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Abstract

Idiopathic Pulmonary Fibrosis (IPF) is a severe lung disease characterized by rapid

progression and high mortality, with a highly variable prognosis between patients.

This thesis leverages machine learning to enhance prognosis prediction in IPF by

analysing clinical data and volumetric imaging. We first address the challenge of

missing data in patient records by applying latent variable models to accurately

impute missing attributes based on the available information in each record. Next,

we use the Cox proportional hazards model to predict mortality risk from patient

data. As a ranking objective, the Cox model requires many samples per training

iteration, which is computationally expensive and often infeasible for volumetric

data. We introduce a scalable memory bank-based training approach for efficient

model training with volumetric data. Recognizing the inherent constraints of the

Cox model, we also propose a new method, CenTime, which better utilizes censored

data and directly predicts the time-to-mortality. CenTime relaxes the assumptions

of the Cox model, provides a more precise estimation of patient outcomes, and

leverages right-censored data more effectively. Our methods are validated on a

comprehensive dataset of IPF patients, demonstrating significant improvements in

prediction accuracy over existing approaches. This work can advance personalized

prognosis in IPF, aiding clinicians in developing tailored treatment strategies.



Impact Statement

This thesis advances prognosis prediction in Idiopathic Pulmonary Fibrosis (IPF)

using machine learning techniques. IPF is a severe lung disease with a median

survival of 2–3 years post-diagnosis and a highly variable prognosis among patients.

This work tackles key challenges in IPF prognosis, including missing data imputation,

computationally efficient training with high-resolution volumetric imaging, and

precise time-to-death prediction. By improving mortality risk assessment, these

models enable clinicians to identify high-risk patients and develop personalized

treatment strategies. Additionally, this research facilitates the discovery of novel

imaging biomarkers, paving the way for improved disease understanding and targeted

therapies.

Beyond IPF, the presented methods extend to broader prognosis prediction tasks,

including interstitial lung diseases, cancer, and chronic conditions. The CenTime

model, in particular, enhances survival prediction by effectively leveraging censored

data and providing more accurate time-to-event estimations. This work contributes

to the broader field of machine learning for healthcare, advancing personalized

medicine and data-driven clinical decision-making.
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Chapter 1

Introduction

1.1 Idiopathic Pulmonary Fibrosis

Idiopathic Pulmonary Fibrosis (IPF) is a fibrotic lung disease that belongs to the

group of Interstitial Lung Diseases (ILDs) and is characterized by stiffening and

scarring (fibrosis) of the lung tissue. This leads to shortness of breath, progressive

decline in lung function, and ultimately respiratory failure and death [1, 2, 3, 4]. IPF

is the most common and severe fibrotic lung disease, with a median survival rate

ranging from two to three years, worse than many cancers [5, 6]. The incidence

and prevalence of IPF are rising; in the United Kingdom (UK), rates increased by

78% from 2000 to 2012 [7]. As an idiopathic disease, IPF has no known cause [1].

For treatment, there is no definitive cure for the disease, and the available drugs

aim to slow down the progression of the disease and manage the symptoms [8].

Diagnosing IPF is also challenging and requires a multidisciplinary approach that

includes clinical, radiological, and histopathological assessments [6].

A significant challenge in the management of IPF is the heterogeneous and

highly unpredictable disease progression, making it difficult to predict the prognosis

and response to treatment for individual patients. Although numerous computer-

based methods have been applied to improve disease prognosis predictions, accurate

and widely accepted models for predicting disease progression and outcomes in
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clinical practice for IPF patients are still lacking [9].

These challenges underscore the need for reliable prognostic models to predict

IPF progression, guiding clinical decisions and identifying high-risk patients for early

intervention. Furthermore, probing these models can help identify potential prog-

nostic markers and risk factors associated with the disease, guiding future research

and clinical practice and ultimately improving the understanding and management

of IPF.

Several studies have shown the potential of machine learning methods in pre-

dicting the future progression of IPF using clinical data, such as demographic

information, pulmonary function tests, and blood tests [10, 11]. However, these

models often rely on clinical data alone, which may not capture the full complexity of

the disease or provide accurate predictions. High-Resolution Computed Tomography

(HRCT) offers precise anatomical insights into the characteristics and progression of

lung disease, serving as an essential tool in supporting clinicians with IPF diagnosis,

prognosis, and monitoring. Furthermore, HRCT has demonstrated higher sensitivity

than pulmonary function measurements in some instances, particularly for asymp-

tomatic IPF patients [12, 13]. This enhanced sensitivity enables the potential for

earlier and more reliable prognoses in IPF.

Given the complexity and variability of IPF progression, conventional methods

have struggled to provide reliable prognostic models. Machine learning, with its

ability to process vast amounts of data and uncover complex patterns, presents a

promising approach to improving IPF prognosis. In particular, multimodal machine

learning — which integrates diverse data sources like clinical records and imaging

— can capture the disease’s full complexity and enhance prediction accuracy.

1.2 Multimodal Machine Learning
Machine learning is a subfield of Artificial Intelligence (AI) which focuses on devel-

oping algorithms that can learn from vast amounts of data, without being explicitly
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programmed, to make predictions or decisions [14]. It has shown outstanding per-

formance and capabilities in various domains, such as computer vision [15], natural

language processing [16], and healthcare [17]. Multimodal machine learning pertains

to developing machine learning algorithms that can learn from multiple data sources,

such as images, text, speech, and other modalities, to make decisions [18].

Integrating imaging and clinical data through multimodal machine learning

has shown promise in enhancing prognostic models for various chronic diseases,

including cancer [19], cardiovascular [20, 21], and respiratory diseases [22, 23].

In the context of IPF, multimodal machine learning can integrate and learn

from multiple data sources, such as clinical and imaging data, to predict the fu-

ture progression of the disease accurately and reliably. Clinical data can include

demographic information, pulmonary function tests, blood tests, and other clinical

assessments, while imaging data includes HRCT images. By integrating and learn-

ing from multiple data sources, multimodal machine learning models can capture

the full complexity of the disease, provide accurate predictions, and improve the

understanding and management of IPF. This thesis proposes a multimodal approach

to address critical gaps in IPF prognosis models.

1.2.1 Survival Analysis

While machine learning offers a broad framework for predictive modelling, IPF

prognosis requires a method that can specifically account for time-dependent events,

such as disease progression or mortality. Survival analysis is well-suited to this task,

providing tools for time-to-event prediction and allowing clinicians to anticipate

critical outcomes.

Survival analysis [24] is a statistical technique commonly used in medical

research to predict the time until an event of interest, often called ‘time-to-event’

analysis. This method is useful for estimating either the time until an event (e.g.,

disease progression, cancer recurrence, or death) or the risk of an event occurring
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within a specific time frame [25, 26]. Typical events in survival analysis include

death [25, 27], cancer recurrence [28], or even nonmedical outcomes like machine

failure [29].

For IPF, progression is often evaluated based on the time to critical events, such

as death, respiratory failure, or lung transplantation, making it particularly suited to

survival analysis modelling [30]. Survival analysis models offer valuable insights

into the progression of IPF, helping to identify high-risk patients and supporting

clinical decision-making.

Despite the utility of survival analysis in modelling disease progression, existing

models face limitations, particularly in handling the high rate of censored data. To

address these challenges, this thesis proposes a novel framework combining advanced

imputation techniques, multimodal integration, and survival analysis enhancements

to produce more accurate and reliable prognostic predictions for IPF.

1.3 Research Problem
Building on this foundation, the primary research problem addressed in this thesis is

the development of accurate and reliable prognostic models for IPF that can predict

the future progression of the disease using clinical and imaging data. Despite the

advances in machine learning and survival analysis, predicting the future progression

of IPF remains relatively challenging and unexplored. Existing prognostic models

for IPF depend heavily on clinical data alone, often excluding valuable imaging data

that could reveal structural changes associated with disease progression [10, 11].

Furthermore, clinical data often suffer from missing values with which current meth-

ods struggle, impairing the performance of machine learning models and introducing

bias into predictions. These methods often impute missing values in ways that do

not account for the dependencies among clinical variables, thereby reducing the

reliability of predictions [31, 32].

On the other hand, existing survival analysis models suffer from several lim-
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itations. For instance, the Cox Proportional Hazards (CoxPH) model [26] has the

following limitations

• Proportional Hazards Assumption: The CoxPH model assumes that the

hazard ratio between any two individuals is constant over time, which may not

hold in practice, especially for complex diseases like IPF.

• Requirement for Large Batch Sizes: Training CoxPH models requires

ranking samples by risk scores, demanding large batch sizes, which is often

infeasible with high-resolution data like HRCT due to memory constraints.

Using small batch sizes for training can impair the model’s performance and

restrict its ability to learn effectively from the data, particularly for censored

samples.

• Limited Utilization of Censored Samples: The CoxPH model often underuti-

lizes censored samples in the dataset, the samples that have not died by the end

of the study. These samples dominate survival analysis datasets and contain

valuable information that can improve the model’s performance and reliability.

• Outputting Risk Scores: The CoxPH model outputs a risk score for each

patient, which may not be directly interpretable or valuable for clinicians.

Clinicians often require a rough estimate of each patient’s expected time to

death, which the CoxPH model does not provide.

By addressing these limitations, this thesis aims to set a new standard for IPF

prognosis models, ultimately supporting clinicians in making more personalized and

timely decisions that enhance patient care.

1.4 Contributions
In this thesis, we aim to develop multimodal machine learning models that integrate

and learn from multiple data sources, such as clinical and imaging data, to predict
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Figure 1.1: Overview of the thesis structure and contributions.

the future progression of IPF, see Figure 1.1. In real-world datasets, quality control

and data preprocessing are essential to ensure the reliability and validity of the data,

including developing methods to handle missing data without impairing or biasing

the developed models. We aim to develop machine learning methods to predict IPF

progression, providing a mortality risk score or estimated time to death. Further, we

aim to develop novel survival analysis models that can better handle the censoring

process, leverage the censored samples in the dataset, and relax the assumptions

of existing models to improve prediction accuracy and reliability. The developed

models are evaluated on a large and diverse dataset of IPF patients and compared to

existing models to demonstrate their effectiveness and reliability. The contributions

of this thesis can be summarized as follows.

1.4.1 Handling Missing Data in IPF Clinical Records

Real-world clinical data often contain missing values, impairing machine learning

model performance and introducing bias into predictions. Missing data is especially

common in IPF due to the nature of the disease and the variability in clinical assess-

ments. For instance, some hospitals may lack equipment for specific tests, or patients

may be unable to complete assessments due to their health condition. Standard
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imputation methods generally assume that clinical attributes are independent, which

may not hold in practice for IPF data.

In this thesis, we hypothesize that missing values for a patient can be accurately

estimated using the observed clinical values. To address this, we propose a method

based on Latent Variable Models (LVMs) and the Expectation-Maximization (EM)

algorithm to handle missing data in IPF clinical records. This imputation method is

applied to complete clinical datasets in our survival analysis experiments, aiming to

improve prediction accuracy by providing a more comprehensive dataset for model

training and reducing the bias introduced by missing values.

Furthermore, effective handling of missing data will facilitate a robust inte-

gration of clinical and imaging data, enhancing the reliability of our multimodal

prognosis model for IPF. This contribution addresses the problem of missing data in

clinical records, ensuring the reliability and validity of the developed models.

1.4.2 Improving the Cox Proportional Hazards Model with

Memory Banks

The CoxPH model is widely used in survival analysis due to its simplicity and

interpretability. However, training the CoxPH model on high-resolution imaging data

(such as HRCT images) is computationally and memory-intensive, often requiring

a reduced batch size to fit the model within the Graphics Processing Unit (GPU)

memory. This limitation can impair model performance and restrict its ability to

learn effectively from data, particularly for censored samples.

Inspired by the contrastive learning literature, this thesis proposes a novel

approach to enhance the CoxPH model’s performance by integrating memory banks

during training [33]. Memory banks refer to a technique in which predictions from

previous training iterations are stored temporarily and reused in later stages. This

approach enables the model to leverage previously seen information, effectively

addressing computational constraints.
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By incorporating memory banks, we show that the CoxPH model achieves

improved performance, scalability, and a better utilization of censored samples.

We evaluate this method on a large and diverse dataset of IPF patients, comparing

it to the standard CoxPH model to demonstrate its effectiveness and reliability.

This chapter addresses the limitations of the CoxPH model when training on high-

resolution imaging data and provides a novel approach to improve its performance

and scalability.

1.4.3 Event-Conditional Modelling of Censoring in Survival

Analysis

In this contribution, we address the foundational assumptions of traditional survival

analysis models, such as the CoxPH model [26] and DeepHit [25], and introduce

CenTime, a novel event-conditional model designed to handle the censoring process

in survival analysis better. CenTime leverages censored samples in the dataset more

effectively through a novel objective function for training survival analysis models.

Our approach relaxes the proportional hazards assumption, which may not hold

in complex diseases like IPF, and outputs individualized survival time estimates.

Through extensive evaluation, we demonstrate that CenTime improves the prediction

accuracy, outperforming existing methods, including the CoxPH model and DeepHit.

Although CenTime is a general framework applicable to a wide range of survival

analysis tasks and datasets, we evaluate it specifically on our IPF dataset to highlight

its effectiveness in this context. This chapter addresses the limitations of existing

survival analysis models being less effective in handling the censoring process. It

introduces a novel event-conditional model that can better leverage censored samples

in the dataset and improve prediction accuracy and reliability while providing direct

estimates of each patient’s expected time to death.
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1.5 Thesis Overview
This thesis is organized as follows

• Chapter 2 provides a comprehensive background on IPF, including the lung

anatomy, physiology of the disease, as well as the clinical assessment, diagno-

sis, prognosis, and management of IPF.

• Chapter 3 provides a technical background on machine learning methods that

are relevant to the thesis, including missing data imputation, survival analysis,

and multimodal machine learning.

• Chapter 4 presents our proposed method for handling missing data in IPF

clinical records, which is essential for the reliability and validity of the devel-

oped models. This method is used in the subsequent chapters to train survival

analysis models.

• Chapter 5 discusses the limitation of the CoxPH model when limited by the

GPU memory to small batch sizes and proposes the integration of memory

banks to alleviate this limitation and improve the model’s performance.

• Chapter 6 discusses the limitation of existing survival analysis models and

proposes a novel event-conditional model, CenTime, that can model the cen-

soring process in survival analysis and better leverage the censored samples in

the dataset.

• Chapter 7 concludes the thesis and discusses future work.

1.6 Publications
The content of this thesis is based on the following publications

• Shahin A. H., Jacob J., Alexander D. C., and Barber D., “Survival Analysis

for Idiopathic Pulmonary Fibrosis using CT Images and Incomplete Clinical
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Data”, Oral presentation at the International Conference on Medical Imaging

with Deep Learning (MIDL), 2022 [34].

• Shahin A. H., Zhao A., Whitehead A. C., Alexander D. C., Jacob J., and

Barber D., “CenTime: Event-conditional modelling of censoring in survival

analysis”, Medical Image Analysis, 2024 [35].

In addition, the following publications were conducted during the PhD but are

not included in the thesis:

• Zhao A., Shahin A. H., Zhou Y., Gudmundsson E., Szmul A., Mogulkoc N.,

Van Beek F., Brereton C. J., Van Es H. W., Pontoppidan K., Savas R., Wallis T.,

Unat O., Veltkamp M., Jones M. G., Van Moorsel C. H. M., Barber D., Jacob J.,

and Alexander D. C., “Prognostic Imaging Biomarker Discovery in Survival

Analysis for Idiopathic Pulmonary Fibrosis”, International Conference on

Medical Image Computing and Computer Assisted Intervention (MICCAI),

2022 [27].

• Lu Y., Aslani S., Zhao A., Shahin A. H., Barber D., Emberton M., Alexander

D. C., and Jacob J., “A hybrid CNN-RNN approach for survival analysis in a

Lung Cancer Screening study”, Heliyon, 2023 [36].

• Shahin A. H., Zhuang Y., and El-Zehiry N., “From Sparse to Precise: A

Practical Editing Approach for Intracardiac Echocardiography Segmenta-

tion”, International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI), 2023 [37].

• Whitehead A. C., Shahin A. H., Zhao A., Alexander D. C., Jacob J., and

Barber D., “Neural Network Based Methods for the Survival Analysis of Idio-

pathic Pulmonary Fibrosis Patients from a Baseline CT Acquisition”, Medical

Imaging Conference and International Symposium on Room-Temperature

Semiconductor Detectors (NSS MIC RTSD), 2023 [38].



Chapter 2

Clinical Background

We give a clinical background on the lung, the disease of IPF, its diagnosis, prognosis,

treatment, and the type of data primarily used in the clinical setting for diagnosis,

prognosis, and monitoring of IPF.

2.1 Lung Anatomy

The lung is the primary organ of the respiratory system, whose main function is

to provide oxygen to the blood. Generally, the respiratory system is divided into

airways and lung parenchyma. The airways consist of the bronchus, which split off

from the trachea and divide into bronchioles and alveoli. The lung parenchyma is

responsible for gas exchange and includes alveoli, alveolar ducts, and bronchioles.

Anatomically, lungs have an apex, three borders, and three surfaces. They are also

subdivided into lobes and segments [39, 40, 41].

The lung apex lies above the first rib. The three lung borders are the anterior,

posterior, and inferior borders. The anterior border has a cardiac notch in the left

lung to accommodate the heart, while the posterior border extends from the seventh

cervical vertebra (C7) to the tenth thoracic vertebra (T10). The inferior border is a

thin border that separates the lung base from the costal surface.

The three lung surfaces are the costal, medial, and diaphragmatic surfaces. The

costal surface is covered by the costal pleura and faces the sternum and ribs. The



2.1. Lung Anatomy 35

Figure 2.1: Anatomy of the lungs showing the pulmonary lobes, the bronchi, and other
pulmonary structures. Taken from the public domain.

medial surface has two parts: anterior, which is related to the sternum, and posterior,

which is related to the vertebra. The diaphragmatic surface is concave and lies on

top of the diaphragm, with its right part higher than the left because of the existence

of the liver.

The two lungs are similar but asymmetric (see Figure 2.1). Each lung comprises

smaller units called lobes, which ultimately subdivide into millions of alveoli. The

alveoli are the primary site of gas exchange in the lungs. The right lung has three

lobes, separated by horizontal and oblique fissures, while the left has two lobes

divided by an oblique fissure.

The hilum is at the centre of the medial surface and lies anterior to the T5 to

T7 vertebra. It is the entry and exit point of various structures within the lung. The

hilum contains mainly bronchi and pulmonary vasculature. In the right hilum, there

are two bronchi, the eparterial and hyparterial bronchi, while in the left hilum, there

is only one bronchus, the principal bronchus [40].
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2.2 Lung Volumes and Capacities
Lung volume is a key metric for assessing lung function, essential for diagnosing

and monitoring pulmonary diseases like IPF. Common lung volumes and capacities

include (see Figure 2.2) [39, 42]

• Tidal Volume (TV): The volume of air inhaled or exhaled during normal

breathing.

• Inspiratory Reserve Volume (IRV): The volume of air a patient can forcefully

inhale after a normal inspiration.

• Expiratory Reserve Volume (ERV): The volume of air a patient can forcefully

exhale after a normal expiration.

• Residual Volume (RV): The volume of air that remains in the lung after

maximal exhalation.

• Inspiratory Capacity (IC): The maximum volume of air a patient can inhale

after a normal expiration.

• Functional Residual Capacity (FRC): The volume of air that remains in the

lung after normal expiration.

• Vital Capacity (VC): The maximum volume of air a patient can exhale after a

normal inspiration.

• Total Lung Capacity (TLC): The volume of air that remains in the lung after

maximal inspiration.

• Forced Vital Capacity (FVC): The maximum volume of air a patient can exhale

after a maximal inspiration.

• Forced Expiratory Volume in 1 second (FEV1): The volume of air a patient

can exhale in the first second of a forced expiration.
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Figure 2.2: The lung volumes and capacities. Adapted from [43].

2.3 Major Types of Lung Diseases

Many diseases can affect the lungs. Lung diseases can be classified into two main

categories: obstructive and restrictive. Distinguishing between obstructive and

restrictive lung diseases provides context for developing machine learning models

specific to IPF, a restrictive disease. By training models on data specific to IPF rather

than a broad category of lung diseases, it is possible to achieve greater accuracy in

disease-specific predictions, especially when distinguishing IPF from other ILDs.

2.3.1 Obstructive Lung Diseases

Obstructive lung diseases, such as Chronic Obstructive Pulmonary Disease (COPD),

impair expiration, leading to air trapping and decreased FVC, FEV1, and FEV1/FVC

ratios.

2.3.2 Restrictive Lung Diseases

These are diseases where specific abnormalities (e.g., fibrosis or scarring) restrict

lung expansion. This restriction leads to decreased lung volumes. Both FVC and

FEV1 are decreased in restrictive lung diseases, but the FVC is decreased more than

the FEV1, which leads to an increased FEV1/FVC ratio. An example of a restrictive
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lung disease is IPF, which is the focus of this thesis.

2.4 Idiopathic Pulmonary Fibrosis

IPF is part of the broader ILDs family, which are lung disorders that cause inflam-

mation or fibrosis in several lung areas and share similar clinical, physiologic or

pathological features [44]. There are some ILDs that have known causes as well

as disorders that happen due to unknown aetiology. Intuitively, the diagnosis of

the latter category of diseases is more challenging. IIPs is a group of pulmonary

disorders that belong to that category and have distinct histologic patterns.

IPF, the most common IIP, is a chronic and progressive disease with a median

survival of two to three years from the time of diagnosis. The incidence of IPF

is increasing and is more common in older adults [5, 6, 30]. It is characterised

by the pattern of Usual Interstitial Pneumonia (UIP) on the chest HRCT scan,

see Figure 2.4. UIP is a specific fibrosis pattern seen in the lung tissue. Lung

abnormalities, like reticular opacities, traction bronchiectasis, honeycombing, and

ground-glass opacities, are common in UIP [45].

2.4.1 Epidemiology

The epidemiology of IPF varies widely across different regions because of blurred

diagnostic criteria and changes in the official diagnostic guidelines [46, 47]. Gen-

erally, IPF incidence has been increasing in the past few decades. However, it is

unclear whether this increase is due to an actual increase in the disease incidence or

better recognition and diagnosis of the disease [4].

In the UK, over 5000 IPF cases are diagnosed annually, with primary care

cases rising 35% from 2000 to 2008. IPF mortality rates continue to increase; see

Figure 2.3 [48]. In Europe and North America, IPF incidence is reported to be

between 2.8 to 19 cases per 100,000 people [49, 50]. In comparison, it is estimated

to be less than 4 cases per 100,000 persons in East Asia and South America [49].
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Figure 2.3: Estimated number of deaths from IPF in the UK. Age standardised to the 2008
population of England and Wales. ICD: International Classification of Diseases.
Adapted from [48].

Raghu et al. reported that IPF prevalence in people aged 65 years and older in

the US increased from 202.2 cases per 100,000 in 2001 to 494.5 in 2011 [51]. Several

studies have reported a consistent increase in IPF incidence and prevalence rates

among older males, with the majority being over 50 years old [52]. IPF mortality is

also increasing worldwide but might be underestimated due to the lack of recognition

and diagnosis difficulties associated with IPF [53].

Machine learning models can analyse epidemiological data to identify risk

factors, predict disease incidence trends, and assess outcomes in IPF populations.

For instance, models trained on demographic and clinical data can help stratify

patient risk levels based on age, gender, or other factors [54, 55].
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Change in Dyspnea Grade Change in FVC (L) Change in FVC (%)

Much better 2.3±7.3 5.1±7.3
Somewhat better −2.1±6.4 0.7±6.4
Same −2.8±5.8 0.0±5.8
Somewhat worse −6.5±6.6 −3.7±6.6
Much worse −6.1±9.5 −3.3±9.5

Table 2.1: Change in FVC with change in dyspnea grade. Adapted from [58].

2.4.2 Clinical Presentation

2.4.2.1 Symptoms and Physical Examination

Common symptoms of IPF include dyspnea, cough, and fatigue. Dyspnea (shortness

of breath) is the most common symptom and is usually progressive. It limits the

patient’s daily activities and is often the reason for seeking medical attention as it

impairs the quality of life [56, 57]. Some studies have shown that the patient-reported

sensation of change of dyspnea grade is associated with changes in FVC [58], see

Table 2.1. Cough is another common symptom which is more likely to happen in

patients with a history of smoking [56]. Late stage IPF patients sometimes report

general fatigue [59].

Physical examination of IPF patients may reveal clubbed fingers and velcro

crackles. Finger clubbing refers to a deformity of the nail base, characterised by a

swollen, spongy, and convex shape of the distal phalanx, accompanied by a reduction

in the nail-fold angle [60]. It is thought to affect around 50% of IPF patients and has

shown to be associated with poor prognosis [61, 62]. Velcro crackles are a distinctive

sound heard on auscultation of the chest, which is thought to be due to the opening

of small airways that are closed by fibrosis [62]. Velcro crackles are reported by

many IPF patients, and clinical guidelines recommend their presence as a diagnostic

criterion for IPF [6].



2.4. Idiopathic Pulmonary Fibrosis 41

2.4.2.2 Physiological Measurements

Physiological measurements are essential for diagnosing and monitoring IPF. The

most common measurements used are FVC, FEV1, and Diffusing Capacity of the

Lung for Carbon Monoxide (DLCO), with FVC being the most important. The

majority of IPF patients suffer from a decreased FVC and DLCO [6]. However, the

physiological measurements can be normal in the early stages of the disease, and the

decline in FVC is inconsistent across patients [4].

Physiological measurements, such as FVC and DLCO, are critical features for

machine learning models in IPF. Predictive algorithms can utilise these measurements

to assess disease progression, with FVC serving as a valuable indicator of patient

health that models can use to predict mortality [63, 64, 65, 66].

2.4.2.3 HRCT Findings

The clinical guidelines recommend the use of HRCT imaging in the diagnosis of

IPF [30]. Radiographic changes in IPF patients can be observed before the onset

of symptoms. Dong Soon et al. showed that asymptomatic IPF patients developed

symptoms after more than 2 years of the diagnosis based on the HRCT findings [67].

IPF is defined by a histopathologic and/or radiologic pattern known as UIP

(Figure 2.4), which involves paraseptal fibrosis and architectural distortion [30]. The

most common features of UIP on HRCT include honeycombing, traction bronchiec-

tasis, and traction bronchiolectasis, often accompanied by ground-glass opacification

and fine reticulation. These terms are defined as follows

• Honeycombing, a hallmark of UIP, represents advanced pulmonary fibrosis

and is identified by clusters of cystic air spaces, typically subpleural, with

thick, well-defined walls [68, 69, 45] (Figure 2.4).

• Traction bronchiectasis/bronchiolectasis refers to the dilation of bronchi or

bronchioles due to the retraction caused by surrounding fibrosis [68] (Fig-

ure 2.4).
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• Reticulation generally signifies lung fibrosis [11], characterised by numer-

ous short linear opacities that form net-like patterns on HRCT scans [68]

(Figure 2.5).

• Ground-Glass Opacity (GGO) is identified as areas of hazy increased lung

density where the margins of bronchi and vessels remain visible [68]. While

pure GGO is not typically associated with UIP, it is common in patients with

fibrotic lung diseases to observe GGO mixed with reticular abnormalities,

traction bronchiectasis, or both [45].

The guidelines outline four patterns based on HRCT features to assist in diag-

nosing IPF: the UIP pattern (Figure 2.4), probable UIP pattern (Figure 2.5), inde-

terminate for UIP pattern, and patterns suggestive of an alternative diagnosis [30].

The UIP pattern is the most critical for IPF diagnosis, characterised by bilateral

reticulation and honeycombing with subpleural and basal predominance [4, 30]. On

HRCT, the UIP pattern strongly predicts the presence of histopathologic UIP, often

making Surgical Lung Biopsy (SLB) unnecessary for diagnosis in patients with a

typical UIP pattern and no other clear cause.

A probable UIP pattern, which includes bilateral reticulations that are subpleural

and basal with peripheral traction bronchiectasis or bronchiolectasis but without

honeycombing, is also strongly indicative of histopathologic UIP. Some patients with

this probable UIP pattern on HRCT can be diagnosed without SLB, while others may

require additional clinical evaluations, such as SLB, to confirm the diagnosis [30, 45].

HRCT scans are vital for diagnosing IPF. They can be used as input data for

machine learning models designed to detect IPF patterns, such as honeycombing and

ground-glass opacities [70, 71, 72, 73, 74]. By training models on HRCT images, it

is possible to develop automated methods for recognising UIP patterns, supporting

radiologists in diagnosis and monitoring [75]. In addition, deep learning models can

be trained end-to-end to predict patient outcomes based on HRCT images without
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Figure 2.4: Typical UIP patterns in HRCT. (A–F) Axial and coronal HRCT scans from a
patient with UIP display a subpleural predominant reticular abnormality, along
with traction bronchiectasis and honeycombing on the coronal images (E). (F)
A magnified view from another patient reveals honeycombing areas occurring
in single and multiple layers (indicated by arrows). Additionally, two regions
of apparent GGO (circled) contain dilated bronchi (traction bronchiectasis),
suggesting these areas likely represent fibrosis. Adapted from [45].
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Figure 2.5: Probable UIP HRCT pattern. (A–E) The HRCT images reveal a basal-
predominant and subpleural-predominant reticular abnormality, with peripheral
traction bronchiectasis (circled in B) but without honeycombing. In this case,
the diagnosis of UIP was confirmed through histological analysis. Adapted
from [45].

requiring manual feature extraction. Probing the extracted features can also provide

insights into the disease mechanisms and progression.
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2.4.3 Diagnosis

Pathologically, IPF is characterised by stiffening and scarring (fibrosis) of the lung

tissue with unknown causes. This leads to shortness of breath and progressive

reductions in lung volume. Diagnosis of IPF requires the existence of UIP pattern

and SLB [30, 76]. In patients not subjected to biopsy, the diagnosis is made when a

definite UIP is present on the HRCT and other known causes of ILDs are excluded,

see Figure 2.6.

IPF diagnosis is challenging due to several reasons. The clinical presentation of

IPF, such as dyspnea and cough, overlaps with symptoms of other respiratory diseases

like COPD or non-IPF ILDs, leading to potential misdiagnoses [77]. Additionally,

even experienced radiologists may struggle to distinguish between UIP patterns and

non-UIP patterns on HRCT scans due to subtle differences, increasing the risk of

diagnostic errors [47, 78, 79, 80].

The reliance on HRCT and SLB for definitive diagnosis poses challenges [81].

While HRCT can identify UIP patterns, these patterns may not always be distinct,

and SLB is invasive and not feasible for all patients, especially those with advanced

disease or comorbidities. This diagnostic uncertainty often delays accurate diagnosis

and timely treatment initiation.

Machine learning offers opportunities to assist in diagnosing IPF by automating

the detection of UIP patterns in HRCT scans and combining imaging data with

clinical records [82, 83].

2.4.4 Prognosis

Besides the lack of confident diagnostic criteria of IPF, another challenge is the

highly variable and unpredictable progression of IPF across individuals. Disease

progression in IPF is assessed by monitoring respiratory symptoms, progressive

fibrosis on the HRCT, pulmonary tests (e.g., FVC), or mortality. We explore FVC

decline and mortality as established methods for tracking IPF progression.
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Suspected IPF

Known cause for ILD?
(CTD, drugs, exposures, etc.)

Chest HRCT

Surgical lung biopsy

IPF Multidisciplinary discussion Not IPF

Yes

Probable UIP /
Inconsistent with UIP

UIP
Not UIP

UIP / Probable UIP
/ Nonclassifiable

fibrosis

No

Figure 2.6: Diagnostic criteria for IPF [6]. ILD: Interstitial Lung Disease, CTD: Connective
Tissue Disease, HRCT: High-Resolution Computed Tomography, UIP: Usual
Interstitial Pneumonia.

2.4.4.1 Forced Vital Capacity Decline

FVC is one of the vital lung function tests used to track the progression of IPF.

Importantly, FVC decline is shown to be correlated with patient mortality [84].

Pulmonary function interpretations involve comparing with FVC reference values

obtained from a healthy population. Several factors contribute to the calculation

of these predicted values, such as height (which reflects chest size), age (reflects

maturity), sex, and, ideally, ethnicity [85]. The obtained typical values are then used

to calculate the FVC per cent predicted, which is the ratio of the measured FVC to

the predicted FVC.

Paterniti et al. showed that a decline in FVC of≥ 10% is associated with mortal-

ity [86]. FVC was the basis of the US Food and Drug Administration (FDA) approval
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of two major treatments (antifibrotic agents) for IPF: pirfenidone and nintedanib [87].

While FVC decline is consistent in IPF patients, it varies significantly between

individuals and over time, and prior declines are not a reliable predictor for future

ones [6, 88]. However, a decline of≥ 10% in the first 24 weeks was shown to predict

mortality in the following 24 weeks [89].

Despite the importance of FVC decline in IPF prognosis, it has significant

limitations [90, 91]. FVC results can be within the normal range during the early

stages of the disease. FVC may also be artificially elevated when emphysema is

present [4]. Moreover, FVC depends on the patient’s effort and cooperation during

the test, leading to variability in the results. Finally, there is an inherent noise in the

spirometer measurements, estimated to be around 140 mL in the case of FVC [91].

2.4.4.2 Mortality

Mortality is considered the most reliable endpoint in IPF. It can be interpreted in

any of the following forms: all-cause mortality, respiratory-related mortality, or IPF-

related mortality. Further, it can be recognised as the time-to-death endpoint or an

endpoint at a fixed time (e.g., one year). The most clinically relevant type mentioned

is all-cause mortality, which is reliable and easy to define and measure [92]. One

concern of mortality studies is that they may be impractical for IPF, as it will require

large sample sizes and long duration to reach the endpoint, leading to the need for

more resources than non-survival-based studies. However, King et al. showed that

it is possible to conduct a successful clinical trial using all-cause mortality as the

primary endpoint in IPF [93].

We have limited information about mortality predictors in IPF patients. Despite

the poor survival rate (two to three years), some patients survive for much longer,

and the clinical course varies from slow progression to acute failure and death. It will

be clinically beneficial to have prediction models that can yield individual mortality

risk [94]. This thesis focuses on all-cause mortality as the primary endpoint for
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prognosis prediction in IPF patients.

2.4.4.3 Prognosis Challenges

The course of IPF progression is unpredictable; some patients may experience a rapid

decline, while others show a more stable disease course for years. This variability

complicates prognosis and makes it challenging to predict patient outcomes based

solely on clinical and physiological measures [95]. The lack of reliable prognostic

markers hinders the ability to stratify patients based on risk and progression rates.

Traditional prognostic measures, such as FVC decline, are inconsistent predic-

tors of individual outcomes. FVC can remain normal in early-stage IPF, and its

decline does not always correlate with disease progression [96, 97]. Additionally,

FVC measurements depend on patient effort and can be influenced by comorbid

conditions, leading to variability and potential inaccuracies in assessment.

2.4.4.4 Unmet Need for Predictive Models

Given the complexities in diagnosis, the unpredictable nature of disease progression,

and the limitations of existing treatment options, there is a pressing need for advanced

predictive models to better assist clinicians in managing IPF. The following section

explores how machine learning approaches can be leveraged to address these unmet

needs.

The diagnostic ambiguity, unpredictable progression, and limited treatment

options in IPF highlight an urgent need for reliable predictive models. Traditional

clinical approaches and prognostic measures have shown limited effectiveness in

accurately predicting patient outcomes, leading to suboptimal treatment strategies.

There is a lack of widely accepted prognostic tools that can integrate the diverse and

complex data sources available, such as clinical records and HRCT scans.

Machine learning offers a promising solution by leveraging multimodal data to

uncover patterns and relationships that may not be apparent through conventional

analysis. By integrating clinical and imaging data, predictive models can provide
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more accurate diagnoses, assess disease progression, and offer personalised treat-

ment recommendations. These advancements can potentially transform the clinical

management of IPF, leading to improved patient outcomes and quality of life.

2.4.5 Treatment

There is currently no cure for IPF. Treatment aims to slow down progression, manage

symptoms, and improve the quality of life. Antifibrotic drugs, such as pirfenidone

and nintedanib, aim to slow the rate of decline in FVC [98, 99]. However, their

effectiveness varies significantly among patients, and side effects can limit their

use [100]. Additionally, there is no reliable method to predict which patients will

respond favourably to these treatments, complicating clinical decision-making.

On the other hand, lung transplantation is the only reported treatment method

to improve both symptoms and survival likelihood [101, 102]. A lung transplant

may be either unilateral or bilateral. Outcomes from bilateral transplants are often

better regarding survival rate and lung function, but unilateral transplants benefit

from shorter wait times and less complicated procedures. The overall five-year

survival rate post-transplant is around 50% [101]. However, lung transplantation is

only an option for a small subset of patients. The procedure has high risks, limited

availability due to donor shortages, and variable outcomes, making it a challenging

choice even for eligible patients.

Machine learning models could be used to evaluate treatment effectiveness by

analysing longitudinal data from patients receiving antifibrotic treatments. Predictive

models could also aid in identifying patients who may benefit most from lung

transplantation based on their disease progression and risk factors [103, 104, 105].

2.5 Idiopathic Pulmonary Fibrosis Data

IPF is a complex disease requiring a multidisciplinary diagnosis and management

approach. The data used in the clinical setting for IPF diagnosis, prognosis, and
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monitoring are primarily clinical data, imaging data, and sometimes genetic data.

Data heterogeneity and missing values are significant obstacles in IPF research.

Clinical data often contain gaps due to incomplete patient records, while imaging

data can be inconsistent in quality and resolution. The small sample sizes in IPF

studies, combined with the variability in patient demographics and disease stages,

make it challenging to develop generalisable models.

Clinical and imaging data form the basis for the machine learning models

developed in this thesis. By integrating these multimodal data sources, machine

learning algorithms can be trained to predict disease progression, assess mortality

risk, and support clinical decision-making in IPF.

2.5.1 Clinical Data

Clinical data includes but is not limited to patient demographics, lung function

measurements, treatments, and symptoms information.

2.5.1.1 Patient Demographics

Patient demographics include information like patient age, gender, smoking history,

exposures, and comorbidities. IPF is more common in older males, and smoking is a

significant risk factor for the disease [6]. Environmental exposures, such as silica

and wood dust, are also crucial for the disease assessment. Comorbidities, such as

emphysema, pulmonary hypertension, and lung cancer, are common in IPF patients

and can affect the prognosis [6].

2.5.1.2 Lung Function Measurements

This includes measurements like FVC, FEV1, DLCO, and 6-Minute Walk Test

(6MWT). FVC and DLCO are the most common measurements used in IPF diagnosis

and prognosis. DLCO measures the lung’s ability to transfer gases between the air

sacs and the blood. Specifically, it measures how well the Carbon Monoxide (CO),

a surrogate for oxygen, is transferred from the lungs to the blood. The 6MWT test
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assesses the patient’s functional exercise capacity and endurance. It measures how

far a patient can walk on a flat surface in six minutes.

2.5.1.3 Treatments

Treatments include whether the patient is under any antifibrotic treatment and which

drug. In addition, it should include information about the lung transplantation, if

performed.

2.5.1.4 Symptoms

This section includes any symptoms reported by the patient at any point in time.

Typical symptoms in IPF include shortness of breath, dyspnea, cough, and clubbed

fingers [106].

2.5.2 Imaging Data

Imaging data is essential for IPF diagnosis and prognosis. The primary imaging

modality used for IPF is the HRCT. It is a non-invasive imaging technique that

provides detailed images of the lung tissue. Non-contrast HRCT with thin slices

(≤ 3 mm) is used to detect fibrosis patterns, honeycombing, ground-glass opacities,

and other abnormalities in the lung tissue [45]. Figure 2.4 shows examples of HRCT

images with different lung patterns.

2.5.3 The Open Source Imaging Consortium Data

The OSIC dataset is the world’s largest and most diverse dataset for IPF and ILDs in

general. It comprises HRCT and contemporaneous clinical data from multiple sites

worldwide. In addition, the dataset includes mortality information for the patients.

This thesis uses the OSIC data for developing and evaluating the proposed models.

The OSIC dataset provides a rich, multimodal source of clinical and imaging

data suitable for developing robust machine learning models. By using this dataset,

machine learning models can learn from real-world data to improve the accuracy and

reliability of IPF prognosis predictions.
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Criteria Number of Scans Number of Patients

All samples 2603 1639
IPF diagnosis 1158 860
Slice thickness < 3 mm 834 621
Volumetric scan 832 619
Non-contrast scan 766 589
Exclude noisy scans 728 555

Table 2.2: Inclusion criteria for the OSIC data used in this thesis.

It contains data from 1639 patients with ILDs1. The patient data included

in this thesis is collected from six different sites worldwide. Some patients have

multiple follow-up scans, while others only have one baseline scan. In this thesis,

we filter the data to include only patients with an IPF diagnosis with non-contrast

volumetric HRCT scans and a slice thickness of less than 3 mm. For patients with

multiple physiological measurements (i.e., FVC, FEV1, and DLCO), we use the

average of measurements taken within a 90-day window of the scan date. This

procedure ensures that the physiological measurements are as temporally aligned as

possible with the scan and reduces the effect of variability in the measurements. If

no physiological measurements are available within this window, they are treated as

missing. Table 2.2 details the inclusion criteria for the OSIC data used in this thesis.

Figure 2.7 shows the distributions of age, gender, smoking status, FVC, and survival

status in the OSIC data.

1https://www.osicild.org
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Figure 2.7: Distributions of age, gender, smoking status, FVC, and survival status in the
OSIC data.



Chapter 3

Technical Background

In this chapter, we provide a technical overview of machine learning and some

relevant methods and models used in the field, focusing on missing data imputation,

survival analysis, and multimodal learning.

Machine learning is a subfield of AI that pertains to developing algorithms to

learn from data without explicit instructions. The goal is to make predictions or

decisions based on the patterns learned from the data. Machine learning has made

outstanding progress in various domains, such as computer vision [107, 108, 109,

110], natural language processing [111, 112, 113], and healthcare [114, 115]. We

provide an overview of machine learning methods and models relevant to this thesis

and refer the reader to [14, 116, 117, 118, 119] for a comprehensive introduction to

machine learning.

3.1 Notation

We use bold lowercase letters such as x for vectors. For matrices, we use bold upper

case letters such as X. Scalars are non-bold lowercase, e.g., x. We denote the i-th

element of a vector x as xi. The i, j-th element of a 2D matrix X is denoted as xi j.

p(X = x) is a probability distribution of the random variable X taking the value

x. p(X = x|Y = y) is the conditional probability of X taking the value x given that

Y takes the value y. For presentation clarity, we omit the random variables in the
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notation when it is clear from the context and use p(x) and p(x|y) instead. pθ (·) is a

probability distribution parameterized by θ .

3.2 Missing Data Imputation

Missing data is a common problem in real-world datasets. It can occur for various

reasons, such as data entry errors, equipment failure, patients not showing up for

appointments, or patients not being able to do some tests due to their condition.

Missing data can lead to biased conclusions and reduce the statistical power of the

models. Therefore, it is essential to handle missing data appropriately.

Missing data imputation is estimating the missing values in the dataset. There

are several methods for missing data imputation; see, for example, [116, 120, 121].

However, incautious handling can bias the model adversely. We discuss missing data

mechanisms and then present some popular imputation methods.

3.2.1 Missing Data Mechanisms

Understanding the missing data mechanism is crucial for selecting the appropriate

imputation method. There are three main missing data mechanisms [122, 123, 124];

we briefly describe them below.

3.2.1.1 Missing Completely at Random (MCAR)

In the Missing Completely at Random (MCAR) mechanism, the probability of a

data point being missing is independent of both the observed and unobserved data.

The missing data process is entirely random. For example, when a patient misses an

appointment due to a random event like a traffic jam, the data is missing completely

at random. In the MCAR mechanism, the missing values do not introduce bias into

the model.
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3.2.1.2 Missing at Random (MAR)

The probability of a data point being missed depends on the observed data but not

the missing data themselves. For example, a DLCO test might be more likely to be

missing for patients with lower observed FVC values or older patients due to the

difficulty of performing the test. In the Missing at Random (MAR) mechanism, the

missing data process can introduce bias into the model, but it can be handled by

conditioning on the observed data.

3.2.1.3 Missing Not at Random (MNAR)

The probability of data being missed depends on the missing data themselves. The

missing values are directly related to the reason they are missing. For example,

patients with severe lung function impairment might be more likely to miss lung

function tests. In the Missing Not at Random (MNAR) mechanism, the missing data

process introduces bias into the model, and it is challenging to handle because the

missing data process cannot be modelled by conditioning on the observed data alone.

In this thesis, we assume that the missing data mechanism is MAR, as we

condition on the observed data when imputing missing values. This assumption

aligns with the proposed method for imputing missing data in the OSIC dataset, as

described in Chapter 4.

3.2.2 Imputation Methods

3.2.2.1 Zero Imputation

Zero imputation is the simplest method for handling missing data. It replaces the

missing values with zeros. In neural networks, zero imputation sounds reasonable

as it prevents the weights associated with the missing nodes from being updated.

However, several studies have reported that zero imputation harms the model perfor-

mance [125, 126, 127]. In addition, zero imputation can introduce bias in the model.

For example, it might correlate a missing lung function value with a poor prognosis



3.3. Survival Analysis 57

due to the inability of patients in late disease stages to perform lung function tests,

which is not always true [128]. Zero imputation could be appropriate when the

missing data are MCAR. However, it is not recommended for MAR or MNAR

missing data mechanisms.

3.2.2.2 Mean Imputation

Mean imputation replaces the missing values in a feature with the mean (the mode in

the case of categorical features) of the observed values in that feature [120]. Mean

imputation is simple and easy to implement. However, it assumes all data attributes

are independent, which is an invalid assumption in the case of IPF clinical records.

Mean imputation is suitable for MCAR missing data but can introduce bias in the

model when the missing data are MAR or MNAR.

3.2.2.3 Multiple Imputation

Considering dependency between attributes, Multiple Imputation by Chained Equa-

tions (MICE) iteratively performs supervised regression to model missing data

conditioned on observed data [129]. MICE starts by using a simple imputation

method like mean imputation to fill in the missing values. Then, missing values in

each feature are regressed given the other features. The process is repeated multiple

times to generate multiple imputed datasets. The final imputed dataset is obtained by

averaging the multiple imputed datasets. MICE is a popular method for imputing

missing data in clinical datasets [121]. It is suitable for MAR missing data but may

not be appropriate for MNAR missing data.

3.3 Survival Analysis

Survival analysis is a valuable tool for estimating the time until specific events, such

as death or cancer recurrence, based on baseline observations. This is particularly

useful in healthcare to prognostically predict clinically important events based on

patient data. However, existing approaches often have limitations; some focus only
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on ranking patients by survivability, neglecting to estimate the actual event time,

while others treat the problem as a classification task, ignoring the inherent time-

ordered structure of the events. Furthermore, effectively utilising censored samples,

training data points where the exact event time is unknown, is essential for improving

the model’s predictive accuracy.

This thesis uses survival analysis (or time-to-event prediction) as a proxy for

disease prognosis in IPF patients. Given a dataset of patients with observed event

times and covariates, the goal is to predict the time until an event of interest occurs

for a new patient. The following subsections provide an overview of survival analysis

and some popular models used in the field.

3.3.1 Survival Function

The time to event of interest is represented by the random variable T . The survival

distribution is typically characterised by three functions: the Probability Density

Function (PDF), the survival function, and the hazard function. The PDF f (t) is

defined as

f (t) =
dF(t)

dt
(3.1)

where F(t) is the cumulative distribution function of the event time F(t) = p(T ≤ t).

The survival and hazard functions are equivalent because if one is known, the

other can be derived [130]. The survival function S(t) is defined as

S(t) = p(T > t) = 1−F(t) (3.2)

It represents the probability that the event of interest has not occurred by time t. The

hazard function h(t) is defined as

h(t) = lim
∆t→0

p(t ≤ T < t +∆t|T ≥ t)
∆t

= lim
∆t→0

F(t +∆t)−F(t)
∆t ·S(t) =

f (t)
S(t)

(3.3)
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where p(t ≤ T < t +∆t|T ≥ t) is the conditional probability that the event occurs in

the interval [t, t +∆t) given that the event has not occurred before time t. The hazard

function h(t) represents the instantaneous risk of the event occurring at time t given

that the event has not occurred before time t. The event in our case is mortality;

however, it can be any event of interest, such as cancer recurrence, exacerbation, or

machine failure [131, 132, 133, 134].

f (t) can be expressed as

f (t) =
dF(t)

dt
=

d
dt
(1−S(t)) =−dS(t)

dt
(3.4)

then, the hazard function can be expressed as

h(t) =
f (t)
S(t)

=− d
dt

S(t) · 1
S(t)

=− d
dt

logS(t)1 (3.5)

Thus, the survival function is related to the hazard function as

S(t) = exp
(
−
∫ t

0
h(u)du

)
= exp(−H(t)) (3.6)

where H(t) =
∫ t

0 h(u)du is the cumulative hazard function. Additionally, the PDF

f (t) can be expressed as

f (t) = h(t) ·S(t) = h(t) · exp(−H(t)) (3.7)

3.3.2 Censoring

In survival analysis, the task is to predict the time until an event of interest (mortality

in our case) occurs from the time of covariates observation. However, in practice,

collecting this data for training is only sometimes possible. For example, a patient

may drop out of the study, stop visiting the hospital, or the study may end before

1Unless otherwise stated, log denotes the natural logarithm log(.) = ln(.)
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the event occurs. In such cases, the event time is unknown and is partially observed

in the sense that we know the event has not occurred up to a specific time. This

process is called censoring, and samples with this property are called censored

samples [131, 135, 136]. Censoring is a common issue in survival analysis, and it is

essential to handle it appropriately to avoid biasing the model.

There are three types of censoring, as shown in Figure 3.1:

• Left censoring: The event of interest occurred before the study started, and the

exact event time is unknown. For example, if we study the time until a patient

dies, and the patient dies before the study starts, the event time is left censored.

Left censoring is usually unobserved in practice because we usually include

only patients alive at the start of the study.

• Interval censoring: The event of interest occurred between two time points,

and the exact event time is unknown. For example, if we study the time until a

patient dies, and the patient dies between two visits to the hospital, and we do

not know the exact time of death, the event time is interval-censored.

• Right censoring: The event of interest has not occurred by a specific time,

and the exact event time is unknown. For example, if we study the time until

a patient dies and the patient stops visiting the hospital before death occurs,

the event time is right-censored, and the censoring time is the last visit to the

hospital. Right censoring is the most common type of censoring in survival

analysis.

3.3.3 Data Representation in Survival Analysis

Let D be the entire dataset, and let N be the index set of all observations in the

dataset, such that each sample is indexed by n ∈ N . We further define Nuncens as

the subset of indices corresponding to uncensored samples (δn = 1), and Ncens as

the subset of indices corresponding to censored samples (δn = 0). In this thesis,
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Figure 3.1: Examples of left-censored, interval-censored, right-censored, and uncensored
samples.

we focus on right-censored data, as the other forms of censoring are not observed

in the OSIC data or most of the other clinical datasets. Our training data D is a

collection of uncensored and right-censored observations. For each sample n ∈N ,

the observation for an uncensored sample is represented as (δn = 1,xn, tn), where

δn = 1 indicates that the death time tn is known. For a right-censored sample

n ∈Ncens, the observation is represented as (δn = 0,xn,cn), where δn = 0 indicates

that the death time tn is unknown, and only the censoring time cn < tn is known. The

covariates xn are the patient features (HRCT scans, clinical data, . . . ), and the time

tn is the time until death. The censoring time cn is the last visit to the hospital.

3.3.4 Popular Survival Analysis Models

Several models for survival analysis exist, each with strengths and weaknesses.

3.3.4.1 Kaplan-Meier Estimator

The Kaplan-Meier (KM) estimator is the most widely used non-parametric survival

analysis model [137]. It estimates the survival function by computing the proportions

of individuals surviving over time

ŜKM(t) = ∏
ti≤t

(
1− di

ni

)
(3.8)
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where di is the number of deaths at time ti and ni is the number of individuals at

risk at time ti. The KM estimator is a step function that decreases at each event

time. It is a non-parametric model that does not assume any specific form for the

survival function. The KM estimator is useful for visualising the survival function

and comparing survival functions between different groups. However, it is not

suitable for predicting the survival time for new patients as it cannot account for the

effects of covariates.

3.3.4.2 Cox Proportional Hazards Model

The most widely used model to learn from censored survival data is the CoxPH

model [26]. CoxPH models the conditional hazard function h(t|x) given the covari-

ates x as

h(t|x) = h0(t)exp
(
β

T x
)

(3.9)

where h0(t) is the baseline hazard function, and β are the model parameters. Given

two patients with covariates xi and x j, the hazard ratio is

h(t|xi)

h(t|x j)
=

h0(t)exp(β T xi)

h0(t)exp(β T x j)
= exp(β T (xi−x j)) (3.10)

The proportional hazards assumption assumes that the hazard ratio between two

patients is constant over time [138].

The model is semi-parametric, as it does not assume a specific form for the

baseline hazard function h0(t) (which does not depend on the covariates) but assumes

a linear relationship between the covariates and the log hazard.

The model parameters β are learned by maximising the partial log-likelihood

function [26]. To do this, for each patient n, we define the risk set Rn as all those

patients that have not died before patient n and define the relative death risk as

p(Dn = tn|Rn) =
h(tn|xn)

∑m∈Rn h(tm|xm)
=

exp(β T xn)

∑m∈Rn exp(β T xm)
(3.11)
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The partial log-likelihood function is then defined as the sum of logP(Dn = tn|Rn)

for all patients who died n ∈Nuncens

L(β ) = ∑
n∈Nuncens

log p(Dn = tn|Rn) (3.12)

= ∑
n∈Nuncens

(
β

T xn− log ∑
m∈Rn

exp(β T xm)

)
(3.13)

The CoxPH model has been widely used in survival analysis due to its simplicity

and interpretability. However, it has several limitations. The main limitation is

its assumption of a linear relationship between the covariates and the log hazard,

which may not hold in practice. In addition, the proportional hazards assumption is

a strong assumption that may not hold in some cases, especially in a disease like IPF

where the risk of death may change over time and the progression of the disease is

heterogeneous and highly unpredictable [139, 30].

Further, the CoxPH model estimates the relative risk of death between patients

rather than predicting the actual survival time, which is more useful and easier to

interpret. This is because the CoxPH model is a semi-parametric model that does not

estimate the baseline hazard function h0(t), which is required to predict the survival

time. Non-parametric methods like the Breslow estimator [140] are often used to

estimate the baseline hazard function and then compute the hazard function and

survival function. However, the performance of this method is unsatisfactory in

practice [131, 141].

3.3.4.3 Random Survival Forests

Survival Decision Trees (SDTs) are developed by modifying standard decision

trees with specialised splitting rules to accommodate right-censored survival data.

Numerous splitting rules have been suggested [142]. They can be generally classified

into two categories: splitting rules that maximise heterogeneity between nodes [143,

144, 145] and those that minimise homogeneity within nodes [146, 147, 148]. To
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address the instability of individual SDTs, Random Survival Forests (RSFs) [149]

were introduced, which ensemble multiple random SDTs based on Breiman’s random

forest algorithm [150].

3.3.4.4 Gradient Boosting Machines

Boosting is a widely used ensemble learning technique that combines the predictions

of multiple weak models (often called base learners) to create a more robust model.

Gradient Boosting Machines (GBMs) [151] are among the most popular boosting

methods and can be adapted for survival analysis by incorporating base survival

models. For instance, CoxBoost was developed to estimate the coefficients of a Cox

model using GBMs [152].

3.3.4.5 Support Vector Machines

Support Vector Machines (SVMs) [153] are commonly used in classification tasks,

aiming to identify the optimal hyperplane separating different classes. SVMs can

also be adapted for regression tasks [154], seeking a hyperplane that best fits the

data while minimising error, a variant known as Support Vector Regression (SVR).

SVR can predict survival time, rank scores, or both, though it does not model the

survival distribution. Shivaswamy et al. [155] were the first to modify SVR for

survival analysis, proposing a support vector approach for regression with censored

targets, specifically to predict survival times within a target interval. Later, [156]

reformulated survival analysis as a ranking problem with penalties for discordant

pairs, and [157] introduced an SVR-based hybrid model that approaches survival

prediction as both a regression and ranking problem.

3.3.4.6 Bayesian Survival Analysis

Bayesian methods offer a framework for inference and prediction by connecting

posterior and prior probabilities. In survival analysis, Bayesian approaches are

frequently used to predict the survival distribution. For example, Fernández et
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al. [158] proposed a semi-parametric Bayesian model for survival analysis, designed

to avoid strong constraints. Their approach modelled the hazard function as a product

of a parametric baseline hazard and a non-parametric component, which employed a

Gaussian process to capture the combined effects of time and covariates.

3.3.4.7 DeepSurv

One limitation of the CoxPH model is that it assumes a linear relationship between

the covariates and the log-hazard. DeepSurv relaxes this assumption by using a

neural network to model the hazard function [159]

h(t|x) = h0(t)exp( fθ (x)) (3.14)

where fθ (x) is a neural network parameterized by θ . The model parameters θ

are learned by minimising the negative log-partial likelihood function, similar to

Equation 3.13. As a deep learning model, DeepSurv automatically learns the relevant

features from the data and does not require any manual feature engineering [159].

3.3.4.8 Classical Censoring Model

In contrast to approaches that model the hazard function, other methods model the

death distribution directly. The model is trained to maximise the likelihood of the

observed death and censoring times. However, as we are interested in predicting the

death times, one needs to assume the data generation process to model the censoring

times [131].

One common approach in the literature is to assume that censoring times follow

a distribution p(C = c|x) and death times follow a distribution pθ (D = t|x). These

times are independently sampled and then compared: if the censoring time is less

than the death time, the observation is the censoring time; otherwise, it is the death

time [25, 160]. This approach is called the classical censoring model and leads to
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the following model

pθ (δ ,c, t|x) = pθ (t|x)p(c|x)p(δ |c, t) (3.15)

where p(δ = 1|c, t) = 1 if c ≥ t and p(δ = 0|c, t) = 1 if c < t. For a uniform

censoring distribution p(C = c|x) = 1
Tmax

a right-censored observation then has the

following likelihood2

pθ (δ = 0,C = c|x) = 1
Tmax

Tmax

∑
t=c+1

pθ (D = t|x) (3.16)

and the likelihood of an uncensored observation is given by

p(δ = 1,D = t|x) = Tmax− t +1
Tmax

pθ (D = t|x) (3.17)

Omitting additive constants, the objective then is to maximise

L(θ)≡ ∑
n∈Nuncens

log pθ (D = tn|xn)+ ∑
i∈Ncens

log
Tmax

∑
t=ci+1

pθ (D = t|xi) (3.18)

The model parameters θ are learned by maximising the likelihood function in

Equation 3.18.

3.3.4.9 DeepHit

Lee et al. approach survival analysis as a classification task with Tmax categories [25].

Specifically, a neural network predicts a vector of Tmax values, which a softmax

function then transforms into a death distribution, pθ (D = t|x). DeepHit combines

a classical censoring term (Equation 3.18) and a ranking objective to leverage the

2Any other censoring distribution can be used here, and it can also be learned from the data.
However, for simplicity, we use a uniform distribution.
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censored data. Specifically, the objective function is composed of two terms

LDeepHit = Lc
lik. +Lrank. (3.19)

where Lc
lik. represents the classical likelihood (Equation 3.18) with a softmax function

to model the death time distribution, and Lrank. is a ranking term that penalises the

model for inaccuracies in predicting the ranking of patients’ survival times, mirroring

the Cox objective

Lrank. = η(Fθ (ti|xi),Fθ (ti|x j)) ∀i, j ∈N s.t. ti < t j (3.20)

where η(x,y) = exp
(
−(x−y)

s

)
, Fθ (t|x) represents the cumulative distribution func-

tion of the predicted distribution pθ (t|x). The model parameters θ are learned by

maximising the likelihood function LDeepHit.

3.3.5 Evaluation Metrics

3.3.5.1 Mean Absolute Error

The Mean Absolute Error (MAE) assesses the difference between death times pre-

dicted by the model and the true death times and is computed for uncensored samples

MAE =
1

|Nuncens| ∑
i∈Nuncens

|t̂i− ti| (3.21)

where t̂i is the predicted death time for patient i.

3.3.5.2 Relative Absolute Error

Similarly, the Relative Absolute Error (RAE), which quantifies the relative deviation

of the predicted time from the true death time

RAE =
1

|Nuncens| ∑
i∈Nuncens

|t̂i− ti|
ti

(3.22)
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3.3.5.3 Concordance Index

The Concordance Index (C-Index) estimates the probability that the predicted risks

or survival times of a randomly chosen pair of patients will have the same ordering

as their actual survival times [161]. C-Index is a rank-correlation metric that assesses

the model’s ability to accurately rank individuals according to their survival times. It

measures how effectively the model differentiates between high-risk and low-risk

individuals. For a pair of patients i and j, whose true survival times are ti and t j, and

the predicted survival times are t̂i and t̂ j, the concordance probability is

C = p(t̂ j > t̂i|t j > ti) (3.23)

The C-Index is then defined as the fraction of concordant pairs to all pairs

C-Index =
∑i ̸= j I(t̂ j > t̂i)I(t j > ti)δi

∑i ̸= j I(t j > ti)δi
(3.24)

where I(·) is the indicator function. The formula can be written in simpler terms,

such as

C-Index =
#concordant pairs

#concordant pairs+#discordant pairs
(3.25)

A pair is considered concordant if the ranking predicted by the model matches the

true ranking and discordant if it does not. A perfect model will have a C-Index=1.0.

It is worth noting that the C-Index is a ranking metric, which only assesses the order

in which the predicted values should be ranked compared to the true ranking. It does

not evaluate the accuracy of the predicted values themselves. Therefore, the CoxPH

model, which only estimates the relative risk of death, can achieve a high C-Index

even if the predicted values of the death times are inaccurate.

Despite being widely used in survival analysis, the C-Index has notable limita-

tions. First, it solely evaluates the ranking of predicted survival times and does not

account for the magnitude of errors in absolute time-to-event predictions. This means
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that a model with highly inaccurate survival time estimates can still achieve a high

C-Index as long as the ranking is preserved. Second, C-Index does not fully account

for censored samples, which can introduce bias, particularly when the censoring rate

is high [162]. This sensitivity to censored data limits its effectiveness in real-world

clinical applications, where censored data is common.

3.4 Whole HRCT Scans for Prognostic Modelling in

IPF

Due to the high memory requirements for processing full 3D images, several studies

used features extracted from the HRCT scans by expert radiologists [83, 163] or

quantitative analysis tools [164, 165]. These extracted features are human-defined

(e.g. honeycombing, reticulation, GGO) and provide a structured representation of

imaging findings while reducing the computational demands of model training.

However, using extracted features from the HRCT scans has several limitations.

First, it relies on features manually defined by radiologists, which introduces biases

and inter-observer variabilities. Second, predefined features may not fully capture

the complexity of lung abnormalities in IPF, potentially missing critical prognostic

patterns. Third, this approach is constrained by current medical knowledge, limiting

the discovery of novel imaging biomarkers. Finally, manual feature extraction is

time-consuming and does not scale efficiently for large datasets.

In this thesis, we adopt an end-to-end learning approach using full HRCT scans

as model inputs. This allows the model to learn directly from the imaging data,

capturing subtle spatial and textural patterns that may be missed in manual feature

selection. By eliminating the need for handcrafted features, we reduce inter-observer

variability and provide a more objective, reproducible method for prognosis predic-

tion. Additionally, interpretability techniques can reveal new imaging biomarkers

that contribute to disease progression, as discussed in Subsection 7.2.5 [166], by
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visualising the regions of the HRCT scans that the model uses for prediction. This ap-

proach also removes the need for time-consuming manual feature extraction, making

it feasible for large-scale datasets.

Despite these advantages, processing full 3D HRCT scans presents computa-

tional challenges, particularly regarding GPU memory limitations and batch size

constraints. To address this, we leverage memory banks to optimise training effi-

ciency, as detailed in Chapter 5.

3.5 Multimodal Learning

In the context of IPF prognosis, combining HRCT scans and clinical data is par-

ticularly advantageous because these modalities offer complementary information.

HRCT scans provide detailed insights into the structural abnormalities and progres-

sion of lung fibrosis, capturing visual patterns indicative of disease severity. On the

other hand, clinical data (e.g., pulmonary function tests, demographic information)

offer a comprehensive view of the patient’s systemic health and underlying risk

factors. By integrating both sources, the model can leverage structural and systemic

indicators, improving predictive accuracy and robustness compared to using either

modality alone.

Multimodal machine learning aims to build models to learn and make predic-

tions from multiple data modalities (e.g., images, text, audio, . . . ) [18]. Learning

from multiple modalities is vital in many applications, such as healthcare, where

patient data is collected in several forms, such as medical images, clinical data, and

genetic data. There are several ways to combine multiple modalities, such as early

and late fusion [18].

3.5.1 Early Fusion

Early fusion is one of the most straightforward approaches to multimodal learning.

In early fusion, inputs are combined (e.g., by concatenation) before being fed into
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the model. The model then learns the relationship between the combined inputs and

the target output. Early fusion is simple and easy to implement but may not capture

the complex relationships between the modalities, potentially leading to suboptimal

performance.

3.5.2 Late Fusion

In contrast, late fusion keeps the modalities separate and learns separate representa-

tions for each modality. The model then combines the learned modality representa-

tions to make the final prediction. Late fusion is more flexible than early fusion, as it

allows the model to learn separate representations for each modality.

One should make sensible choices for model branches that learn the represen-

tations of each modality. This thesis uses late fusion to combine the HRCT scans

and clinical data. We use a Convolutional Neural Network (CNN) to learn the

image representations and a feedforward neural network to learn the clinical data

representations. We then combine the learned representations using a Multi-Layer

Perceptron (MLP) to predict mortality in IPF patients.



Chapter 4

Latent Variable Models for Missing

Data Imputation

4.1 Introduction

Patient clinical data is vital for the diagnosis and prognosis of IPF. These include

patient demographics, physiological measurements, and treatment history. One of

the main challenges in using clinical data for prognostic modelling is the presence of

missing data. Most clinical records in the OSIC dataset contain at least one missing

value. Consequently, training models on only complete samples would drastically

reduce the amount of training data and negatively impact the subsequent model

performance. In addition, this would also introduce bias in the model and the drawn

conclusions.

This chapter proposes a novel approach to imputing missing clinical data in

IPF patients using LVMs. We first describe the clinical data used in the thesis and

the missing data patterns. We then present the LVM and the proposed imputation

method. Finally, we evaluate the performance of the proposed method on the OSIC

dataset. We use the method explained in this chapter to impute missing data in the

OSIC dataset used in the experiments in Chapter 5 and Chapter 6.
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4.2 Clinical Data Used in the Thesis
As explained in Section 2.5.1, clinical data is integral to the diagnosis and prognosis

of IPF. Following the clinical guidelines [6, 167], we use the following clinical

variables in the thesis

• Demographics:

– Patient’s age at the time of the HRCT scan.

– Patient sex.

– Patient smoking status (current, former, or never-smoker).

• Physiological Measurements:

– Percent predicted FVC within 3 months of the HRCT scan.

– DLCO within three months of the HRCT scan (not corrected for

haemoglobin).

• Treatment History:

– Treatment with antifibrotic drugs (pirfenidone or nintedanib) before or at

the time of the HRCT scan.

4.3 Missing Data Patterns
The clinical data used in this thesis is often incomplete due to various reasons such

as missing measurements, data entry errors, or patient inability to perform specific

tests. For example, IPF patients in the late stages of the disease may not be able

to perform the DLCO test due to their poor health condition. Table 4.1 shows the

percentage of missing values for each clinical variable in the OSIC dataset. While

the age and sex of the patients are complete, the DLCO and antifibrotic treatment

variables have a high percentage of missing values. The FVC predicted variable also

has many missing values.
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Clinical Variable Percentage of Missing Values

Age 0.0%
Sex 0.0%
Smoking History 10.8%
FVC Predicted 32.4%
DLCO 74.2%
Antifibrotic 85.9%

Table 4.1: Percentage of missing values for each clinical variable in the OSIC dataset.

Standard imputation methods, such as mean, median, or zero imputation (see

Section 3.2), are not suitable for imputing missing data in clinical IPF records.

These methods do not consider the relationships between the variables and assume

that they are independent. However, there is a dependency between the clinical

variables. For example, the percent predicted FVC and DLCO measurements are

correlated [168, 169, 170]. In addition, the computation of the predicted FVC values

depends on the patient’s age and gender, so there is a relationship between these

variables [59, 171]. It is also sensible to assume that the antifibrotic treatment is

related to the FVC and DLCO measurements, as clinicians prescribe these treatments

based on the patient’s lung function [168, 169, 171].

In this chapter, we assume an MAR mechanism, where the likelihood of miss-

ing values depends on the observed data but not directly on the missing values

themselves. This assumption is reasonable in our context, as the clinical variables

used for imputation (e.g., FVC, DLCO, age, and sex) are correlated and can provide

informative cues for estimating the missing values. While this approach may not

fully capture scenarios where missing data depends on unobserved factors (i.e.,

Missing Not at Random), using latent variables helps mitigate some of these effects

by capturing underlying patterns in the observed data.

To this end, we propose a novel approach to impute missing clinical data using

LVMs. We use LVMs to model the relationships between the clinical variables and

impute the missing values based on the learned relationships. The following section
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describes the LVM used in this thesis and the proposed imputation method.

4.4 Latent Variable Model

We introduce a LVM to model the relationships between the clinical variables and

impute the missing values. To impute missing values, we assume the clinical features

x are modelled by independent categorical distributions when conditioned on a

hidden state h, see Figure 4.1. For patient n ∈ {1, . . . ,N}, the probability of clinical

record xn under the model is therefore given by

p(xn) =
H

∑
h=1

p(h)
K

∏
k=1

p(xn
k |h) (4.1)

where p(h) denotes a categorical distribution with state h ∈ {1, . . . ,H}; K is the

number of clinical features, and p(xn
k |h) is a categorical distribution. Writing each

record in terms of observed and missing elements, x = (xo,xm), the likelihood of

record xn is given by

p(xn) = ∑
h

p(xn
o|h)p(xn

m|h)p(h) (4.2)

where

p(xn
o|h) = ∏

i∈xn
o

p(xi|h) (4.3)

p(xn
m|h) = ∏

i∈xn
m

p(xi|h) (4.4)

To model continuous features, we convert them into discrete variables by equal-

frequency binning and model them as categorical variables. Equal-frequency binning

ensures that all bins have the same number of samples, which helps to capture the

underlying distribution of the continuous variables. We train the model using the EM

algorithm [172] to learn the hidden distribution p(h) and the categorical distributions

p(xi|h). The model can then impute the missing values in the clinical records.
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h

x1 x2 x3 x4 x5 x6

p(h)p(x|h)

age sex smoking treatment FVC DLCO

(a) Generative model.

x1 x2 x3 x4 x5

h x6

p(xm|xo) =
∑

h p(xm|h)p(h|xo)

(b) Imputation of missing values.

Figure 4.1: Latent variable model for imputing missing clinical data in IPF records.

4.4.1 Training the Latent Variable Model

The model has two sets of parameters, the hidden distribution p(h) and the categorical

distributions p(xi|h). The EM algorithm [172] is a convenient choice to learn these

distributions. Note that the EM algorithm can make use of all training data, even

records that contain missing data.

The EM algorithm maximises the energy term (see [116]), given a posterior

q(h|x)

∑
n,h
Eq(h|xn) log p(xn,h) = ∑

n,h
∑

i∈xn
Eq(h|xn) log p(xi|h)+∑

n,h
Eq(h|xn) log p(h) (4.5)

where q(h|xn) is given by the E-step

q(h|xn) ∝ p(h)p(xn|h) ∝ p(h) ∏
i∈xn

o

p(xi|h) (4.6)

The E-step computes the posterior distribution of the hidden states h given the

observed data xn. The M-step maximises the energy term in Equation 4.5 with

respect to the model parameters by updating the hidden distribution p(h) and the

categorical distributions p(xi|h), as follows

p(h) ∝ ∑
n

q(h|xn) (4.7)

p(xi = k|h) ∝ ∑
n
I(xn

i = k)q(h|xn) (4.8)
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The E-step and M-step are iterated until convergence. We can then use the learned

model to compute the distribution of the missing values given the observed data

p(xn
m|xn

o) = ∑
h

p(xn
m|h)p(h|xn

o) ∝ ∑
h

p(xn
m|h)p(h) ∏

i∈xn
o

p(xn
i |h) (4.9)

Calculating missing data statistics or drawing samples as required is then straightfor-

ward. During the training of subsequent models that use the imputed clinical data,

we sample the missing values from the distribution in Equation 4.9 to account for

the uncertainty in the imputed values. During inference, we use the expectation of

p(xn
m|xn

o) to impute the missing values.

4.5 Experiments

4.5.1 Data

We evaluate the performance of the proposed method on the OSIC dataset. We

include all IPF records in the dataset and use the clinical variables described in

Section 4.2. This results in a dataset of 1853 records from 1484 patients. We divide

the available records into training and test sets. We selected records with at most

one missing value and split them on a patient level into training (80%) and test

(20%) sets. The remaining records with more than one missing value are added to

the training set. To evaluate the model performance, we drop one of the clinical

variables from each record in the test set and impute the missing values using the

different imputation methods described in Section 3.2. We assume that age and sex

are always observed as they are complete in the dataset and are usually available

in clinical records. Therefore, we only impute the missing values for the smoking

history, FVC predicted, DLCO, and antifibrotic treatment variables.
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4.5.2 Evaluation Metrics

Missing values include features from different types, such as categorical (smoking

history and antifibrotic treatment) and continuous (predicted FVC and DLCO). We

use suitable evaluation metrics for each feature type and describe them below.

4.5.2.1 Accuracy

Binary accuracy is the simplest and most common evaluation metric for categorical

features. It is defined as the proportion of correctly imputed values over the total

number of imputed values. Given the imputed values x̂i and the true values xi, the

binary accuracy is given by

Accuracy =
1
N

N

∑
i=1

I(x̂i = xi) (4.10)

Where N is the number of imputed values. Binary accuracy ranges from 0 to 1,

where a higher accuracy indicates better imputation performance. In imbalanced

datasets, accuracy can be misleading as it does not account for the class distribution.

Therefore, we also report the F1-score.

4.5.2.2 F1-score

The F1-score is the harmonic mean of precision and recall. It is a suitable metric

for imbalanced datasets because it considers both false positives and false negatives

and consequently provides a balanced evaluation. Similar to accuracy, the F1-score

ranges from 0 to 1, where a higher score indicates better imputation performance.

The F1-score is defined as

F1-score =
2×TP

2×TP+FP+FN
(4.11)

TP, FP, and FN are the true positives, false positives, and false negatives, respectively.

We calculate the F1-score for each class and report the average F1-score across all
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classes in a given categorical feature.

4.5.2.3 Mean Absolute Error

We use the MAE as an evaluation metric for continuous features. The MAE measures

the average absolute difference between the imputed values and the true values

MAE =
1
N

N

∑
i=1
|x̂i− xi| (4.12)

The MAE has values from 0 to ∞, where a lower MAE indicates better imputation

performance.

4.5.2.4 Normalised Root Mean Squared Error

The Normalized Root Mean Squared Error (NRMSE) is another evaluation metric

for continuous features. The NRMSE is the square root of the mean squared error

divided by the range of the true values

NRMSE =

√
1
N ∑

N
i=1(x̂i− xi)2

max(x)−min(x)
(4.13)

The NRMSE has values from 0 to ∞, where a lower NRMSE indicates better imputa-

tion performance. Compared to the MAE, the NRMSE penalises significant errors

more heavily.

4.5.3 Implementation Details

To evaluate the imputation methods, we simulate missing values by dropping a feature

from each validation sample and imputing it using mean imputation (Section 3.2.2.2),

MICE (Section 3.2.2.3), and our proposed latent variable model (Section 4.4).

For the LVM, the prediction is the expectation of the posterior distribution of

the missing values given the observed data p(xm|xo) (see Equation 4.9). We set

the number of hidden states H = 10 and train the model until the improvement in

the training log-likelihood is less than 10−8. Using equal-frequency binning, we
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Table 4.2: Imputation results for categorical features. The table shows the imputation
performance where we drop one of the categorical features from each record in
the validation set and impute it using the different imputation methods. We report
the results as the mean and standard deviation over five folds. The best results are
highlighted in bold. The higher, the better.

Smoking Antifibrotic
Method

F1-score Accuracy F1-score Accuracy

MICE 0.3776 ± 0.0474 0.5446 ± 0.0294 0.5581 ± 0.0245 0.5780 ± 0.0191
Mean 0.2587 ± 0.0084 0.6346 ± 0.0338 0.3750 ± 0.0331 0.6034 ± 0.0815
LVM (ours) 0.4026 ± 0.0174 0.6820 ± 0.0101 0.6005 ± 0.0427 0.6515 ± 0.0633

Table 4.3: Imputation results for continuous features. The table shows the imputation
performance where we drop one of the continuous features from each record in
the validation set and impute it using the different imputation methods. We report
the results as the mean and standard deviation over five folds. The best results are
highlighted in bold. The lower, the better.

FVC DLCO
Method

MAE NRMSE MAE NRMSE

MICE 20.5322 ± 1.1288 0.2653 ± 0.0282 1.4751 ± 0.1382 0.2622 ± 0.0279
Mean 15.4792 ± 0.5193 0.1930 ± 0.0186 1.1434 ± 0.0588 0.2026 ± 0.0181
LVM (ours) 14.5654 ± 0.6270 0.1819 ± 0.0169 1.0379 ± 0.0959 0.1906 ± 0.0184

discretise the age values into 6 bins, the FVC into 8 bins, and the DLCO into 6

bins. These hyperparameters were selected based on the model’s performance on

one fold of the validation set. We implemented the LVM in Python using NumPy

library [173].

For the MICE method, we use the implementation in the statsmodels li-

brary [174]. We set the number of imputations to 10 and the number of iterations to

10. We use the default linear regression model for imputation.

4.5.4 Results

In Table 4.2 and Table 4.3, we report the imputation performance for the categorical

and continuous features, respectively. These results represent the imputation perfor-

mance where we drop one of the features from each record in the validation set and

impute it using the different imputation methods. We report the results as the mean
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and standard deviation over five folds to account for the data variability.

The results show that the proposed LVM method outperforms the mean and

MICE imputation methods for both categorical and continuous features. For the

categorical features, the LVM method achieves the highest F1-score and accuracy

for both smoking history and antifibrotic treatment. The LVM method achieves

an F1-score of 0.4026 and accuracy of 0.682 for smoking history and an F1-score

of 0.6005 and accuracy of 0.6515 for antifibrotic treatment. The mean imputation

method achieves the lowest F1-score for both features because it assigns the same

value to all missing values, the mode of the feature values in the training set. The

MICE method performs better than the mean imputation method in terms of F1-score

but is outperformed by the LVM method.

For the continuous features, the LVM method achieves the lowest MAE and

NRMSE for both FVC and DLCO. The LVM method achieves an MAE of 14.5654

and NRMSE of 0.1819 for FVC and an MAE of 1.0379 and NRMSE of 0.1906

for DLCO. The mean imputation method achieves the second-best performance for

both FVC and DLCO, while the MICE method achieves the worst performance. The

MICE method uses linear regression to impute the missing values, which may not

capture the complex relationships between the clinical variables.

These results demonstrate the superior performance of the proposed model

compared to the standard imputation methods. The LVM method captures the

relationships between the clinical variables and imputes the missing values based on

the learned relationships.

In addition to the superior performance, the LVM imputation method outputs a

distribution of the missing values given the observed data rather than point estimates,

as in the mean and MICE imputation methods. This probabilistic approach enhances

the robustness to noisy clinical data, as it prevents over-reliance on fixed, potentially

erroneous imputed values. Further, it provides a measure of uncertainty in the

imputed values, which can be used to make more informed predictions. During our
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experiments in Chapter 5 and Chapter 6, we sample the missing values from the

distribution output by the LVM method to account for the uncertainty in the imputed

values. This variability ensures that minor distortions in the data do not lead to

overconfident predictions, a feature not available in mean and MICE imputation.

4.6 Conclusion
In this chapter, we proposed a novel approach to impute missing clinical data in IPF

records using LVMs. We introduced an LVM to model the relationships between the

clinical variables and impute the missing values based on the learned relationships.

The proposed method is beneficial for imputing missing data in clinical IPF records,

where the variables are correlated, and the relationships between the variables are

essential for the diagnosis and prognosis of the disease. Our experiments on the OSIC

dataset demonstrated the superior performance of the proposed method compared

to the standard imputation methods. The LVM is used in the subsequent chapters

to impute missing data in the OSIC dataset and train prognostic models for IPF

using both clinical and imaging data. In Chapter 5 and Chapter 6, we sample the

missing values from the distribution output by the LVM method to account for the

uncertainty in the imputed values and make more informed predictions about the

disease progression and patient survival.



Chapter 5

Improving Cox proportional hazards

Model with Memory Banks

5.1 Introduction

CoxPH model is the most popular model for survival analysis. However, one

limitation of the CoxPH model is that it assumes a linear relationship between

the covariates and the hazard function. This assumption may not hold in practice,

especially when the covariates are high-dimensional. To address this limitation,

previous studies have proposed to use deep learning models to learn the non-linear

relationship between the covariates and the hazard function [159]

hθ (t|x) = h0(t)exp( fθ (x)) (5.1)

In this case, the objective is the partial log-likelihood function of the CoxPH model

(See Subsection 3.3.4.2 for the detailed explanation of the CoxPH model.)

L(θ) =− 1
|Nuncens| ∑

n∈Nuncens

(
fθ (xn)− log ∑

m∈Rn

exp( fθ (xm))

)
(5.2)

where fθ (x) is the output of the deep learning model whose parameters θ . However,

minimising L with respect to the θ using standard stochastic gradient descent based
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on selecting batches of patients [159] is problematic since:

• Equation 5.2 represents a ranking loss that compares between patients that

died in the batch according to their predicted mortality risk. This requires

large batch sizes for robust training; however, for high-resolution inputs (3D

scans), we are limited by GPU memory to small batch sizes.

• With small batch sizes and a high censoring percentage, there will often be

batches containing only censored patients. In this case, the loss cannot be

calculated, and these batches will be ignored.

In this chapter, we propose a novel approach to address these limitations and

allow for stable training of deep learning models for survival analysis with limited

GPU memory. We propose to use memory banks to store the model predictions

for later iterations. This allows us to use small batch sizes in alignment with the

GPU memory constraints while still having a stable training process. We use the

proposed methods to predict the survival of IPF patients using their 3D HRCT scans

and clinical data.

5.2 Memory Banks for Improving Cox Proportional

Hazards Model
To overcome the limitations of the standard training procedure of the CoxPH model,

we propose to use memory banks to store model predictions for later iterations [175,

33]. The memory bank, represented asMB, is a queue of size ⌊K×|N |⌋ with K

representing the fraction of the training dataset stored, |N | representing the size

of the training dataset, and ⌊.⌋ representing the floor function. The function of the

memory bank is to store the model predictions of training samples, along with their

event indicators and death times. In the later iterations, all the samples in the memory

bank are used to calculate the CoxPH loss. This allows us to approximate the CoxPH
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loss on a larger sample size than the current batch size, which is limited by the GPU

memory.

A K value of 1 corresponds to the storage of predictions of the entire training set

in the memory bank, while a K = 0 means that no samples are stored, equivalent to

the standard CoxPH objective. For every training iteration i, we calculate predictions

fθ i(xi) for the minibatch mi and store them inMB, along with the corresponding

event indicators δ i and death times t i (or censoring times ci for censored samples).

mi = {x j,δ j, t j} represents the minibatch at iteration i with j representing the sample

index j ∈ {1,2, . . . , |mi|}. The memory bankMB is updated as1

MB←MB∥{ fθ i(xi),δ i, t i,ci} (5.3)

where ∥ denotes concatenation. If the memory bank is full (i.e., |MB|= ⌊K×|N |⌋),

the oldest samples are removed, and new samples are added. After I iterations,MB

will contain the tuples { fθ i(xi),δ i, t i,ci}I
i=1. At each iteration i, we calculate the risk

setRi
n for each uncensored patient n inMB using the stored event indicators and

times. The CoxPH loss for samples inMB is then calculated using the risk setRi
n

and the available predictions in the memory bank as

L(θ i)≡ 1
N i

uncensMB
∑

n∈N i
uncensMB


 fθ≤i(MBn)− log ∑

m∈Ri
n

exp( fθ≤i(MBm))


 (5.4)

where N i
uncensMB is the set of uncensored samples in MB at iteration i, and

fθ≤i(MBn) and fθ≤i(MBm) are the predictions for patients n and m in MB, re-

spectively, and are functions of the model parameters at iteration i or any previous

iteration < i. The loss is used to update the current parameters of the model θ i. By

updatingMB at each iteration and using it to calculate the loss, we can effectively

1We use the superscript i to denote the batch number and the subscript j to denote the sample
index within the batch.
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(a) Standard training of CoxPH model. The model is trained on a batch of patients,
and the loss is calculated based on the ranking of the patients in the batch.

(b) Proposed CoxMB training. The model predictions are accumulated in a memory
bank, and the loss is calculated based on the stored predictions from the current
and previous iterations. This allows for computing the loss on a larger sample size
than the current batch size.

Figure 5.1: Comparison between the standard CoxPH training and the proposed Cox Pro-
portional Hazards with Memory Banks (CoxMB) training.
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Algorithm 1: Pseudocode of CoxMB training in a PyTorch-like style

1 # delta: indicator function (1 if experienced the event and 0 if censored)
2 # times: event or censoring time
3 # K: fraction of the training dataset to store in the memory bank
4 # initialize memory bank with maximum size K * len(data_loader.dataset)
5 mbank_preds = deque(maxlen=K * len(data_loader.dataset))
6 mbank_delta = deque(maxlen=K * len(data_loader.dataset))
7 mbank_times = deque(maxlen=K * len(data_loader.dataset))
8 for img in loader: # load a minibatch with n samples
9 pred = model(img) # get predictions

10 mbank_preds.append(pred) # store current predictions in the memory bank
11 mbank_delta.append(delta) # store current delta in the memory bank
12 mbank_times.append(times) # store current times in the memory bank
13 # calculate loss using data in the memory bank
14 loss = CoxLoss(mbank_preds, mbank_delta, mbank_times)
15 loss.backward() # calculate gradients
16 update(model.params) # update model parameters

approximate the Cox loss on a sample size larger than allowed by the standard Cox

objective, which is limited by the batch size. This allows us to use small batch

sizes in alignment with the GPU memory constraints while still having a stable

training process. The proposed method is illustrated in Figure 5.1. We refer to this

method as CoxMB and compare its performance to the standard Cox objective in

our experiments.

In addition, we include a PyTorch-like pseudocode of the CoxMB training in

Algorithm 1. The pseudocode shows the training loop of the CoxMB model, where

the model predictions are stored in the memory bank, and the loss is calculated using

the stored predictions from the current and previous iterations.

5.3 Experiments
We evaluate the proposed CoxMB method and the standard training method of the

CoxPH model on the task of predicting survival in IPF patients using their 3D HRCT

scans alone and in combination with clinical data.

5.3.1 Data

We use the OSIC dataset described in Section 2.5.3. We select cases with a confirmed

diagnosis of IPF and an HRCT with a slice thickness of less than 3.0 mm. The

clinical data includes age, sex, smoking history, FVC predicted percent, DLCO, and
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antifibrotic treatment; see Section 4.2 for more details. We examine the performance

of different methods using exclusively HRCT images or a combination of HRCT

images and clinical data. The dataset consists of 728 samples, which we randomly

divided into training (70%), validation (15%), and test (15%) sets. The mean and

standard deviation of the metrics are reported over five runs with different random

splits. Approximately 65% (470 samples) of the dataset are right-censored.

We evaluate the performance in terms of the C-Index and the MAE and RAE of

the predicted survival times, see Section 3.3.5.

5.3.2 Preprocessing

5.3.2.1 HRCT Preprocessing

All scans are cropped to the lung area using the lung segmentation model trained

by [176]. These scans are then resampled to achieve an isotropic pixel spacing

of 1× 1× 1 mm3 via linear interpolation. Following this, the scans are resized

to dimensions of 256× 256× 256 voxels using bicubic interpolation. Next, we

apply histogram matching and a windowing operation within the range [-1024, 150]

Hounsfield Units (HU) to remove irrelevant information. Finally, we normalise the

scans to have zero mean and unit variance based on the statistics drawn from the

training set.

We apply data augmentation techniques during training to mitigate overfitting

and improve generalisation. Specifically, random rotation (up to 15 degrees) and

translation (up to 20 pixels) are used to introduce variability while preserving anatom-

ical structures. Additionally, scans that fail to meet quality standards due to severe

motion artefacts, incomplete lung coverage, or significant noise are excluded from

the dataset. Details on the inclusion criteria are provided in Subsection 2.5.3.
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5.3.2.2 Clinical Data Preprocessing

For the clinical data, we normalise the continuous features (age, FVC, and DLCO) to

have zero mean and unit variance. We encode the categorical features (sex, smoking

history, and antifibrotic treatment) using one-hot encoding. We then concatenate

the normalised continuous features with the one-hot encoded categorical features to

form the clinical data input to the models.

5.3.3 Implementation Details

In our experimental setup, we use a deep learning model to learn the non-linear rela-

tionship between the covariates (HRCT and optionally clinical data) and the hazard

function; we detail the model architecture in Section 5.3.3.1 and the hyperparameters

in Section 5.3.3.2.

5.3.3.1 Model Architecture

To process HRCT scans, we use a 3D CNN, as illustrated in Figure 5.2 (left). The

network initiates with a 3D convolutional layer, followed by an instance normalisa-

tion layer and a leaky ReLU activation function. We then stack four residual blocks,

each comprising three 3D convolutional layers [177]. After each convolutional

layer, we use instance normalisation [178] and leaky ReLU [179] layers. We utilised

1×1×1 kernels for the first and last convolutional layers, while the middle layer

used a 3× 3× 3 kernel. In a parallel branch, we use a single convolutional layer,

and the outputs of the two branches are concatenated. The output of this series of

layers is then passed through another convolutional layer, designed with a stride

of 2, to halve the spatial dimension. Finally, we use a convolutional layer with 16

filters and a 1×1×1 kernel to produce a compact feature representation. We flatten

this representation and input it into the final fully connected layer. In designing

this network, we were aware that the progression of IPF manifests itself in fine

pulmonary patterns, such as honeycombing, reticulation, and ground glass opacities.

To capture these nuances, we opt for small kernels and deliberately avoid pooling
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layers, which could result in the loss of fine image details.

When we incorporate clinical data, we use a MLP that consists of two fully

connected layers with 32 neurones each, each followed by batch normalisation [180]

and leaky ReLU activation [179], as detailed in Figure 5.2 (right). The MLP output

is concatenated with the CNN output. The CNN output, which represents imaging

data, is projected to a 32-element vector to balance the contributions from imaging

and clinical data. The combined output is subsequently propagated through a final

fully connected layer.

5.3.3.2 Hyperparameters

We use AdamW optimiser [181] with a learning rate of 5×10−4 and weight decay

of 1× 10−2 for optimisation. Using weight decay is crucial to mitigate overfit-

ting, especially when training deep learning models on small and potentially noisy

datasets. The optimal learning rate value was tuned via a random search based on

the performance on the validation set. Additionally, we apply a cosine annealing

learning rate scheduler and gradient clipping. Due to the high resolution of the

imaging data (256×256×256), we use a batch size of 2. We train the models for

an initial 300 epochs. However, training is halted if there is no improvement in

validation performance for 50 consecutive epochs. In CoxMB, we use a K value of

1.0. The models are implemented using PyTorch and trained on a single NVIDIA

A6000 GPU.

5.3.4 Results

To evaluate the performance of the proposed CoxMB method, we compare it to

the standard CoxPH model on the OSIC dataset. In Table 5.1, we report the test

performance of the two approaches on the OSIC dataset. We notice that the introduc-

tion of memory banks during training (CoxMB) leads to a significant performance

improvement compared to the DeepSurv model, which employs the standard CoxPH

objective function [26, 159]. This improvement can be seen through the increase in
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Figure 5.2: Deep learning model architecture. Left: 3D CNN for processing HRCT scans.
Right: MLP to process clinical data. F: Number of filters, K: kernel size, S:
stride. In the case of using HRCTs only, the architecture on the left is used. In
the case of using HRCT and clinical data, the outputs of CNN and MLP are
concatenated.
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Table 5.1: Comparison of the test performance of CoxPH and CoxMB on OSIC dataset
when trained on imaging data only, as well as combined imaging and clinical
data. The mean and standard deviation are reported over five runs with different
random train/val/test splits. The best results are highlighted in bold.

Data Method C-Index ↑ MAE ↓ RAE ↓

Imaging
DeepSurv (Cox) 67.441 ± 4.572 44.898 ± 19.505 2.286 ± 1.414
CoxMB 71.067 ± 5.572 28.887 ± 2.315 1.762 ± 0.807

Imaging
+ Clinical

DeepSurv (Cox) 72.1 ± 2.186 27.603 ± 3.345 1.718 ± 0.742
CoxMB 68.877 ± 2.413 24.413 ± 2.548 1.892 ± 0.868

the C-Index by 3.63, a reduction of the MAE by 16 months, and a decrease in the

RAE by 0.046.

Upon inclusion of clinical data, CoxMB upholds superior performance on MAE

compared to DeepSurv, whereas DeepSurv excels in ranking performance. This

performance divergence, particularly with respect to the decline of the C-Index in

the CoxMB case, can likely be attributed to the high noise level and the presence of

missing values in clinical data, see Section 4.3 and Section 2.4.4.1. DeepSurv seems

to benefit more from including clinical data than CoxMB, where the improvements

are marginal. CoxMB already performs reasonably well on the imaging data, and

the clinical data do not provide much additional information.

5.3.4.1 Effect of Memory Bank Size

We examine the effect of the size of the memory bank in the CoxMB model, trained

on imaging data. K is the fraction of training samples stored in the memory bank

during training. We train the CoxMB model with different values of K and report the

results in Table 5.2. We observe that the performance of the CoxMB model improves

as the memory bank size increases. This is expected, as a larger memory bank allows

the model to store more information about the ranking of patients’ survival times,

which is then used to penalise the model for inaccuracies in predicting the ranking.

We anticipate that this depends on the size of the training set and thus requires tuning

for each dataset.
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5.3.4.2 Performance Under Limited Uncensored Training Data

One notable limitation of the standard CoxPH model is that the loss cannot be

calculated if the minibatch contains only censored samples, Nuncens = /0. As a result,

these training batches are ignored during training. This is a common issue in survival

datasets with high censoring rates and becomes more pronounced when using small

batch sizes.

In contrast, the CoxMB training procedure alleviates this issue because the loss

is calculated using the samples stored in the memory bank, which are accumulated

over multiple iterations. This leads to fewer batches being ignored during training

and, subsequently, more efficient use of the training data and more stable training.

We evaluate the performance of the two methods when trained on training sets

with varying fractions of uncensored samples. Specifically, we train the models on

training sets with 20%,40%, . . . ,100% of the uncensored samples. The randomly

sampled fraction of uncensored cases is added to the censored samples to form the

training set in each experiment. It is worth mentioning that cox-based models are

untrainable when the training set contains only censored samples; this is a limitation

we address in the Chapter 6. In Figure 5.3, we report the performance in terms of

the C-Index and MAE when training the models on training sets according to the

fractions mentioned above and when using imaging data only. We report the mean

and standard deviation over five runs with different random train/val/test splits.

As expected, the performance improves as the fraction of uncensored samples

Table 5.2: Effect of memory bank size on the performance of CoxMB model.

K C-Index

0.0 67.441 ± 4.572
0.2 67.968 ± 2.712
0.4 70.884 ± 3.844
0.6 70.154 ± 0.975
0.8 73.294 ± 4.056
1.0 71.067 ± 5.572
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Figure 5.3: Performance of CoxPH and CoxMB models under limited uncensored training
data. The models are trained on training sets with varying fractions of uncen-
sored samples. The mean and standard deviation are reported over five runs with
different random train/val/test splits.

in the training set increases. Furthermore, we observe that the performance of the

CoxMB model, when trained with a limited amount of uncensored data (20%), is

comparable to that of the CoxPH model. This can be attributed to the lessened

effectiveness of the memory bank when the amount of uncensored data is limited.

However, as the amount of uncensored data increases, the memory bank efficacy

improves, and the performance of CoxMB consistently surpasses that of the CoxPH

model. This is evident in both the C-Index and MAE metrics.

5.4 Related Work

Several studies have used the CoxPH model to predict mortality in IPF patients.

Gonzalez et al. [10] used the CoxPH model [26] to predict mortality from the Gender
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Age Physiology (GAP) index and Composite Physiologic Index (CPI). The GAP

index is a clinical scoring system used to predict mortality in patients with IPF. It

incorporates gender, age, FVC, and DLCO. The CPI, on the other hand, combines

FVC, DLCO, and the FEV1 to estimate the extent of fibrosis and predict disease

progression [182, 183, 184].

Collard et al. [185] adopted a similar approach and concluded that six-month

changes in pulmonary function tests were predictive of mortality risk. However,

HRCT scans of the lungs constitute an important part of the clinical assessment

of IPF patients and contain pertinent information related to disease progression. It

can also be shown that patients with similar clinical information may have different

prognoses, see Figure 5.4. Therefore, we investigate the performance of survival

models that use both imaging and clinical data.

Other studies have used extracted features from HRCT to predict mortality.

Jacob et al. [164] compared between mortality prediction using features extracted

by an expert radiologist (visual scoring) and features automatically extracted by

CALIPER software (Computer-Aided Lung Informatics for Pathology Evaluation

and Ratings) [186, 187]. CALIPER quantifies the extent of specified radiological

patterns of lung damage2 seen on the HRCT scan. However, both the visual scoring

and CALIPER approaches are unsupervised feature extraction methods in the sense

that they are not designed to be maximally predictive of mortality. Visual scoring

is also a time-consuming approach that requires clinical expertise and is prone to

inter-observer variability.

We are therefore interested in estimating a patient’s mortality risk based on their

clinical and imaging data. We train an end-to-end neural network to extract imaging

features that are maximally predictive of mortality.

2Ground glass opacity, reticulation, honeycombing, emphysema, pulmonary vessels volume, and
others.
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Figure 5.4: An example from the OSIC dataset of two patients with very similar clinical
features and different survival outcomes. This illustrates the limitations that
exist when only using clinical data to predict disease progression in IPF. Our
study examined the additional value that might be gained by using imaging data
to predict disease progression. Time of death is reported relative to the time of
lung function tests.

5.5 Conclusion and Limitations

In this chapter, we proposed a novel approach to address the limitations of the

standard training procedure of the CoxPH model for survival analysis. We introduced

memory banks to store model predictions for later iterations, allowing for stable

training of deep learning models for survival analysis with limited GPU memory.

We evaluated the proposed CoxMB method on the task of predicting survival in

IPF patients using their 3D CT scans and clinical data. Our results show that the

CoxMB method outperforms the standard CoxPH model, achieving a significant

improvement in the C-Index, MAE, and RAE when trained on imaging data alone.

The CoxMB model offers a more robust training strategy by employing memory

banks, which is especially beneficial when training on high-resolution imaging data.

The performance of the CoxMB model improves as the memory bank size increases.

However, the proposed method and Cox-based methods generally have some

limitations. For example, the proportional hazards assumption in the CoxPH objec-

tive is a strong assumption that may not hold in practice. In addition, the CoxPH

objective can only be computed if the minibatch contains at least one event, which

can be challenging when the censoring rate is high, as is the case in many survival
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datasets. Finally, the objective is a ranking objective. It does not optimise for the

actual survival times, leading to suboptimal performance in terms of metrics such

as MAE and RAE. We address some of these limitations in the next chapter by

proposing a novel objective function for survival analysis that directly optimises for

the survival times and does not require the proportional hazards assumption.



Chapter 6

CenTime: Event-Conditional

Modelling of Censoring in Survival

Analysis

6.1 Introduction

Despite the wide adoption of the CoxPH model and its variants in survival analy-

sis [26, 159], these models have several limitations. Having discussed memory bank

techniques to address the training stability issues in Chapter 5, we now focus on

the limitations of the CoxPH model itself. Other methods have been proposed as a

remedy to these limitations, such as DeepHit [25], but they have their own drawbacks

as well.

In this chapter, we discuss the limitations of the standard methods in survival

analysis and introduce a novel event-conditional objective function, CenTime, for

training survival models. CenTime leverages censored data more effectively, relaxes

restrictive assumptions compared to the CoxPH model, and directly estimates the

time-to-event, providing valuable prognostic insights. We evaluate the proposed

method on the OSIC dataset and show that it outperforms the state-of-the-art tech-

niques in survival analysis.
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(a) Proportional hazards. (b) Non-proportional hazards.

Figure 6.1: Proportional hazards assumption. (a) The hazard ratio between two samples is
constant over time. (b) Violation of the proportional hazards assumption.

6.2 Limitations of existing survival analysis models

6.2.1 Cox Proportional Hazards Model

The CoxPH model is widely used due to its simplicity and interpretability. How-

ever, it has several limitations. Firstly, the proportional hazards assumption (see

Figure 6.1), which states that the hazard ratio between two samples is constant over

time, is often violated in practice, especially in heterogeneous diseases such as IPF.

Secondly, the CoxPH model does not provide a direct estimate of the time-to-event,

which is a crucial piece of information for prognosis. Thirdly, as can be seen from

the partial log-likelihood function (detailed in Section 3.3.4.2)

L(β ) =
1

|Nuncens| ∑
n∈Nuncens

(
β

T xn− log ∑
m∈Rn

exp(β T xm)

)
(6.1)

the model does not explicitly model the censored samples. The model only considers

the uncensored samples in the likelihood function, which can lead to suboptimal

performance, especially in datasets with a high proportion of censored samples.

Finally, the CoxPH objective is a ranking objective, thus requiring a large batch

size to ensure that the model is trained effectively, which is often computationally

expensive and limited by the GPU memory.
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(a) The CenTime data generation mechanism. (b) The classical data generation mechanism.

Figure 6.2: Survival analysis data generation mechanisms. (a) In the proposed event-
conditional censoring model (CenTime), t is drawn from the death time distri-
bution and c is uniformly sampled up to t. (b) In the classical model, t and c
represent randomly drawn death and censoring times from the corresponding
distributions. If c < t, the patient is censored; the observation is the censoring
time. Otherwise, the patient is uncensored, and observation is the death time.

6.2.2 DeepHit

DeepHit [25], previously discussed in Section 3.3.4.9, has a few challenges as well.

Firstly, the model does not capture the ordinal nature of the time-to-event data.

DeepHit uses a softmax function to predict the time-to-event, which treats different

death times as separate classes. This can lead to suboptimal performance, especially

when the number of classes (Tmax) is large. Secondly, the model requires a large

number of parameters, especially when the maximum time-to-event is large, which

can lead to overfitting. Finally, some death times might not be represented in the

training data, which could reduce the softmax probabilities to zero, yielding no

gradient and impeding the learning process for these times.

6.2.3 Classical Censoring Model

The classical censoring model assumes that censoring times are independent of the

event times, see Subsection 3.3.4.8. We propose a novel alternative to this model,

CenTime. CenTime is an event-conditional model, and we explain its formulation

below.
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6.3 CenTime: Event-Conditional Modelling of

Censoring

We introduce CenTime, which enables the direct learning of a death time distribution

pθ (D = t|x) from either censored or uncensored data. Our objective is to maximise

the log-likelihood of the data, which includes both censored and uncensored samples

L(θ)≡ ∑
n∈Nuncens

log pθ (D = tn|xn)+ ∑
i∈Ncens

log pθ (C = cn|xn) (6.2)

where pθ (C = c|x) is the censoring distribution. CenTime uses a novel censoring

mechanism that we believe is more representative of censoring in some clinical

situations. Here, we concentrate on right censoring while the method is generally

applicable to other forms of censoring; see Appendix A. Specifically, we first sample

the death time and then generate a censoring time from a distribution up to the death

time. This results in the censored time model

pθ (C = c|x) =
Tmax

∑
t=1

p(C = c|D = t,x)pθ (D = t|x) (6.3)

The objective in Equation 6.2 is the likelihood of a mixture model containing

contributions from the uncensored data and censored data, with each term being a

consistent objective for the event model parameters θ (i.e., estimators based on either

contribution converge to the true parameters as the number of samples increases).

This implies that even in the scenario where we only have censored training data, the

model can learn the underlying event model.

The model also has the advantage that, if needed, we can easily sample data

from this model given the proportion of censored to uncensored data. If a proportion

of censored to uncensored data pc : pn is required, for a chosen N one can simply

sample N pc censored datapoints from pθ (C = cn|xn) and N pn uncensored datapoints
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from pθ (D = tn|xn). This feature is absent in classical censoring models, in which it

is not possible to sample data with a required proportion of censored to uncensored

data.

We still need to make two assumptions – the censoring distribution p(C|D,x)

and the event distribution pθ (D = t|x). We define the event distribution pθ (D = t|x)

below in Section 6.3.1, and here we define the censoring distribution p(C|D,x). In

principle, this can also be learned from the data, but for simplicity, we assume a

uniform censoring distribution p(C = c|D = t,x) = const for c < t and 0 elsewhere

(see Figure 6.2a), giving

pθ (C = c|x) =
Tmax

∑
t=c+1

1
t−1

pθ (D = t|x) (6.4)

For any event distribution model pθ (D = t|x) the likelihood objective to maximise is

L(θ)≡ ∑
n∈Nuncens

log pθ (D = tn|xn)+ ∑
i∈Ncens

log
Tmax

∑
t=ci+1

1
t−1

pθ (D = t|xi) (6.5)

6.3.1 Event Time Distribution

We need to make an appropriate choice for the event time distribution pθ (D = t|x).

We employ a discretised form of the Gaussian distribution

pθ (D = t|x) = 1
Z

exp
(−(t−µθ (x))2

2σ2
θ
(x)

)
(6.6)

In this formulation, µθ (x) and σθ (x) are parameters of the distribution that are pre-

dicted by the model (a neural network parameterised by θ ), and Z is a normalisation

factor, defined as

Z =
Tmax

∑
t=1

exp
(−(t−µθ (x))2

2σ2
θ
(x)

)
(6.7)

This formulation has the following advantages

• The term (t−µθ (x))2 ensures a heavier penalty for predictions that deviate sig-
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nificantly from the true death time, promoting closer predictions. This stands

in contrast to approaches that treat death times as independent categories [25],

which do not fully capture this relationship.

• The model only outputs two quantities (µθ (x),σθ (x)). This keeps the number

of parameters low, reducing the risks of overfitting compared to treating this

as a Tmax classification task, with a category for each timepoint [25].

In principle, the form of the distribution pθ (D = t|x) is also learnable, but we found

that the discrete Gaussian performed well in our experiments.

6.4 Experiments

6.4.1 Data and Preprocessing

We evaluate the proposed method on the OSIC dataset. We use the same dataset,

preprocessing, and splits as in Chapter 5.

6.4.2 Baselines

We compare the proposed method with the following baselines

• DeepSurv [159]: the standard CoxPH model with a deep neural network as

the base model.

• CoxMB: the CoxPH model with the memory bank technique proposed in

Chapter 5.

• DeepHit [25]: a state-of-the-art survival model that uses a deep neural network

to predict the time-to-event, see Section 3.3.4.9.

• DeepHit (LC
lik.) only: a variant of DeepHit that uses only the likelihood term,

LC
lik., in the objective function, without the ranking term Lrank.. This is to

evaluate the performance of DeepHit when the ranking term is removed and

relying only on the likelihood term, similar to CenTime.



6.4. Experiments 104

• Classical Censoring Model: an alternative approach to model the censoring

distribution, see Section 3.3.4.8. In contrast to DeepHit, we propose to use

a discrete Gaussian distribution to model the event time distribution, see

Section 6.3.1.

DeepSurv and CoxMB are ranking-based models, while the others are distribution-

based models in the sense that they directly model the time-to-event.

6.4.3 Implementation Details

The event distribution-based models parameterise the distribution pθ (t|x) using µθ

and σθ . A deep learning model parameterised by θ is used to learn µθ , while σ is

fixed at 12 months. This helps to stabilise the training process and mitigate overfitting

(see [188] for a similar observation). For DeepHit, the model’s output is a vector

of size Tmax, representing the logits of the 1-of-Tmax classification labels. For the

DeepSurv and CoxMB models, the output is a single scalar representing the risk

score, as explained in Chapter 5. We use AdamW optimiser [181] with a learning

rate of 10−4 for the classical and event-conditional censoring models and 5×10−4

for DeepHit, DeepSurv, and CoxMB. Unless otherwise stated, we use the same

architecture, hyperparameters, and training setup as in Chapter 5.

6.4.4 Results

The evaluation of survival analysis performance depends on the particular clinical

objective. For instance, if the aim is to stratify patients into high- and low-risk groups,

the C-Index is a suitable metric, whereas if the objective is to precisely predict each

patient’s time-to-death, metrics such as MAE and RAE are more appropriate. Since

CenTime directly predicts the mortality time, MAE and RAE are the most relevant

metrics for assessing its performance. However, we also report the C-Index for

completeness and to compare CenTime’s ranking performance with other methods.

See Subsection 3.3.5 for a detailed explanation of survival analysis metrics.
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Table 6.1: Comparison of the test performance of the different methods on OSIC dataset
when trained on imaging data only, as well as combined imaging and clinical
data. The mean and standard deviation are reported over five runs with different
random train/val/test splits. The best results are highlighted in bold.

Data Method C-Index ↑ MAE ↓ RAE ↓

Im
ag

in
g

DeepSurv (Cox) 67.441 ± 4.572 44.898 ± 19.505 2.286 ± 1.414
CoxMB 71.067 ± 5.572 28.887 ± 2.315 1.762 ± 0.807
DeepHit 53.165 ± 8.313 31.074 ± 7.765 1.830 ± 0.522
DeepHit (Lc

lik. only) 57.607 ± 4.813 29.862 ± 3.742 1.926 ± 0.869
Classical Censoring 68.844 ± 5.313 20.448 ± 4.787 1.407 ± 0.853
CenTime 69.273 ± 0.946 19.319 ± 1.613 1.338 ± 0.665

Im
ag

in
g

+
C

lin
ic

al

DeepSurv (Cox) 72.1 ± 2.186 27.603 ± 3.345 1.718 ± 0.742
CoxMB 68.877 ± 2.413 24.413 ± 2.548 1.892 ± 0.868
DeepHit 54.980 ± 3.490 31.246 ± 4.599 2.240 ± 0.862
DeepHit (Lc

lik. only) 52.882 ± 3.843 28.718 ± 2.077 2.059 ± 0.722
Classical Censoring 70.35 ± 2.947 20.476 ± 1.85 1.546 ± 0.611
CenTime 70.957 ± 3.048 19.178 ± 0.795 1.48 ± 0.671

In Table 6.1, we report the test performance of the different methods on the

OSIC dataset. For distribution-based methods (DeepHit, Classical Censoring, and

CenTime), CenTime outperforms all other distribution-based baselines in C-Index,

MAE, and RAE metrics, whether trained solely on imaging data or a combination of

imaging and clinical data. The superiority of our method is particularly noticeable

in the hybrid case, where the MAE decreases by 9.92 and 1.3 months compared to

the DeepHit and the classical censoring models, respectively. Similarly, the C-Index

improves by 12.22 and 0.61 compared to these models. Compared to DeepSurv

and CoxMB, CenTime offers a remarkable improvement in MAE (8.43 and 5.23

months, respectively) and a comparable ranking performance. This demonstrates the

effectiveness of CenTime in efficiently capturing the censoring process. Interestingly,

CenTime significantly outperforms DeepHit. In addition to the different modelling

of the censoring process, this can be attributed to how each model handles the event

distribution. CenTime applies a discretised version of the Gaussian distribution

(as per Equation 6.6), whereas DeepHit considers it as a classification problem
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comprising Tmax classes, executed using a fully-connected layer followed by a

softmax function. By disregarding the ordinal nature of the time variable and facing

the potentially large class number, Tmax, DeepHit is more susceptible to overfitting.

CenTime outperforms all the baselines in predicting the time of death for IPF

patients, whether trained solely on imaging data or a combination of imaging and

clinical data. Additionally, it delivers competitive C-Index performance despite

not incorporating a ranking objective. This makes it a more appropriate choice for

clinical scenarios where the precise prediction of the time of death takes precedence

over the ranking of patients’ survival times.

Given the potential imbalance in the dataset (e.g., long-term survivors or rapid-

progressor patients), we experimented with oversampling techniques to mitigate

class imbalance and improve performance on underrepresented subgroups. However,

these techniques did not yield significant improvements in predictive performance,

likely due to the increased variance and noise introduced by duplicating minority

cases. As a result, we did not report these results. This suggests that alternative

approaches, such as data augmentation using generative models, may be more

effective in handling imbalance in future work.

6.4.4.1 Performance Under Limited Uncensored Training Data

The amount of uncensored data available for training survival models is typically lim-

ited. Therefore, learning algorithms must use the available censored data effectively

to improve performance. In this subsection, we examine the performance of the

different methods when trained on a limited amount of uncensored data in addition

to the censored data (imaging only). We randomly sample 0% (purely censored),

20%, 40%, 60%, 80%, and 100% of the uncensored data. In each scenario, all the

censored data is added to compose the training set. The results are presented in

Figure 6.3.

The initial observation is that Cox-based models (DeepSurv and CoxMB) are
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Figure 6.3: Performance of the different methods when trained on gradually increasing
percentages of uncensored data added to the censored data. 0% corresponds to
training on purely censored data, while 100% corresponds to training on the full
training set. The mean and standard deviation are reported over five runs with
different random train/val/test splits.

only trainable when uncensored examples are available during training. This is

because the objective function is defined solely for uncensored examples (see Equa-

tion 5.2). Second, when utilising purely censored data, CenTime shows a significant
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improvement (≈ 4.9x in terms of MAE) over the classical and DeepHit models.

This is because CenTime forms a consistent estimator of the model parameter θ

even with purely censored data, a feature not shared by the classical and DeepHit

models. As the amount of uncensored data included in the training data increases,

we generally observe an improvement in the performance of all models, and the

differences between the various methods diminish. However, CenTime continues to

outperform the other methods in terms of MAE and offers competitive performance

in terms of the C-Index. These findings underscore the effectiveness of our proposed

approach in modelling the censoring process and utilising it efficiently.

Intriguingly, the C-Index performance of CenTime is comparable to that of

DeepSurv, even though it does not use a ranking objective. This further underlines

the robustness and versatility of our proposed event-conditional censoring model.

6.4.4.2 Effect of Lung Segmentation

Idiopathic Pulmonary Fibrosis predominantly affects the lungs, making this area the

most relevant in CT scans. However, some evidence suggests that the disease can

also affect other organs, such as the heart [189]. Therefore, we examine the effect of

lung segmentation on the performance of CenTime when trained on imaging data.

We train the model with and without lung segmentation (using [176]) and report the

results in Figure 6.4. We do not observe a significant difference in the performance,

suggesting that the model can learn the relevant features from the lung area without

explicit segmentation. This also allows the model to benefit from information in the

non-lung area (e.g., heart) if it is relevant to the survival prediction task.

6.5 Conclusions

Our work demonstrates the limitations of existing survival methods and addresses

them. Traditional Cox-based methods (i) assume the strong proportional hazards

assumption, which is not always true, (ii) estimate the relative hazard rather than
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Figure 6.4: Effect of lung segmentation on the performance of CenTime.

the actual death time, which is often more helpful and easier to interpret, and (iii)

represent a ranking method and, therefore, require a large batch size, which is not

always feasible. DeepHit (iv) does not encode the ordinal nature of the target survival

time variable, (v) approaches the problem as a classification task, which becomes

prone to overfitting with too many classes. Our CenTime model addresses all these

limitations. By modelling the death and censoring likelihoods, it circumvents the

hazards proportionality assumption (i), directly estimates the death time (ii), and

imposes no batch size restrictions (iii). Furthermore, because of the adoption of the

discretised Gaussian distribution, our model naturally encodes the ordinal nature of

the target survival time variable (iv) and, by outputting only the discretised Gaussian

distribution parameters, is less susceptible to overfitting (v). Finally, compared

to the classical censoring mechanism, CenTime offers a convenient alternative to

the classical censoring model by providing a consistent estimator even with purely

censored data alone and should be particularly useful in situations with only minimal

uncensored entries.

Our results underscore the effectiveness of CenTime in predicting the time

of death while offering competitive ranking performance, even without a ranking
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objective. This makes CenTime a compelling choice for clinical scenarios where

accurate prediction of the time of death takes precedence over ranking patients’

survival times, particularly when dealing with limited observed death time data.



Chapter 7

Conclusions, Limitations and Future

Work

In this thesis, we presented a comprehensive framework for modelling disease

prognosis in terms of mortality prediction (i.e., survival analysis). Although we

focused on IPF as a challenging and heterogeneous disease, the presented methods

generally apply to other diseases. In addition, the proposed framework is not limited

to a specific modality or type of data and integrates both clinical and imaging data.

7.1 Summary of Contributions

We first addressed the problem of missing values in clinical records. In Chapter 4,

we relied on the assumption that there is a relationship or dependency between

different features in a patient record. Consequently, we can fit a model to predict the

missing values based on the observed ones. Therefore, we proposed a novel method

for imputing missing values in clinical records based on a LVMs. We showed that

this method outperforms other state-of-the-art methods in terms of the imputation

accuracy of both continuous and categorical features. This method was then used to

impute missing values in OSIC dataset and used in the subsequent chapters.

In Chapter 5 and Chapter 6, we moved to study the problem of survival analysis,

the limitations of the current methods, and how to improve and adapt them to our



7.1. Summary of Contributions 112

problem. Survival analysis methods can be broadly categorized into two main

categories: I) Ranking-based models (e.g., CoxPH [26]), and II) Distribution-based

models (e.g., DeepHit [25]. In the former category, we aim to train the model to

correctly rank patients in a dataset according to their mortality risk without estimating

the exact death time. In the latter category, we train the models to output an accurate

probability distribution of the time of death for each patient. It is worth mentioning

that the two families of models have valid clinical use cases, and the choice between

them depends on the clinical question. Therefore, we proposed contributions in the

two categories.

In Chapter 5, we highlight the limitations of the CoxPH model, the most widely

used model in survival analysis. The linearity assumption can be easily alleviated

using non-linear transformations of the features (e.g., a deep neural network). How-

ever, the ranking nature of the objective requires a large batch size to be trained

effectively, which is not always feasible due to memory constraints, especially when

using high-resolution imaging data. To address this issue, we proposed a novel

method for training the CoxPH model using memory banks to accumulate model

predictions over the training set. This allows us to compute the CoxPH loss over a

much larger set of samples. We showed that this method outperforms the standard

CoxPH model in terms of concordance index while being more memory efficient.

This allows the application of the CoxPH model to high-resolution imaging data

while maintaining high performance and a stable training process, in contrast to the

standard CoxPH model, which does not scale well to high-resolution imaging data

due to its memory requirements.

In Chapter 6, we shifted our focus to the second category of survival analysis,

distribution-based models. Ranking-based models have limitations, such as the

inability to estimate the exact time of death and the strong assumption of proportional

hazards. Distribution-based models can overcome these limitations by estimating

the full distribution of the time of death for each patient. We proposed a novel
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objective function for training survival analysis models. CenTime, our proposed

method, is a maximum likelihood-based method that proposes an alternative data

generation mechanism for the censoring process. We showed that CenTime has

several advantages over the state-of-the-art methods, such as CoxPH [26, 159],

DeepHit, and the classical censoring model [25]. It performs better in accurately

predicting the time of death while maintaining comparable ranking performance to

the ranking-based models. In addition, CenTime excels in the presence of a limited

amount of uncensored data due to its ability to model the censoring process more

effectively.

We believe that these methods address practical problems in healthcare and

medical imaging (e.g., missing data, limited memory resources, and the abundance

of censored data) and can be used to improve the prognosis of patients with IPF

and other diseases. However, we discuss some limitations and future work in the

following section.

7.2 Limitations and Future Work

7.2.1 Imputation of Missing Data

The proposed method for imputing missing values in Chapter 4 relies on the ob-

served features to predict the missing ones in a patient record. While this method

outperforms other imputation methods, it does not consider other sources of infor-

mation that might give more information about the missing values. For example, the

HRCT images can be used with the observed clinical features to predict the missing

values. In addition, the proposed method does not consider the data’s temporal

nature and the features’ previous values. Further, the EM algorithm used to train the

LVM model is sensitive to the initialization of the parameters, does not scale well

to high dimensional data, and is prone to local minima. Future work can address

these limitations by incorporating the HRCT images, the temporal nature of the
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data and the previous records of the patients (e.g., using Long Short-Term Memory

(LSTM) models [190], or Transformers [191]), and using more robust optimization

methods [116].

Additionally, a more rigorous evaluation of the imputation method is necessary

to assess its robustness to noise and missing data patterns. This is particularly

critical in clinical settings, where data quality is often compromised due to human

errors, inconsistent reporting, or variations in measurement protocols. Evaluating

the method’s stability under these real-world conditions will ensure its reliability in

practical applications.

7.2.2 Cox Proportional Hazards with Memory Banks

One limitation with the proposed method in Chapter 5 is that after some training

iterations i >>> 1, some information from the early iterations will be irrelevant to

the current model parameters θi and might hurt the performance. There are several

ways to address this issue; one notable way is to use a momentum factor, which

gives more weight to the recent updates of the model parameters. Specifically, we

could have two versions of the model parameters θi and φi, where θi is the current

model parameters, and φi is an exponentially moving average of the previous model

parameters

φi = βφi−1 +(1−β )θi−1 (7.1)

where β is a momentum factor 0 < β < 1, where β = 0 corresponds to the standard

CoxPH model, and β = 1 corresponds to the proposed method in Chapter 5, the

higher the value of β , the more weight is given to the recent updates of the model

parameters. θi is normally updated using the gradients of the loss function with

respect to the model parameters, while no gradients are used to update φi. The model

parameters used to compute the loss function are then φi instead of θi. This allows

the model to have a more stable training process and avoid irrelevant information in

the memory bank. This is similar to the momentum idea used in the MoCo method



7.2. Limitations and Future Work 115

for training contrastive learning models [33].

7.2.3 CenTime

In Chapter 6, we assumed that the censoring distribution p(c|x) follows a uniform

distribution from 0 to the observed time of death t. However, this could be a

strong assumption, and future work should explore more flexible distributions for

the censoring process. Additionally, we assumed that the censoring process is

independent of the covariates x, which might not hold in some cases. Relaxing this

assumption by incorporating a censoring model that explicitly depends on covariates

could improve the robustness of the model.

For the death distribution p(t|x), we modelled it as a discrete Gaussian dis-

tribution. Future work could investigate other distributions, such as the Weibull

distribution, to assess their suitability for capturing survival times more effectively.

While CenTime demonstrates strong performance across multiple evaluation

metrics, dataset imbalance remains challenging, particularly for long-term survivors

and rapid-progressing patients. As discussed in Section 6.4.4, we experimented

with oversampling techniques to mitigate this issue but did not observe significant

improvements in predictive performance. Future work should explore alternative

strategies, such as focal loss, reweighting, or generative data augmentation, to

improve model robustness for minority subgroups.

7.2.4 Selection Bias and Generalizability

While the OSIC dataset is sourced from six sites worldwide, potential selection

biases may still affect the generalizability of the models developed. Despite its

global nature, the dataset primarily consists of data from specialized centres, which

may not fully represent the broader IPF population. Patients from underrepresented

geographic regions, ethnic groups, or community-based hospitals may be missing or

underrepresented, potentially limiting the model’s ability to generalize across diverse

clinical settings.



7.2. Limitations and Future Work 116

To address this, future work should evaluate model performance on external

datasets from more diverse clinical environments. Furthermore, stratified analysis

of model predictions across demographic subgroups could provide insights into any

disparities in performance and help identify potential biases.

7.2.5 Clinical Interpretability

One limitation of the proposed methods is that they need to be interpretable to clini-

cians. While the proposed methods achieve state-of-the-art performance in terms of

prediction accuracy, they do not provide insights into the underlying mechanisms

of the disease. Interpretability is crucial for clinical acceptance, especially in a

disease like IPF, where the underlying mechanisms are not well understood. We

explored the use of GradCAM [166] to generate saliency maps to provide insights

into the model predictions and showed that the model highlights areas of fibrosis

in the HRCT images, see Figure 7.1. However, the model also highlights other

areas, such as bones, whose relevance to the prediction is unclear. In addition,

GradCAM generates local explanations but does not provide a global view of the

model predictions. Future work can explore other methods for model interpretability,

such as SHAP [192], LIME [193], DeepLIFT [194], and counterfactual explana-

tions [195]. These methods can provide more insights into the model predictions

and help clinicians understand the underlying mechanisms of the disease.

7.2.6 Clinical Implementation Considerations

While the proposed methods demonstrate strong predictive capabilities, their effec-

tive integration into clinical workflows requires careful consideration. Extensive

validation studies are essential to assess model generalizability across diverse patient

populations and clinical settings, ideally involving external validation on multi-centre

datasets.

The presented models can be integrated into clinical workflows to assist health-

care providers in patient prognosis and treatment planning. For example, the models
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Patient 1: 152 Weeks Patient 2: 54 Weeks Patient 3: 40 Weeks

Figure 7.1: Saliency maps for the CoxMB model using the Grad-CAM method with the
reported time of death. The model highlights areas of fibrosis (blue arrows) but
also pulmonary vessels (red arrows).

can identify high-risk patients who may benefit from early interventions or more ag-

gressive treatment strategies. Additionally, leveraging HRCT imaging in a screening

setting could help flag patients with early-stage disease before respiratory symptoms

manifest, potentially informing timely clinical decisions. Finally, equipped with

interpretability tools (see Subsection 7.2.5), clinicians can use the models to gain in-

sights into the underlying disease mechanisms, especially in diseases like IPF where

we have limited understanding of disease progression and response to treatment.

Despite their promise, these models face several barriers to adoption. First, the

accessibility of HRCT imaging may be limited, particularly in resource-constrained

healthcare settings [196]. Second, the computational demands for model inference

and deployment—such as GPU and memory requirements—may limit feasibility

in standard clinical environments. Future work should explore resource-efficient

architectures and hardware optimization strategies to facilitate real-world adoption.

Beyond technical challenges, the current “grading” of IPF remains insufficiently

defined, complicating patient stratification. Despite the existence of clinical guide-

lines for diagnosing and managing IPF [6, 76], refining disease staging criteria could
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improve IPF data labelling and consequently enhance prognostic models perfor-

mance. Future clinical research should prioritize precise phenotyping and robust

labelling of IPF progression, ensuring that prognostic models can deliver more

reliable and clinically relevant predictions.

7.2.7 Vision Language Models

The lack of training data is a common problem in medical imaging, especially in

diseases like IPF, where the number of patients is limited. Pretrained models can alle-

viate this issue by learning from large datasets. Large Language Models (LLMs) have

shown outstanding performance in downstream tasks in natural language processing

after being trained on large corpora of text data [197, 198, 199].

In addition, not only in the case of IPF, but in general, clinical diagnosis,

treatment, and prognosis are often based on the interpretation of medical images and

reports. Machine learning models that can understand and generate text and interpret

medical images have the potential to assist clinicians in their decision-making and

improve patient outcomes. Vision Language Models (VLMs) have shown impressive

performance on various tasks and benchmarks by jointly learning from the visual

and textual modalities [200, 201, 202, 203, 204]. The general framework for these

models is to finetune a pretrained LLM on a specific task and dataset. Thanks to the

large number of parameters in these models and the large amounts of data used for

pretraining, they have shown excellent capabilities in generating high-quality text

and generalization to new tasks and datasets [200, 201, 202].

7.2.7.1 Limitations of the Next-Token Prediction Objective

LLMs/VLMs are trained autoregressively using a Next-Token Prediction (NTP)

objective function, where the next token in a sequence is classified into one of the

tokens in the vocabulary based on the preceding tokens.

max
θ

T

∑
t=1

log pθ (xt |x<t) (7.2)



7.2. Limitations and Future Work 119

where xt is the token at time t, x<t is the sequence of tokens before time t, and

θ are the model parameters. The distribution pθ (xt |x<t) is usually parameterized

by a neural network, such as a Transformer [191]. The model outputs a softmax

distribution over the vocabulary

pθ (xt |x<t) =
exp( fθ (xt ,x<t))

∑x∈V exp( fθ (x,x<t))
(7.3)

where fθ (xt ,x<t) is the output of the neural network for token xt given the sequence

of tokens x<t , and V is the vocabulary. The model is trained to maximize the

log-likelihood of the observed tokens in the training set, as shown in Equation 7.2.

While this approach has shown an impressive performance in language genera-

tion [197, 198, 199], it has limitations when predicting numerical quantities of high

importance in the medical domain (e.g., age or clinical measurements). First, as a

classification objective, NTP does not encode the ordinal nature of these variables.

Second, models trained using NTP cannot generalize to numbers not in the training

set.

7.2.7.2 Possible Remedies

A natural direction for future work is to extend the VLMs to accurately predict

numerical quantities using a regression objective function instead of a classification

one. A possible approach is to augment the NTP objective function with a regression

objective to predict numerical quantities. We could add a regression head to the

model, which takes the transformer’s output and predicts the exact value of the

numerical quantity. The model is then trained to minimize the mean squared error

(or another regression loss) between the predicted value and the ground truth.

More formally, the model will have two heads, one for the standard classification

task cθ (xt |x<t) and one for the regression task rθ (xt |x<t), the model final output will
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depend on the type of the token xt as follows

pθ (xt |x<t) =





exp( fθ (xt ,x<t))
∑x∈V exp( fθ (x,x<t))

if xt is a token

rθ (xt |x<t) if xt is a numerical quantity
(7.4)

The model is then trained to minimize the combined loss function

max
θ

T

∑
t=1

(I(xt is a token) log pθ (xt |x<t) (7.5)

−I(xt is a numerical quantity)LMSE(rθ (xt |x<t),xt)) (7.6)

where I is the indicator function, and LMSE is the mean squared error loss.

The question of how to identify numerical quantities in the text is an interesting

research question. One possible approach is to use a named entity recognition model

to identify numerical quantities in the text and then use the regression head to predict

the exact value of the quantity [205]. Another more straightforward approach is to

use two special tokens added to the vocabulary, one for the start of the numerical

quantity and one for the end of the numerical quantity. The model is then trained to

predict the start and end tokens, and the regression head is used to predict the exact

value of the numerical quantity between the two tokens. A rough sketch of the latter

method is shown in Figure 7.2.

7.2.7.3 Application to IPF

The suggested method can be used to predict the time of death in survival analysis

and other numerical quantities, such as the FVC and the DLCO in IPF, while leverag-

ing the pretrained VLMs on large corpora of text and image data. The model can be

finetuned on the OSIC dataset to predict the time of death, the FVC, and the DLCO

of patients with IPF. The model can then generate reports for patients with IPF and

assist clinicians in decision-making. Further, the model can be used to generate
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Figure 7.2: A rough sketch of the suggested method for extending Vision Language Models
to predict numerical quantities. The model is trained to predict the next token in a
sequence based on the preceding tokens. If the next token is a numerical quantity,
the model is trained to predict the exact quantity value using a regression
objective function. Otherwise, the model is trained to predict the next token in
the vocabulary using the standard NTP objective function.

explanations for the model predictions, provide insights into the underlying mech-

anisms of the disease, and answer clinical questions (i.e., medical visual question

answering).

7.3 Outlook

This thesis advanced the field of survival analysis by addressing critical challenges

related to missing data, computational constraints, and the complexities of censored

data. Our contributions—ranging from innovative imputation techniques to novel

survival models—highlight the potential of leveraging deep learning and probabilistic

modelling to enhance patient prognosis. As we look to the future, several promising

directions could build on this foundation.
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7.3.1 Impact on Treatment and Drug Discovery

While this thesis primarily focuses on prognosis, its findings have potential impli-

cations for treatment planning and drug discovery. Future research should leverage

the prognostic modelling methods presented in the thesis in combination with ma-

chine learning interpretability techniques (see Subsection 7.2.5) to identify novel

IPF biomarkers. These biomarkers could provide deeper insights into disease mecha-

nisms, facilitating the development of more targeted treatment strategies.

Furthermore, integrating predictive modelling with biomarker discovery could

aid in designing personalized treatment plans and optimizing patient stratification for

clinical trials. Identifying high-risk patients earlier may enable timely interventions,

while biomarker-driven stratification could improve the efficiency of drug trials by

selecting patients more likely to respond to specific therapies. These advancements

would be central to improving IPF management and accelerating the development of

novel therapeutics.

7.3.2 Broader Integration of Multimodal Data

Future research should explore the collection and integration of additional data

modalities to improve the accuracy and robustness of survival models. For example,

genetic, proteomic, and other omics data could provide valuable insights into the

underlying mechanisms of diseases like IPF. In addition, integrating electronic

health records, patient-reported outcomes, and other clinical data could enhance the

predictive power of survival models. Researchers can develop more comprehensive

and personalized prognostic models by combining diverse data sources.

7.3.3 Expanding to Rare Diseases

The methods developed in this thesis could be applied to a wide range of rare diseases,

where limited data and high variability present significant challenges for prognosis.

By adapting and extending the proposed techniques, researchers can develop tailored

survival models for rare diseases, improving patient outcomes and advancing our
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understanding of these conditions.

7.3.4 Leveraging Advances in Foundation Models

The recent advances in foundation models, such as GPT-3 [206], CLIP [207], and

DALL-E [208], offer exciting opportunities for survival analysis. By leveraging these

models, researchers can develop more powerful and flexible survival models that

can learn from large-scale text and image data. These foundation models could be

finetuned on medical datasets to improve the accuracy and generalization of survival

models. An example is the VLMs discussed in the previous section.



Appendix A

CenTime for Interval Censoring

In the main text, we focused on right-censoring, which is the most common form of

censoring in survival analysis. Nevertheless, the versatility of CenTime enables its

application to interval censoring as well. In this section, we delineate how CenTime

can be naturally adapted to handle interval censoring.

A.1 Interval Censoring

Interval censoring arises when the event is known to have occurred within a specific

time interval {c1, . . . ,c2}. For instance, a patient is reported to be alive at time c1 and

subsequently reported dead at time c2. Although the exact time of death is unknown,

we know that it occurred within {c1, . . . ,c2}. According to our conditional censoring

model, we will first sample a death time t from the distribution pθ (t|x), then sample

a lower censoring time c1 from a distribution whose support is {1, . . . , t− 1} and

an upper censoring time c2 from a distribution whose support is {t +1, . . . ,Tmax}.

Similar to the right-censoring case, we assume a uniform censoring distribution

for the states c < t and c > t for the two censoring distributions, respectively. The

likelihood for an interval-censored observation is then

p(C1 = c1,C2 = c2|x) =
c2−1

∑
t=c1+1

1
t (Tmax− t)

pθ (D = t|x) (A.1)
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The objective function is then

L(θ) = ∑
i∈Nuncens

log pθ (D = ti|xi) (A.2)

+ ∑
i∈Ninterval-cens

log
c2−1

∑
t=c1+1

1
t (Tmax− t)

pθ (D = t|x) (A.3)

where Ninterval-cens is the set of interval-censored observations in the dataset.
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and Takafumi Suda. The Epidemiology of Idiopathic Pulmonary Fibrosis

and Interstitial Lung Diseases at Risk of a Progressive-Fibrosing Phenotype.

European Respiratory Review, 27(150), 2018. 39

[53] John P Hutchinson, Tricia M McKeever, Andrew W Fogarty, Vidya Navarat-

nam, and Richard B Hubbard. Increasing Global Mortality From Idiopathic

Pulmonary Fibrosis in the Twenty-First Century. Annals of the American

Thoracic Society, 11(8):1176–1185, 2014. 39

[54] J. Morgenstern, Emmalin Buajitti, Meghan O’Neill, Thomas Piggott, V. Goel,

Daniel Fridman, K. Kornas, and L. Rosella. Predicting Population Health

with Machine Learning: a Scoping Review. BMJ Open, 10, 2020. 39

[55] T. Wiemken and R. Kelley. Machine Learning in Epidemiology and Health

Outcomes Research. Annual Review of Public Health, 2020. 39

[56] Jeffrey J Swigris, Michael K Gould, and Sandra R Wilson. Health-Related

Quality of Life Among Patients with Idiopathic Pulmonary Fibrosis. Chest,

127(1):284–294, 2005. 40



BIBLIOGRAPHY 134

[57] Jeffrey J Swigris, David L Streiner, Kevin K Brown, Amanda Belkin, Kathy E

Green, Frederick S Wamboldt, IPFnet Investigators, et al. Assessing Exer-

tional Dyspnea in Patients with Idiopathic Pulmonary Fibrosis. Respiratory

Medicine, 108(1):181–188, 2014. 40

[58] Roland M Du Bois, Derek Weycker, Carlo Albera, Williamson Z Bradford,

Ulrich Costabel, Alex Kartashov, Talmadge E King Jr, Lisa Lancaster, Paul W

Noble, Steven A Sahn, et al. Forced Vital Capacity in Patients with Idio-

pathic Pulmonary Fibrosis: Test Properties and Minimal Clinically Important

Difference. American Journal of Respiratory and Critical Care Medicine,

184(12):1382–1389, 2011. 40

[59] Andreas Guenther, Ekaterina Krauss, Silke Tello, Jasmin Wagner, Bettina

Paul, Stefan Kuhn, Olga Maurer, Sabine Heinemann, Ulrich Costabel, Marı́a

Asunción Nieto Barbero, et al. The European IPF Registry (Euripfreg):

Baseline Characteristics and Survival of Patients with Idiopathic Pulmonary

Fibrosis. Respiratory Research, 19:1–10, 2018. 40, 74

[60] Bernard Karnath. Digital Clubbing: A Sign of Underlying Disease. Hospital

Physician, 39(9):25–27, 2003. 40

[61] Miaotian Cai, Min Zhu, Chengjun Ban, Jin Su, Qiao Ye, Yan Liu, Wen

Zhao, Chen Wang, and Huaping Dai. Clinical Features and Outcomes of

210 Patients with Idiopathic Pulmonary Fibrosis. Chinese Medical Journal,

127(10):1868–1873, 2014. 40

[62] Talmadge E King Jr, Janet A Tooze, Marvin I Schwarz, Kevin R Brown, and

Reuben M Cherniack. Predicting Survival in Idiopathic Pulmonary Fibrosis:

Scoring System and Survival Model. American Journal of Respiratory and

Critical Care Medicine, 164(7):1171–1181, 2001. 40



BIBLIOGRAPHY 135

[63] An Zhao, Eyjolfur Gudmundsson, Nesrin Mogulkoc, Coline van Moorsel,

Tamera J Corte, Pardeep Vasudev, Chiara Romei, Robert Chapman, Tim J M

Wallis, Emma Denneny, et al. Mortality Surrogates in Combined Pulmonary

Fibrosis and Emphysema. The European Respiratory Journal, 2023. 41

[64] Fasihul A Khan, Iain Stewart, Samuel Moss, Laura Fabbri, Karen A Robinson,

Simon Johnson, and R Gisli Jenkins. Three month fvc change: a trial endpoint

for ipf based on individual participant data meta-analysis. medRxiv, pages

2021–09, 2021. 41

[65] Julie Morisset, Eric Vittinghoff, Bo Young Lee, Roberto Tonelli, Xiaowen

Hu, Brett M Elicker, Jay H Ryu, Kirk D Jones, Stefania Cerri, Andreina

Manfredi, Marco Sebastiani, Andrew J Gross, Brett Ley, Paul J Wolters,

Talmadge E King Jr, Dong Soon Kim, Harold R Collard, and Joyce S Lee.

The Performance of the GAP Model in Patients with Rheumatoid Arthritis

Associated Interstitial Lung Disease. Respiratory Medicine, 127:51–56, 2017.

41

[66] Xuening Wu, Chengsheng Yin, Xianqiu Chen, Yuan Zhang, Yiliang Su,

Jingyun Shi, Dong Weng, Xing Jiang, Aihong Zhang, Wenqiang Zhang, and

Huiping Li. Idiopathic Pulmonary Fibrosis Mortality Risk Prediction Based

on Artificial Intelligence: the CTPF Model. Frontiers in Pharmacology, 13,

2022. 41

[67] Dong Soon Kim, Harold R Collard, and Talmadge E King Jr. Classification

and Natural History of the Idiopathic Interstitial Pneumonias. Proceedings of

the American Thoracic Society, 3(4):285–292, 2006. 41

[68] David M Hansell, Alexander A Bankier, Heber MacMahon, Theresa C

McLoud, Nestor L Muller, and Jacques Remy. Fleischner Society: Glos-



BIBLIOGRAPHY 136

sary of Terms for Thoracic Imaging. Radiology, 246(3):697–722, 2008. 41,

42

[69] Bruno Hochhegger, Edson Marchiori, Matheus Zanon, Adalberto Sperb Rubin,

Renata Fragomeni, Stephan Altmayer, Carlos Roberto Ribeiro Carvalho, and

Bruno Guedes Baldi. Imaging in Idiopathic Pulmonary Fibrosis: Diagnosis

and Mimics. Clinics, 74, 2019. 41

[70] Emre Egriboz, Furkan Kaynar, Songül Varlı Albayrak, Benan Müsellim, and
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