
1 
 

PopCluster: A population genetics model-based toolset for simulating, inferring and 

visualizing individual admixture and population structure 

 

 

Jinliang Wang 

Institute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom  



2 
 

Left running head: J Wang 

Right running head: Population admixture analysis  

Key words: admixture, population structure, markers, hybridization, clustering analysis 

Corresponding author: 

    Jinliang Wang 

    Institute of Zoology 

    Regent’s Park 

    London NW1 4RY 

    United Kingdom 

    Tel: 0044 20 74496620 

    Fax: 0044 20 75862870 

    Email: jinliang.wang@ioz.ac.uk  



3 
 

Abstract 

In this computer note I introduce software, PopCluster, that implements a new likelihood 

method for unsupervised population structure analysis from marker data. To infer a coarse 

population structure, it assumes the mixture model and adopts a simulated annealing 

algorithm to make a maximum likelihood clustering analysis, partitioning the sampled 

individuals into a predefined number of clusters. To deduce a fine population structure, it 

further assumes the admixture model and employs an expectation maximization algorithm to 

estimate individual admixture proportions. PopCluster has many features. First, it is one of 

just a couple of model-based methods that can handle both biallelic and multiallelic markers 

in the same framework. Second, it is the first population structure analysis method that uses 

both Message Passing Interface (MPI) and openMP to exploit multiple CPUs with both 

shared and distributed memories and has the capacity to handle genomic data with millions of 

individuals and millions of loci. Third, the algorithms for both mixture and admixture 

analyses are fast, rendering PopCluster favourably in computational efficiency over previous 

methods in analysing genomic data. Fourth, PopCluster is built for Windows, Linux and Mac 

platforms, and its Windows version has an integrated GUI that can conveniently visualize 

analysis results and facilitate data input. Fifth, its Windows version has a built-in simulation 

module designed to simulate genotype data under admixture, hybridization or migration 

models. PopCluster provides a valuable toolset for researchers to simulate, infer and visualize 

individual admixture and population genetic structure, hybridization and migration using 

marker data.  
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1. INTRODUCTION 

Given a predefined subdivision of a population, it is straightforward to measure, by Wright’s 

FST (Wright, 1931), the differentiation between subpopulations from the marker data of a 

sample of individuals drawn from each subpopulation (Nei, 1973; Weir & Cockerham, 1984). 

Frequently, however, we may have insufficient information to presume any population 

subdivision. Furthermore, individuals sampled from the same location (e.g. the same 

breeding or feeding ground) may come from multiple unknown but well differentiated source 

populations as is the case in mixed stock analysis (e.g. Smouse et al., 1990). In such 

circumstances, it becomes challenging to study population structure purely from the marker 

information of a sample of individuals. Since the seminal work by Pritchard et al. (2000), 

several Bayesian and likelihood methods (e.g. Dawson & Belkhir, 2001; Corander et al., 

2003; Alexander et al., 2009; Frichot et al., 2014) have been developed to make unsupervised 

analysis of population structure from marker data. These methods can be used to learn the 

population structure solely from the sampled genotype data, inferring the most likely number 

of populations represented by the sampled individuals, partitioning the individuals into 

populations, and estimating the ancestry (admixture proportions) of an individual in the 

inferred source populations (Pritchard et al., 2000). 

 The Bayesian method of Pritchard et al. (2000), with improved models on linked loci 

and correlated allele frequencies (e.g. Falush et al. 2003, 2007) and on the use of sample 

group information (Hubisz et al., 2009), is proved to be highly popular because of its high 

accuracy, flexibility (e.g. the ability to handle recessive markers and null alleles), robustness 

(e.g. to unbalanced sampling, Wang, 2017), and user-friendly interface (e.g. with GUI for 

data input and results visualization). However, the method, implemented in software 

STRUCTURE, is only applicable to the analysis of small datasets with a small number of 

markers and individuals. It becomes computationally infeasible to apply to a large sample of 

genomic markers or individuals, especially considering the needs to make multiple replicate 

runs at the same assumed number of populations and at a range of different assumed numbers 

of populations. To handle large genomic SNP data, computationally efficient likelihood 

methods (e.g. Tang, 2005; Alexander et al., 2009; Frichot et al., 2014) and new methods 

using variational Bayesian inference (e.g. Raj et al., 2014; Gopalan et al., 2016) have been 

developed. The software ADMIXTURE (Alexander et al., 2009) that implements the 

likelihood method of Tang (2005) with a fast algorithm gains popularity in analysing 

genomic SNP data. 
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 More recently, I proposed a new likelihood method that makes fast and accurate 

population structure analysis from a sample of individuals genotyped at a few multiallelic 

markers (such as microsatellites) or millions of biallelic markers (such as SNPs) (Wang, 

2022). The method is shown to be more accurate than previous ones when many populations 

are assumed, when populations are little differentiated with intricate structures, or when 

samples drawn from the source populations are small or highly unbalanced in size (Wang, 

2022). It is also more computationally efficient in handling large genomic data than previous 

methods because of its use of fast algorithms and the exploitation of multiple parallel 

computation protocols (e.g. openMP and MPI). In this computer note, I introduce the 

software, PopCluster, which implements the new method with a focus on describing its 

features. More details on how to use the software are described in the user manual included in 

the downloaded PopCluster package.  

2. FEATURES OF THE SOFTWARE 

2.1 Applicable to biallelic and multiallelic markers 

Pritchard et al. (2000) developed the first Bayesian method for an unsupervised population 

structure analysis from markers with any number of alleles at a locus. Many new likelihood 

(e.g. Alexander et al., 2009) or Bayesian (e.g. Raj et al., 2014) methods have been developed 

since then to handle genomic marker data with much improved computational efficiency. 

Unfortunately, however, these new methods invariably assume biallelic codominant markers, 

and cannot be applied to microsatellites and other markers with 3 or more alleles at a locus.  

 Like STRUCTURE, PopCluster implemented a method that can handle markers with 

any number of codominant alleles, including biallelic SNPs and multiallelic microsatellites. 

The model and algorithms are invariable with the number of alleles per locus. However, to 

handle biallelic markers such as SNPs efficiently, a 2-bit encoding system is applied where 

each genotype is encoded by 2 bits such that a four-byte integer can be used to store 16 

genotypes. This is important nowadays to save computer memory in dealing with genomic 

marker data where millions of SNPs can be genotyped for thousands or even millions of 

individuals. The human 1000 genomes phase I dataset (Abecasis et al., 2012), for example, 

has 1092 individuals sampled from 14 different populations across all continents, with each 

individual having 38 million SNP genotypes. The genotype data alone would take 83GB 

RAM when the two alleles of a genotype are coded by two four-byte integers. Using the 2-bit 
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encoding system, the same data take only 5.2GB RAM, small enough to be dealt with by a 

laptop computer.  

2.2 Applicable to unbalanced sampling 

All model-based population structure inference methods developed so far, except for those 

implemented in STRUCTURE and PopCluster, assume a priori that a sampled individual 

comes from each of K source populations at an equal probability of 1/K. The assumption 

essentially dictates that an equal number of individuals are sampled from each source 

population. Realistically, however, the numbers of individuals drawn from different source 

populations are rarely equal and may differ substantially quite often, especially when 

sampling of individuals is made with little knowledge of the geographic distributions of the 

source populations. A good example is sampling individuals from a common breeding or 

feeding ground to identify the hidden structure of populations utilizing the ground (Smouse et 

al., 1990). In such a case, a big or adjacent population may have many individuals and a 

small or distant population may have few individuals included in a sample drawn randomly 

from the ground. Even in the most favourable situation of equal population sizes and equal 

distances from the ground, samples from different source populations may still differ 

substantially because of behaviour difference or uneven distributions of populations in the 

ground, or because of sampling bias.  

 An individual from an unbalanced sample (i.e. a sample containing many individuals 

from one population and few individuals from another population) comes from an over-

represented (under-represented) population at a higher (lower) probability than the equal 

probability of 1/K. This violates the assumption of equal prior ancestry adopted by the 

likelihood or Bayesian admixture analysis methods, causing an over-represented population 

being split and the under-represented populations being merged in the reconstruction of 

population structure as demonstrated using STRUCTURE with simulated data (Puechmaille, 

2016; Wang, 2017). Unfortunately, this problem cannot be solved by increasing marker 

information, and it persists even when genomic data with millions of SNPs are used in the 

analysis. STRUCTURE has a built-in alternative ancestry model which assumes that a 

sampled individual comes from different source populations at different probabilities and is 

used to estimate these probabilities jointly with admixture proportions and population 

specific allele frequencies. The model was shown to provide accurate population structure 

inferences when sampling is unbalanced (Wang, 2017). 
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 PopCluster tackles the unbalanced sampling problem by introducing a scaling scheme 

to minimize the merging of small populations and the split of large populations in clustering 

analysis (Wang, 2022). In brief, PopCluster partitions a sample of N individuals into K 

clusters. The original likelihood of cluster k (=1, 2, …, K), 𝐿𝑘(𝛀𝑘), is first calculated from 

the genotype data. It is then scaled by the cluster size (i.e. number of individuals belonging to 

cluster k), Nk, as ℒ𝑘(𝛀𝑘) = 𝐿𝑘(𝛀𝑘)/(1 + 𝑒𝑠𝑁𝑘/(8𝑁)), where s is the scaling factor taking 

values 1, 2, 3 and 4 for weak, medium, strong and very strong scaling, respectively. ℒ𝑘(𝛀𝑘) 

rather than 𝐿𝑘(𝛀𝑘) is used to assess the plausibility of a clustering configuration.  

Applying this scaling, PopCluster can yield accurate admixture estimates of a highly 

unbalanced sample. An example is shown in Figure 1. As expected, STRUCTURE produced 

much better results with the alternative (unequal) ancestry prior than with the default (equal) 

ancestry prior. However, even the alternative ancestry prior does not preclude the merging of 

lightly-sampled populations and the splitting of heavily-sampled populations. PopCluster 

produced rather messy results when no scaling is applied, but highly accurate results when 

scaling is used. The other methods implemented in ADMIXTURE (Alexander et al., 2009), 

sNMF (Frichot et al., 2014) and SCOPE (Chiu et al., 2022) lack the sophisticated models of 

STRUCTURE and PopCluster to deal with unbalanced sampling. They all generated 

inaccurate admixture estimates for this example dataset, which is quite informative with a set 

of 10000 SNPs. Even when millions of SNPs are used, these methods may still fail to 

uncover the unbalanced population structure (Appendix 1).  

The impact of unbalanced sampling on a population structure analysis depends on 

both the sizes and their relative differences (i.e. unbalance) of the samples drawn from 

different source populations, on the differentiation of the source populations, and on the 

marker information. Example 1 might provide an extreme yet realistic case where most 

samples are small (i.e. only 5 individuals), the samples are highly unbalanced (the largest 

sample has 50 individuals), and the FST is small (0.02) relative to the small and unbalanced 

samples. The performance differences among the methods become less striking with larger 

sample sizes, smaller differences in sample sizes from different source populations, larger FST 

among populations, and more markers. 

In practice, most of the above-mentioned factors (e.g. the extent of unbalance in 

sampling intensity) are unknown. As a result, the strength of scaling (note, no scaling 

corresponds to s=0) most appropriate to a particular dataset is difficult to determine a priori. 
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When some non-genetic information such as sampling locations is available to judge whether 

the marker-based admixture estimates make sense or not, however, some experimentation 

with different strengths of scaling will be rather helpful. When the applied level of scaling 

(s=0,1,2,3,4) is too low, large populations tend to be split and small populations tend to be 

merged. When the applied level of scaling is too high, small populations tend to be merged 

among themselves or with a large population. With the help of some external information 

such as sampling locations, the appropriate scaling level can be determined from the 

admixture assignment analysis. Additionally, it is helpful to conduct and visualize a principal 

components analysis (PCA) of the data, as a means to assess a priori whether imbalance 

exists or not among the clusters and whether scaling should be applied to a PopCluster 

analysis or not. 

2.3 High capacity to handle genomic data 

The power of a population structure analysis using any method, either a non-model based 

method such as PCA or a model based method such as STRUCTURE, depends on the data 

size LN, where L is the number of SNPs and N is the number of sampled individuals 

(Patterson et al., 2006). The structure of a sample containing N/2 individuals from each of 

two populations can be reconstructed when the differentiation between the two populations, 

measured by FST, is larger than 1/√𝐿𝑁 (Patterson et al., 2006). This rule means that more 

data (i.e. higher LN) permits the elucidation of more subtle structure (i.e. lower FST). The fine 

genetic structure of populations with weak differentiation (e.g. FST < 0.01) can still be 

detected and delineated by an analysis of marker data, given the data are sufficiently 

informative (i.e. LN large). For example, if N=L=10000, it is theoretically possible to 

reconstruct the structure of two populations differentiated as little as FST =0.0001, which is 

achieved by only one generation of separation (drift) of populations with an Ne as large as 

10000 (Wright, 1965). 

 With the rapid development of DNA sequencing technology, larger and larger 

datasets are increasingly acquired, paving the way for studying fine-scale genetic structures at 

an unprecedented resolution. The UK’s biobank data, for example, contain genotypes of 

about half a million British individuals across millions of SNPs (Bycroft et al., 2018). 

Datasets in this magnitude of size pose serious challenges for population structure analysis 

methods. One challenge is that the memory required to handle such a big dataset might be 

beyond the capacity of most computers. The genotype matrix of biobank data in PLINK’s 
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most space-saving binary format (.bed file, Purcell et al., 2007) alone requires around 70 GB 

of storage. With some additional necessary working space, the total RAM requirement can 

easily go over 140GB which is well above the RAM capacity of most computers. The second 

challenge is computational time, which might be too long for datasets as large as the UK’s 

biobank data. 

 PopCluster adopts an efficient encoding system in which two bits are used to store a 

biallelic SNP genotype. Therefore, a four-byte integer can be used to encode 16 genotypes. 

This data format is similar to that of PLINK’s .bed file. Adopting this efficient data encoding 

system coupled with the exploitation of distributed memory across nodes of a computer 

cluster, PopCluster’s capacity to handle large genomic data is only limited by the capacity of 

a computer. 

PopCluster also adopts fast algorithms for maximum likelihood clustering analysis 

and admixture analysis. Assuming the mixture model (i.e. no admixture) of Pritchard et al., 

(2000) in clustering analysis, it updates only a small fraction of the variables (e.g. allele 

frequencies) because a cluster reconfiguration usually involves the membership changes of 

only one individual in an iteration. The computational efficiency advantage of PopCluster 

over other programs increases rapidly with an increasing K value (the assumed number of 

populations) in an analysis. For a simulated dataset consisting of 640 individuals genotyped 

at 10000 SNP loci, the running time (without parallelization) of PopCluster and 

ADMIXTURE is compared in Figure 2. While the running time of PopCluster increases 

linearly with K, the running time of ADMIXTURE increases log linearly with K. As a result, 

PopCluster runs many times faster than ADMIXTURE when K becomes large. 

2.4 MPI and openMP parallel computation 

PopCluster is the first admixture analysis program that employs MPI (Message Passing 

Interface) to use an arbitrary number of computer nodes for both storage of data and 

computation. When instructed to use M MPI processes, PopCluster will divide the RAM 

requirement for data storage and working space into M equal slices and each MPI process 

(running on a single node) stores and addresses data located in only one slice. This MPI 

capability essentially removes the memory constraint, as it can use the memory of all nodes 

in a computer cluster. PopCluster’s MPI capability enables it to use as many nodes and cores 

as a computer has to speed up the computation for analysing large genomic data. Further 

speeding up is realized in analysing a large dataset by reducing cache misses, because only a 
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slice (a fraction of 1/M) of data and working space (such as the allele counts at each locus of 

each of K populations) needs to be addressed by any MPI process.  

Like some other programs such as ADMIXTURE (Alexander et al., 2009), 

PopCluster can also employ openMP alone or in combination with MPI in parallel 

computation. OpenMP can exploit the hyperthreading technology to a physical core of some 

types of CPUs and different physical cores in a single node. It cannot use multiple nodes with 

distributed memory. Because all openMP processes share the same memory and address the 

same data and working space, cache misses can be a serious problem in slowing down the 

computation with a large dataset. 

Armed with the 2-bit encoding system, fast algorithms, and multiple parallel 

computational methods (MPI and openMP), PopCluster runs faster than the popular model-

based admixture analysis program, ADMIXTURE, in analysing large genomic data, 

especially when a parallel run is conducted with many threads. Table 1 compares PopCluster 

with ADMIXTURE in the computational time for analysing a large simulated dataset of 500 

individuals and 1000000 SNPs, assuming K=10. For this dataset, PopCluster runs much faster 

than ADMIXTURE, especially when many parallel threads are used in the analyses. The 

computational time for PopCluster is from 45.1% to 3.5% of that for ADMIXTURE when the 

number of parallel threads used by both programs increases from 1 to 32. ADMIXTURE runs 

faster with the use of an increasing number of openMP parallel threads, n, until n reaches a 

small value of 4. It actually slows down the computation with an increasing n when n > 4. 

PopCluster always runs faster with an increasing value of n, no matter it uses MPI or openMP 

for parallel computation. Relatively, MPI is more efficient than openMP, although only a 

single node with shared memory is used in analysing this example dataset. Part of the reason 

is that MPI partitions the data and working space into equal-sized slices and each MPI 

process just needs to store and address one slice, reducing the risks of cache misses. 

ADMIXTURE fails to run much larger datasets with many millions of SNPs. For 

example, I generated a simulated dataset with 100 individuals and 50 million SNPs. 

ADMIXTURE aborts after a few rounds of iterations conducted on the computer cluster (as 

used above for the smaller dataset) despite the allocation of a large RAM (50 GB). In 

contrast, PopCluster can analyse this dataset on the same cluster or on a PC. When many loci 

are available, we can trim the data by choosing a subset of the most ancestry informative 

markers (e.g. Wilkinson et al. 2011) for structure analysis. However, this is suitable only 
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when the original L markers provide more information than necessary for population 

structure and individual admixture analysis (i.e. when FST ≫ 1/√𝐿𝑁 where the differentiation 

among populations is FST and the number of sampled individuals is N, Patterson et al., 2006). 

In the otherwise situations with weak structure or very small sample sizes of individuals, 

every marker contributes information to the analysis and we cannot afford giving up any 

marker data. 

Like ADMIXTURE (Alexander et al., 2009), sNMF (Frichot et al., 2014) and other 

model-based methods proposed for population structure analysis, PopCluster does not model 

linkage disequilibrium (LD) and can be applied to markers no matter they are linked or not 

and no matter they are in linkage equilibrium or not. This means that the genomic data do not 

have to be LD-pruned before they can be analysed for population structure. LD-pruning 

removes some markers and thus reduces the information for use in individual admixture and 

population structure analysis. Wang (2022) applied PopCluster to the analysis of the human 

1000 genomes phase I dataset (Abecasis et al., 2012) with 38 million SNPs without any data 

filtering (based on, for example, LD, data missingness and marker MAF), yielding 

meaningful results of the world-wide human population structure. Without data filtering, as 

much marker information as possible can be used to delineate population structure and the 

analysis is simplified with little arbitrariness in data selection and elimination. 

 

2.5 Multi-platforms and GUI 

PopCluster is written in Fortran and is compiled to produce executables runnable on 

Windows, Mac and Linux platforms. The Windows version has additionally a GUI written in 

VB.net, which facilitates the input of parameters and data and the visualization of population 

structure and individual admixture analysis results. For comparison purposes, the GUI can 

also visualize the admixture analysis results from other programs including STRUCTURE 

(Pritchard et al., 20000), ADMIXTURE (Alexander et al., 2009) and sNMF (Frichot et al., 

2014). All bar charts in Figure 1 were plotted by PopCluster’s GUI, where only the results 

from SCOPE (Chiu et al., 2022) were reformatted before being plotted by PopCluster’s GUI. 

 Like STRUCTURE, PopCluster requires a data file and a parameter file containing 

the values of quite a few parameters such as the assumed K values, the number of replicate 

runs per K value, random number seeds, etc. A user-friendly GUI, shown by Figure 3, helps 

in preparing the two input files for a PopCluster analysis. 
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 In some situations, it is more convenient to use multiple platforms for a PopCluster 

analysis. We can employ PopCluster’s GUI to create the two input files on a PC running 

Windows, copy the two files to a Linux cluster to run PopCluster in parallel using both MPI 

and openMP, and then copy the analysis results back to a PC for visualization. 

 PopCluster’s GUI provides additional functionalities such as data conversion. For 

example, it can convert SNP data in a VCF file to a given format accepted by PopCluster 

and save the reformatted data in a file. The numbers of loci and individuals of the data, 

the information required in setting up a PopCluster project, are also extracted from the 

VCF data and saved to a file.  

2.6 Simulation module 

PopCluster’s Windows version has an integrated simulation module which allows a user to 

simulate genotype data under the admixture model, the hybridization model and the 

migration model. For each model, the module accepts a few parameter values (e.g. number of 

loci, number of simulated populations, number of sampled individuals per population), 

simulates the genotype data using these parameters by assuming unlinked markers in linkage 

equilibrium, and then outputs the simulated data in a user-defined format into a data file. 

Additionally, it outputs the true (simulated) population structure such as individual admixture 

proportions so that the inference from the data by any program can be assessed for accuracy 

against the truth. The simulated data can be analysed directly by PopCluster and 

STRUCTURE. With reformatting by Plink (Purcell et al., 2007), the data can also be 

analysed by programs such as ADMIXTURE and sNMF. 

 For the admixture model, the module can simulate a sample of individuals under the 

spatial admixture model (see Figure 4 as an example) or under the non-spatial admixture 

model. For the latter, the module can simulate populations with a hierarchical or non-

hierarchical subdivision structure. For the hybridization model, the module simulates 

genotype data of individuals from various hybrid classes such as F1, F2, B1, B2 involving 

parents and grandparents from two, three or four source populations. For the migration 

model, the module makes a forward simulation of a set of populations with user-defined 

effective sizes and migration rates over generations until quasi-equilibrium is reached when a 

sample of individuals is taken from each population for population structure analysis, 

including estimating migration rates and effective population sizes. 
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The simulation module is particularly useful for generating replicated datasets to 

investigate factors affecting the power and accuracy of a marker-based population admixture 

analysis. Simulations are also valuable for optimizing the experimental design of a population 

structure study. It is helpful, for example, to determine the suitable sampling intensities 

(number of markers, number of individuals from each location) to yield accurate population 

structure inference. Before initiating an experiment, one can use simulations to generate 

replicated data in conditions similar to those of the conceived study, and to analyse the 

simulated data to get a feel of the estimation power and accuracy. For this same reason, 

simulations are also valuable for training and educational purposes. 

3. CONCLUSION 

PopCluster is a powerful software implementing an efficient population clustering method 

based on the mixture model and the simulated annealing algorithm, and an efficient 

individual admixture analysis method based on the admixture model and the expectation 

maximization algorithm. These fast algorithms coupled with the efficient encoding of 

genotype data (i.e. using 2 bits to store a SNP genotype) and the parallel computation 

capability using both openMP and MPI make PopCluster one of the fastest methods for 

inferring population structure, individual admixture, hybridization and migration from large 

genomic marker data. Its high capacity to handle a large volume of data (e.g. genomic SNPs 

of many individuals) makes it possible to analyse biobank data for understanding population 

structure at an unprecedented resolution. PopCluster is implemented for multiple platforms, 

and its Windows version has an integrated GUI to facilitate data and parameter input and to 

visualize the analysis results in publication-quality graphs. Furthermore, the GUI has a 

simulation module which allows a user to simulate replicated genotype data under several 

optional admixture models, the hybridization model and the migration model. It could 

become a valuable tool for the research and teaching in the fields of conservation genetics, 

evolutionary genetics, and molecular ecology. 

PopCluster can be downloaded freely from https://www.zsl.org/about-

zsl/resources/software/popcluster. The release has separate packages downloadable 

independently for the Windows, Mac and Linux platforms. Each package contains the 

executables, user’s manual, and an example dataset.  
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TABLE 1  Computational time taken by PopCluster and ADMIXTURE for analysing a 

simulated dataset 

Number of 

Parallel threads 

Running time (in minutes) by program (parallel protocol) 

ADMIXTURE PopCluster (MPI) PopCluster (openMP) 

1 397 179 179 

2 208 105 125 

4 162 54 92 

8 216 30 61 

16 253 17 57 

32 228 8 46 

The simulated dataset consists of 500 individuals, with 50 from each of K=10 populations. 

Each individual is genotyped at 1 million SNP loci. The analyses (assuming K=10) were run 

on one Linux cluster node which has an Intel(R) Xeon(R) Gold 6140 CPU (@ 2.30GHz) with 

36 cores. The RAM requested was 1GB while the maximum RAM actually used was 0.5GB 

in analysing this dataset. Running time is in minutes.  For each program using each number 

of parallel threads, 3 independent replicate runs (with different random number seeds) were 

made and the average running time is reported. 
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FIGURE LEGENDS 

FIGURE 1  The population structure of a simulated sample of 75 individuals. The true 

(simulated) structure is shown in the 1st row, with 50 individuals (1 to 50 on the x axis) 

coming from population 1, 5 individuals (51 to 55) from population 2, 5 individuals (56 to 

60) from population 3, 5 individuals (61 to 65) from population 4, 5 individuals (66 to 70) 

from population 5, and 5 individuals (71 to 75) from population 6. The FST of each population 

is assumed 0.02, and each sampled individual is genotyped at 10000 SNPs. The structure was 

inferred from the genotype data by PopCluster with no scaling (scaling parameter s = 0, 

shown on the 2ed row) and with scaling (scaling parameter s = 1, shown on the 3rd row), by 

STRUCTURE with the default equal ancestry prior (shown on the 4th row) and with the 

alternative unequal ancestry prior (shown on the 5th row), by ADMIXTURE (shown on the 

6th row), by sNMF (shown on the 7th row) and by SCOPE (shown on the 8th row).  

FIGURE 2  A comparison of the running times of PopCluster and Admixture in analyzing a 

simulated dataset at different K values. The dataset consists of 640 individuals genotyped at 

10000 SNP loci. For each program and each K value, 10 replicate runs with different random 

number seeds were conducted and the mean running time (in minutes) is presented. All runs 

were conducted on a Linux cluster (with an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz) 

using a single thread (i.e. no parallelization). 

FIGURE 3  The PopCluster Windows GUI for setting up a new project 

FIGURE 4  An example population structure generated by PopCluster’s simulation module 

under the spatial admixture model. The sample contains N=500 individuals in the spatial 

admixture model with K=5 source populations whose ancestries are denoted in pink, 

blue, red, green and light blue colours. 
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Appendix 1: An example showing the impact of unbalanced sampling on the structure 

analysis of a dataset with 2.5 million SNPs 

A dataset was simulated using the same parameters as in Figure 1, except for the 

differentiation among populations (which was FST = 0.0015 instead of FST = 0.02) and the 

number of SNPs (which was L=2.5 million instead of L=10000). The data were not analyzed 

by STRUCTURE, because of its unrealistically long running time. They were analyzed by 

PopCluster (with scaling parameter s = 1), ADMIXTURE, sNMF and SCOPE, using default 

parameter settings with each method. The admixture proportions simulated and estimated by 

each method are shown below. Both PopCluster (with scaling parameter s = 1) and, to a 

much less extent, SCOPE recover the true (simulated) structure, while the other software, 

ADMIXTURE and sNMF, give rather poor estimates of the admixture proportions. 
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