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Abstract

This work explores the weak gravitational regime and the cosmological implications of a re-

cently proposed unification framework known as classical-quantum (CQ) theory. CQ dynamics

attempts to coherently unify quantum physics with classical general relativity by stochastically

coupling the two theories.

After an overview of the background material, which includes three different formulations

of the CQ framework, this work explores the Newtonian limit of classical general relativity

coupled with quantum matter. Due to the backreaction generated by the coupling, we find that

the gravitational field diffuses around Poisson’s equation while quantum matter decoheres into

mass eigenstates. We study the bounds in the coefficients regulating diffusion and decoherence

and compare and contrast with previous works on the interaction between a classical Newtonian

potential and quantum matter.

Secondly, we focus on deriving the Newtonian limit of classical-quantum Nordström’s theory

of gravitation to show that a self-consistent scalar theory of gravity leads to the same results

obtained from its general relativistic counterpart. This model reinforces the previous results and

highlights the consistency of the Newtonian limit with a diffeomorphism-invariant CQ theory

of gravity.

Lastly, we delve deeper into the gravitational sector of CQ theories of gravity to explore the

consequences of stochasticity on the rotational curves of galaxies. We find evidence that the

presence of stochastic noise could act to explain the phenomenology usually attributed to dark

matter. A deviation from the expected general relativistic behaviour appears at low accelera-

tions and connects it with cosmological parameters. A dark energy-like effect is expected even

if the starting theory does not have a bare cosmological constant. We propose an explanation
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and compare our results with tabletop experiments to understand how large-scale diffusion and

local noise might relate.

We expect these results to be relevant to future theoretical and experimental tests of the

quantum nature of gravity.
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Impact Statement

In recent years, attempts to reconcile gravity and quantum theory have broadened to include

hybrid theories in which spacetime remains classical while matter and energy are quantised.

While known since the nineties, hybrid approaches have gained momentum after the develop-

ment of the classical-quantum (CQ) formalism of [1]. This program presents itself as a plausible

alternative to quantum gravity, proposing a resolution to the long-standing incompatibility of

general relativity and quantum physics without the need to quantise gravity. The framework

preserves the classical nature of gravity and the quantum nature of matter fields while coupling

them coherently. Their interaction results in the classical system undergoing a noisy diffusion

process while the quantum system decoheres as if it is being weakly measured. While the the-

oretical foundations of the framework have been already laid out in [1, 2, 3, 4, 5], including

formulations of the dynamics in terms of master equation, stochastic differential equations and

path integrals, experimental predictions have been primarily limited to tabletop experiments

obtained by directly considering a Newtonian gravitational field [3]. Therefore, results did not

originate from taking the limit of the full general-relativistic CQ theory.

This work takes on the task of deriving such a limit from the complete theory and providing

testable experimental predictions. Given that, within good approximation, we live in weak

gravitational regimes, understanding this context makes it easier to derive and test predicted

behaviours. Moreover, the analysis of such regimes can be extended to study the rotational

velocity of edge stars in galaxies.

The importance of diffeomorphism invariance when working with theories of gravity is

paramount. Hence, this work also derives the weak-field limit from the self-contained manifestly

diffeomorphism invariant theory of Nordström gravity, providing evidence that the Newtonian
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limit is compatible with a diffeomorphism invariant framework. Once the limit has been estab-

lished, this work explores the effects on galaxies’ rotational curves resulting from the underlying

noise generated by the hybrid coupling of classical and quantum degrees of freedom. The CQ

framework’s effects on gravity lead to a deviation from the rotational velocities expected from

Einstein’s theory. We find evidence that this could reproduce phenomenology usually attributed

to dark matter. We use the results to propose an explanation for anomalies in the rotational

velocities of stars away from the galactic core.

This work provides the tools and foundations for future studies of the interaction between

quantum matter and stochastic spacetimes, especially in weak field regimes. We also hope

these techniques will be of broad interest in exploring explanations alternative to dark matter

for galactic rotation velocity curves.
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Chapter 1

Introduction

“Insanity is doing the same thing over and over

and expecting different results”

∼ Albert Einstein

On September 21, 1908, a few years after Einstein’s first work on special relativity, Hermann

Minkowski addressed the audience at the 80th Assembly of German Natural Scientists and

Physicians in Cologne [15]. His address began with a statement that perfectly embodied the

radical change of view brought by the theory of relativity:

“The views of space and time which I wish to lay before you have sprung from the soil of

experimental physics, and therein lies their strength. They are radical. Henceforth, space by

itself and time by itself are doomed to fade away into mere shadows, and only a kind of union

of the two will preserve an independent reality.”

The old ways of the observer-independent “Newtonian” absolute space and time were being

abandoned and replaced with the notion of spacetime, a new object born from the union of

the two [15, 16]. This object, technically a manifold, serves as the theatre where the events

of physics occur. Each event described by the laws of nature is associated with a well-defined

point in this four-dimensional background, and different reference frames measure intervals of

space and time differently depending on their relative motion, the only constant being the speed

of light. Furthermore, this new view had a solid tie to experimental physics. Spacetime turned

out to also be ideal for describing gravity [17]. The background where physics unfolds is not a
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static object but a player itself. It can bend and stretch, and it is through these deformations

that matter and energy feel the influence of gravity. In 1915, Einstein explained gravity and its

effects on matter as a consequence of spacetime deformations in his theory of General Relativity,

expressed beautifully through Einstein’s field equations:

Gµν =
8πG

c4
Tµν . (1.1)

On the left side of the equality, Einstein’s tensor Gµν summarises how spacetime is curved

and how this curvature tells matter and energy how to move. On the right side, the stress-

energy tensor Tµν summarises the distribution of matter and energy, and it explains how this

distribution bends and deforms spacetime.

However, the 20th century did not only bring the revolution of relativity and spacetime but

also an entirely new framework of quantum mechanics. Originating from Planck’s hypothesis

of the absorption and emission of light as quanta [18], then proved by Einstein through the

photoelectric effect [19], quantum mechanics forced physicists to rethink the world as composed

of discrete entities. Energy is transmitted in quanta, but atoms are also composed of subatomic

particles in bound states with discrete energy levels [20]. The laws of physics had to be revisited

in this new light, where the deterministic evolution of systems was replaced by probabilistic

evolution and uncertainty [21], matter and energy exhibit both particles and wave nature [22]

and physical states, known as quantum states, are best described by a probability amplitude

known as wavefunction [23].

However, the framework of quantum mechanics and the theory of relativity had to be

reconciled. Quantum mechanics did not allow for the transformation between mass and energy

and did not respect Lorentz invariance. Eventually, special relativity and quantum mechanics

were accommodated through a series of works, among which the seminal contributions of Fock,

Dirac, Pauli and Heisenberg [24, 25, 26, 27], that developed the first quantum field theory of

the electron. The decades after Dirac’s 1928 paper that laid the foundation of quantum field

theory and predicted antimatter [25] saw an explosion of determining contributions as all the

known forms of energy and matter were explained in terms of relativistic quantum field theories

and brought into the framework of quantum physics. Sin-Itiro Tomonaga, Julian Schwinger,

and Richard Feynman independently developed QED [28, 29, 30], the first successful interacting

quantum field theory describing the interaction of light and matter. Yang and Mills introduced

15



non-abelian gauge theories [31], which later became fundamental in developing the Standard

Model, particularly for strong and weak nuclear interactions. Soon after, Sheldon Glashow,

Steven Weinberg, and Abdus Salam formulated the electroweak theory [32, 33, 34], unifying the

electromagnetic and weak nuclear forces. Murray Gell-Mann and George Zweig independently

proposed the quark model [35, 36], describing protons, neutrons, and other hadrons as composed

of quarks, fundamental particles, leading to quantum chromodynamics. Together with Higgs,

who proposed the mechanism of spontaneous symmetry breaking, crucial for explaining the

mass of fundamental particles and the Higgs boson [37], the relativistic quantum field theory

of matter composes the Standard Model of particle physics.

While progress was made towards the creation of the Standard Model, it soon became clear

that the role of gravity as the only known fundamental interaction that was not yet completely

formulated in the language of quantum theory was going to become the centre of the theoretical

physics debate in the coming decades. Matvei Bronstein’s paper on the quantum theory of weak

gravitational fields [38] was a significant early attempt to address the quantization of gravity.

Originally working in the Soviet Union in the 1930s, Bronstein’s insights were far ahead of his

time. One of Bronstein’s significant contributions was recognizing that a quantum theory of

gravity would likely need to address the non-linear nature of Einstein’s field equations. This

foresight pointed to the complexities that later researchers would encounter, especially the

challenge of dealing with the feedback loop where gravity affects the quantum fields, which, in

turn, affect the gravitational field. However, at the time, the community did not appreciate this

task’s significance entirely until DeWitt published his essay in 1953 [39]. There are a couple

of notable points of interest in the essay. Firstly, the essay paints the picture of a community

mostly uninterested in the quantisation of gravity, with DeWitt himself leaving the door open

to the possibility that gravity could be a fundamentally classical field, different from all the

others present in Nature:

“At this point, one may well ask to know the reasons for attempting quantization of the

gravitational field in the first place. As a matter of fact, the overwhelming weight of opinion

of physicists is opposed to the attempt. The prime reason for this is the experimental fact

that gravitation has never been observed to take part in physical events on a quantum level,

and where there is no evidence, it is bad form to speculate. Even if the covariance failure
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mentioned above could be regarded as definite negative evidence, it would cause no upheaval

in physics. It may actually be that the gravitational field is the one and only field which is

not quantized in Nature. The gravitational field, with its attendant phenomena, could, under

these circumstances, constitute the ultimate classical level which must be postulated, even in the

quantum theory, in order to have a consistent ”quantum theory of measurement.”

However, while discussing this possibility, DeWitt highlights that if the gravitational field

is classical, it could not be sourced by the quantum stress-energy tensor but by its expectation

value, leading to the semiclassical Einstein’s equations

Gµν =
8πG

c4
⟨T̂µν⟩. (1.2)

Consequently, he points out that if Ψ is taken to be the quantum state of matter and energy,

then its evolution will be given by a covariant Schroedinger equation

iℏc
∂Ψ

∂xµ
= Hµ(gµν)Ψ (1.3)

with Hµ being the gravitational Hamiltonian. Given that the metric would depend on the

average stress-energy tensor, it would also be dependent on both Ψ and Ψ∗, making the evolution

of the quantum state non-linear and hence violating one of the fundamental tenets of quantum

mechanics, namely the principle of superposition. We will return to this point later. Secondly,

DeWitt seems to suggest that the strongest argument in favour of the quantisation of gravity

is the aesthetic appeal of finding a unified quantum theory able to encompass all fundamental

interactions. If such a task were to be accomplished, the boundary of what we mean by gravity

might become blurred, as in a unified theory, different interactions can be indistinguishable

from one another.

The impact of DeWitt’s essay was one of the catalysts that led to the famous conference

on “The Role of Gravitation in Physics” held at the University of North Carolina, Chapel Hill,

from January 18 to January 23, 1957 [40]. It was planned as a working session to discuss

problems in the theory of gravitation, which had recently received attention. The transcript

was taken down by Cécile DeWitt and several other “reporters” as part of a conference funding

agreement. As the conference progressed, it became increasingly apparent that a report of the

discussions would be of scientific interest, partly due to an increasing number of requests for a

report from physicists unable to attend the conference and partly because of the nature of the
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discussions. Thomas Gold pointed out that electromagnetism required quantisation because a

range of phenomena closely related to it (like the ultraviolet catastrophe) required explanation.

When applying the same line of reasoning with gravity, one would realise that, at the time,

there were no such instances in need of clarification and that the only reasonable motive for

gravity quantisation was if it were to contradict the principles of quantum mechanics. As

an answer to Gold, Feynman outlined an experiment to show the incompatibility of general

relativity and quantum theory. Here, we present an improvement on the original argument

due to Aharonov [41]. Imagine a double-slit experiment where a massive particle forms an

interference pattern as its superposed wavefunction from passing through the slits interferes

with itself as shown in Figure 1.1. Imagine now that the gravitational field was classical and

that we were in possession of a device capable of detecting changes in the gravitational field

with arbitrary precision, which would be possible due to the classical nature of spacetime. If the

mass in superposition was deterministically coupled to the gravitational field, one could monitor

the gravitational signature of the mass going through the slits and discern which slit it passed

through without measuring its position directly, which would destroy the interference pattern.

Even worse, the correlation between the quantum system and the classical gravitational field

would prevent the quantum state from being in a pure superposition of two locations. This

would lead to a contradiction which appears only to be resolved by the quantisation of gravity.

If the gravitational field were quantum, it would get into an entangled superposition with the

possible particle states. Leaving it be would preserve the pure state, and its measurement would

decohere the entire quantum system, as expected.
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Figure 1.1: Aharonov’s thought experiment [41]. The interference pattern should be destroyed

if the gravitational field can be measured to obtain arbitrarily precise information about the

quantum state through their coupling. Interference image retrieved from [42].

It has been more than sixty years since the Chapel Hill conference, and the community’s

opinion seems to have unilaterally shifted towards the necessity of a quantised theory of gravity.

Multiple no-go theorems forbidding the coupling of quantum matter and classical spacetime

were developed [43, 44, 45, 46, 47, 48, 49, 50, 51, 52] with some opposition from [53, 54, 55]. At

the same time, research programs aiming at a fully quantised theory of gravity have sprouted

and developed for decades in seemingly radically different directions, albeit all aimed at the

same goal of a unified theory of quantum gravity and matter. We have reached a point where

the quantum nature of gravity is often taken for granted, despite the absence of direct empirical

evidence, and students entering theoretical physics typically encounter only debates between

competing quantum gravity theories.

When discussing the approaches to quantum gravity, Isham’s classification [56, 57] comes in

handy. He divides these theories into “primary” and “secondary” theories of quantum gravity.

Primary theories start with a given classical theory to which a heuristic quantisation scheme is

applied, hoping to replicate the success obtained with other classical theories like electromag-

netism, which became QED. The starting point is then chosen to be general relativity, and the

resulting theories are referred to as “quantum geometrodynamics”. The clear strength of this
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approach is that the starting point is given and well-known, while the trade-off is that an even-

tual positive outcome would be a quantum theory of gravity and not a unified quantum theory

of all fundamental interactions. Furthermore, primary theories can be divided into “canonical”

and “covariant” approaches, where the former treats space and time as separate entities in a 3+1

split, while the latter preserves a full 4-dimensional spacetime picture. The canonical program

originated in 1958 from Dirac [58] with the Hamiltonian formulation of general relativity and

was shortly followed by the 1967 development of the Wheeler-DeWitt equation for the wave-

function of the universe [59]. However, the Hamiltonian of general relativity seemed to vanish on

physical states, leading to the so-called problem of time (see [60] for a great review), where time

in the theory appears to be completely frozen, its flow forever interrupted the instant the theory

is quantised. Significant progress slowed until 1986, when Abhay Ashtekar introduced a new set

of variables for canonical quantum gravity that greatly simplified the mathematical formulation

of the theory [61]. The breakthrough was identifying the fundamental gravitational degrees of

freedom with a SU(2) connection and its complementary variable. It is through the use of these

“Ashtekar variables” that Lee Smolin and Carlo Rovelli developed loop quantum gravity [62]

(see [63] for a modern introduction to the approach). Originally a canonical theory, LQG be-

came covariant with the introduction of spinfoams. These networks evolve over time, providing

a way to describe the quantum spacetime fabric in terms of a sum-over-histories (path integral)

approach [64, 65, 66]. Loop quantum gravity provides an explicitly background-independent

theory capable of notable feats like explaining the Black-Hole entropy formula [67, 68]. How-

ever, the quantum states in LQG are based on spin networks that provide a granular spacetime

structure. While this achieves UV-finiteness because the spin-foam network degrees of freedom

live on a lattice, which introduces a cut-off related to its spacing, bridging the gap between

this discrete structure and the smooth spacetime of general relativity is non-trivial. Moreover,

developing semiclassical states that are well-behaved and that approximate classical spacetime

over large distances remains a significant challenge.

On the other hand, by far the most well-known example of a secondary quantum gravity

theory is string theory. While primary approaches start from the assumption that gravity can

be quantised separately, the starting point of secondary theories is the belief that only a unified

quantum framework of all interactions would be possible. The key revolution of string theory
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lies in replacing quantised classical fields with one-dimensional ’strings’ as its fundamental

objects. This shift represents a clean break from the traditional concept of local fields defined

at specific points in spacetime. While string theory stemmed from an attempt at explaining

the spectrum of hadrons, Scherk, Schwartz and Yoneya realised in 1974 that a massless spin-2

particle was present in the spectrum of these objects [69, 70], which necessarily leads to the

emergence of general relativity in the low-energy limit. This insight is paired with the fact

that the string spectrum is capable of generating gauge bosons and, with the implementation

of supersymmetry, fermions [71, 72, 73]. The ultimate goal would be the recovery of the entire

Standard Model of Physics integrated with gravity, but the program is still far from it. However,

even if in the 1980s there was a strong sense that string theory was going to be the ultimate

“Theory of Everything”, the last 20 years have seen the program suffer from much criticism [74,

75, 76]. Without delving into details, the biggest points are the lack of experimental evidence

to support string theory’s predictions, the presence of a vast number of possible solutions (often

referred to as the “landscape problem” [77]), which challenges the predictive power of the theory,

and the theory’s reliance on extra dimensions and supersymmetry, which remain unobserved.

Additionally, the theory’s requirement of very high energy scales for direct testing puts it beyond

the reach of current and near-future experimental technology. This limitation complicates

efforts to validate or falsify string theory within a reasonable timeframe. Critics also point to

internal theoretical challenges, such as the problem of moduli stabilization [78], where the theory

does not uniquely predict the compactification parameters of the extra dimensions, leading to

potentially innumerable physically distinct universes. As a reminder, string theories predict 11-

spacetime dimensions (26 for bosonic strings), but large extra dimensions have been excluded

by cosmological observations [79], while compactified extra dimensions, which are expected

to be accessible by modern-day collider experiments like CERN, have not been observed [80].

Furthermore, the absence of a clear mechanism within string theory to naturally generate

the observed cosmological constant or explain the universe’s dark matter and dark energy

components compounds these difficulties [76]. Lastly, there’s a philosophical critique regarding

whether a theory that encompasses such a broad range of possibilities can be considered truly

predictive or explanatory in the traditional sense used in physical sciences [74].

While the importance of the aforementioned quantum gravity programs in better under-
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standing the relation between gravity and quantum theories is indisputable, they have yet to

achieve the goal they set out to complete. It has now been more than 50 years, and it is only fair

to wonder if the quantisation of gravity truly is the only way forward. At first glance, it would

seem that Feynman’s argument and the following no-go theorems truly forbid the coupling of

classical theories of spacetime with quantised matter fields. However, realising the existence of

a common subtle assumption in all these arguments can allow one to sidestep them without

violating the no-go theorems.

The assumption is based on identifying the concepts of classicality and determinism. While

a deterministic theory is necessarily classical, the converse is not true. We identify classical

theories with theories where observables are commutative, meaning the order of measurements

does not affect the outcomes, where no concept of entanglement exists, meaning that objects are

independent unless physically connected, and where specific values of measurable properties like

position and momentum usually describe the state of a system. On the other hand, in quantum

theories, states are described by density matrices in a Hilbert space. Moreover, quantum

states can be in superpositions, where a system simultaneously exists in multiple states until a

measurement is made. It is imprecise to associate the properties of classicality with determinism.

A deterministic theory is simply one where the future behaviour of a system can be precisely

predicted from its initial conditions using the laws of physics. Classical gravitational theories, as

formulated by Newton and Einstein, are a prime example where the equations of motion provide

a definite prediction of future states as the gravitational field is deterministically produced

by matter. On the other hand, quantum theories are intrinsically probabilistic. Probability

amplitudes lead to uncertainty of measurement results, and the theory provides probabilities

of different outcomes rather than definite predictions. We are familiar with the notion that

quantum mechanics cannot predict exactly where an electron will be found when measured, but

it can predict the probability of finding it at different locations. This uncertainty is inherent in

the description of nature and cannot be removed by better measurements or clever tricks.

When considering probabilities in a classical theory, it is often assumed that any probabilistic

behaviour can be attributed to a lack of knowledge about an intrinsically deterministic state.

Consider some gas molecules of a perfume bottle left open in a room. If one wonders where

these molecules could be, one might take a guess using the probability distribution of their
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positions, but one could have had deterministic knowledge of their exact locations if only it was

possible to know their initial position and precisely track their movements. The probabilistic

outcome directly results from ignorance about some parts of the system or a constraint of the

measurements’ precision. What if, instead, a classical system had some inherent probabilistic

behaviour, such as some fundamental intrinsic noise process in its evolution laws? In such a

scenario, the classical system would still not allow for superposition or entanglement, but the

theory would also not be deterministic.

When Feynman and the authors of the no-go theorems coupled classical gravity with quan-

tum theories of matter to show their incompatibility, they implicitly assumed that their cou-

pling had to be deterministic. In other words, a specific quantum state is associated with each

measurement outcome of the classical gravitational field. This will inevitably collapse any su-

perposition, as the classical deterministic state can be measured with arbitrary accuracy and,

through it, the quantum state itself. The gravitational field will act as a strong measurement

apparatus, destroying quantum coherence without the need for an external observer.

However, if the coupling between the classical and the quantum state were noisy, a single

measurement of the classical system would not be sufficient to determine the quantum state,

and only repeated measurements would extract enough knowledge to collapse any present su-

perposition into a defined eigenstate. Therefore, if the coupling between the classical and the

quantum system were stochastic (had some intrinsic random noise), the coherence properties

of the quantum state would be preserved, at least for some time.

This discussion is easier to understand if one considers an ideal superposition of the planet

Prospero in a left and right state |P ⟩ = 1√
2
|L⟩ + 1√

2
|R⟩. Let us treat the gravitational field

classically and compare the semiclassical Einstein’s equation (1.2) with deterministic and noisy

coupling. As one can notice in the leftmost panel of Figure 1.2, if one utilises the semiclassical

Einstein’s equations, the test mass (which can be taken to represent measurements of the

gravitational field) will head towards the centre. This pathological motion towards a point

where no mass is present can be attributed to the fact that taking the expectation value of

the stress-energy tensor discards any correlation between the classical and quantum systems.

Even worse, the same pathological effect can be observed with a simple statistical mixture of the

planet on the left and on the right. What would be the correct behaviour? Given that we expect
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to find the planet Prospero on the left 50% of the time and on the right 50% of the time, we

would expect the test mass to move either to the left or to the right with the same probability.

However, looking at the central panel, we notice how a deterministic coupling, which preserves

the correlation and results in the test mass moving left or right 50% of the time, will also result

in an immediate collapse of the planet’s superposition. In this deterministic case, as soon as

the test mass starts moving, we will immediately know which side the planet is on, destroying

the quantum coherence of the state. This is the scenario forbidden by Feynman’s example and

the aforementioned no-go theorems.

(a) Semiclassical Gravity (b) Deterministic Coupling (c) Stochastic Coupling

Figure 1.2: Comparative view of three coupling models for classical gravity and a quantum

superposition of the planet Prospero. Panel (a) shows the effect of semiclassical gravity. The

test mass heads to the centre, where nothing is present. Panel (b) shows the deterministic

coupling referred to by Feynman and forbidden by experiments. The quantum state collapses

as soon as we observe the test mass move. Panel (c) represents the stochastic coupling between

classical and quantum systems. We must wait to collapse the quantum state, but the correlation

between the planet’s location and the test mass direction is preserved.

We can observe a stochastic coupling of classical gravity and the quantum state in the

rightmost panel. As the test mass starts moving, it receives noisy kicks, resulting in a jittery

motion that will contribute to hiding the planet’s location. Only by waiting long enough do

we learn whether Prospero is on the right or the left, eventually collapsing the quantum state.
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Moreover, the higher the noise, the longer the coherence of the quantum state will be preserved,

but we will see more of this later. Having developed an intuition on how we can sidestep the

issues regarding the coupling of classical gravity and quantum matter, the rest of this work

will be concerned with introducing the most general linear, positive and probability-preserving

realisation of this hybrid framework, which we refer to as “CQ theory”, and its application

to the weak gravitational regimes. Previous attempts at a hybrid approach to gravity and

quantum matter exist, which deserve credit, and we discuss them more in detail in Chapter 2.

Before getting into the mathematical formulation of this work, one last reflection should be

directed towards the implications of a hybrid coexistence of a classical theory of gravity and a

quantum theory of matter. Physicists agree that the semiclassical Einstein’s equations have a

relatively small degree of validity restricted to physical states for which quantum fluctuations of

the stress-energy tensor are small with respect to its expected value; relying on them outside this

regime often results in pathological scenarios. Moreover, they cannot correctly account for the

backreaction of quantum fields on spacetime. They should not be considered a viable general

model and have been cleverly ruled out in this regard in [81]. A better model is therefore

necessary for regimes where gravity can be treated classically and matter can be treated as

quantum theory. It may be that the CQ framework (and hybrid theories in general) should be

considered the correct model only for this regime, able to handle correlations between the two

sides of the hybrid system and model the correct dynamics. The results would be insightful

on their own, as we would still observe the intrinsic probabilism of quantum theory trade-

off with the determinism of classical gravitational theory. The quantum side becomes “more

deterministic” as it is slowly measured, and the classical side becomes “more probabilistic” as it

inherits a form of intrinsic noise. Moreover, phenomena like Hawking’s black hole radiation [82,

83] or CMB fluctuation during inflationary cosmology [84, 85, 86, 87] have been derived in a

semiclassical regime where the backreaction of quantum fields on spacetime (and vice versa) is

crucial. A correct theory of classical-quantum backreaction could lead to a better understanding

of these phenomena, with possible new insights.

However, it is much more interesting to consider the possibility that the gravitational field

is fundamentally classical. If this were to be true, there would be two major consequences

on top of everything mentioned above. As an outcome of the classical system inheriting some
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intrinsic non-determinism from its quantum partner, there could be a fundamental process

of information destruction. A famous no-go theorem by Coleman [88] states that even if it

were possible that a purely quantum theory could allow for the destruction of information, it

would simply result in false decoherence corresponding to unknown coupling constants. On the

other hand, Gross, Banks, Peskin and Susskind [89, 90] argued that fundamental information

destruction must be tied to violation of locality and anomalous heating. However, none of the

theories they considered correctly handled the backreaction of matter on spacetime. This is not

enough to completely disregard their arguments, even if they might not directly apply to CQ

theory, and the heating question has not been resolved yet. As we will see in Chapter 2, the

general formulation of the framework does contain a few choices of couplings and correlations,

even if these are greatly reduced in its continuous version. It might be that some regularisation

at the Planck scale is necessary or that symmetry principles, like diffeomorphism invariance, will

step up to help with anomalous heating. Regardless of the drawbacks, the upside of entertaining

the idea of fundamental information destruction is that it may bring about a clean resolution

of the black-hole information problem highlighted first in [91, 92] and then refined into the

“AMPS” paradox in [93, 38]. There would be no need for Planckian black hole remnants [94] or

for complex holographic dynamics necessary for the information to escape the black hole [95, 96].

However, we would then have to deal with the consequences of information destruction.

On the other hand, the quantum system would inherit some intrinsic determinism from

the fundamentally classical theory of gravity. The biggest consequence would be an (at least

partial) resolution of the measurement problem [97]. Any theory attempting to quantise gravity

will inevitably have to explain the transition to the semiclassical regime, invoking some form of

the measurement postulate or a restriction of observables [98, 99, 100]. Generalising this train

of thought, if the nature of reality is described by a quantum theory undergoing unitary evolu-

tion, then the emergence of classicality will have to be explained either through a mechanism for

wavefunction collapse, which is external to the unitary dynamics of quantum theories of space-

time and matter, or through some ontological stance akin to the many worlds interpretation.

It has been proposed that the measurement problem could be resolved through gravitational

collapse [101, 102, 103] or theories of stochastic collapse [104, 105, 106, 107, 108, 109]. However,

in gravitational attempts like Diosi’s original collapse model (his later models did not suffer
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from this issue) or Penrose’s, the decoherence of the quantum state is due to nonlinear interac-

tions. In the former, this happens through the non-linear Schroedinger-Newton equation, while

in the latter, the timelike killing vectors in two different branches of the universe necessarily

interact. However, we will see that the hybrid CQ theory presented here is completely linear

in the quantum state, such that different branches of a superposition evolve independently. On

the other hand, theories of stochastic collapse need to insert an ad-hoc field capable of inducing

decoherence. Here, we do not need to do that. Gravity acts as the measurement apparatus and

performs a stochastic collapse of the wave function. Moreover, this is an objective collapse, not

just a wavefunction decoherence. CQ theory cannot be reduced to a linear Markovian collapse

model, as the theory is linear only when both quantum and classical degrees of freedom are

considered. As we will explore in Chapter 2, when conditioned on the quantum degrees of

freedom, the quantum state remains pure [5] since, in such conditions, an ontological classical

trajectory in configuration/phase space is associated with the evolution of the quantum states.

Thesis contributions

We now outline the main contributions of this work.

Newtonian limit of quantum matter backreacting on classical spacetime

In Chapter 4, we present the first complete derivation of the Newtonian limit of the gravitational

CQ framework, also known as Post Quantum Gravity [1]. The limit is derived in all three

formulations of the framework: the master equation formalism, the unravelling and the CQ

path integral. The results are in agreement with each other; the Newtonian potential undergoes

a diffusion process away from the usual Poisson equation while the quantum state decoheres

into mass eigenstates. The diffusion is lower bounded by the amount of decoherence, resulting

in completely positive dynamics. The bounds can be experimentally tested to validate or reject

the theory. We recover the result of [110] and compare and contrast it with other hybrid models

of Newtonian gravity coupled with quantum matter.

This work was done in collaboration with Jonathan Oppenheim, Zach Weller-Davies, and

Isaac Layton [6].
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Diffeomorphism invariant classical-quantum path integrals for

Nordström gravity

When deriving the Newtonian limit of CQ theories, dealing with the Hamiltonian constraint

requires carefully treating the conjugate momenta to the gravitational variable and introducing

a shift-vector. This might contribute to the impression that the Newtonian limit might not be

compatible with a diffeomorphism invariant CQ theory of gravity. In Chapter 5, we show that

a fully self-contained and diffeomorphism invariant theory of gravity is compatible with the CQ

framework by utilising Nordström gravitational theory. The Newtonian limit is derived, and it

matches the one obtained directly from general relativity in the CQ framework.

This work has been done in collaboration with Jonathan Oppenheim and Zach Weller-

Davies [7]

Anomalous contribution to the rotation of galaxies

In Chapter 6, we apply gravity in the context of the CQ framework to the rotational curve of

galaxies. We see that even in a simple spherically symmetric vacuum solution, new gravitational

contributions that could not emerge from Poisson’s equation appear. We use these contributions

to argue that we may be able to account for anomalies in galaxies’ rotational velocity curves

without invoking dark matter. We find a connection between the cosmological constant and a

key acceleration parameter of the rotational curves.

This work has been done in collaboration with Jonathan Oppenheim [8].

Structure of the thesis

The thesis is composed of the main body and appendices. The main body is split into two

parts: the first introduces the background of the CQ framework in all its formulations, and the

second contains the framework’s applications to the weak field limit of gravity. The second part

is based on research work carried out and published entirely during my PhD in collaboration

with other researchers from the group. The rest of the research papers listed above are also the

result of collaborations carried out and published with internal and external researchers during

my PhD, but they are not included in this thesis.
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In Chapter 2, we explain the foundations of the CQ framework. We define the classical-

quantum state, the fundamental object of CQ theories, and explain its dynamics as formulated

in the master equation and unravelling formalism. We also introduce the tradeoff between the

diffusion of the classical system and the decoherence of the quantum degrees of freedom.

In Chapter 3, we focus on the path integral formulation of the CQ framework. We dedicate

an entire chapter to it because it will be the most used formalism in the second part of the

thesis. The CQ path integral is introduced by directly comparing it to the purely quantum

and classical-stochastic path integrals. The covariant formulation and the manifestation of the

decoherence-diffusion tradeoff in this formulation of the CQ framework are also explained.

Chapter 4 is the first chapter of the second part of the thesis. Here, we apply the machinery

of the CQ framework to derive and study the weak field Newtonian limit of classical gravity

coupled with quantum matter. We consider all three formulations of the framework and present

the Newtonian limit in the master equation, unravelling, and path integral version. We compare

and contrast with other versions of hybrid Newtonian gravity.

In Chapter 5, we use the CQ path integral to derive the Newtonian limit of Nordström

gravity and check that it matches with the result of Chapter 4. While Nordström gravity is not

a description of gravity in our universe, it is nonetheless a self-consistent and diffeomorphism

invariant theory of gravity. Therefore, this short chapter supports the previous chapter by

confirming that a fully diffeomorphic CQ theory of gravity reduces to the same Newtonian

limit.

In Chapter 6, we conclude our work by applying the CQ gravitational framework to study

its impact on the rotational curve of galaxies. In particular, applying the CQ framework to

gravity in this context allows for solutions that, at low accelerations, meaningfully deviate

from the usual Newtonian weak field behaviour. As a result, we suggest that we can explain

the observed deviation from the expected rotational velocity without invoking dark matter.

Moreover, we directly connect the relevant acceleration to the observed cosmological constant,

which suggests a resolution for the so-far unexplained connection observed between the relevant

MOND acceleration a0 and the observed cosmological constant Λ.

Chapter 7 presents a few closing remarks and the last part of the thesis contains the ap-

pendices. Here, we present detailed calculations that, if inserted in the main body, would have
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hindered the clarity of the narration. Appendix F has been done in collaboration with Andrzej

Grudka, Tim Morris, Jonathan Oppenheim and Muhammad Sajjad [9].
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Part I

Background
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Chapter 2

Classical-Quantum framework

“In this group, we do not say the word quantisation”

∼ Jonathan Oppenheim

Having discussed at length why a consistent theory able to couple quantum and classical degrees

of freedom consistently is relevant, and with our sights set on its applications to gravity, it is now

the moment to explain how such a framework is constructed and how its dynamic is defined.

In this chapter, we describe the formalism used to arrive at the general form of consistent

coupling between classical and quantum degrees of freedom [1, 2]. We start by discussing and

justifying the state of CQ as a framework rather than a theory. While doing so, we explain

the assumptions of this framework and how it defines states and their evolution. In particular,

in this chapter, we focus on the master equation and unravelling formalisms of CQ dynamics,

while the path integral is covered thoroughly in Chapter 3.

2.1 Classical-quantum framework

When discussing the nature of the classical-quantum approach, one should keep in mind the

difference between theory and framework. A good definition of what a theory is is reported

in [111]: “A theory is a set of interrelated constructs (concepts), definitions, and propositions

that present a systematic view of phenomena by specifying relations among variables, with the

purpose of explaining and predicting the phenomena”. While this definition does not pertain

only to physical theories, we can readily apply it in the context of physical descriptions of
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nature. For example, the theory of Newtonian gravity presents a systematic description of the

gravitational interaction between masses, relating in a precise and mathematical way the con-

cepts of mass, distance and force through the formula Fg = −Gm1m2
r2

. However, we can place

Newtonian gravity in the framework of classical mechanics. By this, we mean that underlying

the specific relations used to describe the gravitational force lies a plethora of assumptions

shared among all the theories in the framework of classical Newtonian physics. Among these,

some of the most important are determinism (in the absence of random behaviour), absolute

space and time, continuity and differentiability of the physical quantities describing the system,

the principle of superposition of forces, conservation laws of quantities such as energy, momen-

tum, and angular momentum, the ability to make sensible material point approximations, the

restriction to non-relativistic speeds and the independence between the existence of the physical

properties of a system and the observer’s measurements.

As new physical phenomena are discovered, physicists attempt to formulate new theories

based on known frameworks in order to incorporate new experimental evidence. However, this

may be insufficient, and the need for a new framework arises. Sometimes, it is enough to swap or

update some of the assumptions of an already-known framework. This was the case for general

relativity, for which the new assumptions of the principle of relativity, constancy of the speed of

light, equivalence principle and general covariance define a wider framework where Newtonian

mechanics is nested as the low-speed, low-energy limit. However, general relativity still main-

tains some of the core assumptions already present in the Newtonian framework, among which

are the ideas of determinism and the description of states through real-valued variables. On

the other hand, a different framework had to be developed when quantum mechanics and quan-

tum field theory were developed to describe atomic and sub-atomic physics. In the quantum

framework, many fundamental assumptions of classical physics need to be scrapped to create

the tools necessary for describing quantum phenomena. Among them, we see that the perfect

predictability of future outcomes implied by classical determinism is forgotten in favour of a

probabilistic interpretation of matter, behaviour and experimental outcomes. Objective reality

is not a given either, and the observer plays a crucial role in determining the properties of a

physical system. While it is simple enough to pinpoint the transition from the modern general

relativistic framework to older frameworks of classical mechanics, it is not as easy to define the
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transition between a quantum framework and any classical model of reality, even if we know

that decoherence plays a crucial role [112, 113, 114, 115]. However, it is often the case when the

need to describe the interaction between a quantum and a classical system arises. The most

relevant example to this work would be the coupling of quantum fields with classical spacetime,

which we have explored in Chapter 1 to be, at best, incomplete due to its inability to account for

the correlations between quantum and classical systems. In this setting, CQ finds its role as a

hybrid Classical-Quantum framework, giving us the tools to describe the coupling of a classical

and a quantum theory. While this introduction might seem quite general, it is intentionally so.

As we will now see in detail, using CQ, we are able to make a choice of classical and quantum

systems and couple them such that they stay true to the rules of their respective frameworks

(with some adjustments, as we will see) presenting a coherent picture of the behaviour of the

whole system.

When describing a framework, one can distinguish between the assumptions going into the

state and those that concern the dynamics. The former gives us the tools to consistently describe

the physical state under consideration, while the latter sets the rules that the evolution of those

states must obey. For example, in non-relativistic quantum mechanics, the state is assumed to

be a semi-definite operator in a Hilbert space known as a density matrix, and the assumptions

also define how the state of composite systems is defined and how measurement outcomes are

obtained. At the same time, the dynamics is assumed to be unitary, implying the conservation

of probability and information and following the Schrodinger equation.

2.2 Classical-Quantum states

In the Classical-Quantum framework, the state of the entire physical system takes the form of

a hybrid classical-quantum object. The state is defined such that it describes both quantum

and classical degrees of freedom. Classical degrees of freedom live in a classical configuration

space M and are denoted by z. There are no restrictions on what the classical degrees of

freedom can represent. The standard example is for them to be the position and momentum

of a particle, in which case M = (R2), but they could be representing a collection of localised

masses or a classical field. At the same time, quantum degrees of freedom live in a Hilbert
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space H. We denote the set of positive semi-definite operators living in this Hilbert space as

S(H). Therefore, the total space is a trivial fibre bundle (product space) with base space M

and fibre S(H) such that E = M× S(H). Hence, we define the CQ state of the system to be

described at any time by the section

ϱ : M → S(H),

ϱ : (t, z) → ϱ(t, z).
(2.1)

To assign physical meaning to the CQ state, we interpret the probability density over the

classical degrees of freedom to be its trace over the Hilbert space

p(t, z) = TrH[ϱ(t, z)], (2.2)

and the density matrix of the quantum degrees of freedom to be the normalised positive semi-

definite operator

σ̂(t, z) =
ϱ(t, z)

TrH[ϱ(t, z)]
. (2.3)

As a direct consequence, classical-quantum states always admit a decomposition ϱ(t, z) =

p(t, z)σ̂(t, z) where σ̂(t, z) is a normalised quantum state. Intuitively, σ̂(t, z) can be under-

stood as the quantum state one assigns to the system, given the classical state z is observed.

Since the density matrix has a statistical foundation, p(z, t) is then understood as the probabil-

ity (density) of being in the classical state z. There should always be a separation of classical

and quantum degrees of freedom, as we do not expect classical degrees of freedom to become

quantised and vice versa. However, we do expect to be able to interpret the state and its

decomposition probabilistically. Therefore, the CQ framework requires that ϱ(t, z) is at every

instant subject to a normalisation constraint∫
M

TrH[ϱ(t, z)] dz = 1. (2.4)

In other words, we associate to each classical degree of freedom an un-normalised density

operator ϱ(t, z) such that TrH[ϱ(t, z)] = p(t, z) ≥ 0 is a normalised probability distribution over

the classical degrees of freedom and
∫
M ϱ(t, z) dz is a normalised density operator on H.

An example of such a CQ-state is the CQ qubit, where we take a 2-dimensional Hilbert

space and couple it to classical position, and momenta [1, 116]. If we treat classical degrees of
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freedom from a phase space approach, we have that z = (q, p). The quantum density matrix

will instead be that of a 2-level quantum system. Then, the CQ state takes the form of a 2× 2

matrix over phase space

ϱ(t, q, p) =

 u0(t, q, p) c(t, q, p)

c⋆(t, q, p) u1(t, q, p)

 . (2.5)

If one desires to treat gravity coupled to matter fields in the CQ framework, a natural choice

for the classical degree of freedom is the metric, while the matter fields are quantised. This

allows for proper treatment of semiclassical gravity, where correlations between the gravitational

field and matter are not ignored as in the semiclassical Einstein equations.

Having defined the CQ state, we are left with the task of specifying the dynamics. Equations

of motion for hybrid states have been defined in the past, especially in the context of coupling

classical gravitational degrees of freedom and quantum matter. An early attempt was that

of [117] where the equation

∂ϱ(t, z)

∂t
= −i[Ĥ(z), ϱ] +

1

2

(
{Ĥ(z), ϱ(t, z)} − {ϱ(t, z), Ĥ(z)}

)
(2.6)

evolves the semiclassical state with the help of Alexandrov brackets [118, 119]. One can see the

attempt at having consistent hybrid dynamics in which the quantum Hamiltonian Ĥ depends

on the classical degrees of freedom. Unfortunately, this form of time evolution does not preserve

probabilities [98, 117]. Let us illustrate this with a simple example. Consider the CQ qubit

described by Eq. (2.5). We can imagine the quantum state corresponding to its spin and the

hybrid state describing its coupling to the classical position and momentum of the particle dur-

ing a Stern-Gerlach experiment. The minimally coupled Hamiltonian describing the interaction

of spin and position can be written as:

Ĥ(p, q) =
p2

2m
Î + λqσ̂z (2.7)

where m is the particle’s mass, λ controls the strength of the interaction, and we have chosen

to couple the position to the Pauli z operator. Substituting in Eq. (2.6) and simplifying, we

arrive at
∂ϱ

∂t
= −iλq[σ̂z, ϱ] − ∂

∂q

( p
m
ϱ
)

+
λ

2

∂

∂p
{σ̂z, ϱ}+ (2.8)
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with {·, ·}+ being the anticommutator. By choosing the starting state to be, for example, the

|+⟩ state and looking at the differential equations for the components of the CQ state, one can

see that while the probability distributions of the diagonal components drift in opposite phase

space directions and increase, the off-diagonal ones can only acquire a phase due to the action

of the commutator and hence cannot decrease to counterbalance the diagonal terms. Over time,

this leads to the loss of the probabilistic interpretation.

In the context of gravity, an attempt was made with the Schroedinger-Newton equation [120,

121, 122], which instead failed to achieve dynamics linear in the density matrix, inviting faster

than light signalling and a breakdown of the probabilistic interpretation of the density matrix,

with a time development that is now dependent or whether we are aware of the initial state

or not. In [123, 124], Diósi wrote a master equation linear in the state, which did not lead

to negative probabilities. He added diffusion to the Aleksandrov-Gerasimenko brackets and

obtained a time evolution corresponding to a constant Hamiltonian force. Alternative early ex-

amples of these kinds of hybrid dynamics include the works of Blanchard [125, 126], Diósi [127],

Alicki [128], Poulin and Preskill [129]. The strength of CQ dynamics is that it holds for general

Hamiltonians with dynamics continuous in configuration/phase space. Let us now understand

that in greater detail.

2.3 CQ master equation formalism

In the CQ framework, one desires the dynamics of the state defined in Section 2.2 to retain

its positivity, preserve the statistical interpretation of the density matrix, and give rise to

positive probabilities when acting on half-entangled states. Therefore, the framework requires

that the dynamics must be linear, completely positive (CP) and probability-preserving. If the

dynamics are also time-local, then consistent CQ dynamics can be written in the form of a

master equation [1], its unravelling in terms of stochastic differential equations [5, 116] or path

integral [4, 130]. In this chapter, we will look at the first two, while the latter will be expanded

upon in Chapter 3. One can, in theory, also go from the master equation to the corresponding

path integral as described in [4]. We show this in Appendix B for the Newtonian limit of CQ

gravity. With the additional assumption of time-locality, it has been shown in [1] that the
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dynamics can be written in the form of a CQ master equation

∂ϱ(z, t)

∂t
=

∫
dz′
(
Wµν(z|z′)Lµϱ(z′)L†

ν

)
− 1

2
Wµν(z){L†

νLµ, ϱ}+, (2.9)

where {·, ·}+ is the anti-commutator, Lµ are an arbitrary set of operators on the Hilbert space

known as Lindblad operators. The matrix Wµν(z|z′) describes the conditional transition prob-

ability. The first term represents the likelihood of the classical degrees of freedom to transition

from z′ to z after the action of the Lindblad operators, while the second term is also known as

the no-event term and it is related to the probability of nothing happening, and the equation

has the interpretation of a balance equation for the rate of change of the CQ state. One can

immediately see that the Classical-Quantum master equation is a natural generalisation of the

differential Chapman-Kolmogorov equation evolving a probability distribution

∂

∂t
p(z, t) =

∫
dz′[W (z|z′, t)p(z′, t) −W (z′|z, t)p(z, t)], (2.10)

and the “GKSL” or “Lindblad” equation obtained for the evolution of the density matrix of an

open quantum system [131, 132]

d

dt
ρ(t) = −i[H, ρ(t)] + aij

(
LiρL

†
j −

1

2
{L†

jLi, ρ}+
)
. (2.11)

The required preservation of normalisation under the trace operation and the integral over

the classical degrees of freedom defines

Wµν(z) =

∫
dz′Wµν(z′|z). (2.12)

Introducing a basis Lµ = (I, Lα) of Lindblad operators, the condition for Equation (2.9) to

describe completely positive dynamics at all times is that the matrixδ(z, z′) +W 00(z|z′) δt W 0β(z|z′) δt

Wα0(z|z′) δt Wαβ(z|z′) δt

 (2.13)

be a completely positive matrix kernel in (z, z′) [3]. For notation simplicity, we shall take the

dynamics to be autonomous, which we take to mean that Wµν(z|z′) are time-independent.

More generally, one can allow for the time-dependent case. In the case of time-dependent

couplings, one can also ask for the weaker condition that the dynamics describe a CP map only
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on initial states, whilst, at intermediate times, the dynamics need only describe CP evolution

on the subset of states which are attainable via time evolution. In this case, the dynamics are

non-Markovian; the master equation still takes the form of Equation (2.9) but the conditions

for complete positivity need not hold at all times [1, 5, 133, 134, 135, 131].

The master equation (2.9) can be expanded in terms of the moments Dn of the transition

amplitude Wµν(z|z′) [1, 3, 4],

Dµν
n,i1...in

(z′) :=
1

n!

∫
dzWµν(z|z′)(z − z′)i1 . . . (z − z′)in . (2.14)

It is important to note that the moments Dn are not independent since they must define

complete positive dynamics and inherit the complete positivity conditions through the moments’

expansion of the transition amplitudes. Inserting the moment expansion into the CQ master

equation, we arrive at

∂ϱ(z, t)

∂t
=

∞∑
n=1

(−1)n
(

∂n

∂zi1 . . . ∂zin

)(
D00
n,i1...in(z)ϱ(z, t)

)
− i[Ĥ(z), ϱ(z, t)] +Dαβ

0 (z)Lαϱ(z, t)L†
β −

1

2
Dαβ

0

{
L†
βLα, ϱ(z, t)

}
+

+
∑
µν ̸=00

∞∑
n=1

(−1)n
(

∂n

∂zi1 . . . ∂zin

)(
Dµν
n,i1...in

(z)Lµϱ(z, t)L†
ν

)
,

(2.15)

It was shown in [2] that such master equations can be split into two classes, those which

have continuous trajectories in the classical space, first discovered by Diósi in [127], and those

with finite-sized jumps [126]. The formal difference between the two classes is encapsulated

in the CQ-Pawula theorem formulated in [2], which states that for non-trivial CQ evolution,

we must have infinitely many moments defined in Equation (2.15), or else the master equation

takes the form

∂ϱ(z, t)

∂t
=

2∑
n=1

(−1)n

n!

(
∂n

∂zi1 . . . ∂zin

)(
D00
n,i1...in ϱ(z, t)

)
− ∂

∂zi

(
D0α

1,i ϱ(z, t)L†
α

)
− ∂

∂zi

(
Dα0

1,i Lα ϱ(z, t)
)

− i[H(z), ϱ(z, t)] +Dαβ
0

(
Lαϱ(z)L†

β −
1

2
{L†

βLα, ϱ(z, t)}+
)
,

(2.16)

where {·, ·}+ is the anti-commutator, which is the most general form of the continuous master

equation.
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This expansion might appear cumbersome but can be readily interpreted as a sum of distinct

effects. The first term represents the classical evolution of the system. It is composed of

derivatives with respect to the classical degrees of freedom, where the first-order terms represent

the Liouville evolution and the second-order terms, with coefficients D00
2 (z), represent the

diffusion in configuration/phase space. The second and third terms encode the back-reaction

of the quantum degrees of freedom on the classical degrees of freedom, given by the coupling of

derivatives with the Lindblad operators. These terms’ coefficient is D1(z). The first term of the

last line is the usual unitary quantum evolution, while the last two terms, with coefficient D0(z),

are responsible for the decoherence of the quantum system, and can be traced back directly to

the GKSL equation [131, 132]. If one compares Equation (2.16) to earlier attempts of hybrid

dynamics evolution [117, 120, 121, 122, 123], one will immediately notice that this equation

is linear in the density matrix and prevents the breakdown of the probabilistic interpretation.

Revisiting the earlier example of the CQ qubit; we can expand the anticommutator of Eq. (2.8)

as
∂ϱ

∂t
= −iλq[σ̂z, ϱ] − ∂

∂q

( p
m
ϱ
)

+
∂

∂p

(
λ

2
ϱσ̂z +

λ

2
σ̂zϱ

)
, (2.17)

this allows us to identify D0σz
1,p = Dσz0

1,p = −λ
2 . We can then implement the remaining terms

and reorganise them to see how the CQ framework describes the evolution of the same physical

system as

∂ϱ(q, p, t)

∂t
= − ∂

∂q

( p
m
ϱ(q, p, t)

)
+

1

2

∂2

∂p2
(
D00

2,pp ϱ(q, p, t)
)

− ∂

∂p

(
D0,σz

1,p ϱ(q, p, t) σ̂z

)
− ∂

∂p

(
Dσz ,0

1,p σ̂zϱ(q, p, t)
)

− i[Ĥ(p, q), ϱ(q, p, t)] +Dσz ,σz
0

(
σ̂zϱ(q, p, t) σ̂z −

1

2
{σ̂2z , ϱ(q, p, t)}

)
,

(2.18)

where the last term could be simplified further by recalling that σ̂2z = Î, but we have chosen

this form for ease of comparison with Eq. (2.16). Two realisations of the evolution described

by Eq. (2.18) have been simulated in Figure 2.1, which can be found in [5]. The CQ evolution

maintains the correlation between the classical and quantum state, providing a correct descrip-

tion for the hybrid dynamics, which a semiclassical theory akin to the semiclassical Einstein

equations described in Chapter 1 would not be able to do.
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Figure 2.1: Classical-quantum trajectories, represented by a classical trajectory in phase space

(left) and a quantum trajectory on the Bloch sphere (right). The orange and blue lines represent

two possible realisations of the CQ trajectories described by Eq. (2.18). The red line would

describe the predicted behaviour of a semiclassical theory akin to Eq. (1.2). One can see that

the classical and quantum trajectories represent correlated random variables. This should be

compared to the standard semi-classical result, for which correlations are lost. Figure courtesy

of [5].

When analysing the time evolution described by this equation, we see that the decoherence

terms and the additional diffusion in phase space contribute to suppressing the off-diagonal

components of the CQ state and preserving the normalisation of phase space probabilities. The

values of the decoherence and diffusion coefficients are not arbitrary. One can ask if there is any

condition that needs to be imposed for the dynamics to preserve the state’s positivity. Indeed,

the question leads to a trade-off between the diffusion of the classical degrees of freedom and

the decoherence of the density matrix.

2.4 The decoherence-diffusion trade off

While CQ systems, but also some of its precursors [124, 127], present decoherence in the quan-

tum degrees of freedom and diffusion in the classical ones, the rates at which the two phenomena
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occur are not completely independent. In [3], it was shown that, in order for the dynamics to

be completely positive, one must have

Dbr
1 D

−1
0 Dbr†

1 ⪯ D2, (2.19)

for the matrix whose elements are the couplings

D2 = Dµν
2,ij , Dbr

1 = Dαµ
1,i , D0 = Dαβ

0 , (2.20)

where ‘br’ stands for backreation. Moreover, D0 and D2 are required to be positive semi-definite

and obey

(I−D0D
−1
0 )Dbr

1 = 0, (2.21)

which tells us that D0 cannot vanish if there is non-zero back-reaction. Equation (2.19) implies

that whenever there is back-reaction of a quantum system on a classical one, we necessarily

have decoherence on the quantum system, as well as diffusion in the classical system, by an

amount lower bounded by the coherence time. The trade-off in Equation (2.19) must hold for

all Markovian classical-quantum dynamics. We refer to the trade-off in Equation (2.19) as the

decoherence-diffusion trade-off, though strictly speaking, it is a trade-off between the diffusion

D2 and Lindbladian coupling D0 entering into the master equation. A special case of this can

be found in the condition for complete positivity of the constant force master equation of [127].

In Equation (2.16), the decoherence-diffusion trade-off reads

D00
2 ⪰ D1D

−1
0 D†

1, (I−D0D
−1
0 )D1 = 0. (2.22)

When the drift is generated by a CQ Hamiltonian, the back-reaction described by the D1 term

takes the form of the previously mentioned Alexandrov-Gerasimenko bracket, the decoherence-

diffusion trade-off originating from the requirement of positivity simplifies to

4D2 ⪰ D−1
0 , (2.23)

which, when saturated, has important consequences on the path integral formulation, as we

will explore in detail in Chapter 3.

When the classical degrees of freedom are fields, for example when applying the framework to

gravity, one needs to use the field-theoretic version of the moment expansion which was studied
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in [1, 3, 136]. In the field-theoretic case, the Lindblad operators can have spatial dependence,

and the field-theoretic master equation follows by replacing discrete sums with integrals over

space ∑
νµ

Dµν
n Lµϱ(z)L†

ν →
∫
dxdy Dµν

n (x, y)Lµ(x)ϱ(z)Lν(y) (2.24)

and replacing standard derivatives with functional derivatives. In other words, the spatial

coordinate x acts like an index of the Lindblad operators and the matrices Dn.

In the field-theoretic case, one finds the same trade-off between coupling constants in Equa-

tion (2.19), but the moments are now matrix kernels representing diffusion and decoherence.

In order for the dynamics to be completely positive D0(x, y), D2(x, y) must also be positive

kernels, where a positive kernel f(x, y) is a kernel such that
∫
dxdy a∗(x)f(x, y)a(y) ≥ 0 for any

function a(x). Written out explicitly, the trade-off in Equation (2.19) reads

∫
dxdy[b∗(x), α∗(x)]

2D2(x, y) Dbr
1 (x, y)

Dbr
1 (x, y) D0(x, y)

b(y)

α(y)

 ≥ 0 (2.25)

which should be positive for any position dependent vectors biµ(x) and aα(x). When viewing

it as a matrix-kernel equation, this is equivalent to a trade-off between coupling constants in

Equation (2.19).

It is clear that the stronger the interaction between the quantum and the classical systems,

the greater the trade-off. Long coherence times are impossible without introducing enough

diffusion in the classical degrees of freedom. One can visualise this phenomenon by thinking

again of Figure 1.2 in Chapter 1. When the diffusion is high, the path of the test mass is marked

by big random movements. The experimenter needs to wait a long time to understand if the

planet’s superposition is collapsed on the left or right, preserving the quantum state’s coherence

for longer. However, one should keep in mind that there is no need for an external observer;

the classical system itself acts as the observer. As a result, the tradeoff between decoherence

and diffusion is a crucial aspect of the CQ framework, which notably avoids the measurement

problem.

The trade-off presented here is a key feature of the CQ framework, and it is precisely

the reason why one can step around the no-go theorems which would prohibit sourcing a

classical field with a superposition of quantum systems and would require the quantisation of
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gravity [44, 137, 138, 139], the trade-off makes it so that that measuring the state of the classical

field does not automatically determine the state of the quantum system [1, 140]. Moreover,

the trade-off can be exploited to look for an experimental signature not only of CQ but also

of models of hybrid Newtonian mechanics such as [124] and any theory that treats gravity as

fundamentally classical. This would be achieved by using the experimental signature to squeeze

CQ theories through the measurement of decoherence times of mass superpositions and diffusion

of the metric degrees of freedom, measured through Cavendish experiments [141, 142, 143] and

measurements of Newton’s constant [144, 145, 146]. As explained in [3], we think that lower

bounds obtained from results on large molecules superposition decoherence times [147, 148, 149,

150] combined with small masses acceleration measures [151, 152, 153] already provide strong

restrictions on theories where the spacetime metric is treated classically.

2.5 Unravelling of CQ master equation

When working with an open quantum system that is evolving according to the GKSL (Lindblad)

equation [131, 132], it is often convenient to recast the dynamics in an unravelled form, where

one follows the evolution of a single pure quantum state instead of following the entire density

matrix. The state evolves stochastically in the Hilbert space, and the evolution of the quantum

system can then be recovered by averaging over all paths. The advantages of this approach

are multiple. Firstly, it is easily implementable in a computer simulation; the evolution of a

single pure state, especially for larger systems, has lower computational complexity than the

entire density matrix. Secondly, the unravelling approach is intuitively easier to grasp and

offers a different perspective. The evolution of the system can be thought of as generated

by continuous, deterministic dynamics accompanied by stochastic jumps of the wave function

occurring stochastically whenever an interaction with the environment manifests.

Much like the GKSL equation, the CQ master equation can be unravelled to study the

stochastic evolution of the quantum and classical degrees of freedom of a pure hybrid CQ

state. Given a CQ state ϱ(t, z) = E[δ(z − Zt)ρt], the dynamics which generate the stochastic

trajectories of the classical {Zt}t>0 and quantum {ρt}t>0 degrees of freedom will induce the

stochastic trajectory of the hybrid state ϱ(z, t). The dynamics is positive and norm-preserving
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and can be written as a series of stochastic differential equations [5]

dZt,i = D1,i(Zt)dt+ ⟨Dα0
1,i(Zt)Lα +Dα0

1,i(Zt)L
†
α⟩dt+ σij(Zt)dWj , (2.26)

dρt = −i[H(Zt), ρt]dt+Dαβ
0 (Zt)LαρL

†
βdt−

1

2
Dαβ

0 (Zt){L†
βLα, ρt}+dt

+Dα0
1,jσ

−1
ij (Zt)(Lα − ⟨Lα⟩)ρtdWi +Dα0

1,jσ
−1
ij ρt(L

†
α − ⟨L†

α⟩)(Zt)dWi, (2.27)

where dWi is the standard multivariate Wiener process and σij is defined by D00
2,ij = σikσ

T
kj .

The first equation represents the path of the classical degrees of freedom Zi through phase

space. The first term is the usual classical evolution, and the second describes the back-reaction

of the quantum degrees of freedom, appearing through the presence of the Lindblad operators.

In contrast, the last term represents the random kicks that cause diffusion. The second equation

allows one to simulate paths of the quantum state through Hilbert space. We can distinguish the

standard unitary evolution, the decoherence terms (analogous to the GKSL equation but with

a dependence on the classical phase space), and the noise in its trajectory manifested in the last

two terms. One can notice how these coupled differential equations are much easier to simulate

on a computer, and their averaged-out paths will recover the master equation formulation.

Moreover, in [5, 116, 126], it has been argued that the unravelling picture of the CQ state

has an added ontological value with respect to the GKSL unravelling. The unravelling of the

GKSL is highly non-unique due to the possibility of decomposing the same dynamics using

different Lindblad operators. On the other hand, when unravelling the CQ master equation, if

the assumption is made that each Lindblad operator has a well-defined effect on the classical

degrees of freedom, the resulting unravelling of the dynamics will be unique when conditioned

on the classical degrees of freedom. As a consequence, stochastic trajectories of the state can

be associated with real physical trajectories, and the resulting collapse into a particular state is

actually happening due to the physical interaction between the classical and quantum degrees

of freedom. In other words, the unravelling allows us to determine the evolution of the quantum

state conditioned on the classical trajectory, which remains pure if the decoherence diffusion

trade-off is saturated [5].

In this chapter, we have introduced and discussed two of the three formulations of the

CQ framework. In the next chapter, we will explore the path integral approach to Classical

Quantum dynamics and understand its strengths and weaknesses.
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Chapter 3

Classical Quantum Path Integrals

“Path integrals: because why take one path to your destination

when you can stumble over infinitely many and still claim

you’ve found the right way?”

∼ ChatGPT

In this Chapter, we present the key aspects and ideas that lead to and justify the path

integral formulation of the CQ framework. A complete and detailed derivation can be found in

the original works [4, 130]. In this Chapter, we will first briefly explain why a CQ path integral

formulation is well-suited to discuss field theories and gravity; then, we will look at path integrals

in classical, quantum theories and CQ frameworks. Lastly, we will comment on the saturation

of the decoherence diffusion trade-off and its effect on the path integral formulation. The path

integral formulation will be key in the gravity applications of all the next Chapters.

The master equation formulation of the CQ framework is perfectly suited to highlight the

consistency of the coupling between classic and quantum degrees of freedom. The evolution of

the CQ state through the master equation in its continuous and jumping forms [1, 2] allows

one to immediately appreciate how the different terms in the dynamical equation are tied to

the time development of the individual classical and quantum degrees of freedom and to their

backreaction on each other which lead to the effects of decoherence and diffusion discussed

in Chapter 2. In addition, positivity conditions are easily accounted for, leading to the key

property of decoherence-diffusion trade-off [3]. However, since the beginning, the CQ framework
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was formulated with the idea of being able to incorporate classical and quantum descriptions

of field theories, from Klein-Gordon fields to gravity [1].

While, in Chapter 2, we spent a few words on adapting the master equation to describing

fields through the replacement of discrete sums with integrals, as shown in Equation 2.24, this

formalism is not the preferred choice for the description of quantum fields. Path integrals are,

instead, the preferred tools for high-energy and gravitational physicists. Path integrals allow

one to impose gauge and spacetime symmetries, impose constraints, and exploit modern notions

of effective field theories [154]. It is challenging, albeit not necessarily impossible, to check and

impose these ideas directly at the master equation level [136]. Moreover, the master equation

formulation lacks many of the numerical methods that can be readily applied to path integrals

when simulating the dynamics of a system.

However, the path integral formulation of the framework excels at all of these tasks. First

of all, constraints can be directly imposed on trajectories through the use of delta functionals,

allowing one to post-select the paths of the systems living on the constraint surface. Secondly,

there exist many efficient numerical methods capable of simulating path integrals. For example,

those involving Monte Carlo methods find great applicability everywhere from finance [155,

156, 157] to lattice gauge theories and quantum mechanics [158, 159]. Lastly, the path integral

formulation allows one to impose space-time symmetries and gauge symmetries with ease, as it

can exploit the presence of an action, benefiting from all the techniques and insights associated

with it. This formalism makes it easier to formulate CQ dynamics in a covariant manner [130]

and to enforce the necessary principles when studying effective field theories [154].

3.1 Path integrals in classical and quantum theories

Path integrals are very powerful tools that compute the evolution of a system by summing over

all the possible allowed paths between an initial and final configuration of the system, where each

path is weighted according to the probability of it being realized. The more probable a path,

the greater the contribution to the final summation. Developed by Feynman in the 1940s [160],

the essence of quantum path integrals lies in their ability to describe the probabilistic nature

of quantum mechanics more intuitively. Unlike classical trajectories, where a system follows a
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definite path, quantum path integrals associate a probability amplitude to each path, given by

the exponential of the classical action in units of Planck’s constant.

ρ(ϕf , tf ) = N
∫

Dϕ(x) e
i
ℏS[ϕ]ρ(ϕi, ti), (3.1)

where ρ(ϕ, t) is the density operator, N the normalisation factor, ϕ(x) is a quantum field and

S[ϕ] is the associated action, for example, a scalar field with a potential

S[ϕ] =

∫ tf

ti

d3x⃗dtL[ϕ] =

∫ tf

ti

d3x⃗dt

(
1

2
∂µϕ∂

µϕ− V (ϕ)

)
. (3.2)

Path integral methods were revolutionary for quantum field theory and allowed for the imple-

mentation of renormalization [161] and perturbative renormalisation [162], among a plethora

of other useful computational techniques [163, 164, 165, 166].

Quantum path integrals can also be used to describe open quantum systems that present

dissipative behaviour [167]

ρ(ϕ+f , ϕ
−
f , tf ) = N

∫
Dϕ+Dϕ− e

i
ℏ

(
S[ϕ+]−S[ϕ−]+SFV [ϕ+,ϕ−]

)
ρ(ϕ+i , ϕ

−
i , ti), (3.3)

with action

S[ϕ±] =

∫ tf

ti

d3x⃗dt

(
1

2
∂µϕ

± ∂µϕ± − V (ϕ±)

)
,

iSFV =

∫ tf

ti

d3x⃗dt

(
Dαβ

0 L+
αL

∗−
β − 1

2
Dαβ

0

(
L∗−
β L−

α + L∗+
β L+

α

))
,

(3.4)

where L+
α = Lα[ϕ+] and L−

α = Lα[ϕ−]. The quantum path integral is doubled since it includes

a path integral over both the bra and ket components of the density matrix, here represented

using the ± notation. In the absence of the Feynman Vernon term SFV [167] the path integral

represents a quantum system evolving unitarily with an action S[ϕ]. When the Feynman Vernon

action SFV is included, the path integral describes the path integral for dynamics undergoing

Lindbladian evolution [132, 135] with Lindblad operators Lα(ϕ). Because of the ± cross terms,

the path integral no longer preserves the purity of the quantum state and there will generally

be decoherence by an amount determined by D0. Hence, we see that the decoherence coefficient

appears in the path integral formulation to play a role analogous to that played in the master

equation formulation of Chapter 2. The condition for complete positivity in this case requires
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Dαβ
0 to be a positive semi-definite matrix, D0 ⪰ 0. As a simple example, we can take Dαβ

0 = D0

and take L±
α = ϕ±(x) to be a local real scalar field. This will yield a Feynman-Vernon term

iSFV = −D0

∫ tf

ti

dtdx
(
ϕ+(x) − ϕ−(x)

)2
. (3.5)

As one can see, the effect of the influence functional is that off-diagonal terms in the density

matrix where ϕ+(x) is different to ϕ−(x) are suppressed, the state decoheres in the ϕ(x) basis.

While path integrals for quantum mechanics are extensively known in the high energy and

gravitational physics community, classical path integrals are perhaps less appreciated. However,

stochastic systems that can be described by a master equation formalism can also be described

by a so-called stochastic path integral, and a general equivalence exists between them [168, 169,

170, 171]. The idea behind these path integrals is that the probability distribution over the

classical degrees of freedom p(z, t) is evolved by summing over the intermediate steps that the

stochastic systems can take, each weighted by the associated conditional transition probability

p(z, t|z′, t′). Much like the construction of quantum path integrals, the path is divided into

infinitesimal steps, and the conditional transition probability is then expressed in terms of the

Wiener process and summed over [172]. The result is a path integral where the integrand is the

exponential of a functional originally formulated in [168] and known as the ”Onsager-Machlup”

action. Stochastic path integrals can be expressed both in configuration and phase space. As an

example, one can consider a stochastic Brownian particle undergoing diffusion in phase space

thanks to kicks in its momentum, such that z = (q, p) and the path integral reads

p(qf , pf , tf ) = N
∫

DqDp δ
(
q̇ − ∂H

∂p

)
e−SC [q,p] p(qi, pi, ti), (3.6)

with classical action

SC [q, p] =

∫ tf

ti

dt

2D2

(
ṗ+

∂H

∂q

)2

, (3.7)

where H[q, p] is the Hamiltonian of the system and D2 is the diffusion coefficient, which could

depend on the degrees of freedom, subject to positivity requirements imposing D−1
2 ≥ 0 (if

we the diffusion coefficient is a matrix D2,ij the condition becomes D−1
2 ⪰ 0). Looking at the

path integral, one can see that it consists in a sum over all classical configurations (q, p) with a

weighting given accordingly to the difference between the classical path and its expected force

−∂H
∂q , by an amount characterized by the diffusion matrix D2. In the case where the force is
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determined by a Lagrangian LC , the action SC describes a suppression of paths away from the

Euler-Lagrange equations, by an amount determined by the diffusion coefficient D2. The role

of the delta function δ
(
q̇ − ∂H

∂p

)
is to impose Hamilton’s equation of motion for the degree of

freedom that does not feel the effects of the stochastic kicks directly. If there were no stochastic

kicks at all, then the transition probability would simply be given by Hamilton’s equations of

motion and the integrand would just be a product of delta functions δ
(
q̇ − ∂H

∂p

)
δ
(
ṗ+ ∂H

∂q

)
.

3.2 Path integrals for CQ dynamics

Hybrid path integrals have appeared previously [173, 174, 175, 176, 177]. These may be valid

when applied to some initial probability densities but generally lead to negative probabilities

since the dynamics is not completely positive on all initial states. However, CQ path integrals

produce dynamics which is CPTP on all states at all times. The path integral formulation

can be derived starting from the master equation [4], but it can also be taken as the starting

point [130]. As with the master equation approach, the dynamics of the hybrid system is linear

in the density matrix, completely positive, and trace-preserving.

The classical-quantum state can be expanded in terms of its components, in this case, a

continuous quantum degree of freedom ϕ:

ϱ(z, t) =

∫
dϕ+dϕ− ϱ(z, ϕ+, ϕ−, t) |ϕ+⟩ ⟨ϕ−| . (3.8)

Where ϱ(z, ϕ+, ϕ−, t) = ⟨ϕ+| ϱ(z, t) |ϕ−⟩. Here, we double the degrees of freedom in order to

define the density matrix – the ϕ− field is the ket-field, while the ϕ+ field is the bra-field. The

general CQ configuration space path integral takes the form described in [4, 130]

ϱ(zf , ϕ
+
f , ϕ

−
f , tf ) =

∫
zi

N DzDϕ+Dϕ−eI[z,ϕ+,ϕ−,ti,tf ]ϱ(zi, ϕ
+
i , ϕ

−
i , ti), (3.9)

where z = (z1, ..., zn) are the classical degrees of freedom, I is the CQ action and it is implicitly

understood that boundary conditions are to be imposed at tf . The N normalisation factor is

included in case the action does not preserve the norm of the state. The path integral gives

each element of the density matrix at time t, given an initial density matrix.

According to the main result of [130], among all the possible completely positive actions, it
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is helpful to consider time-local CQ path integrals where the action takes the form of

I(z, ϕ+, ϕ−, ti, tf ) = ICQ(z, ϕ+, ti, tf ) + I∗
CQ(z, ϕ−, ti, tf )

− IC(z, ti, tf ) +

∫ tf

ti

dtdx⃗
∑
γ

cγ(z, x, t)Lγ(ϕ+)L∗
γ(ϕ−),

(3.10)

which defines completely positive CQ dynamics.

In Equation (3.10), ICQ[ϕ±] determines the CQ interaction the CQ interaction for the

bra or ket (ϕ±) of the density matrix, and IC(z, ti, tf ) is a purely classical Fokker-Plank like

action [171, 178], which should be positive definite, at least for large values of the classical

variables z so that the path integral converges. If IC is positive (semi) definite, the real part

of ICQ is negative (semi) definite, and cγ ≥ 0 is chosen such that the path integral will be

convergent and define completely positive CQ dynamics [130]. From this point onward, we

will also take cγ = 0, the reason behind this choice will be explained in Section 3.3. However,

one should keep in mind that all CQ path integrals with action given by Equation (3.10) are

valid [130].

One can also go directly from the master equation picture in Equation (2.16) to a path

integral picture whenever the master equation contains terms that are no more than quadratic

in classical derivative operators [4]. In order to do so, one starts from the master equation,

Trotterizes the dynamics in K steps from ti to tf and makes the identification with the short

time expansion of the general CQ map where the conditional transition amplitudes have been

Fourier transformed and written in terms of response variables conjugate to the classical degrees

of freedom. Then, one proceeds to exponentiate the Lindblad operators by first transforming

them in c-numbers. Afterwards, one inserts resolutions of the identity of the momenta associated

with the quantum degrees of freedom and sends K → ∞ to arrive at the path integral in phase

space. Lastly, the response variables can be integrated out to obtain the phase space path

integral formulation [4]. If the quantum momenta operators are no more than quadratic, they

can be integrated out and the path integral can be written in configuration space. In this sense,

Equation (3.10) allows for more general path integrals since one can include couplings that are

higher than quadratic. In this case, the mapping between master equations and path integrals

will not always be clear. The reduced phase space weak limit of gravitational CQ that we

consider in Chapter 4 is of this type since, as we will see, imposing the constraint generates
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couplings that are higher than second order.

A natural class of theories introduced in [4, 130], which work especially well for classical and

quantum fields are those derivable from a classical-quantum proto-action. The CQ proto-action

is defined as

WCQ[z, ϕ] =

∫
dtdx⃗

(
LC [z(x)] − VI [z(x), ϕ(x)]

)
, (3.11)

where LC is the Lagrangian density of the classical field action Sc[z] =
∫
dtdx⃗LC [z], VI is the

interaction potential density VI [z, ϕ] =
∫
dtdx⃗VI [z, ϕ] and the classical and quantum degrees of

freedom are now locally dependent on spacetime. The CQ action can then be written as

I(z, ϕ+, ϕ−, ti, tf ) = iSQ[z, ϕ+] − iSQ[z, ϕ−] + iSFV [z, ϕ+, ϕ−] − Sdiff [z, ϕ+, ϕ−]

=

∫ tf

ti

dtdx⃗

[
iLQ[z, ϕ+] − iLQ[z, ϕ−] − 1

2

δ∆WCQ

δzµ
D0,µν [z(x)]

δ∆WCQ

δzν

− 1

2

δW̄CQ

δzµ
D−1

2,µν [z(x)]
δW̄CQ

δzν

]
,

(3.12)

where SQ is the action for the quantum system, including the interaction potential. Here,

the backreaction of the classical system on the quantum system defines a general form of the

decoherence obtained via the proto action difference

∆WCQ[z, ϕ+, ϕ−] := WCQ[z, ϕ+] −WCQ[z, ϕ−], (3.13)

while the backreaction of the quantum system on the classical system results in an average force

obtained from the proto action average

W̄CQ[z, ϕ+, ϕ−] :=
1

2

(
WCQ[z, ϕ+] +WCQ[z, ϕ−]

)
. (3.14)

To better understand the effect of the CQ action, we can again read Equation (3.12) in order.

The first two terms represent the unitary evolution of the quantum degrees of freedom, which can

be any quantum field theory Lagrangian. Given that we are evolving a density matrix we have

that the left/right (bra/ket) branches are evolved separately by the ± terms. One can also add

friction terms to Equation (3.12) though we shall not do this in the present work. Next, we find

the decoherence term. It has a decoherence coefficient D0 and is constructed from the variation

of the difference between the left and right branches of the proto-action ∆WCQ[z, ϕ+, ϕ−]. This
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term is responsible for the decoherence of the system, penalising trajectories of the hybrid state

that move further away from ϕ+ = ϕ−. This term does not affect the diagonal terms in the

density matrix but does suppress the off-diagonal terms exponentially with time. Lastly, we

have the diffusion term. Built from the variation of the ± averaged interaction W̄CQ[z, ϕ+, ϕ−],

this term has diffusion coefficient D2 and penalises trajectories in which the classical degrees

of freedom tend to deviate from their Euler-Lagrange equations of motion. In other words,

the noise introduced in the classical degrees of freedom from the backreaction of the quantum

degrees of freedom introduces a diffusion process that is visible from this term.

As a toy example, we could take a single classical degree of freedom describing a scalar field

zµ = {q(x)} coupled to a quantum scalar degree of freedom with spatial dependence (ex: a

quantum field ϕ(x))

WCQ[q, ϕ] =

∫
dtdx⃗

(
1

2
q̇(x)2 − q(x)ϕ(x)

)
. (3.15)

Then, choosing for simplicity D0(q)
µν = D0η

µν ,

iSFV [q, ϕ] := − 1

2

∫
dtdx⃗

(
δ∆WCQ

δzµ
Dµν

0 (z)
δ∆WCQ

δzν

)
(3.16)

= − 1

4
D0

∫
dtdx⃗

(
ϕ+(x) − ϕ−(x)

)2
, (3.17)

acts like a Feynman-Vernon term [167] which causes decoherence. As we mentioned above, the

diagonal of the density matrix of Equation (3.8) occurs when ϕ+ = ϕ− and, on these components

of the density matrix, this term has no effect, while the greater the difference between the bra

and ket fields, the more such paths are suppressed by the term in Equation (3.17).

In a similar manner D2 tunes the averaged interaction term Sdiff , which is instead related to

the diffusion of the classical degrees of freedom. Similarly to the decoherence term, paths that

deviate from the Euler-Lagrange equations of motion, which are derived from the proto-action

WCQ, are suppressed due to stochastic diffusion. In the simple example of Equation (3.15), one

obtains

Sdiff [q, ϕ] =
1

2

∫
dtdx⃗

(
δW̄CQ

δzµ
D−1

2,µν(z)
δW̄CQ

δzν

)
=

1

2D2

∫
dtdx⃗

(
q̈(x) +

ϕ+(x) + ϕ−(x)

2

)2 (3.18)
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where the force on the classical field is produced by the average of the bra and ket quantum

fields. This term allows for fluctuations around the force but acts to suppress large deviations

from them.

Thanks to its form, it is possible to recognise how the CQ path integral is connected to the

path integral formulation of open quantum systems. If the action I was only constructed out

of the quantum degrees of freedom I[ϕ+, ϕ−] = iSQ[ϕ+] − iSQ[ϕ−] + iSFV [ϕ+, ϕ−], we would

recover the standard decoherence and loss of purity behaviour related to open quantum systems.

If the Feynman-Vernon term [167] was not present (SFV = 0), we would then recover standard

unitary quantum mechanics. Much like open systems have a path integral formulation of their

master equation version, the CQ path integral can, in certain circumstances, be directly thought

of as coming from the master equation formulation [1, 4]. Nevertheless, according to [130], we

can take the path integral as the starting point of the CQ framework. This allows for a simpler

definition of the path integral, given that deriving a clean form from the master equation is not

always possible [4].

The path integral constructs a CQ state at time tf from a CQ state at time ti. However,

we are often interested in computing correlation functions for stationary states, and we would

like to obtain information on correlation functions over arbitrary long times by taking the limit

ti → −∞, tf → ∞. In open systems, as well as when calculating scattering amplitudes, it

is often assumed that the initial state in the infinite past does not affect the stationary state

of the system so that there is a complete loss of memory of the initial state [178]. Under

this assumption, it is possible to ignore the boundary term containing the initial CQ state

ϱ(zi, ϕ
±
i , ti), arriving at the partition function

Z[J+, J−, Jz] =

∫
DzDϕ±N eICQ(z,ϕ+,ϕ−,−∞,∞)−i(J+ϕ+−J−ϕ−)−Jzz (3.19)

such that we can use standard perturbation methods for computing correlation functions in CQ

theories.

3.3 Decoherence-Diffusion and the purity of the state

The coefficients Dµν
0 , Dµν

2 need to be positive definite matrices and kernels in the case of several

classical degrees of freedom or fields . To ensure that the action takes the form of Equation
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(3.10) and ensure complete positivity of the dynamics, one imposes the matrix inequality:

4D2 ⪰ D−1
0 . (3.20)

This is again the decoherence-diffusion trade-off discussed in Chapter 2. The trade-off itself

originates from positivity conditions on the master equation, on which we expand in Section 2.4,

but was derived and explored in depth in [3]. Even in the path integral formulation, the physical

meaning of this relationship between the decoherence and the diffusion coefficients tells us that,

if we want to preserve the coherence of the quantum degrees of freedom for prolonged times,

we will have a lot of noise introduced in our classical degrees of freedom. This can be seen from

Equation (3.12) because the two coefficients regulate the amount of suppression for paths that

maintain coherence of the quantum system and that diffuse away from the classical equations

of motion. While the trade-off is in itself an equality, and hence valid for a wide range of

parameters, we say that the trade-off is saturated when

4D2 = D−1
0 . (3.21)

The saturation of the trade-off is related to the last term in the CQ action of Equation (3.10),

which reads ∫ tf

ti

dtdx⃗
∑
γ

cγ(z, x, t)Lγ(ϕ+)L∗
γ(ϕ−). (3.22)

This term contains cross terms between the bra and ket branches ϕ+, ϕ−, which sends pure

states to mixed states and corresponds to including additional noise in the dynamics. It can

be thought of as incorporating the loss of quantum information into the path integral through

Lindbladian terms when the decoherence-diffusion trade-off is not saturated, much like a path

integral version of a Kraus operation. Equation (3.12) is a special case of Equation (3.10)

when the trade-off is satisfied, which can be seen by setting cγ = 0 and expanding out the CQ

action [130]. This is true for an arbitrary CQ proto-action WCQ.

Since for cγ = 0 Equation (3.10) contains no ϕ± cross terms, the path integral preserves the

purity of the quantum system. Pure quantum states are mapped to pure quantum states, and

no information is lost. Moreover, conditioned on the classical trajectory, the quantum state

evolution is deterministic, which provides a natural mechanism for wave-function collapse if the

classical degrees of freedom are taken to be fundamental. Furthermore, because the classical
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degrees of freedom are themselves dynamical, unlike in spontaneous collapse models [104, 179,

180, 109], it is possible to make the dynamics covariant [130].

In the next chapters, we will apply the CQ framework to gravity, exploring the construction

of diffeomorphism invariant CQ theories of gravity and the consequences of their weak field

limit.
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Part II

Classical-Quantum Gravitation
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Chapter 4

Newtonian limit of quantum matter

backreacting on classical spacetime

“Gravity is a contributing factor in nearly 73%

of all accidents involving falling objects.”

∼ Dave Barry

As we have seen in the previous chapters, consistent coupling of quantum and classical

degrees of freedom exists so long as there is both diffusion of the classical degrees of freedom

and decoherence of the quantum system. In this chapter, we derive the Newtonian limit of

such classical-quantum theories of gravity. Consistent hybrid theories of Newtonian gravity

have been studied via continuous measurement and feedback approaches [55, 110, 181, 182],

and in [124] using a master equation for classical-quantum dynamics [125, 127, 129]. These

approaches are all mathematically coherent and do not suffer from the problems of the standard

semi-classical approach. As expected, the resulting master equation is linear in the combined

hybrid state, preserves the classical-quantum split, and is completely positive on the quantum

system. However, a derivation of the weak field limit from the complete general-relativistic

theory is lacking for the CQ framework. This Chapter provides such derivation.

Our results are obtained both via the gauge fixing of the path integral theory of CQ general

relativity based on Chapter 3 and via the CQ master equation approach described in Chap-

ter 2. In each case, we find the same weak field dynamics. As described in Chapter 2, for
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any Markovian classical-quantum dynamics to be completely positive, which is required for the

dynamics to be consistent when acting on half an entangled state and for mapping probability

distributions to probability distributions, there must be a trade-off between the amount of deco-

herence on the quantum system and the amount of diffusion in the classical system. A relevant

precursor to this result can be found in the constant force master-equation of Diósi [127]. More

generally, since the trade-off can be shown to be a feature of all classical-quantum dynamics, this

trade-off provides an experimental signature, not only of models of hybrid Newtonian dynamics

such as [124], or of post-quantum theories of general relativity such as [1], but of any theory

which treats gravity as being fundamentally classical. The metric necessarily diffuses away

from what Einstein’s General Relativity predicts. This signature squeezes classical-quantum

theories of gravity from both sides: if one has shorter decoherence times for superpositions of

different mass distributions, one necessarily has more diffusion of the gravitational metric. One

can thus use Cavendish-type experiments to upper bound the amount of diffusion and coher-

ence experiments to lower bound it, thus squeezing the parameter space of the theory from

both sides. Therefore, the Newtonian potential diffuses by an amount bounded below by the

decoherence rate into mass eigenstates. We also present our results as an unravelled system of

Langevin stochastic differential equations (introduced in Chapter 2) for the trajectory of the

hybrid classical-quantum state and provide a series of kernels that characterise correlations in

stochastic dynamics. From these, theorists and experimentalists can choose to develop and test

the parameters of CQ theories, possibly ruling out parts of the parameter space.

If such theories were in disagreement with experiments, this would provide an indirect test

for the quantum nature of gravity. For example, in [3], the decoherence diffusion trade-off was

used to rule out a large class of natural theories that we derive here, namely those which are

ultra-local, non-relativistic and continuous in the classical phase space. Hence, a significant

problem is studying and classifying consistent classical-quantum theories of gravity and their

low energy limit further to reduce the parameter space of physically sensible CQ theories.

Moving away from fundamentally classical fields, we also mentioned in Chapter 1 that CQ

theories of gravity could describe an effective quantum gravity regime whenever the gravitational

field freedom behaves classically. In such a case, we expect that variants of the master equation

and path integral found here will help describe this limit. However, an effective theory would
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probably be non-Markovian in some regimes, meaning that the decoherence-diffusion trade-off

would not need to hold for all times [1]. We expand on this eventuality when discussing the

weak-field results obtained here.

Let us briefly describe the structure of this chapter in detail.

In Section 4.1, we review a route to the Newtonian limit of classical gravity through a

reduced action approach. We start from a reduced action by identifying the true degree of

freedom of the non-relativistic Newtonian limit as the scalar perturbation of the metric, arriving

at the Newtonian ADM Hamiltonian (4.11). This result will allow us to construct a hybrid

gravitational system in the Newtonian limit in the master equation picture, where implementing

the full GR constraint is challenging [136]. For reference and comparison, in Appendix A, we

also summarise the standard derivation of the Newtonian limit, which uses the full Einstein’s

equations. Lastly, we present a stochastic classical analogue of the CQ theory for Newtonian

gravity, where the field is sourced by a Markovian noise process. We see the role of the shift

vector in the imposition of stochastic Newtonian constraints. In the end, it will turn out that

this is the actual classical limit of the CQ theory when the matter degrees of freedom have

completely decohered, and only the noise process remains in the classical degrees of freedom.

In Section 4.2, we derive the CQ Newtonian limit path integral as a gauge-fixed, non-

relativistic limit of the diffeomorphism invariant CQ path integral for general relativity. The

gauge fixing is informed by the reduced phase space approach to the Newtonian limit, and the

non-relativistic limit is implemented by keeping leading terms in the speed of light c. This is

one of the main results of this work. The dynamics is CP on the subset of states defined by

the Newtonian limit. We find a generic prediction of CQ theories. The Newtonian potential

diffuses away from its classical solution by an amount that depends on the decoherence rate

into mass eigenstates.

In Section 4.3, we construct the weak field regime for the class of master equations with

continuous back-reaction on the gravitational degrees of freedom (4.33). The effects of the

dynamics are parameterized by a handful of functional parameters, which can be squeezed

from experiments via the decoherence diffusion trade-off. In order to discuss experimental

bounds, gravitational constraints on the CQ evolution must be imposed. The constrained

master equation is then unravelled to derive one of the main results (4.44), determining the
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trajectory of any CQ state through its hybrid phase space.

We review how such theories are testable [3]. The most striking being the findings of [3]

that classical-quantum theories of gravity, which are continuous in the gravitational degrees of

freedom and produce only ultra-local, non-relativistic correlations, are already ruled out. Fur-

thermore, when the coupling constants D0, D2 are constant kernels, we arrive at the Newtonian

theory considered in [55, 110]. If one tried to minimise the amount of decoherence [55], one

finds that theories with constant couplings are in tension with heating experiments if the New-

tonian approximation is valid below scales of 10−15m [55]. This calls for a study of relativistic

corrections to hybrid theories.

Lastly, in Section 4.4, we compare and contrast with other models of semiclassical Newtonian

gravity [55, 183, 184], and explain the bridge with the work of [110, 124] while highlighting the

difference with previous measurement feedback and collapse models. We summarise how our

main results have been cross-checked through the use of a variety of different methods. We

conclude with a discussion of our results and comments on the theoretical and experimental

challenges which remain open in constructing and testing theories with a classical gravitational

field coupled with quantum matter.

4.1 Newtonian limit of classical GR

This section reviews the weak field and Newtonian limits of classical general relativity (GR),

which motivates our study of the weak field and Newtonian limits of classical-quantum theories

of gravity. By the weak field limit, we mean the linearised expansion of the metric around a

flat Minkowski background, while by the Newtonian limit, we refer to a non-relativistic setting

by taking the c→ ∞ limit and discarding terms with high powers of inverse c.

The Newtonian limit of GR is represented by a non-dynamical scalar perturbation of flat

Minkowski spacetime expressed through the metric:

ds2 = −c2
(

1 +
2Φ

c2

)
dt2 +

(
1 − 2Φ

c2

)
δijdx

idxj , (4.1)

where Φ satisfies the gravitational Poisson equation. As a reminder, we present the usual

derivation of this limit from a gauge fixing of the full Einstein theory in Appendix A. There,
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we start from a generalised scalar-vector tensor perturbation of the metric in the form of

ds2 = −c2
(

1 +
2Φ

c2

)
dt2 +

wi
c

(dtdxi + dxidt) +

[(
1 − 2ψ

c2

)
δij +

2sij
c2

]
dxidxj , (4.2)

where ∂iw
i = ∂is

ij = 0 and we take the infinite c limit of Einstein’s equations. When the stress-

energy tensor is chosen to represent a pressureless dust distribution (a type of exact solution to

the Einstein field equations where the gravitational field is generated solely by a perfect fluid

with positive mass density and zero pressure for which Tµν = m(x)UµUν with m(x) being a

mass distribution and Uµ the 4-velocity), only one non-dynamical scalar perturbation Φ remains

at the end, and it is constrained to obey the gravitational Poisson’s equation.

Based on the knowledge obtained from the full GR derivation, we present a derivation of

the Hamiltonian formulation of the Newtonian limit, which starts directly from reducing the

degrees of freedom to scalar perturbations. In the reduced degrees of freedom approach, we

first assume that the relevant degrees of freedom are scalar perturbations. We shall also allow

for vector perturbations at higher order in c, which are necessary to construct a consistent CQ

theory.

As we will show in the rest of the main body, this provides us with a way of constructing the

Newtonian limit of CQ theories via a reduction of the gravitational degrees of freedom, even

in the absence of a complete CQ theory of GR which is positive on all possible states. This

is explained in detail in Section 4.2, where we show that the problematic terms appearing in

the CQ treatment of GR vanish in the Newtonian limit, validating the limit with a top-down

approach. Regardless, we get the same results in both the path integral and the master equation

approaches.

4.1.1 Newtonian limit via a scalar reduced action

To derive the Newtonian limit of GR via a reduced Hamiltonian, we take as a starting point the

linearised Einstein Hilbert Lagrangian density, which is equivalent to the spin-2 field Fierz-Pauli

action [185] for the metric perturbation gµν = ηµν + hµν :

S[hµν ] =
c4

16πG

∫
d4xL(hµν), (4.3)

L(hµν) = −1

2
∂µh

µν∂νh+
1

2
∂µh

ρσ∂ρh
µ
σ −

1

4
ηµν∂µh

ρσ∂νhρσ +
1

4
ηµν∂µh∂νh. (4.4)
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We are interested in constructing CQ dynamics for a Newtonian theory, so we further make a

Newtonian approximation of the metric. We take the ADM decomposition

ds2 = −(Nc dt)2 + gij
(

dxi +N ic dt
) (

dxj +N jc dt
)
, (4.5)

and make the weak field assumption

N =

(
1 +

Φ

c2

)
, N i =

(
0 +

ni

c3

)
, gij =

(
1 − 2ψ

c2

)
δij . (4.6)

The extra factor of c in the choice of shift-vector is related to the fact that, classically, the

h0i component occurs at a higher order than the h00, hij components [186]. We assume that

all fields vanish at infinity. In the purely classical case, we find that when the stress-energy

tensor T0i = 0, then ni = 0, but we will show that in the combined CQ case ni ̸= 0 even in the

absence of the stress-energy tensor. Instead, a non-zero ni is required to preserve the theory’s

Hamiltonian constraint.

With the gauge fixing of Equation (4.6), the linearized action in Equation (4.3) is

S =
1

8πG

∫
d4x

[
− 3ψ̇2

c2
+
∂in

i

2c2
(Φ̇ − ψ̇) − ṅi

2c2
(∂iΦ + 3∂iψ) − 1

4c2
∂in

j∂jn
i

+ ∂iψ∂
iψ − 2∂iΦ∂

iψ +
1

4c2
∂in

j∂jn
i

]
.

(4.7)

To go to the Hamiltonian picture, we first calculate the functional derivatives with respect

to ψ̇, ϕ̇ and ṅi to find the conjugate momenta

πψ = − 1

16c2Gπ
(12ψ̇ + ∂in

i), πΦ =
∂in

i

16πc2G
, πi = − 1

16πc2G
(∂iΦ + 3∂iψ). (4.8)

We see that Equation (4.8) defines two primary constraints. As a reminder, in Hamiltonian

mechanics, a primary constraint is a relation between a coordinate and its conjugate momenta

that holds regardless of the equation of motion. Here, the equations for πΦ and πi are constraints

because π̇Φ and π̇i will depend only on the initial state i.e. first order derivatives of the canonical

coordinates, while only the evolution equation for πψ will depend on second order derivatives.

We thus have two primary constraints:

ΠΦ = πΦ − ∂in
i

16πc2G
≈ 0, (4.9)

Πi = πi +
1

16πc2G
(∂iΦ + 3∂iψ) ≈ 0, (4.10)
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where ≈ 0 means weakly zero in the Dirac sense [187], that the quantity is set to 0 by constraining

the initial data. In the c → ∞ limit, Equations (4.9 -4.10) become the constraints πΦ, πi ≈ 0,

which enforce the usual Hamiltonian and momentum constraints.

One might worry about the fact that the constraints (4.9 -4.10) derived from the (Fierz-

Pauli) linearised gravity action appear to be different with respect to the constraints one obtains

by first considering the constraints in the full ADM formalism and then linearising them. This

has been studied in [188], where it was shown that the two forms are related by a canonical

transformation. Alternatively, one could follow the approach of [187] and add a specific non-

covariant term to the linearised action (4.3). This term vanishes on shell and simplifies the

primary constraints to match them with those derived from the ADM formalism.

Since we are interested in the c → ∞ limit, these distinctions do not matter, as we end up

imposing the constraints πΦ, πi ≈ 0, which are equivalent to the primary constraints πN , πNi ≈

0, where N , N i are the lapse and shift vectors.

Using the definitions of conjugate momenta in Equation (4.8) and working to leading order

in c, we arrive at the Newtonian Hamiltonian

H(gr) =

∫
d3x

[
−2πGc2

3
π2ψ − 1

12
πψ∂in

i +
∂iψ∂iΦ

4πG
− ∂iψ∂iψ

8πG
+ λΦπΦ + λiπi

]
. (4.11)

We need to couple gravity with matter to find the Newtonian interaction Hamiltonian.

When a matter action Sm is included, the coupling to the linear perturbation is found via

hµνT
µν , which is required to reproduce Einstein’s equations. We shall consider the matter

distribution to be that of a particle with mass density m(x) and, because we are working in the

non-relativistic limit, we shall assume that only T00 acts as a source for the gravitational field.

The corresponding interaction Hamiltonian can be then easily written as

HI =

∫
d3xHI =

∫
d3xΦ(x)m(x), (4.12)

such that the total Hamiltonian is given by Htot = H(gr) +HI :

Htot =

∫
d3x

[
−2πGc2

3
π2ψ − 1

12
πψ∂in

i +
∂iψ∂iΦ

4πG
− ∂iψ∂iψ

8πG
+ λΦπΦ + λiπi + Φ(x)m(x)

]
.

(4.13)
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The dynamics associated with Htot can be derived from Hamilton’s equations and is given by:

ψ̇ = −
4Gπc2πψ

3
− 1

12
∂in

i, π̇ψ =
∇2(Φ − ψ)

4πG
, Φ̇ = λΦ, π̇Φ =

∇2Φ

4πG
−m, ṅi = λi, π̇i = − 1

12
∂iπψ

(4.14)

and we arrive at Newtonian gravity by solving Equation (4.14) since the constraint πΦ ≈ 0

imposes
∇2Φ

4πG
−m ≈ 0 ⇒ Φ(t, x) = −G

∫
d3x′

m(x′)

|x− x′|
(4.15)

on the potential Φ i.e, Φ must solve Poisson’s equation. On the other hand, the constraint

πi ≈ 0 imposes πψ ≈ 0, where we have used the fact that πψ vanishes at infinity. Preservation

of the πψ ≈ 0 constraint imposes that Φ = ψ. Moreover, the time derivative of the Newtonian

potential directly dictates the Lagrange multiplier via λΦ = Φ̇ and the divergence part of the

shift vector via:

Φ̇ = − 1

12
∂in

i. (4.16)

Since we assume a stationary source, where only T00 contributes, this imposes that ∂in
i = 0.

Note this does not entirely fix the shift ni, and solutions related by different choices of the

shift vector will be gauge equivalent. In the classical theory, it is common to assume the gauge

ni = 0, in which case we arrive at the Newtonian metric of Equation (4.1), where Φ satisfies

Poisson’s equation.

We have arrived at the Newtonian limit of general relativity by making the Newtonian

approximation on the metric in Equation (4.6) and then deriving the dynamics in the c →

∞ limit. While deriving the Newtonian limit from a full GR approach requires a complete

diffeomorphism invariant theory, we have seen that we can construct a consistent reduced

theory by first identifying the correct degrees of freedom (in this case, scalar perturbations of

the metric) and then writing down their dynamics according to a reduced Hamiltonian.

Before discussing how a quantum system’s back-reaction on the classical Newtonian field is

implemented through diffusion processes, we would like to mention our choice of gauge. The

end goal of this work is to formulate the Newtonian limit of gravity for CQ-hybrid theories; we

do not know if a complete CQ theory can be made fully diffeomorphism invariant. Regardless,

our choice of gauge is motivated by the need to preserve the gravitational constraints. By

choosing the gauge (i.e. coordinates) as in (4.6), we know that we have a way of consistently
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selecting trajectories that stay on the constraint surface, where the conjugate momenta vanish

as described in this section.

4.1.2 The weak field classical limit

We will first consider a purely stochastic modification to classical general relativity. With the

benefit of hindsight, it corresponds to taking the classical limit of the matter fields in the CQ

theory. However, we present it here first, partly as a simple example and partly because, for

some experiments, it is the regime of interest. It also provides an interesting analogy with

quantum gravity. Note that although this limit is a stochastic theory of classical gravity, it is

different to what is usually referred to as stochastic gravity [189], which is based on the semi-

classical Einstein’s equations and is interpreted as an effective theory. For example, the theory

here is Markovian, while stochastic gravity needs to be non-Markovian in the case of statistical

mixtures of states with a significant variance.

In the CQ case, we construct the Newtonian limit by taking the non-relativistic limit of

the complete general relativistic theory, which leads to the relevant degrees of freedom being

scalar perturbations of the metric of the form of Equation (4.6), and then considering a reduced

CQ master equation governing the dynamics of the perturbations. Since we will be interested

in describing the non-relativistic limit of a quantum mass interacting with classical gravity,

the back-reaction on the gravitational field from the quantum matter is dominated by the T00

component, and any classical-quantum momentum constraint [136] will be unchanged since it

does not involve matter. In particular, the back-reaction of the quantum system on the classical

system enters through the πΦ equation in (4.14). Loosely speaking, because quantum back-

reaction must necessarily involve diffusion, the equation of motion for π̇Φ will be modified to

include a stochastic term. To gain some intuition, we can consider the classical analogue by

considering a Langevin equation for π̇Φ

π̇Φ =
∇2Φ

4πG
−m− σξ, (4.17)

where σ(x) is a coefficient and ξ(t, x) is a white noise process which we will relate to the D2

coefficient appearing in the CQ master equation (2.9). We will later find that this stochasticity

is all that is required to maintain complete positivity in the CQ case. With the modified
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dynamics for πΦ, we find the constraint πΦ ≈ 0 imposes ∇2Φ
4πG = m+σξ on the potential Φ. The

momentum constraint πi remains unchanged from the deterministic case, and its preservation

again imposes the constraint Φ = ψ. However, with the addition of the noise, the solution

to the Newtonian constraint is no longer stationary but is instead given by a solution to the

random Poisson equation

Φ = −G
∫
dx′

m(x′) + σ(x′)ξ(x′, t)

|x− x′|
. (4.18)

Preservation of the Hamiltonian constraint in Equation (4.17) then determines λΦ and ∂in
i. In

particular, with the gauge choice of Equation (4.6), we see that ni is required in order for the

theory to be consistent. The presence of diffusion, combined with the quantum back-reaction,

will make the Newtonian potential ψ = Φ fluctuate, and its evolution will be determined by the

shift vector ∂in
i via Equation (4.14) or more immediately, via Equation (4.16) in particular.

This is one of the key results of this chapter, and we will return to it when we discuss the

master equation approach. Without allowing the shift to be a freely chosen gauge parameter,

the momentum conjugate to the Newtonian potential Φ looks like it will diffuse off to infinity

via the random walk process given by Equation (4.17).

We point out once again that this does not fix the shift ni uniquely since we are free to

add a divergenceless term and get the same solution to the equation of motion. Moreover, in a

complete calculation, we expect that contributions from T0i will also determine the components

ni without affecting the Newtonian contribution given by the h00 component. Regardless,

performing higher-order calculations is beyond the scope of the current work.

In the stochastic case, we still find that Φ = ψ is set by the dynamics since the addition of

noise in Equation (4.17) is the only modification to the theory. Hence, one can instead start

with the metric perturbation:

N =

(
1 +

Φ

c2

)
, N i =

(
0 +

ni

c3

)
, gij =

(
1 − 2Φ

c2

)
δij . (4.19)

and consider the dynamics obtained by setting Φ = ψ in Equation (4.11). One could even

remove the kinetic term −2πGc2

3 π2ψ, which doesn’t contribute to the equations of motion on the

constraint surface, and the Lagrange multiplier term πΦ, which is redundant as the Hamiltonian

is also linear in πψ. In this case, the reduced Hamiltonian reads.

H(gr) +HI =

∫
d3x

[
(∇Φ)2

8πG
+mΦ − 1

12
πΦ∂in

i + λiπi

]
. (4.20)
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Equations (4.19) and (4.20) are considerably simpler than Equations (4.6) and (4.11) but result

in the same dynamics, we will use the former to describe the Newtonian limit of CQ theories.

Note that due to the white noise process, the metric perturbation will technically describe a

probability measure, and we should use it to compute averaged quantities. This is true of both

Φ and the shift vector ni, which are now both stochastic quantities. In particular, averaging

over a timescale ∆T and length scale ∆L, ∆L/∆T ≪ c, we have that ∆Φ
∆T ∼ ni

∆L , so that

∆L∆Φ
∆T ∼ ni ≪ c3 which verifies our initial assumption to include the perturbation h0i as ni

c3
in

Equation (4.6).

With this in mind, we now study the Newtonian limit of the complete CQ theory. In the

c→ ∞ limit, we arrive at Poisson’s equation on average. Still, because of the CQ interaction, the

Newtonian limit also predicts diffusion around this solution according to Equation (4.18), with

simultaneous decoherence on the quantum system. In Chapter 5, we study a diffeomorphism

invariant theory of CQ scalar gravity and show that in the c → ∞ limit, the results are

quantitatively and qualitatively the same as in the reduced degrees of freedom approach. This

gives us more confidence that our results are independent of our coordinate choice.

One can see the analogy between the quantum and the stochastic cases, where the order

of operations of introducing the constraint and quantising/inserting noise matters. Unlike the

quantum case, it is easier to see why the insertion of stochasticity has different effects depending

on whether it is done before or after the phase space reduction. Imagine a system constrained

to have spherical symmetry. If a non-spherically symmetric noise process is added, and then

we project onto a spherically symmetric initial state, the noise process will continue and drive

the system away from spherical symmetry unless the noise is also chosen to be spherically

symmetric. On the other hand, if the system is constrained first so that all degrees of freedom

can only depend on the radius, then the noise inserted can only be spherically symmetric. We

comment more about this in Section 4.4. We are now in the position of deriving the Newtonian

limit of the CQ path integral, utilising what we just discussed.
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4.2 Newtonian limit from the gauge fixing of classical-quantum

general relativity

In this section, we derive the Newtonian limit of the full general relativistic diffeomorphism

invariant CQ path integral, which was first introduced in [130], here reported as Equation (4.22).

To derive the Newtonian limit, we will start by gauge fixing the classical degrees of freedom using

the gauge described in Equation (4.19), which is justified through the arguments of Section 4.1.

We then take the non-relativistic limit by keeping only leading terms in the speed of light c.

This derivation leads to the same unravelled Newtonian limit that we will later obtain from

the master equation in Equation (4.44) and acts as a sanity check for the theory introduced

[130], showing that its constraints have a sensible non-relativistic limit. In the Newtonian limit,

once the choice is made of keeping only the highest order terms in c, we find that the problematic

off-diagonal terms appearing in the general relativistic CQ action of Equation (4.22) disappear.

In other words, we show that the dynamics of Equation (4.22) defines completely positive

dynamics on the subset of states defined by the Newtonian limit. We leave it as a question

for further work whether the CQ constraints would be preserved in the more general case, and

in particular if the dynamics of Equation (4.22) lead to stable dynamics which preserves the

Newtonian limit once higher order terms are c are considered.

Consider the full diffeomorphism invariant theory of CQ general relativity, which, when

coupled to a quantum mass density, has a path integral of the form:

ϱ(gf , ϕ
+
f , ϕ

−
f , tf ) =

∫
DgDϕ+Dϕ− N eICQ[g,ϕ+,ϕ−, ti,tf ]ϱ(gi, ϕ

+
i , ϕ

−
i , ti), (4.21)

where N is a normalisation factor, and the action takes the form of:

ICQ[g, ϕ+, ϕ−, ti, tf ] =

∫ tf

ti

dtdx⃗

[
i
(
LQ[g, ϕ+] − LQ[g, ϕ−]

)
− Det[−g]

8

(
Tµν [ϕ+] − Tµν [ϕ−]

)
D0,µνρσ[g]

(
T ρσ[ϕ+] − T ρσ[ϕ−]

)
− Det[−g]c8

128π2G2
N

(
Gµν − 8πG

c4
T̄µν [ϕ+, ϕ−]

)
D0,µνρσ[g]

(
Gρσ − 8πG

c4
T̄ ρσ[ϕ+, ϕ−]

)]
,

(4.22)

where LQ is the quantum Lagrangian density, including the appropriate metric factors, T̄ [ϕ+, ϕ−]

is the average of the left and right branches of the stress-energy tensor. We have taken D0, D2 to
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saturate the decoherence-diffusion trade-off (3.20) such that both the decoherence and diffusion

coefficients are written in terms of D0. Here, the bra and ket fields ϕ± can be any quantum

fields, but we shall consider pressureless dust m±(x) as a particular case.

We now take the couplings to be ultra-local, meaning that they will depend solely on the

metric and not on its derivatives so that we can write them in terms of the generalised deWitt

metric [59, 190]:

D0,µνρσ =
1

2

D0√
−g
(
gµρgνσ + gµσgνρ − 2βgµνgρσ

)
. (4.23)

To obtain the Newtonian limit, we write the path integral in an ADM formalism, described

by summing over all paths of the lapse, shift, and spatial metric (N,N i, γij) and inserting the

choice of matter field as a pressureless dust distribution. We then consider the action as a

functional of the variables appearing in the ADM decomposition ICQ[N, N⃗, γij ,m
+,m−].

The Newtonian limit can then be understood as a gauge fixing of the complete theory,

computing the transition amplitudes between the CQ states defined on hypersurfaces Σt:

ϱ(γf ,m
+
f ,m

−
f , tf ) =

∫
DγDNDN⃗Dm+Dm− δ

(
γij −

(
1 − 2Φ

c2

)
δij

)
δ

(
N −

(
1 +

Φ

c2

))
× δ

(
N i − ni

c3

)
eICQ[N,N⃗,γij ,m

+,m−,ti,tf ]ϱ(γi,m
+
i ,m

−
i , ti).

(4.24)

Performing the delta functional integrals, we impose the Newtonian gauge. In particular,

we have g00 = −(cN)2 ≈ −(c2 + 2Φ), whilst gij ≈
(
1 − 2Φ

c2

)
and g0i = ni

c3
. The components of

the Einstein tensor are calculated as

G00 = −2∇2Φ, (4.25)

G0i = − 2

c5
∂0∂iΦ +

1

2c5
∇2ni, (4.26)

Gij = − 2

c4
∂t∂tΦ. (4.27)

Similarly, noting that det(−g) ≈ c2, we see that due to the powers of c, the de-Witt metric is

dominated by its 0000 component, which to leading order is given by

D0,0000 = D0c
3(1 − β). (4.28)
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Keeping only terms leading order in c, the path integral action in Equation (4.22) is domi-

nated by terms only involving D0000 and leads to the Newtonian path integral:

ϱ(Φf ,m
+
f ,m

−
f , tf ) = N

∫
DΦDm+Dm− eICQ[Φ,m+,m−,ti,tf ]ϱ(Φi,m

+
i ,m

−
i , ti), (4.29)

with CQ action given by:

ICQ[Φ,m+,m−, ti, tf ] =

∫ tf

ti

dtdx⃗

[
i
(
LQ[m+] − VI [Φ,m+] − LQ[m−] + VI [Φ,m−]

)
− D̃0

2

(
m+(x) −m−(x)

)2 − 2D̃0

(
∇2Φ

4πG
− m̄(x)

)2 ]
.

(4.30)

were m̄(x) = 1
2

(
m+(x) + m−(x)

)
, we have redefined D̃0 = c5D0

4 (1 − β), LQ[m±] is the matter

Lagrangian in flat spacetime and VI [Φ,m±] ∝ m±Φ is the interaction potential coming from

the expansion of
√
−g ≈ c−2Φ in the matter Lagrangian for curved spacetime. Sources coupled

to the classical or quantum degrees of freedom could be added if needed.

We have arrived at the final form of the Newtonian CQ path integral. Since it gives the

state of the gravitational field for any quantum state of matter, it can be thought of as the

constraint equation, consistent with the proposal in [130]. This is one of the main results of this

Chapter. Equation (4.30) describes an integral over paths of the classical Newtonian potentials

and a doubled path integral over the quantum mass eigenstates m±, which occur because the

integral is a density matrix path integral over both bra and ket branches. Hence, provided

β ≤ 1, we find that the dynamics of the c→ ∞ limit of the full theory of Equation (4.22) gives

rise to complete positive evolution, which describes a randomly sourced Poisson’s equation with

associated decoherence into mass eigenstates of the quantum state. This justifies from a top-

down approach the Newtonian limit that will be derived in Equation (4.44) and gives rise to

the hope that the theory [130] has constraints preserved in time. However, we highlight that,

in this derivation, we have arrived at the Newtonian limit by gauge fixing the full theory and

neglecting all the terms of higher order in c. Since we have neglected terms of higher order

in c, we have implicitly eliminated the potentially positivity-violating terms of the full path

integral (4.22). The terms involving D000i, D0i0j still arise but are higher order in c. Therefore,

we have shown that the dynamics of Equation (4.22) defines completely positive dynamics on

the subset of states defined by the Newtonian limit. Still, we have not shown that the dynamics

are consistent away from this limit. For example, the evolution could be unstable for finite c,
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but we leave this as a question for future research. Nevertheless, a more general treatment is

essential since we have not shown that the complete theory necessarily preserves the form of

the Newtonian limit. A possible outcome might be that including higher-order terms in the

calculation causes the dynamics to deviate from the correct limit. The clearest example of this

hypothetical behaviour can be seen by considering that, in deriving the Newtonian limit, we

have assumed that Poisson’s equation holds on average at any scale. At this point, we can study

how to obtain the Newtonian limit in the master equation formulation of the CQ framework.

4.3 Newtonian limit in the master equation formalism

In this section, we derive the Newtonian limit using the master equation formalism introduced

in Chapter 2. The dynamics will match the behaviour derived in Equations (4.21) and (4.22).

Before discussing the specifics of continuous and discrete master equations, we shall outline the

general procedure and assumptions.

Assumption 1. We assume that the CQ dynamics takes the form of Equation (2.9)

Since Equation (2.9) is the most general form of Markovian, classical-quantum evolution, we

expect this assumption to hold if we are treating this as a fundamental theory. If, on the other

hand, it is an effective theory, the Markovian assumption may break down. We comment on the

differences between a fundamental and effective theory in section 4.4 (see also the appendices

of [5]).

Assumption 2. In the weak field c→ ∞, the appropriate gravitational degrees of freedom are

the perturbations of the metric in the form of Equation (4.19).

In particular, the leading order contribution which governs the geodesics of test particles

is described by h00. This is a bottom-up approach in the sense that we reduce the degrees of

freedom in the action and then construct the CQ theory.

Assumption 3. We assume that the purely classical part of the evolution is generated by

the reduced Hamiltonian (4.20), that the interaction between classical and quantum degrees

of freedom is Hamiltonian and that it is governed by the reduced interaction Hamiltonian in

Equation (4.12), where the constraints πΦ, πi ≈ 0 should also be imposed.
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Specifically, we require that the first moment D1 is chosen to reproduce the Newtonian

back-reaction on average:

Tr[{HI , ϱ}] =

∫
d3x Tr

[
m̂(x)

δρ

δπΦ(x)

]
= −

∑
µν ̸=00

∫
d3xTr

[
Dµν

1,πΦ
(Φ, πΦ, x)Lµ(x)

δϱ

δπΦ
L†
ν(x)

]
,

(4.31)

which requires 〈
D1,πϕ (Φ, πΦ, x)

〉
= −⟨m̂(x)⟩, (4.32)

so that the dynamics are Hamiltonian on average. While this might appear to be a mild

assumption, it does assume that the coupling strength and gravity itself is either unmodified at

arbitrarily short distances, or at least that the short distance behaviour does not affect physics

in the weak field regime. As a consequence of this coupling constant, a non-zero D1,πϕ implies

that there must be diffusion in the momenta conjugate to Φ.

Since the back-reaction of the quantum system on the classical system is associated with

T00, we expect the CQ momentum constraint to be unchanged from its classical counterpart,

as it is not associated with any back-reaction. This was also found to be the case in a study of

CQ gravitational constraints [136], and in the scalar gravity theory we consider in [7].

Assumption 4. In this work, we will take the coefficients Dn entering the master equation to

be minimally coupled, by which we mean they depend only on the Newtonian potential Φ, Dn(Φ)

and not their conjugate momenta πΦ.

This assumption is motivated by the fact in Einstein’s gravity, the mass density couples to

the Newtonian potential and not its conjugate momenta, and we are imposing the constraint

that πΦ ≈ 0, which would make such terms vanish. Nonetheless, one could generalise the master

equations to the non-minimally coupled case by considering couplings Dn(Φ) → Dn(Φ, πΦ) in

all of the equations.

We now consider the dynamics consistent with assumptions 1-4. We only discuss the weak

field limit for continuous master equations since, in this case, we can be more thorough and

explicit. Then, we will use the unravelling of the weak field limit to impose the Newtonian

constraints and obtain our main result as a set of coupled stochastic differential equations

describing the Newtonian CQ dynamics.
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4.3.1 Continuous gravitational back-reaction

In [2], it was shown that there are two classes of CQ master equations. One of the forms includes

finite-sized jumps in the classical degrees of freedom due to the backreaction of the quantum

part of the system, while in the other, the evolution remains continuous. The most general form

of the CQ continuous master equation was then explicitly given as Equation (2.16). When the

back-reaction is continuous, specifying that the first moment on average satisfies Equation (4.31)

is enough to fix the terms of Equation (2.16), which correspond to the continuous back-reaction

of the classical and quantum degrees of freedom onto each other. As discussed below, this

is only the continuous part of the backreaction since the stochastic nature imposed by the

Newtonian constraints on ni will introduce further jumping backreaction terms. The continuous

backreaction is composed of the decoherence and diffusion effects described by:

1

2

∫
d3x
(
{HI(x), ϱ} − {ϱ,HI(x)}

)
+

∫
d3xd3y D2(Φ;x, y)

δ2ϱ

δπΦ(x)πΦ(y)

+
1

2

∫
d3xd3y D0(Φ;x, y) ([m̂(x), [ϱ, m̂(y)]]) ,

(4.33)

where πΦ, and D0(Φ;x, y), D2(Φ;x, y) are positive semi-definite kernels1, and HI = Φ(x)m̂(x)

is the interaction Hamiltonian density. Here, m̂(x) is the quantum mass density operator.

For notational simplicity, we shall often suppress the dependence of the couplings D0, D2 on

the Newtonian potential and write D0(x, y), D2(x, y). The Lindbladian term, characterised by

D0, and the diffusion term D2 are required for the back-reaction to be completely positive,

which can be seen from the decoherence diffusion trade-off [3] apparent in Equation (2.16).

Adding extra diffusion or decoherence terms is possible and still satisfies the conditions for the

master equation to be completely positive. Still, here, we only consider the minimal amount of

decoherence and diffusion required.

The entire master equation will also include terms associated with the pure Hamiltonian

evolution of the quantum state, with the Hamiltonian given by Equation (4.20),

H(gr) +HI =

∫
d3x

[
(∇Φ)2

8πG
+ m̂Φ − 1

12
πΦ∂in

i + λiπi

]
, (4.34)

1Recall a positive semi-definite kernel f(x, y) is a kernel such that
∫
dxdya∗(x)f(x, y)a(y) ≥ 0 for any function

a(x).
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where the mass density m(x) has been replaced by the operator m̂(x). This Hamiltonian

contains Φ and ni which will become stochastic degrees of freedom in order to impose the

πΦ ≈ 0 constraint. As a result, care must be taken, since this will result in the master equation

containing additional Fokker-Plank and jump terms of the form

α(Φ, ni)
δk+lϱ

δkΦδlπΦ
k + l ≥ 2 (4.35)

associated with the correlations between Φ and ni. Choosing ni stochastically will back-react

on Φ, giving a master equation with infinite terms that enforce the constraint by forcing the

shift to have the necessary correlation with the stochastic gravitational field.

Since the only degree of freedom in Equation (4.14) associated with the matter back-reaction

is πΦ, up to these nuances, the choice of the possible master equation is therefore fully con-

strained up to the functional choices of the couplings D0(Φ;x, y), D2(Φ;x, y), which are them-

selves constrained to satisfy the decoherence diffusion trade-off:

4D2 ⪰ D−1
0 . (4.36)

Equation (4.36) is to be understood as a matrix kernel equation:∫
dxdy a(x)∗

[
4D2(Φ;x, y) −D−1

0 (Φ;x, y)
]
a(y) ≥ 0, (4.37)

which must hold for an arbitrary function a(x). In Equation (4.37), D−1
0 (Φ;x, y) is the gen-

eralised kernel inverse of the diffusion coupling D0(Φ;x, y) [3] which is only required to be a

positive semi-definite kernel. We give example kernels that satisfy the decoherence diffusion

trade-off in Table 4.1. The decoherence diffusion condition in Equation (4.36) can be used to

experimentally constrain fundamental theories with a classical gravitational field [3]. Before

discussing the experimental bounds on the dynamics described by Equation (4.33), we must

first impose the Newtonian constraint πΦ ≈ 0.

4.3.2 Newtonian unravelling of the master equation

To arrive at the classical-quantum version of Poisson’s equation, we must impose the constraint

πΦ ≈ 0 according to the Hamiltonian in Equation (4.20). In classical Hamiltonian dynamics,

typically, one imposes constraints on initial data. One then enforces the preservation of the
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constraints by the dynamics via the Dirac procedure [187]. Because in Hamiltonian dynamics,

there is an isomorphism between initial physical data and physical solutions to the dynamics,

this procedure is equivalent to imposing the constraint on solutions to the dynamics since, by

construction, the dynamics never leave the constraint surface.

In the non-deterministic case, where the dynamics contain randomness, there is no iso-

morphism between initial data and the solution space of the dynamics. Instead, one builds a

probability distribution over the possible trajectories of the initial data according to the dynam-

ics and imposes constraints on the trajectories.2 As such, when we implement the constraint

in the classical-quantum case, we have to ensure that the dynamics remain CP.

Given that we are imposing the constraint πΦ ≈ 0 on the level of trajectories, it is more

convenient to go to an unravelling picture, which enables us to discuss explicitly classical-

quantum trajectories which satisfy the constraint. The unravelling picture of CQ dynamics

clearly presents the Chapter’s results. It also allows for an ontological interpretation of the

trajectories and for the ease associated with simulating their time development with a computer.

The unravelling of the weak field master equation with continuous backreaction given by

Equation (4.33) is derived by substituting the Hamiltonian drift terms in Equation (2.26) which

is the general expression for the unravelling of the continuous master equation derived in [5].

Recalling that the mass density operator m̂ is Hermitian, this results in the following coupled

Itô stochastic differential equations:

2This is conceptually very similar to what is done in quantum theory when constraints are imposed via a

path integral approach, where one associate to each path a measure given by the action, then selects only the

paths which satisfy the constraint. Take for example, a Hamiltonian with H(q, p) = H0(q, p) + λC(q, p). The

phase space partition function for the theory is represented by Z =
∫
DqDpDλe

i
ℏ

∫
dt[q̇p−H(q,p)−λC(q,p)]. Since

the Hamiltonian is linear in λ, the path integral over the Lagrange multiplier in λ enforces a delta function over

δ(C(q, p)) so that the partition function reads Z =
∫
DqDpδ(C(q, p))e

i
ℏ

∫
dt[q̇p−H(q,p)] which can be interpreted

as summing over all paths with weight e
i
ℏ

∫
dt[q̇p−H(q,p)] and then selecting only those that satisfy the constraint

C(q(t), p(t)) = 0.
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dΦt = − 1

12
∂in

idt, (4.38)

dπΦ t =
∇2Φt

4πG
dt− ⟨m̂(x)⟩dt−

∫
d3y σ(Φt;x, y)dWt(y), (4.39)

dρt = −i[Ĥm + ĤI , ρt]dt+
1

2

∫
d3x d3y D0(Φt;x, y)[m̂(x), [ρt, m̂(y)]]dt

+
1

2

∫
d3x d3y σ−1(Φt;x, y)

(
m̂(x)ρt + ρt m̂(x) − 2ρt⟨m̂(x)⟩

)
dWt(y) (4.40)

where Ĥm is the matter Hamiltonian, ĤI =
∫
d3x m̂(x)Φ(x) is the interaction Hamiltonian,

⟨·⟩ is the usual expectation value, ρ(t) is the normalized quantum state and Wt(x) is a Wiener

process in spacetime satisfying:

E[dWt(x)] = 0, E[dWt(x)dWt(y)] = δ(x, y)dt. (4.41)

In Equation (4.38), σ and its generalised inverse σ−1 are related to the diffusion coefficient D2

appearing in Equation (4.33) via:

D2(Φ;x, y) =

∫
dw σ(Φ;x,w)σ(Φ; y, w). (4.42)

One can verify that this unravelling is equivalent to the CQ master equation with continuous

backreaction given by Equation (4.33) by using it to compute the evolution of the CQ state

defined via:

ϱ(Φ, πΦ, t) = E[δ(Φt − Φ)δ(πΦ t − πΦ)ρt]. (4.43)

We show this explicitly in Appendix C, which is enough to verify that this is the correct unrav-

elling for the master equation since, differently from the purely quantum Lindblad equations,

the unravelling is unique [5]. The classical Hamiltonian theory described in Equation (4.20),

which we have made stochastic in Section 4.1, is equivalent to the dynamics for Φ in Equa-

tion (4.38) once we have imposed the πΦ ≈ 0 constraint. The apparent difference is that, in the

CQ case, the noise process is not added manually but emerges due to positivity requirements

after directly coupling the quantum matter degrees of freedom with the classical Newtonian

potential. Hence, the back-reaction in πΦ turns it into a stochastic process. Moreover, the

noise now is correlated with the quantum state, and the evolution of the quantum state itself
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involves decoherence due to the backreaction on the classical Newtonian potential. Indeed, the

evolution of the quantum state is equivalent to that of a state undergoing continuous measure-

ment of its mass. However, the quantum state is purely conditioned on the evolution of the

Newtonian potential. It is only after tracing out the gravitational field that the decoherence is

made manifest. We refer the reader interested in a detailed discussion to [5]. In particular, this

defines a linear master equation.

The final step is imposing the constraint πΦ ≈ 0 to arrive at the Newtonian limit. This can be

done directly on the classical quantum evolution of Equation (4.38) or at the path integral level

through delta functionals. We present here the former way, but the latter procedure is presented

in Appendix B where, after constructing the path integral for the reduced gravitational degrees

of freedom, we impose the Newtonian constraints at the level of trajectories.

To impose the constraint πΦ ≈ 0 on Equation (4.38), one must choose ni stochastically

such that Φ̇ ≈ π̇Φ ≈ 0, where the equality is weak in the Dirac sense. Doing so turns Φt

into a white noise variable with values given by the solution of Equation (4.44). However,

naively replacing all occurrences of Φt with its solution in terms of an Itô white noise variable,

particularly that which appears in ĤI , does not lead to completely positive and trace-preserving

dynamics. Before the constraints are imposed, the dynamics of Φt are continuous. Thus, any

back reaction from the quantum matter on Φt only returns to affect the quantum matter

degrees of freedom at later times. To ensure that this time-ordering is maintained even in

the limit that Φt no longer evolves continuously, one must be careful to ensure the action of

ĤI occurs after the other stochastic terms (for excellent further discussion on this issue of

time-ordering, we refer the reader to [110], and [191, 192]). One possible way to ensure this

is to write the unravelling of the density matrix in the Stratonovich formalism [193] and then

impose the constraint that turns Φt, and hence ĤI , into white noise. The Stratonovich and Itô

formalisms are two different approaches to interpreting stochastic differential equations. The

Itô formalism is the most commonly used and is characterised by its non-anticipative nature,

meaning the increments of the stochastic process are independent of the current state. This

results in simpler mathematical properties, especially when using Itô’s calculus. On the other

hand, the Stratonovich formalism is more aligned with traditional calculus. It preserves the

chain rule, making it useful in physical applications requiring an intuitive interpretation of
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stochastic integrals. The choice between the two formalisms depends on the specific problem

and the desired properties of the solution.

Here, choosing the Stratonovich formalism allows us to correctly rewrite the unravelling

such that when converting back into the Itô formalism, we pick up an extra decoherence term

given by the backreaction of the stochastic gravitational field and allows us to get rid of the

non-linear evolution terms arising from the solution of the noisy Poisson equation. This then

gives the final form of unravelling in the Newtonian limit:

∇2Φt

4πG
= ⟨m̂(x)⟩ +

∫
d3y σ(Φt;x, y)ξt(y), (4.44)

dρt = −i
[
Ĥm + V̂m, ρt

]
dt− i

∫
d3x d3y d3y′

[
−G m̂(x)σ(Φt, y, y

′)

|x− y|
, ρt

]
dWt(y

′)

+
1

2

∫
d3x d3y D0(Φt;x, y)

(
[m̂(x), [ρt, m̂(y)]]

)
dt

+
1

2

∫
d3x d3y d3y′ [σ̂(Φt;x, y), [ρt, σ̂(Φt;x, y

′)]] dt

+
1

2

∫
d3x d3y σ−1(Φt;x, y)

(
m̂(x)ρt + ρt m̂(x) − 2ρt⟨m̂(x)⟩

)
dWt(y), (4.45)

where ξt(x) = dWt(x)
dt is the formal definition of white noise, and

V̂m = −G
2

∫
d3x d3y

m̂(x)m̂(y)

|x− y|
,

σ̂(Φt;x, y) = −G
∫
d3 y′′

m̂(x)σ(Φt, y, y
′′)

|x− y|
.

(4.46)

These equations were first written down by Tilloy and Diósi in [110] and their derivation from a

fundamental theory is a central result of our current work. In it, we notice how the Newtonian

limit of CQ theories is described by a Newtonian potential diffusing around Poisson’s equation

by an amount defined by D2, while simultaneously the density matrix decoheres into the mass

eigenbasis by an amount determined by the Lindbladian coefficient D0. In Equation (4.44), the

Newtonian potential changes in time due to the random noise process W (x) and its evolution

fixes the divergence of the now stochastic ni which, in general, will be correlated with the noise

process appearing in the evolution of the quantum state. The fact that ni is constrained not

to vanish in order for the CQ theory to be consistent is another deviation from the standard

Newtonian limit appearing in CQ gravity.
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The details of the functional dependence of σ and D0 on Φt have been left unspecified.

However, three notable classes of functional dependence are worth highlighting. Firstly, they

may not depend on Φt at all. In this case, the equations coincide with those of a continu-

ous measurement of a quantum mass, where the measurement outcome is used to source the

Newtonian potential, as given by equation (24) of [110]. Therefore, we have shown that such

dynamics can be derived from classical-quantum theories of general relativity through a path

integral approach or through the unravelling of a completely positive master equation that

agrees with the Newtonian limit on expectation. Secondly, one may consider σ and D0 to be

dependent on a time integral of Φt, i.e.
∫
dtf(t)Φt for an arbitrary function f(t). If allowed,

such theories would be non-Markovian but still guaranteed to be CPTP. On the other hand, the

final class of functional dependence is to allow a general Markovian functional of Φt. This will

generically lead to additional terms, as was observed with HI above, but these may not preserve

the CPTP property of the dynamics. Exploring the details of these functional dependencies is

an interesting question that we will leave open for future work.

In Equations (4.38) and (4.44), we have taken the drift to be local in x while we allow

for the possibility that the decoherence and diffusion terms could have some range. In this

case, the interaction law between the classical and quantum systems is still local, but non-local

correlations can be created [194]. Significantly, if the Lindbladian coupling D0(Φ;x, y) has some

range, then despite the fact the CQ interaction is local, the master equation can, in principle,

generate entanglement between two spatially separated quantum systems via the Lindbladian

coefficient. However, this effect is likely to be small.

One can constrain other diffusion/decoherence kernels via Equation (4.44) and the decoher-

ence diffusion trade-off in Equation (4.36). The Newtonian limit of CQ gravity predicts diffusion

of the Newtonian potential by an amount depending on D2. This can be upper bounded by

precision mass experiments, which precisely measure the acceleration of particles. Conversely,

coherence and heating experiments can be used to upper bound the inverse Lindbladian coef-

ficient D−1
0 , which gives a lower bound on D2 via the decoherence diffusion trade-off. Hence,

when combined, it is possible to get an experimental squeeze on CQ theories. In [3] this was used

to rule out ultra-local CQ theories, which are Equations (4.44) and (4.36) when the couplings

are taken to be delta functions D0(x, y), D2(x, y) ∼ δ(x, y).
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Interestingly, when accounting for the stochasticity of the interaction Hamiltonian, the

Newtonian limit we derive in Equation (4.36) contains a decoherence term proportional to σ2,

which gives bounds on decoherence due to constraints from anomalous heating. For the case

where the coupling constants are independent of the Newtonian potential, the effects of the

additional decoherence term were considered in [55]. In particular, it was shown that the choice

of kernel giving rise to minimal decoherence is the Diósi-Penrose kernel D0(x, y) = G
|x−y| . The

precise amount of decoherence depends on the system’s cut-off, and it was shown in [55] that

theories with a cut-off below 10−15m are inconsistent with experiments due to excess heating.

This result calls for both an exploration of relativistic corrections to CQ theories, which we

believe need to be considered at this scale, as well as experimental tests of gravity on smaller

length scales.

4.4 Discussion

In this chapter, we have considered, on general grounds, the weak field limit of classical-quantum

theories of gravity, which give rise to linear, completely positive dynamics. The master equation

we derived is the weak field limit of the most straightforward realisation of the relativistic theory

in [1]. In contrast, the path-integral we derive is the weak field limit of the manifestly covariant

theory of [130]. Both approaches agree, as shown in Appendix B. The central new result is that

we arrive at Equation (4.30) in the weak field limit.

We have here started from a fundamental, dynamical, and relativistic theory, and it is worth-

while to compare our limit to previous models proposed based on Newtonian gravity. An early

model in which gravity is treated classically is the Schrödinger-Newton equation [121, 122, 183],

which was also proposed as a model of gravitationally induced collapse of the wave-function

[120, 123]. However, because the dynamics is non-linear in the wavefunction, it leads to instan-

taneous signalling [195, 196, 197] and a breakdown of the statistical mechanical interpretation

of the density matrix. It is unrelated to the dynamics we have derived here, which is linear.

The master-equation approach used by us is more similar in spirit to that of Diósi’s [124].

Indeed, the Newtonian back-reaction in Equation (4.33) has some similarities with the one

considered in his work when the decoherence and diffusion kernels are chosen to be related to
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the Diósi-Penrose kernel (see Table 4.1). However, an essential difference between our master

equation and Diósi’s is that the latter contains diffusion in πΦ, while here, we require πΦ ≈ 0

as a constraint equation. This has to be the case here because in the weak field limit the

kinetic energy term in Equation (4.13), −2πGc2

3 π2ψ is negative and the theory would otherwise

be unstable if not for the fact that we can choose πψ = πΦ ≈ 0 in order to preserve the gauge

fixing of the metric, Equations (4.6). In the Diósi model, the kinetic energy term is instead

taken to be positive, and its inclusion results in dynamics in Φ, which is continuous. In contrast,

the dynamics in Φ are discontinuous here since we take the c→ ∞ limit.

Another approach to deriving consistent classical-quantum theories is the measurement and

feedback approaches of [181, 110, 99]. In these approaches, the classical degree of freedom is

sourced by the outcomes of continuous measurements and by construction, such approaches are

completely positive and lead to consistent coupling between classical and quantum degrees of

freedom. As such, the dynamics for the density matrix of [181, 110, 99] undergoes a stochastic

master equation evolution of the general form similar to the unravelling of the quantum state

given in Equation (4.44). In the special case where D0(Φt;x, y) and σ(Φt;x, y) do not depend

on Φt, our Equation (4.45) can be put into the form of Equation (24) of [110]. When we impose

the πΦ ≈ 0 constraint and turn the Newtonian field into white noise, we pick up an extra

decoherence term in the Itô formalism, as they do, which is necessary for the normalisation of

the quantum state.

In [181, 110], the noise instead emerges because the Newtonian potential is modelled to be

sourced by the outcomes of a continuous measurement of the mass operator. The behaviour in

these models is qualitatively the same as those presented here when D0(Φt;x, y) and σ(Φt;x, y)

do not depend on Φt, meaning that the Newtonian potential diffuses by an amount that depends

on the inverse of the strength of the measurement, whilst the quantum system decoheres into

its mass eigenbasis because it’s being continuously measured. Another difference is that these

works generally utilised the mass density operator of a localised particle in the position basis

(smeared by a Gaussian in Tilloy-Diósi), such that the decoherence of the quantum system

emerges from mass measurements in the position basis of a point particle. The measurements

are generally imagined to be carried out using an entangled measuring device to obtain the

correlations required to get the Diósi-Penrose kernel. Here, matter is treated as a quantum field
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in the non-relativistic limit. However, one could consider the point-particle limit by writing the

mass density operator as a sum of delta functions in the position basis and integrating over the

Dx± position branches in the path integral.

Furthermore, [110, 181] imagine the results of a weak external measurement or collapse

model as sourcing the gravitational field, and thus the Newtonian potential changes discontin-

uously, since the results of each measurement can be different. Here we emphasise that it is

merely the coupling of quantum matter to the classical gravitational field which is responsi-

ble for the localisation of particles. The local time coordinate and the shift ni are changing

stochastically, as can be seen via Equations (4.38)-(4.40), in order to maintain the primary

constraint πΦ ≈ 0, while the quantum state and Newtonian potential stochastically change in

lock-step together. No measurement postulate nor Born rule is needed, and there is no need

to think about the ad-hoc field introduced in spontaneous collapse models [104, 109, 180, 179].

Instead, the fully classical treatment of the gravitational degrees of freedom acts to classicalise

the quantum system. Although it appears as if the state of the matter fields undergoes deco-

herence, there is no decoherence if we condition on the gravitational field. The quantum state

is pure conditioned on the classical trajectory when the decoherence vs diffusion trade-off is

saturated [3, 5]. It is only when the gravitational field is integrated out that there appears to

be loss of quantum information.

Although the theory considered here is not predicated on it explaining measurement or

collapse, it may still suffer from anomalous heating of the quantum system [90, 106, 148, 198,

199, 200, 201, 202, 203, 204, 205, 206, 207, 208] which constrain collapse models. Since the

decoherence couplings D0 can be made arbitrarily small here, albeit at the expense of a large

amount of diffusion, it is unclear the extent to which heating bounds constrain the theory, and

more investigation is needed here. While the results of [55], suggest that the heating might be

significant, there is evidence that relativistic effects need to be taken into account.

Although the primary motivation for studying the weak field limit of [1, 130] is to derive

experimental bounds, several lessons can be learned for classical-quantum theories and attempts

to quantise gravity. For example, we would like to point the reader to an analogy between

quantising a theory and adding stochastic noise/diffusion to it when the theory has first-class

constraints. When attempting to quantise a theory with constraints, it is well known that
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two possible approaches are Dirac quantisation and reduced phase space quantisation. The

former consists of constructing a kinematical Hilbert space where the classical phase space

functions that have been elevated to operators can act on the quantum states and then impose

the constraints quantum mechanically as operator conditions to distinguish physical states. In

other words, physical states are zero eigenvalues states of the constraint operator. On the

other hand, reduced phase space quantisation first factorises the constraint surface with respect

to the action of the gauge group generated by the constraints. This serves to identify the

physical degrees of freedom directly at the classical level. Then, the resulting Hamiltonian

system is quantised as a usual unconstrained system. The two procedures are not always

equivalent, and the relationship between the approaches is discussed at length in the literature

[209, 210, 211, 212, 213, 214].

In the same way, we could insert a noise process in a Hamiltonian system before or after

reducing the phase space according to its constraints. In the main body, we start from the

complete CQ theory of general relativity, where noise is present in the metric. We reduce it

to the Newtonian limit by implementing the constraints. On the other hand, in Appendix B,

we chose the latter approach, restricting the classical degrees of freedom before inserting them

in the CQ framework, which implements a noise process. It is perhaps remarkable that the

two procedures give the same theory here, while in the quantum case, they generally do not.

In this work, we have arrived at this behaviour in complete generality from a reduction of the

CQ degrees of freedom of the relativistic theory, with the diffusion of the Newtonian potential

and decoherence on the quantum system described by the parameters D2(Φ;x, y), D0(Φ;x, y)

satisfying the decoherence/diffusion trade-off. The weak field CQ theories we studied gave a

generic prediction: the Newtonian potential diffuses away from its average solution, and in

order for the dynamics to be completely positive, the amount of the diffusion is lower bounded

by the coherence time for masses in superposition. This is most elegantly described via the

path integral formulation of Equation (4.30).

There are a number of proposals to test the quantum nature of gravity via gravitationally

induced entanglement or coherence that are expected to be realizable within the next few

decades with technological advancements [215, 216, 217, 218, 219, 220, 221, 222, 223, 224]. The

idea is that if the underlying theory is local, then witnessing entanglement would imply that
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Master Equation Decoherence Diffusion

Continuous non-relativistic (local) D0(Φ;x, y) = D0(Φ)δ(x, y) D2(Φ;x, y) = D2(Φ)δ(x, y)

Continous non-relativistic (Gaussian) Dαβ
0 (x, y) = λαβ

m2
0
gN (x,y) D2(x, y) = 1

8
m2

0

r30λ
F (x, y)gN (x,y)

Continuous non-relativistic (D.P) Dαβ
0 (x, y) =

Dαβ
0

|x−y| D2(x, y) = 1
8
(D−1

0 )
4π ∇2

y(δ(x, y))

Table 4.1: Possible choices of kernels for the continuous master equations and the resulting dif-

fusion/decoherence coefficients, which are assumed to saturate the trade-off in Equation (4.36).

For a more detailed study of these kernels, including calculations of the diffusion and decoher-

ence they produce, we refer the reader to [3].

gravity is not a classical field. Within the framework of consistent classical-quantum coupling,

we are able to inquire from the other direction, asking about the general experimental signatures

of treating the gravitational field as being classical.

If the Lindbladian coupling in Equation (4.33) D0(Φ;x, y) is ultralocal, the dynamics do

not generate entanglement between spatially separated regions, meaning that the models with

local couplings parameterize the general form of the continuous master equation which would

be ruled out by entanglement witnesses in GIE experiments. We give three examples of kernels

D0, D2 for continuous master equations in Table 4.1. Models with ultralocal couplings form

perhaps the most natural class of CQ dynamics. Non-relativistic versions of these models have

already been ruled out by considerations of the decoherence diffusion trade-off [3]. In other

words, (in line with assumptions 1-4) classical-quantum Newtonian theories of gravity, which

have continuous gravitational degrees of freedom with local interactions and correlations, are

already ruled out by experiment.
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Here, we have considered the case where the gravitational field is fundamentally classical. As

an effective theory of Newtonian gravity, we still expect the path integrals and the unravellings

derived in this chapter to be valid dynamics with a time-local description [1]. However, in

general, one expects an effective theory to be non-Markovian in some regimes, which means

that the couplings D0, D2 need not be positive semi-definite for all times, [133, 134], nor satisfy

the decoherence-diffusion trade-off for all times since this is a consequence of the Markovian

assumption.

An open theoretical problem is the question of the existence of a complete diffeomorphism

invariant theory of classical-quantum gravity. The theory of [1] requires a better understanding

of the constraint structure [136], while the manifestly covariant candidate theory of [130], has

not been proven to be completely positive norm-preserving. However, in the weak field limit

it is, and we have thus been able to use it here. In principle, there does not appear to be any

conceptual obstruction to such a theory. Indeed, in [7], which is presented in Chapter 5, we

show that a diffeomorphism invariant theory can be completely positive by considering a scalar

theory of CQ gravity based on the trace of trace realisation of the diffusion coefficient. We

find that the Newtonian limit of the theory gives rise to qualitatively and quantitatively similar

behaviours as the ones described here.
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Chapter 5

Diffeomorphism invariant

Classical-Quantum path integrals for

Nordström gravity

“You may hate gravity, but gravity doesn’t care.”

∼ Clayton M. Christensen

Several models of classical-quantum Newtonian gravity have been proposed both via a

master-equation approach [124] and measurement and feedback approach [55, 110, 184]. As

found in Chapter 4, the weak field Newtonian limit of the general relativistic CQ theories

of [1, 130] resembles the model of Diösi and Tilloy [110]. However, as seen in the last Chapter,

the challenges presented by the presence of Hamiltonian constraints are not trivial. In the

standard general relativistic treatment of the Newtonian limit, the dynamical components of

the gravitational field are set to zero by the Hamiltonian and momentum constraints equations

and the imposition of their preservation through time. Specifically, the conjugate momenta

πΦ, πΨ, πi are constrained to vanish on the physical surface identified by such constraints [6].

On the other hand, in a CQ theory of gravity, consistent coupling of classical and quantum

degrees of freedom result in a diffusion process being added to the Newtonian potential when

the limit is taken. The consequence, detailed in Chapter 4, is that of generating a stochastic

Newtonian constraint, which requires a stochastic shift vector for the dynamics to be consis-
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tent. Away from the Newtonian limit, the gravitational constraints in CQ theories are tightly

related to notions of complete positivity and diffeomorphism invariance. Specifically, while the

dynamics detailed in [1] are recognised as completely positive and norm-preserving, their diffeo-

morphism invariance has not been demonstrated. Conversely, the complete general relativistic

covariant CQ path integral quoted in [130] is manifestly diffeomorphism invariant. However, its

consistency has yet to be fully verified since the constraints’ contributions to the path integral

do not look completely positive. Additionally, the relationship between the dynamics of [1]

and [130] remains unclear, partly due to the constraint algebra’s ambiguity.

In this chapter, we construct the theory of quantum matter fields coupled with a classi-

cal self-contained scalar theory of gravity known as “Nordström gravity”. The dynamics is

constructed via the classical-quantum path integral of Chapter 3 and is completely positive,

trace preserving (CPTP) and respects the classical-quantum split. Since Nordström gravity

is a self-consistent and diffeomorphism invariant theory of gravity that does not require the

Hamiltonian constraints, it can avoid their complications. The resulting theory is fully diffeo-

morphism invariant, although, like Nordström gravity, has a preferred background. In such a

way, we sidestep the challenges of the constraints by presenting a toy model for hybrid classical-

quantum scalar gravity that can be used to gain confidence in the weak field limit of [1, 130]. In

this diffeomorphism invariant theory of CQ-gravity, the conformal factor now plays the role of

the stochastic gravitational potential. We recover the same Newtonian limit behaviour of Chap-

ter 4, suggesting that the resolution of the constraints utilised in it and the resulting dynamics

were correct. The model also indicates the absence of tension between diffeomorphism invari-

ance, stochastic theories, and any tension with the classical-quantum split. furthermore, the

theory provides a model in which various questions of quantum and classical-quantum gravity

can be explored in a simpler form. It is also a manifestly Lorentz-invariant theory of stochastic

collapse [179, 104, 180, 109], as are the models of [225].

We now present the outline of the Chapter’s sections.

In Section 5.1, we review Nordström’s theory of gravity as a self-consistent theory of scalar

gravity. The role of the dynamical field is played by a scalar conformal factor which evolves in

a flat background. We discuss the theory’s advantages and shortcomings in relation to general

relativity and we reflect on why it is optimal as a toy model of classical quantum gravity.
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In Section 5.2, we use the path integral approach to introduce and study a consistent

diffeomorphism invariant theory of classical-quantum Nordström gravity. This provides a proof

of principle that diffeomorphism invariant CQ dynamics can exist. In the Newtonian c → ∞

limit we find that the theory gives rise to the Newtonian interaction on average. Due to

the decoherence-diffusion trade-off, the dynamics necessarily involves diffusion away from the

Newtonian solution, by an amount lower bounded by the decoherence rate into mass eigenstates.

Though this example is to be understood as a toy model, it provides an instance where we have

full control over the symmetries of the theory and gives support to the treatment of the more

complete theory which we study in [6].

We conclude with a discussion in Section 5.3.

5.1 Nordström gravity

Nordström gravity [226, 227] was a first attempt at merging Newtonian gravity with relativity

and ultimately led to the formulation of GR as it currently stands [228]. In its final formulation,

Nordström Gravity can be thought of as a self-consistent scalar theory of gravity. It was the

first metric theory of gravity, meaning it obeyed the equivalence principle. The classical theory

is described through a conformally flat spacetime background which couples to matter via the

equations:

R =
24πG

c4
T, (5.1)

Cµνρσ = 0, (5.2)

where R is the Ricci scalar, T denotes the trace of the stress-energy tensor for the matter

degrees of freedom ϕm and Cµνρσ is the Weyl tensor. Equation (5.1) is the dynamical equation

of motion linking the Ricci scalar to the trace of the stress-energy tensor. The vanishing of the

Weyl tensor in Equation (5.2) implies that the metric is conformally flat and always takes the

form:

gµν = e
2Φ
c2 ηµν , (5.3)

where Φ is the conformal degree of freedom and ηµν is the Minkowsky metric.

Nordström gravity merges relativistic ideas of causality with Newtonian gravity but lacks

many of the properties required for a full description of gravitational phenomena. One can
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immediately notice that the conformal metric couples only to the trace of the stress-energy ten-

sor, and some forms of energy and momentum, like the stress-energy tensor for electromagnetic

radiation, are traceless. As such, it does not predict the bending of light, in direct contrast

with gravitational lensing effects observed by astronomers [229, 230]. Concerning other effects,

Nordström gravity correctly predicts the result of the Pound-Rebka experiment for gravitational

frequency shift but fails to predict the correct time delay factor and is missing subleading cor-

rections to the acceleration of static test particles.

However, much like general relativity, Nordström’s theory is diffeomorphism invariant, by

which we mean that (g,Φ, ϕm) is a solution to the equations of motion if and only if (g∗,Φ∗, ϕ∗m)

is also a solution to the same equation’s of motion, where ∗ denotes the transformed variables

after a diffeomorphism. In particular, conformal flatness is preserved under diffeomorphisms.

The conformal flatness condition does not fix the conformal factor, which is the dynamical

gravitational degree of freedom. For example, given the form of the metric in Equation (5.3),

the Ricci scalar reads

R = −6□̃e
Φ
c2

c2
e−

3Φ
c2 , (5.4)

where □̃ = ∂µ∂νη
µν is the flat space D’Alabertian. In the vacuum state (T = 0) the field

equation is the wave equation for the scalar field □̃e
Φ
c2 = 0. Therefore, the theory has a

propagating conformal scalar degree of freedom. Still, this kind of gravitational wave differs

from those predicted by general relativity as they are scalar waves and do not have a spin-2

mode.

Nonetheless, while being diffeomorphism invariant, Nordström’s theory is intuitively background-

dependent. It has a preferred frame given by the Minkowski metric due to the imposition that

the metric be conformally flat. In particular, it admits a background-dependent formulation

(which is still diffeomorphism invariant) where one stipulates that the metric takes the form of

Equation (5.3), with the dynamics determined by Equation (5.1). For a more detailed discus-

sion on the relationship between diffeomorphism invariance and background independence, we

refer the reader to [231]. We will now show how Nordström gravity can be implemented in the

CQ path integrals to study a diffeomorphism invariant self-consistent theory of gravity and its

Newtonian limit.
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5.2 CQ Path Integral for Nordström Gravity

In this section, we will first introduce CQ gravitational path integrals for general relativity,

outlining the tension between the complete positivity of the dynamics and the gravitational

constraints. Then, we shall construct the CQ path integral for Nordström gravity. Our choice

of classical system will be the conformal part of the metric Φ. On the other hand, matter’s

degrees of freedom have a quantum nature, and we can study their backreaction with spacetime.

CQ general relativity

When writing the path integral for General relativity, we follow Chapter 3 and write a manifestly

covariant path integral over 4-geometries g, of the form given by Equation (3.12)

ϱ(Σf , ϕ
+
f , ϕ

−
f , tf ) =

∫
DgDϕ+Dϕ−N eICQ[g,ϕ+,ϕ−,ti,tf ]ϱ(Σi, ϕ

+
i , ϕ

−
i , ti). (5.5)

with:

ICQ[g, ϕ+, ϕ−] =

∫ tf

ti

dtdx⃗

[
i
(
LQ[g, ϕ+] − LQ[g, ϕ−]

)
− Det[−g]

8

(
Tµν [ϕ+] − Tµν [ϕ−]

)
D0,µνρσ[g]

(
T ρσ[ϕ+] − T ρσ[ϕ−]

)
− Det[−g]|c8

128π2G2
N

(
Gµν − 8πGN

c4
T̄µν [ϕ+, ϕ−]

)
D0,µνρσ[g]

(
Gρσ − 8πGN

c4
T̄ ρσ[ϕ+, ϕ−]

)]
(5.6)

where LQ[g, ϕ±] is the Lagrangian for the quantum matter in curved spacetime and we have

suppressed the metric dependence of all terms in Einstein equations for clarity. Σi and Σf are

the initial and final spatial surfaces. The term T̄µν [ϕ+, ϕ−] indicated the average of the bra

and ket stress-energy tensors, as in Equation (3.14)

T̄µν [ϕ+, ϕ−] =
1

2
(Tµν [ϕ+] + Tµν [ϕ−]). (5.7)

Here we have assumed that the decoherence-diffusion trade-off is saturated (4D0 = D−1
2 ). This

is a manifestly diffeomorphism invariant hybrid path integral for general relativity, and it is

fully characterised by the tensor density D0,µν ρσ[g]. As explained in [130], if we now choose

D0 such that it is positive semi-definite, we would have a completely positive treatment of

semiclassical general relativity, where quantum fields ϕ(x) backreact of the classical metric
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gµν inducing diffusion, and the classical spacetime continuously measures the quantum fields

weakly. Unfortunately, choosing a positive semi-definite D0 and capturing the transverse part

of the Einstein equations is not possible in Lorentzian signature. However, one might choose

D0,µνρσ =
D0(x)√

−g
gµνgρσ. (5.8)

This will lead to a positive semi-definite path integral describing suppressed trajectories as they

diffuse away from the trace of Einstein’s equations. We remind the reader that this differs from

the choice made in Chapter 4

D0,µνρσ =
D0(x)

2
√
−g

(gµρgνσ + gνρgµσ − 2βgµνgρσ), (5.9)

with D0 a positive constant, which also captures the transverse part and which contains the

constraints [130]. In Lorentzian signature, this is not positive semi-definite, but it does appear

to be positive semi-definite, once normalised [232]. On the other hand, if one is happy with

a consistent diffeomorphism invariant toy model of gravity in the CQ framework, one needs

not to consider general relativity and could consider a scalar theory of gravity. In particular,

Nordström gravity is an ideal candidate as a self-consistent theory of gravity that allows us to

study the gravitational backreaction of spacetime and quantum matter without worrying about

the constraints of general relativity or the positivity of the full CQ path integral for GR. We

also take this chance to address the presence of higher-order derivatives in the path integral

action. The reader may be concerned about such actions being associated with Hamiltonians

unbounded from below, as shown by Ostrogradsky [233]. However, problems arise only when

assuming that the action generates deterministic evolution. Onsager Machlup path integrals

for stochastic processes often contain higher-order derivatives when presented in configuration

space (see Chapter 12 of the work by Feynman-Hibbs [234]). The action is already composed of

the equation of motion. Its variation should be interpreted as the most probable path between

the set initial and final points of configuration space. For example, a stochastic harmonic

oscillator will have a variation of its Onsager-Machlup action, which results in an apparent

runaway of the solutions due to increasing the oscillation amplitudes. However, this increase is

necessary to reach points normally outside the range of the equations of motion for fixed initial

position and velocity. More about the relation between Ostrogradsky and CQ path integrals is

discussed in Chapter 6.
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CQ Nordstrom

To construct the CQ theory of Nordström gravity, we let ϕm denote the quantum matter degrees

of freedom such that LQ[g, ϕm] is the matter Lagrangian (inclusive of the appropriate metric

determinant factor). Nordström gravity can be derived classically from the action principle in

the Jordan frame defined in [235], which we summarise in Appendix D. In that derivation, a

Lagrange multiplier is used to impose the conformal flatness of the spacetime (5.3). Here, we

are faced with two choices. We could insert the constraint in the proto-action directly or impose

it through a delta functional. Given that in Nordström gravity, matter fields do not couple to

the Weyl tensor; we do not expect the backreaction of the quantum degrees of freedom to break

the conformal flatness of the metric. It is more sensible to choose the latter, imposing the

constraint in a way akin to a gauge fixing of the classical degrees of freedom. Therefore, we

construct the proto-action for Nordström gravity with matter as

WCQ[gµν , ϕm] = − c4

48πGN

∫
d4x

√
−gR +

∫
d4xLQ[g, ϕm]. (5.10)

While this action might look similar to the Einstein-Hilbert action, one should notice the

different coefficients of the gravitational sector and the different relative signs between the

gravitational and matter part, both are required to obtain the correct Nordström dynamical

equation. We are now in the position to write down the CQ path integral. We choose the trace

realisation of the decoherence coefficient in Equation (5.8) and impose the conformal flatness

constraint as a delta functional through a Lagrange multiplier λνρσµ

ϱ(Σf , ϕ
+
m,f , ϕ

−
m,f , tf ) =

∫
DgDϕ+mDϕ−mDλνρσµ N eICQ(gµν ,ϕ

+
m,ϕ

−
m,tf ,ti)ϱ(Σi, ϕ

+
m,i, ϕ

−
m,i, ti), (5.11)

where the CQ action is

ICQ(gµν , ϕ
+
m, ϕ

−
m, tf , ti) =

∫ tf

ti

dtdx⃗

[
i(LQ[g, ϕ+m] − LQ[g, ϕ−m]) − D0(x)

2
√
−g

δ∆WCQ

δgµν
gµνgρσ

δ∆WCQ

δgρσ

− 2D0(x)√
−g

δW̄CQ

δgµν
gµνgρσ

δW̄CQ

δgρσ
− iλνρσµ Cµνρσ

]
,

(5.12)

and we have saturated the decoherence diffusion tradeoff:

4D0[g] = D−1
2 [g]. (5.13)
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Once we integrate over the Lagrange multiplier, the delta function will ensure that we only

sum over 4-geometries that are conformally flat Cµνρσ = 0. Any conformally flat metric can be

written as gµν = e2
Φ
c2 ηµν for some Φ by definition. Therefore, we finally arrive at the Nordström

hybrid path integral

ϱ(Σf , ϕ
+
m,f , ϕ

−
m,f , tf ) =

∫
DΦDϕ+mDϕ−mN ϱ(Σi, ϕ

+
m,i, ϕ

−
m,i, ti)

× exp

[ ∫
dtdx⃗ i(LQ[ϕ+m] − LQ[ϕ−m])

−
√
−gD0(x)

8

(
T [ϕ+m] − T [ϕ−m]

)2 − √
−gc8D0(x)

1152π2G2
N

(
R− 24πGN

c4
T̄ [ϕ+m, ϕ

−
m]

)2 ]
,

(5.14)

where we have suppressed the Φ dependence in R, T and LQ to lighten the notation. When in-

tegrating over conformally flat metrics, we include any Jacobian factor in the measure DgC=0 ∼
2
c2
e

2Φ
c2 DΦ, as it will not be relevant to the Newtonian limit of interest in this paper. In particu-

lar, to leading order we have that DgC=0 ∼ 2
c2
DΦ. Since the action in Equation (5.14) contains

quantum terms proportional to the square of the stress-energy tensor, a sufficient condition

for the path integral to be normalised is that the purely quantum part of the action LQ[q, ϕ±]

contains higher derivative kinetic terms ∼ ϕ̈2 [236], which is suggestive that Equation (5.14)

describes an effective theory [154]. The action has the effect of diffusing away from the bra/ket

averaged Nordström equations whilst simultaneously decohering the quantum system according

to the stress-energy tensor of the matter and the coupling D0[Φ]. Treated classically, the action

is manifestly diffeomorphism invariant, which also includes the case where the diffeomorphism

σ : M → M is dependent on the classical and quantum trajectories σ[Φ, ϕ±m]. However, just

as for the classical theory, the CQ theory is not background-independent and has a preferred

frame imposed by the requirement that the metric is conformally flat.

We now wish to compute the Newtonian limit of the theory in order to gain insight into

the Newtonian limit of more general classical-quantum theories and compare and contrast it

with [6]. We recall that the final goal is to search for low-energy experimental signatures of

CQ by treating the gravitational field classically. To that end, much like in Chpater 4, we

shall take the quantum degrees of freedom to be described by a pressureless dust distribution

T̂µν = m̂(x)UµUν where m̂(x)± is a (smeared) mass density. Using the conformally flat metric
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and our choice of matter, we can rewrite some of the quantities in the path integral as:

√
−g = c e

4Φ
c2 , R[Φ] = −6□̃e

Φ
c2

c2
e−

3Φ
c2 , T±[Φ,m±] = −e

2Φ
c2 m±(x), (5.15)

and the path integral takes the form

ϱ(Σf ,m
+
f ,m

−
f , tf ) =

∫
DΦDm+Dm−Nϱ(Σi,m

+
i ,m

−
i , ti)

× exp

[ ∫ tf

ti

dtdx⃗ i
(
LQ[Φ,m+] − LQ[Φ,m−]

)
− cD0(x)e

6Φ
c2

8

(
m+(x) −m−(x)

)2
− c7D0(x)

192π2G2
N

(
−e

Φ
c2 □̃e

Φ
c2 +

4πGNe
6Φ
c2

c2
m̄(x)

)2 ]
,

(5.16)

where m̄(x) = 1
2

(
m+(x) +m−(x)

)
.

We take the Newtonian c → ∞ limit of the metric perturbations. Carrying out the trans-

formations, we get

√
−g = c e

4Φ
c2 ≈ c

(
1 +

4Φ

c2

)
+ O

(
1

c3

)
, (5.17)

e
Φ
c2 □̃e

Φ
c2 ≈ □̃Φ

c2
+ O

(
1

c4

)
, (5.18)

4πGNe
6Φ
c2

c2
m̄(x) ≈ 4πGN

c2
m̄(x) + O

(
1

c4

)
. (5.19)

To leading order in c, we then arrive at the Newtonian limit of the CQ scalar gravity theory

ϱ(Σf ,m
+
f ,m

−
f , tf ) =

∫
DΦDm+Dm−N eICQ[Φ,m+,m−,ti,tf ]ϱ(Σi,m

+
i ,m

−
i , ti), (5.20)

with CQ action given by:

ICQ[Φ,m+,m−, ti, tf ] =

∫ tf

ti

dtdx⃗

[
i
(
LQ[m+] − VI [Φ,m+] − LQ[m−] + VI [Φ,m−]

)
− D̃0(x)

(
m(x)+ −m(x)−

)2 − c2D̃−1
2 (x)

6

(
□̃Φ

4πG
− m̄(x)

)2 ]
.

(5.21)

where VI [Φ,m±] is the interaction potential coming from the expansion of the metric deter-

minant in the quantum Lagrangians. For example, in the spirit of Chapter 4, one could have
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Vi = Φm±. We have defined D̃0(x) = cD0(x)
8 , D̃−1

2 (x) = cD0(x)
2 which are related to the deco-

herence and diffusion coefficients of the Newtonian potential. With these re-definitions, these

coefficients relate to physically observable quantities: D̃0 quantifies the suppression of quantum

trajectories away from m(x)+ = m(x)−, which is the decohered trajectory. On the hand hand

D̃2(x) = 1
2σ

2
Φ where σΦ quantifies the variance away from the semiclassical Newtonian solution.

They saturate the decoherence-diffusion relation:

4D̃0(x) = D̃−1
2 (x). (5.22)

In Equation (5.21), we have explicitly kept the d’Alambert operator to highlight the fact that,

differently from [6], ϕ is in principle still a dynamical variable as the ADM constraints do not

constrain it. The d’Alambert operator is also required for normalisation [236]. However, in the

slow-moving limit, we recover the randomly sourced Poisson equation and exactly match the

Newtonian limit of [6].

Although the scalar theory is a toy model, it is worth highlighting some of its appealing

features which we expect to apply to more general CQ theories. Firstly, as mentioned, we

have both diffusion in the Newtonian potential and decoherence in the quantum system, by an

amount quantified by Equation (5.22). More generally, we expect that the amount of diffusion in

the Newtonian potential will be lower bounded by (5.22), which is an experimental signature of

classical-quantum theories [3]. Indeed, we see the same decoherence-diffusion relation between

the diffusion of the Newtonian potential away from its averaged solution and the decoherence

rate into the mass eigenbasis in the Newtonian path integral of [6].

Secondly, expanding out Equation’s (5.14) and (5.21), we see that all the ± cross terms

cancel so that the path integral preserves the purity of the quantum state even though the

state decoheres into the mass eigenbasis. Such classical quantum theories, therefore, provide a

natural mechanism to describe wavefunction collapse via the interaction of a classical field with

a quantum one. Moreover, the fact that the classical field is dynamical is enough to restore

apparent diffeomorphism invariance in the theory, which can be seen via the diffeomorphism

invariant action in (5.14). The fact that gravity interacts with matter through its stress-energy

tensor provides an amplification mechanism by which small masses can maintain coherence

whilst macroscopic objects will be decohered. Indeed, if one disregards the classical degrees of

freedom, the resulting dynamics are very similar to the dynamics of collapse theories [179, 104,
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180, 109], but we see that the complete theory is diffeomorphism invariant since we consider a

dynamical classical field.

Let us finally comment on the continuity properties of the Nordström theory and its New-

tonian limit. Typically, in path integral approaches, the path integral can be understood as

an integral over paths that are (almost surely) continuous. The reason for this is that they

typically involve kinetic terms i
ℏ [ 1δt(xt+δt− xt)]

2 which give a highly oscillatory contribution to

the path integral ∼ e
i

ℏδt2 if the paths are discontinuous. For the Nordström theory, we expect

similar behaviour for the gravitational field in the full path integral (Equation (5.14)) due to

the − R2

4D2
term which includes kinetic terms through □̃Φ. However, in the c → ∞ limit, we

can neglect such terms, leading to a discontinuous path integral in Equation (5.21). This is a

remnant of the approximation, and we expect that any physical, measurable quantity of interest

should be smeared over a time scale to reflect this.

5.3 Discussion

In this chapter, we have constructed the covariant path integral of a full diffeomorphism in-

variant theory of CQ Nordstrom gravity and derived its Newtonian limit. The result matches

with the one obtained in [6], where we started from general relativity and proceeded with gauge

fixing the Newtonian metric. In both cases, the final path integral describes a classical New-

tonian gravitational field diffusing around Poisson’s equation of motion. At the same time,

quantum matter degrees of freedom decohere into mass eigenstates due to the backreaction of

the classical geometry. In order for the dynamics to be completely positive, the amount of

diffusion is lower bounded by the coherence time for superpositions of mass distributions. Dif-

ferently from [6], our choice of classical system was Nordström’s scalar theory of gravity. While

Nordström’s theory does not accurately describe all gravitational phenomena, it is nonetheless

a self-consistent theory of relativistic gravitation. The main appeal behind this choice is that

it allows us to completely bypass any discussion or concern regarding gravitational constraints,

serving as proof that there is no fundamental impediment to constructing a positive diffeomor-

phism invariant theory of CQ gravity and pointing to the fact that the path integral version

of the framework [4, 130] is the most promising approach to constructing a complete theory.
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Moreover, it provides us with a great toy model of a consistently covariant path integral of a

diffeomorphism invariant theory of classical gravity coupled to quantum matter which obeys

linear, completely positive dynamics.

It’s worth noting that since the complete path integral of [130] is renormalisable in the grav-

itational degrees of freedom [9], one should expect this simpler theory to also be renormalisable.

And since this theory is better understood in terms of normalisation, convergence properties

and diffeomorphism invariance, we expect it to be an interesting toy model in which to explore

the conceptual issues around classical-quantum theories of gravity.

Much like in Chapter 4, we intend these results to serve as a model for exploring questions

about the presence of backreaction-induced gravitational noise and anomalous heating, which

will clarify the accuracy of the CQ framework when it comes to the interaction of quantum fields

with spacetime. Fortunately, we can look to proposals that aim to test the quantum nature

of spacetime to test the theory. This includes proposals for the detection of gravitationally

induced entanglement between masses in interferometric setups [215, 216, 217, 219, 220, 221,

222, 223, 237], c.f. [238] which may become feasible in the next decade or two. As explained

in detail in [3], since the trade-off is in terms of the inverse Lindbladian coupling D−1
0 one can

also constrain classical theories of gravity by bounds on anomalous heating of the quantum

system [90, 106, 148, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208]. Other experimental

ideas look for coherence or correlations in gravitational interactions [224, 239]. The variety of

experimental proposals as well as new theoretical tools, suggest that probing the quantum vs

classical nature of spacetime can be accomplished at low energy and is likely to shed light on

attempts to reconcile quantum theory with general relativity.

We conclude by noting that measuring the existence of gravitational diffusion should not

be interpreted as confirmation of a classical gravitational field by itself. Such effects could

instead be caused by quantum theories of gravity, whose classical limit is effectively described

by CQ dynamics. One such example is the regime usually considered when one is interested in

vacuum fluctuations in the era of cosmological inflation, where quantum fluctuations interact

with a classical space-time and where a probability distribution over space-time metrics with

associated inhomogeneities describes the resulting state.
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Chapter 6

Anomalous contribution to galactic

rotation curves

“You know, dark matter matters.”

∼ Neil deGrasse Tyson

In this Chapter, we show that the stochastic behaviour of the gravitational sector of CQ theories

modifies the expected general relativistic behaviour at low accelerations.

Systems undergoing stochastic motion can acquire extra terms in their evolution such that

their expected (average) dynamics differ from their deterministic counterpart; one example of

such contributions is extra drift terms appearing in the context of stochastic PDE. However,

this deviation is not a necessary feature of all stochastic systems, and it might emerge only

under certain boundary conditions or only in a subspace of the state space. In the case of the

gravitational sector of CQ theories, this behaviour is relevant in the low acceleration regime

when the variance in the acceleration produced by the gravitational field is high compared

to that produced by the Newtonian potential. The result can be interpreted as an entropic

force, causing a deviation from Einstein’s theory of general relativity. This deviation will

appear as a gravitational contribution without the presence of any visible matter. Part of

this effect can be directly linked to a dark energy-like contribution, even if the gravitational

theory under consideration has not been constructed with a cosmological term. The second

contribution, anti-correlated to the first, has been used to fit galactic rotation curves without
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dark matter. These modifications are computed via the path integral formalism, where the

most relevant terms known as most probable paths are analysed. Caution should be exercised

as a greater understanding of this effect is needed before conclusions can be drawn, most likely

through numerical simulations. A template for computing the deviation from general relativity

is provided, which serves as an experimental signature of the Brownian motion of spacetime.

The Chapter outline is as follows:

Section 6.1, has two aims. The first is to show how stochastic path integrals give rise to

most probable paths and discuss their meaning and interpretation. The second is to provide an

example of an entropic force emerging due to boundary conditions by looking at a Brownian

particle with a reflective wall. The entropic force is manifest in the average position of the

particle, which is different from its deterministic counterpart.

Section 6.2 applies these concepts to the gravitational sector of CQ theories. First, their

applications are shown in the weak field limit regime obtained in Chapter 4. Then, a Taylor

expansion of the generalised Schwartzschild solution is performed, and it is shown how this gives

rise to a dark energy contribution and how this contribution, together with a second term, can

be used to fit the rotational curves of galaxies without the need for dark matter.

Lastly, Section 6.4 summarises the results and highlights the weaknesses of the calculations.

Important assumptions were made to arrive at analytical results. This Chapter is expected

to be the starting point of a fuller and more in-depth analysis of the connection between the

CQ framework, dark energy and dark matter. The discussion is concluded by comparing the

results of this paper with the theoretical results of the CQ framework in the context of tabletop

experiments.

6.1 Most probable paths and entropic forces

Most Probable Paths

Consider a free particle undergoing Brownian motion with no drift. Given that there is no

drift, the particle will accelerate only due to the random kicks in momentum caused by the

presence of noise. An Onsager-Machlup stochastic path integral [168] can be written to obtain
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the probability of finding the particle at q(tf ) = qf given that at t = 0 it was at q(0) = q0 as

P(qf |q0) =
1

N

∫ qf

q0

Dq e−SOM (q)

SOM (q) =
1

2D2

∫ tf

0
(q̈)2dt

(6.1)

Note that the path integral acts to suppress the probability of paths which do not satisfy q̈ = 0,

by an amount controlled by the diffusion constant D2. The larger D2 is, the more stochasticity

we are likely to find in the realised paths. In other words, given that q̈ = 0 is the equation of

motion for the noise-free version of this system, the more a path deviates from the deterministic

dynamics, the more it is suppressed. This is an equivalent description of the system as the one

provided by the Langevin equation q̈ = F (q)/m + ξ(t), with F/m the drift produced by a

deterministic force F (here set to 0), and ξ(t) a stochastic white noise distribution process.

The dynamics can also be described via the Fokker-Planck equation [240] or Ito calculus [241].

We refer the interested reader to [240] for a derivation of the Onsager-Machlup path integral,

or [234] for a discussion of Brownian motion in the context of path integrals of similar form to

Equation (6.1).

In the same fashion as in quantum theory, one can ask which of these paths contributes the

most to the overall transition probability. These will be the paths that minimise the Onsager-

Machlup Lagrangian. We can immediately see that the solutions to the deterministic equations

of motion q̈ = 0 will be extrema of the action, and they will be global minima as they lead

to SOM = 0. However, the usual variational methods can find other minima of the action. In

the specific, as shown also in [234], the extrema of this action are given by the fourth-order

equation
d4

dt4
q(t) = 0, (6.2)

with general solution

q(t) = α0 + α1t+
1

2
α2t

2 + α3t
3. (6.3)

where α2 has been rescaled to match the usual coefficient of acceleration terms.

One can see that the path space is much broader than the usual deterministic space of

configurations. We call the solutions to this equation most probable paths (MPPs), adopting

the language used in the study of diffusive dynamics [234, 242, 243]. The intuition behind the
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name is clear: given a set of boundary conditions, the equation determines the most probable

path of the free particle connecting the initial to the final conditions. There are four constants

of integration here, two more than the deterministic counterpart. Therefore, the two initial

conditions supplied in the deterministic case are no longer sufficient. Random noise kicks

mean that, in a fixed interval of time, multiple possible final conditions correspond to the

same initial conditions, even if they are associated with different probabilities. In addition, the

noise kicks allow the particle to reach positions and velocities that would not be permitted in

the deterministic case, and the extra terms in the MPP allow precisely that. The two extra

conditions can be imposed at the final time tf or one at the final time and one extra at the

initial time. Moreover, we point out that one could alternatively not fix one or more of these

constants and then integrate them, but we will not do it here.

In order to have a transition probability, we fix the final position as previously mentioned

to q(tf ) = qf . Then, we fix the initial position and velocity q0 and q̇(0) = v0, akin to the

deterministic setting. The last condition could come from fixing the initial acceleration q̈(0) =

a0 or from setting some final condition, for example, the final velocity q(tf ) = vf . These would

give rise either to the transition probability P(qf |q0, v0, a0) or to P(qf , vf |q0, v0). Suppose we

choose the first case and study the free particle with zero initial velocity and acceleration

starting at a point q0 and ending at a point qf . It will then be possible to ask the question:

given these conditions, what is the average final position of the particle? The question can be

answered using the MPPs satisfying these initial conditions and then averaging over the final

position qf . Each path will contribute less the further away from the deterministic paths. If we

substitute the MPP into the action of the Onsager-Machlup path integral and normalise over

the final position, we will be summing over the most probable configurations leading to that

final position, much like a saddle-point (Laplace’s method) approximation.

With this method, the average final position for the free Brownian particle undergoing

Brownian noise is

⟨qf ⟩ =

√
6

πD2t3f

∫ ∞

−∞
dqf

(
qf e

− 6

D2t
3
f

(qf−q0)2
)

= q0, (6.4)

which is the same as the deterministic position resulting from a free particle with no initial

velocity in the absence of noise. We have recovered the well-known result stating that, given
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Gaussian distributed random kicks with zero mean, the average final position will be the same

as the initial one. While the outcome is not at all surprising, we used it as a simple benchmark

to show how one can utilise the approach of the most probable path. We will now discuss

the case where there is a divergence between the deterministic result and the average value

computed through MPPs, which might initially be expected to align in the presence of noise

with a zero mean.

Entropic Force

A canonical example of an entropic force is that due to a polymer which is initially curled

up in a low entropy state but will unfurl or diffuse into a higher entropy state, with its ends

exerting a force [244, 245]. Another is a gas in a box fitted with a piston on one side, which

is slowly pushed out as the gas diffuses. Note that in Section 6.2 of this Chapter, we do not

consider deriving gravity as an entropic force [246, 247, 248, 249, 250], but rather consider the

entropic force that gravity exerts. This section aims to define entropic forces as applicable out

of equilibrium and based only on the equations of motion. It will also give an example that can

be solved in a similar manner to the gravitational case and has some identical features.

Consider Newton’s law F (q) = mq̈. This is a deterministic equation, but we can consider the

case where the system is in a probability distribution over q due to the presence of a mean-zero

noise ξ,

F (q) −mq̈ = ξ,

⟨ξ⟩ = 0,
(6.5)

in which case, we still expect Newton’s law to be satisfied on expectation

⟨F (q) −mq̈⟩ = 0. (6.6)

The key concept here is that if the mean value of the force felt by the particle depends

on the second and higher moment of its position, the particle will not generally follow its

deterministic trajectory because the average of the position equation of motion is not the same

as the equation of motion of the average position. A simple example is obtained by considering

F = −αq2, which corresponds to the cubic potential V (q) = αq3/3. The time derivative of

the particle’s mean momentum obeys ⟨ṗ⟩ = α⟨q2⟩, which can be significantly larger than ⟨q⟩2.
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Another example is the Brownian motion of a particle in a box with a piston. The presence of

a wall on the other side suffices to ensure that the mean value of the particle’s position q will

change with time as the piston is pushed out. If there were no diffusion or wall, the particle’s

average position would not change. The wall placed at q = 0 makes it impossible for ⟨qf ⟩ = q0

when ⟨q2⟩ is non-zero. After all, given enough time, the reflecting boundary at the origin will

skew the average final position in the direction opposite to the wall.

Indeed, as ⟨q2⟩ becomes greater and greater than ⟨q⟩2 (possibly due to elapsed time or a

temperature increase of the heath bath), the presence of the wall makes it so that the average

final position will be further and further away from the mean. We will call this the diffusion

regime, since the second moment of the observable is comparable to its variance and is influenc-

ing the observable equations of motion, in comparison to the case where the mean value of the

observable is given by its deterministic value, which for a free Brownian particle corresponds

to the final position being identical to its initial position ⟨qf ⟩ ≈ q0. Therefore, we define the

entropic force FS to be

FS(q) = F (⟨q⟩) − ⟨F (q)⟩, (6.7)

since it captures the extra force due to diffusion.

We will now explicitly show the example of a Brownian particle with a wall, and show that it

has very similar features to the gravitational example later discussed in Section 6.2. Imagine the

same particle presented in Section 6.1, but now suppose that there is a step function VΘ(−q)

potential (we could take V → ∞). This prevents the particle from going to negative values.

We can express this by modifying the Onsager-Machlup Lagrangian to be

LOM (q̈) =
1

2D2

(
d2

dt2
|q|
)2

, (6.8)

the variation of the Lagrangian provides the fourth-order Euler-Lagrange equation for the most

probable paths:
d4

dt4
|q| = 0, (6.9)

with general solution

qMPP (t) = α0 + α1t+
1

2
α2t

2 +
1

6
α3t

3. (6.10)
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where α2 has been rescaled again. Let us now go through the same process as before while

pointing out a few more details.

When substituting back into the action, we see that the terms corresponding to the deter-

ministic solution α0 and α1 (which is the global minimum) drop out due to the second-order

time derivative. Therefore, we are always allowed to fix them through initial conditions on q(0)

and q̇(0). The action then takes the form of a bivariate Gaussian distribution, which when

integrated from the initial time t0 = 0 to the final time tf becomes:

e−SOM = exp

(
−

tf
3D2

(
3α2

2 + 3α3α2tf + α2
3t

2
f

))
. (6.11)

At this point, we can relate α2 and α3 to other known initial conditions or final conditions,

and the action will act as the probability weight of the most probable path given the specified

conditions. However, we will use it once again to find the average final position. Again, we

assume that the particle starts with no acceleration and that, at the final time, it is at position

qf . In particular, we fix q(0) = q0 > 0 and q̇(0) = q̈(0) = 0, such that the particle begins on the

right-hand side of the wall with zero initial velocity and acceleration. This fixes α1 = α2 = 0.

The last condition is fixed by setting q(tf ) = qf , the final position of the particle, arriving at

q(t) = q0 +
(qf − q0)t

3

t3f
. (6.12)

We can now substitute the solution into the Lagrangian to perform a saddle point approximation

and integrate it up to the final time. We arrive at the action which determines the probability

weighting of the most probable path given initial and final conditions:

SOM (qf ) =
6(qf − q0)

2

D2t3f
, (6.13)

we can now integrate over all possible final positions to normalise the integral∫ ∞

−∞
dqf P (qf |q0, q̇0, q̈0) =

1

N

∫ ∞

−∞
dqf e

−
6(qf−q0)

2

D2t
3
f = 1, (6.14)

to find

N =

√
D2π t3f

6
. (6.15)

Up to now, it appears that everything is the same as the case without the wall. In particular,

it seems as if the probability distribution of final positions can go into the negative values.
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However, we are using that as a mathematical trick, and we can compute the average final

position by keeping in mind that there is a wall at q = 0 such that

⟨qf ⟩ =

√
6

D2π t3f

∫ ∞

−∞
dqf

(
|qf |e

− 6

D2t
3
f

(qf−q0)2
)

=
1

12

6q0 +

(
1 + ΓR

(
−1

2
, 0,

6q20
D2t3f

))
+

√
6D2

π
t
3/2
f e

− 6q20
D2t

3
f − 6q0Erf

(√
6

D2t3f
q0

) ,
(6.16)

where Erf is the error function and ΓR is the regularised Gamma function.

This solution is very insightful. As the diffusion vanishes D2 → 0 or the final time goes to

zero tf → 0, the argument of the error function, the exponential and the regularised gamma

function go to infinity. The error function and the exponential vanish while the gamma function

becomes 1, leaving ⟨qf ⟩ = q0. As one would expect for a situation where there is either no

diffusion or no time has elapsed, the final average position is the same as the initial one, which

is also the deterministic behaviour. Even more interesting, the same happens when q0 is very

large; indeed, if the particle is very far from the wall, it will not feel its effect until enough time

has passed, as it can be seen in Figure 6.1, such that there is an opposite effect between the

growth of q0 and that of tf .
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Figure 6.1: Average final position as a function of initial position according to Equation (6.16)

for fixed final time tf = 5 and diffusion coefficient D2 = 1
2 . In the presence of a wall, the closer

the Brownian particle starts to the reflective wall at q = 0, the more its average final position

will diverge from its deterministic value. The particle is assumed to start with zero velocity

and acceleration.

Lastly, one could assume the particle is not too far from the wall and perform a short time

expansion to arrive at

⟨qf ⟩ = q0 +
1

2

√
D2

6π
t3f , (6.17)

such that one sees that the average final position increases as t3/2. In Figure 6.2, we show the

probability density function of the final positions obtained from a Monte Carlo simulation.
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Figure 6.2: Monte Carlo simulation of the probability density function of the final position for

the Brownian particle with a wall with tf = 5. As one can see, the initial position is q0 = 2.

In the deterministic case, this should correspond to the final position in the absence of initial

velocity and acceleration. However, the average final position is skewed to the right, as the

presence of the wall produces an entropic force, which creates a deviation.

We will now apply these concepts to the gravitational sector of CQ theory and attempt to

relate them to dark energy and dark matter.

6.2 Anomalous contribution to galaxy rotation curves

In 1964, the detection of the cosmic microwave background (CMB) by Penzias and Wilson

substantiated a critical aspect of the Big Bang theory, underscoring the theory’s postulate that

the universe originated from a highly condensed and hot state and has been expanding ever

since [251]. The dynamics of this expansion are influenced by the density and type of matter

and energy present, with the total density’s relation to the critical density being of particular

interest. During the 1970s, scientific exploration was predominantly centred on models that

hypothesised a universe composed entirely of baryonic matter. These models, however, faced

significant challenges in explaining the formation of galaxies, primarily due to the minimal
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anisotropies in the CMB observed during this period. The breakthrough came in the early

1980s with the hypothesis that a universe dominated by cold dark matter (CDM) could resolve

these discrepancies. This paradigm shift was further supported by the theory of cosmic inflation,

which suggested a universe that approached critical density.

Research in the 1980s increasingly favoured models positing a universe with approximately

95% cold dark matter and 5% baryonic matter. These models showed promise in explaining

the formation of galaxies and larger cosmic structures. Despite their successes, these models

were not devoid of issues; they predicted a Hubble constant that was lower than observational

data suggested and failed to account for the extent of galaxy clustering observed during the

late 1980s and early 1990s [252]. The discovery of CMB anisotropy by the Cosmic Background

Explorer (COBE) in 1992 led to significant revisions in the theoretical framework, with several

modified CDM models coming under scrutiny. This period marked the advent of models such

as ΛCDM, which incorporated dark energy, and hybrid models combining both cold and hot

dark matter components [252]. The acceptance of the ΛCDM model was cemented following

discoveries indicative of an accelerating universe in 1998, a conclusion supported by subsequent

significant experiments such as the BOOMERanG microwave background experiment in 2000

and the 2dF Galaxy Redshift Survey in 2001. These studies indicated that the total (matter-

energy) density of the universe was close to critical, while the baryonic and dark matter density

was approximately 25%, suggesting the presence of a substantial component of dark energy [253,

254].

In addition, the ΛCDM model, while providing a robust framework for understanding the

large-scale structure of the universe, also offers crucial insights into galaxy-scale phenomena,

particularly through the study of the rotation curves of galaxies. Observations of galaxy rota-

tion curves, which plot the rotational velocities of stars against their radial distance from the

centre of the galaxy, reveal that the rotational velocities of stars do not decrease with increasing

radius as would be expected if the visible matter alone were exerting gravitational influence.

Instead, the velocities tend to flatten out, suggesting the presence of an additional, invisible

mass component [255, 256]. This phenomenon cannot be explained by Newtonian mechanics

and visible matter alone and is one of the primary observational evidence supporting the exis-

tence of dark matter. Within the framework of the ΛCDM model, dark matter is primarily cold
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(non-relativistic at the time of decoupling), which explains why it clumps and forms structures

that do not disperse over time. These dark matter halos, as predicted by the model, extend well

beyond the visible boundaries of galaxies and are believed to play a critical role in their forma-

tion and stability. The extended halos inferred from the rotation curves provide the necessary

gravitational potential to account for the flat velocity profiles observed at large radii in spiral

galaxies [255, 257]. Dark matter effects are observed in the CMB power-spectrum [258, 259],

by gravitational lensing [260] such as that observed in the Bullet Cluster, through dispersion

relations of elliptical galaxies [261], mass estimates of galaxy clusters [262], Further validation

of the ΛCDM model through galaxy rotation curves comes from detailed simulations and ob-

servations of galaxy formation and evolution. These studies incorporate dark matter dynamics

to simulate the observed properties of galaxies, including their rotation curves. Notably, the

simulations under the ΛCDM paradigm successfully reproduce the thickness and distribution

of galactic disks and the formation of galaxy clusters, aligning well with empirical data from

observed galaxy rotations [263].

Despite its successes, ongoing research into the ΛCDM model seeks to resolve persistent

discrepancies. At the cosmological scales, open questions such as the Hubble tension and the

nearly uniform distribution of CMB perturbations across the celestial sphere believed to stem

from minute thermal and acoustic irregularities at the epoch of recombination [264], still need

to be addressed. At the galactic scales, the ΛCDM model faces challenges such as the ”core-

cusp problem” [265, 266, 267], where the predicted dense centres of dark matter halos (cusps)

are not evident in the rotation curves of less massive galaxies, which instead show a more

uniform distribution of dark matter (core), and the ”missing satellite problem”, referring to the

discrepancy between the large number of small satellite galaxies predicted by simulations and

the fewer number observed [268]. Lastly, the model lacks an explicit physical theory explaining

the origins or nature of dark matter and energy. Despite large-scale efforts, neither dark energy

nor dark matter have been directly detected [269, 270]. Their apparent existence is only felt

through their gravitational field. Discoveries in physics are often indirect. Pauli conjectured

the neutrino to exist in 1939 to account for energy conservation in β-decay, but the particle was

first spotted through a signal in a particle detector 26 years later [271]. In the absence of any

direct evidence for dark energy or dark matter, it is natural to wonder whether they could be
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unnecessary scientific constructs in the same manner as celestial spheres, aether, or the planet

Vulcan, all of which were superseded by more straightforward explanations. Gravity has a long

history of being a trickster.

Is it possible to explain dark matter-related effects without invoking a so-far invisible parti-

cle? In 1983, Mordehai Milgrom [272] realised that one could propose a theory modifying either

the law of inertia or Newton’s gravitational law at small accelerations such that

a =


aN when a≫ a0,

√
a0aN when a≪ a0.

(6.18)

Here, aN is the usual Newtonian acceleration, and a0 a parameter of order 10−10 m/s2. With

this modification, he could explain the flatness of galaxies rotation curves and the widely verified

empirical relationship between the mass (or intrinsic luminosity) of a spiral galaxy and its

asymptotic rotation velocity (or emission line width) known as Tully-Fischer relation [273]. He

also observed that the acceleration parameter a0 could be numerically related to fundamental

constants of nature [272] such that, in a still unexplained coincidence:

a0 ≈
c2

2π

√
Λ

3
. (6.19)

Milgrom named his theory Modified Newtonian Dynamics or MOND [274, 275, 276].

Several theories have been proposed to incorporate MOND-like phenomenology into a

broader theoretical context. Notably, Bekenstein’s TeVeS theory (Tensor–Vector–Scalar Grav-

ity) and Milgrom’s initial formulations have been foundational in this area [275, 276]. These

approaches aim to modify the gravitational framework to allow for MOND’s successes at galac-

tic scales while attempting to remain consistent with General Relativity at larger scales. More

recent theoretical explorations continue to expand on these ideas. Models that integrate as-

pects of quantum gravity and emergent gravity theories have been proposed too, suggesting

that MOND phenomenology might arise from more fundamental physical principles [277, 278].

These theories often explore the low-energy limits of quantum theories of gravity, where they

propose mechanisms by which MOND-like behaviour could naturally emerge. However, despite

these theoretical efforts, a fully satisfying fundamental theory that reproduces MOND phe-

nomenology across all scales has yet to emerge. The core challenge lies in the modification of
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gravitational theories at low energies. While it might be theoretically simpler to propose mod-

ifications at high energies—such as those near black holes or during the early universe—the

constraints imposed by precise experimental measurements at low energies make it extremely

difficult to alter theories without conflicting with observed phenomena [279]. Moreover, any

successful low-energy modification must align with precise experimental data, including solar

system dynamics and binary pulsar observations, which consistently support General Relativity

with high precision. This requirement significantly restricts the space of viable theories. Since

Milgrom’s formulation of the original theory, various models that attempt to respect these ex-

perimental bounds while providing explanations for anomalous galactic dynamics have been

proposed [280, 281]. However, it is also important to emphasise that MOND has yet to account

for gravitational lensing results or the CMB power spectrum. Regardless of these shortcomings,

it seems reasonable to wait before casting a final negative judgment, and it should be kept in

mind that MOND should not be interpreted as a fundamental theory.

While MOND is the most famous alternative theory to dark matter, other interesting pro-

posals can account for discrepancies between the observed galactic rotation curves and those

predicted by general relativity. A known alternative to MOND initiated by Mannheim origi-

nates from fitting rotation curves to a spherically symmetric metric chosen to be a solution to

a modification of general relativity known as conformal gravity [282, 283, 284], an approach we

will discuss in more detail after having presented the results of the path integral.

We will now compute the effect on galactic rotation curves obtained as a consequence of

treating general relativity in the CQ framework. To do so, we will use the path integral

formulation of Chapter 3 and results from the weak field limit of CQ gravity obtained in

Chapter 4. We would like to point out that the CQ framework was not developed with the

idea of fitting rotation curves but rather to reconcile quantum theory and gravity. However,

in [1], it was already hypothesised that diffusion in the metric degrees of freedom might lead to

corrections akin to those explained by dark matter and dark energy. One of the results we obtain

is that even when starting with no cosmological constant, stochastic fluctuations are such that

one should typically expect a small one. We then find that the same stochastic fluctuations act

as positive contributions to the mass that become relevant at a certain acceleration value, setting

the scale for the divergence from deterministic general relativistic behaviour. Furthermore, we
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find that the acceleration scale γ1 is obtained from cosmological parameters in a numerically

similar relationship to the coincidence of Eq. (6.19). The fluctuation corresponding to the

acceleration γ1 is given by γ1 ≈ ΛRH , with RH the Hubble radius. This becomes γ1 ≈
√

Λ

in a Λ-dominated universe, resulting in flat rotation curves in a region far from the galactic

centre but with possible deviations at larger distances. One should keep in mind that these

parameters correspond to boundary conditions of the EOM, which could be subject to change

once a fuller understanding of the dynamics of the theory is achieved. Lastly, we point out

that since quantum-classical theories of gravity are very restricted, a better understanding of

the phenomena described in this Chapter will likely enable astrophysical tests to discern the

quantum nature of spacetime.

Let us now proceed with the derivation. In this Chapter, we focus only on the classical limit

of the theory. Quantum matter degrees of freedom are taken to be fully decohered. Regardless,

classical degrees of freedom still undergo stochastic evolution. Moreover, we do not concern

ourselves with the evolution of matter and thus only represent those degrees of freedom with a

mass density distribution m(x). In Chapter 4 (but the same action can also be obtained from

the Nordström gravity route of Chapter 5), we have seen that such CQ path integrals look quite

simple in the Newtonian limit, where the metric can be parametrised in terms of the Newtonian

gravitational potential Φ. In this limit, the action of [130] was found to be [6]

ICQ[Φ,m, ti, tf ] = −D0(1 − β)

G2
N

∫ tf

ti

dtdx⃗
(
∇2Φ − 4πGNm(x)

)2
. (6.20)

While this action by itself allows for any β < 1, In [9], it has been observed that β < 1
3 is

required to ensure positivity of the full action. Regardless of bounds, it is naturally assumed

for β to be of order O(1). In this Newtonian limit, β < 1 is a necessary and sufficient condition

for the path integral to suppress paths away from Poisson’s equation. We take this opportunity

to point out that D0/G
2
N (here c = 1) is a dimensionless coupling constant which determines

the scale of fluctuations and that β = 1
3 , together with the absence of matter, would correspond

to a conformally invariant theory of gravity.

Drawing the connection with Section 6.1, we see that the action (6.20) is in the form of

an equation of motion squared and has a global maximum when the equations of motion are

satisfied

⟨∇2Φ − 4πGNm⟩ = 0. (6.21)
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As shown in Chapter 4, this action derived as the weak field limit of [1, 130] is a path integral

formulation of Diósi and Tilloy [110] model when a local noise kernel is chosen. Thanks to

the linearity in Φ of Equation (6.21), if m(x) is not given by a statistical mixture of different

distributions but represents a single defined distribution, we obtain that the average equation

of motion is identical to the equation of motion for the average and

⟨∇2Φ − 4πGNm⟩ = ∇2⟨Φ⟩ − 4πGNm = 0. (6.22)

Therefore, when ∇2⟨Φ⟩ satisfies Poisson’s equation, there is no difference between the expecta-

tion value of Φ and its value in the corresponding deterministic theory. Nonetheless, much like

in the Brownian motion example of Section 6.1, the action of Equation (6.20) is extremised not

only by the field configuration Φ which satisfies Poisson’s equation, but also by more general

configurations corresponding to a vanishing action variation (for fixed endpoints).

In the absence of matter, when m(x) = 0, the action of Equation (6.20) is extremised by

the solution to the biharmonic differential equation

∇4Φ = 0, (6.23)

which general solution away from x = 0 is given by

ΦMPP (x) = − κm
4π|x|

+ κ0 − 8π κ1|x| + κ2|x|2. (6.24)

The first two terms are the standard Newtonian potential plus an arbitrary constant term.

In comparison, the last two additional terms do not satisfy the standard vacuum Poisson’s

equation and are, consequently, local rather than global extrema. However, they still make

substantial contributions to the path integral. Note that the κm term and the κ1 term are

Green’s functions for ∇2 and ∇4, respectively, and for this reason, we’ve explicitly put in the

sign and factors of π. Solutions to the biharmonic equation with a source can be found, for

example, in [285], the difference here being that the source is 4π∇2Φ.

Once again, we would like to highlight the nature of this solution as that of a most prob-

able field configuration given a set of (so far unspecified) boundary conditions. Much like in

Section 6.1, these should not be thought of in the same way as the usual equations of motion.

The presence of stochastic noise bends particle trajectories and field configurations out of shape
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with respect to their deterministic counterparts. Many new configurations are now reachable

from the same initial conditions of the gravitational field. However, those parametrised by

Equation (6.24) are the most probable. We further stress that these extra contributions do

not necessarily need to relate to the matter distribution, even if a more significant discrepancy

corresponds to a much lower probability of weighting in the path integral. The dominant con-

tribution to the path integral comes from the usual solution to Poisson’s equation. At the same

time, the rest merely represent stochastic deviations from it, which are not too suppressed in

the path integral given a set of boundary conditions. Other configurations also contribute, but

their probability weighting will be even smaller.

Therefore, we will call the generalised field configurations such as those of Equation (6.24)

most probable paths, using the same language of Section 6.1. Expanding on this terminology,

the path integral clearly shows the presence of different contributions to the gravitational po-

tential that can differ significantly from the usual solution to Poisson’s equation. On the one

hand, time fluctuations at short distance scales are required for the gravitational sector to be

consistent with quantum theory and current known bounds on massive particle superpositions

as discussed in Chapter 4 and Chapter 5. On the other hand, one expects deviations from

Poisson’s equation and the complete relativistic theory due to non-linearities in the full path

integral. Lastly, one should also expect deviations arising due to the theory’s dynamics. These

could include temporal fluctuations generated during early times, stretched out during the uni-

verse’s expansion akin to vacuum fluctuations of quantum fields, or fluctuations built up over

cosmological or galactic time scales. This chapter will study the latter two types of fluctuations.

In this case, for slow-enough dynamics, the final distribution of deviations away from Poisson’s

equation should be characterised by the action of Eq. (6.20) with the omitted integral over

time. Therefore, unlike the Brownian motion path integral in Section 6.1, this path integral

is first treated as non-dynamical, characterising the relative probabilities of various deviations

away from the Newtonian potential, regardless of origin. Indeed, paths such as ΦMPP (x) in

Eq. (6.24) should be treated as static as they are inherited from the relativistic theory, and

one would not expect them to fluctuate over time. Hence, the integral over dx0 is dropped. To

facilitate the tracking of units and dimensions, the dimensionless coupling constant D0/G
2
N is
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replaced by D0,T /G
2
N , having units of distance1.

In light of what we are trying to achieve, it is worth pointing out that all the κ should be

considered constants. Moreover, the contribution of κ1 to the most probable path has units of

acceleration, and the κ2 contribution would be a solution to general relativity if there were a

constant matter density everywhere. Consequently, κ2 has the same units as the cosmological

constant. If one were to substitute the most probable path of Equation (6.24) into the CQ

Newtonian action of (6.20), then the κm, m(x) and κ0 term would not contribute to the action

if the Newtonian term is used as a Green’s function for the matter distribution m(x). They

can, therefore, be set by the boundary conditions, as is done in solving Poisson’s equation. For

simplicity, let us consider only the κ2 term for a moment. Differently from the Newtonian term,

this would give an extra contribution to the action and would hence be suppressed by the path

integral. Performing the substitution, we call the result the MPP-action

IMPP = −
D0,T (1 − β)

4πG2
N

∫
d3x (6κ2)

2 . (6.25)

As mentioned in Section 6.1, substituting the most probable paths in the action is remi-

niscent of the on-shell actions used in quantum field theory, which capture the leading order

terms to the path integral. If we included other terms in the action (such as the κ1 term), the

action would allow us to calculate the relative probabilities of the chosen field configurations

regardless of whether they extremise it. Adding a source term J (x)O(κ) to the action with an

arbitrary function O(κ) of the parameters κ = {κm, κ0, κ1, κ2}, we could construct a partition

function

ZMPP [J ] = N
∫

Dκ eICQ[ΦMPP ,m,J ], (6.26)

1A note about the units used in this Chapter: the dimensionless coupling constant of the theory is D0c
6/G2

N ,

which might appear different from what seen in Eq. (4.22), but the difference has to do with the chosen convention

for the measure of the Einstein-Hilbert action (dx4 or cdtdx⃗) which will then be used to build the CQ action.

The two are fundamentally equivalent. D0 is related to the decoherence rate of the theory, and there are different

conventions as to how many powers of c are absorbed into it. In the master equation approach, such as [3], D0

is quoted in units m3

kg2 s
where it is the inverse of the gravitational diffusion coefficient D2 = 1/D0. Here and

in other path integral papers, D0c
3 is quoted in m3

kg2 s
, while D0,T c

3 has units m4

kg2 s
. Unless a comparison with

experiments is made, the convention will always be that of c = 1.
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with N the normalisation factor. This could be used to compute correlation functions of the κ

parameters. However, this would not be necessary for this simple example as we can immedi-

ately notice that this can be considered as a normal distribution in κ2, with a standard deviation

scaling as GN/
√
D0,TV with V being the spatial volume of the region under consideration.

We will show how κ2 is equivalent to a small cosmological constant of arbitrary sign. We also

emphasise that it appears as a necessary fluctuation even though the deterministic equations

of motion would not allow it. Care should be taken with the MPP action. When tossing 1000

times a coin slightly biased towards heads, the most probable single configuration is composed

only of heads. A more natural characterisation of the outcome would be in terms of the expected

number of heads vs tails, which also characterises any local sample, provided it is sufficiently

large. Note that unlike the Brownian motion path integral of Section 6.1, or the full CQ general

relativistic one described, for example, in Equation (4.22) of Chapter 4, this is a non-dynamical

path integral. However, if the time evolution is slow enough, we would expect it to characterise

the final distribution.

Let us now move to the relativistic case. Here, the static solution is the appropriate metric

for considering the effect of stochastic fluctuations over large distances. Therefore, we consider

a spherically symmetric metric of the form

ds2 = −e2ϕ(r)dt2 + e−2ψ(r)dr2 + e−2χ(r)r2 dΩ2, (6.27)

with Ω the 2-dimensional solid angle. In general relativity, one usually redefines r to reduce

the metric to two free parameters before using Einstein’s equation. We will do that here for

simplicity, but it’s important to note that further investigation of the sensibility of this sort

of coordinate system is needed since the metric is undergoing stochastic changes, which would

require one to redefine r to obtain a strictly static object constantly. Nonetheless, with the

aim of focusing on radial contributions and deviations from general relativity, we redefine r

to set χ(r) = 0 and remove e2χ on expectation. Then, we consider metrics of the generalised

Schwarzschild form

ϕ(r) = ψ(r) =
1

2
log

(
1 − 2F (r)

r

)
. (6.28)

If we were working purely with general relativity, Einstein’s equation would require

F (r) = M, (6.29)
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recovering in this way the usual Schwarzschild solution. Under the assumption that the

stochastic fluctuations cannot change the Lorentzian character of the metric, we point out

that 1 − 2F (r)
r = 0 is a horizon which acts to bound F (r). When restricting the full dynamical

action of Equation (4.22) to its purely gravitational part, one can see that it can be written as

ICQ = −D0

G2
N

∫
d4x

√
−g
(
RµνRµν − βR2

)
. (6.30)

Given this choice of metric, the curvature terms appearing in the diffusion action take the

following form

GµνGµν = RµνRµν =
2

r2
F ′′(r)2 +

8

r4
F ′(r)2, (6.31)

G2 = R2 =
4

r2
(
∇2F (r)

)2
. (6.32)

When substituting the ansatz of Equation (6.28) into this action, we obtain the simple form

IF = −
8πD0,T

G2
N

∫
dr

(
(1 − 2β)F ′′(r)2 +

(4 − 8β)

r2
F ′(r)2 − 8β

r
F ′(r)F ′′(r)

)
, (6.33)

where the angular part has already been integrated so that the path integral is a two-dimensional

Gaussian distribution in the variables F ′ and F ′. Here, F ′ has dimensions of acceleration, and

F ′′ has dimensions of the cosmological constant. Motivated in part by the MPPs of Equation

(6.24), let us consider the polynomial power expansion of F (r)

2F (r)

r
=

∞∑
n=−∞

γnr
n

= · · · +
γm
r

+ γ0 + γ1r + γ2r
2 + · · · . (6.34)

In the second line, we have written the terms relevant to the length scales we are considering.

The γm ends up dropping from the action, and we will subsequently set it to 2GNM since at

order r−1 it is the standard Schwarzschild term, which can here be determined from boundary

conditions. Whether we include the γi corresponding to other higher or lower powers or tran-

scendental functions like log(r) makes no difference for this discussion. Indeed, one can notice

that the series is linear in the γi. When it is substituted back into the action, the coefficients

follow a multivariate Gaussian distribution with zero mean and non-zero correlation. One could

then perform the Gaussian integrals over all other γi that are not of interest, and the action for
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the remaining γ0, γ1, γ2 would not change. We justify our interest only in these contributions

by noting that negative powers of r would not contribute far away from the mass distribution

of a galaxy, which is our zone of interest. On the other hand, the action would heavily suppress

higher powers of the expansion once the radial integral is performed, as one can manually verify.

These terms represent noise configurations that grow faster than the spacetime volume, and

they can also be connected to fluctuations larger than our Hubble volume. For this reason, we

only focus on the correlation between γ0, γ1 and γ2 since including the other γi would not affect

our conclusions.

We now substitute the power series of Equation (6.34) into the action and obtain

Iγ = −
8πD0,T

G2
N

∫ rmax

0
dr
(
(5 − 18β)γ21 + 18(1 − 4β)γ22r

2 + 18(1 − 4β)γ1γ2r
)
, (6.35)

for which we see that positivity imposes β < 1
4 . When integrated, the action becomes

Iγ = −
6πD0,TV

G2
N

(
(5 − 18β)

γ21
r2max

+ 6(1 − 4β)γ22 + 9(1 − 4β)
γ1γ2
rmax

)
. (6.36)

We have dropped the constant term γ0 for ease of presentation, as a constant added to the

gravitational potential does not alter the conclusions nor contributes to the galactic rotation

curves. Here, V = 4
3πr

3
max represents the spatial volume, and we could absorb it into the

coupling constant D0,T /G
2
N , which would renormalise it and give it units of Planck length to

the 4-th power l4p, but we leave it in place to keep track of units. The analysis would not

change much if we had integrated from an inner horizon rmin to rmax. Since we are considering

large-scale fluctuations that exist throughout space and are naturally suppressed by a volume

element, γ2 is only suppressed by this amount because it corresponds to a constant noise

configuration. We stress again that higher powers in the expansion of Equation (6.34) would

be even more suppressed, representing configurations of the noise contribution that grow more

than the spatial volume and fluctuations of a length scale which is not felt inside our Hubble

volume, motivating us to integrate out these terms. This leaves us with the path integral over

γ = {γ1, γ2}

Zγ = N
∫

Dγ eIγ [γ,m]. (6.37)

Much like in the Newtonian case, the γm term drops out of the action and can be fixed to

match the general relativistic solution. Hence, integrating over 4-geometries is here limited to
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4-geometries corresponding to the metric

ds2 = −
(

1 − 2MGN
r

− γ1r − γ2r
2

)
dt2 +

(
1 − 2MGN

r
− γ1r − γ2r

2

)−1

dr2 + r2dΩ2. (6.38)

Up to the extra constant term γ0, this is equivalent to the MK metric of [285, 286]. This

metric has been used to fit galactic rotation curves [282, 283, 284, 285, 287]. Unlike Mannheim,

we will not fit γ1; instead, we will determine it from the path integral. One should remember

that while this metric is a solution to conformal gravity [286], it is not a solution to general

relativity. Regardless, it contributes to the CQ path integral, as seen from Equation (6.36).

While conformal gravity has issues deriving from negative norm ghosts, these same issues appear

to be resolved for CQ in [9] (see also [288, 289, 290, 291, 292, 293, 294]). Moreover, criticisms of

using the MK metric in fitting rotation curves akin to those presented in [295, 296, 297] are also

not applicable to the classical-quantum theory of [1, 130] which is not conformally invariant,

but rather scale-invariant without matter [9]. The matter action then breaks scale invariance.

Here, the correct Newtonian potential plays the role of the dominant saddle contribution in

our path integral. Before proceeding, we keep in mind that γ2 corresponds to the cosmological

constant term of Schwarzschild deSitter, while γ1 contributes to the geodesic equation of stars

far from the galactic centre.

Let us now explicitly normalise the path integral of Equation (6.37) and obtain the nor-

malised probability distribution

f(γ) =
1

N
exp

(
−

6πD0,TV

G2
N

(
(5 − 18β)

γ21
r2max

+ 6(1 − 4β)γ22 + 9(1 − 4β)
γ1γ2
rmax

))
,

N =
rmax

3
√

3(1 − 4β)(13 − 36β)

G2
N

D0,TV
.

(6.39)

which can be seen in the contour plot:
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Figure 6.3: Contour plot of the probability distribution of γ1 and γ2 defined in Eq. (6.39). The

negative correlation of the two variables is easily seen. To enhance the visibility of the plot, we

have plotted γ1 against γ2∗rmax, and we chose a value of rmax = RH ≈ 1026m, which represents

the order of magnitude of the Hubble radius. We picked an indicative value of β = −1, but

different beta will only tune the correlation as long as β < 1
4 .

The expectation values of γ1 and γ2 are zero, but the two random variables are normally

distributed correlated. We can explicitly compute the second moments of γ and obtain the

covariance matrix of the multivariate Gaussian distribution, which is composed of

Σ11 =
2r2max

3(13 − 36β)

G2
N

D0,TV

Σ22 =
(5 − 18β)

9(13 − 36β)(1 − 4β)

G2
N

D0,TV

Σ12 = − rmax
2(13 − 36β)

G2
N

D0,TV

(6.40)

where Σ11 and Σ22 are the variances of γ1 and γ2 and the two variables have correlation

coefficients given by

ρ12 = −3
√

3

2
√

2

√
1 − 4β

5 − 18β
, (6.41)
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with the negative correlation easily seen from the plot in Figure 6.3 or by inspection of Equa-

tion (6.39). Let us pause and think about this distribution. The expected values of γ1 and γ2

are 0. The probability of both being exactly at their most probable value is zero. We expect

them to be more likely in an interval around the distribution peak with a certain probability

depending on D0,T . Through observational cosmology, we know that our universe presents a

positive cosmological constant Λ, which has to be manually inserted in Einstein’s equations by

hand and, in the weak field limit, contributes to the Newtonian potential as

Φ = −GM
r

− Λ

3
r2, (6.42)

where the r2 dependence is the sign of a global contribution. Emboldened by observations, we

can use this to identify the γ2 factor. In other words, given that we observe a specific value of

γ2 = Λ
3 , we can ask what the expected value of γ1 is. This can be computed easily by finding

the conditional expectation

µγ1|γ2,rmax
= µγ1 + ρ12

σγ1
σγ2

(γ2 − µγ2)

= −9

2
γ2rmax

(
1 − 4β

5 − 18β

)
,

(6.43)

where we used the fact that µγ1 = µγ2 = 0. At this point, we make the substitution γ2 = Λ
3

and choose rmax = RH = 1.37 ∗ 1026m to be the Hubble radius. This choice seems sensible

because the Hubble radius gives a scale of the distance beyond which galaxies are receding from

us faster than the speed of light due to the expansion of the Universe. Therefore, we arrive at:

µγ1|γ2,rmax
= −3

2
ΛRH

(
1 − 4β

5 − 18β

)
= −2.28 ∗ 10−26

(
1 − 4β

5 − 18β

)
.

(6.44)

Restoring the units of c means multiplying the above expression by c2, we obtain

µγ1|γ2,rmax
= −2.06 ∗ 10−9

(
1 − 4β

5 − 18β

)
, (6.45)

which, when β → 0, tends to

µγ1|γ2,rmax
= −4.11 ∗ 10−10 m/s2, (6.46)

as plotted in Figure 6.4.
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Figure 6.4: Conditional expectation of the value of γ1 given the observed value of γ2 as a

function of β. Here γ2 = Λ
3 .

We can now more explicitly draw the connection between the cosmological constant and the

acceleration regime of Equation (6.19). In a dark energy-dominated universe, the value of the

Hubble radius can be expressed in terms of the cosmological constant as RH =
√

3
Λ , meaning

that the expected value of γ1 is

µγ1|γ2,rmax
= −3

√
3

2

√
Λ

(
1 − 4β

5 − 18β

)
≈

√
Λ. (6.47)

Let us now conclude with a statistical analysis of the results. Given the observed value of Λ,

we want to test two things. Firstly, we check how many standard deviations the observed value

of γ2 is from the predicted expected value of zero. Secondly, we derive how many standard

deviations from its conditional expected value is the observed value of γ1 needed to fit the

data. We know the two values follow a bivariate Gaussian distribution so that we can utilise a

Z-test. A Z-test is a statistical method that uses the standard normal distribution to calculate
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the probability of observing a test statistic as extreme as the one obtained, assuming the null

hypothesis is true. Given that we have a free parameter D0.T , this would allow us to understand

the range of possible values of the decoherence constant required for the results to sit within 1

standard deviation of their expectation.

To perform the Z-test of γ2, we recall that the observed value is γ2 = Λ
3 and compute

Zγ2 =
Λ/3√
Σ22

, (6.48)

where Σ22 is the variance of γ2, and we use the value of the maximal radius as the Hubble

radius. We get

Zγ2 =
Λ
√
D0,TVH

GN

√
(1 − 4β)(13 − 36β)

5 − 18β
. (6.49)

We would like the Z score of γ2 to be less than 1, such that the observed value of γ2 lies within

one standard deviation from the mean. Given that VH ≈ 1079, plugging the values in the

formula, we obtain

D0,T ≤
Z2
γ2G

2
N

VHΛ2
f(β), (6.50)

with f(β) =
√

(1−4β)(13−36β)
5−18β . When substituting the back the units of c by dividing by c3, the

formula becomes

D0,T c
3 ≤ 1.34 · 10−21f(β)

m4

s · kg2
. (6.51)

Therefore, we see that we should be within the desired interval of one standard deviation for

any value of D0,T with an order of magnitude less than 10−21f(β) m4

s·kg2 .

We can now perform the same computation for the observed value of γ1. This could be the

MOND value a0
c2

≈ 1.33 · 10−27 or the value of γ1 used by Mannheim [284]. The conditional

variance of the result is given by

σ2γ1|γ2,rmax
= Σ11(1 − ρ212)

=
G2r2max

4D0,TV (15 − 54β)
,

(6.52)

which can be used to perform the Z-test together with the Hubble parameters

Zγ1 =
γobs − µγ1|γ2,rmax

σγ1|γ2,rmax

=
2
√
D0,TVH(15 − 54β)

GNRH

(
γobs +

3(1 − 4β)ΛRH
2(5 − 18β)

)
.

(6.53)
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This can be rearranged to obtain

D0,T ≤
G2
NR

2
HZ

2
γ1

VH

(5 − 18β)

3(2(5 − 18β)γobs + 3(1 − 4β)ΛRH)2
. (6.54)

When substituting in the numbers, restoring units of c and setting Zγ1 = 1, we obtain (for

β = −1)

D0,T c
3 ≤ 1.09 · 10−22 m4

s · kg2
, (6.55)

which means that if D0,T c
3 is such that the observed MOND acceleration is within one standard

deviation of the conditional expected value, it will automatically be such that the observed value

of Λ is within one standard deviation of the model.

So far, we have only considered correlations in larger-scale anomalous contributions rather

than short-distance fluctuations. We would like to understand better how these arise from

the local time-dependent fluctuations in (6.20). First, we can cross-check the obtained result

with the theory’s predictions for local time-dependent fluctuations. We present a suggestive

calculation obtained by looking at the post-Newtonian expansion of the full theory. Here, we

can see that local stochastic fluctuations lead to an acceleration scale, below which the laws of

gravity are modified. This is most easily done in isotropic coordinates, and we refer the reader

to Appendix E for more details. In these coordinates, the action is given by Eq. (E.9)

ICQ = − D0c
5

64π2G2
N

∫
d4x e

2Φ
c2

[(
∇2Φ − (∇Φ)2

2c2
− 4e−

2Φ
c2 πGNm

)2

+
3

c4
(∇Φ)4

− 4β

(
∇2Φ − (∇Φ)2

2c2
− 4e−

2Φ
c2 πGNm

)2 ]
,

(6.56)

where powers of c have been re-inserted to highlight each term’s contribution order. One can

see that the terms containing the acceleration squared (∇Φ)2/c2 play an important role. Taking

β = 0 for simplicity since the argument doesn’t change much if it’s non-zero, let us also drop the

3
c4

(∇Φ)4 as its inclusion would only enhance the argument we are about to present. Therefore,

on expectation, the action implies that the scalar gravitational potential Φ must satisfy〈
e

Φ
c2

(
∇2Φ − 1

2c2
(∇Φ)2 − 4e−

2Φ
c2 πGNm(x)

)〉
= 0. (6.57)

Immediately, one can notice that when ⟨(∇Φ)2⟩ >> ⟨∇Φ⟩2, a deviation from the Newtonian

limit of general relativity will be observed on average. Indeed, from Eq. (6.57), the extra
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variance acts like a positive mass term. We call the regime when ⟨(∇Φ)2⟩ >> ⟨∇Φ⟩2, the

diffusion regime. This regime implies that, when the acceleration |∇Φ| is small in comparison

to its standard deviation, a deviation from the Newtonian law of gravity can be observed. In

Section 6.1, we already defined an entropic force to be such a deviation from the deterministic

equations. This is distinct from the entropic force used by Verlinde in the context of Holography,

in which gravity itself is proposed as an entropic force acting as dark matter [298].

If the diffusion in the acceleration is relatively constant away from the galactic centre, then

this naturally picks out a universal acceleration scale as in MOND phenomenology. Once the

acceleration drops below the level set by the diffusion in |∇Φ|, one observes a deviation from

Newton’s law and its post-Newtonian corrections. On the other hand, If |∇Φ| is above the

diffusion regime, the expectation value ⟨∇Φ⟩ obeys the post-Newtonian equations of motion,

which explains why PPN tests of general relativity are unaffected by the stochastic fluctuations

of [1, 130].

6.3 Gravitational fluctuations experiments

In [3], the constraints on temporal fluctuations of the gravitational field were computed from

tabletop precision gravity measurements. These, in turn, constrain the value of D0, which

can then be compared with the constraints derived from galactic rotation curves. Given the

two-point function of the theory, one can compute the variance of the local acceleration. This

was done in [3] for several two-point functions. The ultra-local, non-relativistic theory, has a

weak-field limit two-point function for Φ(x) given by

G2(x, x
′) =

G2
N

(4π)2(1 − β)D0

∫
d3y

δ(t, t′)

|y⃗ − x⃗||y⃗ − x⃗′|
. (6.58)

This corresponds to the linearised weak field limit of GR with local white noise, a continuous

model in phase space. This model was thought to be ruled out by experiments due to the

divergences in the potential variance. Since ⟨Φ(x)Φ(x′)⟩ diverges over finite distances with

the volume of the ambient space unless D2 depends strongly on the potential, this is an IR

divergence. However, using dimensional regularisation, Eq. (6.58) can be shown to be equivalent
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to the two-point function

G(x, x′) := −
G2
N

8π(1 − β)D0
|x⃗− x⃗′|δ(t, t′), (6.59)

which is obtained by analytically continuing around the divergence. This was proven in [9],

and we report it here in Appendix F. While Eq. (6.59) is not positive semi-definite at face

value, a large enough constant can be added for any finite region of |x − x′| to ensure this

property is obeyed. It is important to remember that this constant does not affect the variance

in acceleration, which is the physically meaningful quantity. Still, a fuller understanding of

the physical implications is required. These two-point functions can be found from the non-

relativistic limit of the two-point function for the trace of the scalar mode of the complete

relativistic theory when the bare cosmological constant is taken to be zero [9].

The theory is consistent with the results when the regularised two-point function is used to

place bounds on D0 from tabletop experiments. This indicates that the IR divergence appears

to be an artefact of the unregularised theory, leading to the conclusion that the ultra-local

theory is not ruled out by experiment, even when the theory is linearised. One could compute

the acceleration covariance matrix directly from Eq. (6.58)

∂2G(x, x′)

∂xi∂x′j
=

G2
N

8π(1 − β)D0

1

(4π)2

∫
d3y

{
δij

y|y⃗ + z⃗|3
− 3

(y + z)i(y + z)j
y|y⃗ + z⃗|5

}
δ(t, t′), (6.60)

where z⃗ = |x⃗ − x⃗′| and which swaps the infrared divergence for an ultraviolet divergence for

y⃗ → −z⃗. However, due to its equivalence with Eq. (6.59), we know this result to be finite in

dimensional regularisation and be equivalent to the covariance matrix obtained from (6.59) as

shown in [9] and reported in Appendix F

∂2G(x, x′)

∂xi∂x′j
=

G2
N

8π(1 − β)D0

(
δij −

|x⃗− x⃗′|i|x⃗− x⃗′|j
|x⃗− x⃗′|2

)
. (6.61)

One can often obtain a more precise measurement of acceleration by monitoring the ac-

celeration a(t) over time and then applying a Fourier transform to obtain â(ω). The Fourier

transform of the acceleration variance is known as the spectral density Saa(x⃗, x⃗
′;ω). From [9],

we know that the relativistic spectral density corresponding to the positive semi-definite prop-

agator is derived to be

Saa(x⃗, x⃗
′;ω) =

DGc
2

4π(1 − β)ϵ|x− x′|(2i)

(
k2(ω,+ϵ)eik(ω,+ϵ)|x−x

′| − k2(ω,−ϵ)e−k(ω,−ϵ)|x−x′|
)
,

(6.62)
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where k(ω,±ϵ) ≡
√
ω2 ± iϵ. Therefore, in the limit ϵ→ 0

Saa(x⃗, x⃗
′;ω) =

DGc
3

4π(1 − β)

ω2

ϵ|x− x′|
sin
(ω
c
|x− x′|

)
. (6.63)

For completeness, we note that one could also use the same methods to obtain the spectral

densities starting from the retarded and advanced propagators, arriving at

Saa,R(x⃗, x⃗′, ω) =
DGc

3

4π(1 − β)

(
1

|x− x′|
+
iω

2

)
eiω|x−x

′|, (6.64)

for the retarded spectral density and

Saa,A(x⃗, x⃗′, ω) =
DGc

3

4π(1 − β)

(
1

|x− x′|
− iω

2

)
e−iω|x−x

′|, (6.65)

for the advanced one. In the spectral densities above, prefactors have been fixed to correspond

to the action of Eq. (6.20) in the weak field limit, where DG =
G2

N
D0c6

is the dimensionless

prefactor.

At low frequencies, the spectral density of Eq. (6.63) can be Taylor expanded to obtain

Saa(x⃗, x⃗
′;ω) =

DGc
2

4π(1 − β)

ω3

ϵ
, (6.66)

where we take ϵ = ω2
0 as an “induced Planck mass” mass [9]. In particular, recent experimental

bounds obtained from the solar system [299] place the mass of the graviton to be mg < 10−23eV .

Using the equivalence of 1 eV = 2.42 × 1014 Hz, we get ω2
0 = 4.84 × 10−18 Hz.

The low-frequency regime is relevant for most experiments, in which case Eq. (6.66) closely

tracks the spectral density. Experimental upper bounds on the relevant spectral density have

been collected in [300, 301]. Here, differential acceleration measurements such as those found

in [302, 303] have been excluded since stochastic fluctuations at low frequency may affect both

masses or paths equally, requiring some further understanding. The experiment of [304] uses

a torsion pendulum with a moment of inertia I ∼ 10−7 kgm2 and finds a torque variance of

order 10−27 (Nm)2

Hz at the ω = 3 mHz scale. The disk radius is of order cm, leading to Saa(ω) ∼

10−17 (m/s
2)2

Hz is of the same order of magnitude as for the sphere. Taking 1 − β to be of order

unity leads to the dimensionless coupling constant being G2
N/D0c

6 ≤ 10−43 (D0c
3 ≥ 10−3 m3

kg2 s
).

The experiment of [151] uses mm size masses, and reports Saa(ω) ∼ 10−18 (m/s
2)2

Hz , leading to

G2
N/D0c

6 ≤ 10−44 (D0c
3 ≥ 10−2 m3

kg2 s
) also at the mHz scale.
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6.4 Discussion

Let us reiterate the main accomplishment of this Chapter. We have found that, for our universe,

one expects modifications to the metric parametrised by γ1 and γ2. The expected value of γ1 is of

µγ1|γ2,rmax
≈ −10−26 m−1 (notice how from Fig 6.4 we see that for negative β we are insensitive

to its value). Putting units of c back in, we have found that γ1 is of the same order as the MOND

acceleration γ1 ≈ 10−10 m/s2. This was the value initially used to fit galactic rotation curves

for larger spiral galaxies in the context of conformal gravity [283], giving roughly flat rotation

curves in the region where the transition between the increasing γ1r term is of the same order

of the decreasing GNM
r term. If γ1 were too large, it would run afoul of experimental bounds on

solar system evolution. However, γ1 needs to be adjusted as γ1(M) = γ1(1 +M/1010M⊙) with

γ1 ≈ 10−28m−1 to account for smaller dwarf galaxies where cold dark matter simulations also

incur in the core-cusp problem [265, 266, 267]. Dark matter models also require novel properties,

additional assumptions or further considerations [305]. Recently, new data required γ2, to be

taken as κ ≈ 10−50m−2 [284] to “flatten the curve” while giving a slight rise at long distances,

which is claimed to be observed [306] (see in contrast [307]). Without further considering the

dynamics of the matter distribution, we have no reason, at this point, to select the constants

in the most probable path because they correspond to boundary conditions. It is a reasonable

choice to set γ2 to be the value of the cosmological constant given its observation over the scale

of the Hubble radius and then use this to predict γ1. However, it would also be consistent to

choose γ2 ≈ κ over galactic distances of rmax ≈ 100 kpc and obtain γ1 ≈ 10−28m−1, given that

the observed rotation curves in each galaxy only extends to a radius of that order (the galactic

disk of larger galaxies). This would require viewing γ2 as a fluctuation which appears as if it

were a dark energy contribution, akin to some form of quintessence [308, 309, 310]. While none

of this would be inconsistent with observation, little can be said without a greater understanding

of galaxy formation in a cosmological setting. Instead, the first conclusion we would like to draw

is that the order of magnitude estimates suggest that the theory makes predictions broadly in

line with current observations and advocates that simulations of the theory, combined with

astrophysical observations, could be used to test its anomalous behaviour.

Efforts to understand the effect of these stochastic fluctuations in cosmology are initiated

in [311], where some evidence is found that stochastic perturbations in the early universe can
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reproduce the phenomenology of dark matter cosmologically, without the need for any addi-

tional matter degrees of freedom. In particular, evidence is found that our current Λ cannot

only result from large-scale fluctuations in the evolution of the scale factor. Cosmology studies

using different models of stochastic fluctuations have been considered in [312, 313]. Other ap-

proaches have also tried to connect cosmology with the emergence of dark matter [314] and even

attempt to explain dark energy as a fluctuation of the Newtonian gravitational constant [315].

To provide a template for further comparison between models and observation, we have also

derived an estimate for the parameter D0,T /G
2
N at large distances in the case where we take the

cosmological constant to be the result of stochastic fluctuations. While the complete analysis

is detailed in Section 6.2, we repeat the crucial points here.

Since we expect to live in a typical universe, the variance in γ2 should be of the order of Λ2,

such that the value witnessed value of γ2 can be considered typical. From the above covariance

matrix, one can see that this sets the value D0,T /G
2
N to be of the order of D0,T /G

2
N ≈ 1/Λ2VH ,

with VH the Hubble volume. In units with c it is perhaps easiest to think in terms of a diffusion

coefficient 4-density D2 := G2
N/D0,T c

6VH ≈ 10−104m−4. It is fascinating to think that this

result could explain two unanswered questions. Firstly, the small but non-zero value of the

cosmological constant, at least in terms of D0,T , especially since we found in [9] that a bare

cosmological constant cannot be included if one wants to preserve complete positivity. Secondly,

the numerical coincidence of the acceleration scale a0 ≈
√

Λ presented in [272] at which there

is a deviation from the expected general relativistic behaviour. Moreover, we also did not need

to fine-tune β as we found it is upper bounded by 1
4 , and its influence on the results flattens

out quickly at negative values of order O(1).

Let us now highlight the weaknesses of these calculations, starting with the assumptions

regarding the spacetime metric. To make calculations analytically tractable, we have restricted

ourselves to spherically symmetric and static spacetimes, with metrics of the form of Equa-

tion (6.38). For spherically symmetric matter distributions, it is natural for the expectation

value of the metric and its variance to be spherically symmetric. However, any realisation of

the stochastic noise would be highly non-uniform and dynamical in time. At the same time,

the metric ansatz used in this work is static and uniform over spheres of radius r. In a future

refinement of this work, allowing ψ and ϕ to be different would be desirable. This would double
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the number of parameters in the action and may give further insight into galactic rotation

curves. Static spacetimes were chosen as a consequence of not expecting large-scale fluctua-

tions in the relativistic theory. The only large-scale anticipated fluctuations are assumed to

be those already present, and we conjectured that given the scale, the γ2 term could represent

fluctuations baked in during the inflation era. The R2 term, which dominates the covariant

path integral, could allow for Starobinski inflation [316, 317, 318], which is favoured by CMB

data [319]. The dynamics of other contributions to the path integral have yet to be discovered.

On the topic of the path integral, let us be clear about some of its limitations. We have

restricted ourselves to understanding the correlation in γ1 and γ2. They reflect different length

scales of stochastic fluctuations. Still, there are correlations between them and higher powers in

the expansion (lower powers, too, but they might not be relevant at large distances). Here, the

full Gaussian distribution of Equation (6.33) may provide some insight into the distribution of

what is currently considered dark matter. However, care is necessary since many different be-

haviours can be fit into a power series. Since we do not know what other terms may contribute

in a relevant way, a fuller understanding of the probability distribution is required. It might also

be appropriate to choose a different series expansion and perform a complete principal compo-

nent analysis via the Kosambi–Karhunen–Loève theorem [320]. Another caveat of the action

we wish to highlight concerns its positive definiteness. This is required to give finite probability

distributions and suppress paths that deviate from Einstein’s equation. While the action of the

weak field limit derived in Chapter 4 has this property, the generalised deWitt metric defined

of Equation (4.23) is not positive semidefinite. Nonetheless, the negative contributions to the

path integral appear to correspond to non-dynamical degrees of freedom [9, 321]. One corre-

sponds to the Gauss-Bonnet term, which in 4 spatial dimensions is a purely topological term

and a total divergence. Since we don’t sum over topologies, its bulk contribution is benign.

The total divergence is usually discarded as a boundary term at spatial and temporal infinity,

which does not affect local physics. However, whether this can be done here is less clear since

the initial condition does not entirely determine the final condition. The other negative con-

tribution corresponds to the magnetic part of the Weyl curvature, which is also non-dynamical

in the sense of being made up of only first-time derivatives in the metric. This concern doesn’t

affect this calculation because the Weyl curvature term is positive definite on the metrics we
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have considered and enters the action with an overall minus sign if the Gauss-Bonnet identity is

used. Nonetheless, care should be taken in extending this work to dynamical spacetimes [322]

until this issue is better understood.

We must also renormalise D0,T by the volume element. While this does not affect the mean

values that have been derived, nor does it modify the relative variances of γ1 vs γ2, it may make

the D0,T we estimate here challenging to relate to that measured at shorter distance scales. A

greater understanding of the renormalisation flow will be required to relate bounds on D0,T

coming from astronomical data to the scale relevant for tabletop experiments such as those

proposed in [3] based on the decoherence vs diffusion trade-off [3, 127]. Moreover, only larger

scale fluctuations correlations have been considered. Understanding short-distance fluctuations,

primarily how the former arises from the local time-dependent fluctuations present in (6.20),

would be very important. Therefore, a necessary future step will be cross-checking the results

given here with the CQ framework’s predictions of local fluctuations.

Let us also address one objection presented in [323]. The criticism does not affect the rest of

the work but raises an interesting discussion point in relation to Equation (6.24). In their note,

the authors point out that in the Newtonian vacuum limit, a r term in the potential cannot

satisfy matching boundary conditions for a localised source if it is to satisfy the MPP equation

with matter ∇4Φ(x) = 4πGN∇2m(x). This is true. However, the MPP is not an equation of

motion but a parameterization of the most probable paths, and other paths, including the r

term in vacuum, contribute. This can be seen by also inserting the κ1 term into the action,

which gives, in the spherically symmetric case,

I ′
MPP = −

D0,T (1 − β)

G2
N

∫
r2dr

(
6κ2 +

2κ1
|r|

)2

. (6.67)

One can notice that κ1 is anti-correlated with the cosmological constant term κ2. While

suppressed, it still contributes enough to influence galactic rotation curves. This is demonstrated

further by the path integral. If one observes an r2 term, an extremal path corresponding to a

fluctuation acting as a cosmological constant, then one should expect to see an r term. This

remains unchanged when a localised matter distribution is present. In the actual calculation, we

have considered a power law expansion. Still, as already mentioned in this discussion, a fuller

principle component analysis would be helpful to determine the appropriate contributions in

more detail. However, we would like to point out that the r dependent term is the one that
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contributes the most to the action among all the terms that significantly affect acceleration

curves at large distances. Therefore, it does have a more significant role comparatively to all

rn terms with n > 2 or n < −1.

Lastly, let us compare the experiments discussed in Section 6.3 to our results on tabletop

experiments performed on Earth. In this Chapter, we have found that stochastic fluctuations

in the acceleration with a standard deviation of the MOND acceleration could explain both the

small value of the cosmological constant and perhaps the flatness of galactic rotation curves.

We have estimated the value of the diffusion 4-density G2
N/D0,TVHc

3 to be of the order of

Λ2. This makes is impossible for terrestrial experiments being able to detect the long-range

stochastic fluctuations discussed here, although it says little about shorter-range fluctuations.

Fortunately, it appears that the lower bounds on D0 found in Section 6.3 are consistent with

current upper bounds due to interference experiments and the decoherence vs diffusion trade-off.

There, we found that the decoherence rate corresponding to the path integral of Equation (4.22)

or its weak field limit [6] to be λ = 2D0,T c
3M2/Vλ, where M is the mass of the particle in the

interference experiment, and Vλ is the volume of the wave-packet. Given M ≈ 10−24 kg for

fullerene molecules, Vλ ≈ 10−25 m3 for the wave packet volume estimated in the experiment

of [324], and a decoherence rate of λ ≥ 0.1 s−1 [324], one obtains D0c
3 ≤ 1024 m3

kg2 s
. Therefore,

one has a decoherence vs diffusion squeeze of 10−69 ≤ DG ≤ 10−43. It should be noted that

this decoherence rate is not the Diosi-Penrose rate [101, 102, 103], since the theory considered

here is ultra-local and linear.

If we now consider secondary decoherence effects akin to those seen in [55] and Chapter 4.

This is the additional decoherence caused by the stochastic contribution to the matter Hamil-

tonian, which results in additional decoherence on top of that given by the Lindblad operators.

Since the mass term of the Hamiltonian (e.g. 1
2m

2
∫ √

gϕ2 for a massive scalar field ϕ) depends

on the fluctuating metric, it will source further decoherence. For the two-point function of

Eq. (6.59), and separated mass distributions, this has been calculated to be

λ = 2D0c
3M

2

Vλ
+

G2
N

D0c3
M2

8πℏ2
|xL − xR|, (6.68)

where |xL − xR| is the spatial separation of the superposition, which can be taken to be of

the order of the diffraction grating spacing (typically ∼ 100nm). We have also included the

primary decoherence term in Eq (6.68). The lower bound on D0c
3 of 10−3 m3

kg2 s
imply that the
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secondary decoherence is negligible at ≤ 10−8 s−1. This also suggests that measurements of

gravity at short distances [325] are of interest in understanding this apparent behaviour, as

well as conducting experiments to test the quantum vs classical nature of spacetime, with such

experiments becoming more and more feasible [3, 51, 217, 224, 239, 326].

It is too early to make bold claims, and a greater understanding of the theoretical and

experimental constraints is required. As already mentioned in Chapter 4 and Chapter 5 when

discussing experimental results, it could be possible for the effects derived here to be the result

of a fully quantum theory of gravity for which the CQ program describes as an effective theory.

However, we are inclined to regard this possibility as unlikely. We do not expect stochastic

spacetime fluctuations of this magnitude in a quantum theory of gravity. The parameter space

of such an effective theory has been found by Isaac Layton in [327]. While this Chapter

suggests that galactic rotation curves can undergo modification due to stochastic fluctuations,

a phenomenon attributed to dark matter, it is vital to acknowledge the existence of separate,

independent evidence supporting ΛCDM. In particular, the CMB power spectrum, gravitational

lensing, the need for dark matter in the structure formation process, and various methods used

to estimate the mass in galaxies. These now form an essential set of tools to test the CQ

framework and its validity as a hybrid classical and quantum interaction theory.
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Chapter 7

Closing Remarks

“It is only with the heart that one can see rightly;

what is essential is invisible to the eye.”

∼ The Little Prince

Over the last 100 years, immense talent has been invested in the search for a unified quantum

framework encompassing all fundamental interactions. Out of this search came a great deal of

understanding of the relation between gravity, quantum theory and information. Should the

framework proposed in this thesis be accurate in its most radical form, the long-anticipated

concept of unification may prove unattainable. Instead, it is possible that we are moving

towards an era in which fundamentally distinct theories coexist harmoniously. This would once

again highlight nature’s indifference to physicists’ expectations, regardless of how certain we

may be. If this paradigm shift occurs, it raises the question of how long it will take the scientific

community to embrace the idea that the laws of nature may not conform to our human-scale

ideal of “unified elegance”. Some aspects of this situation resemble the early 20th century,

when many believed the field of physics was nearing completion. Similarly, today, an implicit

belief exists that the discovery of a quantum theory of gravity represents the final step toward

a comprehensive understanding of the universe. However, this conviction echoes sentiments

expressed at the close of the 19th century, just before revolutionary developments reshaped the

field:

• Albert A. Michelson (1894): “The more important fundamental laws and facts of
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physical science have all been discovered, and these are now so firmly established that the

possibility of their ever being supplanted in consequence of new discoveries is exceedingly

remote... Our future discoveries must be looked for in the sixth place of decimals” [328].

• William Thomson, Lord Kelvin (1900): “There is nothing new to be discovered in

physics now. All that remains is more and more precise measurement” [329].

• Max Planck (1924): “I was advised [in 1874] to abandon physics, as almost everything

is already discovered, and all that remains is to fill a few holes” [330].

In hindsight, these early 20th-century predictions appear shortsighted, especially as they

preceded both the theory of relativity and quantum mechanics. One might rightfully think that

being proven so wrong would serve as a cautionary tale for future generations. However, modern

discourse often reveals a comparable confidence in approaching the limits of our understanding

of the universe. For instance, looking at a few modern quotes, we find the following:

• Carlo Rovelli (2001): “A quantum theory of gravity is essential if we want to under-

stand the fundamental nature of space, time, and matter. Without it, our picture of the

universe will remain incomplete.” [331].

• Roger Penrose (2004): “A quantum theory of gravity is necessary not just to unify our

understanding of nature, but to fundamentally change our view of reality. Only through

it can we grasp the true nature of spacetime and the cosmos.” [332].

• Lee Smolin (2006): “I have no doubt that we need a quantum theory of gravity in

order to understand the very early universe and the ultimate fate of black holes” [75].

Although these statements may appear selectively chosen for emphasis, the underlying senti-

ment is widely shared within the scientific community, albeit to varying degrees. There appears

to be a dichotomy between the conviction of inching ever closer to a theory of quantum gravity

and the lack of experimental evidence about its quantum nature. It is acknowledged that this

could change with new experimental results, and any definitive proof of gravity’s quantum na-

ture would be welcomed. However, while the contributions from the pursuit of quantum gravity

are not to be underestimated, it raises the question of how long one should continue along this

path before reassessing the foundational assumptions.
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In conclusion, it seems appropriate to close this thesis with a cautionary note from the great

physicist Richard Feynman:

“The first principle is that you must not fool yourself - and you are the easiest person to fool”.
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brid classical-quantum formulations ask for hybrid notions. Physical Review A, 86(4):

042120, 2012.

[51] Chiara Marletto and Vlatko Vedral. Gravitationally induced entanglement between two

massive particles is sufficient evidence of quantum effects in gravity. Physical review

letters, 119(24):240402, 2017.

[52] Thomas D. Galley, Flaminia Giacomini, and John H. Selby. A no-go theorem on the

nature of the gravitational field beyond quantum theory, 2021.

[53] Mark Albers, Claus Kiefer, and Marcel Reginatto. Measurement analysis and quantum

gravity. Phys. Rev. D, 78:064051, Sep 2008. doi:10.1103/PhysRevD.78.064051. URL

https://link.aps.org/doi/10.1103/PhysRevD.78.064051.

142

https://doi.org/10.1103/PhysRevD.78.064051
https://link.aps.org/doi/10.1103/PhysRevD.78.064051


[54] Adrian Kent. Simple refutation of the eppley–hannah argument. Classical and Quantum

Gravity, 35(24):245008, 2018. ISSN 1361-6382. doi:10.1088/1361-6382/aaea20. URL

http://dx.doi.org/10.1088/1361-6382/aaea20.
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Mauro Paternostro, Andrew A Geraci, Peter F Barker, MS Kim, and Gerard Milburn.

Spin entanglement witness for quantum gravity. Physical review letters, 119(24):240401,

2017.

[218] Chiara Marletto and Vlatko Vedral. Why we need to quantise everything, including

gravity. npj Quantum Information, 3(1):29, 2017.

[219] Ryan J. Marshman, Anupam Mazumdar, and Sougato Bose. Locality and entanglement

in table-top testing of the quantum nature of linearized gravity. Physical Review A, 101

(5), May 2020. doi:10.1103/physreva.101.052110.

[220] Julen S. Pedernales, Kirill Streltsov, and Martin B. Plenio. Enhancing gravitational

interaction between quantum systems by a massive mediator. arXiv preprint, 2021.

[221] Daniel Carney, Holger Müller, and Jacob M. Taylor. Testing quantum gravity with inter-

active information sensing. arXiv preprint, 2021.

[222] Marios Christodoulou, Andrea Di Biagio, Markus Aspelmeyer, Časlav Brukner, Carlo
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Appendix A

Weak field and Newtonian limit of

Einstein’s equation

“These appendices serve the same purpose as a human appendix:

you can live without it, but it’s nice to have it just in case.”

∼ A. Russo

In this Appendix, we recall the Newtonian limit of Einstein’s equations [186]. To begin, we

perform a scalar-vector-tensor decomposition of the metric

ds2 = −c2
(

1 +
2Φ

c2

)
dt2 +

wi
c

(
dtdxi + dxidt

)
+

[(
1 − 2ψ

c2

)
δij +

2sij
c2

]
dxidxj , (A.1)

where sij is traceless and the factors of c ensure that the fields Φ, ψ, wi, sij all have dimensions

c2. To arrive at the Newtonian limit, we choose the transverse gauge, which amounts to taking

a gauge such that ∂iw
i = 0, ∂is

ij = 0. We shall also assume we take the rest frame of a particle

with mass density m(x), so that T00 = c4m(x). Before the gauge choice, the Einstein equation’s

Gµν = 8πG
c4
Tµν look like:

G00 = 2∇2ψ = 8πGm(x) (A.2)

G0i =
2

c3
∂0∂iψ − 1

2c2
∇2wi = 0 (A.3)

Gij =
1

c2
(δij∇2 − ∂i∂j)(Φ − ψ) − 1

c3
∂0∂(iwj) +

2

c2
δij∂0∂

0ψ − 1

c2
□sij = 0. (A.4)
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While after, they reduce to:

G00 = ∇2ψ = 4πGm(x) (A.5)

G0i =
2

c3
∂0∂iψ − 1

2c2
∇2wi = 0 (A.6)

Gij =
1

c2
(δij∇2 − ∂i∂j)(Φ − ψ) − 2

c4
∂0∂0ψ +

1

c4
∂0∂0sij −

1

c2
∇2sij = 0. (A.7)

We remind the reader that the G00 and G0i components are first order in time derivatives and

hence are the constraints on the initial data of the theory, whilst Gij describes the dynamics.

With this in mind, let us arrive at the Newtonian limit. We first solve the G00 component

of the Einstein equation, which is the Poisson equation for ψ. We see from G0i and the solution

for G00 that ∂0∂iψ = 0, which imposes that there can be no vector perturbations wi = 0.

Conversely, we see from the momentum constraint G0i that if there are no vector perturbations,

wi = 0 then the constraint ∂i∂0ψ = 0 must be imposed.

To obtain the final form of the Newtonian limit. We take the trace of Gij to see which

imposes that ψ = Φ = const, which in combination with the fact that ∂0∂iψ = 0 imposes

sij = 0.

Altogether, we are then left with the Newtonian metric

ds2 = −c2
(

1 +
2Φ

c2

)
dt2 +

(
1 − 2Φ

c2

)
δijdx

idxj , (A.8)

where Φ solves the Poisson equation due to the G00 component of Einstein’s equation

∇2Φ = 4πGm(x). (A.9)
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Appendix B

Equivalence of the weak field path

integral and master equation

In this Appendix, we arrive at the path integral (4.29) from the master equation (4.33). We will

use the result of [4] to arrive at the path integral derived from the correspondence between CQ

master equations and path integrals. This derivation shows that the two approaches given in

Chapter 4, i.e. formulating the CQ weak field limit by either gauge fixing the full path integral

or constructing the master equation from the reduced Hamiltonian, are equivalent. We refer

the reader directly to [4] for more details on deriving CQ path integrals.

We start by recalling that because the equation of motion of the weak field total Hamilto-

nian (4.13):

ψ̇ = −
4Gπc2πψ

3
− 1

12
∂in

i, π̇ψ =
∇2(Φ − ψ)

4πG
, Φ̇ = λΦ, π̇Φ =

∇2Φ

4πG
−m, ṅi = λi, π̇i = − 1

12
∂iπψ

(B.1)

only associate back-reaction to πΦ, the path integral takes the form:

ϱ(zf ,m
+
f ,m

−
f , tf ) = N

∫
DzDm+Dm−δ

(
ψ̇ +

4Gπc2πψ
3

+
1

12
∂in

i

)
δ

(
π̇ψ − ∇2(Φ − ψ)

4πG

)
δ(Φ̇ − λΦ)

× δ(ṅi − λi)δ

(
π̇i +

1

12
∂iψ

)
δ(πΦ)eICQ[z,m+,m−,ti,tf ]ϱ(zi,m

+
i ,m

−
i , ti)

(B.2)

where the last delta function imposes the Newtonian limit constraint πΦ ≈ 0. In Equation (B.2),
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for the sake of clarity, we have summarised all the classical degrees of freedom with z such that

the functional measure over the classical functions Dz represents:

Dz = DψDπψ Dn⃗Dπ⃗DλΦDλ⃗DΦDπΦ (B.3)

and the hybrid action ICQ is:

ICQ[z,m+,m−, ti, tf ] =

∫ tf

ti

dtdx⃗

[
i
(
LQ[m+] − VI [Φ,m+] − LQ[m−] + VI [Φ,m−]

)
− D0[z]

2

(
m+(x) −m−(x)

)2 − 1

2D2[z]

(
π̇Φ − ∇2Φ

4πG
+

1

2

(
m+(x) +m−(x)

))2 ]
.

(B.4)

where LQ[m±] is the matter Lagrangian and VI [Φ,m±] = Φ(x)m±(x). The CQ interaction

term in Equation (B.4) is the path integral version of Equation (4.33). This correspondence

was derived explicitly in [4] and takes the same form as the Hamiltonian CQ path integrals in

[4, 130].

Just as in the deterministic case, one can then reduce the system to describe it in terms

of the Newtonian potential alone. Performing all of the delta integrals in Equation (B.2), we

arrive at the hybrid Newtonian CQ path integral in terms of Φ alone,

ϱ(Φf ,m
+
f ,m

−
f , tf ) = N

∫
DΦDm+Dm− eICQ[Φ,m±,ti,tf ]ϱ(Φi,m

+
i ,m

−
i , ti), (B.5)

where the CQ action is given by:

ICQ[Φ,m+,m−, ti, tf ] =

∫ tf

ti

dtdx⃗

[
i
(
LQ[m+] − VI [Φ,m+] − LQ[m−] + VI [Φ,m−]

)
− D0[Φ]

2

(
m+(x) −m−(x)

)2 − 1

2D2[Φ]

(
∇2Φ

4πG
− 1

2

(
m+(x) +m−(x)

))2 ]
(B.6)

which takes the same form as the one derived from general relativity in Equation (4.29). The ap-

parent difference in form of this path integral with the unravelling in Equations (4.44) and (4.45)

arises due to the fact that the path integral in (B.5) is unnormalised; one may normalise this

path-integral by computing a Gaussian integral over ∇2Φ and upon doing so one finds the

appearance of secondary decoherence and V̂m terms.
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Appendix C

Unravelling of CQ theories

In this Appendix, we show how to recover the continuous backreaction term of Equation (4.33)

from the unravelled equation of Equation (4.38). Given the stochastic nature of ∂in
i, it is not

possible to recover a closed form, but we can see how the correlation terms emerge due to the

divergence of the shift being a white noise process.

We start by defining the CQ state as:

ϱ(Φ, πΦ.t) = E[δ(Φt − Φ)δ(πΦ t − πΦ)ρt]. (C.1)

When we now take the total differential of the CQ state, we have to apply Itô’s rule:

dϱ = E[dδ(Φt − Φ)δ(πΦ t − πΦ)ρt + δ(Φt − Φ)dδ(πΦ t − πΦ)ρt

+ δ(Φt − Φ)δ(πΦ t − πΦ)dρt + dδ(Φt − Φ)dδ(πΦ t − πΦ)ρt

+ dδ(Φt − Φ)δ(πΦ t − πΦ)dρt + δ(Φt − Φ)dδ(πΦ t − πΦ)dρt + · · · ],

(C.2)

where higher terms of order O(dt2) or higher are immediately discarded.

We will now start to unpack the terms one at a time. Recalling that Φ and πΦ are functionals,

we have to pay attention to how their total derivatives are expanded. We keep only terms of

order less than O(dt2). usually, this is enough to guarantee a closed form for a continuous

master equation. Unfortunately, the fact that ∂in
i ≈ dWt

dt means that any power of these terms

will never be greater than O(dt2). Therefore, we will represent all these terms and their product

with terms of order O(dt) as dots “· · · ”. We write explicitly only the terms that lead to the

175



continuous part of the master equation and the continuous backreaction.

dδ(Φt − Φ) =

∫
d3z

δ

δΦt(z)
δ(Φt(x) − Φ(x))dΦt(z)

+

∫
d3zd3w

δ2

δΦt(z)δΦt(w)
δ(Φt(x) − Φ(x))dΦt(z)dΦt(w) + · · ·

=

∫
d3z

δ

δΦt(z)
δ(Φt − Φ)

(
− 1

12
∂in

i

)
dt+ · · ·

=
1

12

∫
d3z

δ

δΦ(z)
δ(Φt − Φ)∂in

idt+ · · · ,

(C.3)

where in the last line we have used the property of delta functions stating that δΦtδ(Φt −Φ) =

−δΦδ(Φt−Φ) to change the functional derivative variable. Therefore, the first term reduces to:

E[dδ(Φt − Φ)δ(πΦ t − πΦ)ρt] =
1

12

∫
d3x

δϱ

δΦ(x)
∂in

idt+ · · · , (C.4)

where we have used the definition of the CQ state.

Proceeding, we have:

dδ(πΦ t − πΦ) =

∫
d3z

δ

δπΦ t(z)
δ(πΦ t(x) − πΦ(x))dπΦ t(z)

+

∫
d3zd3w

δ2

δπΦ t(z)δπΦ t(w)
δ(πΦ t(x) − πΦ(x))dπΦ t(z)dπΦ t(w)

= −
∫
d3z

δ

δπΦ(z)
δ(πΦ t − πΦ)

(
∇2Φ

4πG
− ⟨m̂⟩

)
dt

−
∫
d3zd3y

δ

δπΦ(z)
δ(πΦ t − πΦ)σ(Φ, x, y)dWt(y)

+

∫
d3zd3wd3yd3y′

δ2δ(πΦ t − πΦ)

δπΦ(z)δπΦ(w)
σ(Φ, z, y)σ(Φ, w, y′)dW (y)dW (y′).

(C.5)

When we now average over the noise, we use the properties of the Wiener process (4.41) and

the definition of the diffusion coefficient (4.42) to arrive at:

E[δ(Φt − Φ) dδ(πΦ t − πΦ)ρt] = −
∫
d3x

δϱ

δπΦ(x)

(
∇2Φ

4πG
− ⟨m̂⟩

)
dt

+

∫
d3xd3y

δ2

δπΦ(x)δπΦ(y)
(D2(Φ, x, y)ϱ)dt.

(C.6)

Moving on to the next term, we find

dρt =
∂ρt
∂t
dt+

∂ρt
∂Wt

dWt +
1

2

∂2ρ

∂W 2
t

dW 2
t

− i[Hm, ρt]dt+
1

2

∫
d3x d3y D0(Φt;x, y)[m̂(x), [ρt, m̂(y)]]dt

+
1

2

∫
d3x d3y σ−1(Φt;x, y)

(
m̂(x)ρt + ρt m̂(x) − 2ρt⟨m̂(x)⟩

)
dW (y),

(C.7)
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which gives:

E[δ(Φt − Φ)δ(πΦ t − πΦ) dρt] = −i[Hm, ϱ]dt+
1

2

∫
d3x d3y D0(Φ;x, y)[m̂(x), [ϱ, m̂(y)]]dt. (C.8)

At this point, we need to consider the expectations of terms with mixed derivatives. After a

closer inspection, we notice that, keeping in mind that we will be averaging over the noise, only

one term is relevant for the continuous part of the master equation, specifically:

dδ(πΦ t − πΦ) dρt = −1

2

∫
d3x d3zd3yd3w

δ

δπΦ t(z)
δ(πΦ t − πΦ)σ(Φ, x, y)σ−1(Φ, x, w)

×
(
m̂(x)ρ+ ρ m̂(x) − 2ρ⟨m̂(x)⟩

)
dW (y)dW (w),

(C.9)

while the other surviving mixed terms will include the correlations between the stochastic shift

and the classical gravitational field. When we average over the noise, we can integrate dw over

the delta function δ(y−w) coming from the Wiener processes to use
∫
d3y σ(Φ, x, y)σ−1(Φ, x, y) =

1. Therefore, we arrive at:

E[δ(Φt − Φ) dδ(πΦ t − πΦ) dρt] =

∫
d3x

(
1

2
m̂(x)

δϱ

δπΦ(x)
+

1

2

δϱ

δπΦ(x)
m̂(x) − δϱ

δπΦ(x)
⟨m̂(x)⟩

)
dt.

(C.10)

Finally, we can sum all the terms and divide by dt to arrive at the Master Equation:

∂ϱ

∂t
=

1

12

∫
d3x

δϱ

δΦ(x)
∂in

i −
∫
d3x

δϱ

δπΦ(x)

(
∇2Φ

4πG
− ⟨m̂⟩

)
− i[Hm, ϱ] +

1

2

∫
d3y D0(Φ;x, y)[m̂(x), [ϱ, m̂(y)]]

+

∫
d3x

(
1

2
m̂(x)

δϱ

δπΦ(x)
+

1

2

δϱ

δπΦ(x)
m̂(x) − δϱ

δπΦ(x)
⟨m̂(x)⟩

)
+

∫
d3xd3y

δ2

δπΦ(x)δπΦ(y)
(D2(Φ, x, y)ϱ) + · · · .

(C.11)

We notice how the terms proportional to the expectation value ⟨m̂⟩ simplify, and we arrive at:

∂ϱ

∂t
= −i[Hm, ϱ] +

1

12

∫
d3x

δϱ

δΦ(x)
∂in

i − 1

4πG

∫
d3x

δϱ

δπΦ(x)
∇2Φ

+
1

2

∫
d3y D0(Φ;x, y)[m̂(x), [ϱ, m̂(y)]] +

∫
d3xd3y

δ2

δπΦ(x)δπΦ(y)
(D2(Φ, x, y)ϱ)

+
1

2

∫
d3x

(
m̂(x)

δϱ

δπΦ(x)
+

δϱ

δπΦ(x)
m̂(x)

)
+ · · · ,

(C.12)
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which we can rewrite as:

∂ϱ

∂t
= −i[Hm, ϱ] +

1

12

∫
d3x

δϱ

δΦ(x)
∂in

i − 1

4πG

∫
d3x

δϱ

δπΦ(x)
∇2Φ

+
1

2

∫
d3x
(
{HI(x), ϱ} − {ϱ,HI(x)}

)
+

∫
d3xd3y D2(Φ;x, y){HC(x), {ϱ,HC(y)}}

+
1

2

∫
d3xd3y D0(Φ;x, y) ([m̂(x), [ϱ, m̂(y)]]) + · · · ,

(C.13)

where HI and HC are the interaction Hamiltonian density and the Hamiltonian density for the

classical degrees of freedom as specified in Section 4.1 and “· · · ” includes the jumping terms

and the correlation terms present due to the stochastic nature of ∂in
i.
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Appendix D

Nordström gravity from action

variation

In this Appendix, we summarise the derivation of the Nordström equation of motion from an

action principle as discussed in detail in [235]. To begin, one considers an action similar to that

of Equation (5.10)

S[gµν , ϕm, λ
νρσ
µ ] = − c3

48πGN

∫
d4x

√
−g
(
R + λνρσµ Cµνρσ

)
+

∫
d4xLQ[g, ϕm]. (D.1)

where λνρσµ Cµνρσ is the Weyl tensor which is constrained to vanish through the Lagrange multi-

plier λνρσµ . As one may notice, here the Lagrange multiplier is directly inserted in the action.

Moreover, the factor of c4 of Equation (5.10) is here c3. This is because the authors of [235]

define their stress-energy tensor with an extra factor of c, but the ultimate result is the same.

When this action is varied with respect to the matter degrees of freedom, the Lagrange multi-

plier and the metric, one obtains for its extrema:

δS
δϕm

= ∇νT
µν
m = 0,

δS
δλνρσµ

= Cµνρσ = 0 (D.2)

which impose energy conservation and conformal flatness of the metric on the constraint surface

gµν − e
2Φ
c2 ηµν ≈ 0. Lastly,

δS
δgµν

=


R− 24πGN

c4
Tm = 0 Trace part

∂α∂βλ
β
µαν

ϕ2
= −24πGN

c4

(
Tm,µν −Rµν − 1

4gµν(Tm + R)
)

Traceless part

(D.3)
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This leaves the equation of Jordan’s frame version of Nordström’s final theory to be

R− 24πGN
c4

Tm = 0, ∇νT
µν
m = 0, Cµνρσ = 0. (D.4)

The traceless part can be written in terms of flat covariant derivatives using the conformal

flatness of the metric

Rµν = −e−
Φ
c2 ∂µ∂νe

Φ
c2 − ηµν e

− Φ
c2 □̃e

Φ
c2 + 4e−

2Φ
c2 ∂µe

Φ
c2 ∂νe

Φ
c2 − ηµν e

− 2Φ
c2 ∂ρ∂

ρe
Φ
c2 (D.5)

R = −6□̃e
Φ
c2

c2
e−

3Φ
c2 . (D.6)

which is often found in the literature written using the notation e
Φ
c2 = ϕ, which results in

Rµν = −∂µ∂νϕ
ϕ

− ηµν
□̃ϕ
ϕ

+ 4
∂µϕ∂νϕ

ϕ2
− ηµν

∂ρ∂
ρϕ

ϕ2
, (D.7)

R = −6□̃ϕ
c2ϕ3

. (D.8)

Once the solution for the conformal factor ϕ is known, the traceless equation is an equation

of motion for the Lagrange multiplier λµνρσ. However, the system is undefined as λ has 10

components (same symmetries as Weyl tensor), but the system of equation composed of (D.2)

and (D.5), being traceless, has only 9. Classically this is not a problem as the Lagrange

multiplier does not enter the equation of motion for the Nordström field ϕ. In the CQ we can

exploit this by choosing the decoherence/diffusion coefficient to be positive semi-definite in the

form of (5.8), allowing us only to consider diffusion away from the trace of the variation, which

is exactly the Nordström field equation.
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Appendix E

The stochastic action for the

isotropic metric, and the Newtonian

limit

For the purpose of this Appendix, we only consider a static matter distribution with negligible

contributions from matter pressure, frame velocity and specific energy density. In other words,

we are only interested in higher-order corrections coming from the gravitational potential Φ

itself. We implicitly choose a homogeneous isotropic universe in which resides an isolated Post-

Newtonian system with coordinates such that the outer region far from the isolated system is

in freefall with respect to the surrounding cosmological model but at rest with respect to a

frame in which the universe appears isotropic. It is then possible to show that one can con-

struct a local quasi-Cartesian system in which metric and matter degrees of freedom can all be

evaluated consistently with the Post-Newtonian approximation. Lastly, one might need to take

into account the extent of preferred frame effects including frame dragging and the coordinate

velocity of the frame relative to the mean rest frame of the universe. All the aforementioned

effects can be summarised through what is known as the Parametrised Post-Newtonian formal-

ism (PPN), whose first formulation dates back to Eddington in 1922. When formulated in a

coordinate frame moving along with the physical system of interest, post-Newtonian effects can
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be summarised through the metric (with units of c):

g00 ≈ −c2
(

1 +
2Φ

c2
+

2βΦ2

c4
+ f(αi, β, γ, ζi, Vi,Wi)

)
+ O(c6),

gij ≈
(

1 − 2γΦ

c2

)
δij + O(c4),

g0i ≈ h(αi, γ, ζi, Vi,Wi) + O(c5),

(E.1)

where αi, ζi with i = {1, 2, 3} represents respectively the extent of preferred frame effects and

the extent of failure in the conservation of energy, β measures the amount of nonlinearity in

the superposition law for gravity, γ the amount of curvature produced by a unit rest mass and

Vi,Wi effects related to the frame velocity [333, 334]. The strength of the Parametrised Post

Newtonian formalism is that it can be applied to theories of gravity outside of general relativity.

However, to describe the post-Newtonian limit of general relativity one takes αi = ζi = 0 and

β = γ = 1, which is what we will do in this paper.

Given these premises, we write the isotropic metric as

ds2 = −c2e
2Φ
c2 dt2 + e−

2Φ
c2 δijdx

idxj . (E.2)

One may worry that the exponential form of this metric may not be consistent at higher orders

in the expansion, for example, not all terms in the expansion may be physically relevant.

However, for all effects and purposes, in this paper, we will never exceed order O(c4), such that

the metric matches perfectly with the PPN formalism. For the matter distribution, we will take

the Stress-Energy tensor to be that of pressureless dust, being given by

T00 = me2Φ, T ij = 0, T 0i = 0. (E.3)

Using the isotropic metric (with c = 1), the components of the CQ action become

GµνGµν = e4Φ
(

3 (∇Φ)4 +
(

(∇Φ)2 − 2
(
∇2Φ

))2)
, (E.4)

G2 = 4e4Φ
(

(∇Φ)2 −∇2Φ
)2
, (E.5)

The coupling to matter can also be deduced from the diffusion term of the CQ action (as in

Eq. (5.6)), since in the classical limit the system decoheres and for a decohered system, there
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is no distinction between T̄µν and Tµν . The components are given by

GµνTµν = −me2Φ
(

(∇Φ)2 − 2
(
∇2Φ

))
, (E.6)

TµνTµν = m2, (E.7)

Tµµ = −m. (E.8)

where T is the trace of the stress energy tensor.

The full action for the isotropic metric is thus

I = − D0c
5

64π2G2
N

∫
d4x e

2Φ
c2

[(
∇2Φ − (∇Φ)2

2c2
− 4e−

2Φ
c2 πGm

)2

+
3

c4
(∇Φ)4

− 4β

(
∇2Φ − (∇Φ)2

2c2
− 4e−

2Φ
c2 πGm

)2 ] (E.9)

where we have put in powers of c as one can use it to perform an expansion in powers of 1/c2.

One immediately sees that at 0′th order in 1/c2, we recover the Newtonian action of (6.20).
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Appendix F

Dimensional regularisation of the IR

divergence

Here, we show that the two-point function Eq. (6.58)

G2(x⃗− x⃗′) =
1

(4π)2

∫
d3y

1

|y⃗ − x⃗||y⃗ − x⃗′|
, (F.1)

discussed in Chapter 6, after dimensional regularisation, i.e. on employing analytic continuation

in the dimension d = 3 − 2ϵ, gives the two-point function of Eq. (6.59),

G(x⃗− x⃗′) = − 1

8π
|x⃗− x⃗′|. (F.2)

Thus, we start from ∫
d3−2ϵy′

1

|y⃗ ′ − x⃗||y⃗ ′ − x⃗′|
=

∫
d3−2ϵy

1

y|y⃗ + z⃗|
(F.3)

where we shifted y⃗ ′ = y⃗ + x⃗ and set z⃗ = x⃗ − x⃗′. Combining denominators using Feynman

parameters and using standard loop-integral formulae for the resulting integral:∫
d3−2ϵy

1

y|y⃗ + z⃗|
=

Γ(1)

Γ2(12)

∫
d3−2ϵy

∫ 1

0
dα1dα2

δ(1 − α1 − α2)α
− 1

2
1 α

− 1
2

2

α1y2 + α2(y⃗ + z⃗)2

=
1

π

∫
d3−2ϵy

∫ 1

0
dα

(1 − α)−
1
2α− 1

2

(y⃗ + αz⃗)2 + α(1 − α)z2

=
1

π

(2π)3−2ϵ

(4π)
3
2
−ϵ

Γ
(
−1

2 + ϵ
) ∫ 1

0
dα
[
α(1 − α)z2

] 1
2
−ϵ
α− 1

2 (1 − α)−
1
2

= (πz2)1/2−ϵ Γ(−1
2 + ϵ)

∫ 1

0
dαα−ϵ(1 − α)−ϵ → −2πz ,

(F.4)
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where in the last step we recognize that the expression has a finite limit as ϵ → 0. This finite

answer is the result of analytically continuing around the pole at d = 2 (ϵ = 1
2). Substituting

the result into (F.1) we get (F.2) as claimed.

Had we computed the variance of the acceleration directly we would avoid the infrared

divergence:

∂

∂xi

∂

∂x′j
G2(x⃗− x⃗′) = − ∂2

∂zi∂zj
G2(z) =

1

(4π)2

∫
d3y

{
δij

y|y⃗ + z⃗|3
− 3

(y + z)i(y + z)j
y|y⃗ + z⃗|5

}
(F.5)

but replace it with an ultraviolet divergence (seen here in the limit y⃗ → −z⃗). Despite this, from

above we expect the result to be finite in dimensional regularisation and be what we would

obtain by using (F.2):

∂

∂xi

∂

∂x′j
G2(x⃗− x⃗′) = − ∂2

∂zi∂zj
G(z) =

1

8πz

(
δij −

zizj
z2

)
. (F.6)

Using Feynman parametrisation, (F.5) can be written as

δij
8π3

∫
d3−2ϵy

∫ 1

0
dα

(1 − α)−
1
2α

1
2

[(y⃗ + αz⃗)2 + α(1 − α)z2]2
− 1

2π3

∫
d3−2ϵy

∫ 1

0
dα

(1 − α)−
1
2α

3
2 (y + z)i(y + z)j

[(y⃗ + αz⃗)2 + α(1 − α)z2]3
,

(F.7)

This can again be tackled by standard loop-integral formulae, and indeed the result veri-

fies (F.6).
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