating and learn-
ing from multiple data sources, multimodal machine learning models can capture
the full complexity of the disease, provide accurate predictions, and improve the
understanding and management of IPF. This thesis proposes a multimodal approach

to address critical gaps in IPF prognosis models.

1.2.1 Survival Analysis

While machine learning offers a broad framework for predictive modelling, IPF
prognosis requires a method that can specifically account for time-dependent events,
such as disease progression or mortality. Survival analysis is well-suited to this task,
providing tools for time-to-event prediction and allowing clinicians to anticipate
critical outcomes.

Survival analysis [24] is a statistical technique commonly used in medical
research to predict the time until an event of interest, often called ‘time-to-event’
analysis. This method is useful for estimating either the time until an event (e.g.,

disease progression, cancer recurrence, or death) or the risk of an event occurring
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within a specific time frame [25, 26]. Typical events in survival analysis include
death [25, 27], cancer recurrence [28], or even nonmedical outcomes like machine
failure [29].

For IPF, progression is often evaluated based on the time to critical events, such
as death, respiratory failure, or lung transplantation, making it particularly suited to
survival analysis modelling [30]. Survival analysis models offer valuable insights
into the progression of IPF, helping to identify high-risk patients and supporting
clinical decision-making.

Despite the utility of survival analysis in modelling disease progression, existing
models face limitations, particularly in handling the high rate of censored data. To
address these challenges, this thesis proposes a novel framework combining advanced
imputation techniques, multimodal integration, and survival analysis enhancements

to produce more accurate and reliable prognostic predictions for IPF.

1.3 Research Problem

Building on this foundation, the primary research problem addressed in this thesis is
the development of accurate and reliable prognostic models for IPF that can predict
the future progression of the disease using clinical and imaging data. Despite the
advances in machine learning and survival analysis, predicting the future progression
of IPF remains relatively challenging and unexplored. Existing prognostic models
for IPF depend heavily on clinical data alone, often excluding valuable imaging data
that could reveal structural changes associated with disease progression [10, 11].
Furthermore, clinical data often suffer from missing values with which current meth-
ods struggle, impairing the performance of machine learning models and introducing
bias into predictions. These methods often impute missing values in ways that do
not account for the dependencies among clinical variables, thereby reducing the
reliability of predictions [31, 32].

On the other hand, existing survival analysis models suffer from several lim-
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itations. For instance, the Cox Proportional Hazards (CoxPH) model [26] has the

following limitations

* Proportional Hazards Assumption: The CoxPH model assumes that the
hazard ratio between any two individuals is constant over time, which may not

hold in practice, especially for complex diseases like IPF.

* Requirement for Large Batch Sizes: Training CoxPH models requires
ranking samples by risk scores, demanding large batch sizes, which is often
infeasible with high-resolution data like HRCT due to memory constraints.
Using small batch sizes for training can impair the model’s performance and
restrict its ability to learn effectively from the data, particularly for censored

samples.

* Limited Utilization of Censored Samples: The CoxPH model often underuti-
lizes censored samples in the dataset, the samples that have not died by the end
of the study. These samples dominate survival analysis datasets and contain

valuable information that can improve the model’s performance and reliability.

* Outputting Risk Scores: The CoxPH model outputs a risk score for each
patient, which may not be directly interpretable or valuable for clinicians.
Clinicians often require a rough estimate of each patient’s expected time to

death, which the CoxPH model does not provide.

By addressing these limitations, this thesis aims to set a new standard for IPF
prognosis models, ultimately supporting clinicians in making more personalized and

timely decisions that enhance patient care.

1.4 Contributions

In this thesis, we aim to develop multimodal machine learning models that integrate

and learn from multiple data sources, such as clinical and imaging data, to predict
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Figure 1.1: Overview of the thesis structure and contributions.

the future progression of IPF, see Figure 1.1. In real-world datasets, quality control
and data preprocessing are essential to ensure the reliability and validity of the data,
including developing methods to handle missing data without impairing or biasing
the developed models. We aim to develop machine learning methods to predict IPF
progression, providing a mortality risk score or estimated time to death. Further, we
aim to develop novel survival analysis models that can better handle the censoring
process, leverage the censored samples in the dataset, and relax the assumptions
of existing models to improve prediction accuracy and reliability. The developed
models are evaluated on a large and diverse dataset of IPF patients and compared to
existing models to demonstrate their effectiveness and reliability. The contributions

of this thesis can be summarized as follows.

1.4.1 Handling Missing Data in IPF Clinical Records

Real-world clinical data often contain missing values, impairing machine learning
model performance and introducing bias into predictions. Missing data is especially
common in IPF due to the nature of the disease and the variability in clinical assess-
ments. For instance, some hospitals may lack equipment for specific tests, or patients

may be unable to complete assessments due to their health condition. Standard
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imputation methods generally assume that clinical attributes are independent, which
may not hold in practice for IPF data.

In this thesis, we hypothesize that missing values for a patient can be accurately
estimated using the observed clinical values. To address this, we propose a method
based on Latent Variable Models (LVMs) and the Expectation-Maximization (EM)
algorithm to handle missing data in IPF clinical records. This imputation method is
applied to complete clinical datasets in our survival analysis experiments, aiming to
improve prediction accuracy by providing a more comprehensive dataset for model
training and reducing the bias introduced by missing values.

Furthermore, effective handling of missing data will facilitate a robust inte-
gration of clinical and imaging data, enhancing the reliability of our multimodal
prognosis model for IPF. This contribution addresses the problem of missing data in

clinical records, ensuring the reliability and validity of the developed models.

1.4.2 TImproving the Cox Proportional Hazards Model with

Memory Banks

The CoxPH model is widely used in survival analysis due to its simplicity and
interpretability. However, training the CoxPH model on high-resolution imaging data
(such as HRCT images) is computationally and memory-intensive, often requiring
a reduced batch size to fit the model within the Graphics Processing Unit (GPU)
memory. This limitation can impair model performance and restrict its ability to
learn effectively from data, particularly for censored samples.

Inspired by the contrastive learning literature, this thesis proposes a novel
approach to enhance the CoxPH model’s performance by integrating memory banks
during training [33]. Memory banks refer to a technique in which predictions from
previous training iterations are stored temporarily and reused in later stages. This
approach enables the model to leverage previously seen information, effectively

addressing computational constraints.
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By incorporating memory banks, we show that the CoxPH model achieves
improved performance, scalability, and a better utilization of censored samples.
We evaluate this method on a large and diverse dataset of IPF patients, comparing
it to the standard CoxPH model to demonstrate its effectiveness and reliability.
This chapter addresses the limitations of the CoxPH model when training on high-
resolution imaging data and provides a novel approach to improve its performance

and scalability.

1.4.3 Event-Conditional Modelling of Censoring in Survival

Analysis

In this contribution, we address the foundational assumptions of traditional survival
analysis models, such as the CoxPH model [26] and DeepHit [25], and introduce
CenTime, a novel event-conditional model designed to handle the censoring process
in survival analysis better. CenTime leverages censored samples in the dataset more

effectively through a novel objective function for training survival analysis models.

Our approach relaxes the proportional hazards assumption, which may not hold
in complex diseases like IPF, and outputs individualized survival time estimates.
Through extensive evaluation, we demonstrate that CenTime improves the prediction
accuracy, outperforming existing methods, including the CoxPH model and DeepHit.
Although CenTime is a general framework applicable to a wide range of survival
analysis tasks and datasets, we evaluate it specifically on our IPF dataset to highlight
its effectiveness in this context. This chapter addresses the limitations of existing
survival analysis models being less effective in handling the censoring process. It
introduces a novel event-conditional model that can better leverage censored samples
in the dataset and improve prediction accuracy and reliability while providing direct

estimates of each patient’s expected time to death.
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1.5 Thesis Overview

This thesis is organized as follows

* Chapter 2 provides a comprehensive background on IPF, including the lung
anatomy, physiology of the disease, as well as the clinical assessment, diagno-

sis, prognosis, and management of IPF.

* Chapter 3 provides a technical background on machine learning methods that
are relevant to the thesis, including missing data imputation, survival analysis,

and multimodal machine learning.

* Chapter 4 presents our proposed method for handling missing data in IPF
clinical records, which is essential for the reliability and validity of the devel-
oped models. This method is used in the subsequent chapters to train survival

analysis models.

* Chapter 5 discusses the limitation of the CoxPH model when limited by the
GPU memory to small batch sizes and proposes the integration of memory

banks to alleviate this limitation and improve the model’s performance.

* Chapter 6 discusses the limitation of existing survival analysis models and
proposes a novel event-conditional model, CenTime, that can model the cen-
soring process in survival analysis and better leverage the censored samples in

the dataset.

* Chapter 7 concludes the thesis and discusses future work.

1.6 Publications

The content of this thesis is based on the following publications

* Shahin A. H., Jacob J., Alexander D. C., and Barber D., “Survival Analysis

for Idiopathic Pulmonary Fibrosis using CT Images and Incomplete Clinical
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Data”, Oral presentation at the International Conference on Medical Imaging

with Deep Learning (MIDL), 2022 [34].

e Shahin A. H., Zhao A., Whitehead A. C., Alexander D. C., Jacob J., and
Barber D., “CenTime: Event-conditional modelling of censoring in survival

analysis”, Medical Image Analysis, 2024 [35].

In addition, the following publications were conducted during the PhD but are

not included in the thesis:

e Zhao A., Shahin A. H., Zhou Y., Gudmundsson E., Szmul A., Mogulkoc N.,
Van Beek F., Brereton C. J., Van Es H. W., Pontoppidan K., Savas R., Wallis T.,
Unat O., Veltkamp M., Jones M. G., Van Moorsel C. H. M., Barber D., Jacob J.,
and Alexander D. C., “Prognostic Imaging Biomarker Discovery in Survival
Analysis for Idiopathic Pulmonary Fibrosis”, International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCALI),
2022 [27].

e LuY, Aslani S., Zhao A., Shahin A. H., Barber D., Emberton M., Alexander
D. C., and Jacob J., “A hybrid CNN-RNN approach for survival analysis in a

Lung Cancer Screening study”, Heliyon, 2023 [36].

e Shahin A. H., Zhuang Y., and El-Zehiry N., “From Sparse to Precise: A
Practical Editing Approach for Intracardiac Echocardiography Segmenta-

tion”, International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI), 2023 [37].

e Whitehead A. C., Shahin A. H., Zhao A., Alexander D. C., Jacob J., and
Barber D., “Neural Network Based Methods for the Survival Analysis of Idio-
pathic Pulmonary Fibrosis Patients from a Baseline CT Acquisition”, Medical

Imaging Conference and International Symposium on Room-Temperature

Semiconductor Detectors (NSS MIC RTSD), 2023 [38].



Chapter 2

Clinical Background

We give a clinical background on the lung, the disease of IPF, its diagnosis, prognosis,
treatment, and the type of data primarily used in the clinical setting for diagnosis,

prognosis, and monitoring of IPF.

2.1 Lung Anatomy

The lung is the primary organ of the respiratory system, whose main function is
to provide oxygen to the blood. Generally, the respiratory system is divided into
airways and lung parenchyma. The airways consist of the bronchus, which split off
from the trachea and divide into bronchioles and alveoli. The lung parenchyma is
responsible for gas exchange and includes alveoli, alveolar ducts, and bronchioles.
Anatomically, lungs have an apex, three borders, and three surfaces. They are also
subdivided into lobes and segments [39, 40, 41].

The lung apex lies above the first rib. The three lung borders are the anterior,
posterior, and inferior borders. The anterior border has a cardiac notch in the left
lung to accommodate the heart, while the posterior border extends from the seventh
cervical vertebra (C7) to the tenth thoracic vertebra (T10). The inferior border is a
thin border that separates the lung base from the costal surface.

The three lung surfaces are the costal, medial, and diaphragmatic surfaces. The

costal surface is covered by the costal pleura and faces the sternum and ribs. The
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Figure 2.1: Anatomy of the lungs showing the pulmonary lobes, the bronchi, and other
pulmonary structures. Taken from the public domain.

medial surface has two parts: anterior, which is related to the sternum, and posterior,
which is related to the vertebra. The diaphragmatic surface is concave and lies on
top of the diaphragm, with its right part higher than the left because of the existence

of the liver.

The two lungs are similar but asymmetric (see Figure 2.1). Each lung comprises
smaller units called lobes, which ultimately subdivide into millions of alveoli. The
alveoli are the primary site of gas exchange in the lungs. The right lung has three
lobes, separated by horizontal and oblique fissures, while the left has two lobes

divided by an oblique fissure.

The hilum is at the centre of the medial surface and lies anterior to the TS5 to
T7 vertebra. It is the entry and exit point of various structures within the lung. The
hilum contains mainly bronchi and pulmonary vasculature. In the right hilum, there
are two bronchi, the eparterial and hyparterial bronchi, while in the left hilum, there

is only one bronchus, the principal bronchus [40].
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2.2 Lung Volumes and Capacities

Lung volume is a key metric for assessing lung function, essential for diagnosing
and monitoring pulmonary diseases like IPF. Common lung volumes and capacities

include (see Figure 2.2) [39, 42]

* Tidal Volume (TV): The volume of air inhaled or exhaled during normal

breathing.

* Inspiratory Reserve Volume (IRV): The volume of air a patient can forcefully

inhale after a normal inspiration.

» Expiratory Reserve Volume (ERV): The volume of air a patient can forcefully

exhale after a normal expiration.

* Residual Volume (RV): The volume of air that remains in the lung after

maximal exhalation.

* Inspiratory Capacity (IC): The maximum volume of air a patient can inhale

after a normal expiration.

* Functional Residual Capacity (FRC): The volume of air that remains in the

lung after normal expiration.

* Vital Capacity (VC): The maximum volume of air a patient can exhale after a

normal inspiration.

* Total Lung Capacity (TLC): The volume of air that remains in the lung after

maximal inspiration.

* Forced Vital Capacity (FVC): The maximum volume of air a patient can exhale

after a maximal inspiration.

* Forced Expiratory Volume in 1 second (FEV1): The volume of air a patient

can exhale in the first second of a forced expiration.
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Figure 2.2: The lung volumes and capacities. Adapted from [43].

2.3 Major Types of Lung Diseases

Many diseases can affect the lungs. Lung diseases can be classified into two main
categories: obstructive and restrictive. Distinguishing between obstructive and
restrictive lung diseases provides context for developing machine learning models
specific to IPF, a restrictive disease. By training models on data specific to IPF rather
than a broad category of lung diseases, it is possible to achieve greater accuracy in

disease-specific predictions, especially when distinguishing IPF from other ILDs.

2.3.1 Obstructive Lung Diseases

Obstructive lung diseases, such as Chronic Obstructive Pulmonary Disease (COPD),
impair expiration, leading to air trapping and decreased FVC, FEV1, and FEV1/FVC

ratios.

2.3.2 Restrictive Lung Diseases

These are diseases where specific abnormalities (e.g., fibrosis or scarring) restrict
lung expansion. This restriction leads to decreased lung volumes. Both FVC and
FEV1 are decreased in restrictive lung diseases, but the FVC is decreased more than

the FEV 1, which leads to an increased FEV1/FVC ratio. An example of a restrictive
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lung disease is IPF, which is the focus of this thesis.

2.4 Idiopathic Pulmonary Fibrosis

IPF is part of the broader ILDs family, which are lung disorders that cause inflam-
mation or fibrosis in several lung areas and share similar clinical, physiologic or
pathological features [44]. There are some ILDs that have known causes as well
as disorders that happen due to unknown aetiology. Intuitively, the diagnosis of
the latter category of diseases is more challenging. IIPs is a group of pulmonary
disorders that belong to that category and have distinct histologic patterns.

IPF, the most common IIP, is a chronic and progressive disease with a median
survival of two to three years from the time of diagnosis. The incidence of IPF
is increasing and is more common in older adults [5, 6, 30]. It is characterised
by the pattern of Usual Interstitial Pneumonia (UIP) on the chest HRCT scan,
see Figure 2.4. UIP is a specific fibrosis pattern seen in the lung tissue. Lung
abnormalities, like reticular opacities, traction bronchiectasis, honeycombing, and

ground-glass opacities, are common in UIP [45].

2.4.1 Epidemiology

The epidemiology of IPF varies widely across different regions because of blurred
diagnostic criteria and changes in the official diagnostic guidelines [46, 47]. Gen-
erally, IPF incidence has been increasing in the past few decades. However, it is
unclear whether this increase is due to an actual increase in the disease incidence or
better recognition and diagnosis of the disease [4].

In the UK, over 5000 IPF cases are diagnosed annually, with primary care
cases rising 35% from 2000 to 2008. IPF mortality rates continue to increase; see
Figure 2.3 [48]. In Europe and North America, IPF incidence is reported to be
between 2.8 to 19 cases per 100,000 people [49, 50]. In comparison, it is estimated

to be less than 4 cases per 100,000 persons in East Asia and South America [49].
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Figure 2.3: Estimated number of deaths from IPF in the UK. Age standardised to the 2008
population of England and Wales. ICD: International Classification of Diseases.
Adapted from [48].

Raghu et al. reported that IPF prevalence in people aged 65 years and older in
the US increased from 202.2 cases per 100,000 in 2001 to 494.5 in 2011 [51]. Several
studies have reported a consistent increase in IPF incidence and prevalence rates
among older males, with the majority being over 50 years old [52]. IPF mortality is
also increasing worldwide but might be underestimated due to the lack of recognition

and diagnosis difficulties associated with IPF [53].

Machine learning models can analyse epidemiological data to identify risk
factors, predict disease incidence trends, and assess outcomes in IPF populations.
For instance, models trained on demographic and clinical data can help stratify

patient risk levels based on age, gender, or other factors [54, 55].
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Change in Dyspnea Grade Change in FVC (L) Change in FVC (%)

Much better 23+7.3 5.1+7.3
Somewhat better —2.1+64 0.7+64
Same —2.84+5.8 0.0£5.8
Somewhat worse —6.5+6.6 —3.7+£6.6
Much worse —6.1+£9.5 —3.3+95

Table 2.1: Change in FVC with change in dyspnea grade. Adapted from [58].

2.4.2 C(linical Presentation

2.4.2.1 Symptoms and Physical Examination

Common symptoms of IPF include dyspnea, cough, and fatigue. Dyspnea (shortness
of breath) is the most common symptom and is usually progressive. It limits the
patient’s daily activities and is often the reason for seeking medical attention as it
impairs the quality of life [56, 57]. Some studies have shown that the patient-reported
sensation of change of dyspnea grade is associated with changes in FVC [58], see
Table 2.1. Cough is another common symptom which is more likely to happen in
patients with a history of smoking [56]. Late stage IPF patients sometimes report

general fatigue [59].

Physical examination of IPF patients may reveal clubbed fingers and velcro
crackles. Finger clubbing refers to a deformity of the nail base, characterised by a
swollen, spongy, and convex shape of the distal phalanx, accompanied by a reduction
in the nail-fold angle [60]. It is thought to affect around 50% of IPF patients and has
shown to be associated with poor prognosis [61, 62]. Velcro crackles are a distinctive
sound heard on auscultation of the chest, which is thought to be due to the opening
of small airways that are closed by fibrosis [62]. Velcro crackles are reported by
many IPF patients, and clinical guidelines recommend their presence as a diagnostic

criterion for IPF [6].
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2.4.2.2 Physiological Measurements
Physiological measurements are essential for diagnosing and monitoring IPF. The
most common measurements used are FVC, FEV 1, and Diffusing Capacity of the
Lung for Carbon Monoxide (DLcg), with FVC being the most important. The
majority of IPF patients suffer from a decreased FVC and DL [6]. However, the
physiological measurements can be normal in the early stages of the disease, and the
decline in FVC is inconsistent across patients [4].

Physiological measurements, such as FVC and DLq, are critical features for
machine learning models in IPF. Predictive algorithms can utilise these measurements
to assess disease progression, with FVC serving as a valuable indicator of patient

health that models can use to predict mortality [63, 64, 65, 66].

2.4.2.3 HRCT Findings

The clinical guidelines recommend the use of HRCT imaging in the diagnosis of
IPF [30]. Radiographic changes in IPF patients can be observed before the onset
of symptoms. Dong Soon et al. showed that asymptomatic IPF patients developed
symptoms after more than 2 years of the diagnosis based on the HRCT findings [67].

IPF is defined by a histopathologic and/or radiologic pattern known as UIP
(Figure 2.4), which involves paraseptal fibrosis and architectural distortion [30]. The
most common features of UIP on HRCT include honeycombing, traction bronchiec-
tasis, and traction bronchiolectasis, often accompanied by ground-glass opacification

and fine reticulation. These terms are defined as follows

* Honeycombing, a hallmark of UIP, represents advanced pulmonary fibrosis
and is identified by clusters of cystic air spaces, typically subpleural, with

thick, well-defined walls [68, 69, 45] (Figure 2.4).

e Traction bronchiectasis/bronchiolectasis refers to the dilation of bronchi or
bronchioles due to the retraction caused by surrounding fibrosis [68] (Fig-

ure 2.4).
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* Reticulation generally signifies lung fibrosis [11], characterised by numer-
ous short linear opacities that form net-like patterns on HRCT scans [68]

(Figure 2.5).

* Ground-Glass Opacity (GGO) is identified as areas of hazy increased lung
density where the margins of bronchi and vessels remain visible [68]. While
pure GGO is not typically associated with UIP, it is common in patients with
fibrotic lung diseases to observe GGO mixed with reticular abnormalities,

traction bronchiectasis, or both [45].

The guidelines outline four patterns based on HRCT features to assist in diag-
nosing IPF: the UIP pattern (Figure 2.4), probable UIP pattern (Figure 2.5), inde-
terminate for UIP pattern, and patterns suggestive of an alternative diagnosis [30].
The UIP pattern is the most critical for IPF diagnosis, characterised by bilateral
reticulation and honeycombing with subpleural and basal predominance [4, 30]. On
HRCT, the UIP pattern strongly predicts the presence of histopathologic UIP, often
making Surgical Lung Biopsy (SLB) unnecessary for diagnosis in patients with a
typical UIP pattern and no other clear cause.

A probable UIP pattern, which includes bilateral reticulations that are subpleural
and basal with peripheral traction bronchiectasis or bronchiolectasis but without
honeycombing, is also strongly indicative of histopathologic UIP. Some patients with
this probable UIP pattern on HRCT can be diagnosed without SLB, while others may
require additional clinical evaluations, such as SLB, to confirm the diagnosis [30, 45].

HRCT scans are vital for diagnosing IPF. They can be used as input data for
machine learning models designed to detect IPF patterns, such as honeycombing and
ground-glass opacities [70, 71, 72, 73, 74]. By training models on HRCT images, it
is possible to develop automated methods for recognising UIP patterns, supporting
radiologists in diagnosis and monitoring [75]. In addition, deep learning models can

be trained end-to-end to predict patient outcomes based on HRCT images without
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Figure 2.4: Typical UIP patterns in HRCT. (A-F) Axial and coronal HRCT scans from a
patient with UIP display a subpleural predominant reticular abnormality, along
with traction bronchiectasis and honeycombing on the coronal images (E). (F)
A magnified view from another patient reveals honeycombing areas occurring
in single and multiple layers (indicated by arrows). Additionally, two regions
of apparent GGO (circled) contain dilated bronchi (traction bronchiectasis),
suggesting these areas likely represent fibrosis. Adapted from [45].
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Figure 2.5: Probable UIP HRCT pattern. (A—-E) The HRCT images reveal a basal-
predominant and subpleural-predominant reticular abnormality, with peripheral
traction bronchiectasis (circled in B) but without honeycombing. In this case,
the diagnosis of UIP was confirmed through histological analysis. Adapted
from [45].

requiring manual feature extraction. Probing the extracted features can also provide

insights into the disease mechanisms and progression.
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2.4.3 Diagnosis

Pathologically, IPF is characterised by stiffening and scarring (fibrosis) of the lung
tissue with unknown causes. This leads to shortness of breath and progressive
reductions in lung volume. Diagnosis of IPF requires the existence of UIP pattern
and SLB [30, 76]. In patients not subjected to biopsy, the diagnosis is made when a
definite UIP is present on the HRCT and other known causes of ILDs are excluded,
see Figure 2.6.

IPF diagnosis is challenging due to several reasons. The clinical presentation of
IPF, such as dyspnea and cough, overlaps with symptoms of other respiratory diseases
like COPD or non-IPF ILDs, leading to potential misdiagnoses [77]. Additionally,
even experienced radiologists may struggle to distinguish between UIP patterns and
non-UIP patterns on HRCT scans due to subtle differences, increasing the risk of
diagnostic errors [47, 78, 79, 80].

The reliance on HRCT and SLB for definitive diagnosis poses challenges [81].
While HRCT can identify UIP patterns, these patterns may not always be distinct,
and SLB is invasive and not feasible for all patients, especially those with advanced
disease or comorbidities. This diagnostic uncertainty often delays accurate diagnosis
and timely treatment initiation.

Machine learning offers opportunities to assist in diagnosing IPF by automating
the detection of UIP patterns in HRCT scans and combining imaging data with

clinical records [82, 83].

2.4.4 Prognosis

Besides the lack of confident diagnostic criteria of IPF, another challenge is the
highly variable and unpredictable progression of IPF across individuals. Disease
progression in IPF is assessed by monitoring respiratory symptoms, progressive
fibrosis on the HRCT, pulmonary tests (e.g., FVC), or mortality. We explore FVC

decline and mortality as established methods for tracking IPF progression.
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Figure 2.6: Diagnostic criteria for IPF [6]. ILD: Interstitial Lung Disease, CTD: Connective
Tissue Disease, HRCT: High-Resolution Computed Tomography, UIP: Usual
Interstitial Pneumonia.

2.4.4.1 Forced Vital Capacity Decline

FVC is one of the vital lung function tests used to track the progression of IPF.
Importantly, FVC decline is shown to be correlated with patient mortality [84].
Pulmonary function interpretations involve comparing with FVC reference values
obtained from a healthy population. Several factors contribute to the calculation
of these predicted values, such as height (which reflects chest size), age (reflects
maturity), sex, and, ideally, ethnicity [85]. The obtained typical values are then used
to calculate the FVC per cent predicted, which is the ratio of the measured FVC to

the predicted FVC.

Paterniti ef al. showed that a decline in FVC of > 10% is associated with mortal-

ity [86]. FVC was the basis of the US Food and Drug Administration (FDA) approval
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of two major treatments (antifibrotic agents) for IPF: pirfenidone and nintedanib [87].
While FVC decline is consistent in IPF patients, it varies significantly between
individuals and over time, and prior declines are not a reliable predictor for future
ones [6, 88]. However, a decline of > 10% in the first 24 weeks was shown to predict

mortality in the following 24 weeks [89].

Despite the importance of FVC decline in IPF prognosis, it has significant
limitations [90, 91]. FVC results can be within the normal range during the early
stages of the disease. FVC may also be artificially elevated when emphysema is
present [4]. Moreover, FVC depends on the patient’s effort and cooperation during
the test, leading to variability in the results. Finally, there is an inherent noise in the

spirometer measurements, estimated to be around 140 mL in the case of FVC [91].

2.4.4.2 Mortality

Mortality is considered the most reliable endpoint in IPF. It can be interpreted in
any of the following forms: all-cause mortality, respiratory-related mortality, or IPF-
related mortality. Further, it can be recognised as the time-to-death endpoint or an
endpoint at a fixed time (e.g., one year). The most clinically relevant type mentioned
is all-cause mortality, which is reliable and easy to define and measure [92]. One
concern of mortality studies is that they may be impractical for IPF, as it will require
large sample sizes and long duration to reach the endpoint, leading to the need for
more resources than non-survival-based studies. However, King et al. showed that
it is possible to conduct a successful clinical trial using all-cause mortality as the
primary endpoint in IPF [93].

We have limited information about mortality predictors in IPF patients. Despite
the poor survival rate (two to three years), some patients survive for much longer,
and the clinical course varies from slow progression to acute failure and death. It will
be clinically beneficial to have prediction models that can yield individual mortality

risk [94]. This thesis focuses on all-cause mortality as the primary endpoint for
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prognosis prediction in IPF patients.

2.4.4.3 Prognosis Challenges

The course of IPF progression is unpredictable; some patients may experience a rapid
decline, while others show a more stable disease course for years. This variability
complicates prognosis and makes it challenging to predict patient outcomes based
solely on clinical and physiological measures [95]. The lack of reliable prognostic
markers hinders the ability to stratify patients based on risk and progression rates.
Traditional prognostic measures, such as FVC decline, are inconsistent predic-
tors of individual outcomes. FVC can remain normal in early-stage IPF, and its
decline does not always correlate with disease progression [96, 97]. Additionally,
FVC measurements depend on patient effort and can be influenced by comorbid

conditions, leading to variability and potential inaccuracies in assessment.

2.4.4.4 Unmet Need for Predictive Models

Given the complexities in diagnosis, the unpredictable nature of disease progression,
and the limitations of existing treatment options, there is a pressing need for advanced
predictive models to better assist clinicians in managing IPF. The following section
explores how machine learning approaches can be leveraged to address these unmet
needs.

The diagnostic ambiguity, unpredictable progression, and limited treatment
options in IPF highlight an urgent need for reliable predictive models. Traditional
clinical approaches and prognostic measures have shown limited effectiveness in
accurately predicting patient outcomes, leading to suboptimal treatment strategies.
There is a lack of widely accepted prognostic tools that can integrate the diverse and
complex data sources available, such as clinical records and HRCT scans.

Machine learning offers a promising solution by leveraging multimodal data to
uncover patterns and relationships that may not be apparent through conventional

analysis. By integrating clinical and imaging data, predictive models can provide
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more accurate diagnoses, assess disease progression, and offer personalised treat-
ment recommendations. These advancements can potentially transform the clinical

management of IPF, leading to improved patient outcomes and quality of life.

2.4.5 Treatment

There is currently no cure for IPF. Treatment aims to slow down progression, manage
symptoms, and improve the quality of life. Antifibrotic drugs, such as pirfenidone
and nintedanib, aim to slow the rate of decline in FVC [98, 99]. However, their
effectiveness varies significantly among patients, and side effects can limit their
use [100]. Additionally, there is no reliable method to predict which patients will
respond favourably to these treatments, complicating clinical decision-making.

On the other hand, lung transplantation is the only reported treatment method
to improve both symptoms and survival likelihood [101, 102]. A lung transplant
may be either unilateral or bilateral. Outcomes from bilateral transplants are often
better regarding survival rate and lung function, but unilateral transplants benefit
from shorter wait times and less complicated procedures. The overall five-year
survival rate post-transplant is around 50% [101]. However, lung transplantation is
only an option for a small subset of patients. The procedure has high risks, limited
availability due to donor shortages, and variable outcomes, making it a challenging
choice even for eligible patients.

Machine learning models could be used to evaluate treatment effectiveness by
analysing longitudinal data from patients receiving antifibrotic treatments. Predictive
models could also aid in identifying patients who may benefit most from lung

transplantation based on their disease progression and risk factors [103, 104, 105].

2.5 Idiopathic Pulmonary Fibrosis Data

IPF is a complex disease requiring a multidisciplinary diagnosis and management

approach. The data used in the clinical setting for IPF diagnosis, prognosis, and
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monitoring are primarily clinical data, imaging data, and sometimes genetic data.

Data heterogeneity and missing values are significant obstacles in IPF research.
Clinical data often contain gaps due to incomplete patient records, while imaging
data can be inconsistent in quality and resolution. The small sample sizes in IPF
studies, combined with the variability in patient demographics and disease stages,
make it challenging to develop generalisable models.

Clinical and imaging data form the basis for the machine learning models
developed in this thesis. By integrating these multimodal data sources, machine
learning algorithms can be trained to predict disease progression, assess mortality

risk, and support clinical decision-making in IPF.

2.5.1 C(linical Data

Clinical data includes but is not limited to patient demographics, lung function

measurements, treatments, and symptoms information.

2.5.1.1 Patient Demographics

Patient demographics include information like patient age, gender, smoking history,
exposures, and comorbidities. IPF is more common in older males, and smoking is a
significant risk factor for the disease [6]. Environmental exposures, such as silica
and wood dust, are also crucial for the disease assessment. Comorbidities, such as
emphysema, pulmonary hypertension, and lung cancer, are common in IPF patients

and can affect the prognosis [6].

2.5.1.2 Lung Function Measurements

This includes measurements like FVC, FEV1, DLco, and 6-Minute Walk Test
(6MWT). FVC and DL are the most common measurements used in IPF diagnosis
and prognosis. DLco measures the lung’s ability to transfer gases between the air
sacs and the blood. Specifically, it measures how well the Carbon Monoxide (CO),

a surrogate for oxygen, is transferred from the lungs to the blood. The 6MWT test
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assesses the patient’s functional exercise capacity and endurance. It measures how

far a patient can walk on a flat surface in six minutes.

2.5.1.3 Treatments

Treatments include whether the patient is under any antifibrotic treatment and which
drug. In addition, it should include information about the lung transplantation, if

performed.

2.5.1.4 Symptoms
This section includes any symptoms reported by the patient at any point in time.

Typical symptoms in IPF include shortness of breath, dyspnea, cough, and clubbed

fingers [106].

2.5.2 Imaging Data

Imaging data is essential for IPF diagnosis and prognosis. The primary imaging
modality used for IPF is the HRCT. It is a non-invasive imaging technique that
provides detailed images of the lung tissue. Non-contrast HRCT with thin slices
(< 3 mm) is used to detect fibrosis patterns, honeycombing, ground-glass opacities,
and other abnormalities in the lung tissue [45]. Figure 2.4 shows examples of HRCT

images with different lung patterns.

2.5.3 The Open Source Imaging Consortium Data

The OSIC dataset is the world’s largest and most diverse dataset for IPF and ILDs in
general. It comprises HRCT and contemporaneous clinical data from multiple sites
worldwide. In addition, the dataset includes mortality information for the patients.
This thesis uses the OSIC data for developing and evaluating the proposed models.

The OSIC dataset provides a rich, multimodal source of clinical and imaging
data suitable for developing robust machine learning models. By using this dataset,
machine learning models can learn from real-world data to improve the accuracy and

reliability of IPF prognosis predictions.
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Criteria Number of Scans Number of Patients
All samples 2603 1639

IPF diagnosis 1158 860

Slice thickness < 3 mm 834 621
Volumetric scan 832 619
Non-contrast scan 766 589
Exclude noisy scans 728 555

Table 2.2: Inclusion criteria for the OSIC data used in this thesis.

It contains data from 1639 patients with ILDs'. The patient data included
in this thesis is collected from six different sites worldwide. Some patients have
multiple follow-up scans, while others only have one baseline scan. In this thesis,
we filter the data to include only patients with an IPF diagnosis with non-contrast
volumetric HRCT scans and a slice thickness of less than 3 mm. For patients with
multiple physiological measurements (i.e., FVC, FEV1, and DLcp), we use the
average of measurements taken within a 90-day window of the scan date. This
procedure ensures that the physiological measurements are as temporally aligned as
possible with the scan and reduces the effect of variability in the measurements. If
no physiological measurements are available within this window, they are treated as
missing. Table 2.2 details the inclusion criteria for the OSIC data used in this thesis.
Figure 2.7 shows the distributions of age, gender, smoking status, FVC, and survival

status in the OSIC data.

Uhttps://www.osicild.org
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Figure 2.7: Distributions of age, gender, smoking status, FVC, and survival status in the

OSIC data.



Chapter 3

Technical Background

In this chapter, we provide a technical overview of machine learning and some
relevant methods and models used in the field, focusing on missing data imputation,
survival analysis, and multimodal learning.

Machine learning is a subfield of Al that pertains to developing algorithms to
learn from data without explicit instructions. The goal is to make predictions or
decisions based on the patterns learned from the data. Machine learning has made
outstanding progress in various domains, such as computer vision [107, 108, 109,
110], natural language processing [111, 112, 113], and healthcare [114, 115]. We
provide an overview of machine learning methods and models relevant to this thesis
and refer the reader to [14, 116, 117, 118, 119] for a comprehensive introduction to

machine learning.

3.1 Notation

We use bold lowercase letters such as x for vectors. For matrices, we use bold upper
case letters such as X. Scalars are non-bold lowercase, e.g., x. We denote the i-th
element of a vector x as x;. The i, j-th element of a 2D matrix X is denoted as x;;.
p(X = x) is a probability distribution of the random variable X taking the value
x. p(X = x|Y =) is the conditional probability of X taking the value x given that

Y takes the value y. For presentation clarity, we omit the random variables in the
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notation when it is clear from the context and use p(x) and p(x|y) instead. pg(-) is a

probability distribution parameterized by 6.

3.2 Missing Data Imputation

Missing data is a common problem in real-world datasets. It can occur for various
reasons, such as data entry errors, equipment failure, patients not showing up for
appointments, or patients not being able to do some tests due to their condition.
Missing data can lead to biased conclusions and reduce the statistical power of the

models. Therefore, it is essential to handle missing data appropriately.

Missing data imputation is estimating the missing values in the dataset. There
are several methods for missing data imputation; see, for example, [116, 120, 121].
However, incautious handling can bias the model adversely. We discuss missing data

mechanisms and then present some popular imputation methods.

3.2.1 Missing Data Mechanisms

Understanding the missing data mechanism is crucial for selecting the appropriate
imputation method. There are three main missing data mechanisms [122, 123, 124];

we briefly describe them below.

3.2.1.1 Missing Completely at Random (MCAR)

In the Missing Completely at Random (MCAR) mechanism, the probability of a
data point being missing is independent of both the observed and unobserved data.
The missing data process is entirely random. For example, when a patient misses an
appointment due to a random event like a traffic jam, the data is missing completely
at random. In the MCAR mechanism, the missing values do not introduce bias into

the model.
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3.2.1.2 Missing at Random (MAR)

The probability of a data point being missed depends on the observed data but not
the missing data themselves. For example, a DL¢o test might be more likely to be
missing for patients with lower observed FVC values or older patients due to the
difficulty of performing the test. In the Missing at Random (MAR) mechanism, the
missing data process can introduce bias into the model, but it can be handled by

conditioning on the observed data.

3.2.1.3 Missing Not at Random (MNAR)

The probability of data being missed depends on the missing data themselves. The
missing values are directly related to the reason they are missing. For example,
patients with severe lung function impairment might be more likely to miss lung
function tests. In the Missing Not at Random (MNAR) mechanism, the missing data
process introduces bias into the model, and it is challenging to handle because the
missing data process cannot be modelled by conditioning on the observed data alone.

In this thesis, we assume that the missing data mechanism is MAR, as we
condition on the observed data when imputing missing values. This assumption
aligns with the proposed method for imputing missing data in the OSIC dataset, as

described in Chapter 4.

3.2.2 Imputation Methods

3.2.2.1 Zero Imputation

Zero imputation is the simplest method for handling missing data. It replaces the
missing values with zeros. In neural networks, zero imputation sounds reasonable
as it prevents the weights associated with the missing nodes from being updated.
However, several studies have reported that zero imputation harms the model perfor-
mance [125, 126, 127]. In addition, zero imputation can introduce bias in the model.

For example, it might correlate a missing lung function value with a poor prognosis
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due to the inability of patients in late disease stages to perform lung function tests,
which is not always true [128]. Zero imputation could be appropriate when the
missing data are MCAR. However, it is not recommended for MAR or MNAR

missing data mechanisms.

3.2.2.2 Mean Imputation

Mean imputation replaces the missing values in a feature with the mean (the mode in
the case of categorical features) of the observed values in that feature [120]. Mean
imputation is simple and easy to implement. However, it assumes all data attributes
are independent, which is an invalid assumption in the case of IPF clinical records.
Mean imputation is suitable for MCAR missing data but can introduce bias in the

model when the missing data are MAR or MNAR.

3.2.2.3 Multiple Imputation

Considering dependency between attributes, Multiple Imputation by Chained Equa-
tions (MICE) iteratively performs supervised regression to model missing data
conditioned on observed data [129]. MICE starts by using a simple imputation
method like mean imputation to fill in the missing values. Then, missing values in
each feature are regressed given the other features. The process is repeated multiple
times to generate multiple imputed datasets. The final imputed dataset is obtained by
averaging the multiple imputed datasets. MICE is a popular method for imputing
missing data in clinical datasets [121]. It is suitable for MAR missing data but may

not be appropriate for MNAR missing data.

3.3 Survival Analysis

Survival analysis is a valuable tool for estimating the time until specific events, such
as death or cancer recurrence, based on baseline observations. This is particularly
useful in healthcare to prognostically predict clinically important events based on

patient data. However, existing approaches often have limitations; some focus only



3.3. Survival Analysis 58

on ranking patients by survivability, neglecting to estimate the actual event time,
while others treat the problem as a classification task, ignoring the inherent time-
ordered structure of the events. Furthermore, effectively utilising censored samples,
training data points where the exact event time is unknown, is essential for improving

the model’s predictive accuracy.

This thesis uses survival analysis (or time-to-event prediction) as a proxy for
disease prognosis in IPF patients. Given a dataset of patients with observed event
times and covariates, the goal is to predict the time until an event of interest occurs
for a new patient. The following subsections provide an overview of survival analysis

and some popular models used in the field.

3.3.1 Survival Function

The time to event of interest is represented by the random variable 7. The survival
distribution is typically characterised by three functions: the Probability Density
Function (PDF), the survival function, and the hazard function. The PDF f(¢) is

defined as
fle) = (3.1)

where F(t) is the cumulative distribution function of the event time F(¢) = p(T <t).

The survival and hazard functions are equivalent because if one is known, the

other can be derived [130]. The survival function S(¢) is defined as

S(t)=p(T>1t)=1-F(r) (3.2)

It represents the probability that the event of interest has not occurred by time #. The

hazard function A(t) is defined as

L P ST <t+MT>t) . F(t+A)—F(t) f(1)
ht) = lim, Al AT ASE) s )




3.3. Survival Analysis 59

where p(t <T <t+ At|T > 1) is the conditional probability that the event occurs in
the interval [r,7 + Ar) given that the event has not occurred before time 7. The hazard
function h(t) represents the instantaneous risk of the event occurring at time 7 given
that the event has not occurred before time ¢. The event in our case is mortality;
however, it can be any event of interest, such as cancer recurrence, exacerbation, or
machine failure [131, 132, 133, 134].

f(t) can be expressed as

fi = == == (3.4

h(t) = % = —%S(t) : ﬁ = —%logS(Z)l (3.5)

Thus, the survival function is related to the hazard function as

S(1) = exp (— /O th(u)du) — exp (—H(1)) (3.6)

where H(t) = | h(u)du is the cumulative hazard function. Additionally, the PDF

f(t) can be expressed as
f(t) = h(2)-S(1) = h(t) -exp (—H (1)) 3.7

3.3.2 Censoring

In survival analysis, the task is to predict the time until an event of interest (mortality
in our case) occurs from the time of covariates observation. However, in practice,
collecting this data for training is only sometimes possible. For example, a patient

may drop out of the study, stop visiting the hospital, or the study may end before

!'Unless otherwise stated, log denotes the natural logarithm log(.) = In(.)
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the event occurs. In such cases, the event time is unknown and is partially observed

in the sense that we know the event has not occurred up to a specific time. This

process is called censoring, and samples with this property are called censored

samples [131, 135, 136]. Censoring is a common issue in survival analysis, and it is

essential to handle it appropriately to avoid biasing the model.

There are three types of censoring, as shown in Figure 3.1:

* Left censoring: The event of interest occurred before the study started, and the
exact event time is unknown. For example, if we study the time until a patient
dies, and the patient dies before the study starts, the event time is left censored.
Left censoring is usually unobserved in practice because we usually include

only patients alive at the start of the study.

Interval censoring: The event of interest occurred between two time points,
and the exact event time is unknown. For example, if we study the time until a
patient dies, and the patient dies between two visits to the hospital, and we do

not know the exact time of death, the event time is interval-censored.

Right censoring: The event of interest has not occurred by a specific time,
and the exact event time is unknown. For example, if we study the time until
a patient dies and the patient stops visiting the hospital before death occurs,
the event time is right-censored, and the censoring time is the last visit to the
hospital. Right censoring is the most common type of censoring in survival

analysis.

3.3.3 Data Representation in Survival Analysis

Let D be the entire dataset, and let A/ be the index set of all observations in the

dataset, such that each sample is indexed by n € N. We further define Nypcens as

the subset of indices corresponding to uncensored samples (8, = 1), and Neeps as

the subset of indices corresponding to censored samples (5, = 0). In this thesis,
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Figure 3.1: Examples of left-censored, interval-censored, right-censored, and uncensored
samples.

we focus on right-censored data, as the other forms of censoring are not observed
in the OSIC data or most of the other clinical datasets. Our training data D is a
collection of uncensored and right-censored observations. For each sample n € N,
the observation for an uncensored sample is represented as (8, = 1,X,,1,), where
0, = 1 indicates that the death time ¢, is known. For a right-censored sample
n € Neens, the observation is represented as (8, = 0,x,,c, ), where §, = 0 indicates
that the death time ¢, is unknown, and only the censoring time ¢, < t, is known. The
covariates x,, are the patient features (HRCT scans, clinical data, ...), and the time

t, is the time until death. The censoring time c,, is the last visit to the hospital.

3.3.4 Popular Survival Analysis Models

Several models for survival analysis exist, each with strengths and weaknesses.

3.3.4.1 Kaplan-Meier Estimator

The Kaplan-Meier (KM) estimator is the most widely used non-parametric survival
analysis model [137]. It estimates the survival function by computing the proportions

of individuals surviving over time

Skm(®) =] (1 — i) (3.8)

i<t
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where d; is the number of deaths at time ¢#; and n; is the number of individuals at
risk at time #;,. The KM estimator is a step function that decreases at each event
time. It is a non-parametric model that does not assume any specific form for the
survival function. The KM estimator is useful for visualising the survival function
and comparing survival functions between different groups. However, it is not
suitable for predicting the survival time for new patients as it cannot account for the

effects of covariates.

3.3.4.2 Cox Proportional Hazards Model

The most widely used model to learn from censored survival data is the CoxPH
model [26]. CoxPH models the conditional hazard function A(z|x) given the covari-

ates x as

h(t|x) = ho(t) exp (B7x) (3.9)

where hg(t) is the baseline hazard function, and 3 are the model parameters. Given

two patients with covariates x; and x;, the hazard ratio is

= S = exp(BT (x; —x;)) (3.10)

The proportional hazards assumption assumes that the hazard ratio between two
patients is constant over time [138].

The model is semi-parametric, as it does not assume a specific form for the
baseline hazard function 4 (z) (which does not depend on the covariates) but assumes
a linear relationship between the covariates and the log hazard.

The model parameters f3 are learned by maximising the partial log-likelihood
function [26]. To do this, for each patient n, we define the risk set R, as all those

patients that have not died before patient n and define the relative death risk as

oDy =Ry = — %) exp(BTx)

— = 3.11
Yoer, him%n) Lo cxp(BTxn) OV
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The partial log-likelihood function is then defined as the sum of log P(D,, = t,|R,,)

for all patients who died 7 € Myncens

LB)= )Y logp(Dy=1t:|Rn) (3.12)
n€MNancens
= ) (ﬁTxn—IOg Yy eXp(BTXm)> (3.13)
nEMNuncens meR,

The CoxPH model has been widely used in survival analysis due to its simplicity
and interpretability. However, it has several limitations. The main limitation is
its assumption of a linear relationship between the covariates and the log hazard,
which may not hold in practice. In addition, the proportional hazards assumption is
a strong assumption that may not hold in some cases, especially in a disease like IPF
where the risk of death may change over time and the progression of the disease is
heterogeneous and highly unpredictable [139, 30].

Further, the CoxPH model estimates the relative risk of death between patients
rather than predicting the actual survival time, which is more useful and easier to
interpret. This is because the CoxPH model is a semi-parametric model that does not
estimate the baseline hazard function kg (t), which is required to predict the survival
time. Non-parametric methods like the Breslow estimator [140] are often used to
estimate the baseline hazard function and then compute the hazard function and
survival function. However, the performance of this method is unsatisfactory in

practice [131, 141].

3.3.4.3 Random Survival Forests

Survival Decision Trees (SDTs) are developed by modifying standard decision
trees with specialised splitting rules to accommodate right-censored survival data.
Numerous splitting rules have been suggested [142]. They can be generally classified
into two categories: splitting rules that maximise heterogeneity between nodes [143,

144, 145] and those that minimise homogeneity within nodes [146, 147, 148]. To
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address the instability of individual SDTs, Random Survival Forests (RSFs) [149]
were introduced, which ensemble multiple random SDTs based on Breiman’s random

forest algorithm [150].

3.3.4.4 Gradient Boosting Machines

Boosting is a widely used ensemble learning technique that combines the predictions
of multiple weak models (often called base learners) to create a more robust model.
Gradient Boosting Machines (GBMs) [151] are among the most popular boosting
methods and can be adapted for survival analysis by incorporating base survival
models. For instance, CoxBoost was developed to estimate the coefficients of a Cox

model using GBMs [152].

3.3.4.5 Support Vector Machines

Support Vector Machines (SVMs) [153] are commonly used in classification tasks,
aiming to identify the optimal hyperplane separating different classes. SVMs can
also be adapted for regression tasks [154], seeking a hyperplane that best fits the
data while minimising error, a variant known as Support Vector Regression (SVR).
SVR can predict survival time, rank scores, or both, though it does not model the
survival distribution. Shivaswamy et al. [155] were the first to modify SVR for
survival analysis, proposing a support vector approach for regression with censored
targets, specifically to predict survival times within a target interval. Later, [156]
reformulated survival analysis as a ranking problem with penalties for discordant
pairs, and [157] introduced an SVR-based hybrid model that approaches survival

prediction as both a regression and ranking problem.

3.3.4.6 Bayesian Survival Analysis

Bayesian methods offer a framework for inference and prediction by connecting
posterior and prior probabilities. In survival analysis, Bayesian approaches are

frequently used to predict the survival distribution. For example, Fernandez et
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al. [158] proposed a semi-parametric Bayesian model for survival analysis, designed
to avoid strong constraints. Their approach modelled the hazard function as a product
of a parametric baseline hazard and a non-parametric component, which employed a

Gaussian process to capture the combined effects of time and covariates.

3.3.4.7 DeepSurv

One limitation of the CoxPH model is that it assumes a linear relationship between
the covariates and the log-hazard. DeepSurv relaxes this assumption by using a

neural network to model the hazard function [159]

h(t[x) = ho(t) exp (fo(x)) (3.14)

where fg(x) is a neural network parameterized by 6. The model parameters 6
are learned by minimising the negative log-partial likelihood function, similar to
Equation 3.13. As a deep learning model, DeepSurv automatically learns the relevant

features from the data and does not require any manual feature engineering [159].

3.3.4.8 Classical Censoring Model

In contrast to approaches that model the hazard function, other methods model the
death distribution directly. The model is trained to maximise the likelihood of the
observed death and censoring times. However, as we are interested in predicting the
death times, one needs to assume the data generation process to model the censoring

times [131].

One common approach in the literature is to assume that censoring times follow
a distribution p(C = c|x) and death times follow a distribution pg (D = t|x). These
times are independently sampled and then compared: if the censoring time is less
than the death time, the observation is the censoring time; otherwise, it is the death

time [25, 160]. This approach is called the classical censoring model and leads to
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the following model

Po(8,¢;tlx) = po(1]x)p(clx)p(S]e;1) (3.15)

where p(0 = l|c,t) =1 if ¢ >t and p(8 = 0|c,t) = 1 if ¢ < ¢. For a uniform

censoring distribution p(C = c|x) = ﬁ a right-censored observation then has the
following likelihood?
Tmax
pe(6=0,C=clx) = Y, po(D=tx) (3.16)
max ;—c4

and the likelihood of an uncensored observation is given by

Thax — 1+ 1

Tmax

p(6=1,D=tlx) = po(D =1x) (3.17)

Omitting additive constants, the objective then is to maximise

Tmax
LO)= Y logpg(D=talxs)+ Y log Y po(D=t|x) (3.18)
n€MNuncens i€MNcens t=c;+1

The model parameters 6 are learned by maximising the likelihood function in

Equation 3.18.

3.3.4.9 DeepHit

Lee et al. approach survival analysis as a classification task with i, categories [25].
Specifically, a neural network predicts a vector of Tp.x values, which a softmax
function then transforms into a death distribution, pg(D = t|x). DeepHit combines

a classical censoring term (Equation 3.18) and a ranking objective to leverage the

2Any other censoring distribution can be used here, and it can also be learned from the data.
However, for simplicity, we use a uniform distribution.
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censored data. Specifically, the objective function is composed of two terms
IL‘DeepHit - ]Llcjk. + Lrank. (3~19)

where Ly, represents the classical likelihood (Equation 3.18) with a softmax function
to model the death time distribution, and L,k is a ranking term that penalises the
model for inaccuracies in predicting the ranking of patients’ survival times, mirroring

the Cox objective
Lrank. = N (Fo(ti]xi), Fo (ti|xj)) Vi,jeN st 1< tj (3.20)

where 1 (x,y) = exp (@), Fy(t|x) represents the cumulative distribution func-
tion of the predicted distribution pg(z|x). The model parameters 0 are learned by

maximising the likelihood function LpeepHit-

3.3.5 Evaluation Metrics

3.3.5.1 Mean Absolute Error

The Mean Absolute Error (MAE) assesses the difference between death times pre-

dicted by the model and the true death times and is computed for uncensored samples

1 .
MAE= —— Y [ii—1 (3.21)
|Nuncens | iENuncens

where 7; is the predicted death time for patient i.

3.3.5.2 Relative Absolute Error

Similarly, the Relative Absolute Error (RAE), which quantifies the relative deviation

of the predicted time from the true death time

1 i —1;]
|M1ncens| I

RAE = (3.22)

i GMncens
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3.3.5.3 Concordance Index

The Concordance Index (C-Index) estimates the probability that the predicted risks
or survival times of a randomly chosen pair of patients will have the same ordering
as their actual survival times [161]. C-Index is a rank-correlation metric that assesses
the model’s ability to accurately rank individuals according to their survival times. It
measures how effectively the model differentiates between high-risk and low-risk
individuals. For a pair of patients i and j, whose true survival times are #; and ¢;, and

the predicted survival times are 7; and 7}, the concordance probability is

C=p(f; > fi|t; > 1) (3.23)

The C-Index is then defined as the fraction of concordant pairs to all pairs

L I(E > 5)(t; > 1)6
C-Index — Zis 1 > W)Lt > 1) (3.24)
Zi;éjl[(tj >l‘l’)6i

where I(-) is the indicator function. The formula can be written in simpler terms,

such as

#concordant pairs

C-Index = (3.25)

#concordant pairs + #discordant pairs

A pair is considered concordant if the ranking predicted by the model matches the
true ranking and discordant if it does not. A perfect model will have a C-Index=1.0.
It is worth noting that the C-Index is a ranking metric, which only assesses the order
in which the predicted values should be ranked compared to the true ranking. It does
not evaluate the accuracy of the predicted values themselves. Therefore, the CoxPH
model, which only estimates the relative risk of death, can achieve a high C-Index
even if the predicted values of the death times are inaccurate.

Despite being widely used in survival analysis, the C-Index has notable limita-
tions. First, it solely evaluates the ranking of predicted survival times and does not

account for the magnitude of errors in absolute time-to-event predictions. This means
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that a model with highly inaccurate survival time estimates can still achieve a high
C-Index as long as the ranking is preserved. Second, C-Index does not fully account
for censored samples, which can introduce bias, particularly when the censoring rate
is high [162]. This sensitivity to censored data limits its effectiveness in real-world

clinical applications, where censored data is common.

3.4 Whole HRCT Scans for Prognostic Modelling in

IPF

Due to the high memory requirements for processing full 3D images, several studies
used features extracted from the HRCT scans by expert radiologists [83, 163] or
quantitative analysis tools [164, 165]. These extracted features are human-defined
(e.g. honeycombing, reticulation, GGO) and provide a structured representation of

imaging findings while reducing the computational demands of model training.

However, using extracted features from the HRCT scans has several limitations.
First, it relies on features manually defined by radiologists, which introduces biases
and inter-observer variabilities. Second, predefined features may not fully capture
the complexity of lung abnormalities in IPF, potentially missing critical prognostic
patterns. Third, this approach is constrained by current medical knowledge, limiting
the discovery of novel imaging biomarkers. Finally, manual feature extraction is

time-consuming and does not scale efficiently for large datasets.

In this thesis, we adopt an end-to-end learning approach using full HRCT scans
as model inputs. This allows the model to learn directly from the imaging data,
capturing subtle spatial and textural patterns that may be missed in manual feature
selection. By eliminating the need for handcrafted features, we reduce inter-observer
variability and provide a more objective, reproducible method for prognosis predic-
tion. Additionally, interpretability techniques can reveal new imaging biomarkers

that contribute to disease progression, as discussed in Subsection 7.2.5 [166], by
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visualising the regions of the HRCT scans that the model uses for prediction. This ap-
proach also removes the need for time-consuming manual feature extraction, making
it feasible for large-scale datasets.

Despite these advantages, processing full 3D HRCT scans presents computa-
tional challenges, particularly regarding GPU memory limitations and batch size
constraints. To address this, we leverage memory banks to optimise training effi-

ciency, as detailed in Chapter 5.

3.5 Multimodal Learning

In the context of IPF prognosis, combining HRCT scans and clinical data is par-
ticularly advantageous because these modalities offer complementary information.
HRCT scans provide detailed insights into the structural abnormalities and progres-
sion of lung fibrosis, capturing visual patterns indicative of disease severity. On the
other hand, clinical data (e.g., pulmonary function tests, demographic information)
offer a comprehensive view of the patient’s systemic health and underlying risk
factors. By integrating both sources, the model can leverage structural and systemic
indicators, improving predictive accuracy and robustness compared to using either
modality alone.

Multimodal machine learning aims to build models to learn and make predic-
tions from multiple data modalities (e.g., images, text, audio, ...) [18]. Learning
from multiple modalities is vital in many applications, such as healthcare, where
patient data is collected in several forms, such as medical images, clinical data, and
genetic data. There are several ways to combine multiple modalities, such as early

and late fusion [18].

3.5.1 Early Fusion

Early fusion is one of the most straightforward approaches to multimodal learning.

In early fusion, inputs are combined (e.g., by concatenation) before being fed into
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the model. The model then learns the relationship between the combined inputs and
the target output. Early fusion is simple and easy to implement but may not capture
the complex relationships between the modalities, potentially leading to suboptimal

performance.

3.5.2 Late Fusion

In contrast, late fusion keeps the modalities separate and learns separate representa-
tions for each modality. The model then combines the learned modality representa-
tions to make the final prediction. Late fusion is more flexible than early fusion, as it
allows the model to learn separate representations for each modality.

One should make sensible choices for model branches that learn the represen-
tations of each modality. This thesis uses late fusion to combine the HRCT scans
and clinical data. We use a Convolutional Neural Network (CNN) to learn the
image representations and a feedforward neural network to learn the clinical data
representations. We then combine the learned representations using a Multi-Layer

Perceptron (MLP) to predict mortality in IPF patients.



Chapter 4

Latent Variable Models for Missing

Data Imputation

4.1 Introduction

Patient clinical data is vital for the diagnosis and prognosis of IPF. These include
patient demographics, physiological measurements, and treatment history. One of
the main challenges in using clinical data for prognostic modelling is the presence of
missing data. Most clinical records in the OSIC dataset contain at least one missing
value. Consequently, training models on only complete samples would drastically
reduce the amount of training data and negatively impact the subsequent model
performance. In addition, this would also introduce bias in the model and the drawn

conclusions.

This chapter proposes a novel approach to imputing missing clinical data in
IPF patients using LVMs. We first describe the clinical data used in the thesis and
the missing data patterns. We then present the LVM and the proposed imputation
method. Finally, we evaluate the performance of the proposed method on the OSIC
dataset. We use the method explained in this chapter to impute missing data in the

OSIC dataset used in the experiments in Chapter 5 and Chapter 6.
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4.2 C(linical Data Used in the Thesis

As explained in Section 2.5.1, clinical data is integral to the diagnosis and prognosis
of IPF. Following the clinical guidelines [6, 167], we use the following clinical

variables in the thesis
* Demographics:

— Patient’s age at the time of the HRCT scan.
— Patient sex.

— Patient smoking status (current, former, or never-smoker).
* Physiological Measurements:

— Percent predicted FVC within 3 months of the HRCT scan.

— DLco within three months of the HRCT scan (not corrected for

haemoglobin).
* Treatment History:

— Treatment with antifibrotic drugs (pirfenidone or nintedanib) before or at

the time of the HRCT scan.

4.3 Missing Data Patterns

The clinical data used in this thesis is often incomplete due to various reasons such
as missing measurements, data entry errors, or patient inability to perform specific
tests. For example, IPF patients in the late stages of the disease may not be able
to perform the DLc( test due to their poor health condition. Table 4.1 shows the
percentage of missing values for each clinical variable in the OSIC dataset. While
the age and sex of the patients are complete, the DL and antifibrotic treatment
variables have a high percentage of missing values. The FVC predicted variable also

has many missing values.
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Clinical Variable Percentage of Missing Values

Age 0.0%
Sex 0.0%
Smoking History 10.8%
FVC Predicted 32.4%
DLco 74.2%
Antifibrotic 85.9%

Table 4.1: Percentage of missing values for each clinical variable in the OSIC dataset.

Standard imputation methods, such as mean, median, or zero imputation (see
Section 3.2), are not suitable for imputing missing data in clinical IPF records.
These methods do not consider the relationships between the variables and assume
that they are independent. However, there is a dependency between the clinical
variables. For example, the percent predicted FVC and DLcp measurements are
correlated [168, 169, 170]. In addition, the computation of the predicted FVC values
depends on the patient’s age and gender, so there is a relationship between these
variables [59, 171]. It is also sensible to assume that the antifibrotic treatment is
related to the FVC and DL measurements, as clinicians prescribe these treatments

based on the patient’s lung function [168, 169, 171].

In this chapter, we assume an MAR mechanism, where the likelihood of miss-
ing values depends on the observed data but not directly on the missing values
themselves. This assumption is reasonable in our context, as the clinical variables
used for imputation (e.g., FVC, DL(, age, and sex) are correlated and can provide
informative cues for estimating the missing values. While this approach may not
fully capture scenarios where missing data depends on unobserved factors (i.e.,
Missing Not at Random), using latent variables helps mitigate some of these effects
by capturing underlying patterns in the observed data.

To this end, we propose a novel approach to impute missing clinical data using
LVMs. We use LVMs to model the relationships between the clinical variables and

impute the missing values based on the learned relationships. The following section
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describes the LVM used in this thesis and the proposed imputation method.

4.4 Latent Variable Model

We introduce a LVM to model the relationships between the clinical variables and
impute the missing values. To impute missing values, we assume the clinical features
x are modelled by independent categorical distributions when conditioned on a
hidden state &, see Figure 4.1. For patient n € {1,...,N}, the probability of clinical

record X" under the model is therefore given by

H K
=Y p(0) [T r(xIn) 4.1)

h=1 k=1
where p(h) denotes a categorical distribution with state » € {1,...,H}; K is the
number of clinical features, and p(x}|h) is a categorical distribution. Writing each
record in terms of observed and missing elements, X = (X,,X;,), the likelihood of

record x" is given by

p(x") =Y p(x}|h)p(xp,|h)p(h) (4.2)
h
where
p(xh|n) =[] p(xilh) (4.3)
zex"
p(xylh) = [T p(xilh) (4.4)
lEXm

To model continuous features, we convert them into discrete variables by equal-
frequency binning and model them as categorical variables. Equal-frequency binning
ensures that all bins have the same number of samples, which helps to capture the
underlying distribution of the continuous variables. We train the model using the EM
algorithm [172] to learn the hidden distribution p(k) and the categorical distributions

p(x;|h). The model can then impute the missing values in the clinical records.
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P(Xm|X0) = > P(Xm|h)p(h]x,)

age smoking  treatment  FVC DLco

(a) Generative model. (b) Imputation of missing values.

Figure 4.1: Latent variable model for imputing missing clinical data in IPF records.

4.4.1 Training the Latent Variable Model

The model has two sets of parameters, the hidden distribution p(%) and the categorical
distributions p(x;|#). The EM algorithm [172] is a convenient choice to learn these
distributions. Note that the EM algorithm can make use of all training data, even

records that contain missing data.

The EM algorithm maximises the energy term (see [116]), given a posterior

q(h|x)

Y E ey logp(x",h) =Y Y Eyxn log p(xilh) + Y E gy logp(h) — (4.5)

n,h n,hiex" n,h

where g(h|x") is given by the E-step

q(h|x") o< p(h)p(x"|R) o p(h) [ ] p(xilh) (4.6)

iex?

The E-step computes the posterior distribution of the hidden states 4 given the
observed data x*. The M-step maximises the energy term in Equation 4.5 with
respect to the model parameters by updating the hidden distribution p(h) and the

categorical distributions p(x;|h), as follows
h) o< 3 q(hlx") (4.7)

plxi = k) o< Y I(! = K)q(h/x") “8)
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The E-step and M-step are iterated until convergence. We can then use the learned

model to compute the distribution of the missing values given the observed data

p(xulxg) = Y p(xuln)p(h]x5) =< Y- p(x,[n)p(h) [T p(x7 1) 4.9)

h h iex?

Calculating missing data statistics or drawing samples as required is then straightfor-
ward. During the training of subsequent models that use the imputed clinical data,
we sample the missing values from the distribution in Equation 4.9 to account for
the uncertainty in the imputed values. During inference, we use the expectation of

p(x! |x") to impute the missing values.

4.5 Experiments

4.5.1 Data

We evaluate the performance of the proposed method on the OSIC dataset. We
include all IPF records in the dataset and use the clinical variables described in
Section 4.2. This results in a dataset of 1853 records from 1484 patients. We divide
the available records into training and test sets. We selected records with at most
one missing value and split them on a patient level into training (80%) and test
(20%) sets. The remaining records with more than one missing value are added to
the training set. To evaluate the model performance, we drop one of the clinical
variables from each record in the test set and impute the missing values using the
different imputation methods described in Section 3.2. We assume that age and sex
are always observed as they are complete in the dataset and are usually available
in clinical records. Therefore, we only impute the missing values for the smoking

history, FVC predicted, DLco, and antifibrotic treatment variables.
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4.5.2 Evaluation Metrics

Missing values include features from different types, such as categorical (smoking
history and antifibrotic treatment) and continuous (predicted FVC and DL¢p). We

use suitable evaluation metrics for each feature type and describe them below.

4.5.2.1 Accuracy

Binary accuracy is the simplest and most common evaluation metric for categorical
features. It is defined as the proportion of correctly imputed values over the total
number of imputed values. Given the imputed values £; and the true values x;, the

binary accuracy is given by
1 N
Accuracy = N ; I(%; = x;) (4.10)

Where N is the number of imputed values. Binary accuracy ranges from O to 1,
where a higher accuracy indicates better imputation performance. In imbalanced
datasets, accuracy can be misleading as it does not account for the class distribution.

Therefore, we also report the F1-score.

4.5.2.2 Fl-score

The F1-score is the harmonic mean of precision and recall. It is a suitable metric
for imbalanced datasets because it considers both false positives and false negatives
and consequently provides a balanced evaluation. Similar to accuracy, the F1-score
ranges from O to 1, where a higher score indicates better imputation performance.

The F1-score is defined as

2x TP
Fl1-score = 4.11)
2xTP+FP+FN

TP, FP, and FN are the true positives, false positives, and false negatives, respectively.

We calculate the F1-score for each class and report the average F1-score across all
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classes in a given categorical feature.

4.5.2.3 Mean Absolute Error

We use the MAE as an evaluation metric for continuous features. The MAE measures

the average absolute difference between the imputed values and the true values
1 N
MAE=—) |Xi—x; 4.12
N ; |-xl xl’ ( )

The MAE has values from 0 to oo, where a lower MAE indicates better imputation

performance.

4.5.2.4 Normalised Root Mean Squared Error
The Normalized Root Mean Squared Error (NRMSE) is another evaluation metric
for continuous features. The NRMSE is the square root of the mean squared error

divided by the range of the true values

\/1%/ Zy:l@z‘ —x;)?
NRMSE = . (4.13)
max(x) — min(x)

The NRMSE has values from 0 to oo, where a lower NRMSE indicates better imputa-
tion performance. Compared to the MAE, the NRMSE penalises significant errors

more heavily.

4.5.3 Implementation Details

To evaluate the imputation methods, we simulate missing values by dropping a feature
from each validation sample and imputing it using mean imputation (Section 3.2.2.2),
MICE (Section 3.2.2.3), and our proposed latent variable model (Section 4.4).

For the LVM, the prediction is the expectation of the posterior distribution of
the missing values given the observed data p(x,,|X,) (see Equation 4.9). We set
the number of hidden states H = 10 and train the model until the improvement in

the training log-likelihood is less than 1073, Using equal-frequency binning, we
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Table 4.2: Imputation results for categorical features. The table shows the imputation
performance where we drop one of the categorical features from each record in
the validation set and impute it using the different imputation methods. We report
the results as the mean and standard deviation over five folds. The best results are
highlighted in bold. The higher, the better.

Smoking Antifibrotic
Method Fl-score Accuracy Fl1-score Accuracy
MICE 0.3776 £ 0.0474 0.5446 £0.0294 0.5581 4+ 0.0245 0.5780 £ 0.0191
Mean 0.2587 £ 0.0084 0.6346 + 0.0338 0.3750 £ 0.0331 0.6034 £+ 0.0815

LVM (ours) 0.4026 £ 0.0174 0.6820 + 0.0101 0.6005 + 0.0427 0.6515 £ 0.0633

Table 4.3: Imputation results for continuous features. The table shows the imputation
performance where we drop one of the continuous features from each record in
the validation set and impute it using the different imputation methods. We report
the results as the mean and standard deviation over five folds. The best results are
highlighted in bold. The lower, the better.

FVC DLco
Method MAE NRMSE MAE NRMSE
MICE 205322 & 1.1288 0.2653 & 0.0282 14751 + 0.1382 0.2622 -+ 0.0279
Mean 154792 £ 05193 0.1930 - 0.0186 1.1434 + 0.0588 0.2026 -+ 0.0181

LVM (ours) 14.5654 £ 0.6270 0.1819 £ 0.0169 1.0379 + 0.0959 0.1906 + 0.0184

discretise the age values into 6 bins, the FVC into 8 bins, and the DL into 6
bins. These hyperparameters were selected based on the model’s performance on
one fold of the validation set. We implemented the LVM in Python using NumPy
library [173].

For the MICE method, we use the implementation in the statsmodels li-
brary [174]. We set the number of imputations to 10 and the number of iterations to

10. We use the default linear regression model for imputation.

4.5.4 Results

In Table 4.2 and Table 4.3, we report the imputation performance for the categorical
and continuous features, respectively. These results represent the imputation perfor-
mance where we drop one of the features from each record in the validation set and

impute it using the different imputation methods. We report the results as the mean
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and standard deviation over five folds to account for the data variability.

The results show that the proposed LVM method outperforms the mean and
MICE imputation methods for both categorical and continuous features. For the
categorical features, the LVM method achieves the highest F1-score and accuracy
for both smoking history and antifibrotic treatment. The LVM method achieves
an Fl-score of 0.4026 and accuracy of 0.682 for smoking history and an F1-score
of 0.6005 and accuracy of 0.6515 for antifibrotic treatment. The mean imputation
method achieves the lowest F1-score for both features because it assigns the same
value to all missing values, the mode of the feature values in the training set. The
MICE method performs better than the mean imputation method in terms of F1-score
but is outperformed by the LVM method.

For the continuous features, the LVM method achieves the lowest MAE and
NRMSE for both FVC and DLcg. The LVM method achieves an MAE of 14.5654
and NRMSE of 0.1819 for FVC and an MAE of 1.0379 and NRMSE of 0.1906
for DLco. The mean imputation method achieves the second-best performance for
both FVC and DL, while the MICE method achieves the worst performance. The
MICE method uses linear regression to impute the missing values, which may not
capture the complex relationships between the clinical variables.

These results demonstrate the superior performance of the proposed model
compared to the standard imputation methods. The LVM method captures the
relationships between the clinical variables and imputes the missing values based on
the learned relationships.

In addition to the superior performance, the LVM imputation method outputs a
distribution of the missing values given the observed data rather than point estimates,
as in the mean and MICE imputation methods. This probabilistic approach enhances
the robustness to noisy clinical data, as it prevents over-reliance on fixed, potentially
erroneous imputed values. Further, it provides a measure of uncertainty in the

imputed values, which can be used to make more informed predictions. During our
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experiments in Chapter 5 and Chapter 6, we sample the missing values from the
distribution output by the LVM method to account for the uncertainty in the imputed
values. This variability ensures that minor distortions in the data do not lead to

overconfident predictions, a feature not available in mean and MICE imputation.

4.6 Conclusion

In this chapter, we proposed a novel approach to impute missing clinical data in IPF
records using LVMs. We introduced an LVM to model the relationships between the
clinical variables and impute the missing values based on the learned relationships.
The proposed method is beneficial for imputing missing data in clinical IPF records,
where the variables are correlated, and the relationships between the variables are
essential for the diagnosis and prognosis of the disease. Our experiments on the OSIC
dataset demonstrated the superior performance of the proposed method compared
to the standard imputation methods. The LVM is used in the subsequent chapters
to impute missing data in the OSIC dataset and train prognostic models for IPF
using both clinical and imaging data. In Chapter 5 and Chapter 6, we sample the
missing values from the distribution output by the LVM method to account for the
uncertainty in the imputed values and make more informed predictions about the

disease progression and patient survival.



Chapter 5

Improving Cox proportional hazards

Model with Memory Banks

5.1 Introduction

CoxPH model is the most popular model for survival analysis. However, one
limitation of the CoxPH model is that it assumes a linear relationship between
the covariates and the hazard function. This assumption may not hold in practice,
especially when the covariates are high-dimensional. To address this limitation,
previous studies have proposed to use deep learning models to learn the non-linear

relationship between the covariates and the hazard function [159]

ho ([x) = ho(t) exp (fo(x)) (5.1)

In this case, the objective is the partial log-likelihood function of the CoxPH model

(See Subsection 3.3.4.2 for the detailed explanation of the CoxPH model.)

E(G):—m Y (fg(xn)—log Y eXP(fe(Xm))> (5.2)

M uncens meR,

where fg(x) is the output of the deep learning model whose parameters 6. However,

minimising £ with respect to the 6 using standard stochastic gradient descent based
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on selecting batches of patients [159] is problematic since:

* Equation 5.2 represents a ranking loss that compares between patients that
died in the batch according to their predicted mortality risk. This requires
large batch sizes for robust training; however, for high-resolution inputs (3D

scans), we are limited by GPU memory to small batch sizes.

* With small batch sizes and a high censoring percentage, there will often be
batches containing only censored patients. In this case, the loss cannot be

calculated, and these batches will be ignored.

In this chapter, we propose a novel approach to address these limitations and
allow for stable training of deep learning models for survival analysis with limited
GPU memory. We propose to use memory banks to store the model predictions
for later iterations. This allows us to use small batch sizes in alignment with the
GPU memory constraints while still having a stable training process. We use the
proposed methods to predict the survival of IPF patients using their 3D HRCT scans

and clinical data.

5.2 Memory Banks for Improving Cox Proportional

Hazards Model

To overcome the limitations of the standard training procedure of the CoxPH model,
we propose to use memory banks to store model predictions for later iterations [175,
33]. The memory bank, represented as M3, is a queue of size |K x |[N|| with K
representing the fraction of the training dataset stored, || representing the size
of the training dataset, and |.| representing the floor function. The function of the
memory bank is to store the model predictions of training samples, along with their
event indicators and death times. In the later iterations, all the samples in the memory

bank are used to calculate the CoxPH loss. This allows us to approximate the CoxPH
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loss on a larger sample size than the current batch size, which is limited by the GPU

memory.

A K value of 1 corresponds to the storage of predictions of the entire training set
in the memory bank, while a K = 0 means that no samples are stored, equivalent to
the standard CoxPH objective. For every training iteration i, we calculate predictions
foi(x?) for the minibatch m' and store them in M3, along with the corresponding
event indicators &' and death times ¢ (or censoring times ¢’ for censored samples).
m' = {x ,0j,tj} represents the minibatch at iteration i with j representing the sample

index j € {1,2,...,|m|}. The memory bank M B is updated as'
MB  MB | {foi(x"),8 ¢ c'} (5.3)

where || denotes concatenation. If the memory bank is full (i.e., |[MB| = |K x |[N]]),
the oldest samples are removed, and new samples are added. After / iterations, M B
will contain the tuples { fpi(x'), 8", ¢, ¢’ {:1. At each iteration i, we calculate the risk
set Ri for each uncensored patient n in M B using the stored event indicators and
times. The CoxPH loss for samples in M1 is then calculated using the risk set R/,

and the available predictions in the memory bank as

£(6") ,; Y fo<i(MBy,) —log Y exp(fp<i(MBy)) | (54)

uncensMB ,c N\E meR;‘l

uncensMB

where NlincensMB is the set of uncensored samples in M at iteration i, and
fo<i(MBy) and fg<i(MB,,) are the predictions for patients n and m in MB, re-
spectively, and are functions of the model parameters at iteration i or any previous
iteration < i. The loss is used to update the current parameters of the model 6'. By

updating M B at each iteration and using it to calculate the loss, we can effectively

'We use the superscript i to denote the batch number and the subscript j to denote the sample
index within the batch.
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(a) Standard training of CoxPH model. The model is trained on a batch of patients,
and the loss is calculated based on the ranking of the patients in the batch.
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(b) Proposed CoxMB training. The model predictions are accumulated in a memory
bank, and the loss is calculated based on the stored predictions from the current
and previous iterations. This allows for computing the loss on a larger sample size
than the current batch size.

Figure 5.1: Comparison between the standard CoxPH training and the proposed Cox Pro-
portional Hazards with Memory Banks (CoxMB) training.
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Algorithm 1: Pseudocode of CoxMB training in a PyTorch-like style

# delta: indicator function (1 if experienced the event and O if censored)
# times: event or censoring time

# K: fraction of the training dataset to store in the memory bank

# initialize memory bank with maximum size K * len(data_loader.dataset)
5 mbank_preds = deque(maxlen=K * len(data_loader.dataset))

6 mbank_delta = deque(maxlen=K * len(data_loader.dataset))

7 mbank_times = deque(maxlen=K * len(data_loader.dataset))

s for img in loader: # load a minibatch with n samples

9 pred = model(img) # get predictions

10 mbank_preds.append(pred) # store current predictions in the memory bank
i1 mbank_delta.append(delta) # store current delta in the memory bank

12 mbank_times.append(times) # store current times in the memory bank

13 # calculate loss using data in the memory bank

14 loss = CoxLoss(mbank_preds, mbank_delta, mbank_times)

15 loss.backward() # calculate gradients

16 update(model.params) # update model parameters

1
5
3
4

approximate the Cox loss on a sample size larger than allowed by the standard Cox
objective, which is limited by the batch size. This allows us to use small batch
sizes in alignment with the GPU memory constraints while still having a stable
training process. The proposed method is illustrated in Figure 5.1. We refer to this
method as CoxMB and compare its performance to the standard Cox objective in
our experiments.

In addition, we include a PyTorch-like pseudocode of the CoxMB training in
Algorithm 1. The pseudocode shows the training loop of the CoxMB model, where
the model predictions are stored in the memory bank, and the loss is calculated using

the stored predictions from the current and previous iterations.

5.3 Experiments

We evaluate the proposed CoxMB method and the standard training method of the
CoxPH model on the task of predicting survival in IPF patients using their 3D HRCT

scans alone and in combination with clinical data.

5.3.1 Data

We use the OSIC dataset described in Section 2.5.3. We select cases with a confirmed
diagnosis of IPF and an HRCT with a slice thickness of less than 3.0 mm. The

clinical data includes age, sex, smoking history, FVC predicted percent, DL, and
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antifibrotic treatment; see Section 4.2 for more details. We examine the performance
of different methods using exclusively HRCT images or a combination of HRCT
images and clinical data. The dataset consists of 728 samples, which we randomly
divided into training (70%), validation (15%), and test (15%) sets. The mean and
standard deviation of the metrics are reported over five runs with different random

splits. Approximately 65% (470 samples) of the dataset are right-censored.

We evaluate the performance in terms of the C-Index and the MAE and RAE of

the predicted survival times, see Section 3.3.5.

5.3.2 Preprocessing

5.3.2.1 HRCT Preprocessing

All scans are cropped to the lung area using the lung segmentation model trained
by [176]. These scans are then resampled to achieve an isotropic pixel spacing
of 1 x 1 x 1 mm? via linear interpolation. Following this, the scans are resized
to dimensions of 256 x 256 x 256 voxels using bicubic interpolation. Next, we
apply histogram matching and a windowing operation within the range [-1024, 150]
Hounsfield Units (HU) to remove irrelevant information. Finally, we normalise the
scans to have zero mean and unit variance based on the statistics drawn from the

training set.

We apply data augmentation techniques during training to mitigate overfitting
and improve generalisation. Specifically, random rotation (up to 15 degrees) and
translation (up to 20 pixels) are used to introduce variability while preserving anatom-
ical structures. Additionally, scans that fail to meet quality standards due to severe
motion artefacts, incomplete lung coverage, or significant noise are excluded from

the dataset. Details on the inclusion criteria are provided in Subsection 2.5.3.
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5.3.2.2  Clinical Data Preprocessing

For the clinical data, we normalise the continuous features (age, FVC, and DL¢p) to
have zero mean and unit variance. We encode the categorical features (sex, smoking
history, and antifibrotic treatment) using one-hot encoding. We then concatenate
the normalised continuous features with the one-hot encoded categorical features to

form the clinical data input to the models.

5.3.3 Implementation Details

In our experimental setup, we use a deep learning model to learn the non-linear rela-
tionship between the covariates (HRCT and optionally clinical data) and the hazard
function; we detail the model architecture in Section 5.3.3.1 and the hyperparameters

in Section 5.3.3.2.

5.3.3.1 Model Architecture

To process HRCT scans, we use a 3D CNN, as illustrated in Figure 5.2 (left). The
network initiates with a 3D convolutional layer, followed by an instance normalisa-
tion layer and a leaky ReLLU activation function. We then stack four residual blocks,
each comprising three 3D convolutional layers [177]. After each convolutional
layer, we use instance normalisation [178] and leaky ReLU [179] layers. We utilised
1 x 1 x 1 kernels for the first and last convolutional layers, while the middle layer
used a 3 x 3 x 3 kernel. In a parallel branch, we use a single convolutional layer,
and the outputs of the two branches are concatenated. The output of this series of
layers is then passed through another convolutional layer, designed with a stride
of 2, to halve the spatial dimension. Finally, we use a convolutional layer with 16
filters and a 1 x 1 x 1 kernel to produce a compact feature representation. We flatten
this representation and input it into the final fully connected layer. In designing
this network, we were aware that the progression of IPF manifests itself in fine
pulmonary patterns, such as honeycombing, reticulation, and ground glass opacities.

To capture these nuances, we opt for small kernels and deliberately avoid pooling
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layers, which could result in the loss of fine image details.

When we incorporate clinical data, we use a MLP that consists of two fully
connected layers with 32 neurones each, each followed by batch normalisation [180]
and leaky ReLLU activation [179], as detailed in Figure 5.2 (right). The MLP output
is concatenated with the CNN output. The CNN output, which represents imaging
data, is projected to a 32-element vector to balance the contributions from imaging
and clinical data. The combined output is subsequently propagated through a final

fully connected layer.

5.3.3.2 Hyperparameters

We use AdamW optimiser [181] with a learning rate of 5 x 10~* and weight decay
of 1 x 1072 for optimisation. Using weight decay is crucial to mitigate overfit-
ting, especially when training deep learning models on small and potentially noisy
datasets. The optimal learning rate value was tuned via a random search based on
the performance on the validation set. Additionally, we apply a cosine annealing
learning rate scheduler and gradient clipping. Due to the high resolution of the
imaging data (256 x 256 x 256), we use a batch size of 2. We train the models for
an initial 300 epochs. However, training is halted if there is no improvement in
validation performance for 50 consecutive epochs. In CoxMB, we use a K value of
1.0. The models are implemented using PyTorch and trained on a single NVIDIA
A6000 GPU.

5.3.4 Results

To evaluate the performance of the proposed CoxMB method, we compare it to
the standard CoxPH model on the OSIC dataset. In Table 5.1, we report the test
performance of the two approaches on the OSIC dataset. We notice that the introduc-
tion of memory banks during training (CoxMB) leads to a significant performance
improvement compared to the DeepSurv model, which employs the standard CoxPH

objective function [26, 159]. This improvement can be seen through the increase in
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Figure 5.2: Deep learning model architecture. Left: 3D CNN for processing HRCT scans.
Right: MLP to process clinical data. : Number of filters, K: kernel size, S:
stride. In the case of using HRCTs only, the architecture on the left is used. In
the case of using HRCT and clinical data, the outputs of CNN and MLP are
concatenated.
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Table 5.1: Comparison of the test performance of CoxPH and CoxMB on OSIC dataset
when trained on imaging data only, as well as combined imaging and clinical
data. The mean and standard deviation are reported over five runs with different
random train/val/test splits. The best results are highlighted in bold.

Data Method C-Index 1 MAE | RAE |
Imaaing DSV (Cox) 67441 +4.572 44.898 + 19.505 2286 + 1.414
ABME  oxMB 71.067 & 5.572 28.887 & 2.315  1.762 =+ 0.807
Imaging  DeepSurv (Cox) 72.1 +2.186 27.603 4+3.345  1.718 4 0.742
+ Clinical CoxMB 68.877 +2.413 24.413 +2.548  1.892 + 0.868

the C-Index by 3.63, a reduction of the MAE by 16 months, and a decrease in the
RAE by 0.046.

Upon inclusion of clinical data, CoxMB upholds superior performance on MAE
compared to DeepSurv, whereas DeepSurv excels in ranking performance. This
performance divergence, particularly with respect to the decline of the C-Index in
the CoxMB case, can likely be attributed to the high noise level and the presence of
missing values in clinical data, see Section 4.3 and Section 2.4.4.1. DeepSurv seems
to benefit more from including clinical data than CoxMB, where the improvements
are marginal. CoxMB already performs reasonably well on the imaging data, and

the clinical data do not provide much additional information.

5.3.4.1 Effect of Memory Bank Size

We examine the effect of the size of the memory bank in the CoxMB model, trained
on imaging data. K is the fraction of training samples stored in the memory bank
during training. We train the CoxMB model with different values of K and report the
results in Table 5.2. We observe that the performance of the CoxMB model improves
as the memory bank size increases. This is expected, as a larger memory bank allows
the model to store more information about the ranking of patients’ survival times,
which is then used to penalise the model for inaccuracies in predicting the ranking.
We anticipate that this depends on the size of the training set and thus requires tuning

for each dataset.
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5.3.4.2 Performance Under Limited Uncensored Training Data

One notable limitation of the standard CoxPH model is that the loss cannot be
calculated if the minibatch contains only censored samples, Myncens = 0. As a result,
these training batches are ignored during training. This is a common issue in survival
datasets with high censoring rates and becomes more pronounced when using small
batch sizes.

In contrast, the CoxMB training procedure alleviates this issue because the loss
is calculated using the samples stored in the memory bank, which are accumulated
over multiple iterations. This leads to fewer batches being ignored during training
and, subsequently, more efficient use of the training data and more stable training.

We evaluate the performance of the two methods when trained on training sets
with varying fractions of uncensored samples. Specifically, we train the models on
training sets with 20%,40%, . ..,100% of the uncensored samples. The randomly
sampled fraction of uncensored cases is added to the censored samples to form the
training set in each experiment. It is worth mentioning that cox-based models are
untrainable when the training set contains only censored samples; this is a limitation
we address in the Chapter 6. In Figure 5.3, we report the performance in terms of
the C-Index and MAE when training the models on training sets according to the
fractions mentioned above and when using imaging data only. We report the mean
and standard deviation over five runs with different random train/val/test splits.

As expected, the performance improves as the fraction of uncensored samples

Table 5.2: Effect of memory bank size on the performance of CoxMB model.

K C-Index

0.0 67.441 £4.572
0.2 67.968 +£2.712
0.4 70.884 £ 3.844
0.6 70.154 £ 0.975
0.8 73.294 + 4.056
1.0 71.067 £ 5.572
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Figure 5.3: Performance of CoxPH and CoxMB models under limited uncensored training
data. The models are trained on training sets with varying fractions of uncen-
sored samples. The mean and standard deviation are reported over five runs with
different random train/val/test splits.

in the training set increases. Furthermore, we observe that the performance of the
CoxMB model, when trained with a limited amount of uncensored data (20%), is
comparable to that of the CoxPH model. This can be attributed to the lessened
effectiveness of the memory bank when the amount of uncensored data is limited.
However, as the amount of uncensored data increases, the memory bank efficacy
improves, and the performance of CoxMB consistently surpasses that of the CoxPH

model. This is evident in both the C-Index and MAE metrics.

5.4 Related Work

Several studies have used the CoxPH model to predict mortality in IPF patients.

Gonzalez et al. [10] used the CoxPH model [26] to predict mortality from the Gender
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Age Physiology (GAP) index and Composite Physiologic Index (CPI). The GAP
index is a clinical scoring system used to predict mortality in patients with IPF. It
incorporates gender, age, FVC, and DLcq. The CPI, on the other hand, combines
FVC, DLo, and the FEV1 to estimate the extent of fibrosis and predict disease

progression [182, 183, 184].

Collard et al. [185] adopted a similar approach and concluded that six-month
changes in pulmonary function tests were predictive of mortality risk. However,
HRCT scans of the lungs constitute an important part of the clinical assessment
of IPF patients and contain pertinent information related to disease progression. It
can also be shown that patients with similar clinical information may have different
prognoses, see Figure 5.4. Therefore, we investigate the performance of survival

models that use both imaging and clinical data.

Other studies have used extracted features from HRCT to predict mortality.
Jacob et al. [164] compared between mortality prediction using features extracted
by an expert radiologist (visual scoring) and features automatically extracted by
CALIPER software (Computer-Aided Lung Informatics for Pathology Evaluation
and Ratings) [186, 187]. CALIPER quantifies the extent of specified radiological
patterns of lung damage? seen on the HRCT scan. However, both the visual scoring
and CALIPER approaches are unsupervised feature extraction methods in the sense
that they are not designed to be maximally predictive of mortality. Visual scoring
is also a time-consuming approach that requires clinical expertise and is prone to

inter-observer variability.

We are therefore interested in estimating a patient’s mortality risk based on their
clinical and imaging data. We train an end-to-end neural network to extract imaging

features that are maximally predictive of mortality.

2Ground glass opacity, reticulation, honeycombing, emphysema, pulmonary vessels volume, and
others.
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Age 66 years Age 74 years
Sex Male Sex Male
agg)kri;g Ex-smoker ﬁgt%kri;g Ex-smoker
Treatment No Antifibrotic Treatment No Antifibrotic
FVC Percent 80.1 FVC Percent 81.7
DLco 1.82 DLco 1.37
Died after 13 weeks Died after 183 weeks

Figure 5.4: An example from the OSIC dataset of two patients with very similar clinical
features and different survival outcomes. This illustrates the limitations that
exist when only using clinical data to predict disease progression in IPF. Our
study examined the additional value that might be gained by using imaging data
to predict disease progression. Time of death is reported relative to the time of
lung function tests.

5.5 Conclusion and Limitations

In this chapter, we proposed a novel approach to address the limitations of the
standard training procedure of the CoxPH model for survival analysis. We introduced
memory banks to store model predictions for later iterations, allowing for stable
training of deep learning models for survival analysis with limited GPU memory.
We evaluated the proposed CoxMB method on the task of predicting survival in
IPF patients using their 3D CT scans and clinical data. Our results show that the
CoxMB method outperforms the standard CoxPH model, achieving a significant
improvement in the C-Index, MAE, and RAE when trained on imaging data alone.
The CoxMB model offers a more robust training strategy by employing memory
banks, which is especially beneficial when training on high-resolution imaging data.

The performance of the CoxMB model improves as the memory bank size increases.

However, the proposed method and Cox-based methods generally have some
limitations. For example, the proportional hazards assumption in the CoxPH objec-
tive is a strong assumption that may not hold in practice. In addition, the CoxPH
objective can only be computed if the minibatch contains at least one event, which

can be challenging when the censoring rate is high, as is the case in many survival
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datasets. Finally, the objective is a ranking objective. It does not optimise for the
actual survival times, leading to suboptimal performance in terms of metrics such
as MAE and RAE. We address some of these limitations in the next chapter by
proposing a novel objective function for survival analysis that directly optimises for

the survival times and does not require the proportional hazards assumption.



Chapter 6

CenTime: Event-Conditional
Modelling of Censoring in Survival

Analysis

6.1 Introduction

Despite the wide adoption of the CoxPH model and its variants in survival analy-
sis [26, 159], these models have several limitations. Having discussed memory bank
techniques to address the training stability issues in Chapter 5, we now focus on
the limitations of the CoxPH model itself. Other methods have been proposed as a
remedy to these limitations, such as DeepHit [25], but they have their own drawbacks
as well.

In this chapter, we discuss the limitations of the standard methods in survival
analysis and introduce a novel event-conditional objective function, CenTime, for
training survival models. CenTime leverages censored data more effectively, relaxes
restrictive assumptions compared to the CoxPH model, and directly estimates the
time-to-event, providing valuable prognostic insights. We evaluate the proposed
method on the OSIC dataset and show that it outperforms the state-of-the-art tech-

niques in survival analysis.
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(a) Proportional hazards. (b) Non-proportional hazards.

Figure 6.1: Proportional hazards assumption. (a) The hazard ratio between two samples is
constant over time. (b) Violation of the proportional hazards assumption.

6.2 Limitations of existing survival analysis models

6.2.1 Cox Proportional Hazards Model

The CoxPH model is widely used due to its simplicity and interpretability. How-
ever, it has several limitations. Firstly, the proportional hazards assumption (see
Figure 6.1), which states that the hazard ratio between two samples is constant over
time, is often violated in practice, especially in heterogeneous diseases such as IPF.
Secondly, the CoxPH model does not provide a direct estimate of the time-to-event,
which is a crucial piece of information for prognosis. Thirdly, as can be seen from

the partial log-likelihood function (detailed in Section 3.3.4.2)

L(ﬁ)zm Y (ﬁTXn—log Y exp(ﬁTXm)> 6.1)

Nuncens meR,

the model does not explicitly model the censored samples. The model only considers
the uncensored samples in the likelihood function, which can lead to suboptimal
performance, especially in datasets with a high proportion of censored samples.
Finally, the CoxPH objective is a ranking objective, thus requiring a large batch
size to ensure that the model is trained effectively, which is often computationally

expensive and limited by the GPU memory.
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(a) The CenTime data generation mechanism. (b) The classical data generation mechanism.

Figure 6.2: Survival analysis data generation mechanisms. (a) In the proposed event-
conditional censoring model (CenTime), ¢ is drawn from the death time distri-
bution and c is uniformly sampled up to ¢. (b) In the classical model, ¢ and ¢
represent randomly drawn death and censoring times from the corresponding
distributions. If ¢ < t, the patient is censored; the observation is the censoring
time. Otherwise, the patient is uncensored, and observation is the death time.

6.2.2 DeepHit

DeepHit [25], previously discussed in Section 3.3.4.9, has a few challenges as well.
Firstly, the model does not capture the ordinal nature of the time-to-event data.
DeepHit uses a softmax function to predict the time-to-event, which treats different
death times as separate classes. This can lead to suboptimal performance, especially
when the number of classes (Tmax) 1s large. Secondly, the model requires a large
number of parameters, especially when the maximum time-to-event is large, which
can lead to overfitting. Finally, some death times might not be represented in the
training data, which could reduce the softmax probabilities to zero, yielding no

gradient and impeding the learning process for these times.

6.2.3 Classical Censoring Model

The classical censoring model assumes that censoring times are independent of the
event times, see Subsection 3.3.4.8. We propose a novel alternative to this model,
CenTime. CenTime is an event-conditional model, and we explain its formulation

below.
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6.3 CenTime: Event-Conditional Modelling of

Censoring

We introduce CenTime, which enables the direct learning of a death time distribution
po(D = t|x) from either censored or uncensored data. Our objective is to maximise

the log-likelihood of the data, which includes both censored and uncensored samples

L(6) = Z log pe (D = tu|xn) + Z log pe(C = culxn) (6.2)

neM uncens i 6Afcens

where pg(C = c|x) is the censoring distribution. CenTime uses a novel censoring
mechanism that we believe is more representative of censoring in some clinical
situations. Here, we concentrate on right censoring while the method is generally
applicable to other forms of censoring; see Appendix A. Specifically, we first sample
the death time and then generate a censoring time from a distribution up to the death

time. This results in the censored time model

Tmax

po(C=c|x) = Z p(C=c|D=t,x)pg(D =t|x) (6.3)

=1

The objective in Equation 6.2 is the likelihood of a mixture model containing
contributions from the uncensored data and censored data, with each term being a
consistent objective for the event model parameters 0 (i.e., estimators based on either
contribution converge to the true parameters as the number of samples increases).
This implies that even in the scenario where we only have censored training data, the

model can learn the underlying event model.

The model also has the advantage that, if needed, we can easily sample data
from this model given the proportion of censored to uncensored data. If a proportion
of censored to uncensored data p. : p, is required, for a chosen N one can simply

sample N p, censored datapoints from pg(C = c,|x,) and N p,, uncensored datapoints
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from pg (D = t,|x,). This feature is absent in classical censoring models, in which it
is not possible to sample data with a required proportion of censored to uncensored
data.

We still need to make two assumptions — the censoring distribution p(C|D,x)
and the event distribution pg (D = t|x). We define the event distribution pg (D = t|x)
below in Section 6.3.1, and here we define the censoring distribution p(C|D,x). In
principle, this can also be learned from the data, but for simplicity, we assume a
uniform censoring distribution p(C = ¢|D =t,x) = const for ¢ < t and 0 elsewhere

(see Figure 6.2a), giving

Tmax

po(C=cl)= ) t_—lpe D =t) (6:4)
t=c+1

For any event distribution model pg (D = ¢|x) the likelihood objective to maximise is

T
max 1
L(6) = Z log pg(D = t,|x,) + Z log Z —1p9(D =tlx;)) (6.5)
n€Nuncens i€Ncens t=ci+1 =

6.3.1 Event Time Distribution

We need to make an appropriate choice for the event time distribution pg (D =t|x).
We employ a discretised form of the Gaussian distribution

(e ()2
po(D=1]x) = %exp (%) (6.6)

In this formulation, g (x) and og(x) are parameters of the distribution that are pre-
dicted by the model (a neural network parameterised by 0), and Z is a normalisation

factor, defined as

Z= Ti exp <_(t+9(x))2> 6.7)

=1 205(x)

This formulation has the following advantages

« The term (7 — g (x))? ensures a heavier penalty for predictions that deviate sig-
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nificantly from the true death time, promoting closer predictions. This stands
in contrast to approaches that treat death times as independent categories [25],

which do not fully capture this relationship.

The model only outputs two quantities (g (x), g (x)). This keeps the number
of parameters low, reducing the risks of overfitting compared to treating this

as a Thax classification task, with a category for each timepoint [25].

In principle, the form of the distribution pg(D = t|x) is also learnable, but we found

that the discrete Gaussian performed well in our experiments.

6.4 Experiments

6.4.1 Data and Preprocessing

We evaluate the proposed method on the OSIC dataset. We use the same dataset,

preprocessing, and splits as in Chapter 5.

6.4.2 Baselines

We compare the proposed method with the following baselines

DeepSurv [159]: the standard CoxPH model with a deep neural network as

the base model.

CoxMB: the CoxPH model with the memory bank technique proposed in

Chapter 5.

DeepHit [25]: a state-of-the-art survival model that uses a deep neural network

to predict the time-to-event, see Section 3.3.4.9.

DeepHit (]Lgk.) only: a variant of DeepHit that uses only the likelihood term,
JLgk_, in the objective function, without the ranking term L, . This is to
evaluate the performance of DeepHit when the ranking term is removed and

relying only on the likelihood term, similar to CenTime.
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* Classical Censoring Model: an alternative approach to model the censoring
distribution, see Section 3.3.4.8. In contrast to DeepHit, we propose to use
a discrete Gaussian distribution to model the event time distribution, see

Section 6.3.1.

DeepSurv and CoxMB are ranking-based models, while the others are distribution-

based models in the sense that they directly model the time-to-event.

6.4.3 Implementation Details

The event distribution-based models parameterise the distribution pg (¢|x) using g
and 0yg. A deep learning model parameterised by 6 is used to learn Ly, while o is
fixed at 12 months. This helps to stabilise the training process and mitigate overfitting
(see [188] for a similar observation). For DeepHit, the model’s output is a vector
of size Thax, representing the logits of the 1-of-Tp. classification labels. For the
DeepSurv and CoxMB models, the output is a single scalar representing the risk
score, as explained in Chapter 5. We use AdamW optimiser [181] with a learning
rate of 10~ for the classical and event-conditional censoring models and 5 x 10~4
for DeepHit, DeepSurv, and CoxMB. Unless otherwise stated, we use the same

architecture, hyperparameters, and training setup as in Chapter 5.

6.4.4 Results

The evaluation of survival analysis performance depends on the particular clinical
objective. For instance, if the aim is to stratify patients into high- and low-risk groups,
the C-Index is a suitable metric, whereas if the objective is to precisely predict each
patient’s time-to-death, metrics such as MAE and RAE are more appropriate. Since
CenTime directly predicts the mortality time, MAE and RAE are the most relevant
metrics for assessing its performance. However, we also report the C-Index for
completeness and to compare CenTime’s ranking performance with other methods.

See Subsection 3.3.5 for a detailed explanation of survival analysis metrics.
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Table 6.1: Comparison of the test performance of the different methods on OSIC dataset
when trained on imaging data only, as well as combined imaging and clinical
data. The mean and standard deviation are reported over five runs with different
random train/val/test splits. The best results are highlighted in bold.

Data Method C-Index 1 MAE | RAE |
DeepSurv (Cox) 67.441 +4.572 44.898 £19.505 2.286 £ 1.414
ey COoxMB 71.067 £ 5.572 28.887 £ 2.315 1.762 £ 0.807
gﬂ DeepHit 53.165 £8.313 31.074 £7.765 1.830 £0.522
g DeepHit (ILj; only) 57.607 £4.813 29.862 £3.742  1.926 £ 0.869
—  Classical Censoring 68.844 +5.313 20.448 £4.787  1.407 £+ 0.853
CenTime 69.273 £ 0.946 19.319 £1.613  1.338 £ 0.665
DeepSurv (Cox) 72.1 +2.186 27.603 £3.345 1.718 £0.742
0 R CoxMB 68.877 +=2.413 24413 £2.548 1.892 + 0.868
= -2 DeepHit 54.980 +3.490 31.246 £4.599  2.240 + 0.862
éﬁ & DeepHit (I, only) 52.882 £3.843 28.718 £2.077 2.059 £0.722
— + Classical Censoring 70.35 £2.947 20.476 + 1.85 1.546 £0.611
CenTime 70.957 £3.048 19.178 £+ 0.795 1.48 + 0.671

In Table 6.1, we report the test performance of the different methods on the
OSIC dataset. For distribution-based methods (DeepHit, Classical Censoring, and
CenTime), CenTime outperforms all other distribution-based baselines in C-Index,
MAE, and RAE metrics, whether trained solely on imaging data or a combination of
imaging and clinical data. The superiority of our method is particularly noticeable
in the hybrid case, where the MAE decreases by 9.92 and 1.3 months compared to
the DeepHit and the classical censoring models, respectively. Similarly, the C-Index
improves by 12.22 and 0.61 compared to these models. Compared to DeepSurv
and CoxMB, CenTime offers a remarkable improvement in MAE (8.43 and 5.23
months, respectively) and a comparable ranking performance. This demonstrates the
effectiveness of CenTime in efficiently capturing the censoring process. Interestingly,
CenTime significantly outperforms DeepHit. In addition to the different modelling
of the censoring process, this can be attributed to how each model handles the event
distribution. CenTime applies a discretised version of the Gaussian distribution

(as per Equation 6.6), whereas DeepHit considers it as a classification problem
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comprising Tax classes, executed using a fully-connected layer followed by a
softmax function. By disregarding the ordinal nature of the time variable and facing

the potentially large class number, Ti,.x, DeepHit is more susceptible to overfitting.

CenTime outperforms all the baselines in predicting the time of death for IPF
patients, whether trained solely on imaging data or a combination of imaging and
clinical data. Additionally, it delivers competitive C-Index performance despite
not incorporating a ranking objective. This makes it a more appropriate choice for
clinical scenarios where the precise prediction of the time of death takes precedence
over the ranking of patients’ survival times.

Given the potential imbalance in the dataset (e.g., long-term survivors or rapid-
progressor patients), we experimented with oversampling techniques to mitigate
class imbalance and improve performance on underrepresented subgroups. However,
these techniques did not yield significant improvements in predictive performance,
likely due to the increased variance and noise introduced by duplicating minority
cases. As a result, we did not report these results. This suggests that alternative
approaches, such as data augmentation using generative models, may be more

effective in handling imbalance in future work.

6.4.4.1 Performance Under Limited Uncensored Training Data

The amount of uncensored data available for training survival models is typically lim-
ited. Therefore, learning algorithms must use the available censored data effectively
to improve performance. In this subsection, we examine the performance of the
different methods when trained on a limited amount of uncensored data in addition
to the censored data (imaging only). We randomly sample 0% (purely censored),
20%, 40%, 60%, 80%, and 100% of the uncensored data. In each scenario, all the
censored data is added to compose the training set. The results are presented in

Figure 6.3.

The initial observation is that Cox-based models (DeepSurv and CoxMB) are
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Fraction of Uncensored Training Data Added to Censored Data

Performance of the different methods when trained on gradually increasing
percentages of uncensored data added to the censored data. 0% corresponds to
training on purely censored data, while 100% corresponds to training on the full
training set. The mean and standard deviation are reported over five runs with
different random train/val/test splits.

only trainable when uncensored examples are available during training. This is

because the objective function is defined solely for uncensored examples (see Equa-

tion 5.2). Second, when utilising purely censored data, CenTime shows a significant
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improvement (=~ 4.9x in terms of MAE) over the classical and DeepHit models.
This is because CenTime forms a consistent estimator of the model parameter 0
even with purely censored data, a feature not shared by the classical and DeepHit
models. As the amount of uncensored data included in the training data increases,
we generally observe an improvement in the performance of all models, and the
differences between the various methods diminish. However, CenTime continues to
outperform the other methods in terms of MAE and offers competitive performance
in terms of the C-Index. These findings underscore the effectiveness of our proposed
approach in modelling the censoring process and utilising it efficiently.
Intriguingly, the C-Index performance of CenTime is comparable to that of
DeepSurv, even though it does not use a ranking objective. This further underlines

the robustness and versatility of our proposed event-conditional censoring model.

6.4.4.2 Effect of Lung Segmentation

Idiopathic Pulmonary Fibrosis predominantly affects the lungs, making this area the
most relevant in CT scans. However, some evidence suggests that the disease can
also affect other organs, such as the heart [189]. Therefore, we examine the effect of
lung segmentation on the performance of CenTime when trained on imaging data.
We train the model with and without lung segmentation (using [176]) and report the
results in Figure 6.4. We do not observe a significant difference in the performance,
suggesting that the model can learn the relevant features from the lung area without
explicit segmentation. This also allows the model to benefit from information in the

non-lung area (e.g., heart) if it is relevant to the survival prediction task.

6.5 Conclusions

Our work demonstrates the limitations of existing survival methods and addresses
them. Traditional Cox-based methods (i) assume the strong proportional hazards

assumption, which is not always true, (ii) estimate the relative hazard rather than
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Figure 6.4: Effect of lung segmentation on the performance of CenTime.

the actual death time, which is often more helpful and easier to interpret, and (iii)
represent a ranking method and, therefore, require a large batch size, which is not
always feasible. DeepHit (iv) does not encode the ordinal nature of the target survival
time variable, (v) approaches the problem as a classification task, which becomes
prone to overfitting with too many classes. Our CenTime model addresses all these
limitations. By modelling the death and censoring likelihoods, it circumvents the
hazards proportionality assumption (i), directly estimates the death time (ii), and
imposes no batch size restrictions (iii). Furthermore, because of the adoption of the
discretised Gaussian distribution, our model naturally encodes the ordinal nature of
the target survival time variable (iv) and, by outputting only the discretised Gaussian
distribution parameters, is less susceptible to overfitting (v). Finally, compared
to the classical censoring mechanism, CenTime offers a convenient alternative to
the classical censoring model by providing a consistent estimator even with purely
censored data alone and should be particularly useful in situations with only minimal
uncensored entries.

Our results underscore the effectiveness of CenTime in predicting the time

of death while offering competitive ranking performance, even without a ranking
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objective. This makes CenTime a compelling choice for clinical scenarios where
accurate prediction of the time of death takes precedence over ranking patients’

survival times, particularly when dealing with limited observed death time data.



Chapter 7

Conclusions, Limitations and Future

Work

In this thesis, we presented a comprehensive framework for modelling disease
prognosis in terms of mortality prediction (i.e., survival analysis). Although we
focused on IPF as a challenging and heterogeneous disease, the presented methods
generally apply to other diseases. In addition, the proposed framework is not limited

to a specific modality or type of data and integrates both clinical and imaging data.

7.1 Summary of Contributions

We first addressed the problem of missing values in clinical records. In Chapter 4,
we relied on the assumption that there is a relationship or dependency between
different features in a patient record. Consequently, we can fit a model to predict the
missing values based on the observed ones. Therefore, we proposed a novel method
for imputing missing values in clinical records based on a LVMs. We showed that
this method outperforms other state-of-the-art methods in terms of the imputation
accuracy of both continuous and categorical features. This method was then used to
impute missing values in OSIC dataset and used in the subsequent chapters.

In Chapter 5 and Chapter 6, we moved to study the problem of survival analysis,

the limitations of the current methods, and how to improve and adapt them to our
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problem. Survival analysis methods can be broadly categorized into two main
categories: I) Ranking-based models (e.g., CoxPH [26]), and II) Distribution-based
models (e.g., DeepHit [25]. In the former category, we aim to train the model to
correctly rank patients in a dataset according to their mortality risk without estimating
the exact death time. In the latter category, we train the models to output an accurate
probability distribution of the time of death for each patient. It is worth mentioning
that the two families of models have valid clinical use cases, and the choice between
them depends on the clinical question. Therefore, we proposed contributions in the
two categories.

In Chapter 5, we highlight the limitations of the CoxPH model, the most widely
used model in survival analysis. The linearity assumption can be easily alleviated
using non-linear transformations of the features (e.g., a deep neural network). How-
ever, the ranking nature of the objective requires a large batch size to be trained
effectively, which is not always feasible due to memory constraints, especially when
using high-resolution imaging data. To address this issue, we proposed a novel
method for training the CoxPH model using memory banks to accumulate model
predictions over the training set. This allows us to compute the CoxPH loss over a
much larger set of samples. We showed that this method outperforms the standard
CoxPH model in terms of concordance index while being more memory efficient.
This allows the application of the CoxPH model to high-resolution imaging data
while maintaining high performance and a stable training process, in contrast to the
standard CoxPH model, which does not scale well to high-resolution imaging data
due to its memory requirements.

In Chapter 6, we shifted our focus to the second category of survival analysis,
distribution-based models. Ranking-based models have limitations, such as the
inability to estimate the exact time of death and the strong assumption of proportional
hazards. Distribution-based models can overcome these limitations by estimating

the full distribution of the time of death for each patient. We proposed a novel
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objective function for training survival analysis models. CenTime, our proposed
method, is a maximum likelihood-based method that proposes an alternative data
generation mechanism for the censoring process. We showed that CenTime has
several advantages over the state-of-the-art methods, such as CoxPH [26, 159],
DeepHit, and the classical censoring model [25]. It performs better in accurately
predicting the time of death while maintaining comparable ranking performance to
the ranking-based models. In addition, CenTime excels in the presence of a limited
amount of uncensored data due to its ability to model the censoring process more

effectively.

We believe that these methods address practical problems in healthcare and
medical imaging (e.g., missing data, limited memory resources, and the abundance
of censored data) and can be used to improve the prognosis of patients with IPF
and other diseases. However, we discuss some limitations and future work in the

following section.

7.2 Limitations and Future Work

7.2.1 Imputation of Missing Data

The proposed method for imputing missing values in Chapter 4 relies on the ob-
served features to predict the missing ones in a patient record. While this method
outperforms other imputation methods, it does not consider other sources of infor-
mation that might give more information about the missing values. For example, the
HRCT images can be used with the observed clinical features to predict the missing
values. In addition, the proposed method does not consider the data’s temporal
nature and the features’ previous values. Further, the EM algorithm used to train the
LVM model is sensitive to the initialization of the parameters, does not scale well
to high dimensional data, and is prone to local minima. Future work can address

these limitations by incorporating the HRCT images, the temporal nature of the
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data and the previous records of the patients (e.g., using Long Short-Term Memory
(LSTM) models [190], or Transformers [191]), and using more robust optimization
methods [116].

Additionally, a more rigorous evaluation of the imputation method is necessary
to assess its robustness to noise and missing data patterns. This is particularly
critical in clinical settings, where data quality is often compromised due to human
errors, inconsistent reporting, or variations in measurement protocols. Evaluating
the method’s stability under these real-world conditions will ensure its reliability in

practical applications.

7.2.2 Cox Proportional Hazards with Memory Banks

One limitation with the proposed method in Chapter 5 is that after some training
iterations i >>> 1, some information from the early iterations will be irrelevant to
the current model parameters 6; and might hurt the performance. There are several
ways to address this issue; one notable way is to use a momentum factor, which
gives more weight to the recent updates of the model parameters. Specifically, we
could have two versions of the model parameters 6; and ¢;, where 6; is the current
model parameters, and ¢; is an exponentially moving average of the previous model

parameters

¢; = Boi—1+(1-p)6i— (7.1)

where 8 is a momentum factor 0 < < 1, where 3 = 0 corresponds to the standard
CoxPH model, and 8 = 1 corresponds to the proposed method in Chapter 5, the
higher the value of 3, the more weight is given to the recent updates of the model
parameters. 6; is normally updated using the gradients of the loss function with
respect to the model parameters, while no gradients are used to update ¢;. The model
parameters used to compute the loss function are then ¢; instead of 6;. This allows
the model to have a more stable training process and avoid irrelevant information in

the memory bank. This is similar to the momentum idea used in the MoCo method
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for training contrastive learning models [33].

7.2.3 CenTime

In Chapter 6, we assumed that the censoring distribution p(c|x) follows a uniform
distribution from O to the observed time of death r. However, this could be a
strong assumption, and future work should explore more flexible distributions for
the censoring process. Additionally, we assumed that the censoring process is
independent of the covariates x, which might not hold in some cases. Relaxing this
assumption by incorporating a censoring model that explicitly depends on covariates
could improve the robustness of the model.

For the death distribution p(z|x), we modelled it as a discrete Gaussian dis-
tribution. Future work could investigate other distributions, such as the Weibull
distribution, to assess their suitability for capturing survival times more effectively.

While CenTime demonstrates strong performance across multiple evaluation
metrics, dataset imbalance remains challenging, particularly for long-term survivors
and rapid-progressing patients. As discussed in Section 6.4.4, we experimented
with oversampling techniques to mitigate this issue but did not observe significant
improvements in predictive performance. Future work should explore alternative
strategies, such as focal loss, reweighting, or generative data augmentation, to

improve model robustness for minority subgroups.

7.2.4 Selection Bias and Generalizability

While the OSIC dataset is sourced from six sites worldwide, potential selection
biases may still affect the generalizability of the models developed. Despite its
global nature, the dataset primarily consists of data from specialized centres, which
may not fully represent the broader IPF population. Patients from underrepresented
geographic regions, ethnic groups, or community-based hospitals may be missing or
underrepresented, potentially limiting the model’s ability to generalize across diverse

clinical settings.



7.2. Limitations and Future Work 116

To address this, future work should evaluate model performance on external
datasets from more diverse clinical environments. Furthermore, stratified analysis
of model predictions across demographic subgroups could provide insights into any

disparities in performance and help identify potential biases.

7.2.5 Clinical Interpretability

One limitation of the proposed methods is that they need to be interpretable to clini-
cians. While the proposed methods achieve state-of-the-art performance in terms of
prediction accuracy, they do not provide insights into the underlying mechanisms
of the disease. Interpretability is crucial for clinical acceptance, especially in a
disease like IPF, where the underlying mechanisms are not well understood. We
explored the use of GradCAM [166] to generate saliency maps to provide insights
into the model predictions and showed that the model highlights areas of fibrosis
in the HRCT images, see Figure 7.1. However, the model also highlights other
areas, such as bones, whose relevance to the prediction is unclear. In addition,
GradCAM generates local explanations but does not provide a global view of the
model predictions. Future work can explore other methods for model interpretability,
such as SHAP [192], LIME [193], DeepLIFT [194], and counterfactual explana-
tions [195]. These methods can provide more insights into the model predictions

and help clinicians understand the underlying mechanisms of the disease.

7.2.6 Clinical Implementation Considerations

While the proposed methods demonstrate strong predictive capabilities, their effec-
tive integration into clinical workflows requires careful consideration. Extensive
validation studies are essential to assess model generalizability across diverse patient
populations and clinical settings, ideally involving external validation on multi-centre
datasets.

The presented models can be integrated into clinical workflows to assist health-

care providers in patient prognosis and treatment planning. For example, the models
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Patient 1: 152 Weeks Patient 2: 54 Weeks Patient 3: 40 Weeks

Figure 7.1: Saliency maps for the CoxMB model using the Grad-CAM method with the
reported time of death. The model highlights areas of fibrosis (blue arrows) but
also pulmonary vessels (red arrows).

can identify high-risk patients who may benefit from early interventions or more ag-
gressive treatment strategies. Additionally, leveraging HRCT imaging in a screening
setting could help flag patients with early-stage disease before respiratory symptoms
manifest, potentially informing timely clinical decisions. Finally, equipped with
interpretability tools (see Subsection 7.2.5), clinicians can use the models to gain in-
sights into the underlying disease mechanisms, especially in diseases like IPF where

we have limited understanding of disease progression and response to treatment.

Despite their promise, these models face several barriers to adoption. First, the
accessibility of HRCT imaging may be limited, particularly in resource-constrained
healthcare settings [196]. Second, the computational demands for model inference
and deployment—such as GPU and memory requirements—may limit feasibility
in standard clinical environments. Future work should explore resource-efficient

architectures and hardware optimization strategies to facilitate real-world adoption.

Beyond technical challenges, the current “grading” of IPF remains insufficiently
defined, complicating patient stratification. Despite the existence of clinical guide-

lines for diagnosing and managing IPF [6, 76], refining disease staging criteria could
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improve IPF data labelling and consequently enhance prognostic models perfor-
mance. Future clinical research should prioritize precise phenotyping and robust
labelling of IPF progression, ensuring that prognostic models can deliver more

reliable and clinically relevant predictions.

7.2.7 Vision Language Models

The lack of training data is a common problem in medical imaging, especially in
diseases like IPF, where the number of patients is limited. Pretrained models can alle-
viate this issue by learning from large datasets. Large Language Models (LLMs) have
shown outstanding performance in downstream tasks in natural language processing
after being trained on large corpora of text data [197, 198, 199].

In addition, not only in the case of IPF, but in general, clinical diagnosis,
treatment, and prognosis are often based on the interpretation of medical images and
reports. Machine learning models that can understand and generate text and interpret
medical images have the potential to assist clinicians in their decision-making and
improve patient outcomes. Vision Language Models (VLMs) have shown impressive
performance on various tasks and benchmarks by jointly learning from the visual
and textual modalities [200, 201, 202, 203, 204]. The general framework for these
models is to finetune a pretrained LLM on a specific task and dataset. Thanks to the
large number of parameters in these models and the large amounts of data used for
pretraining, they have shown excellent capabilities in generating high-quality text

and generalization to new tasks and datasets [200, 201, 202].

7.2.77.1 Limitations of the Next-Token Prediction Objective
LLMs/VLMs are trained autoregressively using a Next-Token Prediction (NTP)
objective function, where the next token in a sequence is classified into one of the

tokens in the vocabulary based on the preceding tokens.

log pg (xt|x<t> (7.2)
1

max

T
=
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where x; is the token at time 7, x-; is the sequence of tokens before time 7, and
0 are the model parameters. The distribution pg(x;|x<;) is usually parameterized
by a neural network, such as a Transformer [191]. The model outputs a softmax

distribution over the vocabulary

_exp(folx,x<))
polxilr<r) = Yevexp (fo(x,x<)) 73

where fy(x;,x<) is the output of the neural network for token x; given the sequence
of tokens x-;, and V is the vocabulary. The model is trained to maximize the

log-likelihood of the observed tokens in the training set, as shown in Equation 7.2.

While this approach has shown an impressive performance in language genera-
tion [197, 198, 199], it has limitations when predicting numerical quantities of high
importance in the medical domain (e.g., age or clinical measurements). First, as a
classification objective, NTP does not encode the ordinal nature of these variables.
Second, models trained using NTP cannot generalize to numbers not in the training

set.

7.2.7.2 Possible Remedies

A natural direction for future work is to extend the VLMs to accurately predict
numerical quantities using a regression objective function instead of a classification
one. A possible approach is to augment the NTP objective function with a regression
objective to predict numerical quantities. We could add a regression head to the
model, which takes the transformer’s output and predicts the exact value of the
numerical quantity. The model is then trained to minimize the mean squared error

(or another regression loss) between the predicted value and the ground truth.

More formally, the model will have two heads, one for the standard classification

task cg (x/|x<;) and one for the regression task rg (x;|x<;), the model final output will
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depend on the type of the token x; as follows

exXp (fG (x,,x<,)) . .
Yrevexp (fo(xx<r)) if x; is a token 0

po(xi|x<r) =
ro(x|x<s) if x; is a numerical quantity

The model is then trained to minimize the combined loss function

T
max Y (I(x; is a token) log p (x/|x<;) (7.5)
=1

—I(x; is a numerical quantity ) Lysg (g (x;|x<¢), x;)) (7.6)

where I is the indicator function, and ILysg is the mean squared error loss.

The question of how to identify numerical quantities in the text is an interesting
research question. One possible approach is to use a named entity recognition model
to identify numerical quantities in the text and then use the regression head to predict
the exact value of the quantity [205]. Another more straightforward approach is to
use two special tokens added to the vocabulary, one for the start of the numerical
quantity and one for the end of the numerical quantity. The model is then trained to
predict the start and end tokens, and the regression head is used to predict the exact
value of the numerical quantity between the two tokens. A rough sketch of the latter

method is shown in Figure 7.2.

7.2.7.3 Application to IPF

The suggested method can be used to predict the time of death in survival analysis
and other numerical quantities, such as the FVC and the DL in IPF, while leverag-
ing the pretrained VLMs on large corpora of text and image data. The model can be
finetuned on the OSIC dataset to predict the time of death, the FVC, and the DLco
of patients with IPF. The model can then generate reports for patients with IPF and

assist clinicians in decision-making. Further, the model can be used to generate
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Figure 7.2: A rough sketch of the suggested method for extending Vision Language Models
to predict numerical quantities. The model is trained to predict the next token in a
sequence based on the preceding tokens. If the next token is a numerical quantity,
the model is trained to predict the exact quantity value using a regression
objective function. Otherwise, the model is trained to predict the next token in
the vocabulary using the standard NTP objective function.

explanations for the model predictions, provide insights into the underlying mech-
anisms of the disease, and answer clinical questions (i.e., medical visual question

answering).

7.3 Outlook

This thesis advanced the field of survival analysis by addressing critical challenges
related to missing data, computational constraints, and the complexities of censored
data. Our contributions—ranging from innovative imputation techniques to novel
survival models—highlight the potential of leveraging deep learning and probabilistic
modelling to enhance patient prognosis. As we look to the future, several promising

directions could build on this foundation.
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7.3.1 Impact on Treatment and Drug Discovery

While this thesis primarily focuses on prognosis, its findings have potential impli-
cations for treatment planning and drug discovery. Future research should leverage
the prognostic modelling methods presented in the thesis in combination with ma-
chine learning interpretability techniques (see Subsection 7.2.5) to identify novel
IPF biomarkers. These biomarkers could provide deeper insights into disease mecha-
nisms, facilitating the development of more targeted treatment strategies.
Furthermore, integrating predictive modelling with biomarker discovery could
aid in designing personalized treatment plans and optimizing patient stratification for
clinical trials. Identifying high-risk patients earlier may enable timely interventions,
while biomarker-driven stratification could improve the efficiency of drug trials by
selecting patients more likely to respond to specific therapies. These advancements
would be central to improving IPF management and accelerating the development of

novel therapeutics.

7.3.2 Broader Integration of Multimodal Data

Future research should explore the collection and integration of additional data
modalities to improve the accuracy and robustness of survival models. For example,
genetic, proteomic, and other omics data could provide valuable insights into the
underlying mechanisms of diseases like IPF. In addition, integrating electronic
health records, patient-reported outcomes, and other clinical data could enhance the
predictive power of survival models. Researchers can develop more comprehensive

and personalized prognostic models by combining diverse data sources.

7.3.3 Expanding to Rare Diseases

The methods developed in this thesis could be applied to a wide range of rare diseases,
where limited data and high variability present significant challenges for prognosis.
By adapting and extending the proposed techniques, researchers can develop tailored

survival models for rare diseases, improving patient outcomes and advancing our
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understanding of these conditions.

7.3.4 Leveraging Advances in Foundation Models

The recent advances in foundation models, such as GPT-3 [206], CLIP [207], and
DALL-E [208], offer exciting opportunities for survival analysis. By leveraging these
models, researchers can develop more powerful and flexible survival models that
can learn from large-scale text and image data. These foundation models could be
finetuned on medical datasets to improve the accuracy and generalization of survival

models. An example is the VLMs discussed in the previous section.



Appendix A

CenTime for Interval Censoring

In the main text, we focused on right-censoring, which is the most common form of
censoring in survival analysis. Nevertheless, the versatility of CenTime enables its
application to interval censoring as well. In this section, we delineate how CenTime

can be naturally adapted to handle interval censoring.

A.1 Interval Censoring

Interval censoring arises when the event is known to have occurred within a specific
time interval {cy,...,c}. For instance, a patient is reported to be alive at time ¢; and
subsequently reported dead at time c,. Although the exact time of death is unknown,
we know that it occurred within {cy,...,c;}. According to our conditional censoring
model, we will first sample a death time ¢ from the distribution pg(¢|x), then sample
a lower censoring time ¢; from a distribution whose support is {1,...,7 — 1} and
an upper censoring time ¢, from a distribution whose support is {t + 1, ..., Tyax }-
Similar to the right-censoring case, we assume a uniform censoring distribution
for the states ¢ < t and ¢ > ¢ for the two censoring distributions, respectively. The

likelihood for an interval-censored observation is then

szl 1

plCi=c,C=cx)= Y, .

D=t A.l
= (max_t)l?e( [x) (A.1)



A.l. Interval Censoring
The objective function is then

L(6)= Y logpe(D=1i|x;)

i EMHCEHS
Cc)— 1 1

+ Z log Z —t(Tmax—l‘)

i€Ninterval-cens t=c1+1
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(A.2)

pe(D =tlx) (A.3)

where Nipterval-cens 18 the set of interval-censored observations in the dataset.
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