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Abstract

In this computer note I introduce software, PopCluster, that implements a new likelihood
method for unsupervised population structure analysis from marker data. To infer a coarse
population structure, it assumes the mixture model and adopts a simulated annealing
algorithm to make a maximum likelihood clustering analysis, partitioning the sampled
individuals into a predefined number of clusters. To deduce a fine population structure, it
further assumes the admixture model and employs an expectation maximization algorithm to
estimate individual admixture proportions. PopCluster has many features. First, it is one of
just a couple of model-based methods that can handle both biallelic and multiallelic markers
in the same framework. Second, it is the first population structure analysis method that uses
both Message Passing Interface (MPI) and openMP to exploit multiple CPUs with both
shared and distributed memories and has the capacity to handle genomic data with millions of
individuals and millions of loci. Third, the algorithms for both mixture and admixture
analyses are fast, rendering PopCluster favourably in computational efficiency over previous
methods in analysing genomic data. Fourth, PopCluster is built for Windows, Linux and Mac
platforms, and its Windows version has an integrated GUI that can conveniently visualize
analysis results and facilitate data input. Fifth, its Windows version has a built-in simulation
module designed to simulate genotype data under admixture, hybridization or migration
models. PopCluster provides a valuable toolset for researchers to simulate, infer and visualize
individual admixture and population genetic structure, hybridization and migration using

marker data.



1. INTRODUCTION

Given a predefined subdivision of a population, it is straightforward to measure, by Wright’s
Fsr (Wright, 1931), the differentiation between subpopulations from the marker data of a
sample of individuals drawn from each subpopulation (Nei, 1973; Weir & Cockerham, 1984).
Frequently, however, we may have insufficient information to presume any population
subdivision. Furthermore, individuals sampled from the same location (e.g. the same
breeding or feeding ground) may come from multiple unknown but well differentiated source
populations as is the case in mixed stock analysis (e.g. Smouse et al., 1990). In such
circumstances, it becomes challenging to study population structure purely from the marker
information of a sample of individuals. Since the seminal work by Pritchard et al. (2000),
several Bayesian and likelihood methods (e.g. Dawson & Belkhir, 2001; Corander et al.,
2003; Alexander et al., 2009; Frichot et al., 2014) have been developed to make unsupervised
analysis of population structure from marker data. These methods can be used to learn the
population structure solely from the sampled genotype data, inferring the most likely number
of populations represented by the sampled individuals, partitioning the individuals into
populations, and estimating the ancestry (admixture proportions) of an individual in the

inferred source populations (Pritchard et al., 2000).

The Bayesian method of Pritchard et al. (2000), with improved models on linked loci
and correlated allele frequencies (e.g. Falush et al. 2003, 2007) and on the use of sample
group information (Hubisz et al., 2009), is proved to be highly popular because of its high
accuracy, flexibility (e.g. the ability to handle recessive markers and null alleles), robustness
(e.g. to unbalanced sampling, Wang, 2017), and user-friendly interface (e.g. with GUI for
data input and results visualization). However, the method, implemented in software
STRUCTURE, is only applicable to the analysis of small datasets with a small number of
markers and individuals. It becomes computationally infeasible to apply to a large sample of
genomic markers or individuals, especially considering the needs to make multiple replicate
runs at the same assumed number of populations and at a range of different assumed numbers
of populations. To handle large genomic SNP data, computationally efficient likelihood
methods (e.g. Tang, 2005; Alexander et al., 2009; Frichot et al., 2014) and new methods
using variational Bayesian inference (e.g. Raj et al., 2014; Gopalan et al., 2016) have been
developed. The software ADMIXTURE (Alexander et al., 2009) that implements the
likelihood method of Tang (2005) with a fast algorithm gains popularity in analysing
genomic SNP data.



More recently, I proposed a new likelihood method that makes fast and accurate
population structure analysis from a sample of individuals genotyped at a few multiallelic
markers (such as microsatellites) or millions of biallelic markers (such as SNPs) (Wang,
2022). The method is shown to be more accurate than previous ones when many populations
are assumed, when populations are little differentiated with intricate structures, or when
samples drawn from the source populations are small or highly unbalanced in size (Wang,
2022). It is also more computationally efficient in handling large genomic data than previous
methods because of its use of fast algorithms and the exploitation of multiple parallel
computation protocols (e.g. openMP and MPI). In this computer note, I introduce the
software, PopCluster, which implements the new method with a focus on describing its
features. More details on how to use the software are described in the user manual included in

the downloaded PopCluster package.
2. FEATURES OF THE SOFTWARE
2.1 Applicable to biallelic and multiallelic markers

Pritchard et al. (2000) developed the first Bayesian method for an unsupervised population
structure analysis from markers with any number of alleles at a locus. Many new likelihood
(e.g. Alexander et al., 2009) or Bayesian (e.g. Raj et al., 2014) methods have been developed
since then to handle genomic marker data with much improved computational efficiency.
Unfortunately, however, these new methods invariably assume biallelic codominant markers,

and cannot be applied to microsatellites and other markers with 3 or more alleles at a locus.

Like STRUCTURE, PopCluster implemented a method that can handle markers with
any number of codominant alleles, including biallelic SNPs and multiallelic microsatellites.
The model and algorithms are invariable with the number of alleles per locus. However, to
handle biallelic markers such as SNPs efficiently, a 2-bit encoding system is applied where
each genotype is encoded by 2 bits such that a four-byte integer can be used to store 16
genotypes. This is important nowadays to save computer memory in dealing with genomic
marker data where millions of SNPs can be genotyped for thousands or even millions of
individuals. The human 1000 genomes phase I dataset (Abecasis et al., 2012), for example,
has 1092 individuals sampled from 14 different populations across all continents, with each
individual having 38 million SNP genotypes. The genotype data alone would take 83GB
RAM when the two alleles of a genotype are coded by two four-byte integers. Using the 2-bit



encoding system, the same data take only 5.2GB RAM, small enough to be dealt with by a

laptop computer.
2.2 Applicable to unbalanced sampling

All model-based population structure inference methods developed so far, except for those
implemented in STRUCTURE and PopCluster, assume a priori that a sampled individual
comes from each of K source populations at an equal probability of 1/K. The assumption
essentially dictates that an equal number of individuals are sampled from each source
population. Realistically, however, the numbers of individuals drawn from different source
populations are rarely equal and may differ substantially quite often, especially when
sampling of individuals is made with little knowledge of the geographic distributions of the
source populations. A good example is sampling individuals from a common breeding or
feeding ground to identify the hidden structure of populations utilizing the ground (Smouse et
al., 1990). In such a case, a big or adjacent population may have many individuals and a
small or distant population may have few individuals included in a sample drawn randomly
from the ground. Even in the most favourable situation of equal population sizes and equal
distances from the ground, samples from different source populations may still differ
substantially because of behaviour difference or uneven distributions of populations in the

ground, or because of sampling bias.

An individual from an unbalanced sample (i.e. a sample containing many individuals
from one population and few individuals from another population) comes from an over-
represented (under-represented) population at a higher (lower) probability than the equal
probability of 1/K. This violates the assumption of equal prior ancestry adopted by the
likelihood or Bayesian admixture analysis methods, causing an over-represented population
being split and the under-represented populations being merged in the reconstruction of
population structure as demonstrated using STRUCTURE with simulated data (Puechmaille,
2016; Wang, 2017). Unfortunately, this problem cannot be solved by increasing marker
information, and it persists even when genomic data with millions of SNPs are used in the
analysis. STRUCTURE has a built-in alternative ancestry model which assumes that a
sampled individual comes from different source populations at different probabilities and is
used to estimate these probabilities jointly with admixture proportions and population
specific allele frequencies. The model was shown to provide accurate population structure

inferences when sampling is unbalanced (Wang, 2017).



PopCluster tackles the unbalanced sampling problem by introducing a scaling scheme
to minimize the merging of small populations and the split of large populations in clustering
analysis (Wang, 2022). In brief, PopCluster partitions a sample of N individuals into K
clusters. The original likelihood of cluster k (=1, 2, ..., K), L, (), is first calculated from
the genotype data. It is then scaled by the cluster size (i.e. number of individuals belonging to
cluster &), Ni, as L, () = L (Qx) /(1 + e5Ne/BN)) where s is the scaling factor taking
values 1, 2, 3 and 4 for weak, medium, strong and very strong scaling, respectively. L, (Q;)

rather than Lj () is used to assess the plausibility of a clustering configuration.

Applying this scaling, PopCluster can yield accurate admixture estimates of a highly
unbalanced sample. An example is shown in Figure 1. As expected, STRUCTURE produced
much better results with the alternative (unequal) ancestry prior than with the default (equal)
ancestry prior. However, even the alternative ancestry prior does not preclude the merging of
lightly-sampled populations and the splitting of heavily-sampled populations. PopCluster
produced rather messy results when no scaling is applied, but highly accurate results when
scaling is used. The other methods implemented in ADMIXTURE (Alexander et al., 2009),
sNMF (Frichot et al., 2014) and SCOPE (Chiu et al., 2022) lack the sophisticated models of
STRUCTURE and PopCluster to deal with unbalanced sampling. They all generated
inaccurate admixture estimates for this example dataset, which is quite informative with a set
of 10000 SNPs. Even when millions of SNPs are used, these methods may still fail to

uncover the unbalanced population structure (Appendix 1).

The impact of unbalanced sampling on a population structure analysis depends on
both the sizes and their relative differences (i.e. unbalance) of the samples drawn from
different source populations, on the differentiation of the source populations, and on the
marker information. Example 1 might provide an extreme yet realistic case where most
samples are small (i.e. only 5 individuals), the samples are highly unbalanced (the largest
sample has 50 individuals), and the Fs7 is small (0.02) relative to the small and unbalanced
samples. The performance differences among the methods become less striking with larger
sample sizes, smaller differences in sample sizes from different source populations, larger Fsr

among populations, and more markers.

In practice, most of the above-mentioned factors (e.g. the extent of unbalance in
sampling intensity) are unknown. As a result, the strength of scaling (note, no scaling

corresponds to s=0) most appropriate to a particular dataset is difficult to determine a priori.



When some non-genetic information such as sampling locations is available to judge whether
the marker-based admixture estimates make sense or not, however, some experimentation
with different strengths of scaling will be rather helpful. When the applied level of scaling
(s=0,1,2,3,4) is too low, large populations tend to be split and small populations tend to be
merged. When the applied level of scaling is too high, small populations tend to be merged
among themselves or with a large population. With the help of some external information
such as sampling locations, the appropriate scaling level can be determined from the
admixture assignment analysis. Additionally, it is helpful to conduct and visualize a principal
components analysis (PCA) of the data, as a means to assess a priori whether imbalance
exists or not among the clusters and whether scaling should be applied to a PopCluster

analysis or not.
2.3 High capacity to handle genomic data

The power of a population structure analysis using any method, either a non-model based
method such as PCA or a model based method such as STRUCTURE, depends on the data
size LN, where L is the number of SNPs and N is the number of sampled individuals
(Patterson et al., 2006). The structure of a sample containing N/2 individuals from each of

two populations can be reconstructed when the differentiation between the two populations,

measured by Fir, is larger than 1/+/LN (Patterson et al., 2006). This rule means that more
data (i.e. higher LN) permits the elucidation of more subtle structure (i.e. lower Fs7). The fine
genetic structure of populations with weak differentiation (e.g. Fs7<0.01) can still be
detected and delineated by an analysis of marker data, given the data are sufficiently
informative (i.e. LN large). For example, if N=L=10000, it is theoretically possible to
reconstruct the structure of two populations differentiated as little as F's7=0.0001, which is
achieved by only one generation of separation (drift) of populations with an N. as large as

10000 (Wright, 1965).

With the rapid development of DNA sequencing technology, larger and larger
datasets are increasingly acquired, paving the way for studying fine-scale genetic structures at
an unprecedented resolution. The UK’s biobank data, for example, contain genotypes of
about half a million British individuals across millions of SNPs (Bycroft et al., 2018).
Datasets in this magnitude of size pose serious challenges for population structure analysis
methods. One challenge is that the memory required to handle such a big dataset might be
beyond the capacity of most computers. The genotype matrix of biobank data in PLINK’s



most space-saving binary format (.bed file, Purcell et al., 2007) alone requires around 70 GB
of storage. With some additional necessary working space, the total RAM requirement can
easily go over 140GB which is well above the RAM capacity of most computers. The second
challenge is computational time, which might be too long for datasets as large as the UK’s

biobank data.

PopCluster adopts an efficient encoding system in which two bits are used to store a
biallelic SNP genotype. Therefore, a four-byte integer can be used to encode 16 genotypes.
This data format is similar to that of PLINK’s .bed file. Adopting this efficient data encoding
system coupled with the exploitation of distributed memory across nodes of a computer
cluster, PopCluster’s capacity to handle large genomic data is only limited by the capacity of

a computer.

PopCluster also adopts fast algorithms for maximum likelihood clustering analysis
and admixture analysis. Assuming the mixture model (i.e. no admixture) of Pritchard et al.,
(2000) in clustering analysis, it updates only a small fraction of the variables (e.g. allele
frequencies) because a cluster reconfiguration usually involves the membership changes of
only one individual in an iteration. The computational efficiency advantage of PopCluster
over other programs increases rapidly with an increasing K value (the assumed number of
populations) in an analysis. For a simulated dataset consisting of 640 individuals genotyped
at 10000 SNP loci, the running time (without parallelization) of PopCluster and
ADMIXTURE is compared in Figure 2. While the running time of PopCluster increases
linearly with K, the running time of ADMIXTURE increases log linearly with K. As a result,
PopCluster runs many times faster than ADMIXTURE when K becomes large.

2.4 MPI and openMP parallel computation

PopCluster is the first admixture analysis program that employs MPI (Message Passing
Interface) to use an arbitrary number of computer nodes for both storage of data and
computation. When instructed to use M MPI processes, PopCluster will divide the RAM
requirement for data storage and working space into M equal slices and each MPI process
(running on a single node) stores and addresses data located in only one slice. This MPI
capability essentially removes the memory constraint, as it can use the memory of all nodes
in a computer cluster. PopCluster’s MPI capability enables it to use as many nodes and cores
as a computer has to speed up the computation for analysing large genomic data. Further

speeding up is realized in analysing a large dataset by reducing cache misses, because only a
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slice (a fraction of 1/M) of data and working space (such as the allele counts at each locus of

each of K populations) needs to be addressed by any MPI process.

Like some other programs such as ADMIXTURE (Alexander et al., 2009),
PopCluster can also employ openMP alone or in combination with MPI in parallel
computation. OpenMP can exploit the hyperthreading technology to a physical core of some
types of CPUs and different physical cores in a single node. It cannot use multiple nodes with
distributed memory. Because all openMP processes share the same memory and address the
same data and working space, cache misses can be a serious problem in slowing down the

computation with a large dataset.

Armed with the 2-bit encoding system, fast algorithms, and multiple parallel
computational methods (MPI and openMP), PopCluster runs faster than the popular model-
based admixture analysis program, ADMIXTURE, in analysing large genomic data,
especially when a parallel run is conducted with many threads. Table 1 compares PopCluster
with ADMIXTURE in the computational time for analysing a large simulated dataset of 500
individuals and 1000000 SNPs, assuming K=10. For this dataset, PopCluster runs much faster
than ADMIXTURE, especially when many parallel threads are used in the analyses. The
computational time for PopCluster is from 45.1% to 3.5% of that for ADMIXTURE when the
number of parallel threads used by both programs increases from 1 to 32. ADMIXTURE runs
faster with the use of an increasing number of openMP parallel threads, n, until n reaches a
small value of 4. It actually slows down the computation with an increasing » when n > 4.
PopCluster always runs faster with an increasing value of #, no matter it uses MPI or openMP
for parallel computation. Relatively, MPI is more efficient than openMP, although only a
single node with shared memory is used in analysing this example dataset. Part of the reason
is that MPI partitions the data and working space into equal-sized slices and each MPI

process just needs to store and address one slice, reducing the risks of cache misses.

ADMIXTURE fails to run much larger datasets with many millions of SNPs. For
example, I generated a simulated dataset with 100 individuals and 50 million SNPs.
ADMIXTURE aborts after a few rounds of iterations conducted on the computer cluster (as
used above for the smaller dataset) despite the allocation of a large RAM (50 GB). In
contrast, PopCluster can analyse this dataset on the same cluster or on a PC. When many loci
are available, we can trim the data by choosing a subset of the most ancestry informative

markers (e.g. Wilkinson et al. 2011) for structure analysis. However, this is suitable only
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when the original L markers provide more information than necessary for population

structure and individual admixture analysis (i.e. when Fsr > 1/+/LN where the differentiation
among populations is Fsr and the number of sampled individuals is N, Patterson et al., 2006).
In the otherwise situations with weak structure or very small sample sizes of individuals,
every marker contributes information to the analysis and we cannot afford giving up any

marker data.

Like ADMIXTURE (Alexander et al., 2009), sNMF (Frichot et al., 2014) and other
model-based methods proposed for population structure analysis, PopCluster does not model
linkage disequilibrium (LD) and can be applied to markers no matter they are linked or not
and no matter they are in linkage equilibrium or not. This means that the genomic data do not
have to be LD-pruned before they can be analysed for population structure. LD-pruning
removes some markers and thus reduces the information for use in individual admixture and
population structure analysis. Wang (2022) applied PopCluster to the analysis of the human
1000 genomes phase I dataset (Abecasis et al., 2012) with 38 million SNPs without any data
filtering (based on, for example, LD, data missingness and marker MAF), yielding
meaningful results of the world-wide human population structure. Without data filtering, as
much marker information as possible can be used to delineate population structure and the

analysis is simplified with little arbitrariness in data selection and elimination.

2.5 Multi-platforms and GUI

PopCluster is written in Fortran and is compiled to produce executables runnable on
Windows, Mac and Linux platforms. The Windows version has additionally a GUI written in
VB.net, which facilitates the input of parameters and data and the visualization of population
structure and individual admixture analysis results. For comparison purposes, the GUI can
also visualize the admixture analysis results from other programs including STRUCTURE
(Pritchard et al., 20000), ADMIXTURE (Alexander et al., 2009) and sSNMF (Frichot et al.,
2014). All bar charts in Figure 1 were plotted by PopCluster’s GUI, where only the results
from SCOPE (Chiu et al., 2022) were reformatted before being plotted by PopCluster’s GUI.

Like STRUCTURE, PopCluster requires a data file and a parameter file containing
the values of quite a few parameters such as the assumed K values, the number of replicate
runs per K value, random number seeds, etc. A user-friendly GUI, shown by Figure 3, helps

in preparing the two input files for a PopCluster analysis.
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In some situations, it is more convenient to use multiple platforms for a PopCluster
analysis. We can employ PopCluster’s GUI to create the two input files on a PC running
Windows, copy the two files to a Linux cluster to run PopCluster in parallel using both MPI

and openMP, and then copy the analysis results back to a PC for visualization.

PopCluster’s GUI provides additional functionalities such as data conversion. For
example, it can convert SNP data in a VCF file to a given format accepted by PopCluster
and save the reformatted data in a file. The numbers of loci and individuals of the data,
the information required in setting up a PopCluster project, are also extracted from the

VCF data and saved to a file.

2.6 Simulation module

PopCluster’s Windows version has an integrated simulation module which allows a user to
simulate genotype data under the admixture model, the hybridization model and the
migration model. For each model, the module accepts a few parameter values (e.g. number of
loci, number of simulated populations, number of sampled individuals per population),
simulates the genotype data using these parameters by assuming unlinked markers in linkage
equilibrium, and then outputs the simulated data in a user-defined format into a data file.
Additionally, it outputs the true (simulated) population structure such as individual admixture
proportions so that the inference from the data by any program can be assessed for accuracy
against the truth. The simulated data can be analysed directly by PopCluster and
STRUCTURE. With reformatting by Plink (Purcell et al., 2007), the data can also be
analysed by programs such as ADMIXTURE and sNMF.

For the admixture model, the module can simulate a sample of individuals under the
spatial admixture model (see Figure 4 as an example) or under the non-spatial admixture
model. For the latter, the module can simulate populations with a hierarchical or non-
hierarchical subdivision structure. For the hybridization model, the module simulates
genotype data of individuals from various hybrid classes such as F1, F2, B1, B2 involving
parents and grandparents from two, three or four source populations. For the migration
model, the module makes a forward simulation of a set of populations with user-defined
effective sizes and migration rates over generations until quasi-equilibrium is reached when a
sample of individuals is taken from each population for population structure analysis,

including estimating migration rates and effective population sizes.
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The simulation module is particularly useful for generating replicated datasets to
investigate factors affecting the power and accuracy of a marker-based population admixture
analysis. Simulations are also valuable for optimizing the experimental design of a population
structure study. It is helpful, for example, to determine the suitable sampling intensities
(number of markers, number of individuals from each location) to yield accurate population
structure inference. Before initiating an experiment, one can use simulations to generate
replicated data in conditions similar to those of the conceived study, and to analyse the
simulated data to get a feel of the estimation power and accuracy. For this same reason,

simulations are also valuable for training and educational purposes.
3. CONCLUSION

PopCluster is a powerful software implementing an efficient population clustering method
based on the mixture model and the simulated annealing algorithm, and an efficient
individual admixture analysis method based on the admixture model and the expectation
maximization algorithm. These fast algorithms coupled with the efficient encoding of
genotype data (i.e. using 2 bits to store a SNP genotype) and the parallel computation
capability using both openMP and MPI make PopCluster one of the fastest methods for
inferring population structure, individual admixture, hybridization and migration from large
genomic marker data. Its high capacity to handle a large volume of data (e.g. genomic SNPs
of many individuals) makes it possible to analyse biobank data for understanding population
structure at an unprecedented resolution. PopCluster is implemented for multiple platforms,
and its Windows version has an integrated GUI to facilitate data and parameter input and to
visualize the analysis results in publication-quality graphs. Furthermore, the GUI has a
simulation module which allows a user to simulate replicated genotype data under several
optional admixture models, the hybridization model and the migration model. It could
become a valuable tool for the research and teaching in the fields of conservation genetics,

evolutionary genetics, and molecular ecology.

PopCluster can be downloaded freely from https://www.zsl.org/about-
zsl/resources/software/popcluster. The release has separate packages downloadable
independently for the Windows, Mac and Linux platforms. Each package contains the

executables, user’s manual, and an example dataset.
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TABLE 1 Computational time taken by PopCluster and ADMIXTURE for analysing a

simulated dataset

Number of Running time (in minutes) by program (parallel protocol)
Parallel threads ADMIXTURE PopCluster (MPI) | PopCluster (openMP)
1 397 179 179
2 208 105 125
4 162 54 92
8 216 30 61
16 253 17 57
32 228 8 46

The simulated dataset consists of 500 individuals, with 50 from each of K=10 populations.

Each individual is genotyped at 1 million SNP loci. The analyses (assuming K=10) were run
on one Linux cluster node which has an Intel(R) Xeon(R) Gold 6140 CPU (@ 2.30GHz) with
36 cores. The RAM requested was 1GB while the maximum RAM actually used was 0.5GB

in analysing this dataset. Running time is in minutes. For each program using each number

of parallel threads, 3 independent replicate runs (with different random number seeds) were

made and the average running time is reported.
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FIGURE LEGENDS

FIGURE 1 The population structure of a simulated sample of 75 individuals. The true
(simulated) structure is shown in the 1% row, with 50 individuals (1 to 50 on the x axis)
coming from population 1, 5 individuals (51 to 55) from population 2, 5 individuals (56 to
60) from population 3, 5 individuals (61 to 65) from population 4, 5 individuals (66 to 70)
from population 5, and 5 individuals (71 to 75) from population 6. The Fsr of each population
is assumed 0.02, and each sampled individual is genotyped at 10000 SNPs. The structure was
inferred from the genotype data by PopCluster with no scaling (scaling parameter s = 0,
shown on the 2ed row) and with scaling (scaling parameter s = 1, shown on the 3rd row), by
STRUCTURE with the default equal ancestry prior (shown on the 4" row) and with the
alternative unequal ancestry prior (shown on the 5 row), by ADMIXTURE (shown on the
6 row), by sSNMF (shown on the 7" row) and by SCOPE (shown on the 8™ row).

FIGURE 2 A comparison of the running times of PopCluster and Admixture in analyzing a
simulated dataset at different K values. The dataset consists of 640 individuals genotyped at
10000 SNP loci. For each program and each K value, 10 replicate runs with different random
number seeds were conducted and the mean running time (in minutes) is presented. All runs
were conducted on a Linux cluster (with an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz)

using a single thread (i.e. no parallelization).

FIGURE 3 The PopCluster Windows GUI for setting up a new project

FIGURE 4 An example population structure generated by PopCluster’s simulation module
under the spatial admixture model. The sample contains N=500 individuals in the spatial
admixture model with K=5 source populations whose ancestries are denoted in pink,

blue, red, green and light blue colours.
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Appendix 1: An example showing the impact of unbalanced sampling on the structure

analysis of a dataset with 2.5 million SNPs

A dataset was simulated using the same parameters as in Figure 1, except for the
differentiation among populations (which was Fsr = 0.0015 instead of Fsr = 0.02) and the
number of SNPs (which was L=2.5 million instead of L=10000). The data were not analyzed
by STRUCTURE, because of its unrealistically long running time. They were analyzed by
PopCluster (with scaling parameter s = 1), ADMIXTURE, sNMF and SCOPE, using default
parameter settings with each method. The admixture proportions simulated and estimated by
each method are shown below. Both PopCluster (with scaling parameter s = 1) and, to a
much less extent, SCOPE recover the true (simulated) structure, while the other software,

ADMIXTURE and sNMF, give rather poor estimates of the admixture proportions.
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