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Abstract—This paper introduces a novel design for flapping 

wing micro aerial vehicles (FWMAVs) that employs dynamic 

amplification. By utilising mechanical resonance, the design 

amplifies wing stroke and pitching motions, reducing the energy 

requirement while enhancing lift production. This approach also 

minimises the maximum strain on the actuator, thereby improving 

its structural integrity. A comprehensive mathematical model of 

the flapping mechanism is developed, incorporating the 

electromechanical characteristics of piezoelectric materials, 

nonlinear structural dynamics and aerodynamics. Numerical 

simulations using MATLAB and Simulink demonstrate the 

advantages of dynamic amplification, showing a significant 

improvement in lift generation compared to rigidly structured 

flapping systems. Using a practical actuator and wing setup, the 

model predicts a stroke angle of 45 °, a pitching angle of 67 °, a lift 

generation of 28.4 mN, and average input and output powers of 

6.7 mW and 2.9 mW, respectively. This design approach offers a 

promising pathway for developing high-performance FWMAVs, 

with potential applications in autonomous flight operations.  

Keywords— Mathematical modelling, dynamic amplification, 

Flapping wing aerial vehicle, piezoelectric actuator  

I. INTRODUCTION 

Research into flapping wing micro aerial vehicles 
(FWMAV) has gotten significant attention in recent few decades 
[1]. These systems are typically inspired by the flight 
mechanisms of insects, whose natural designs exhibit 
remarkable agility and energy efficiency, particularly at small 
scales. Compared to traditional fixed-wing or rotary-wing 
designs, bio-inspired FWMAVs offer distinct advantages in 
manoeuvrability, efficiency and low-speed flight performance, 
especially in a small size [2]. A piezoelectric actuator is one of 
the most promising actuators for FWMAVs due to its high 
power density, linear performance profile, rapid frequency 
response and controllability [3]. Harvard University [4] and 
Toyota Central R&D Labs [5] show that piezoelectric unimorph 
actuators can produce enough lift to make FWMAVs fly.  

Accurate estimation and optimisation are essential when 
designing FWMAVs because the device in millimetre scale 
typically has low efficiency and the limited power source 
reduces the flight duration. However, the complexity of a multi-
physical system hinders accurate analysis and comprehensive 

optimisation. Therefore, most studies are conducted based on 
experiments or focused on isolated parts [6], [7]. Although few 
studies are developing mathematical models to integrate 
multidisciplinary systems, they tend to oversimplify the model 
[8], [9].  

 In this study, a novel design of a single piezoelectric 
bimorph actuator-driven FWMAV is developed using a 
multiphysics modelling approach. The system leverages the 
superior flight characteristics of insects to enhance its 
performance. This work provides an in-depth exploration of the 
system’s concept, its key advantages, and the mathematical 
model developed to analyse and optimise the design. The model 
investigates the relationships between variables such as 
electromechanical characteristics of the actuator, flapping 
kinematics, and flapping wing aerodynamics, offering insights 
for future FWMAV design. By presenting a mathematical 
framework for FWMAVs, this research deepens the 
understanding of the system and provides valuable insight for 
the future development of highly efficient, resonance-based 
FWMAVs. 

II. DESIGN CONCEPT 

The characteristics observed from insect’s flight 
mechanisms that help to produce outstanding flight performance 
are introduced in [10], [11], [12], [13]. Among key features of 
insect flight, mechanical resonance, high wingbeat frequency,  
nearly sinusoidal wing stroke motions, and synchronised wing 
stroke and pitching motions are considered when designing 
FWMAV.  

In the design, a single piezoelectric biomorph actuator is 
employed to produce high-frequency reciprocation for flapping 
motions. Flexural hinges are employed to amplify the limited 
deformation of the actuator and the system will be driven at its 
resonant frequency. Additionally, the wing is designed to have 
a passive pitching motion in accordance with the wing stroke 
motion. This helps to enhance the lift while it keeps the structure 
simple. The conceptual design of the FWMAV is shown in Fig. 
1. 

 



 

Fig. 1. Design concept and angle definitions for a FWMAV. 

A single piezoelectric actuator is represented using a 
reduced-order model, with the first bending mode assumed to be 
the dominant motion during flight. This captures the distributed 
mass, inertia, stiffness and piezoelectric effects of the beam-type 
actuator. Both stroke and pitching hinges are assumed as 
rotational stiffnesses while wing load is converted to the 
combination of wing mass, inertial moment, and aerodynamic 
forces. The integration of these properties enables the prediction 
of the mechanical response of the flapping system by an 
electrical input.  

III. MATHEMATICAL MODELLEING 

The developed mathematical model covers the 
electromechanical characteristics of the piezoelectric actuator, 
stiffnesses of the stroke and pitching hinges, and aerodynamic 
load due to passively rotating wings.  

A. Aeromechanics of a passively pitching flapping wing 

By employing the blade element method, the lift and drag 
can be formulated as [14], 

 d𝐿𝑇 =
1

2
𝜌𝑢𝑒

2𝐶𝐿(𝛼)𝑐(𝑟)𝑑𝑟 () 

 𝑑𝐷𝑇 = −sgn(𝑢𝑒)
1

2
𝜌𝑢𝑒

2𝐶𝐷(𝛼)𝑐(𝑟)𝑑𝑟 () 

Lift and drag coefficients are [15], 

 𝐶𝐿(𝛼) = 𝐴 sin 2𝛼 () 

 𝐶𝐷(𝛼) = 𝐵 − 𝐶 cos 2𝛼 () 

where 𝐴, 𝐵, and 𝐶 are constants determined experimentally. 

The angle of attack, 𝛼, can be obtained as [16], 

 𝛼 = atan2(cot(𝜓) ) , (−𝜋 ≤ 𝛼 ≤ 𝜋) () 

The equation of motions for a passive pitching wing can be 
obtained by modifying equations in [16] as,  

 𝐽𝑥𝑥𝜓̈ = 𝑀𝑥 + 𝐽𝑥𝑦𝜙̈ cos 𝜓 +
1

2
𝐽𝑥𝑥𝜙̇2 sin 2𝜓 − 𝐾𝜓𝜓 () 

where 𝜙 and 𝜓 are strokes and pitching angles, 𝐽𝑥𝑥 and 𝐽𝑥𝑦 are 

wing inertia tensors (𝐽𝑥𝑥 = ∫ 𝑦2𝑑𝑚, 𝐽𝑥𝑦 = ∫ 𝑥𝑦𝑑𝑚), 𝑀𝑥 is the 

net external moment about the 𝑥-axis, 𝐾𝜓 is the stiffness of the 

wing hinge around its leading edge.  ̇ and  ̈ are the first and 
second time derivatives. 

B. Flexural hinges 

Flexural hinges are introduced to utilise dynamic 
amplification for both stroke and pitching angles. The rotational 
stiffness of the hinges can be determined as [17], 

 𝐾ℎ =
𝑌ℎ𝑡ℎ

3𝑤ℎ

12𝐿ℎ

 () 

where 𝑌ℎ is Young’s modulus of the hinge material, 𝑡ℎ, 𝑤ℎ and 

𝐿ℎ are the thickness, width and length of the hinge.  

C. Actuators 

The beam-type piezoelectric actuator is an 
electromechanical system that produces mechanical 
deformation in response to the applied electric field. To describe 
the behaviour of the actuator, the linear constitutive relation is 
assumed. For a thin beam-type piezoelectric actuator, this linear 
constitutive relation is expressed as [18], 

 [
𝑆1

𝐷3
] = [

𝑠11
𝐸 𝑑31

𝑡

𝑑31 𝜖33
𝑇 ] [

𝑇1

𝐸3
] () 

where S, D, T, and E stand for strain, electric displacement, 
stress and electric field vectors, respectively. 𝑠𝐸  is the 
compliance matrix, ϵ is the permittivity matrix, and d is the 
dielectric constant matrix. The superscript E means that the 
compliance data was measured under at least a constant, and 
preferably a zero, electric field. Similarly, the superscript T 
means that the permittivity data was measured under at least a 
constant, and preferably a zero, stress field and the superscript t 
stands for transpose. Lastly, the numbers 1, 2, and 3 are 
coincident with the 𝑥, 𝑦, and 𝑧 planes. 

The equation of motion for the actuator can be represented 
as [17],  

𝜕2𝑀(𝑥,𝑡)

𝜕𝑥2
+ 𝑐𝑎

𝜕𝑤(𝑥,𝑡)

𝜕𝑡
+ 𝑐𝑠𝐼

𝜕5𝑤(𝑥,𝑡)

𝜕𝑥4𝜕𝑡
+ 𝜌𝐴

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
= 𝑓

𝑒
(𝑥, 𝑡) () 

where 𝑤(𝑥, 𝑡) is the lateral displacement of the actuator at the 
location of 𝑥 at a time, 𝑡, 𝜌𝐴 is the length normalised equivalent 

mass density of the actuator, 𝑐𝑎  is the viscous air-damping 

coefficient, 𝑐𝑠𝐼 is the equivalent damping term of the composite 

cross-section due to structural viscoelasticity, 𝑓𝑒 is the external 
force due to drag. 

The bending moment due to the piezoelectric actuator is 
[19], 

 𝑀(𝑥, 𝑡) = 𝑌𝐼
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 + Θ𝑣(𝑡)[H(𝑥) − H(𝑥 − 𝐿)] () 

where H(𝑥) is the Heaviside function, 𝑣(𝑡) is the input voltage, 
𝑌𝐼 is the bending stiffness of the composite cross-section, and 𝐿 
is the length of the actuator. 

The electromechanical coupling coefficient of the 
piezoelectric actuator is obtained as [19], 
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 Θ = [−
𝑤𝑎𝑌𝑝𝑑31

𝑡𝑝
((

𝑡𝑠

2
+ 𝑡𝑝)

2

− (
𝑡𝑠

2
)

2

)] () 

To confirm the mechanical integrity of the actuator, it is 
essential to evaluate the maximum strain. Assuming the 
dominant motion is governed by the actuator’s first bending 
mode, the highest stress occurs at the midpoint of the beam. 
Consequently, the maximum tensile stress in the actuator can be 
determined as, 

 𝜀max =
𝑇max 

𝑌𝑝
 () 

where 𝑌𝑝 is the Young’s modulus of the piezoelectric material 

and 𝑇max is the tensile stress limit of the material. 

In the electrical domain, the electric charge can be 
determined using Gauss’ law. The charge, 𝑞𝑝 , in the 

piezoelectric actuator is expressed as, 

 ∇ ∙ 𝑫 = 𝑞𝑝 = ∫ 𝑖𝑝𝑑𝑡
𝑡

0
 () 

The electric charge within the piezoelectric material is 
generated by both the applied voltage and the dynamic motion 
of the wing load [19]. 

 𝑞𝑝 = 𝑞𝑣 + 𝑞𝑑 () 

 𝑞𝑣(𝑡) = ∫
𝜖𝑤𝑎

𝑡𝑝

𝐿𝑎

0
𝑣𝑠(𝑡)𝑑𝑥 = 𝐶𝑝𝑣𝑠(𝑡) () 

  

𝑞𝑑 = ∫ 𝑑31𝑌𝑝 (
𝑡𝑠 + 𝑡𝑝

2
) 𝑤𝑎

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2

𝐿𝑎

0

𝑑𝑥

= 𝑑31𝑌𝑝 (
𝑡𝑠 + 𝑡𝑝

2
) 𝑤𝑎 ∫

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥2𝜕𝑡

𝐿𝑎

0

𝑑𝑥 

  () 

where 𝑞𝑝 is the total charge within the piezoelectric material, 𝑞𝑣 

and 𝑞𝑑  are electric charges due to the input voltage and dynamic 
effect, respectively, 𝜖  is the permittivity, and 𝐶𝑝  is the 

capacitance of the piezoelectric layer. 

 The induced current in the piezoelectric bimorph actuator 
can be obtained as,  

 𝑖𝑝 = 2
𝑑𝑞𝑝

𝑑𝑡
 () 

 

Fig. 2. A schematic view of a FWMAV utilising a single piezoelectric 

bimorph actuator, where 𝐺1 is the aerodynamic centre of the wing and 𝑔1 is the 
longitudinal distance between 𝐺1 and the actuator end. 

D. System  

A simplified diagram for the FMWAV is shown in Fig. 2. 
The wings are assumed rigid here. The stiffness of the flexural 
hinge and the mass and inertial moment of the wings are 
included in boundary conditions while the aerodynamic force is 
added in the form of external force [20].  

Using the separation of variables, expansions theorem and 
the mode superposition principle [17], 

 𝑤(𝑥, 𝑡) = ∑ 𝛷𝑛(𝑥)𝜂𝑛(𝑡)∞
𝑛=1  () 

where 𝛷𝑛(𝑥)  is 𝑛th  mode shape, and 𝜂
𝑛

(𝑡)  is the time-

dependent generalised coordinates. In general, the mode shape 
can be described by [17], 

𝛷𝑛(𝑥) = 𝐶1𝑛 cos 𝛽𝑛 𝑥 + 𝐶2𝑛 sin 𝛽𝑛 𝑥 + 𝐶3𝑛 cosh 𝛽𝑛 𝑥 +
𝐶4𝑛 sinh 𝛽𝑛 𝑥  () 

 𝛽𝑛 = √
𝜌𝐴𝜔𝑛

2

𝑌𝐼

4

 () 

where 𝜔𝑛  is the resonant frequency and the coefficients, 𝐶𝑚𝑛 
( 𝑚 = 1,2,3,4 ), can be determined using force and moment 
equilibrium at the actuator ends. 

The external force due to the aerodynamic force is only 
applied at the ends of the actuator. The force can be obtained as, 

 𝑓𝑒(𝑥, 𝑡) = −𝑀wing(𝑥, 𝑡)|
𝑥=0,𝐿

𝑑

𝑑𝑥
[𝛿(𝑥) + 𝛿(𝑥 − 𝐿)] () 

The aerodynamic moment due to the flapping motions can 
be obtained as, 

 𝑀wing(𝑥, 𝑡) = 𝐶𝑤
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥𝜕𝑡
|

𝑥=0,𝐿
|

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥𝜕𝑡
|

𝑥=0,𝐿
| () 

The equations of motion for the system can be rewritten as, 

 𝜂̈𝑛(𝑡) + 2𝜁𝑛𝜔𝑛𝜂̇𝑛(𝑡) + 𝜔𝑛
2𝜂𝑛(𝑡) =

Θ𝑣(𝑡)

𝜌𝐴𝛾𝑛
[𝛷𝑛

′ (0) − 𝛷𝑛
′ (𝐿)] +

1

𝜌𝐴𝛾𝑛
[𝛷𝑛

′ (0)𝑀wing(0, 𝑡) + 𝛷𝑛
′ (𝐿)𝑀wing(𝐿, 𝑡)] () 

where ′ denotes spatial derivative and 𝛾
𝑛
 is defined as,  

 𝛾
𝑛

= ∫ 𝛷𝑛
2(𝑥)𝑑𝑥

𝐿

0
 () 

E. Definition of powers and efficiencies 

The system is assumed to operate in a hovering condition, 
where the velocity of the system is zero. Hence drag is used to 
calculate aerodynamic power. The average electrical input 
power, 𝑃𝑒 , and the averaged aerodynamic power, 𝑃𝑎 , can be 
determined by, 

 𝑃𝑒 =
1

𝑇 ∫ 𝑣(𝑡)𝑖(𝑡)𝑑𝑡
𝑇

 () 



 𝑃𝑎 =
1

𝑇 ∫ 𝜙̇ 𝑀wing(𝑥, 𝑡)𝑑𝑡
𝑇

 () 

where 𝑇 is the period of a flapping cycle. 

The efficiency of the system, 𝜂𝑠, is calculated as, 

 𝜂𝑠 =
𝑃𝑎

𝑃𝑒
× 100 () 

IV. SIMULATIONS 

The developed model can predict the mode shape of the 
system, system resonant frequency, wing stroke angle, pitching 
angle, energy flows and system efficiency. The numerical 
solution of the model is obtained using MATLAB and Simulink, 
with the parameters used for simulation described in TABLE I. 
While wing specifications are not explicitly defined in this 
study, wing properties are sourced from [8] where the 
specification of a manufactured wing is described. The stiffness 
of the stroke hinge is set to 0.11 mNm/rad which makes the 
system’s natural frequency of about 104 Hz which is the natural 
frequency of the larger system in [8]. The mode shape of the 
system is shown in Fig. 3, and the instantaneous responses in the 
system are illustrated in Fig. 4 to Fig.6. With the current hinge 
configuration, the actuator’s angle is nearly 120 times larger 
than the actuator’s angle, allowing for approximately 45° of 
wing stroke angle and about 67 ° of pitching angle. The average 
lift estimation is around 28.4 mN which exceeds the system’s 
weight of approximately 5.3 mN. Lastly, Fig.6 compares the 
instantaneous input and aerodynamic powers. The average input 
and aerodynamic powers are 6.7 mW and 2.9 mW, respectively, 
resulting in a system efficiency of approximately 43 %.   

 

TABLE I. PARAMETER USED FOR SIMULATIONS 

Parameters Values Parameters Values 

𝑉𝑠 70 V 𝐾𝜙 1 mNm/rad 

𝐿𝑎 45 mm 𝐾𝜓
 a 86 μNm/rad 

𝑡𝑝 0.152 mm 𝑌𝑝 75 GPa 

𝑡𝑠 0.01 mm 𝑌𝑠 6.9 GPa 

𝜁 0.06 𝜌𝑝 7800 kg/m3 

𝐿𝑤
 a 32.4 mm 𝜌𝑠 1370 kg/m3 

𝑚𝑤
 a 4.09 mg 𝑑31 -210 pC/N 

𝐽𝑤
a 2.7 × 10−10kg m2 𝐶𝑝 36 pF 

𝐽𝑥𝑦
 a 7.1 × 10−12kg m2 𝑔1

 a 15.6 mm 

𝐽𝑥𝑥
 a 1.0 × 10−11kg m2   

a. The values are obtained by Ozaki and Hamaguchi and specified in [8] 

 

 

Fig. 3. The first mode shapes of the FWMAV, showing the actuator and wings 
represented by red and blue lines, respectively. The system’s natural frequency 

is estimated to be 104 Hz, and the length is normalised by the actuator length. 

 

Fig. 4. The estimated instantaneous angles of the FWMAV: 𝜙𝑤 is the wing 

stroke angle, 𝜙𝑎 is the angle at the actuator end and 𝜓 is the pitching angle.   

 

Fig. 5. The estimated instantaneous lift generation of the FWMAV. 



 

Fig. 6. Instantaneous aerodynamic power, 𝑃𝑎, and input power, 𝑃𝑒. 

The wings adopted from previous research may not offer the 
best performance in this system. Future work will focus on 
specifying the wing aeromechanics and conducting optimisation 
to fine-tune the design parameters. 

V. CONCLUSION 

In this paper, a novel design concept for flapping wing aerial 
vehicles that utilises mechanical resonance to achieve enhanced 
flapping angles and lift. The proposed design aims to mimic the 
highly efficient natural flight mechanisms of insects by 
incorporating mechanical resonance and synchronised pitching 
with flapping motion. This integration enables improved wing 
stroke angle and energy efficiency. By utilising dynamic 
amplification, the system can achieve high lift generation with 
reduced power consumption. The mathematical modelling 
presented in this study provides a robust framework for 
understanding the dynamic behaviour of the system. Through 
deriving and numerically solving the governing equations, the 
model predicts the stroke angle of 45 °, pitching angle of 67 °, 
lift generation of 28.4 mN, average input and output powers of 
6.7 mW and 2.9 mW, respectively. The theoretical insights 
gained from this modelling serve as a foundation for future 
experimental work and optimisation of the design. Overall, this 
research contributes to the growing field of biomimetic flight 
systems by offering an innovative approach to FWMAV design 
that combines the advantages of mechanical resonance. Future 
work will focus on refining the model, performing empirical 
validation, and exploring potential real-world applications for 
this emerging technology.  
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